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Abstract 
Models were developed to study splash dispersal of fungal plant pathogens in space and 
time. The models incorporate the main mechanisms involved in splash dispersal, that is 
i. A raindrop hits the thin water film on the crop surface containing spores and spores 
are dispersed in the splashing rain droplets, and ii. Splashed spores are redistributed 
in the crop and on the soil surface. A mechanistic random 'jump' model describes 
the stochastic processes of splash dispersal over a homogeneous surface from a point 
source. Numerical analysis showed the importance of ground cover and rain intensity as 
factors determining model output. More spores were splashed in high intensity rains and, 
simultaneously, more spores were removed from the system. A diffusion approximation 
was developed for this mechanistic model which could only be considered a reasonable 
approximation under certain limiting conditions. Based on the two-dimensional version 
of the mechanistic model an equation was developed for the total number of spores in 
the area surrounding an inoculum source over time, N(t). In addition, equations for 
the expected mean, E(r), and mean squared distance, E(r2), spores travel during a rain 
event at a given time were developed. Observed data and model predictions showed that 
both N(t) and E(r2) increased to a maximum over time and then declined due to spore 
removal from the system and depletion of spores at the source. Factors influencing the 
process could be assessed by changing parameter values. 

Upward displacement of lesions by stem extension and dispersal of fungal conidia by 
rain-splash are mechanisms contributing to within-crop disease spread. These mecha
nisms were incorporated into a model based on the interaction between winter oilseed 
rape and the light leaf spot pathogen (Pyrenopeziza brassicae) as an example. Exper
imental results showed that most conidia were dispersed during a 15 min duration of 
rainfall. The trajectory of a droplet depended on the impacted plant part, with a mean 
horizontal travel distance decreasing with increasing incident drop diameter and a max
imum splash height which ranged from 0.3 cm when splashed from a flower up to 57 cm 
for a pod. These results were incorporated into the model. Stem extension was shown 
to be an important factor influencing vertical disease spread. Rain events contributed 
to the splash dispersal of conidia to the plant apex and resulting lesions were directed 
vertically by internode growth. Periods with frequent rain events in a dense crop canopy 
were most favorable for disease progress. The upward spread of light leaf spot on winter 
oilseed rape in experiments at the Institute of Arable Crops Research, Harpenden, UK, 
was similar to that predicted by the model. Finally, an analytical model was proposed to 
study the influence of crop characteristics and rain properties on the vertical spread of 
splashed spores. Splash dispersal was concentrated in the upper layers in a crop having 
a constant or increasing leaf surface area with height. The greatest splash probabilities 
occurred and most spores were intercepted in the layers just below the apex of a crop 
having a decreasing leaf surface area with height. 
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Chapter 1 

Introduction 

Splash is an important biophysical mechanism by which many thousands of infectious 
pathogen units, such as fungal spores, are spread within a crop in short periods of time 
(Fitt et al, 1989; Madden, 1992). This form of dispersal is a component of the epidemic 
cycle for many serious above-ground fungal diseases of crops in temperate and tropical 
climates, but is often not recognized as the second most important mechanism of spread 
for plant pathogens (Madden, 1992). Symptoms of fungal diseases are often manifested 
as lesions on the surface of leaves and other tissues. As soon as rain starts infectious 
units (spores) of the lesion are released into the water layer formed on the leaf surface 
(Figure 1.1a). If a raindrop hits this water layer it will break into thousands of splash 
droplets. Spores are incorporated into these droplets and are dispersed to other sites 
in the canopy (Figure 1.1b). The initial splash when a raindrop strikes infected plant 
material is characterized as the primary splash (Fitt et al, 1989). At its new site, the 
spore can either initiate a new infection or again be incorporated in a splash droplet 
and travel further in the crop by secondary splashes. The distance a spore can travel 
from its original site depends not only on the rain intensity and duration, but also on 
characteristics of the spore, the ground cover and the canopy structure (Fitt et al, 1992; 
Madden et al., 1993; Yang and Madden, 1993). Many pathogens have both airborne 
(often sexual) spores and splashborne (often asexual) spores. Disease epidemics are 
often initiated by airborne ascospores produced on plant debris remaining on the field 
after the crop is harvested and transported into a new crop in autumn. Subsequent 
gradual horizontal and vertical disease spread is often by splash dispersed conidiospores 
(Inman et al, 1999). 

Experimental work on the dissemination of splash dispersed pathogens has intensified 
considerably in recent years. A rain simulator can be used to study the dispersal process, 
and effects of rain, canopy, ground, and pathogen properties can be assessed (Fitt et al, 
1986; Madden et al, 1996; Reynolds et al, 1987; Yang et al, 1991). Many data sets 
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a) Before impact 

fo°c 

b) > lms after impact 

Figure 1.1: Splash; the process of spore dispersal in splash droplets as raindrops strike thin 
films of water covering spores (Fitt et at, 1989). When the surface tissue underneath the water 
film consists of a sporulating lesion the process is characterized as primary splash (Chapters 4 
and 5). When spores in the water film are splashed from healthy surface tissue the process is 
characterized as secondary splash (Chapters 2, 3, 4, 5 and 6). 

are available on the spatial spread of diseases such as anthracnose and leather rot on 
s trawberry fruit and on the spread of light leaf spot and white leaf spot on winter oilseed 
rape. Other important diseases with splash dispersed infectious units are eyespot, sep-
toria leaf blotch and glume blotch on wheat; leaf blotch on winter barley; ear blight and 
scab on cereals; white t ip disease on leek; s tem canker on soybean; leaf spot on tomatoes; 
and brown rot, canker and scab on apples. Nevertheless, splash dispersal in different 
plant-pathogen systems, and the influence of bo th biological and environmental factors 
on disease spread cannot be quantified through experimental research alone. There is 
a need for physical models in which the mechanisms involved in splash dispersal are 
incorporated through, e.g. probability functions. Firstly there is a probability per unit 
t ime t ha t a raindrop hits a site in the crop or on the ground at which the surface water 
contains spores, secondly a probability t ha t a spore will be dispersed in the splashing 
rain droplets, and finally there is a probability density function for the spatial spread 
of splashed droplets. Wi th these models the spatial spread of spores in different plant-



pathogen systems can be studied, because factors influencing the splash process are in
corporated as separate parameters in the probability functions of the models. The values 
of these parameters can easily be changed for different conditions. However, mechanistic 
models for predicting realistic patterns of disease spread require estimates of parameter 
values for the separate processes obtained from experiments. Once reasonable parame
ter values are incorporated in the model the most important factors influencing disease 
spread can be investigated. This can guide further experimental research. Based on this 
philosophy of linking theoretical models with an experimental programme, several mech
anistic models have been developed in the research described in this thesis to investigate 
the spatial spread of rain splashed spores. Experiments were performed and published 
data sets were used to provide reasonable parameter values for the models. The models 
were then tested with laboratory and field data from different plant-pathogen systems. 

The influence of ground cover and rain intensity on spore travel distances when 
splashed from a point-source has been studied in many experiments (Madden et al., 
1996; Yang et al, 1990). Few models have however been developed that describe splash 
dispersal in general, independent of biological and environmental conditions. Our first 
intention was therefore to qualify the dispersal process with a mechanistic model. For 
this purpose a one-dimensional mechanistic random jump model is introduced in Chap
ter 2. This model qualifies the dispersal process of spores from a point source over a 
flat surface on the ground as measured during experiments. Since many spatial pro
cesses are successfully described by a diffusion equation, the model is compared to a 
previously published diffusion model by making a diffusion approximation for the mech
anistic model. Whereas the original diffusion model consisted of composite parameters, 
it was now possible to partition these parameters as part of the underlying biological 
processes. In addition, it is shown under what conditions the diffusion model is a valid 
approximation to the full model. 

Of course, spores jump in two dimensions when a flat surface is considered and this 
approach is needed to quantify splash dispersal. The two-dimensional version of the 
model for horizontal spread is discussed in Chapter 3. Determining the distances spores 
travel has been a goal of much experimental work. Two biologically interesting measures 
are derived from the model in this respect. Firstly an equation for the change in total 
number of spores in the area surrounding the source from the start of the rain event is 
derived. Secondly equations for the mean and mean-squared distance displacement of 
spores from the original point-source are determined. The model is tested by comparing 
theoretical results with previously published experimental results on the dispersal of 
conidia from an infected strawberry source fruit in relation to surface topography and 
rain intensity. 

Not only horizontal, but also vertical spread of disease to the upper leaves and seed-
bearing organs is an important mechanism causing damaging epidemics in winter-sown 
arable crops in Europe. The development of, for example, pods in oilseed rape and 
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ears in cereals determines the yield of these crops. Epidemics are normally initiated 
in the autumn and winter and subsequently upward spread is by stem extension and 
rain-splash in spring (Inman and Fitt, 1992; Inman et al., 1999). However, the relative 
importance of splash dispersal and upward spread of infected tissue by stem extension is 
still unclear. Insight into the main mechanisms involved in the upward spread of plant 
diseases can guide predictions on disease severity under different biological and environ
mental conditions. Therefore, a generic simulation model for vertical disease spread is 
developed. Light leaf spot on winter oilseed rape is used as a model system. Experiments 
were performed to obtain reasonable parameter values for the physical processes in this 
model and these are described in Chapter 4. The percentage of spores being splashed 
from a leaf was assessed for different drop size impactions and rain durations in a rain 
simulator,. This resulted in knowledge on primary and secondary splash processes for 
this plant-pathogen system under different conditions. In addition, the "average" bal
listic trajectories of splash droplets were estimated from experiments in which a single 
raindrop impacted on a particular plant part or the ground and the travel distance of 
splash droplets was determined. This resulted in insight into spore travel distances when 
splashed from different surfaces during rain events. 

In Chapter 5 the full simulation model is developed, including a deterministic plant 
growth approach and splash parameters obtained from the experiments. During rain 
events spores are splashed to the plant apex where new plant parts develop and are 
directed to the upper canopy by internode growth. Vertical spread of light leaf spot dur
ing the growth of oilseed rape is investigated for different conditions concerning disease 
initiation and rain duration. Because of its general structure, the model is applicable 
for different plant-pathogen systems. 

Simulation results showed that crop structure, in addition to other biological and 
environmental factors, is an important factor influencing disease spread. The influence 
of leaf surface area distribution in a crop on the vertical spread of splashed spores is 
studied further in Chapter 6. An analytical model is proposed and the influence of crop 
characteristics and rain properties on vertical spread is investigated by specifying three 
different crop idiotypes and varying rain parameters. 

The main conclusions of this research are given in Chapter 7. 
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Stellingen 

Door de geleidelijke afname van sporen aan de bron kan een diffusiemodel geen 
nauwkeurige beschrijving geven van de initiele spatverspreiding 
(Dit proefschrift) 

2. Prequente regenbuien in het voorjaar kunnen veel schade aanrichten in een gewas. 
Een regenbui veroorzaakt voornamelijk horizontale spatverspreiding van sporen 
naar de in deze periode uitgroeiende plantdelen. Met een daaropvolgende stengel-
strekking worden lesies vertikaal in het gewas getransporteerd van waaruit, door 
horizontale spatverspreiding, weer nieuwe plantdelen kunnen worden geinfecteerd. 
(Dit proefschrift) 

3. Over dit proefschrift: 
"Se non e vero, e ben trovato"; Als het niet waar is, is het aardig gevonden. 

4. Communicatie met wetenschappers is als een computertaal; een term verkeerd en 
ze geven een foutmelding. 

5. Toevallig de beste zijn is moeilijker dan toevallig de slechtste zijn. 

6. De status van man en vrouw wordt pas gelijk als mannen zich bij het huwelijk 
bereid tonen de naam van de vrouw aan te nemen. 

7. Dat weinig vrouwen hoge posities bekleden hebben zij aan niemand anders dan 
aan zichzelf te wijten, dan wel te danken. 

8. Opname van het "pimpampoentje" in de "van Dale" toont aan dat Zeeuws-
Vlamingen in de spraakmakende gemeente beginnen door te dringen. Het is een 
kwestie van tijd of ik kan gewoon weer om een puntmesje vragen of een foto trekken 
zonder dat iemand er gek van opkijkt. 



9. Carpoolstroken zijn alleen dan nuttig wanneer er weinig gebruik van wordt gemaakt. 
(L.A., 1997) 

10. Stijging van de welvaart gaat jammergenoeg gepaard met een daling van de 
tolerantie. 

11. Zeeuws-Vlamingen, een dubbel-zijn, Zeeuws in hun nuchterheid en Vlaams in hun 
gastvrijheid. 

A. Pielaat 
Splash -The dispersal of fungal plant pathogens in rain events-
Wageningen, 12 mei 2000 



Chapter 2 

A model for dispersal of plant 
pathogens by rain-splash 

A. Pielaat F. van den Bosch1 

Abstract 

A mechanistic random 'jump' model is developed to describe the stochastic processes of 
splash dispersal of plant pathogens from a point-source. In this model the main physical 
processes involved in the spatial spread of these spores are incorporated. That is, the 
probability per unit time that a spore is splashed A, the probability that it then travels 
over some distance D(x), and the probability that it is not removed during this dispersal 
process e. Numerical analysis shows the importance of ground cover and rain intensity 
on the model output. Factors influencing the process can be captured by changing the 
parameter values. For high rain intensities A is large, therefore more spores are splashed; 
and, since e is expressed per splash, simultaneously more spores will be removed from the 
system. The effect of ground cover is captured by e; its value decreases if the probability 
of staying in the process decreases. In addition, an equation is derived for the mean 
squared distance that spores splash. This equation shows a linear function independent 
of D(x). Finally, a diffusion approximation is developed for the mechanistic model and 
is compared to a diffusion model for splash dispersal developed by Yang et al. (1991). 
The diffusion equation can only be considered a reasonable approximation to the full 
model under certain limiting conditions. 

XIMA Journal of Mathematics Applied in Medicine and Biology (1998) 15, 117-134. 
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2.1 Introduction 

Dispersal of spores by rain-splash droplets is, next to wind, the second most important 
dispersal mechanism for above-ground fungal plant pathogens (Madden, 1992). 

Prior to the dispersal event spores will usually be embedded in the plant surface. 
There they are sheltered from movement until it starts raining. During the rain event, 
spores will readily be suspended in the water layer formed on the plant surface. When 
a raindrop hits the water layer it will, depending on its kinetic energy and the surface 
tension, cause the water layer to break up into many splash droplets. Spores can be 
incorporated into these splash droplets and deposited again at different positions from 
the original point of impact (Fitt and McCartney, 1985). 

This phenomenon of disease dispersal was first demonstrated at the beginning of this 
century by Stepanov and, subsequently, by Gregory (1961). In the 1980s Fitt and asso
ciates were the first to experimentally investigate the dispersal of spores from single-drop 
impactions. Since then, further developments in experimental techniques have allowed 
detailed measurements of the factors affecting dispersal of spores from a point source by 
rain-splash (Fitt et al., 1989; Reynolds et al., 1987; Yang et al, 1990; Yang and Madden, 
1993). Most of this research has been performed under laboratory conditions. A rain 
simulator has been used to mimic real rain events. In these experiments raindrops with 
different size distributions can be produced to impact on an infected source (Reynolds 
et al., 1987). This source can consist of just a concentrated number of spores on the 
ground up to an infected plant canopy. Changing the raindrop properties (for example 
mass and impact velocity), ground cover, inoculum source or canopy structure allows 
the influence of these factors on spore dispersal to be determined. Although many data 
sets are available, few models have been developed to allow insight in the spread of 
these infectious units. The majority are descriptive models which do not include the 
mechanisms involved in splash dispersal. Increases in knowledge of these mechanisms 
facilitates the development of models which describe splash dispersal, in general, inde
pendently of crop-specific properties. Such models will increase the reliability of the 
prediction of further disease spread by splash dispersal. 

Yang et al. (1990) measured splash dispersal from infected strawberry fruits with 
a rain simulation system. Yang et al. (1991) used a diffusion equation to estimate 
parameters describing the overall process of spore dispersal in space and time. The 
one-dimensional version of the model they used is 

O - r 2 

y= ^—e^e-0t, (2.1) 

where y=y(r,t) represents the number of spores per unit distance at a position r from the 
source at time t during a rain event, Q is the number of spores available for dispersal at 
t=0, a is a parameter related to the coefficient of dispersal, reflecting the spores' random 
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motion over distance per unit time, and /3 is the constant of spore loss from the system 
(time-"1). Because of their simplicity, diffusion models are frequently used to describe 
biological systems. However, parameters in model (2.1) do not describe the separate 
mechanisms steering dissemination of fungal plant pathogens by rain splash-droplets. 
This is particularly true for the coefficient of dispersal, which represents a process that 
depends on several factors such as the probability per unit time of being splashed and the 
distribution of the splash distances. But how, for example, can this diffusion coefficient 
a be calculated from experiments on the rate of spore dispersal and experiments on the 
distance a spore" is splashed? Further, spore loss (3 is expressed as a constant per unit 
time. However, spore loss is related to splash events. It is not immediately clear how j3 
is related to the probability that a spore is lost from the process when it is splashed. 

The purpose of this paper, therefore, is to develop a mechanistic model for the 
spatial spread of splash dispersed infectious units. Our first intention is to qualify the 
dispersal process of spores from a point source over a flat surface on the ground as 
measured during experiments. Modelling the redistribution of spores during a rain event 
requires a stochastic description. Solving the model results in a function which gives the 
probability of finding a spore at any single distance from the source during a rain event. 
A numerical study is performed to get insight into the sensitivity of model output to 
different parameter values. 

Since many spatial processes are successfully described by a diffusion equation, we 
also derive a diffusion approximation to the mechanistic model. For this purpose redistri
bution of spores in a rain is first described with a random walk model (Edelstein-Keshet, 
1988). The diffusion model is compared to the mechanistic model. We also compare the 
model to the above mentioned diffusion model of Yang et al. (1991). This leads to a 
subdivision of the composite parameters into the separate basic mechanisms underlying 
splash dispersal. 

2.2 The model 

The stochastic displacement of spores during a rain event is described by a random 'jump' 
model. Considering the experimental set-up, initially spores splash from a point source 
and are subsequently displaced over a flat ground surface. To quantify the spatial spread 
of spores this process would best be described in two dimensions. However, since our 
main interest is in assessing the qualitative aspects of spatial spread, a one-dimensional 
model is appropriate as a starting point. The output of this one-dimensional model is 
completely analogous to the two-dimensional case except for quantitative differences. To 
develop the model we first discuss the major mechanisms involved in splash dispersal. 

As soon as it starts raining, plant pathogen spores are suspended in the water layer 
that forms on the leaf surface. If a raindrop hits this water layer, a spore can remain in 
place or be incorporated into one of the droplets formed and be spread. The probability 
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per unit time of a spore being splashed during a rain event is denoted by A. Madden 
et al. (1996) showed how A can be estimated from experiments. In these experiments 
infected strawberry fruits with known spore density are placed on the ground. A rain 
simulator is used to measure spore removal at different rain intensities (in millimetres 
per hour). To quantify the proportion of spores that are splash dispersed, the remaining 
spore density was determined after a particular rain application time. The range of 
values for A was used to indicate a reasonable parameter value to use as the input for 
the model. In natural systems the value of A is influenced not only by rain properties 
but also by aspects of the canopy structure, such as leaf angle and surface roughness. 
So A can be set to an other default value that depends on these factors which affect the 
system. 

When a spore is splashed it is redeposited at a distant position. To determine the 
spatial distribution of spores during a rain event, results from experiments on frequency 
distributions of droplet travel distances can be used. With a videographic system, Yang 
et al. (1991°) determined droplet travel distances. For the model we define D(x-£) as 
the probability density function (p.d.f.) for a spore to jump from position £, to position 
x once it is splashed. It is assumed that there is no canopy nor wind so the p.d.f. for 
dispersal from £ is radially symmetric. 

During a rain event, spores can be removed from the system. Each time a spore is 
splashed it has a certain probability of being washed off into the soil by raindrops or of 
being deposited at a place where further dispersal is not possible. This indicates that a 
spore has a probability per splash of leaving the process which means that it is excluded 
from any further spread. Therefore, the probability of a spore staying in the process per 
splash is introduced as e. Although e cannot be measured directly during experiments, 
ground cover was found to be one of the main factors influencing this parameter (Madden 
et al., 1993). When straw rather than plastic was used as ground cover, there was less 
disease incidence. In natural systems e captures more than the effect of ground cover 
alone. Spores can, for example, also get stuck to the underside of a leaf which prevents it 
from being splashed again. Therefore, a range of e is considered to show the qualitative 
effect on model output. 

A model for splash dispersal during rain events can be developed on the basis of these 
mechanisms. The number of spores at position x from the source at time t during a rain 
event is expressed as N(t,x). The rate of change in the number of spores at position x 
at time t equals the rate at which spores are splashed away from position x and the rate 
at which spores are deposited at position x. So, 

™&± = -S1(t,x) + S2(t,x), (2.2) 

where Si(t,x) is the number of spores splashed per unit time from x and S2(t,x) is the 
number deposited at x per unit time. The probability per unit time of a spore being 
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splashed away is A; therefore, 

Si(t,x) = \N(t,x). (2.3) 

Now S2(t,x) depends on the probability being deposited at x when a spore is splashed 
from any other position, say £, and the number of spores present at £. The probability 
of travelling some distance has been defined by the p.d.f. D(x-£). Taking into account 
the probability that a spore is actually splashed away and not removed from the process 
during its journey, we thus have 

K(t,x,Z) = e\N(t,Z)D{x-0. (2.4) 

where K(t,x,£) represents the number of spores that leave £ and are redeposited at x. 
To calculate S2(t,x) one has to integrate over all possible places. Therefore, 

/

oo 

K(t,x,t)d£. (2.5) 
-OO 

Using the scaling 

^'-E^js- < 2 ' 6» 
we finally find 

dP{t,x) 
dt /

OO 

e\P{t,Z)D{x-Od£, (2.7) 
-OO 

where P(t,x) can be interpreted as the proportion of the total number of spores present 
at the start of the rain event, deposited at a particular position x after some period of 
rain. Note that P(t,x) also represents the probability per unit length of finding a spore 
at position x at time t. 

To assess the distances that spores can travel from their initial point of impact, 
experiments were performed by, for example, Huber et al. (1997) and Reynolds et al. 
(1989). These experiments usually started with one point source on a wet target surface. 
Rainfall was then generated during which spores were splash dispersed. For the model 
such a point source can be introduced as a Dirac delta function; that is, at the start of 
the rain event, t=0, all the spores lie at one source, indicated by x=0. In this case the 
model has an initial condition given by P(0,x) = <5(x). 
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2.2.1 Solving t he model equation 

Solving the model equation will result in the probability function of a spore being found 
at position x at time t during a rain event. Equation (2.7) can be solved using the 
bilateral Laplace transformation 

/

oo 

e-sxf(x)dx. (2.8) 
-oo 

For a discussion on integral transforms readers can refer to a book by Sneddon (1972). 
If the differential equation is transformed with respect to position, it follows that 

d£{P£'*)} = (-A + e\£{D(s)})£{P(t, s)}, (2.9) 

in which £{P(t,s)} and £{D(s)} are the transforms of P(t,x) and D(x), respectively. 
Solving equation (2.9) yields 

£{P(t, s)} = ce(-A+sA-£0W)t. (2.10) 

Given the initial condition, which states that at the start of the rain event all spores 
still lie at the source, that is P(0,x) = S(x), it follows that £ {P(0,s)} = 1 and therefore 
that C= l . Applying the inverse transformation £~l leads to 

P(t,x) = e - ^ i - ' l e ^ ^ W ' } . (2.11) 

Expanding the exponential term in a Taylor series around t=0 one obtains 

p(M)=e- , - .{ fMf»:j , p.U) 
and the solution of (2.7) is 

oo / . \ j —At 

P(t, x) = e~xt5{x) + Y, ^4 £iD(x)"- (2-13) 

This solution has a straightforward interpretation. The term e~Xt6(x) indicates that 
particles at the source decrease exponentially in number. With this term we can calculate 
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the fraction of spores, at any time during the rain event, that has still not been splashed 
from the source. The summation on the right-hand side represents the spatial spread 
once a spore is actually splashed from its point of impact; the quantity (A t)*e~At/i! is 
the Poisson distribution, which gives the probability that a spore is splashed i times at 
some time during the rain event; el gives the probability that this spore is not removed 
from the system each time it is splashed; D(x) gives the p.d.f. for a spore travelling to 
position x once it is splash dispersed one time from the source. Then the probability 
distribution for the position a spore can take if it is splash dispersed twice is given by 

/

oo 

D{Z)D{x-Z)dt. (2.14) 
-oo 

In this equation D(x - £) gives the p.d.f. for a spore to jump from £ to x given the 
probability that in the previous jump it travelled to position £, indicated by D(£). During 
its first journey, a spore can be splash dispersed to many different places from the source. 
Integrating over all possible places from which a spore then can be splashed the second 
time gives D(x)*2. Of course, spores can be splashed many times during a rain event, 
all having the same p.d.f. for spatial redistribution. So, to incorporate the spatial 
distribution of spores that are splashed i times during a rain event one has to use the 
repeated convolution D(x)*1 defined as 

/

oo 

D't-^dix-OdZ for (i = 2,3,4,...). (2.15) 

•oo 

Adding the distributions of the spores for all possible times they can be splashed during 
some period of rain (that is, summation over i) gives P(t,x). 

2.2.2 Analysis of t he solution 

In this section we study the solution of the mechanistic model (2.13). First the p.d.f. 
for spatial distribution of spores during a rain event is determined. Then a numerical 
study is performed to obtain insight into the sensitivity of model output for different 
parameters. 

In experiments where D(x) is measured the number of spores decrease monotonically 
with distance from the source (Yang et al., 1991a). This trend can be approximated by 
the normal distribution 

D{x)=Jh^'e^' ( 2 '16) 
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and the double-exponential distribution 

D(x) = (aV2)-1e-lx^. (2.17) 

In both p.d.f.s Var(x)=<72. 

The convolution, D{x)*1 of the normal distribution is 

D(x)mi = - p L - • e^£ (2.18) 

(Mood et al, 1950), and for the double-exponential distribution 

D(X)« - I e ~ V V{2i-j-2)\x 

J= 

in which <f> = -j= (Johnson and Kotz, 1970). 

Using the solution to (2.7), in combination with these distributions for D(x)*z, the 
spread of infectious units in relation to the source is studied. Therefore, all figures 
represent the summation on the right-hand side of (2.13) without the initial source. The 
results given below will show how the use of different distributions for D(x)*1 affects 
dispersal. The main purpose is to determine the sensitivity of P(t,x) to different model 
parameters after the resulting dissemination, both in space and time. We mentioned 
earlier in Section 2 how A and e can be estimated from experiments. Experimental 
results were considered to give an indication of the range in which reasonable parameter 
values can be found. Values for A were found to vary between 0.02 min - 1 (with a 
rain intensity of 4 mm h - 1 ) and 0.06 min - 1 (with a rain intensity of 60 mm h - 1 ) . 
After considering of both the values measured and the rain intensities used the default 
parameter value was set to A=0.05 min - 1 . 

Parameter values for e can be calculated by combining experimental results given 
by Yang et al. (1991), who measured /3 and Madden et al. (1996), who measured A. 
In both these experiments, parameter values were measured for different rain intensities 
and ground covers. Using the equation /? = A(l — e) (a derivation of this equation is 
discussed in section 3) j values for e can be calculated. The mean values calculated 
for e were: 0.6 splash - 1 for plastic, 0.5 splash -1 for soil and 0.2 splash - 1 for straw. 
However, these mean values were calculated from widely varying parameter values and 
rain intensities. Therefore, we assume a reasonable parameter value for e is 0.7 splash -1 . 

The third parameter is a, which occurs in both (2.18) and (2.19). Yang et al. (1991a) 
determined spore dispersal from single-drop impactions. The distances that spores trav
eled varied between 0 and 20 cm. However, most spores traveled in the range 2-7cm. 
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Figure 2.1: The effect of A, the probability of being splashed per unit time, on P(t,x), the 
probability per unit length of finding a spore at position x (cm) during rain for four times: (a) 
t = l , (b) t=5 , (c) t=10, and (d) t=30. (When a normal p.d.f. is used for D(x)*', the spatial 
spread of spores, the probability of not being removed from the process, e=0.7; and the standard 
deviation for D(x)** is <r=3.) 

Considering this frequency distribution of droplet travel distances, a default value of 
3 cm was used for a. W i th these parameter values the following results were obtained. 
Ex t ra terms were added to the summation in (2.13) until t he contribution of t he next 
t e rm to the to ta l sum was less t han 0.001%; tha t is, the summation was from i = l to 
i=99. 

In Figures 2.1 and 2.2 the probability of a spore travelling some distance during a 
rain event was plotted for varying values of A. Figures 2.1 and 2.2 show the results when 
the normal distribution and the double-exponential distribution are used, respectively, 
for D(x) . Figures 2.1 and 2.2 show tha t shortly after the s tar t of the rain event ( that 
is, up to t=10) the majority of the spores are still concentrated near the source. As A 
increases, the spores have a larger probability of being splashed from the source per unit 
of t ime, and therefore the probability of being in the process also increases. But , since 
it has only been raining for 10 minutes, even spores with the largest values of A could 
not travel very far from the source. For t = 30 the curve shows a maximum at least up to 
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Figure 2.2: The effect of A, the probability of being splashed per unit time, on P(t,x), the 
probability per unit length of finding a spore at position x (cm) during rain for four times: (a) 
t = l , (b) t=5 , (c) t=10, and (d) t=30. (When a double-exponential p.d.f. is used for D(x)*\ 
the spatial spread of spores, the probability of not being removed from the process, e=0.7; and 
the standard deviation for D(x)*1 is cr=3.) 

6 cm, as A increases. This could be caused by e, the probability of staying in the process 
per splash. 

As the probability of being splashed (A) increases, more spores will be removed from 
the process if it continues raining. However, Figures 2.3 and 2.4 show tha t , at least up to 
50 minutes of rain, t he probability of travelling any distance increases. Therefore e has no 
influence on this t rend. This effect is caused by depletion of spores near the source. Since 
A is expressed per unit of t ime, spores will already have passed short distances from their 
initial point of impact at t = 30 . Figures 2.3 and 2.4 show the dependence of t he model 
solutions on the variable e, i l lustrating the results when the normal distribution and 
the double-exponential distribution, respectively, are used for D(x). If the probability of 
staying in the process increases, the probability of being dispersed some given distance 
will increase for at least 50 minutes. After almost two hours of rain A influences the 
process in addition to e. At t=100 , even spores with A=0.05 per t ime unit are likely 
to have passed short distances from their source; therefore, the curve is decreasing as 
t>100 . Also, spores with a small probability of staying in the process per splash will 
have already disappeared after 100 min of rainfall, and so the probability of travelling 
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Figure 2.3: The effect of e, the probability of not being removed from the process per splash 
event, on P(t,x), the probability per unit length of finding a spore at position x (cm) during 
rain for four times: (a) t=10, (b) t=50, (c) t=100, and (d) t=300. (When a normal p.d.f. is 
used for D(x)*% the spatial spread of spores, the probability of being splashed per unit time is 
A=0.05; and the standard deviation for D(x)*1, <r=3). 

any distance decreases for values of e smaller than, say, 0.55. Yet, spores with larger 
values of e will have had sufficient t ime to travel short distances from the source without 
being removed from the process. Therefore, the probability of reaching a relatively large 
distance from the source increases if e is sufficiently large. 

When comparing Figure 2.1 with 2.2 and Figure 2.3 with 2.4, with their different 
p.d.f.s, it can be seen tha t the figures are almost identical. They only differ for small 
rain application t imes. 

2.2.3 The mean squared displacement 

One of the main goals in experimental research on splash dispersal is to assess the 
distance dispersed during a rain event. Determining the mean squared distance tha t 
spores travel from the source is the most frequently used method for statistical analysis 
of resulting d a t a sets (Othmer et al., 1988). In addition to its practical advantages, t ha t 
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Figure 2.4: The effect of e, the probability of not being removed from the process per splash 
event, on P(t,x), the probability per unit length of finding a spore at position x (cm) during 
rain for four times: (a) t=10, (b) t=50, (c) t=100, and (d) t=300. (When a double-exponential 
p.d.f. is used for D(x)*\ the spatial spread of spores, the probability of being splashed per unit 
time, A=0.05, and the standard deviation for D(x)*\ cr=3.) 

is, it is relatively easy to calculate the mean squared distance of spores, this method 
also gives a good impression of the surface over which spores are dispersed round the 
source. Moreover, bo th a one-dimension and a two-dimensions derivation results in the 
same equation. 

Since the expectation, E(x) , equals zero, t he mean squared displacement is the vari
ance which is denned as 

/

oo 
x2P(t, x)da 

• O O 

where P( t ,x) is t he probability function for spatial distribution of spores, then 
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/

oo />oo °° (\f)ip-M 

x2e-xt8{x)dx + x2J2 ^ ^ J ^DixY^x. 
-oo J — oo ^ - ^ *" 

The first term on the right-hand side vanishes because the variance for spores at the 
source is 0. Therefore, we only have to account for the second term, which can be 
written as 

"" (MYp-^t r°° 
Var(x) = J2 ^~T e* / x2D{x)*idx. 

Since the variance of a sum of independent random variables is the sum of the variances 
(Mood et al, 1950), we find 

where <r2 = J_ x2 D(x) dx is the variance of D(x). This can be simplified to 

Var(x) = (e\t)e~xta2Y^ 
i=0 

= eXtoZe-*1-*. 

(eXt)1 

This means that for biologically realistic parameter values of e, X and a the mean squared 
dispersed distance of spores reaches a maximum during a rain event. If it continues 
raining more spores will be removed from the process, and therefore the mean squared 
displacement decreases again. 

2.3 The diffusion approximation 

In modelling biological systems, diffusion equations are often used to describe random 
movement in space. With regard to splash dispersal, Yang et al. (1991) used a diffusion 
equation to model the spread of plant pathogens. Their justification for using a diffusion 
model is the assumed random motion of spores. Yet, the mechanisms behind splash 
dispersal indicate random jumps of spores which include the probability of being splashed 
per unit of time, a probability of being removed per splash and a redistribution kernel 
D(x). As noted in Section 1, Yang et al. (1991) did not include the basic mechanisms 



18 CHAPTER 2. A MODEL FOR ... 

involved in splash dispersal when constructing the model. Therefore, parameter values 
cannot directly be calculated from experimental results. Whereas the main goal of 
modelling splash dispersal is to find out which physical processes involved in dispersal are 
of primary importance, it is interesting to establish the relation between our mechanistic 
model and Yang's diffusion equation. 

The random-jump model (2.7) will for t —> oo and at an appropriately large spatial 
scale, be accurately described by a diffusion process. The diffusion model can therefore 
be seen as an approximation of the full mechanistic model. A relevant question is: 
Under what conditions is the diffusion model a valid approximation of the full model? 
To answer this question a diffusion approximation was derived to the mechanistic model 
by following the procedure outlined in Othmer et al. (1988) and Edelstein-Keshet (1988). 
For this purpose, assume that there is an equal probability of being splashed either to 
the left or to the right during a rain event. When, after a certain period of rain, a spore 
lies at some distance (say x=£) from the source (x=0), it has a probability of \ of being 
splashed to the left (over a distance of —A) and to the right (over distance,+A). For 
the diffusion approximation we therefore use 

D(x - 0 = \[6(x -Z-A) + 5(x-Z + A)]. (2.20) 

Substitution in (2.7) gives 

^ ^ = -XP(t,x) + £-±P(t,x- A) + £±P(t,x + A). (2.21) 

Substituting Taylor-series expansions for P(t,x—A) and P(t,x+A) in (2.21) yields 

dP(t,x) , „ eA / dP A 1 < 9 2 P A 2 1 < 9 3 P A 3 \ 
dt 2 V dx 2 dx2 3! dx3 

eA fn dP A 1 < 9 2 P A 2 l d3P 

2 V dx 2dx2 3! dx3 

where P=P(t,x). 
Now consider the limit of A J, 0 and A f oo such that A A2 remains constant. This 

means that the spores are splashed at high rates but that the distance dispersed per 
splash is small, so that the average distance a spore moves per unit time remains con
stant. However, since A | oo we also have to assume that e —> l such that A(l — e) 
remains constant. Only under these conditions does the diffusion equation make a sensi
ble estimate for the mechanistic model of (2.7). It is easily seen that in this limit (2.22) 
becomes 



2.3. THE DIFFUSION APPROXIMATION 19 

dP(t, x) 
dt 

-\(l-e)P(t,x) + 
s\A2d2P(t,x) 

2 dx2 ' 
(2.23) 

with initial condition P(0,x) = 6(x) (Edelstein-Keshet, 1988). 
To compare the diffusion approximation to the full model, A2 in (2.23) should be 

expressed in terms of the standard deviation a of the dispersal kernel D(x); that is, 

/

oo 
x2D(x)dx 

-oo 

f°° 1 
/ x2-(6(x-S-A)+8(x-t + A))dx 

(2.24) 

Solving (2.23) (Carslaw and Jaeger, 1959) leads to 

P{t,x) 
2VnDi 

e4Dt e 
-\(l-s)t 

in which D = ^ - . 

(2.25) 

(a) 
0.25 
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Figure 2.5: The Mechanistic model and its diffusion approximation (dashed line) for P(t,x), 
the probability per unit length of finding a spore at position x during rain for two times: (a) 
t= l , and (b) t=10 (When a normal (solid line) and double-exponential (dotted line) p.d.f. are 
used for D(x)*\ the spatial spread of spores, the probability of being splashed per unit time 
is A=10; the probability of not being removed from the process is £=0.99; and the standard 
deviation for D(x)*1 is <r=0.5.) 
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Comparing this result with the model of Yang et al. (1991), it is now possible to 
partition the composite parameters as part of the underlying biological processes. The 
dispersal coefficient a includes several of the biological parameters introduced above, 
since a = eXa2/2. Similarly the constant of spore loss (3 = A(l — e). Note that this 
parameter combination has the interpretation of the rate at which spores are removed 
from the process, which is similar to the interpretation of /3 in Yang's diffusion model. 

(c) (b) 

• s 
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Figure 2.6: The Mechanistic model and its diffusion approximation (dashed line) for P(t,x), 
the probability per unit length of finding a spore at position x during rain at three times: (a) 
t=10, (b) t=25, and (c) t=50. (When a normal (solid line) and double-exponential (dotted 
line) p.d.f. are used for D(x)*1 with A=0.05, £=0.7 and <r=3.) 

In Figure 2.5 the diffusion approximation for A=10, £=0.99, and c=0.5 is plotted 
together with the mechanistic model. Figure 2.5 shows the probability of a spore having 
position x at 1 and 10 minutes of rain. It is evident that, under these limiting conditions, 
the diffusion equation is indeed a sensible approximation of the mechanistic model. How
ever, these parameter values are far from being biologically reasonable. By comparing 
the full model with the diffusion approximation, and using reasonable parameter values, 
we obtained Figure 2.6. Here the probability of a spore being splash dispersed over some 
distance is plotted for 10, 25 and 50 minutes of rain. At least up to 25 minutes of rain, 
Figure 2.6 shows that the behaviour of the diffusion equation is quantitatively different 
to that of the full model. That is, the diffusion model consistently overestimates densi
ties near the source. The difference in model behaviour between the full model and its 
diffusion approximation can be attributed to the dynamics of the spores at the initial 
inoculum source. From (2.13) we see that the fraction of the spores remaining at the 
initial source, after a rain application of duration t, decreases exponentially as e_ A t . 
This implies that for the parameter values used in Figure 2.6 and after 10 minutes of 
rain application, approximately 60% of the spores have still not been splash dispersed 
and remain at the initial inoculum source. After 25 minutes approximately 30%, and 
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after 50 minutes approximately 8% of the spores are still at the initial source. In order 
to derive the diffusion approximation we assumed A | oo, implying that the whole initial 
inoculum source is dispersed instantaneously at t=0. This explains the differences in 
the area under the curves in Figure 2.6. Nevertheless, in time (t=50) more spores will 
be dispersed from the source, and gradually the solutions of the full model will take 
the form of its diffusion approximation. However, it should be stated that these obser
vations only hold for short distances from the source; but these short distances are of 
major importance for splash dispersal. 

Figure 2.7: The difference between the effect of diffusion (dashed line) and mechanistic model 
on P(t,x), the probability per unit length of finding a spore at position x at time t during rain 
for three distances: (a) 1 cm, (b) 5 cm, and (c) 10 cm. (When a normal (solid line) and double-
exponential (dotted line) p.d.f. is used for D(x)*J, the spatial spread of spores, the probability of 
being splashed per unit time is A=0.05; the probability of not being removed from the process, 
e=0.7; and the standard deviation for D(x)*1 is a=3.) 
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Figure 2.7 shows the probability of a spore, in both models, travelling either 1 cm, 
5 cm or 10 cm during a rain event. Figure 2.7 shows that, for reasonable parameter 
values, there is not only a quantitative difference but also a qualitative difference be
tween the full model and its diffusion equation. The original model shows an increasing 
probability of covering the three distances during a rain event at least up to 10 cm from 
the source, whereas at 1 cm from the source, the diffusion approximation first shows an 
increasing curve with time and then it decreases. This is caused by spatial spread of all 
spores as soon as t>0 when applying a diffusion model. This trend continues at 5 and 
10 cm; only the spores took somewhat longer time to travel these distances. Therefore, 
as time increases the curve shifts to the right for these distances. 

In addition, note that for Figures 2.5- 2.7 the difference between using a normal p.d.f. 
or a double exponential p.d.f. for D(x) is rather small. 

Based on the above discussion, we conclude that, for reasonable parameter values 
and reasonable rain application times, the diffusion model is not a valid approximation 
of the mechanistic model. Even though quantitative differences could be smaller if a 
two-dimensional approach is used to compare the models, the qualitative differences will 
not change. 

2.4 Discussion 

The main goal of this study was to develop and analyse a mechanistic model for splash 
dispersal of plant pathogens from a point source. The most important mechanisms in
volved in spore dispersal by rain-splash are; the probability that a spore is splashed from 
its point of impact, the probability that it then travels over an arbitrary distance, and 
the probability that it is not removed during this dispersal process. In our model these 
main physical processes are represented, respectively by A, D(x), and e. Experimental 
results showed that this dispersal process is influenced by many factors. However, the 
effect of most of these factors can be seen in their effects on the model parameters. 

First, results from experiments showed the importance of ground cover on spatial 
spread of spores. In our model, e includes this effect of ground cover; its value decreases if 
the probability of staying in the process decreases. Secondly, rainfall properties influence 
splash dispersal. More spores were found to be splashed, and also more spores were 
removed from the process during experiments with increasing rain intensities. If in the 
model the parameter value for A is large, more spores will be splashed; and since e is 
expressed per splash, simultaneously more spores will also be removed from the system. 
Finally, the probability of travelling a distance x during a splash event is also influenced 
by raindrop properties. For example, larger droplets can incorporate more spores but 
will not travel as far as small droplets. In our model, the spatial spread of spores during 
a splash event is represented by D(x). This p.d.f. includes the parameter a, the value 
of which changes according to the mean dispersal distance within one splash event. 
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Based on the above discussion, we conclude that the most important mechanisms for 
splash dispersal are incorporated in the model. In addition, many factors influencing the 
splash process are accounted for through their effect on the parameters. Nevertheless, the 
model can still be improved on several points. For example, rainfall properties can cause 
an additional effect. If rain intensities become large it causes spores to be washed off 
directly into the ground. This form of spore loss could be taken into account by making 
£ a function of A. In addition, in natural systems the probability of being splashed 
from the initial source is different from the probability of being splashed once a spore 
is in the field. Therefore, Madden et al. (1996) differentiated primary splash, in which 
spores are removed from infected source fruit, from secondary splash, in which spores 
are washed off from healthy fruit. In this model we only consider secondary splash. A 
second point concerns the normal and double-exponential distributions, which are used to 
describe D(x). As a first approximation this seems to be a reasonable choice since splash 
dispersal is often successfully described using these distributions. In addition, when 
analysing the model, application of these two p.d.f.s results in similar spore dispersal 
behaviour. However, for the mechanistic model the p.d.f. for spatial spread of spores 
should correspond to experimental data on frequency distributions of droplet travel 
distances from single-drop impactions. In addition, the probability of a spore travelling 
some distance should be compensated for by droplet size distribution in a rain event. In 
a real rain event there is a distribution of impacting drops and subsequently in splashing 
droplets. Since the number of spores and the dispersed distance depends on droplet size 
this droplet size distribution should be taken into account for the mechanistic model. 
Note that we are now modelling spores splashing on a horizontal surface. In natural 
systems the plant canopy will have an additional effect on distances that spores splash. 
In a subsequent study we will describe the mechanisms involved with spatial spread of 
spores in more detail. 

The diffusion approximation for the mechanistic model showed that for splash disper
sal a diffusion model is in most situations not a useful approximation. The main problem 
in using a diffusion model for splash dispersal is that the initial inoculum source is de
pleted instantaneously at t=0. For reasonable values of the parameter A, however, the 
fraction of spores still in the initial inoculum source is decreased to 10% only after 20 
to 50 minutes of rain, leading to the large differences between the mechanistic model 
and the diffusion equation. Of course, if it continues raining all the spores will ulti
mately be splashed from the source and be dispersed over relatively large distances from 
their initial point. In this limit for t—> oo the diffusion model describes the process as 
well as the mechanistic model. Still, we would like to emphasize that during each rain 
event spores are dispersed over relatively short distances with rain durations of up to 60 
minutes maximum; this process is best described by the mechanistic approach. 

Although a two-dimensional diffusion approximation possibly reduces the differences 
between theoretical values and observed values we want to emphasize that it will not 
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change the quality of the model output seen in Figures 2.6 and 2.7. 
Finally, a still unanswered question is: How does the proposed mechanistic model 

perform if it is compared to experimental data on spore dispersal from a point source? 
Experimental verification is necessary to test the model and we will return to this ques
tion in a subsequent paper. Then a two-dimensional model description will be used, 
because testing the model involves a quantitative approach. To test the model on factors 
influencing the dispersal process, we will use data sets including different rain intensities 
as well as various ground covers. 
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