
Armillaria root rot of tea in Kenya 

Characterization of the pathogen and approaches 

to disease management 

CENTRALE LANDBOUWCATALOGUS 

0000 0889 9003 



Promotor: Prof. dr. M. J. Jeger 

Hoogleraar in de Ecologische Fytopathologie 

Co-promotor: Dr. ir. A. J. Termorshuizen 

Universitair Docent leerstoelgroep Biologische 

Bedrij fssystemen 

Samenstelling promotiecommissie: Prof. dr. ir. P. Struik (Wageningen Universiteit) 

Dr. C. Prior (Royal Horticultural Society, Wisley, UK) 

Dr. Th. W. Kuyper (Wageningen Universiteit) 

Dr. ir. J. M. Raaijmakers (Wageningen Universiteit) 



Armillaria root rot of tea in Kenya 

Characterization of the pathogen and approaches 

to disease management 

Washington Otieno 

Proefschrift 

ter verkrijging van de graad van doctor 

op gezag van de rector magnificus 

van Wageningen Universiteit, 

Prof. dr. ir. L. Speelman 

in het openbaar te verdedigen op maandag 11 februari 2002 

des namiddags te vier uur in de Aula 

/ 
J 



Propositions 

1. General reference to Armillaria as a pathogen of 'woody plants' is incorrect. This Thesis. 

2. DNA sequencing techniques provide opportunity for adoption of molecular characteristics in 

the 'nomenclature' of Armillaria species. This Thesis. 

3. In biological control of soil borne pathogens, extrapolation of results from pot based 

experiments can give erroneous conclusions. 

4. The term 'incite' should not be used in aetiological literature as it implies an indirect role of the 

pathogen in disease. 

5. Chemical pesticides and genetically modified organisms should equally be causes of concern in 

agriculture. 

6. Over-diversification in agriculture is the result and the cause of food insecurity in small-holder 

farming communities. 

7. Positive thinking can only be founded on criticism of good will. 

8. Greatness only exists where simplicity, goodness and truth are present (Rosemary Edmond, 

1962). 

Washington Otieno 

Armillaria root rot of tea in Kenya - characterization of the pathogen and approaches to disease 

management. 

Wageningen, 11 February 2002 
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Chapter 1 

General introduction 

Armillaria root rot of tea in Kenya is the subject of this thesis. This chapter gives 

background information to the subject and an outline of the thesis. The first section 

describes tea production in general and more specifically in Kenya. The aetiology and 

management of the disease are introduced in the second section. The third section 

outlines characteristics of the genus Armillaria used in species identification and 

introduces the problem of attempting to apply these in Africa. The possibilities for 

managing the disease in commercial plantations are introduced in the fourth section. The 

final section outlines the objectives and approach to the present study. 

The tea plant 

Tea (Camellia sinensis (L.) O. Kuntze) is a perennial evergreen beverage crop 

belonging to the family Theaceae. Camellia sinensis originated in the lower montane 

forest of mainland Asia from south western China (Sichuan) to north western India 

(Assam). The primary centre of origin is presumed to be near the source of the Irrawadi 

River in northern Burma. Early human interest in stimulating properties of tea may have 

been instrumental in its wide dispersal in Asia. The tea grown in China and Japan is C. 

sinensis var. sinensis ('China tea') which has smaller leaves and greater cold tolerance 

but grows less vigorously than C. sinensis var. assamica (Mast.) Kitamura ('Assam tea') 

discovered in the forests of north-eastern India in 1823. 

The tea plant is a multi-stemmed, up to 3 m tall shrub (var. sinensis), or a 10-15-

m tall tree with one main stem (var. assamica). Under cultivation the plants are pruned to 

1-1.5 m and trained as low profusely branching and spreading bushes. Written records 

dating from 5th Century AD confirm widespread cultivation of tea and its general use as a 

refreshing beverage in central Chinese provinces. In Japan, tea cultivation started in the 

9th century with the seed introduced from China. Assam tea and hybrids between the two 



varieties became the basis of the tea industries in south, south-east, and west-Asia as well 

as for those established in Africa and South America in the 1900s. For more than 300 

years all the tea drunk in the western world came from China but this monopoly on the 

international tea market came to an end with the development of tea plantations in India 

(1840), Sri Lanka (1870) and Indonesia (1880). By 1925 very little of the 300,000 tonnes 

of tea imported into Europe came from China. Currently Sri Lanka and the African 

countries export > 90% of their tea, Indonesia, 60%, China 27% (black + green), and 

India 20%. Of the 1.1 million tonnes of tea that goes to the world market, the leading 

importers, United Kingdom, Russian Federation, Pakistan, U.S.A and Egypt take up 155, 

150, 110, 85, and 70 thousand tonnes respectively. 

Tea cultivation 

Tea is grown in an expansive region of the world between latitudes ranging from 

the equator to 33°S in Natal, South Africa and 49°N in Georgia (Huang, 1989) and 

spanning a range of altitudes from sea level in Bangladesh to over 2600 m in Kenya. The 

climates in these regions range from Mediterranean to tropical (Carr and Stephens, 1992). 

General climatic requirements for tea production have been described in detail (Willson 

and Clifford, 1992; Vossen and Wessel, 2000). Mean annual rainfall required for good 

growth of tea varies from 1500 mm (Uganda) to 3500 mm (Java). On average, economic 

tea production requires > 1700 mm annual minimum rainfall, which should not fall below 

50 mm per month for any prolonged period. Optimum temperature for shoot growth 

ranges from 18 - 30°C. Base temperature (Tb) below which shoot growth stops is 12.5°C 

on average but can vary according to genotype from 8 - 15°C. However, night frost 

temperatures that occur in important growing areas at higher latitudes or high elevations 

do not kill tea. In the absence of water stress, the thermal time (= the product of the 

number of days and effective temperature (T-Tb) for shoot regeneration cycle (SRC)) 

averages 475 day °C. This parameter is useful in predicting seasonal and geographical 

effects on the length of SRC and the consequent yield pattern. It is, however, not 

applicable at temperatures > 30°C because the accompanying high vapour pressure 

deficits (> 23 mbar) depress shoot growth. Tea grows on a wide range of soil types 

developed from diverse parent rock material under high rainfall conditions. Suitable soils 
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should be free draining, have a depth not less than 2 m, pH between 4.5 and 5.6, a texture 

of sandy loam to clay and good water holding capacity. 

Tea was introduced into Kenya in the early 1900s and first planted at Limuru near 

Nairobi. Its successful establishment led to the spread of cultivation to other parts of the 

country. The tea-growing region of Kenya straddles the equator with economic 

production taking place at altitudes ranging from 1600 - 2600 m in the highlands west of 

the Great Rift Valley and Mount Kenya region. The annual rainfall in this region is > 

1400 mm and well distributed, the temperatures range from 21 - 28°C, and the soil is 

highly leached and acid (pH ~ 5.0) nitisols. Due to the tropical climate tea is harvested 

every 11-17 days throughout the year. 

Economic value of tea 

Tea is grown commercially to produce a beverage made from tender shoots 

consisting of two expanded leaves and one terminal bud. The three main categories of tea 

are black, green, and oolong. All of these come from the same plant species (C. sinensis), 

the difference being only the method of processing. As at 1995-98 total annual world 

production of tea was 2.6 million tonnes of which 78% was black tea. About 1.1 million 

tonnes went to the international market of which 93% comprised of black tea. Of the total 

world production averaging 2.6 million tonnes from a total area of 2.5 million ha in 30 

countries (22% green tea), S. Asia (India, Sri Lanka, and Bangladesh) produces about 

40%, E. Asia (China, Japan, Taiwan), 27%; Africa (10 countries) 14%; W. Asia (Turkey, 

Iran, Georgia, Azerbeijan) 10%; S.E. Asia, 7%; and S. America (Argentina, Brazil) 2%. 

Table 1.1 gives a summary of world tea production for the 5 leading producing countries 

and their percentage share in the world market. The leading tea importing countries are 

the United Kingdom, Ireland, USA, and Egypt with annual per capita consumption of 2.5, 

3.1, 0.3, and 1.1 respectively. 

In Kenya, which is the largest producer in Africa, tea is an important foreign 

exchange earner and contributes 17 - 20% of total export revenue. The tea industry in 

Kenya consists of two main sectors: the large estates owned by multinational companies 

and the small holders (individual small-scale farmers). These own approximately 30 and 

70% respectively of the total land planted with the crop. Small-scale farmers grow over 



Table 1.1: The five leading tea producing countries and their contribution to tea trade 

worldwide 

Country 

India 

China 

Sri Lanka 

Kenya 

Indonesia 

Planted area (ha) 

425,000 

1,100,000 

187,309 

120,000 

91,400 

Tea production 

(tonnes yr"1) 

755,000 

580,000 

250,000 

240,000 

140,000 

Global share (%) 

Quantity 

29.8 

22.6 

10.2 

8.1 

4.4 

Trade 

17.0 

17.6 

21.3 

21.0 

5.4 

80% of tea. At production and processing stages, tea provides employment to over 1 

million people. In the small holder sector, over 300,000 people (small holders and their 

families) depend on tea growing as a direct means of livelihood. 

Diseases of the tea plant 

A number of diseases have been recorded in various tea-growing countries but only 

a few are of economic importance. Blister blight {Exobasidium vexans), which attacks 

young leaves and shoots, is the most important foliar disease of tea and is of major 

importance in all tea growing areas of Asia, but has not been reported in Africa or South 

America (Arulpragasam, 1992). Anthracnose (Colletotrichum theae-sinensis) and net 

blister blight {Exobasidium reticulum) are also of importance mainly in Japan and Taiwan. 

Grey (Pestalotia theae) and brown (Colletotrichum camelliae) blights are caused by weak 

parasites attacking mainly mature leaves near senescence but can be a problem in 

mechanically harvested tea. There are several stem cankers of which Macrophoma theicola 

and Phomopsis theae are most common but these can be controlled by careful pruning, 

protecting pruning cuts with fungicidal paints, and removing infected branches. In Kenya 

wood rot (Hypoxylon serpens) and stem canker (Phomopsis theae) are the only important 



stem diseases. Correct pruning practices and fungicidal protection of pruning cuts can 

manage both diseases. A number of important root pathogens {Phellinus (= Fomes) noxius, 

Ganoderma pseudoferrum and Armillaria sp.) are difficult to control in tea. In Kenya, 

Armillaria root rot persists in several farms particularly in the small holder sector, killing 

tea bushes and rendering the subsequent inoculum foci useless for production of many 

other crops. 

Armillaria root rot 

Armillaria root rot affects many plant species in the highland areas of Kenya. The 

only full descriptions of the disease on tea in Kenya were made in 1960 (Gibson, 1960a, 

Gibson and Goodchild, 1960; Goodchild, 1960). The disease hinders successful 

establishment of tea when planted shortly after deforestation. Maintenance of plant 

populations at the original density is also not possible in some old plantations if 

eradication of infected plants is not regularly and properly carried out. The principal 

indicators of infection in a tea plantation are gaps resulting from death of plants. 

Locations of these infection foci are often associated with stump and root remnants of 

trees and shrubs from the previous forest vegetation. Infection of tea is common shortly 

after forest replacement with the crop and decreases over many years (Goodchild, 1960). 

Where no efforts are made to check the spread of Armillaria, the disease persists for 

decades causing considerable plant mortality. Sometimes infections appear in a tea 

plantation after several years of disease-free production (Goodchild, 1960) showing that 

inoculum in plant materials at great soil depths can remain viable for many years. Viable 

mycelium of the pathogen can be recovered from such materials several years after tree 

felling (Goodchild, 1960). Incidence of Armillaria is less common in the large tea estates 

than in the small holder farms. This can be attributed to efficient and thorough removal of 

inoculum reservoirs from the soil by the heavy machinery used in the large estate 

establishments compared to the hand implements used by the small holders (Onsando et 

al., 1997). The incidence is also higher in new plantations than in older plantations but 

this can be attributed to more frequent establishment of root contacts with inoculum 

sources and may have little to do with higher susceptibility of younger plants. There are 



few records of Armillaria root rot on tea under 12 months old. Cases of infection may, 

however, be frequent but go unrecognised as disease casualties because they occur at 

times when planting failure due to other factors such as poor land preparation, improper 

planting and insect damage are common. 

The species of Armillaria that cause root rot of tea in Kenya are certainly 

indigenous to natural forests. Little has been done to determine diversity of Armillaria in 

Kenya and until recently, the disease was arbitrarily attributed to Armillaria mellea (Vahl 

: Fr.) Kumm. sensu lato. Identity of the pathogen is thus still obscure. The two species, A. 

heimii Pegler and A. mellea 'ssp. africana' reported so far (Mohammed et al., 1993; 

Mwangi et al., 1993) are currently assumed to be largely responsible for the disease. 

However, there are indications that other species of Armillaria exist in Kenya suggesting 

that additional taxonomic groups may also be involved in the disease. Due to the general 

absence of basidiomata on infected tea, presence of other species that have not been 

described hitherto has been difficult to ascertain. 

Delimitation of African Armillaria spp. 

Delimitation of Armillaria species employs morphological characteristics of 

basidiomata. Where basidiomata are present, it is also possible to obtain haploid cultures 

from basidiospores. These can be used in mating tests to identify 'biological species'. 

Ordinarily cultures of basidiospores are haploid while those of basidiomata flesh are 

diploid. Haploid and diploid cultures of Armillaria contrast in their morphology, the 

haploid having a fluffy and the diploid a crustose appearance. In mating tests, crossings 

are made between a haploid colony of a known species (tester strain) and the unknown 

haploid or diploid isolate. Macroscopic change in colony morphology of the tester colony 

from fluffy to crustose indicates the change from haploidy to diploidy and therefore 

genetic similarity of the tested isolates with the tester (Korhonen, 1978; Anderson, 1986; 

Siepmann, 1987). The mating tests are used extensively to identify temperate Armillaria 

and to designate them as 'biological species' sensu Hintikka (1973). Compatibility in 

mating tests has led to the definition of a number of morphologically recognisable species 

in North America, Europe, and Australia. However, mating tests are applicable only to 



heterothallic Armillaria because homothallic isolates lack a stable haploid condition. 

Most African Armillaria isolates appear to be homothallic. Between continents 

compatibility tests for isolates are routinely inconsistent (Mwangi et al., 1989). Mating 

tests are therefore useless as a criterion for identification of African Armillaria isolates. 

An incompatibility system based on antagonistic responses (Rizzo and 

Harrington, 1993) between mycelia of colonies paired on a common substrate is also used 

to distinguish isolates of Armillaria, even diploids, into somatic incompatibility groups. 

The incompatibility reaction can indicate inter- or intra-specific groups (Korhonen, 

1978). Interspecific incompatibility is characterised by the failure of hyphae to 

anastomose and the production of a pigmented line of demarcation between colonies. 

This has been used in a few studies to distinguish among African Armillaria isolates 

(Abomo-Ndongo et al., 1997; Guillaumin et al., 1993). Due to the plastic nature of 

morphological characteristics, the absence of basidiomata and homothallism, biochemical 

methods particularly those based on isozyme electrophoresis (Agustian et al, 1994; 

Mwangi et al., 1989; Mwenje and Ride, 1996; 1997) and DNA molecular markers 

(Mohammed, 1994; Coetzee et al, 1997; Chillali et al., 1997) have gained popularity in 

attempts to characterise or identify Armillaria isolates from Africa. 

Management of Armillaria root rot 

Methods that effectively control Armillaria root rot are currently not available to 

tea growers. Eradicating Armillaria from the soil by removing plant materials that may 

serve as reservoirs of the inoculum as well as infected plants is recommended (Anon., 

1986) and widely practised in Kenya. However, complete elimination of the pathogen 

from the soil by this method is difficult, particularly for inoculum occurring deeply in the 

soil or where field infestation is extensive and removal has to be carried out manually. 

The disease therefore persists in small holder farms causing considerable mortality to tea 

and other economic plants including fruit trees and tuber crops (Otieno, pers. 

observations). 

In some plantations, the disease only becomes a problem when trees inter-planted 

with or growing in close proximity to tea are felled (Otieno, pers. observation). Factors 



associated with this phenomenon have not been investigated. It is known that roots of 

some trees may have non-harmful associations with Armillaria as lesions or epiphytic 

rhizomorphs (Gibson, 1960b). It has been hypothesised that if such trees are first ring-

barked then left to dry up slowly over a period of 18-24 months before they are felled, 

their roots would be depleted of starch reserves thereby exposing Armillaria to adverse 

effects of microbial competition which reduce the longevity of inoculum (Leach, 1939). 

This method is routinely employed in Kenya to kill trees that grow adjacent to tea 

plantations or on land to be planted with crops prone to the disease. The finding of active 

Armillaria mycelium in roots of indigenous hard wood trees in Zimbabwe several years 

after they were killed by ring-barking (Masuka, 1993) makes it questionable whether the 

practice has any value in controlling the disease. 

In the past the use of soil disinfestation with chemicals such as methyl bromide 

and carbon disulphide has been a common method of controlling soil-borne pathogens. In 

modern agriculture these are unpopular due to hazards they pose to the environment. No 

record exists of any attempts to control Armillaria root rot in Kenya by use of chemicals. 

Even if their use was acceptable, Armillaria possesses mechanisms of protection that 

would limit the ability of chemical fumigants to attain maximum efficacy (Raziq, 2000). 

Development of safe and effective methods of controlling the disease is therefore 

desirable. In several studies it has been demonstrated that Trichoderma spp. can 

antagonise Armillaria. However, their use is barely documented as a practical method of 

disease control. Munnecke et al. (1981) observed that capacity of T. viride to infect and 

kill A. mellea was enhanced when the antagonist was applied to the soil consequent to 

exposure of the pathogen to sub-lethal levels of chemical fumigation, heat, or desiccation. 

The research described in this thesis investigated whether increasing population density 

of antagonistic Trichoderma and exposure of Armillaria to the high soil temperatures 

achieved by solarization would affect survival of the pathogen in naturally infected plant 

materials. 



About this thesis 

Despite the prevalence of Armillaria root rot over a large geographical area in 

highland regions of Kenya and its common incidence on various hosts, the disease has 

been subject of only a few studies. Identity of the causal agent and applicability of 

methods that have been tried elsewhere for management of the disease have remained 

largely uninvestigated in Kenya and other parts of Africa. In this thesis an attempt is 

made to characterise Armillaria pathogenic on tea in Kenya and to investigate the 

possibility of managing the disease. 

Characterisation of tea pathogenic Armillaria 

A survey was made on the incidence of Armillaria root rot in each of the two (the 

east and the west of the Great Rift Valley) major tea-growing regions of Kenya. Isolates 

of the fungus were collected from infected tea and a few other plants. The cultural 

morphological characteristics of these isolates were described and somatic 

incompatibility tests carried out. In addition the isolates were characterised using DNA-

based molecular markers. In the few instances where basidiomata were found, their 

morphological characteristics were recorded. 

Disease management 

The search for ways of managing Armillaria root disease on tea by biological and 

cultural methods was the focus of the field experiments. The Trichoderma isolates used 

were obtained in an earlier study on antagonism to the pathogen on synthetic media 

(Onsando and Waudo, 1994). In this study, the Trichoderma isolates were tested for 

inhibition of the pathogen in plant materials. The isolate showing the greatest antagonism 

was subsequently evaluated in field experiments for effect on survival of the pathogen in 

naturally infected tea stumps. Two approaches were adopted in testing the hypothesis that 

low population density of antagonistic Trichoderma spp. limits their efficacy for the 

control of Armillaria (Garrett, 1958) and that resistance of the pathogen to the 

hyperparasite can be disrupted by partial soil disinfestation (Munnecke et al., 1981). In 



Guillaumin, 1994; Ota et al, 2000); only some isolates of A. heimii have been reported as 

heterothallic (Abomo-Ndongo et al, 1997), making mating tests inapplicable. Diagnosis 

of the disease is also hampered by the scarcity of rhizomorphs. Thus, although Armillaria 

root rot has been reported from various African countries, its diagnosis is often based 

only on the presence of white mycelial fans under affected bark tissue. For these reasons 

the occurrence of Armillaria in Africa and other tropical countries may have been 

underreported. Nevertheless, reports do suggest that Armillaria root rot can cause 

significant damage to several plant species in the continent but few up-to-date appraisals 

on the disease have been made. This review aims to reassess the existing knowledge on 

Armillaria in Africa. 

Species diversity 

Nomenclature of Armillaria species is based on the morphology of the 

basidiomata. Isolates that can only be identified by compatibility experiments are referred 

to as "biological species". Due to the homothallic nature of most African isolates, 

biological species cannot be designated. The following species have been reported from 

Africa: 

Armillaria camerunensis (Hennings) Volk and Burdsall (1995) 

Basionym: Armillaria mellea (Vahl : Fr.) P. Kumm. var. camerunensis Henn. In 

Hennings (1895). 

Synonym: Armillariella camerunensis (Henn.) Singer (1986). 

Original description 

A. mellea Vahl in Fl. Dan. t. 103 var. camerunensis P. Henn.; pileo carnuloso, convexo-

explanato, Vi-\ cm diametro, rufo-brunneo, dense granulato- vel verrucoso-squamoso, 

squamis parvis arris subconicis vel depressis, margine primo involuto dein explanato, 

substriato; stipite farcto, 1-2 cm longo, 2-3 mm crasso, subsquamoso, substriato, laete 

brunneo, parte superiore annulo amplo, membranaceo-flocculoso, albo, patente; lamellis 

sinuoso-adnatis, vix decurrentibus, subconfertis, pallidis; sporis subglobolis, levibus, 

hyalin-8 \x, basidiis clavatis. 

12 



Kamerun, bei Bomana, c. 670 m, an faulenden Baumstammen rasig (P. Dusen n. 

la-19 Juli 1892). 

Eine sehr zierliche und kleine Form, die ausserlich der typischen Art sehr ahnlich, 

aber durch die nicht herablaufenden Lamellen etwas verschieden ist. Bei N'dian wurden 

von Herrn Dusen unter n. 39a lange Rhizomorphenstrange an faulenden Stammen 

gesammelt, die von derartigen Mycelien des Pilzes nicht verschieden sind und 

wahrscheinlich zu demselben gehoren. 

Translation 

A. mellea Vahl. in Fl. Dan. t. 103 var. camerunensis P. Henn.; cap thin-fleshy, convex-

expanded, Vi-\ cm diameter, red-brown, densely granular- or verrucose-scaly, with small, 

black, slightly conical or depressed scales, with at first involute, later expanded, weakly 

striate margin; stem stuffed, 1 - 2 cm long, 2 - 3 mm broad, slightly squamulose [and] 

striate, light brown, within the upper part a large, membranaceous-flocculose, white ring, 

spreading; lamellae emarginate-adnexed, hardly decurrent, slightly crowded, pale; spores 

subglobose, smooth, hyaline, 7-8 urn, basidia clavate. 

Cameroon, near Bomana (approx. 670 m), against decomposing trunks. 

A very graceful and small form which is very similar to the typical species, but 

differs from it by its non-decurrent lamellae. Near N'dian long rhizomorphs (39a) were 

collected from decomposing trunks by mr. Dusen, which are not different from such 

mycelia of the fungus and which probably belong to it. 

Discussion 

A. camerunensis differs from other African Armillaria species by its tiny 

dimensions (cap 5-10 mm diam. as opposed to A. heimii measuring 15-25 mm diam.), 

dark colour of the cap, membranaceous annulus and subglobose spores. In contrast, A. 

heimii has a cream-coloured cap, fugacious annulus and ellipsoid spores. The only other 

Armillaria species for which subglobose spores have been reported is A.fuscipes, but this 

species has much larger dimensions (with cap diam. up to 60 mm) and a more bright 

(orange yellow) coloured cap. A. camerunensis has been reported only by Hennings 

(1895) from Cameroon and by Beeli (1927) from Congo. Watling (1992) suspected that 

another specimen of Armillaria collected from Cameroon belongs to this species. The 

species could have been overlooked because of its minute dimensions. More definitive 

13 



(1992) argued that A. heimii and A. fuscipes referred to the same species. Watling (1992) 

arrived at this conclusion after extensive microscopic investigation of the type specimens. 

In our opinion, however, he overvalued the microscopic characters at the expense of 

macroscopic characters. For most Armillaria species, microscopic features are not 

reliable for identification. It is therefore not surprising that the type collections did not 

differ microscopically. When inspecting the original species descriptions, 

macroscopically A. heimii has quite small dimensions, a fugacious annulus and a stipe 

which is white at the top turning to ochre towards the base while A. fuscipes has larger 

dimensions, a thick annulus and a stipe which is dark brown. Confusion between the two 

species may have arisen by the interpretation of A. heimii by Heim (1963), who 

distinguished a parasitic form of this species. In our opinion the identity of this parasitic 

form is doubtful because of its larger dimensions, dark-coloured cap and dark brown 

stipe. 

Reports on A. heimii are difficult to interpret since its identity depends on the 

author's interpretation in relation to A. fuscipes. The species has been reported over a 

wide range of altitudes and hosts in Africa. It could be the most common African 

Armillaria species. Homothallic and heterothallic isolates have been reported (Abomo-

Ndongo et al, 1997; Agustian et ai, 1994; Guillaumin et al., 1993). 

Armillaria mellea (Vahl: Fr.) P. Kumm. (1871) 

Basionym: Agaricus melleus Vahl (1787) 

Synonyms: see Termorshuizen and Arnolds (1987), Volk and Burdsall (1995) and 

Watling et al. (1982). 

Original description 

Agaricus melleus, pileo convexo lutescente, fusco irrorato, lamellis pallidis, stipitibus 

aggregatis annularis farctis Fl: Dan. tab. 1013. 

Habitat in pratis ad radicis ulmorum Bergo Norway, in Danica in truncis fagetis fJ 

in arenosis Medio Augusto et Septembris. 

Translation 

A honey-coloured agaric, cap convex, becoming yellowish, brown speckled, lamellae 

pale, stems [growing] in groups, ringed, stuffed. 
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Habitat in meadows on roots of elm-trees, Bergen, Norway, in Denmark on trunks in 

sandy beech forests, in the middle of August and September. 

Discussion 

A. mellea sensu stricto has been reported only very rarely from Africa and 

extensive descriptions of the basidiomata have not been published so far. The description 

of Pegler (1977) most likely does not refer to an A. mellea s.s. because he reported the 

presence of clamp connections, which are absent in European A. mellea s.s. Mohammed 

et al. (1993) reported that the morphology of artificially produced basidiomata from a 

Kenyan isolate resemble that of European A. mellea s.s. but they did not mention the 

morphology of any naturally produced basidiomata. Cultures of African A. mellea 

showed partial compatibility with testers of A. mellea s.s. from Europe and North 

America (Mwangi et al., 1989) but the authors did not present their results in detail and 

admitted that results from haploid/diploid crossings are sometimes difficult to interpret. 

Several reports mention that African A. mellea is different from European A. mellea with 

respect to pectic isozyme profiles (Mwenje and Ride, 1997), DNA-analysis using RFLP 

and RAPD (Mohammed et al., 1993; Mohammed and Guillaumin, 1994; Chillali et al, 

1997), and somatic compatibility tests and RAPD-analysis (Ota et al, 2000). However, 

none of these authors presented any descriptions of basidiomata or else reported how the 

isolates they named as A. mellea were identified. Thus, we refrain from a definitive 

conclusion until more extensive descriptions of basidiomata have been published. When 

comparing morphology of European A. mellea s.s. (Termorshuizen and Arnolds, 1987) 

with that of A. fuscipes (Petch, 1909), the former differs by its somewhat larger 

dimensions and by having yellow-greenish tinges in the centre of the cap, absence of a 

nearly white margin of the cap and presence a membranaceous annulus. These 

differences are rather subtle and it may be that both names refer to the same species. 

Armillaria pelliculata Beeli (1927) 

Armillaria pelliculata Beeli (1927) was found only once. The species was rejected from 

Armillaria because of the vicid veil and infundibiliform pileus (Watling, 1992). 
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Provisional key for Armillaria species in Africa 

1 a Annulus fugacious, hardly discernable on mature basidiomata A. heimii 

lb Annulus persistent, clearly visible on mature basidiomata 2 

2a Average cap diam. < 25 mm, dark brown Armillaria camerunensis 

2b Average cap diam. > 30 mm, not so dark, brown yellowish brown, brownish yellow, 

greenish yellow or yellow 3 

3a Annulus flocculose, relatively narrow; cap brown to yellow brown in the centre, 

turning strikingly pale towards the margin A. fuscipes 

3b Annulus membranaceous, relatively wide; cap brownish yellow in the centre, or 

greenish yellow, not turning pale towards the margin A. mellea 

Economic importance and distribution 

Significant and extensive damage by Armillaria has been reported in Africa 

(Tables 2.1 and 2.2) suggesting that Armillaria root rot may be an obstacle to production of 

several crops in many parts of the continent. In tea the disease has also been reported from 

other countries including India and Indonesia (Willson and Clifford, 1992), Malawi (Leach, 

1939), Tanzania, and Uganda (Gibson, 1960a). Non-woody plants are equally affected by 

the disease and in Zimbabwe and the Congo damage is common on cassava (Makambila, 

1980; Mwenje et al., 1998). In Kenya, affected non-woody plants include banana, yam, and 

tomarillo (Otieno, pers. observations). The situation may be the same in other tropical 

regions. In all the African countries from which Armillaria root rot has been reported 

(Figure 2.1) the pathogen generally occurs in high rainfall areas and is not found in dry 

regions (Mohammed et al, 1993). It is confined to high (> 1500 m) elevations in the 

eastern and western highlands of Kenya; low to high (600 - 1800 m) elevations in eastern 

highlands bordering Mozambique, the north eastern part of Marondera, and Harare areas in 

Zimbabwe; and low (< 500 m) elevations in the southern regions of the Congo (Mwangi et 

al, 1993). In Tanzania, 900 m was reported to be the lowest altitude for occurrence of 

Armillaria (Gibson, 1960b). Within each of these countries local distribution of Armillaria 

is discontinuous in space with A. heimii occurring in areas with cool temperatures in 

Kenya and Zimbabwe but in warmer humid locations in the Congo (Mwangi et al. 1993). 



Table 2.1: Reports of Armillaria in Africa 

Country Hosts References* 
Ethiopia unidentified indigenous trees 21 
Kenya Citrus spp. 17 

Camellia sinensis 6,14,20 
Eucalyptus spp. 12, 20 
Pinus spp. 4, 5 
Coffea arabica, Musa acuminata, Discorea spp., Persea 6, 11, 20 
americana, tomarillo, Saccharum spp., Cupressus spp. 
Prunus spp. and unidentified trees 

Mauritius P/nws spp. 
Malawi Pinus spp. 
Cameroon unknown rotting wood 
Ivory Coast Gmelina arborea, 
Gabon Theobroma cacao, Mannihot sp., Havea brasiliensis. 
Tunisia Olives 
Tanzania Camellia sinensis and unidentified indigenous tree 

species 
Pinus sp. 

Uganda Camellia sinensis and indigenous tree species 
S. Africa Pinus spp. 

Litchi sinensis 
Re Union Pelargonum asperum 
Madagascar Coffea arabica 
The Congo Mannihot esculenta 

Havea braziliensis 
Sao Tome Theobroma cacao 
Gabon Havea braziliensis 
Zimbabwe Pinus spp., indigenous tree species (Acacia 

xanthophloea, Brachystegia utilis, B. spaciformis, 
Bridelia micrantha, Ficus sp., Harungana 
madagascarensis, Julbernardia globiflora, Parinari 
curatelifolia, Tectonia grandis, Vernonia sp.) 

Zambia Tectonia grandis 2,15 

10 

10 
22 
7 
7 
21 
15 

21 
15 
10 
2 
2,10 
3 
1,8 
7 
16 
7 
2,9,12,13,18,19 

* 'Abomo-Ndongo et al. (1997), 2Coetzee et al. (1997), 3Dadant (1963), "Gibson (1960b), 5Gibson and 

Goodchild (1960), 6Goochild (1960), 7Guyot (1997), 8Makambila (1980), 9Masuka, (1993), 10Ivory (1987), 

"Mwangi et al (1993), 12Mwangi (pers. comm., 1998), l3Mwenje and Ride (1997), 14Onsando et al. (1997), 
15Pegler (1977), 16 Rishbeth (1980), 17Seif and Whittle (1984), 18Swift (1968), l9Swift (1972), 20Otieno (pers. 

Observation), 21Ota et al. (2000), 22Watling (1992). 
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Table 2.2. Estimates of mortality due to Armillaria in some hosts in Africa 

Country 
Gabon 
The Congo 

Kenya 

Zimbabwe 

E- and S-Africa 

Host 
Havea braziliensis 
Havea braziliensis 
Mannihot esculenta 
Camellia sinensis 

Cupressus lusitanica 
Pinus oocarpa 
Plantation forests 
Pinus elliottii 
Pinus elliottii 

Mortality (%) 
up to 0.38 
>1 
up to 100 
up to 50 
up to 12.6 

up to 2.5 
0-25 
25-50 
25-50 

Source 
Guyot(1997) 
Pichel (1956) 
Mwangi etal. (1993) 
Onsandoe/a/. (1997) 
Mwangi et al. (1993) 

Masuka(1993) 
Masuka(1993) 
Ivory (1987) 
Ivory (1987) 

Distribution of the species in the Congo also appears to vary with soil type, its presence 

being associated only with clay but not sandy soils (Mwangi et al, 1993). 

Ecology 

Basidiomata of Armillaria are rarely encountered in Africa. Although conditions 

affecting natural fructification by the fungus have not been investigated in this continent, 

high temperatures and probably limited rainfall may hamper fructification. The few 

basidiomata that have been found were used to name the species discussed above. Other 

hitherto unknown Armillaria species could perhaps be present at locations where 

basidiomata are absent. When found, basidiomata occur during the cool and moist 

periods of the year after the rainy seasons (Mohammed et al, 1993) and are produced 

typically in clusters at the base of infected stumps and dead trees (Mwangi et al, 1993; 

Mohammed et al, 1993). Armillaria root rot is generally prevalent at elevations > 1500 

m in Kenya, but basidiomata occur at elevations > 2000 m (Mwangi et al., 1993; Otieno, 

pers. observation). On the other hand, basidiomata of A. camerunensis have been found at 

an elevation of 670 m in Cameroon (Hennings, 1895). As stated, basidiomata are 

uncommon in Africa and this may have contributed to a selective advantage of 

homothallism which is common in African Armillaria. When basidiomata are rare, the 

likelihood of two haploid mycelia meeting to form a diploid mycelium would be very 

low. Among the temperate Armillaria species, only A. ectypa is homothallic (Kile et al., 

1993) but unlike all the other species, it grows on peat and does not infect plants. 
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Fig. 2.1: African countries from which Armillaria root disease has been reported 

('Ethiopia, 2Congo 3Cameroon, "Gabon, 5Ivory Coast, 6Kenya, 'Liberia, 8Madagascar, 
9Malawi, 10Mauritius, "Re-Union, 12Sao Tome, l3South Africa, '"Tanzania, 15Tunisia, 
16Uganda, 17Zambia, ^Zimbabwe). 

Rhizomorphs, a typical feature of the temperate Armillaria species which provide 

the principal means of below-ground dispersal, are rare in Africa. Their absence at low 

elevations in tropical Africa (Swift, 1964; Swift, 1968) has been explained by the 

prevailing soil temperatures which are often too high for rhizomorph growth (Rishbeth, 

1978). The temperature range for rhizomorph growth varies for different species 
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(Rishbeth, 1978), but in general they are not formed above 28°C. Pearce and Malajczuk 

(1990) ascribed the paucity of rhizomorphs of A. luteobubalina in Eucalyptus forests in 

SW-Australia to unfavourably high temperatures and low soil moisture contents. Cultures 

of A. luteobubalina failed to form rhizomorphs at 30°C but they did so abundantly after 

the temperature was lowered to 20°C, suggesting an enzyme inactivation process within 

this range (Pearce and Malajczuk, 1990). Armillaria isolates from tropical lowlands do 

produce rhizomorphs in vitro at 25°C (Swift, 1968). Onsando et al. (1997) reported the 

presence of rhizomorphs in tea plantations at high elevations on residual roots of trees 

that were present before the tea was planted. This could be attributed to the prevailing 

moderate temperatures at deeper soil layers. The rhizomorphs associated with Armillaria 

root rot, if found on infected plants, are usually the cortical type (Figure 2.2a). Only 

rarely are subterranean forms (Figure 2.2b) encountered. 

In the absence of basidiomata and with the scarcity of rhizomorphs, dispersal of 

Armillaria takes place mainly by root-to-root contact. Similarly when rhizomorphs, 

thought to be crucial for survival of Armillaria in the temperate climate zones (Kile et al., 

1991) are absent, persistence of the pathogen depends primarily on the ability to survive 

in infected plant tissue. It has been shown that many indigenous trees in natural forests 

harbour superficial lesions of Armillaria which apparently do not harm the trees (Gibson, 

1960b). These lesions have been reported on Parinari curatelifolia, Brachystegia utilis, B. 

spaciformis, Bridelia micrantha, Ficus sp., Harungana madagascarensis, Julbernardia 

globiflora, as well as Vernonia spp. in Zimbabwe (Masuka, 1993), bamboo (Arudinaria 

alpina) and several unnamed plant species in Kenya (Gibson 1960b). They have also been 

reported in cultivated tea (Goodchild, 1960) as recently confirmed (Otieno, pers. 

observation; Figure 2.3). Vox Armillaria a range of predisposing factors including nutrient 

deficiency (Singh, 1983; Entry et al, 1986), reduced light conditions (Redfern, 1978; 

Entry et al, 1986, 1991), defoliation (Wargo, 1977), air pollution (Grzywacz and Wazny, 

1973), changes of the nutrient status of the host caused by pruning (Popoola and Fox, 

1996), and attack by insects (Huddak and Wells, 1974) have been implicated. Epiphytic 

lesions may enable Armillaria to quickly colonize weakened hosts that are unable to 

respond with a proper defence reaction. The ability of Armillaria to persist for years in a 

quiescent state on a healthy host can be regarded as an important survival strategy. Banik 
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Fig 2.2: Kinds of rhizomorphs that may be found associated with roots of tea. (a) cortical 

rhizomorphs (more frequently encountered associated with tea roots at high elevations) and 

(b) subterranean rhizomorphs found in the soil (extremely rare in Kenya). 

Fig. 2.3: Lesions (a and b, visible as small black spots) and epiphytic rhizomorphs (c) 

found on roots of tea. Some of the plants with these features do not show above-ground 

symptoms of the disease. 
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et al. (1995) were able to isolate the primary pathogen A. ostoyae from superficial root 

lesions of healthy Populus tremuloides trees, while no isolations were made of A. lutea 

which is a weak pathogen. This indicates that indeed primary pathogenic Armillaria 

rather than weak- or non-pathogenic species are involved in the root lesions. 

The impact of Armillaria on undisturbed African forests is not known but as 

shown for commercial plantations of tea severe cases of the disease in Africa are often 

situated close to natural forests or have another tree species growing in close proximity 

(Figures 2.4 and 2.5). Studies in natural forests elsewhere indicate a limited impact (Hood 

and Sandberg, 1987; Kile et al., 1991; Shearer et al., 1997) of Armillaria but its presence 

Fig 2.4: (a) A tea plantation and an adjacent natural forest and (b) a progressing 

Armillaria infection centre associated with roots of a fuel wood species (Grevillea 

robustd) growing in close proximity to a tea plantation. 

may already have resulted in a changed tree population structure in favour of species that 

can resist infection to some extent. Although no experiments have been carried out to 

elucidate pathogenic variation in African Armillaria, Mohammed et al. (1993) and 

Mwangi et al. (1993) reported that A. heimii and A. mellea 'ssp. africana' may cause 

considerable damage on many plants. Clearly more work needs to be done on the 

pathogenicity of African Armillaria species. Generally deforestation followed by planting 
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of exotic species such as Pinus spp. or tea leads to Armillaria problems, both at low 

elevations (where basidiomata and rhizomorphs are absent) and high elevations in Africa. 

Fig 2.5: Armillaria infection centre in a tea plantation showing a dead stump (a) of an 

unknown tree species killed by ring-barking prior to felling. Surrounding the stump is a 

patch where several tea plants have died of Armillaria root rot. 

The first stages of 'awakening' of the lesions and infection of the planted trees needs 

more investigation. Possibly the sudden reduction in the flow of photosynthates to the 

roots after tree felling might force the fungus to assume a more active search for 

nutrients. At the same time when the stump of a felled tree is dying the lesion may 

expand considerably before the substrate is fully invaded by saprotrophic decomposers. 

Lesion expansion would increase the likelihood of infection of roots of plants growing 

adjacent to remnants of lateral roots of the felled tree. 

Conclusions 

There are three reasons why Armillaria is poorly characterized in Africa: 

basidiomata are extremely rare; cultures of African Armillaria are usually homothallic, 

rendering mating tests inapplicable and hampering taxonomic research; and rhizomorphs 

are also extremely rare especially at low elevations. Scarcity of basidiomata and 

rhizomorphs hinders diagnosis of Armillaria root rot and thus the disease may have been 

25 



regularly underreported. Rarity of basidiomata means that infections by basidiospores are 

not likely to take place while scarcity of rhizomorphs limits the below-ground spread of 

the pathogen. Whereas rhizomorphs are the primary means of dispersal of Armillaria in 

temperate regions, in the tropics the fungus spreads primarily by root-to-root contacts. 

The danger of fragments of rhizomorphs broken during land preparation prior to planting 

or when infected plant parts are being removed increasing the inoculum density in the 

soil (Morrison, 1982; Redfern, 1973) is therefore remote in most parts of Africa. Hence 

the removal of infected plant tissues from the soil is a more important strategy in 

managing Armillaria root rot in Africa than in the temperate regions. 
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Chapter 3 

Characterization of Armillaria isolates from tea (Camellia sinensis) in Kenya 

Abstract 

Armillaria is a primary root rot pathogen of tea (Camellia sinensis) in Kenya. The 

main species of the fungus described in this country are A. mellea and A. heimii. In 1997 a 

survey covering the 14 tea growing districts of the country was carried out and 47 isolates (41 

from infected tea plants) were collected. Cultural morphology, rhizomorph characteristics, 

somatic incompatibility and features of basidiomata were used together with genetic analysis 

based on randomly amplified polymorphic DNA (RAPD), inter-simple sequence repeat 

(ISSR), and restriction fragment length polymorphism (RFLP) of the internal transcribed 

spacer (IGS) and the intergenic spacer (ITS) regions, and the sequence of the IGS region 

were used to characterize the isolates. Based on the findings of this research it can be 

concluded that two Armillaria groups were present. The first group was morphologically 

similar to A. heimii but this was contradicted by the molecular data, suggesting that A. heimii 

could be a complex of several species. The second group was different and could be a new 

Armillaria species. 

Introduction 

Armillaria is a primary root rot of tea (Camellia sinensis) occurring in the entire 

geographical range where the crop is grown in Kenya causing losses as high as 50% in small 

holder farms (Onsando et al., 1997). Identification of Armillaria to species level in Africa is 

limited by the fact that basidiomata and rhizomorphs are rarely found in the tropical regions 

(Gibson 1960b, Swift 1968), the fungus being frequently detected only as mycelium beneath 

the bark of infected plants. Occasionally basidiomata of Armillaria have been found in parts of 

East and Central Africa for the isolates that were identified as African forms of A. mellea (Vahl 

: Fr.) Kumm. and A. heimii Pegler (syn. Clitocybe elegans Heim) (Pegler, 1977). This was 

supported by Mohammed and Guillaumin (1994) who found isolates that corresponded to 
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these two species during a survey in different African countries. They also reported two 

additional groups of isolates from high altitude regions in Kenya, which were clearly distinct 

from the two species. The African A. mellea, unlike the species in Europe and North 

America, is homothallic (Mohammed et al, 1993; Abomo-Ndongo et al, 1997). 

Homothallism has also been reported in .4. mellea isolates from Japan (Cha et al, 1994; Ota et 

al, 1998). Ota et al. (2000) confirmed by somatic incompatibility tests and RAPD analysis that 

A. mellea isolates from Africa were identical to A. mellea isolates from Japan. On the other 

hand A. heimii has been described as a variable species having both homothallic and 

unifactorial heterothallic forms (Abomo-Ndongo et al, 1997) associated with various hosts in 

different regions of tropical Africa. Unifactorial heterothallism seems to be unique to this 

species. 

The homothallic nature of some of these Armillaria spp. together with the rare 

occurrence of their basidiomata has restricted the use of mating tests (Korhonen, 1978) and 

basidiomata morphology for identification of unknown African species. In most 

basidiomycetes somatic incompatibility is also used for the study of intra-specific variability 

while in tetrapolar species (for instance in Armillaria of the temperate regions), the distinction 

of 'biological species' is based on sexual compatibility/incompatibility. Somatic 

incompatibility has been used in studies to distinguish some isolates of African Armillaria 

(Abomo-Ndongo and Guillaumin, 1997) but most attempts to characterize these have tended to 

employ methods that do not depend on the presence of basidiomata or haploid forms: 

including techniques based on the use of isozyme electrophoresis (Agustian et al, 1994; 

Mwangi et al, 1989; Mwenje and Ride, 1996, 1997) and molecular markers (Mohammed et 

al, 1993; Chillalli et al, 1997; Ota et al, 2000). Techniques such as DNA restriction 

fragment polymorphisms (Anderson et al, 1987; Smith and Anderson, 1989), nuclear DNA-

DNA homology (Jahnke et al., 1987), and DNA sequence analysis (Anderson and Stasovski, 

1992) have been used in various taxonomic studies on Armillaria. Mohammed et al. (1993) 

used RAPD markers to distinguish African isolates of diverse origins. Analysis of the 

ribosomal DNA spacers have also been used to compare Armillaria isolates from various 

geographical areas in tropical Africa (Chillali et al, 1997). Coetzee et al. (1997, 2000) used 

RFLP and nucleotide sequence data of the intergenic spacer region of ribosomal DNA operon 

to distinguish Southern Africa isolates of Armillaria showing that both nuclear and organelle 

DNA-based molecular markers provide a method that can aid systematics of Armillaria in 

Africa. 
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The present study used methods based on morphological characteristics, somatic 

incompatibility, and DNA profiles generated by PCR with RAPD, ISSR and RFLPs of the IGS 

and ITS to characterize isolates of Armillaria collected from tea plantations in several districts 

of Kenya. 

Materials and methods 

Origin of the isolates 

Isolates were collected in the main tea growing districts in Kenya (Figure 3.1) during a 

survey carried out for the presence of Armillaria spp. between October and December 1997. 

The isolates (Table 3.1) were obtained from infected plants by plating mycelial fans removed 

from beneath the bark of roots on 3% MEA (3% Oxoid malt extract, 2 % Lab M agar No.l, in 

distilled water) containing 30 ppm of rose bengal (Sigma, USA) and 120 ppm of streptomycin 

(Sigma, USA). The isolates were stored on slants of the same medium and maintained in the 

dark at room temperature (21 - 23°C). The cultures were transferred to fresh slants every three 

months. Isolations from basidiomata found in nature were made by plating both basidiospores 

and pieces of mycelia removed from the pileus on 3% MEA. These provided monospore and 

standard somatic cultures respectively. Additional isolates K5, K8, K10 K12, K14 and ST1 

from Africa were donated by J.J. Guillaumin (UMR INRA, France) for comparative 

purposes. 

Morphological characteristics of basidiomata 

Gross morphological features of basidiomata were described and dimensions of pileus, 

stipe, basidia, and basidiospores were recorded. Observations for clamp connections were also 

made. 

Cultural morphology 

Monospore and somatic cultures were observed on 3% MEA over a period of 4 weeks 

for colony characteristics. Morphological characteristics of all isolates were studied on 2% 

MEA and 3% MEA containing 0.06% peptone (Oxoid) (MEA + P). Petri dishes containing 

the two media were inoculated with mycelial plugs removed from margins of colonies 

growing on 3 % MEA. These were incubated in the dark at room temperature (21 - 23°C). 

Colony growth and morphological characteristics were observed over a period of 4 weeks 
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Lake 
Victoria 

0° 

Boundaries of the Great Rift Valley 

Fig. 3.1: Tea growing districts of Kenya from which Armillaria isolates were obtained ('Kericho, 
2Bomet, 3Kisii/Nyamira,4Nandi, 5Kakamega/Vihiga, 6Nakura, 7Kiambu, 8Muranga, 9Nyeri, 
10Kirinyaga, nEmbu, 12Meru Central, 13Meru North, 14Trans. Nzoia). The isolates were obtained 

from all the districts except Kisii/Nyamira. Additional isolates from earlier collections originated 

from *Kaptagat (Keiyo district), #Muguga and Kinale (Kiambu district). 

30 



o 
a 

a o 

c 
13 

X> 
•a 

o 
o 

1̂  

g 

o o 
<̂  

_ o o o o o o o o o o o o o o o o o 
Q O O O O O O O Q O O Q Q O O O g Q o o o o © 
<N(N(Nrvl(N(N(NCNfS(N(N(NfS(NCNCNfS(S _ _ . _ . © o 

o o o o o o o g o o o o o o o o o o o o o o o o o o o o o o o o o o t o o o o o o o o o o o o o o o o o o 
0 0 ( N C N 0 O f N 0 O ^ - , < N 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 0 0 O 0 O 0 O 0 O 0 O 0 O 0 O 0 O 

yx y, y y y y K 

R 

<* 
. "w 

ft-S 

co 
R 
s> R 

&o 

R 
<U 
R 

co 

<m R 

to 
R 
1 * 
R 

CO 
R 
5) 
R 

<S) 
R 

co 

<1> 
R 

<o 
R 
1) 
R 

co 
R 

R 

to 

*u R 

to 

<D 
R 

co c*j to &, o j to t>) 

,a .« .« o a a .« a a a .a a 
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Table 3.2. Additional isolates for comparison purposes 

Isolates 
ST1 
K5 
K8 
K10 
K12 
K14 

Host 
Theobroma cacao 
Cupressus funebris 
Grevillea robusta 
Pinus pa tula 
Pinus patula 
Pinus radiata 

Country 
Sao Tome 
Kenya 
Kenya 
Kenya 
Kenya 
Kenya 

Altitude (m) 
1000-1500 
>2000 
Unknown 
>2000 
>2000 
>2000 

Collector 
Unknown 
I.A.S. Gibson 
M. Ivory 
Unknown 
I.A.S. Gibson 
I.A.S. Gibson 

Identity 
A. mellea 
A. mellea 
A. mellea 
Armillaria sp. 
Armillaria sp. 
Armillaria sp. \ 

and distinctive colony features used to place the isolates into cultural morphology groups. 

Rhizomorphs produced by woody inocula 

Stems of cassava (Manihot esculenta) with diameter 2.0-2.5 cm were cut into 6-cm long 

segments. Ten of these were placed in 1-1 kilner jars containing 300 ml tap water and 

autoclaved for 15 minutes at 121°C then left to cool. The stems were inoculated aseptically by 

placing on their upper transverse surfaces a 4-mm diameter disc of agar cultures removed from 

one-wk-old colonies using a cork borer. The isolates used for the inoculation were 1 Al̂ b, 1 Al2f, 

1BE,, lBUi, 5Hi, 6Mi, 7GU3, 7L,, 9T1, 9T2, 13T,, and 14C, (Table 3.1). Inoculated stems 

were incubated in the dark at room temperature (21 - 23°C) until fungal growth was visible at 

the distal ends (approx. 12 weeks). Stems colonized by Armillaria were used as inoculum 

sources. For each isolate, one of these was buried in 800 cm3 vermiculite contained in a 1-1 

plastic pot placed under a bench in the greenhouse where the temperature was maintained at 

about 18°C. The inocula were kept moist by adding 200 ml tap water to the surface of the 

vermiculite in each pot once every week. Three replicate pots were used for each isolate. After 

12 weeks the inocula were removed, vermiculite gently washed off then observations made for 

presence of rhizomorphs and their growth patterns. 

Somatic incompatibility 

Culture discs consisting of undifferentiated mycelia without crust or rhizomorphs were cut 

from the margins of two-wk-old colonies using a 4 mm diameter cork borer. The discs were 

placed 5-10 mm apart On the surface of 3% MEA. Self-pairings were done in the control. The 

cultures were incubated in the dark at room temperature (21 - 23°C) and observed over a period 
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of 2 to 3 weeks for compatibility reactions. Somatic incompatibility was also studied among 

some of the isolates using the method described by Hopkin et al. (1989). The isolates were 

paired on 2% MEA (2% Merck malt extract, 1.5% agar, in distilled water). The agar was 

covered with 8.5 cm diameter disks of sterile cellophane (cellophane grade 350 from UCB 

Films), as described by Abomo-Ndongo and Guillaumin (1997). Small discs (3 mm diameter) 

from the edge of the colonies were placed 5 mm apart on the surface of the sterile cellophane. 

Two replicates of each pairing were prepared. The plates were incubated in the dark at 20°C. 

After 21 days the plates were opened and a 2 cm2 square was cut around the paired isolates and 

immersed in a freshly prepared solution of 0.05% of L-Dopa (Sigma, UK) in a pH 7.0 potassium 

phosphate buffer (Sambrook et al, 1989). They were incubated at 37°C for 1 h and then 

examined under the stereomicroscope for the presence of a black line between the thalli. 

Extraction ofDNA 

Two methods were used for the DNA extraction. 

Method A: This method was used to extract DNA for RAPD and ISSR. Approximately 8 ml 

of CTAB buffer (1M Tris, pH 7.5; 0.5M EDTA; pH 8.0; 5 M NaCl, 1.5 g 

polyvinylpyrolidone (PVP), 30 g hexatrimethylammonium bromide (CTAB) and 0.10% 

dithiothreitol (DTT)) were added to the freeze-dried mycelium from a single petri-dish that 

had been ground to a fine powder. The suspension contained in a 15-ml centrifuge tube was 

thoroughly mixed and incubated at 60°C for 30 min. Six ml of CIA (chloroform/isoamyl 

alcohol, 24:1) was then added and the suspension mixed by thorough shaking. The mixture 

was then centrifuged (2500 r.p.m. for 5 min). The aqueous layer was transferred to a fresh 15 

ml centrifuge tube and the nucleic acids precipitated by adding two volumes of chilled 

isopropanol and mixed by gentle inversion. The mixture was centrifuged (2500 r.p.m. for 5 

min) to pellet the precipitated nucleic acids. The pelleted nucleic acids were rinsed thrice in 1 

ml 70% chilled ethanol and the pellet air dried for 1 h at room temperature before re-

suspending in 1.0 ml sterile distilled water. 

Method B: This method was used to extract DNA for PCR-RFLPs. The isolates were grown in 

liquid media (1% malt extract, 0.5% yeast extract and 1% glucose). The use of 100 ppm 

oxytetracyclin (Sigma, UK) and 200 ppm streptomycin (Sigma, UK) was needed to avoid 

bacterial contamination in some cases. The flasks were incubated in the dark at 20°C for three 

weeks. The flasks were not shaken during this time. The mycelium was harvested, rinsed with 

distilled water, frozen in liquid nitrogen and stored at -80°C. The total DNA of the isolates was 
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extracted from frozen mycelium using the Dneasy™ Plant Mini Kit (Qiagen, Germany). The 

mycelium was first mechanically disrupted by grinding to a fine powder, under liquid nitrogen, 

using a mortar and pestle. Then the kit protocol was followed. 

Purification ofDNA 

DNA obtained by method A was purified. The ribonucleic acids were denatured by 

adding 20 ul of RNase solution (20 ng ml"1) to 500 ul of the nucleic acid suspension and 

incubated at 55°C overnight. The DNA was further purified by adding 500 ul of CIA and 

shaking for 15 min before centrifugation (12000 r.p.m. for 15 min). The aqueous layer was 

transferred into a clean micro-centrifuge tube and precipitated by adding 700 ju.1 isopropyl 

alcohol and mixing gently. This was finally centrifuged at 5000 r.p.m. for 1 min and the 

resulting pellet re-suspended in 200 JJ.1 sterile distilled water that was incubated overnight at 

55°C and stored at 4°C. 

Polymerase chain reaction (PCR) amplification 

Two different methods were used for the amplification. For DNA obtained with 

method A, each DNA sample (0.5 ul) was added to an amplification reaction solution 

consisting of 5.9 ul sterile distilled water, 1.0 ul reaction buffer IV (xlO), 1.0 ul MgCb, 0.5 

ul dNTPS, 1.0 ul primer, and 0.1 ul Taq polymerase (Applied Biotechnologies, U.K) in a 10 

ul volume PCR tube. PCRs were performed for eleven RAPD primers: OPB-07, OPC-02, 

OPD-05, OPD-20, OPI-13, OPU-05, OPV-17, OPW-02, OPW-06, OPG-06, OPM-04 

(Operon Technologies Inc. USA) with the conditions at 94°C for 5 min (hot start) then 93°C 

for 1 min, 42°C for 1.5 min, and 72°C for 1 min for 40 cycles and a final extension phase of 5 

min at 72°C. Six ISSR primers: dinucleotide repeats (GA)8T, (CT)8T, (GT)8CG, (AT)8T, 

(AG)8C and trinucleotide repeats (ACC)6 (International Livestock Research Institute, 

Nairobi, Kenya) were also screened with the conditions at hotstart then 94°C for 30 sec, 52°C 

for 45 sec, and 72°C for 2 min in 40 cycles. The amplification was performed with a Techno: 

Model FGEN02TD (UK) thermocycler. 

For DNA obtained with method B, the intergenic spacer (IGS) of the ribosomal DNA 

between the 26S and 5S gene of the isolates was amplified with two different set of primers. The 

first set included LR12R, 5' CTG AAC GCC TCT AAG TCA GAA 3' (Veldman et al., 1981) 

and O-l, 5' AGT CCT ATG GCC GTG GAT 3' (Duchesne and Anderson (1990) recommended 
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by Anderson and Stasovski (1992). The second set of primers included: P-l, 5' TTG CAG ACG 

ACT TGA ATG G 3' and 5S-2B, 5' CAC CGC ATC CCG TCT GAT CTG CG 3' 

recommended by Coetzee et al. (1997). The internal transcribed spacer (ITS) was amplified with 

the primers ITSi and ITS4 as described by White et al. (1990). Ready-To-Go PCR beads 

(Amersham Pharmacia Biotech) were used for the PCR amplification. Individual reactions were 

brought to a final volume of 25 ul. Each reaction contained 1.5 units of Taq DNA polymerase, 

10 mM Tris-HCl, 50 mM KC1, stabilizers including BSA, 1.5 mM MgCl2, 200 uM of each 

dNTP, 0.1 uM of each primer and purified water (Sigma Chemical Co.). The PCR amplification 

program to amplify the IGS region consisted of 1 cycle of 95°C for 95s, followed by 35 cycles 

of 60°C for 60s, 72°C for 120s and 95°C for 60 s and a final extension at 72°C for 10 min. The 

PCR amplification program to amplify the ITS was as described by Chillali et al. (1997). The 

amplifications were performed on a Progene (Techne, UK) thermocycler. 

Electrophoresis and DNA restriction 

Following method A, electrophoresis was performed using 1.5% agarose (ABgene, 

UK) gel in Tris-boric acid-EDTA (TBE). A tracking dye was added (10:3) and 10 ul of the 

mixture was electrophoresed at 150V for 3 h. After electrophoresis, the gel was stained for 1 

hour in ethidium bromide (Sigma, UK) (10 ul l"1 of water) then observed under UV and 

photographed using a black/white Kodak film. Following method B, the IGS and ITS 

amplified product was purified with a QIAquick™ Purification Kit (Qiagen, Germany) and 

digested with the restriction enzyme AM and Hinf I (Harrington and Wingfield 1995). The 

restriction enzyme analysis was performed by adding 5 ul of the enzymes (Promega, UK) to the 

purified PCR product and incubating at 37°C for at least one hour. The digested fragments were 

separated in 3% agarose (Sigma, UK) gel containing 7.5 ul of ethidium bromide (Sigma, UK). 

Data analysis 

The data were scored and entered in a computer as binary matrices where 0 coded for 

absence and 1 for presence of a band. Estimates of similarity are based on the total number of 

shared fragments (Nei and Li, 1979). The principal component and the average linkage 

cluster analyses were performed using GENSTAT 5 Version 4.1. The unweighted pair group 

method with arithmetic mean (UPGMA) was used to construct the genetic relationships. 
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Phylogenetic analyses 

Sequencing of the IGS region between the 26S and 5S of some of the isolates was done 

using the primers LR12R, 0-1, P-l and 5S-2B by MWG BIOTECH AG Ebersberg 

(Germany). Additional sequences from the GenBank databases (Table 3.3) available through 

the National Center for Biotechnology Information (NCBI, Bethesda, MD) were obtained 

using the search facility Blast. The sequences were edited and aligned with the software for 

Macintosh, EditSeq and MegAlign of Lasergene (DNASTAR 2000) programs. The 

alignments were initially done with the CLUSTAL option in MegAlign and were manually 

adjusted. Insertions and deletions were coded using MacClade (Maddison and Maddison 

1992). Phylogenetic analyses were performed using PAUP version 4.0b (Swofford, 1998). 

Heuristic searches using maximum parsimony with TBR branch swapping, MULPARS, and 

steepest descent options were performed in PAUP. Clade support was evaluated using 

Jackknife analysis (in PAUP) with 30% deletion and fast stepwise addition was calculated 

with 10000 replicates. Groups shown in 50% or more of the trees were retained. 

Results 

Basidiomata and rhizomorphs in nature 

Basidiomata were infrequent but were found in one tea plantation (location: 

0°22'S;35°21 'E; altitude > 2180 m) during the rainy season. They occurred typically in clusters 

of 5-21, fused at the point of attachment to the base of infected plants (Figure 3.2). The pileus 

was 10-15 mm in diameter, convex, applanate to umbonate, with a non-striate margin, cream 

but dark-brown at the disk. The stipe was creamy white in colour, 45-50 x 3-6 mm and a 

whitish, fugacious annulus was attached to the upper quarter of the stipe. Lamellae were white 

cream. The spores were 5-7 x 4-6 um, sub-globose to ovoid and basidia were elongate clavate, 

28.5-36 x 6-7.5 um, bearing four sterigmata. Very few, if any, rhizomorphs were found from 

the base of the stipe downwards and these were firmly in contact with the root cortex running 

along the surface of the bark. Rhizomorphs firmly in contact with the root were found for 

isolates 1AI,, lAI3d, 1BE,, 1BU,, 2Kh 2K2, 4EN,, 5Hh 7GI,, 7GI3, 7GL,, 7GI5, 7GI6, 7GU3, 

7L,, 8KA,, 9T,, 10G,, 10G2, 10G3, 10G5, 10G6, 10Nh 11MA2, 11MA3, 12SIb 12SI2, 12SI3, 

I2SI5, 12SLia, 12Sl4b, 13Ti, and 14Q. An extensive subterranean network of rhizomorphs was 

found for isolates 6M1 and 9T2. 
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Fig 3.2: Basidiomata of Armillaria at the base of infected tea plant (observed at Timbilil tea 

estate, Kericho) 

Cultural morphology 

Colonies that arose from basidiospores were characteristically fluffy with raised 

mycelium when young but became rhizomorphic, flat, and crustose as they aged (Figure 3.3). 

•••W..A" :> 

Fig 3.3: Monospore cultures arising from basidiospores of basidiomata in Figure 3.2 on 2% 

ME A (a) after 7 days and (b) after 14 days. 
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In contrast, colonies which arose from the pileus were consistently rhizomorphic, flat, and 

crustose. The appearance of colonies of individual isolates was more or less similar in the two 

media. On the basis of colony morphology, the isolates could be placed in two groups. Group I 

consisted of 31 isolates with flat, crustose, rhizomorphogenic colonies. The entire colony often 

turned into a network of rhizomorphs with only a small mycelial centre. White/grey mycelium 

was observed at the colony centres and on rhizomorph surfaces. The rhizomorphs were compact 

or open in appearance (due to high or low frequency of branching), both submerged and aerial, 

cylindrical or flat. Group II consisted of 16 isolates which had raised typically mycelial colonies 

with thin submerged or no rhizomorphs. Colonies of isolates in Group I were similar in 

appearance to those arising from isolations by plating pieces of basidiomata flesh. The majority 

of isolates had this type of colony. However, individual isolates showed minor differences 

cultural morphology. 

Rhizomorph characteristics 

Characteristics of rhizomorphs in culture varied only slightly with the medium, 

production being more abundant and branching more frequent in 3% MEA + P. The growth 

pattern of rhizomorphs produced in vermiculite distinguished three forms between which 

conspicuous differences were evident mainly in the extent of rhizomorph growth and branching 

patterns. The majority of isolates with abundant production of large and extensive rhizomorphs 

were placed in Group I. Rhizomorphs were either unbranched or branched with a palmate and/or 

dichotomous pattern of growth. Isolates that produced thin submerged rhizomorphs visible 

mainly from underneath the petri-dishes and non rhizomorphic isolates were placed in Group II. 

Somatic incompatibility 

Two types of reactions were observed between colonies of paired isolates: the merging of 

mycelia at points of contact or failure of mycelia to merge. Isolates whose colonies failed to 

merge and which produced a pigmented line at their interfaces were recorded as incompatible. 

The presence of a dark line of demarcation at the interface of the colonies was noted as the 

principal indicator of dissimilarity of incompatible isolates and was used to place them in 

distinct groups. Group I consisted of 31 isolates: lAIt, lBUi*, 2Ki, 2K2, 4ENi, 5Hj, 7GU3*, 

7GI,, 7GI3, 7GI4,7GI5, 7GI6, 71^*, 8KA,, 9T,, 10G,, 10G2, 10G3, 10G5, 10G6, lONi, 11MA2, 

IIMA3, 12SI,, 12SI2, 12SI3, 12Si4a, 12SI4b, 12SI5, and \3TU 14C,*. Group II consisted of 13 

isolates: lAI2a, lAI2b, lAI2d, lAI2i lAI2e, lAI2f, lAI2g, lAI2j, lAI3c, lAI3d, lBE^, 6Mt*, and 
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13T2*, Group III consisted of isolate 9T2*. Isolates marked with (*) showed unclear somatic 

incompatibility reactions and were tested further using the method described by Hopkin et al. 

(1989). Reaction between incompatible strains showed the distinct black line, which was visible 

to the naked eye and easy to interpret. This was considered as an indication of different genetic 

constitution. All isolates were paired against themselves giving a compatible reaction. From the 

results obtained 6 different groups were found: Group I: lBUi, 7GI2, 7L\, IIMA2, 14Ci; Group 

II: lAI2a, 13T2; Group III: 9T2; Group IV: 6M1; Group V: 1BE,; and Group VI: lAI2e. 

DNA amplification and polymorphism 

Following method A, the total cellular DNAs of Armillaria were used as templates and 

therefore the genomic origin of the amplified RAPD and ISSR fragments in the isolates 

cannot be specified. Successful DNA amplification was, however, obtained with 10 RAPD 

and 3 ISSR primers which gave respectively a total of 181 and 39 fragments with an average 

of 20 and 13 fragments per primer. The amplified fragments ranged in sizes from <564 to 

1977 bp for RAPD and <564 to 1685 for ISSR primers. Two RAPD and three ISSR primers 

failed to amplify fragments from the fungal DNA. Of the fragments 94.5% and 89.7% 

respectively were polymorphic for the RAPD and the ISSR primers but only 127 and 29 of 

the polymorphic fragments respectively were considered for further analysis to derive 

similarity values and construct genetic relationships. 

Following method B, the amplification of the IGS region of the ribosomal DNA with the 

first set of primers LR12R and 0-1 only occurred with isolates 1 AI2a, lAI2b, lAI2d, lAI2e, 1 AI2f, 

1 AI2j, 1 AI2j, lBEi, 6M1, 9T2,13T2, K5, K8, K10 and K12 and gave as a result a single fragment 

of approximately 900 bp. Amplification with the primers P-l and 5S-2B from the isolates lAI2f, 

1BE,, 6M,, 9T2, K5, K10 and K12 was very poor. The isolates 1BU,, 4ENi, 5Hh 7GI2) 7GI3> 

7Gl4,7GI5, 7GI6, 7L,, 9Th 10G3, 10G6, 11MA2, 11MA3, 12SI,, 12SI4a, 12SL,b and 14C, were 

amplified with the primers P-l and 5S-2B and gave one single fragment over 1000 bp. Poor 

amplification from the isolate 11MA2 was obtained with the primers LR12R and 0-1. 

Amplification of the ITS with the primers ITSi and ITS4 gave a single fragment of about 900 bp 

for the isolates lAI2a, lAI2e, 1BE1; 6M,, 9T2, 13T2, K5, K8, K10 and K12 and a single fragment 

of over 600 bp for the isolates 1AI1; 1BU,, 4EN,, 5H,, 7GI2, 7Lb 10G3, 11MA2, 12SL,a and 

14Ci. The amplified fragments of the IGS and ITS regions of some of the isolates are shown in 

Figure 3.4 and the patterns obtained after the digestion of IGS and ITS amplification products 

with restriction endonucleases Alul and Hinfi in Figure 3.5. A 100 bp DNA ladder was used as 
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size marker. Fragments below lOObp were only included when clearly visualised. For the IGS, 

the isolates 1AI,, lBUi, 4ENi,5Hu 7GI2, 7GI3, 7L,, 9T,, 10G3,10G6> 7GL,, 7GI5,7GI6,11MA3, 

11MA2,12SIi, 12SL,a, 12Sl4b, and 14Ci showed restriction fragments of approximately 365,245 

and 135 bp respectively. The isolates lAI2a, lAI2b, lAI2d, lAI2e, lAI2f, lAI2h, lAI2i, 1AI2J, lBEi, 

6M1, 9T2, 13T2, K10 and K12 showed restriction fragments of approximately 310, 210, and 135 

bp respectively and the isolates K5 and K8 showed restriction fragments approximately 310, 

180, 135 bp respectively. For the ITS, the isolates lAI2a, lAI2d, lAI2e, lBEi, 6M1; 9T2, 13T2, 

K5, K8, K10 and K12 showed a restriction pattern of approximately 510, 225 and 95 bp, 

respectively, the isolates 1AI,, 1BU,, 4ENi, 5H!, 7GI2, 7LU 9Tb 10G3, 12Si4a, HMA2, and 

14Ci, showed restriction patterns of approximately 480, 160 bp respectively while isolates K5 

and K8 showed restriction patterns of approximately 320,235,170,150 bp respectively. 

Fig 3.4: Agarose gel (3%) showing (a) the amplified PCR product for (a) the IGS region of 

isolates ST1, K5, K8, lAI2e, 1BE,, 6M,, 9T2, 13T2, K10, K12, 1BU,, 7Li, 7GI2, 11MA2, 

14Ci and negative control respectively and (b) the ITS regions of the isolates lAl2e, lBEi, 

6Mi, 9T2, 13T2, lBUi, 4EN,, 5H,, 7Lh 7GI2, 9T,, 10G5, 11MA2, 12SI2, 14C,, 1AI, and 

negative control respectively. A 100 bp ladder was used as a marker in the first and the last 

line. 

Genetic relationship among the isolates 

The matrix of similarity coefficient values based on shared fragments shows that 

similarities among the isolates ranged from 95% (between isolates IOG5 and 10G6) to 29% 

(between isolates lBUi and IOG3). Dendrogram based on average linkage cluster analysis 
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(Figure 3.6) resolved the 47 isolates into two major clusters. The larger of these showed 

differences that indicate greater variability among isolates than in those within the smaller 

cluster. This variability is also evident in the principal components plot (Figure 3.7) where 

three sub-groups could be discerned within the larger cluster with isolates 12SI3, 12Sl4t>, and 

IOG3 forming the most distant sub-group. The fourteen isolates in the smaller cluster (Group 

II) had no major sub-clusters. The principal component plot placed all of these (isolates 

lAI2a, lAIa, 1AIM, lAI2e, 1AI26 lAI2g, lAI2i, lAI2j, lAI3c, 1AIM, lBEi, 6M1, 9T2, and 

13T2) together. 

Fig 3.5: Agarose gel (3%) showing the Alu I restriction pattern for the IGS of isolates ST1, 
K5, K8, lAI2e, lBEi, 6M,, 9T2, 13T2) K10, K12, 1BU1; 7Lh 7GI2, 11MA2, HCi and (b) the 
Hinfl restriction pattern of the ITS region for the isolates 1 AI2e, lBEi, 6M1, 9T2, 13T2, lBUi, 
4ENi, 5Hi, 7Li, 7GI2, 9T,, 10G5, 11MA2, 12SI2, 14Ci, 1AI, respectively. A 100 bp ladder 
was used as a marker in the first and the last line. 

In Group I, fifteen isolates (lAIi, lBUi, 2K2, 7GI3, 7GI6, 7GU3, 9T,, 10G4, 10G5, 10G6, 

ION), 13Ti, I2SI5, 14Ci,) were also placed together in a sub-group separate from ten others 

(isolates 2Ki, 4EN,, 5H,, 7GI4, 7GI5, 8KA1, 11MA2, 11MA3> 12SI2, 12SI4a,) in another sub

group and from another three (isolates 10G3,12SI3, 12Sl4b) in a third sub-group. 

Phylogeny 

The sequence of the IGS of the isolates in Group II were identical. The sequence obtained 

was compared with sequence published in GenBank using the Blast search facility and seven 
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Fig. 3.6: Dendrogram of Armillaria isolates based on average linkage clusters analysis 
(Nei and Li, 1979) of shared fragment coefficients from DNA analysis using RAPD and 
ISSR markers. The baseline is a scale as percentage average genetic similarity between 
the isolates. 
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Fig. 3.7: Different clusters of 47 isolates of Armillaria based on similarity data from 

average linkage cluster analyses. The first two principal components accounted for 49% 

of the total variation revealed. (The isolates are indicated in the figure according to the 

following numbers in superscript: '9T2,
 2BU,, 310N,, 49T,, 514C,, 610G4,

 71AI,, 8lAI2f, 
91AI2J,

 108KA,, "5Hi, 1213T2)
 1310G1;

 1411MA3,
 1512SI4a,

 1612SI3,
 1 7 lBE h

 1813T,, 197GI2, 
202K2,

2110G5,
2210G6,

237GU3,
247GI3,

251 AI3d,
 266M,,271AI 3c, 282K,,M11MA2,

3012SI2,
3 ' 7GI6, 

32lAI2g,
 33lAI2b,

 34lAI2d)
 35lAI2i, 12SI5,

 3712SI4b,
 3810G3,

 3912SI,, 407GI5,
 417L,, 42lAI2e, 

437GII,
444EN,,4510G2,

46lAI2a,
477GI4). 

Armillaria sequences, A. gemina (AF243053/AF243054) and A. ostoyae 

(AF243048/AF243049/AF243050/AF243051/AF243052) matched more closely to the 

sequence. Other Armillaria species selected for comparison were A. borealis (AF243056), A. 

calvescens (AF243070/AF243071), A. cepistipes (AF243068/AF243069), A. lutea 

(AF243066), A. nabasnona (A243060), and A. sp., NABS X (AF243061). Because there was 

the possibility of this group being a form of A. mellea, the sequences of the IGS of 21 strains of 
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Fig. 3.8. One of the 121 equally parsimonious trees recovered using sequences of the IGS 

based on A sinapina (D89925), A. cepistipes (D89919), A. singula (D89926) and A. jezoensis 

(D89921) as outgroups. Dashed lines indicate branches that collapsed in the strict consensus 

tree. Plain figures indicate branch lengths and figures in brackets show the Jackknife support 

value. Length = 837, CI = 0.774, RI = 0.941. 
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A. mellea published in GeneBank were included (Table 3.3). As outgroups A. sinapina 

(D89925), A. singula (D80026), A.jezoensis (D89921), A. cepistipes P80019) and A. gallica 

(D89920) were selected. A heuristic search with all the strains yielded 121 equally 

parsimonious trees. A strict consensus was calculated. The alignment generated 788 characters, 

336 of which were parsimony-informative (43%). The tree generated (Figure 3.8) showed four 

major clades (A-D). Clade A comprises the Armillaria isolates from Group II together with the 

isolates K10 and K12. This had 100% Jackknife support. Long branches (56 steps) suggested 

some distance in the relationship of this clade with the remaining clusters. Clade B comprises 

all the A. mellea strains, including an isolate from Kenya that had been named A. mellea (K5). 

This isolate was grouped with ̂ 4. mellea from Japan and South Korea. The isolate K14, which 

was different from the rest of the isolates from Kenya, was also part of the A. mellea clade. The 

separation of clade A and B had 100% Jackknife value. Clade C comprises the strains of A. 

ostoyae, A. gemina and A. borealis and had strong support (74% Jackknife value). Clade D 

grouped together the strains of A. calvescens, A. lutea,A. cepistipes and A. sp. NABS X and 

had a Jackknife support of 51%. 

Discussion 

Cultural morphology of the Kenyan Armillaria isolates separated them into two groups. 

Group I had crustose rhizomorphic colonies while Group II had mycelial colonies with sparse 

or no rhizomorphs. Basidiomata were found only in one tea plantation located at a high 

altitude (2180 m) in Kericho, consistent with the observations (Mohammed et al, 1993; 

Mwangi et al., 1993) that natural fructification by the fungus occurs rarely in Africa and is 

limited to cooler areas. The cultural morphology of colonies that arose from the basidiomata 

corresponded with Group I. The description of the basidiomata conformed to that of A. heimii 

(Heim, 1963). The 10-15 mm diameter pileus which was convex, applanate to umbonate, 

cream but dark brown at the disk; the fugacious, whitish veil attached to the upper quarter of 

the stipe; and the subglobose to ovoid, 5-7 x 4-6 um spores conformed to A. heimii. Also the 

crustose rhizomorphic rather than mycelial cultural morphology of colonies of Group I 

resembles A. heimii according to Mwangi (pers. comm. 2000). Monospore isolates of Group I 

had light brown fluffy appearance in culture when young but turned crustose with age, 

indicating homothallism. This has been reported before for diverse African isolates of A. 

mellea and A. heimii (Mohammed et al., 1993; Abomo-Ndongo et al., 1997). No basidiomata 
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were found for Group II. The cultures of these arising from plating of mycelial fans on 

infected plants had white mycelial colonies that became dark brown as they aged. 

Rhizomorph production has been reported to be limited in Africa (Gibson, 1960b) but 

Group I invariably showed presence of rhizomorphs firmly in contact with the root surface 

particularly at high elevations. Two isolates from Group II (6M1 and 9T2) showed an 

extensive network of naturally produced subterranean rhizomorphs. 

Somatic incompatibility is one of the methods that has been used for the identification 

of genotypes and the incompatible reaction is characterized by the presence of a black line 

along the demarcation zone between paired colonies. The melanized cellular contents of the 

hyphae constitute the black line but the mechanism which causes the hyphae to become 

melanized is unknown (Mallet et al., 1986). The black line is usually absent in pairings 

between two genotypes of the same species (Guillaumin et al., 1991). The tests showed 

compatibility for all isolates within Group I but Group II consisted of five subgroups. Of 

these, four consisted of one or two isolates. Although results of the initial tests did not always 

show clear black lines in all the incompatible combinations, the method of Hopkin et al. 

(1988), which has been devised to increase the intensity of the black line formation between 

incompatible colonies, clearly showed to the naked eye the incompatibility reaction between 

isolates within Group II. Although this phenomenon has not been reported earlier for African 

Armillaria, Abomo-Ndongo et al. (1997) reported a dubious reaction for isolates K10 and 

K12. A similar phenomenon has been observed for Ganoderma in oil palms where most 

isolates, even when taken from the same plant, were somatically incompatible with one 

another (Miller et al, 1999). Care should therefore be taken in interpreting somatic 

compatibility tests aimed at delimiting species in Armillaria. 

The molecular data based on RAPD, ISSR, and RFLPs of the ITS and IGS regions 

separated the isolates into two distinct groups which corresponded with the morphological 

groups. These techniques showed higher variability and diversity within Group I than within 

Group II. This may suggest that Group I is a more ancestral form of Armillaria in Kenya. 

Existence of sub-clusters in this group may be interpreted as indicating the presence of 

genotypic variants that could be taxonomic sub-groups among this collection of isolates. 

There were no sub-clusters in Group II, indicating low diversity. The isolates from Group I 

were widely distributed in Kenya but more prevalent in the eastern highlands. Group I 

isolates were found on tea and a few other other plant species between 1800-2000 m altitude 

except for isolates lAIj, 2K2 and 2Ki that were found above 2000 m. Except for isolates 9T2 
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and 13T2, all isolates in Group II originated in the western highlands suggesting that this 

group could be more predominant in this region of Kenya. The apparent greater variability in 

Group I might also be due to genetic recombination by meiosis in the occasional basidiomata. 

For the amplification of the IGS region, different sets of primers were used for Group 

I and Group II, hence the different fragment sizes, but this was consistent with all the isolates 

within each group. The IGS region of Group I could not be amplified with the primers 

LR12R and 0-1 as was expected from experience with temperate Armillaria species 

(Anderson and Stasovski, 1992; Harrington and Wingfield, 1995). The primer 0-1 is 

complementary to the position 1-18 of the 5S rRNAs of a number of basidiomycetes and is 

partially conserved in some Armillaria species (Duchesne and Anderson, 1990). It is 

suggested that the 5S gene is inverted in some Armillaria spp. and this could be the reason 

why this group was not amplified with the primer 0-1 (Coetzee et al., 2000). Group I was 

amplified using the primers P-l and 5S-2B. Group II was amplified with the primers LR12R 

and 0-1. The ITS was amplified with the primers ITS1/ITS4 and the isolates were separated 

into the same two groups and different band sizes were obtained for each group. In isolates 

K8, K5, KT10 and K12, which were obtained for comparative purposes, the IGS region was 

amplified with the primers LR12R and 0-1 and the restriction pattern obtained for K10 and 

K12 with the enzyme Alul was the same as Group II and different from K8 and K.5. The 

amplification of the ITS region of K10 and K12 showed the same fragment size as Group II. 

Even though the morphology data point to our Group I being A. heimii, the molecular 

data may suggest differently. RFLPs showed the group had a similar restriction pattern as the 

Armillaria sp. described by Coetzee et al. (2000) and, according to these authors, it has a 

closer affiliation to A. fuscipes than to A. heimii. There is confusion in the identity and 

nomenclature of A. heimii and A. fuscipes as different species (Kile and Watling, 1989; 

Coetzee et al, 2000). However, the original descriptions differ strongly, with A. heimii 

having smaller dimensions for the pileus, a whitish stipe at the top which changes to ochre at 

the base and a fugacious annulus (Heim, 1963) and A. fuscipes having larger dimensions, a 

dark brown stipe and a persistent annulus (Petch, 1909). Unfortunately, we failed to isolate 

DNA from the type material of A. fuscipes deposited at Royal Botanical Garden at Kew 

(UK). Three attempts were made using different methods but without success. 

No conclusions about the identity of the Group II isolates can be drawn since we did 

not find basidiomata but the colony morphological and molecular data indicated that it could 

be a new African species different from Group I and also from A. mellea reported from 
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Kenya. Isolates K10 and K12 have been used in previous studies of African Armillaria spp. 

and have been suggested to be a yet unnamed species (Chillali et al., 1997). Morphological 

and molecular data showed that these isolates are similar to our Group II. Presence of 

basidiomata is necessary for describing this group. Artificial induction of fructification was 

attempted in the course of this study but without much success. Only two isolates produced 

basidiomata in vitro but these were too aberrant to be useful in species description. The DNA 

sequence of the IGS region of this group of isolates is different from that of all the 

Armillaria spp. submitted to GenBank (Figure 3.8). There is strong morphological and 

molecular evidence that Group II could be a new Armillaria species. Since there was the 

possibility of this group being a form of A. mellea, the sequences of the IGS of 21 strains of A. 

mellea published in GeneBank (Table 3.3) were included in the phylogenetic analysis. The 

phylogenetic tree (Figure 3.8) showed four major clades (A-D) of which clade A comprises the 

Armillaria isolates from Group II together with the isolates K10 and K12 while clade B 

comprises all the A. mellea strains, including A. mellea from Kenya (K5) which was grouped 

with A. mellea from Japan and South Korea together with isolate K14, which was different 

from the rest of Kenyan isolates. Clade C comprises the strains of A. ostoyae, A. gemina and A. 

borealis while clade D grouped together the strains of A. calvescens, A. lutea, A. cepistipes and 

A. sp. NABS X. It can be concluded from this study that at least two different Armillaria 

groups cause damage in tea were present during this survey. Isolates in Group I were widely 

distributed and were found in all locations where tea was grown in Kenya. One of these may 

represent A. heimii. Since the groups are not characterized by location, host, or altitude, no 

further ecologically functional sub-groupings could be made based in our findings. Research 

is in progress to identify the two Armillaria groups. 
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Chapter 4 

Screening of Trichoderma isolates for inhibition to Armillaria in infested wood 

Abstract 

Five isolates of Trichoderma (four T. harzianum, and one each of T. koningii and 

T. longibrachiatum) were screened for the ability to colonize plant materials and 

antagonise Armillaria. All isolates were equally able to colonize autoclaved tea stem 

sections. Tests for antagonism consisted of holding Trichoderma-colonized stem sections 

end-to-end with stem sections colonized by Armillaria and incubating the banded stem 

sections in soil. The tests were carried out in three experiments of which two were done 

in sterile soil and one in non-sterile soil. Inhibition of the ability of Armillaria to invade 

Trichoderma-colonized stem sections and the reduction of inoculum viability following 

invasion of pathogen-colonized stem sections by Trichoderma isolates were used as 

indicators of antagonism. Trichoderma koningii and T. longibrachiatum were unable to 

suppress Armillaria but all four T. harzianum isolates significantly reduced the incidence 

of the pathogen in both the Armillaria-inocuhted and Trichoderma-inocalated stem 

sections, only isolate T4 showing complete elimination of the pathogen in sterile soil. 

This Trichoderma isolate also antagonised two different Armillaria isolates in non-sterile 

soil but its efficacy was lower than in the sterile soil. It was judged sufficiently 

antagonistic to warrant field testing for the effect on survival of Armillaria in roots of 

naturally infected tea. 

Introduction 

The variety of enzymes and fungitoxic metabolites produced by species of 

Trichoderma make them successful as competitors in the soil ecosystem. They can 

parasitise other fungi, are able to compete aggressively for nutrients, and produce 

antibiotics (Klein and Eveleigh, 1998). These attributes facilitate their ability to colonize 
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particular habitats in which they may hamper development of various fungal species 

including some plant pathogens. Strains of some Trichoderma spp. are able to colonize 

wood, using mainly the non-structural carbohydrates. As a result they modify the 

substrates and limit the attack by secondary invaders and wood rotting fungi (Hulme and 

Stranks, 1970). Antagonism of Trichoderma spp. to other fungi takes place mainly by 

antibiosis and parasitism. Hyperparasitic strains coil around hyphae of the host fungi and 

degrade their cell walls enzymatically. Scanning and transmission electron microscopy of 

hyphal interactions between T. harzianum and Rhizoctonia solani demonstrated that 

coiling of hyphae of the hyperparasite around the hyphae of the plant pathogen was 

accompanied by cell penetration, cell wall alteration, retraction of the plasma membrane, 

and aggregation of the cytoplasm (Benhamou and Chet, 1993). Dumas and Boyonoski 

(1992) observed a similar phenomenon between T. harzianum and Armillaria gallica (= 

A. luted). In addition to the production of diverse antibiotics, these phenomena enable 

certain strains of T. harzianum to limit growth and activity of some plant pathogenic 

fungi, making them useful as biocontrol agents. The use of Trichoderma spp. has been 

proposed for commercial application in biocontrol of some soil-borne pathogens 

(Hjeljord and Tronsmo, 1998). 

Antagonism of various Trichoderma spp. to Armillaria, the causal agent of root 

rot in a broad spectrum of shrub and tree species, has been demonstrated mostly in 

culture (Fox et al., 1994; Li and Hood, 1992; Munnecke et al., 1973, 1981; Reaves et al., 

1990; Onsando and Waudo, 1994) and for only a few cases in plant materials (Rishbeth, 

1976; Nelson et al., 1989, 1995). Armillaria is commonly found in the soil as mycelia or 

rhizomorphs associated with dead roots and stumps. To be effective in the control of 

Armillaria root rot, Trichoderma must therefore be capable of colonising and suppressing 

Armillaria inoculum that is present in infected plant tissues. Colonization of plant 

materials is a pre-requisite for bringing their hyphae in close proximity to hyphae of 

Armillaria, providing the opportunity for parasitization of the pathogen. This is 

particularly the case for Armillaria in tropical regions where high temperatures restrict 

growth of rhizomorphs (Rishbeth, 1978). The present study compared six Trichoderma 

isolates, reported earlier to be antagonistic to a tea pathogenic Armillaria sp. in vitro 

(Onsando and Waudo, 1994), for capability to colonize woody substrates and antagonise 
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Armillaria. The objective was to determine the potential of these isolates for use in 

controlling Armillaria root disease. 

Materials and methods 

Trichoderma and Armillaria isolates 

Isolates of Trichoderma listed in Table 4.1 were obtained from tea plantation soils 

amended with coffee pulp and identified at the International Mycological Institute (IMI), 

Kew, UK (Onsando and Waudo, 1992). Armillaria isolates 6M1 and 13T) (chapter 3 table 

3.1) were isolated from infected tea plants and characterised in chapter 3 of this thesis. 

Table 4.1: The Trichoderma isolates screened for antagonism to Armillaria in plant 

materials 

Isolate IMI No. Species 

3* 339495 T. longibrachiatum 

4* 339496 T. harzianum 

5 339497 T. harzianum 

9* 342183 T. koningii 

10 342184 T. harzianum 

11 342185 T. harzianum 

"Isolates of Trichoderma that appeared most antagonistic to an Armillaria sp. in vitro according to 

Onsando and Waudo (1994). 

Experiments 

Wood colonization by Trichoderma isolates 

Stems of tea (diam. = 3.0 cm) were cut into 6-cm-long sections, placed in 1-1 kilner 

jars containing 300 ml tap water and autoclaved for 15 min at 121°C. After cooling to 

room temperature, these were inoculated with Trichoderma isolates as follows: A 5-mm-
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diam. agar disc removed from a 4-d-old culture on 3% MEA was placed on the upper 

transverse surface of each stem section and the inoculated sections incubated under room 

conditions (21 - 23°C) for 6 wk. In Exp. la isolates T3, T4, and T9 were compared for 

efficiency in colonising the stem sections. Isolate T4 was then compared with isolates T5, 

T10, and Til in Exp. lb. The extent of colonization was determined as follows. A 

sample of inoculated stem sections was taken every week and surface-sterilised by 

immersing in 70% ethanol for 30 s and flaming. Woody chips were removed at 1, 2, 3, 4, 

and 5 cm from the inoculated end and plated on Martin's (1950) Rose Bengal Medium 

(glucose, 10 g; Lab M agar No 1, 17 g; peptone, 0.5 g; yeast extract, 0.5 g; K2HP04, 0.5 

g; KH2P04, 0.5 g; Mg2S04.7H20, 0.5 g; rose bengal, 0.05 mg; streptomycin sulphate, 40 

mg; distilled water, 1000 ml). The plates were incubated under room conditions (21 -

23°C) and checked regularly over a period of 1 wk for outgrowth of Trichoderma. The 

number of plated chips with fungal outgrowth was recorded. Each experiment was 

carried out twice. 

Competitive colonization of tea stem sections by Trichoderma and Armillaria 

A slightly modified method described by Nelson et al. (1989) was used to test the 

antagonism of Trichoderma isolates to Armillaria. Autoclaved tea stem sections were 

inoculated with Armillaria or Trichoderma isolates using the procedure described under 

Exp. 1 above. Stem sections inoculated with Armillaria were incubated in the dark under 

room conditions for 6-8 wk while those inoculated with Trichoderma were incubated as 

described under Exp. 1 for 4 wk. 

A sample of the 0 - 30-cm layer of a local soil (nitisol) was taken and moisture 

content adjusted to 38 - 40%. The soil was divided into 250 cm3 quantities, placed in 0.5-

1 plastic troughs and autoclaved at 121°C for 1 h. Armillaria-colonized stem sections 

were placed end-to-end with Trichoderma-colonized sections, held together with masking 

tape and placed in the soil. The troughs were covered with their lids and incubated under 

room conditions (21 - 23°C) for 12 wk. Sheets of cotton wool were used to wrap the 

troughs and were moistened weekly with sterile water to minimise moisture loss during 

incubation. In each experiment, the control treatment consisted of banding Armillaria-

colonized stem sections with autoclaved uncolonized sections. Stem sections colonized 
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by isolates T3, T4, and T9 (Exp. 2a) or isolates T4, T5, T10, and Ti l (Exp. 2b) were 

banded with those colonized by Armillaria isolate 13Ti and incubated in autoclaved soil. 

In Exp. 3, stem sections colonized by T. harzianum isolate T4 were banded with those 

colonized by Armillaria isolate 6M! or 13Ti and incubated in non-sterile soil. The 

experiments were set up in a randomised complete block design with four replications 

(Exp. 2) or three replications (Exp. 3). Each experiment was carried out twice. 

At the end of the period of incubation, the banded stem sections were removed 

from the soil and detached from each other. The sections were washed in sterile distilled 

water and surface sterilised by immersing in 70% ethanol for 30 s and flaming. Ten 

woody chips were taken from each section and bulked together for each trough. The 

chips were plated in lots of 6 (Exp. 2) or 10 (Exp. 3) per petri dish on Martin's Rose 

Bengal medium and Armillaria semi-selective medium (malt extract, 20 g; glucose, 20 g; 

Lab M agar No 1, 20 g; peptone, 6.0 g; streptomycin sulphate, 0.1 mg; rose bengal, 0.03 

mg; PCNB, 0.01 mg; benomyl, 0.01 mg; distilled water, 1000 ml). Each plating was done 

in triplicate. The proportion of plated woody chips from which Trichoderma and 

Armillaria grew was recorded. The data were arcsine transformed (Snedecor and 

Cochran, 1989) prior to analysis using MSTAT (Version 2.10, R. D. Freal, Michigan 

State University). 

Results 

Colonization the stem sections by Trichoderma isolates 

The data on colonization of the autoclaved tea stem sections by Trichoderma 

isolates is shown in Table 4.2. All the isolates colonized the stem sections and within 4 

wk were recovered from all the distances at 100% isolation frequency. 

Competitive colonization of stem sections by Trichoderma and Armillaria isolates 

The data on recovery of Armillaria from the pathogen or the Trichoderma-

colonized sections after 12-wk incubation in the soil are shown in Table 4.3. Results from 

the two repeats of each experiment were similar in all cases. Although Trichoderma 

could always be isolated from both stem sections in all experiments (data not shown), 
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Table 4.3: Average number of chips of tea stem sections which were inoculated at one 

end with Armillaria and at the other end with Trichoderma showing Armillaria 

outgrowth when plated onto medium after 12 wk of incubation in the soil 

Stem section 

Armillaria-mfested Trichoderma-infested Armillaria-inksted Trichoderma-infested Treatments 

Trichoderma isolates 

T3 

T4 

T9 

Control 

Exp. la Exp. lb 

5.5ai3 

0.0b 

5.5a 

6.0a 

5.3a 

0.0b 

5.3a 

6.0a 

5.0a 

0.0b 

5.5a 

6.0a 

4.3a 

0.0b 

6.0a 

6.0a 

T. harzianum isolates Exp. 2a Exp. 2b 

T4 

T5 

T10 

T i l 

Control 

Armillaria isolates 4 

6M1 

Control of 6M| 

13T1 

Control of 13T, 

0.0a 

2.2b 

2.0b 

2.9b 

6.0c 

2.3a 

3.3b 

4.4A 

6.1B 

Exp. 3a 

0.0a 

2.2b 

1.7b 

2.8b 

6.0c 

2.3a 

3.2b 

4.3A 

5.5B 

0.0a 

2.0b 

1.5b 

2.2b 

6.0c 

2.5a 

3.6b 

4.4A 

6.3B 

Exp. 3b 

0.0a 

2.2b 

1.7b 

2.2b 

6.0c 

2.4a 

3.6b 

4.4A 

6.2B 

1 Tested against Armillaria isolate 13T, 
2 The number of plated woody chips was 6 in Exp. 2 and 10 in Exp. 3. 
3 In each column, means followed with different letters are significantly (P < 0.01) different according 

to Tukey's multiple comparison procedure. 

Tested with Trichoderma harzianum isolate T4. 
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differences in their effects on Armillaria were highly significant. In both Exp. 2 and 3, 

incidence of Armillaria in the initially pathogen-colonized or Trichoderma-colonized 

stem sections was more or less similar for each of the Trichoderma isolates. While 

isolates T3 and T9 had insignificant effect, isolates T4, T5, T10, and Til strongly 

inhibited the pathogen and reduced its incidence in the stem sections under sterile 

conditions by 100, 63-67, 67-75 and 52-63% respectively. In the control treatments 

Armillaria was always isolated at 100% frequency. However, in non-sterile soil (Exp. 3), 

the isolation frequency from the control ranged from 32-36% and 55-63% for isolates 

6Mi and 13Ti respectively. The effect of J. harzianum reduced (P < 0.01) the isolation 

frequencies by 30% and 22-30% respectively. Contrary to Exp. 2, the pathogen was 

isolated from the stem sections initially colonized by isolate T4. 

Discussion 

Most studies have used mycelial interactions in dual culture to screen for the 

biocontrol potential of Trichoderma spp. Onsando and Waudo (1994) used this method 

together with the effect of extracellularly produced metabolites to identify inhibitory 

capabilities of the Trichoderma isolates (Table 4.1) against two isolates of Armillaria sp. 

pathogenic on tea. Comparative use of a standard malt extract medium and a minimal 

essential medium designed to mimic the C:N ratio in wood to screen Trichoderma 

isolates for the ability to kill Serpula lacrymans showed that these in vitro methods do 

not simulate the natural state and may not lead to reproducible antagonism in the field 

(Score and Palfreyman, 1994). This indicates the need to test in woody substrates the 

potential of Trichoderma spp. for the control of wood rotting fungi. If the ultimate aim is 

to eradicate a pathogen from infected woody debris, as is the case for Armillaria, the 

biocontrol agent should also be able to colonize wood. All Trichoderma isolates used in 

the present study readily colonized autoclaved tea stem sections (Table 4.2) indicating a 

good capability to invade woody substrates. Nelson et al. (1989) showed that competitive 

colonization of autoclaved stem sections by A. luteobubalina and Trichoderma spp. is a 

viable criterion for evaluating biocontrol potential of the mycoparasitic fungus. This 

procedure is particularly suitable for Armillaria given that primary inoculum sources of 
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this pathogen are principally infected wood in the soil except in the temperate regions 

where rhizomorphs are also common. Thus the Trichoderma species antagonistic to 

Armillaria would be useful in disease control if they can colonize infected plant 

materials. 

Only a few studies have used interactions between the pathogen and the 

antagonist in wood to screen Trichoderma isolates against wood damaging 

basidiomycetes (Schoeman et al, 1994; Tucker et al, 1997; Smouse et al, 1999). The 

Trichoderma isolates colonized the stem sections regardless of the presence of the 

pathogen while, on the other hand, growth of Armillaria into Trichoderma-colonized 

sections was deterred to varying degrees by different isolates (Table 4.3). Although 

Trichoderma was always isolated from both kinds of stem sections, Armillaria was not 

found in the sections colonized by isolate T4 and did not colonize stem sections with this 

isolate during incubation in sterile soil (Exp. 2a and 2b). Veigh et al. (1994) screened 

naturally occurring antagonists against wood decay basidiomycetes both in vitro and on 

plane wood and found that T. harzianum was the most successful antagonist. The T. 

koningii (T3) and T. longibrachiatum (T9) isolates were not efficacious in contrast to the 

T. harzianum isolates unlike what had been observed in vitro (Onsando and Waudo, 

1994); although parasitism of these three Trichoderma species to a range of soil-borne 

fungal pathogens has been demonstrated (Harris, 1999; Sreenivasaprasad and 

Manibhushanrao, 1993; Ahmed et al, 2001). 

Despite T. harzianum (isolate T4) invading the Armillaria-co\oraze& stem 

sections in non-sterile soil, the pathogen was still recovered from the sections. Apparently 

its inhibition could not take place in the non-sterile soil as efficiently as in the sterile soil. 

It is likely that competing micro-organisms influenced the antagonism of this isolate to 

Armillaria. It might be envisaged that at points of contact of the banded stem sections, 

antagonistic mycelial interactions between isolate T4 and Armillaria completely 

prevented the pathogen from colonising stem sections harbouring this isolate whilst 

following its invasion of the Armillaria-colomzsd stem sections, the inoculum was 

rendered non-viable more rapidly under sterile than under non-sterile conditions. No 

attempts were made to determine the mechanism of the observed effect on Armillaria. 

Antagonism of T. harzianum to various fungi including Rhizoctonia solani (Benhamou 
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and Chet, 1993) and Armillaria gallica (Dumas and Boyonoski, 1992) has been attributed 

to the lysis of cell walls of the host fungi, a phenomenon characteristic of mycoparasitism 

(Siestma and Wessels, 1979). It is possible that cell wall degrading enzymes produced by 

T. harzianum could be subject to inactivation before exerting an effect on the target host 

in non-sterile environments, thus causing the difference observed between the effect on 

Armillaria under sterile and non-sterile conditions. Nevertheless the antagonism of 

isolate T4 was reproducible and this isolate was selected for further disease control 

experiments (chapters 5 and 6 of this thesis). 
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Chapter 5 

Effect of Trichoderma harzianum and soil amendment with coffee pulp on survival 

of Armillaria 

Abstract 

Isolate T4 of Trichoderma harzianum applied to the soil as a wheat bran culture 

and coffee pulp as an organic soil amendment were investigated under greenhouse and 

field conditions for their effect on viability of Armillaria in woody inoculum sources. 

Infesting the soil surrounding the inoculum sources with T. harzianum significantly (P < 

0.001) increased the incidence of the antagonist in these sources and reduced viability of 

Armillaria. Coffee pulp amendment did not affect the incidence of Trichoderma in the 

woody substrates but reduced Armillaria inoculum viability slightly except in potted soils 

where inoculum viability was higher in the amended soils. It is concluded that the direct 

application of wheat bran-formulated T. harzianum into field soil can significantly 

suppress Armillaria resident in woody substrates and that no further organic amendment 

to enhance the development of the antagonist is needed. 

Introduction 

Species of Armillaria cause root rot in a range of plant species including tea 

(Camellia sinensis), coffee (Coffea arabica), avocado (Persia americana), banana (Musa 

acuminata), pine (Pinus spp.), eucalyptus (Eucalyptus spp.), and cypress (Cupressus spp.) 

in highland areas (altitude > 1500 m) of Kenya. Due to the high economic value of tea, 

extensive plant mortality often warrants disease control. Primary infection in tea plantations 

originates from stump and root remnants of forest trees that harbour Armillaria (Goodchild, 

1960). Leach (1939) recommended ring barking to girdle forest trees one year before 

felling as a method of reducing longevity of Armillaria viability in their stumps and 

therefore reducing the risk of the disease in tea plantations. Girdling is thought to deplete 
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root carbohydrate reserves, favouring invasion by saprophytic fungi and making it more 

difficult for Armillaria to access the tissue. Although this method is applied commonly to 

kill trees prior to planting tea, Armillaria remains a major limitation to establishment of the 

crop on land where stumps of forest trees are not removed thoroughly during land 

preparation. Remnants of roots in the soil seem to be essential requisites as food bases for 

ensuring longevity of Armillaria inoculum (Munnecke et al., 1981) and their removal is 

considered to be the single most effective way for minimising the risk of the disease in tea 

plantations (Goodchild, 1960; Onsando et al, 1997). This can only be done conveniently 

during primary land preparation but the operation is difficult when it has to be carried out 

manually to remove potential sources of inoculum occurring deep within the soil or over 

large areas and complete eradication of Armillaria from an infested site by use of this 

method is difficult to achieve. Alternative methods of destroying Armillaria within plant 

materials in the soil are therefore desirable. 

Trichoderma spp. can antagonise plant pathogenic fungi including Armillaria (Fox 

et al., 1994; Nelson et al., 1989, 1995; Munnecke et al., 1981) through mycoparasitism 

and antibiosis (Elad et al., 1982). Instances of their use in practice to control Armillaria 

root rot are, however, rare. Garrett (1958) attributed this to the difficulty of achieving 

sufficiently high population densities of antagonistic strains hindering their ability to 

colonise woody Armillaria inoculum sources in most soils. A successful biocontrol agent 

should be able to colonise and persist in the soil (Baker and Cook, 1974), hence 

identifying methods that enable proliferation of Trichoderma spp. is key to their 

successful application. Some studies have shown that the population density of T. 

harzianum added to pathogen-infested soil steadily declines (Elad et al., 1981; 1982; 

Marois and Mitchel, 1981) suggesting the need to change the soil ecosystem to encourage 

their persistence or attain their effect on targeted pathogens shortly after application. 

Factors that have been shown to determine the success of Trichoderma include type and 

age of preparation of the fungus applied to the soil (Lewis and Papavizas, 1984). 

Onsando and Waudo (1992) reported that soil amendment with coffee pulp, an 

agricultural waste product from coffee processing, encouraged proliferation of indigenous 

Trichoderma spp. and sustained their population densities above 2.3 x 105 colony-

forming units (cfu) g"1 soil over a period of 9 months. Some of the Trichoderma isolates 
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obtained from the soil after coffee pulp amendment (Table 4.1) were antagonistic to 

Armillaria in culture (Onsando and Waudo, 1994). However, the effectiveness of the 

most inhibitory Trichoderma isolate in autoclaved tea stems was limited in non-sterile 

soil (Chapter 4 of this thesis). 

The aim of this chapter was to investigate the effect of coffee pulp and soil 

infestation with isolate T4 of T. harzianum on Armillaria in woody inoculum sources. 

Materials and methods 

The experiments were carried out at Timbilil tea estate of the Tea Research 

Foundation of Kenya, Kericho (located: 0o22S; 5°21E, altitude of 2180 m) between 

April 1998 and July 1999. 

Trichoderma harzianum culture 

Trichoderma harzianum isolate T4 (chapter 4 table 4.1) was cultured in wheat 

bran as follows: Five 1-1 conical flasks were each filled with 500 g dry wheat bran 

moistened with 250 ml tap water and autoclaved twice at 121°C for 1 h on two 

consecutive days. Ten ml of conidial suspension prepared from a 120-h old culture of T. 

harzianum containing 104 propagules ml" was used to inoculate the autoclaved wheat 

bran in each flask. Inoculated wheat bran was incubated under room conditions (21 -

23°C) and shaken every 24 h to promote uniform colonisation. After 1 wk, the number of 

propagules in the culture was adjusted to 5 x 10 colony-forming units (cfu) g" (fresh 

weight) by adding an equal amount of freshly autoclaved wheat bran and the culture used 

to infest the soil. 

Armillaria inocula 

Armillaria inocula used in the pot experiment consisted of artificially inoculated 

cassava (Mannihot esculenta L.) stems (diam. 2.5-3.0 cm). These were cut into 6-cm-

long sections, ten of which were placed in each of nine 1-1 kilner jars, 300 ml tap water 

added, and autoclaved for 15 min at 121°C. After cooling to room temperature, a 5-mm-

diam. agar disc aseptically removed from a young culture of an Armillaria sp. isolate 
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13Ti (Table 3.1) was placed on the cut transverse surface of each stem section. 

Inoculated stem sections were incubated in the dark under room conditions (21 - 23°C) 

for 6 wk. For field experiments inocula were prepared from naturally infected stumps of 

4-yr-old tea plants. These were dug out from a single infection site in a commercial field 

at Timbilil tea estate. Each of these was approximately 25-30 cm long with 5-10 cm collar 

diam. For Exp. 2 the inocula were prepared by cutting infected stumps into pieces 

approx. 10-cm long and bulking these together. Inocula for Exp. 3 consisted of whole 

stumps. 

Experiments 

Experiment 1: Effect of Trichoderma harzianum and coffee pulp on Armillaria inoculum 

in potted soils. 

A sample of the 0 - 30 cm layer of a local nitisol was taken and divided into three 

equal lots. Coffee pulp was incorporated in the first, the second, and the third lot in 

quantities of 0, 0.83, and 1.67 kg (dry weight) m"3 respectively. Each lot was then divided 

into three parts and T. harzianum culture incorporated in each part in quantities of 0 

(control), 10, and 20 g respectively for every 1000 cm3 of soil resulting in approximate 

densities of 0, 5 x 102 and 103 cfu cm-3 respectively. Ten Armillaria inoculum pieces 

were buried in each pot and the pots placed under a concrete bench in the greenhouse. 

The soil was kept moist by adding 100 ml tap water every week. After 6 months, the 

inocula were removed and assayed for presence of Trichoderma and viability of 

Armillaria. 

Experiment 2: Effect of Trichoderma harzianum and coffee pulp on small inoculum 

pieces. 

In ploughed plots each measuring 3 x 3 m, coffee pulp was applied by uniformly 

broadcasting amounts of 0, 0.25, and 0.5 kg m"2 on the soil surface. The coffee pulp was 

then worked in by forking repeatedly to a depth of 30 cm resulting in approximate 

densities of 0, 0.83, and 1.67 kg m"3 respectively. Sixteen 30-cm deep holes were dug in 

each plot at a spacing of 0.6 x 0.6 m. Trichoderma harzianum culture was mixed into the 
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soil as described for Exp. 1. Ten inoculum pieces were placed in each hole at 15 cm 

depth, 6-month-old tea plants raised vegetatively in the nursery were planted and the T. 

harzianum-mfested soil was used to fill up the planting holes. The tea was maintained 

under standard agronomic practices (Anon., 1986). After 6 and 12 months, the inocula 

were assayed for the presence of Trichoderma and viability of Armillaria as described 

below. 

Experiment 3: Effect of Trichoderma harzianum and coffee pulp on large pieces of woody 

Armillaria inocula. 

The procedure followed in this experiment was the same as in Exp. 2. One 

inoculum piece was placed in the 5 to 30-cm depth of each planting hole during planting 

of tea and the T. harzianum-mfested soil was used to fill up the planting holes as 

described for Exp. 2. After 6 and 12 months four inoculum pieces were taken from each 

plot and assayed for the presence of Trichoderma and viability of Armillaria as described 

below. 

Assays of the inoculum pieces 

Each of the experiments combined soil organic amendment and soil infestation with 

T. harzianum in a split plot arrangement with three replications. The inoculum pieces 

from each sub-plot were assayed for presence of Trichoderma and Armillaria viability as 

follows. In Exp. 1 the inoculum pieces were split length-wise and ten small pieces of the 

plant tissue with Armillaria mycelium taken from each. These were bulked together for 

each pot and then ten of them plated in each petri dish. In Exp. 2 and 3 the inoculum 

pieces were removed from the root zone of four plants in each sub-plot. The bark was 

lifted off the wood and ten small pieces of plant tissue with Armillaria mycelium 

removed at various points. These were bulked together for the rooting zone of each plant 

and ten of them plated per petri dish, incubated under room conditions and observed 

regularly over a period of 7-21 days for growth of Armillaria and Trichoderma. For 

Armillaria, incubation was done in the dark. All platings were done on Martin's (1950) 

Rose Bengal (glucose, 10 g; Lab M agar No 1, 17 g; peptone, 0.5 g; yeast extract, 0.5 g; 

K2HP04, 0.5 g; KH2P04, 0.5 g; Mg2S04.7H20, 0.5 g; rose bengal, 0.05 mg; streptomycin 
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sulphate, 40 mg; distilled water, 1000 ml) medium for selective growth of Trichoderma 

and Armillaria semi-selective (malt extract, 20 g; glucose, 20 g; Lab M agar No 1, 20 g; 

peptone, 6.0 g; streptomycin sulphate, 0.1 mg; rose bengal, 0.03 mg; PCNB, 0.01 mg; 

benomyl, 0.01 mg; distilled water, 1000 ml) medium. Each plating was done in triplicate. 

The proportions of plated pieces from which Trichoderma and Armillaria grew were 

recorded. The data from each treatment combination was expressed as a percentage of the 

highest value in each block and then arcsine transformed (Snedecor and Cochran, 1989). 

The transformed data were analysed on a computer using MSTAT (Version 2.10, R. D. 

Freal, Michigan State University). 

Results 

The number of isolations that yielded Trichoderma and Armillaria either alone or 

together is summarised in Table 5.1. In Exp. 1 only 7.4% of all the isolations had 

Armillaria alone while 18.5% of the isolations had Trichoderma alone and 74.1% had 

both fungi together. In the field experiments there were no instances where Armillaria 

was isolated alone, 44.4 and 33.3% of the isolations made at 6 and 12 months for Exp. 2 

had Trichoderma alone respectively, and 55.6 and 66.7% had the two fungi together. In 

Exp. 3, 7.4 and 11.1% of isolations at 6 and 12 months had Trichoderma alone and 92.6 

and 88.8% respectively had the two fungi together. Overall, the two fungi were isolated 

together in > 55% of all the isolations for each experiment. 

Incidence of Armillaria in the inoculum pieces was invariably highest in the control 

treatment and strongly decreased with increase in the quantity of T. harzianum applied to 

the soil (Table 5.2; Figures 5.1 - 5.3). Reduction of Armillaria occurred fast for the small 

inoculum sources, being already complete after 6 months of incubation. However, the 

reduction was slower for the large inoculum sources, where decrease in viability 

continued until 12 months. The treatment with the large inoculum sources was also the 

single treatment where application of a high dose of T. harzianum did not lead to the total 

elimination of Armillaria after 12 months. 

Presence of Trichoderma in the inoculum pieces increased significantly (P < 0.001) 

with the density of T harzianum applied to the soil but did not change with coffee pulp 
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density. In most cases incidence of T. harzianum was slightly higher in the inocula that 

had been incubated for 12 months than for those that had been incubated for 6 months. In 

Exp. 1 application of T. harzianum reduced completely incidence of Armillaria in the 

inoculated cassava stems. However, coffee pulp reduced the effect of T. harzianum 

(Figure 5.1) on Armillaria although the incidence of the antagonist in the inocula had not 

No coffee pulp 

lOOn „ 

0.83 kg m"3 

coffee pulp 
1.67 kg m"3 

coffee pulp 

I Trichoderma 

i Armillaria 

0 10 20 0 10 20 0 10 20 

Wheat bran culture of T. harzianum (g 1000 cm" soil) 

Fig. 5.1: Relative presence of Trichoderma and Armillaria in inoculum sources (cassava 

stem sections) in potted soil with varying densities of coffee pulp (kg m"3 soil) and T. 

harzianum (Exp. 1). The presence of each fungus is expressed as percentage of the 

highest value scored. The plotted values are back transformed means of the analysed data 

been affected. This effect of coffee pulp did not appear in field experiments where T. 

harzianum was effective at both coffee pulp amendment levels (Figures 5.2 and 5.3). In 

non-7, harzianum-mfested soil, coffee pulp also reduced the incidence of Armillaria by 

12-58% (Table 5.1). 
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No coffee pulp 

100, ,-, 

75 

25 

0.83 kg rn 
coffee pulp 

1.67 kg m" 
coffee pulp 

10 20 0 10 20 

• Trichoderma 

nArmillaria 

10 20 

No coffee pulp 

100n n 

0.83 kg rn 
coffee pulp 

1.67 kg m" 
coffee pulp 

Pi 
0+J 

0 10 20 0 10 20 0 10 20 

Wheat bran culture of T. harzianum (g 1000 cm" soil) 

Fig. 5.2: Relative presence of Trichoderma and Armillaria in small pieces of inoculum 

sources (tea wood) incubated in soil amended with varying densities of coffee pulp (kg 

m"3 soil) and T. harzianum (a) after 6 months and (b) 12 months (Exp. 2). The presence of 

each fungus is expressed as percentage of the highest value scored. The plotted values 

are back transformed means of the analysed data 
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No coffee pulp 

100 

K 75-

S 50̂  

0 10 20 

0.83 kg m"3 

coffee pulp 

0 10 20 

1.67 kg m" 
coffee pulp 

0 10 20 

Trichoderma 

Armillaria 

No coffee pulp 

ei 

0 10 20 

0.83 kgm'3 

coffee pulp 
1.67 kgm"3 

coffee pulp 

III 
0 10 20 0 10 20 

Wheat bran culture of T. harzianum (g 1000 cm' soil) 

Fig. 5.3: Relative presence of Trichoderma and Armillaria in large pieces of inoculum 

sources (tea wood) incubated in soil amended with varying densities of coffee pulp (kg 

m"3 soil) and T. harzianum (a) after 6 months and (b) after 12 months. The presence of 

each fungus was expressed as percentage of the highest value scored. The plotted values 

are back transformed means from the analysed data 
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The relationship between incidence of Armillaria with that of Trichoderma shown in 

Figure 5.4 indicates higher incidence of Armillaria at low incidence of Trichoderma. 

However, high incidence of Trichoderma was not necessarily related to low incidence of 

Armillaria. 

! 
o 
<D 
o 

§ 

1 

75 

50 

25 

y = -0.3542x+42.402 

R2 = 0.4617 

25 50 75 

Incidence of Trichoderma (%) 

100 

Fig 5.4: Relationship between the presence of Armillaria and Trichoderma in inoculum 

pieces from soils with varying densities of coffee pulp and T. harzianum at 6 months 

under field conditions 

Discussion 

The presence of Trichoderma in the inoculum pieces from the control plots can be 

attributed to colonisation by species resident in the soil. No attempts were made to 

identify or distinguish the strain isolated from the inoculum pieces from the T. harzianum 

used to infest the soil. The high incidence of Trichoderma in the inoculum pieces from 

infested soils compared to the control suggests colonisation of the plant materials mainly 
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by the introduced antagonist which must therefore have been predominant among 

Trichoderma isolated from the inoculum pieces during the assays. Although Trichoderma 

population densities in the soil were not monitored in these experiments, the increase in 

incidence of the fungus in the plant materials as the amount of wheat bran culture of T. 

harzianum applied to the soil increased suggests that colonisation depended on 

population density of the antagonist in the soil. Soil amendment with coffee pulp, though 

shown earlier to increase population density of Trichoderma spp. resident in the soil 

(Onsando and Waudo, 1992), did not affect the incidence of these in the inoculum pieces. 

Perhaps the cellulolytic activity of Trichoderma was repressed by the presence of more 

readily available nutrients (Wood, 1991), which may have been retained in the soil of the 

pot experiments, thus exerting a relatively long-lasting effect on Trichoderma, while they 

may have leached out into deeper soil layers in the field plots. 

Woody materials are essential food bases for survival of Armillaria in the soil 

(Munnecke et al., 1981) particularly in regions where rhizomorphs are scarce. 

Elimination of the pathogen from these is one option for managing Armillaria root 

disease. If Trichoderma spp. that antagonise Armillaria can colonise these inoculum 

sources when introduced into the soil, they would be useful for biocontrol of the disease. 

Studies on the effect of T. viride on A. mellea showed that survival of the pathogen 

depended on the population density of the antagonist in the soil surrounding its woody 

inoculum sources (Garrett, 1958). Thus at low population densities antagonistic strains of 

Trichoderma would be limited in their efficacy against Armillaria. This may explain 

why, despite various studies having demonstrated antagonism of Trichoderma spp. to 

Armillaria, little is known about their practical use to control Armillaria root disease. The 

first consideration in attempts to control the disease using antagonistic Trichoderma 

would therefore be to identify methods of increasing their population density in the soil in 

such a manner that would also improve their colonisation of Armillaria inoculum 

sources. The concurrent application of Trichoderma and coffee pulp to the soil apparently 

does not lead to improved colonization of Armillaria-infected wood. Since the effect of 

coffee pulp was negative on the effect of Trichoderma in the pot experiment we would 

not advise the application of this material as a method of increasing the population 

density of antagonistic T. harzianum introduced to the soil for the control of Armillaria. 
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We conclude that infesting soil surrounding the inoculum sources by applying T. 

harzianum as wheat bran culture has potential to achieve disease control by reducing 

longevity of Armillaria inoculum in the soil through inactivation of the pathogen at pre-

infection stage. 
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Chapter 6 

Efficacy of soil solarization, Trichoderma harzianum, and coffee pulp amendment 

against Armillaria 

Abstract 

Soil solarization was evaluated singly or in combination with Trichoderma 

harzianum infestation or coffee pulp amendment for effect on wood-borne inoculum of an 

Armillaria sp. Solarization increased maximum soil temperatures at 10 cm depth by 9-13°C 

and reduced (P < 0.001) viability of Armillaria up to 100%. Its efficacy was similar at 5, 

10, and 15 cm soil depths. Trichoderma harzianum applied to the soil surrounding the 

inocula also significantly (P < 0.001) reduced viability of Armillaria. Application of the 

antagonist at 20 g of the wheat bran culture consequent to solarization for 5 wk caused total 

loss of Armillaria viability and was similar to 10 wk of solarization without application of 

the antagonist. Coffee pulp amendment reduced inoculum viability slightly though its effect 

was apparent only in unsolarized soils. Soil solarization had significant (P < 0.001) 

interaction with T. harzianum infestation. These observations are discussed in regard to 

their implications in developing an integrated approach to management of Armillaria root 

disease. 

Introduction 

Successful control of Armillaria root rot is hampered by various factors reviewed by 

Fox (2000). The most important of these is the difficulty of gaining access to the pathogen 

residing in plant materials that are situated deep within the soil. In tea plantations, 

infections start from stump and root remnants of previous vegetation. Consequently the 

fungus spreads rapidly when infected plants are not promptly identified and removed. 

Removal of plant residues that may harbour Armillaria and eradication of diseased plants 

are recommended for minimizing the risk of the disease (Anon., 1986). Complete 
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elimination of inoculum by these methods is difficult in established crop stands since their 

success also depends on early and accurate diagnosis of the disease, which is difficult 

before the appearance of above-ground symptoms. The limited access to Armillaria inside 

dead plant materials and its extensive rhizomorph systems also limits the efficacy of 

chemical fumigants such as carbon disulphide (Fox, 2000). Guillaumin (1988) noted that to 

be effective, the fumigants should be injected at least 60 cm deep in the soil but even this 

does not completely eradicate the pathogen. However, they disrupt antibiotic production by 

Armillaria and thus increase its susceptibility to infection by mycoparasitic Trichoderma 

spp. (Ohr and Munnecke, 1974; Munnecke et al., 1981). Exposure to heat and desiccation 

similarly predisposed A. mellea to T. viride (Munnecke et al, 1973, 1976, 1981). From an 

environmental point of view, soil heating would be a more acceptable method of enhancing 

efficacy of antagonistic Trichoderma against Armillaria than the use of the fumigants. 

Soil heating can be accomplished in warm climates by solarization. This involves 

covering the soil surface with a thin clear polyethylene tarp for several weeks to enhance 

accumulation of heat. The resulting high soil temperatures inactivate some of the soil 

microbes and therefore partially disinfest the soil (Davis, 1991). Soil solarization has been 

used to control Fusarium oxysporum f.sp. conglutinans (Ramirez-Villapudua and 

Munnecke, 1988), Verticillium dahliae (Melero-Vara et al., 1995; Pinkerton et al., 2000); 

Phytophthora cinnamomi (Pinkerton et al., 2000) and Macrophomina phaseolina 

(Chellemi et al, 1997; Lodha et al., 1997). Although soil temperatures attained by 

solarization may be sufficiently high to directly kill propagules of some of these 

pathogens in the top soil, the efficacy declines with soil depth (Katan, 1981). 

Incorporation of additional suppressive factors is therefore often necessary for improving 

the efficacy of soil solarization in controlling plant diseases. 

The results of the experiments in Chapter 5 of this thesis showed the potential of 

infesting the soil with T. harzianum and amendment with coffee pulp to reduce longevity 

of Armillaria inoculum. In this chapter the antagonist and coffee pulp amendment were 

tested further, in combination with soil solarization, for the effect on survival of the 

pathogen in woody substrates. 
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Materials and methods 

The experiments were carried out at Timbilil tea estate (details given in chapter 5) 

between October 1998 and March 2000. The effect of solarization on survival of Armillaria 

at different soil depths was studied in Exp. 1 while effect of solarization and Trichoderma 

harzianum or solarization and coffee pulp amendment were studied in Exp. 2 and 3 

respectively. These factors were evaluated singly or in combination with various durations 

of soil solarization for effect on survival of Armillaria in naturally infected stumps of tea. 

Each experiment was carried out twice. 

Armillaria inocula and Trichoderma preparation 

Armillaria inocula were obtained from the same site and prepared as described for 

Exp. 3 of chapter 5 except for Exp. 1 where the stumps were split longitudinally into two 

pieces of approximately the same size to provide the inocula. In Exp. 2 and Exp. 3 whole 

stumps each with collar diameter 5-10 cm were cut to 25-30 cm length and used as 

inoculum sources. Wheat bran culture of T. harzianum was prepared and used as described 

in chapter 5. 

Soil solarization 

The land was finely ploughed and the inocula buried as described below for each 

experiment. The soil was then watered to field capacity (approx. 5-101 m"2) and plots to be 

solarized covered with polyethylene tarp (Uni-Plastics Ltd) 0.5 mm thick buried to 30 cm 

depth at the margins. The plots were exposed to solar radiation for 4 or 8 wk (Exp. 1) and 5 

or 10 wk (Exp. 2 and 3). Soil thermometers were placed at 10-cm depth, one in a solarized 

and the other in a non-solarized plot and temperatures read daily at 9,12, and 15 h. 

Experiments 

Experiment 1; Effect of soil solarization and inoculum depth on survival of Armillaria. 

The inocula were buried 5, 10, or 15 cm deep at spacing of 30 x 30 cm in plots 

measuring 2 x 4 m. The soil was watered and plots solarized for 0, 4, and 8 wk. 
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Serialization was carried out from 31 January to 26 March 2000 (Exp. la) and 5 February to 

31 March 2000 (Exp. lb). 

Experiment 2: Effect of soil solarization and Trichoderma harzianum on survival of 

Armillaria. 

The inocula were buried at a spacing of 30 x 30 cm with their collar at the ground 

level. Sixteen inoculum sources were buried in each plot measuring 1.2 x 2.4 m. The 

plots were watered and solarized for 0, 5, and 10 wk. At the end of each solarization 

period, soil was removed from a 10-cm radius around each inoculum and T. harzianum 

culture incorporated into the soil as described for Exp. 2 and Exp. 3 in Chapter 5. The soil 

- T. harzianum mixture was replaced to surround each inoculum piece to a depth of 10 

cm. After application of T. harzianum, the inoculum sources were left in the soil for 16, 

11, and 6 wk in plots solarized for 0, 5, and 10 wk respectively. Solarization was carried 

out from 23 October to 31 December 1998 (Exp. 2a) and 17 November 1999 to 25 

January 2000 (Exp. 2b). 

Experiment 3: Effect of soil solarization and organic amendment on survival of 

Armillaria. 

Coffee pulp was incorporated in the soil as described in Exp. 2 and 3 of chapter 5. 

Armillaria inocula were then buried in each plot, the soil watered and solarized for 0, 5, and 

10 wk. In the treatments where solarization was done for 5 wk, application of the treatment 

was carried out 5 wk after the application in the 10 wk solarized plots. At the end of the 

solarization period, 10 g of T. harzianum culture was incorporated in the soil surrounding 

each inoculum piece in all plots as described in Exp. 2 and left for further 11 wk. 

Solarization was carried out from 5 February to 25 April 1999 (Exp. 3a) and 26 November 

1999 to 3 February 2000 (Exp. 3b). 

Experimental design 

In each of the experiments, duration of soil solarization was combined with levels 

of the second treatment (soil depth in Exp. 1; T. harzianum infestation in Exp. 2; coffee 

pulp amendment in Exp. 3) in a split plot arrangement. The levels of the second treatment 
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factor were split over each level of solarization. Each treatment combination was 

replicated three times in a randomised complete block design. 

Assays for viability of Armillaria 

At the end of each experiment four inoculum sources were removed from each sub

plot and assayed for viability of Armillaria as follows: the bark was lifted off the wood of 

each inoculum piece and small pieces of plant tissue containing Armillaria mycelium 

taken from each. These were bulked together for each stump and ten of them plated in 

each petri dish on Armillaria semi selective medium (malt extract, 20 g; glucose, 20 g; 

Lab M agar No 1, 20 g; peptone, 6.0 g; streptomycin sulphate, 0.1 mg; rose bengal, 0.03 

mg; PCNB, 0.01 mg; benomyl, 0.01 mg; distilled water, 1000 ml), incubated under room 

conditions in the dark and observed regularly over a period of 21 days for growth of 

Armillaria. Each plating was done in triplicate. The proportion of plated materials from 

which the fungus grew was recorded. The data from each treatment combination was 

expressed as a percentage of the highest value in each block to give relative survival of 

the pathogen. The relative survival data were arcsine transformed (Snedecor and Cochran, 

1989) and analysed using MSTAT Version 2.10 (R. D. Freal, Michigan State). 

Results 

Soil temperature characteristics 

Soil temperature characteristics in solarized and unsolarized plots in the three 

experiments are summarised in Table 6.1. The pattern of daily temperature changes was 

more or less similar in solarized and unsolarized soils but individual temperatures recorded 

were higher in solarized soils. The difference between maximum temperatures of solarized 

and unsolarized soils ranged from 9-12°C while the differences between the corresponding 

mean temperatures ranged from 7-11°C. The maximum absolute temperatures ranged from 

44-50°C in solarized soils and from 33-35°C in unsolarized soils. 
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Table 6.1: Soil temperature characteristics during solarization and difference with 

unsolarized plots 

Exp. 

la 

lb 

2a 

2b 

3a 

3b 

Time of the year2 

1-3,2000 

2-3,2000 

10-12,1998 

11-1,1999-2000 

2-4, 1999 

11-2, 1999-2000 

Max' 

39.5 ± 0.4 

39.8 1 0.4 

35.9 ±0.5 

37.710.5 

37.5 1 0.6 

37.0±0.5 

Mean" 

32.9 ± 0.3 

33.210.2 

30.710.4 

31.910.4 

31.110.4 

31.310.4 

Tsol' 

Change3 

14.810.4 

15.210.4 

11.410.4 

12.310.5 

13.210.6 

11.710.5 

Absolute Max0 

48.0 

46.0 

45.0 

44.0 

50.0 

45.0 

Max (Tsol - Tunsol) 

Difference7 

11.410.3 

12.010.4 

9.710.4 

9.610.3 

10.110.4 

8.910.3 

Soil temperatures in solarized treatment. 
2 Months of the year and year indicated. 
3 Mean maximum temperature in solarized treatment (averaged over the experiment). 
4 Mean temperature in solarized treatment (averaged over all recordings done). 
5 Mean change of temperature in the solarized treatment (average of the daily difference between the highest 

and the lowest recordings) during solarization. 
6 Absolute maximum temperature. 
7 Mean of difference of average maximum temperature between solarized and unsolarized treatment. 

Viability of Armillaria 

The data on viability of Armillaria are presented in Tables 6.2-6.4 for Exp. 1-3 

respectively. In all the experiments, the isolation frequency of Armillaria was much lower 

in solarized than in unsolarized treatments (Figures 6.1-6.3). After 4 wk, the effect of 

solarization on Armillaria was nearly as great as after 8 wk. Effect of solarization was more 

or less the same at 5, 10, and 15-cm inoculum depth. In Exp. 2 and 3 incidence of 

Armillaria was low in all treatment combinations including the control, which was 

probably due to dry weather prevailing during the time of the year when these experiments 

were done; this probably desiccated the inoculum sources and adversely affected survival 

of the pathogen. Nevertheless there was a clear effect of solarization. In Exp. 2 survival of 

the pathogen in soils solarized for 5 wk was higher than in soils solarized for 10 wk where 

inoculum viability was 0% while in Exp. 3 inoculum viability was 0% in soils solarized for 

5 as well as 10 wk. 
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Table 6.2: Average number of plated pieces (n=10) of tea wood blocks showing 

Armillaria outgrowth. The tea wood blocks had been incubated at different depths in soils 

solarized for 0, 4, and 8 wk (Exp. 1) 

Treatments 

Solarization duration (wk) 

0 

0 

0 

4 

4 

4 

8 

8 

8 

Inoculum depth (cm) 

5 

10 

15 

5 

10 

15 

5 

10 

15 

Exp. la 

9.4a' 

9.5a 

9.8a 

0.4b 

0.4b 

0.4b 

0.2b 

0.3b 

0.3b 

Exp. lb 

9.2a 

9.3a 

9.6a 

0.6b 

0.6b 

0.7b 

0.2c 

0.5b 

0.7b 

1 In each column, means followed with the same letter are not significantly (P < 0.01) different according to 

Tukey's multiple comparison procedure. 

Infesting soil with T. harzianum affected viability of Armillaria inoculum in the same 

way as in Exp. 2 and Exp. 3 of chapter 5 with incidence of the pathogen decreasing by 26-

32% in Exp. 2 between 0 and 10 g of T. harzianum wheat bran culture and decreasing by 

31-43% between 10 and 20 g of the culture. Effect of T. harzianum was clear in the control 

as well as in the plots solarized for 5 wk (Figure 6.2). Beyond this period, the effect of 

solarization masked that of the antagonist, rendering Armillaria completely non-viable after 

10 wk which accounts for the significant (P < 0.001) interaction between solarization and 

T. harzianum treatments. Effect of soil amendment with coffee pulp was evident only in 

unsolarized soil where the incidence of Armillaria decreased by 12 and 28% between 

coffee pulp densities of 0 and 0.83 kg m"3 in Exp. 3a and 3b respectively. Between densities 

of 0.83 and 1.67 kg m"3 the incidence decreased by 14 and 44% in Exp. 3a and Exp. 3b. 

respectively. The effect was however, not apparent in solarized treatments as Armillaria 

could not be recovered from inoculum sources in soils solarized for 5 or 10 wk. 



No solarization 4-wk solarization 8-wk solarization 

1 00 _, 

75 -

50 J 

25 _ 
g E x p . l a 
• E xp . 1 b 

I n o cu l um dep th ( cm ) 

Fig. 6.1: Relative survival of Armillaria in inocula of tea wood blocks incubated at 
different depths in soil solarized for 0,4, and 8 wk (Exp. 1). Presence of Armillaria in the 
tea wood blocks is expressed as percentage of the highest value scored. The plotted 
values are back transformed means of the analyzed data 

Table 6.3: Average number of plated pieces (n=10) of tea wood blocks showing 

Armillaria outgrowth. The tea wood blocks had been incubated 5 - 30 cm deep in soil and 

solarized for 0, 5, or 10 wk followed by infestation with T. harzianum (Exp. 2) 

Solarization duration ( 

0 
0 

0 

5 

5 

5 

10 

10 

10 

Treatments 

wk) T. harzianum culture (g)' 

0 

10 

20 

0 

10 

20 

0 

10 

20 

Exp. 2a 

7.1a' 

4.8b 

3.3c 

4.8b 

3.8c 

3.4c 

O.Od 

O.Od 

O.Od 

Exp. 2b 

6.9a 

5.1b 

2.9c 

2.7c 

1.5c 

1.3c 

O.Od 

O.Od 

O.Od 

1 g 1000 cm"3 soil of wheat bran culture. 

In each column, means followed with the same letter are not significantly (P < 0.01) different according to 

Tukey's multiple comparison procedure. 
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No solarization 5-wk solarization 10-wk solarization 

100 

ei 

lExp.2a 

IExp.2b 

10 20 10 20 

Wheat bran culture of T. harzianum (g 1000 cm" soil) 

Fig 6.2: Relative survival of Armillaria in inocula of tea wood blocks incubated 5 - 3 0 cm 

deep in soil, solarized for 0, 5, or 10 wk and/or infested with T. harzianum (Exp. 2). 

Presence of Armillaria in tea wood blocks is expressed as percentage of the highest value 

scored. The plotted values are back transformed means of the analyzed data 

Table 6.4: Average number of plated pieces (n=10) of tea wood blocks showing 

Armillaria outgrowth. The tea wood blocks had been incubated 5 - 30 cm deep in soil, 

solarized for 0, 5, or 10 wk and/or amended with coffee pulp. In all treatment 

combinations, the soil surrounding each inoculum block was infested with T. harzianum 

after solarization by applying 10 g 1000 cm"3 soil of wheat bran culture of the antagonist 

(Exp. 3) 

Treatments 
Solarization duration (wk) 

0 
0 
0 
5 
5 
5 
10 
10 
10 

Coffee pulp' 
0.00 
0.83 
1.67 
0.00 
0.83 
1.67 
0.00 
0.83 
1.67 

Exp. 3a 
5.6az 

5.0a 
4.3b 
0.0c 
0.0c 
0.0c 
0.0c 
0.0c 
0.0c 

Exp. 3b 
5.0a 
3.6b 
2.5c 
O.Od 
O.Od 
O.Od 
O.Od 
O.Od 
O.Od 

kg m' soil. 
2 In each column, means followed with the same letter are not significantly (P < 0.01) different according to 
Tukey's multiple comparison procedure. 
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Density of coffee pulp (kg m' soil) 

Fig. 6.3: Relative survival of Armillaria in tea wood blocks incubated 5 - 30 cm deep in 

soil, solarized for 0, 5, or 10 wk and/or amended with coffee pulp. In all treatment 

combinations, the soil surrounding each tea wood block was infested with T. harzianum 

after solarization by applying 10 g 1000 cm"3 soil of wheat bran culture of the antagonist. 

Presence of Armillaria was expressed as percentage of the highest value scored. The 

plotted values are back transformed means of the analyzed data. 

Discussion 

The rise in soil temperature due to solarization was comparable to what has been 

observed in similar experiments done elsewhere. Merenco and Lustosa (2000) reported 

maximum temperatures at 5-cm depth that were about 10°C higher in solarized soils than 

in the control plots. Bohra et al. (1996) also reported temperature increases of 10 and 7°C 

of solarized dry and wet soils respectively while maximum temperatures were 8-16°C 

higher in solarized than in non-solarized soils at 5 and 30 cm soil depth (Pinkerton et al, 

2000). In the present study, solarization was carried out during the warmest time of the 

year and it raised temperatures at 10 cm soil depth to daily maxima > 35°C that were, on 

average, about 10°C higher than at a corresponding depth in unsolarized soils. 
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The incidence of Armillaria was significantly (P < 0.001) reduced within 30-cm 

soil depth when soil was solarized for 4-10 wk indicating that repeated exposure of the 

inoculum sources to elevated soil temperatures adversely affected survival of the pathogen. 

The effect was more or less the same at 5, 10, and 15-cm soil depth (Figure 6.1) where the 

incidence was 3 - 6% of that in unsolarized soil. For inoculum sources situated 0-30 cm 

deep, the incidence in soil solarized for 5 and 10 wk was 32 - 61% respectively lower than 

in the control (Figure 6.2). 

Sensitivity of Armillaria to high soil temperatures has been a subject of only a few 

studies. A dramatic loss in viability of A. ostoyae was observed when high soil 

temperatures resulting from forest burning were tested for the effect on viability of 

woody inoculum of the fungus buried in the soil (Filip and Yang, 1997). In solarization, 

the primary mode of action as a method of disease control is the inactivation of soil borne 

pathogens by prolonged exposure to high temperatures, leading to significant reduction in 

disease incidence. Denner et al. (2000) observed a 45% reduction in incidence of black 

dot of potatoes {Colletotrichum coccodes) when solarization was done for 8 wk and 

temperatures in the top 5 cm of soil reached 56°C. Also stalk rot of corn, caused by 

Fusarium moniliforme and Macrophomina phaseolina (Ahmad et al., 1996; Pinkerton et 

al, 2000) and verticillium wilt caused by Verticillium dahliae (Lopez-Escudero and 

Bianco-Lopez, 2001; Melero-Vara et al, 1995) have been controlled effectively using 

solarization. Unlike Armillaria, the pathogens against which solarization has been shown 

to be effective usually occur in the soil as dispersed propagules. The results presented 

here suggest a similar effect on Armillaria borne in coarse plant materials. 

Suppresiveness of solarized soil to some plant diseases has also been attributed to 

enhancement of the action of antagonists such as Trichoderma (Alabouvette et al., 1979; 

Greenberger et al., 1987). In Exp. 2, T. harzianum also caused a significant reduction in 

Armillaria incidence in the inoculum sources in the unsolarized treatment and when 

solarization for 5 wk was followed with a high density of T. harzianum in the soil, 

inoculum was quickly rendered non-viable (Figure 6.2). However, solarization was more 

effective than the application of T. harzianum as has been reported also by Melero-Vara 

et al. (2000) for the control of Sclerotium cepivorum. The efficacy of combining 

solarization with the antagonist illustrates the possibility of better disease control by 
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integrating the two treatments. Soil organic amendments may suppress soil borne 

pathogens and the data presented here and in chapter 5 showed a slight effect of coffee pulp 

amendment on viability of Armillaria. Improvement in efficacy of solarization by using 

organic amendments such as reported for Fusarium oxysporum f.sp. conglutinans 

(Ramirez-Villapudua and Munnecke, 1988) was not observed in Exp. 3 because 

solarization, after only 5 wk, completely eradicated Armillaria (Figure 6.3) and thus did not 

allow the expression of the effect of coffee pulp in solarized soil. The more dramatic effect 

observed in Exp. 3 was also due to an additional effect of T. harzianum which was applied 

in all treatments. Through the solarization treatment a partial biological vacuum was 

created that allowed an efficient establishment of the introduced T. harzianum. It has been 

reported that effects of solarization on the natural population of Trichoderma spp. is 

limited (Sastry and Chattopadhyay, 1999), which may be due to fast recoIonization from 

deeper soil layers (Ristaino et ai, 1991) thus explaining the fact that they are frequently 

observed on sclerotia and other fungal tissues after solarization (Bihan et al., 1997; 

McLean et al, 2001). In addition, the high temperatures may have weakened the resistance 

of Armillaria to the antagonist. In integrated disease management the effect of one factor 

may exceed the tolerance limit of a pathogen and thereby weaken it and increase its 

vulnerability to another factor (Baker, 1987). Application of multiple disease control 

factors is likely therefore to be more effective as exemplified for the combination of 

solarization and T. harzianum against Armillaria in the present study. Our study 

demonstrates the potential of solarization to control Armillaria root rot and confirmed that 

efficacy of this treatment is greater when combined with T. harzianum, and possibly soil 

amendment, in an integrated disease management strategy. 
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Chapter 7 

General discussion 

Results of the study on aspects of Armillaria root rot of tea in Kenya aiming to 

identify the causal agent and to develop approaches to disease management are summarized 

in this chapter. An attempt is made to explain the reasons for slow progress in the 

understanding of species diversity in the African Armillaria. Identification of the 

environmental factors that influence fructification is suggested as a fundamental pre

requisite for conclusive identification of Armillaria species in Africa. Soil solarization and 

the use of antagonistic Trichoderma are presented as viable options for controlling 

Armillaria root rot through eradicating the pathogen from woody inoculum sources in the 

soil. 

Armillaria in Kenya's tea plantations 

Characterization of the pathogen 

Armillaria is poorly characterised in Africa because of the rare occurrence of 

basidiomata and rhizomorphs, the key diagnostic features of the fungus in the temperate 

regions. Although there is much confusion in the literature on the interpretation of 

African species of Armillaria, we tentatively conclude that part of the confusion was 

created by a too wide interpretation of A. heimii by Heim (1963), which partly included 

characters specific for A. fuscipes. Based on the original descriptions in the literature, we 

provisionally accept that A. camerunensis, A. fuscipes, A. heimii, and possibly A. mellea 

s.s. have been reported from Africa. Although the name A. mellea is used quite frequently 

for some African isolates, no conclusive descriptions of basidiomata of A. mellea s.s. 

have been reported from this continent. 

Whenever basidiomata have been found the majority of the isolates have turned out 

to be homothallic thus excluding the use of mating tests in taxonomic research and 

prospects for defining 'biological species' in Africa. Most studies on African Armillaria 
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have used methods that do not depend on the presence of the basidiomata to characterise 

isolates. In this study, characterisation of Armillaria pathogenic on tea in Kenya focused 

mainly on determination of the number of morphological and genetic groups of the 

fungus. A survey was carried out during which 47 isolates of Armillaria were collected 

from diseased tea and a few other infected hosts in close proximity to tea plantations. The 

isolates were characterised according to their cultural morphology and differentiated from 

one another by somatic incompatibility and DNA-based methods that used RAPD and 

ISSR markers and, in addition, the RFLP of the ITS and IGS regions. During the survey, 

basidiomata were found only in one tea estate in Kericho, confirming that natural 

fructification of Armillaria takes place in some of Kenya's tea plantations during wet 

seasons. The frequency of fructification is apparently too sporadic for basidiomata 

morphology to be used routinely in taxonomic studies. Examination of morphological 

features of the basidiomata in relation to the characteristics of species that have been 

reported from Kenya (Pegler, 1977), suggested close resemblance to A. heimii. The 

haploid colonies obtained by culturing basidiospores characteristically changed with age 

from fluffy to crustose thus indicating homothallism. Cultural morphology separated 33 

isolates including those for which the basidiomata were found into a distinct group 

(Group I) having crustose rhizomorphic colonies. Armillaria heimii can exhibit the 

characteristic observed on monospore cultures since it consists of both heterothallic and 

homothallic forms (Abomo-Ndongo et ai, 1997) and its diploid cultures 

characteristically have rhizomorphic colonies (Mwangi, pers. comm). This species is 

widespread across both western and eastern regions of Africa (Mohammed et ai, 1994; 

Abomo-Ndongo et ai, 1997) and may be the predominant group among tea pathogenic 

Armillaria in Kenya. The rest of the isolates were differentiated by their more mycelial 

colony morphology and were categorised separately as Group II. 

Rhizomorphs, the other morphological feature that could be used to characterise the 

isolates, are not frequently found in Africa where their production is restricted by high 

temperatures (Rishbeth, 1978) and as such may not be suitable for taxonomic research. 

Under experimental conditions, the majority of Armillaria isolates from tea readily 

produced rhizomorphs in culture and from woody inocula buried in vermiculite indicating 

that rhizomorph production is inherently characteristic of most of them. The rhizomorphs 



produced by woody inocula were typically of the subterranean form, thus contrasting 

what is frequently found in nature where rhizomorphs, if present, are predominantly 

cortical or sub-cortical. Exceptions were found for only two of the isolates, 6M1 and 9T2 

(Table 3.1). However, these isolates hardly produced any rhizomorphs in culture or from 

woody inocula. It is concluded that rhizomorph characteristics are too plastic to be useful 

in characterising Kenyan isolates especially when production under experimental 

conditions are extrapolated to the natural situation. Elucidation of the factors that 

influence rhizomorph production and growth of African Armillaria is necessary before 

they can be used as a reliable taxonomic tool. 

Somatic incompatibility has been used by some researchers to distinguish African 

Armillaria isolates into groups presumed to be different species (Guillaumin et ah, 1994; 

Abomo-Ndongo et ai, 1997). It is a fast method of distinguishing isolates by the presence 

of a black line formed along the demarcation zone between paired colonies, in the case of 

an incompatible reaction. We were able to reveal clear differences between some of the 

isolates in Group II only when a modified method described by Hopkin et al. (1988) that 

is devised to increase the intensity of the black line formation between incompatible 

colonies was applied. It clearly showed the incompatibility reaction between isolates 

within Group II and separated these into five somatic incompatibility groups. All Group I 

isolates were intercompatible but were incompatible with the isolates in Group II. Genetic 

analysis of DNA profiles based on RAPD, ISSR, RFLP of the IGS and ITS regions 

confirmed the distinction between the groups and conformed with cultural morphology in 

distinguishing the two groups. For Group I, the molecular method conformed entirely to 

somatic incompatibility tests and further revealed genetic variability among the 33 

isolates, placing these into 3 sub-groups depicted in Figure 3.7. This group constitutes the 

major Armillaria pathogenic on tea in Kenya. Group II is genetically more homogeneous 

but, unlike cultural morphology and the DNA-based techniques, somatic incompatibility 

separated the isolates in this group into five sub-groups. The disparity in results of the 

two methods raises the question of the reliability of somatic incompatibility as a criterion 

for distinguishing species and suggests that care should be taken in interpreting its results. 

In addition to A. heimii, isolates of a different Armillaria have been reported from 

the western and the eastern regions of Africa (Mohammed et ai, 1994; Chillali et al., 
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1997). These have been named using the invalidly published taxon A. mellea 'spp. 

africana'. However, descriptions of basidiomata of these isolates have not been 

published. It is therefore difficult to verify their identity. Irrespective of whether these 

isolates could indeed be named as A. mellea s.s., their comparison with our Group II 

isolates clearly showed that they are different suggesting the existence of another species. 

As no basidiomata of Group II isolates have been found, their identification is still 

impossible. Even if fruiting bodies would be obtained for Group II isolates by in vitro 

induction, it is questionable whether morphology of basidiomata produced would serve as 

a basis for species description because basidiomata produced in vitro often appear 

atypical. Nomenclature of this taxon is difficult if it has completely lost the ability to 

form fruiting bodies. 

As little seems to have been achieved in nomenclature of African Armilaria so 

far, there is a need to explore various methods for determining species diversity in the 

continent. Biochemical and molecular methods are likely to remain the preferred tools for 

accomplishing this. While nomenclature of Armillaria species continues to be based 

solely on basidiome morphology and mating tests, species description in Africa will still 

be difficult. Evidence from studies based on biochemical and molecular studies point to 

clear differences of several isolates from the described species in this continent. Further 

differences between isolates referred to as A. mellea 'ssp. africana' and the temperate A. 

mellea s.s. may be due to a misnomer for the former, having been described when the 

temperate A. mellea s.s was considered part of an A. mellea complex. The observations 

from this study and from an earlier study (Mohammed et al., 1994) that some Kenyan 

isolates could belong to a new species distinct from both A. mellea and A. heimii may 

indicate the existence of three different Armillaria species in Kenya. The situation 

reported by Coetzee et al. (2000) for South Africa implies the distinction of A. heimii 

from A. fuscipes. It is probable that species diversity in the African Armillaria is larger 

than currently thought to be the case. 

In summary, according to morphological data, basidiomata and colony 

characteristics in culture, Group I was provisionally identified as A. heimii and occurs in 

all locations where tea is grown. Group II is probably a new Armillaria species and has a 

more restricted distribution. Thus it is concluded that at least two different species of 
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Armillaria cause root rot of tea in Kenya. Conclusive identification of these groups 

should be the focus of future research on species diversity in Kenyan Armillaria. 

Control of Armillaria root rot 

The scarcity of basidiomata and rhizomorphs hinders diagnosis of Armillaria root 

rot in Africa. It is probable that many cases of the disease have regularly gone unreported 

and its significance overlooked. The current status of knowledge on the disease reviewed 

in chapter 2 of this thesis shows that Armillaria may be causing considerable damage in 

several economically important crops. Without improving the understanding on the 

methods for accurate disease diagnosis and appropriate control methods, it is likely that 

the situation will worsen. Whereas mechanical removal of potential inoculum sources from 

the infested sites seems to be an effective method of disease control in plantations of 

commercial crops such as tea, this practice is unpopular with growers who cannot afford 

the use of heavy machinery and must rely on manual operations. Hence the need to develop 

methods that are easier to apply. 

Three options were considered in this study as alternative methods of controlling 

Armillaria root rot of tea. These involved attempts to eradicate the pathogen from infected 

plant materials in the soil at pre-infection stage by using biocontrol agents, soil organic 

amendment and/or physical soil disinfestation accomplished by solarization. Species of 

Trichoderma antagonise several plant pathogenic fungi including Armillaria. Few reports 

exist on their use to control Armillaria root rot in practice. The failure to achieve biological 

disease control with Trichoderma had been attributed to low population density of strains 

antagonistic to Armillaria in most soils (Garrett, 1958) and to resistance of Armillaria to 

mycoparasitism (Munnecke et al, 1981; Fox, 2000). The performance of Trichoderma 

against Armillaria in infected stumps has been evaluated in a few studies with promising 

results (Rishbeth, 1976; Nelson et al., 1995). In this study artificial introduction into the 

soil of a Trichoderma isolate selected on the basis of the capacity to antagonise Armillaria 

in woody plant materials was evaluated in combination with soil amendment with coffee 

pulp or solarization for effect on survival of the pathogen. 

Isolates of Trichoderma were screened for inhibition of Armillaria growth in stem 

sections of tea using the method of Nelson et al. (1989). This enabled the selection of one 
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T. harzianum isolate based on the capacity of the antagonist to inhibit colonisation of plant 

materials by Armillaria and for the effect on the pathogen after it colonised the woody 

inocula. The approach demonstrated that despite some Trichoderma isolates showing 

antagonism to Armillaria in synthetic media, this is not invariably reproducible in vivo. 

However, an isolate selected on the basis of antagonism to the pathogen in the plant 

materials still antagonised it when introduced into the soil surrounding the inoculum 

sources as wheat bran culture, and reduced its viability within plant materials. Normally 

Armillaria survives in the soil as rhizomorphs and more commonly as mycelia associated 

with plant materials that serve as its food bases (Munnecke et al, 1981). The scarcity of 

rhizomorphs in Africa means that infected wood is the main inoculum source and the 

application of Trichoderma for controlling Armillaria root rot should target the pathogen 

at this pre-infection stage. The ability of the antagonist present in the soil to colonise 

Armillaria food bases is an essential step in bringing hyphae of the two fungi into physical 

contact thereby creating the opportunity for parasitism. In addition to or in conjunction with 

mycoparasitism, individual strains of Trichoderma may produce antibiotics which further 

limit growth and activity of their host fungi (Benhamou and Chet, 1997) and in the soil, 

production of these close to their site of action may be essential for avoiding their 

inactivation before they exert the desired effect on the target fungus. Although wheat bran 

culture of T. harzianum has been shown to have high activity of lytic enzymes (Elad, et 

al, 1982), action of such enzymes against Armillaria would be useful only when they are 

produced within the food bases. Wheat bran was therefore used in the present study 

mainly because it provided a convenient means of culturing and applying T harzianum to 

the soil. 

Soil amendment with coffee pulp had been shown in an earlier study (Onsando and 

Waudo, 1992) to encourage proliferation of indigenous Trichoderma in the soil and was 

included in these experiments as one of the treatments. However, it did not affect the 

presence of Trichoderma in woody Armillaria inoculum sources but had a suppressive 

effect on inoculum viability apparently due to a mode of action independent of the action of 

Trichoderma. Earlier studies (Bliss, 1951; Munnecke et al, 1973, 1976, 1981) reported 

improved efficacy of T. viride against A. mellea after the pathogen had been subjected to 

sub-lethal levels of chemical fumigants, heat, or desiccation. Munnecke et al. (1981) 
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concluded that this was due to a stressing effect that weakened or destroyed its defence 

mechanisms of A. mellea against T. viride. The present study tried to achieve the same 

effect through soil solarization. This treatment was very strongly suppressive of Armillaria 

viability and the pathogen could not be recovered from inoculum sources after 10 wk 

solarization. When T. harzianum was applied after solarization for 5 wk the degree of 

inactivation of Armillaria was similar to that attained by solarization alone for 10 wk. This 

confirmed that antagonism of Trichoderma is more effective against Armillaria when used 

in conjunction with partial soil disinfestation. 

By adversely affecting the inoculum viability, soil solarization and, to a lesser 

extent, organic amendment with coffee pulp, enhanced the efficacy of T. harzianum 

against Armillaria. The mechanisms of Armillaria suppression were not investigated but 

in the case of solarization it can be attributed to inactivation by exposure to high soil 

temperatures. Solarization, through partial soil disinfestation, may create a (partial) 

biological vacuum that allows rapid establishment of the introduced T. harzianum while 

exposure of Armillaria to high temperatures could also weaken its resistance and make it 

more vulnerable to T. harzianum. Thus better disease control would be attained through 

the integrated action of the two factors rather than each of them alone. 

Application of multiple disease control factors is the foundation of improved 

integrated disease control strategies and is exemplified here by the combined application 

of solarization and T. harzianum against Armillaria. Natural soil population densities of 

antagonistic Trichoderma may not be sufficiently high for effective practical control of 

Armillaria root rot hence a highly effective biocontrol strain with appropriate 

mechanisms must be identified by screening using procedures relevant to the ecology of 

Armillaria. In addition, the soil environment should be modified to allow for efficient 

interaction of the introduced antagonist with the pathogen, which, in the case of 

Armillaria, requires colonisation of the food bases. This approach based first on finding 

an antagonist and then applying it to a modified soil environment to control the disease, 

requires production of the biocontrol agent and its application in a formulation that will 

facilitate competition with indigenous soil microbiota in colonising the niche occupied by 

the pathogen. The results from experiments presented in chapters 5 and 6 indicate that 

soil solarization followed by soil infestation with T. harzianum presumably can be used 
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as a partial substitute for mechanical removal of woody inoculum sources to control 

Armillaria in small patches such as those found at the infection centres in tea plantations. 
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Summary 

Tea is cultivated in Kenya mainly as an export crop and is therefore important to the 

national economy. Due to the requirements for specific ecological conditions for good growth, 

increased tea production can only be achieved by improving productivity from the already 

cultivated areas. This has created the need to intensify production by improving agronomic 

practices and minimizing crop losses. The small holder sector which produces over 70% of 

Kenya's tea is directly managed at the production level by small holder farmers who do not have 

the know-how and facilities to effectively cope with problems that militate against improvement 

in productivity. Effective management of pests and diseases requires urgent attention in efforts to 

improve income from tea in this sector. Diseases such as Armillaria root rot, which in the large 

estate sector is not a constraint to tea production because of efficient removal of inoculum 

reservoirs by heavy machinery used in land preparation, continue to cause considerable plant 

mortality and crop loss in several small holder farms. 

Armillaria is a primary root rot pathogen of tea and a few other plant species in Kenya. 

Armillaria root rot is, however, poorly understood because of the rare occurrence of basidiomata 

and rhizomorphs, making disease diagnosis difficult. There is little conclusive evidence on the 

identity of Armillaria isolates causing the disease on tea in Kenya. No studies have been carried 

out to explore alternative methods of managing Armillaria root rot on tea. Mechanical removal 

of potential inoculum sources and infected plants remains the only option available to growers 

for controlling the disease. Due to the difficulty in diagnosing the disease, prompt removal of 

infected plants, important for checking the spread of the fungus within a plantation, is often not 

possible. Hence Armillaria root rot persists in many locations as an important constraint to tea 

production and also excludes the affected areas from use in production of several other crops 

susceptible to the disease. 

Identity of Armillaria species in Kenya 

The existing knowledge on Armillaria in Africa reviewed in chapter 2 suggests that most 

cases of the disease reported from the continent occur as sporadic records with little detail on the 

identity of the species involved and the magnitude of damage or crop losses. Armillaria root rot 

is poorly known in Africa due mainly to the above-mentioned rarity of basidiomata and 
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rhizomorphs, features that are characteristic of the disease in the temperature climate zones. 

Progress in taxonomy of the African Armillaria has thus been relatively slow. Mating tests, 

which form the foundation of resolving species diversity in the temperate Armillaria species in 

Europe, North America and Australia cannot usually be used for African isolates because most 

of these are homothallic. Existence of various genetically different isolates of Armillaria may 

therefore have gone undetected in Africa. On the basis of morphology of basidiomata, only four 

species have been recognized: A. camerunensis, A. fuscipes, A. heimii, and possibly A. mellea s.s. 

In chapter 3 forty seven isolates of Armillaria associated with root rot of tea in Kenya 

were characterized and distinguished by cultural morphology, basidiome morphology, diploid-

diploid somatic incompatibility tests and DNA-based characteristics, where possible establishing 

their genetic relationship with some of the described morphological species. As a result, the 

isolates were categorized into two groups one of which was tentatively identified as A. heimii 

while the other was concluded to represent a new species. 

Disease management options 

Due to the difficulty of eradicating Armillaria by mechanical removal of potential 

inoculum sources from soil, solarization, organic amendment and infestation with antagonistic T. 

harzianum were evaluated for use as alternative disease control methods. These were tested for 

their effect on Armillaria inoculum borne in plant materials. The T. harzianum isolate used in 

these tests was selected on the basis of its performance against Armillaria in woody substrates 

(chapter 4). The effect was studied more extensively in field experiments, with the emphasis 

placed on the effect of the antagonist applied to the soil alone or in combination with soil organic 

amendment and soil solarization on viability of Armillaria (chapters 5 and 6). 

When T. harzianum was applied to the soil surrounding Armillaria inoculum sources as a 

wheat bran culture, the incidence of this antagonist in the inoculum sources increased and 

concomitantly reduced viability of Armillaria (chapter 5). Coffee pulp amendment affected the 

efficacy of Trichoderma in a pot experiment negatively but this was not repeated in field 

experiments where the organic amendment reduced slightly the viability of Armillaria inoculum. 

It was concluded that the application of wheat bran-formulated T. harzianum into the soil can 

reduce viability of Armillaria resident in woody inoculum sources and thus no further organic 
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amendment to enhance multiplication of the antagonist in the soil is needed for achieving its 

suppression of the pathogen. 

Solarization for 10 wk resulted in increases in soil temperatures that reduced viability of the 

pathogen by up to 100%. Application of T. harzianum to the soil surrounding Armillaria inocula 

consequent to solarization for 5 wk caused total loss of Armillaria viability. These observations 

demonstrated the potential of solarization to directly eradicate Armillaria from woody inoculum 

sources and, in addition, to enhance the efficacy of T. harzianum. It is concluded that the two 

methods can be integrated into a feasible approach for managing Armillaria root rot, especially 

targeting the pathogen in small holder tea plantations in Kenya. 
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Samenvatting 

Thee wordt in Kenia vooral geteeld als een exportgewas en levert daarmee een 

belangrijke bijdrage aan de nationale economie. Gezien de condities waaronder thee kan 

groeien is verdere uitbreiding van het areaal niet meer mogelijk, maar kan toename in de 

productie nog wel bereikt worden door intensivering van de teelt. Ongeveer 70% van de 

teelt van thee in Kenia is in handen van kleine boeren die in het algemeen niet de kennis 

en machines hebben voor een optimale productie. Effectieve bestrijding van ziekten en 

plagen is een belangrijke voorwaarde voor verbeterde productie. In Kenia veroorzaakt 

honingzwam (Armillarid) veel schade, met name in theeplantages. In de grote 

theeplantages wordt inoculum meestal zodanig efficient weggehaald gedurende de 

bereiding van voormalig bos voor de teelt van thee dat daar nauwelijks problemen met 

honingzwam voorkomen. 

Honingzwam is in Kenia een primaire wortelpathogeen van thee en enkele andere 

plantensoorten. In tropisch Afrika is honingzwam slecht bekend vanwege het zeldzame 

voorkomen van zowel vruchtlichamen (paddestoelen) als rizomorfen (zwarte, 

vetervormige structuren die de schimmel in de grond vormt), waardoor diagnose in het 

algemeen moeilijk is. Door de zeldzaamheid van vruchtlichamen is bij een aantasting 

door honingzwam meestal niet vast te stellen om welke soort het gaat. Afgezien van het 

verwijderen van aangetaste planten is er geen methode bekend om honingzwam in thee te 

bestrijden. Doordat de ziekte zo moeilijk is vast te stellen in een vroeg stadium, is ook de 

verwijdering van inoculum moeilijk als de ziekte al verder is voortgeschreden. 

Identiteit van honingzwamsoorten in Kenia 

De bestaande kennis over honingzwammen in Afrika is samengevat in hoofdstuk 

2. De kennis over de verspreiding van honingzwammen in Afrika is beperkt; zeer weinig 

is bekend over de identiteit van de soorten en de omvang van de geleden verliezen. 

In Europa en Noord-Amerika zijn alle isolaten van honingzwammen die houtrot 

kunnen veroorzaken heterothallisch. Van dit kenmerk is gebruik gemaakt bij de 

ontrafeling van het soortencomplex, doordat homothallisch mycelium een ander uiterlijk 

heeft dan heterothallisch mycelium. Dit is een hulpmiddel bij identificatie, omdat als 
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twee haploi'de, onderling compatibele, isolaten elkaar op een voedingsbodem ontmoeten, 

zij diploid worden, hetgeen gepaard gaat met een aanzienlijke gedaanteverandering. Door 

net homothallische karakter van de meeste Afrikaanse isolaten van honingzwam kon dit 

kenmerk niet gebruikt worden voor de isolaten die thee in Kenia aantasten. Op basis van 

beschrijvingen van vruchtlichamen kon worden vastgesteld dat drie tot vier soorten 

honingzwammen in Afrika beschreven zijn: A. camerunensis, A. fuscipes, A. heimii en 

mogelijk A. mellea s.s. 

In hoofdstuk 3 werden 47 isolaten van honingzwam uit vruchtlichamen, 

rizomorfen en (vooral) aangetast plantenmateriaal op verschillende wijzen 

gekarakteriseerd: de morfologie van de cultures en de vruchtlichamen (indien aanwezig) 

werd beschreven, resultaten van confrontaties van diploi'de isolaten op voedingsbodems 

werden geevalueerd en verscheidene DNA-technieken werden gebruikt om de isolaten te 

karakteriseren. De resultaten hiervan wijzen erop dat in de teelt van thee in Kenia twee 

soorten honingzwam actief zijn, A. heimii en mogelijk een nieuwe soort, waarvan geen 

vruchtlichamen gevonden zijn. Ook konden van isolaten van deze mogelijk nieuwe soort 

geen vruchtlichamen in reincultuur verkregen worden. 

Opties voor de bestrijding van honingzwam 

Omdat het voor kleine boeren zeer lastig is om inoculum uit de grond te 

verwijderen, werden verscheidene andere opties verkend: solarisatie van de grond, al dan 

niet in combinatie met toediening van koffiepulp en/of de antagonist Trichoderma 

harzianum. Het isolaat dat uiteindelijk gebruikt werd in veldproeven bleek het beste in 

staat zowel hout gei'ncubeerd in niet-steriele grond te koloniseren als honingzwam in dat 

hout te reduceren (hoofdstuk 4). Als de antagonist werd aangebracht in de vorm van een 

tarwezemelenculture rondom hout waarin honingzwam aanwezig was dan was 

honingzwam na 6-12 maanden sterk gereduceerd (hoofdstuk 5). In een potexperiment 

was de effectiviteit van T. harzianum geringer bij toediening van koffiepulp aan grond. In 

het veld bleek echter bij herhaling het effect van koffiepulp niet negatief te werken op de 

effectiviteit van T. harzianum, en bleek toepassing van uitsluitend koffiepulp zelfs in 

lichte mate honingzwam te reduceren. 
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Solarisatie, de afdekking van bevochtigde grond met dun en doorzichtig plastic, 

resulteerde na 10 weken in volledige inactivering van de honingzwam. Als T. harzianum 

werd toegediend na solarisatie dan werd volledige doding al bereikt na 5 weken. De 

eindconclusie is dat de twee methoden, solarisatie gedurende 5 weken gevolgd door 

toepassing van T. harzianum, kunnen worden gei'ntegreerd in een doeltreffende methode 

om honingzwam in houtig materiaal te bestrijden. 
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