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ABSTRACT 

Smidt, H. (2001). Molecular characterization of anaerobic dehalogenation by 
Desulfitobacterium dehalogenans. PhD thesis. Laboratory of Microbiology, Wageningen 
University, The Netherlands. 

Haloorganics such as chlorophenols and chlorinated ethenes are among the most abundant 
pollutants in soil, sediments and groundwater, mainly caused by past and present industrial 
and agricultural activities. Due to bioaccumulation and toxicity, these compounds threaten the 
integrity of the environment, and human and animal health. A recently discovered, 
phylogenetically diverse, group of anaerobic so-called halorespiring bacteria is able to couple 
the reductive dehalogenation of various haloorganic compounds to energy conservation and 
hence to growth, significantly contributing to in situ dehalogenation processes in anoxic 
environments. The observed persistence of halogenated pollutants in untreated ecosystems 
and the accumulation of degradation intermediates during bioremediation, however, indicated 
the need for engineering of process conditions and/or augmentation with efficient degraders. 
This thesis describes genetic approaches towards a thorough understanding of the molecular 
basis of anaerobic reductive dehalogenation in order to enable the further optimization of 
clean up procedures for contaminated anoxic environments. 

The Gram-positive Desulfitobacterium dehalogenans, capable of degrading o-
chlorophenols, PCE and hydroxylated PCB's, was used as model organism throughout a 
major part of this study. The key enzyme o-chlorophenol reductive dehalogenase (CPR) was 
isolated and characterized at the biochemical and molecular levels, and comparison with 
known chlorophenol- and chloroalkene-reductive dehalogenases indicated that these enzymes 
constitute a yet unknown, but evolutionary ancient family of corrinoid-containing iron-sulfur 
proteins, which in addition share a twin-arginine signal sequence. Transcriptional analysis of 
the CPR-encoding gene cluster revealed that dehalogenation activity is strongly regulated at 
the transcriptional level. Efficient gene cloning, and random and specific gene inactivation 
systems were developed to enable (i) the elucidation of additional components involved in the 
anaerobic dehalogenation process and (ii) the study of their structure and function within the 
respiratory network. Halorespiration-deficient mutants were isolated following random 
chromosomal integration, and their characterization lead to the identification of genes 
encoding proteins possibly involved in structure, maturation and regulation of respiratory 
complexes. Reductive dehalogenase-encoding gene targeted (RT-)PCR-based molecular 
approaches were developed that were useful for the detection of reductive dehalogenation 
potential and activity in pure cultures of potentially halorespiring microorganisms. 

The results obtained in this study provide valuable knowledge on the molecular basis of 
anaerobic reductive dehalogenation and might serve as a sound basis for the further 
exploitation of halorespiring bacteria as dedicated degraders in biological remediation 
processes. 
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PREFACE 

Solid evidence has emerged almost a decade ago that strictly anaerobic bacteria are able to 

conserve energy that is derived from the reductive dehalogenation of haloorganic compounds 

in a respiration-type of metabolism. In view of their favorable degrading capacities, i. e. high 

dehalogenation rate and low residual concentration of the contaminant, it has been anticipated 

that these halorespiring microorganisms should be of utmost significance for highly efficient 

biological remediation of halogenated hydrocarbons in anoxic environments. Previous studies 

mainly focused on the isolation of halorespiring microbes from various environments and 

their characterization at the (eco-)physiological level. Nevertheless, only little information 

was available on the structure, function and regulation of the novel respiratory pathways these 

organisms possess. To gain this knowledge, a study was initiated that aimed to (i) identify and 

characterize the key components of the halorespiratory system at the molecular level (Chapter 

2-5), (ii) unravel the regulatory circuits that control halorespiration activity (Chapter 3, 5), and 

(iii) develop molecular tools for the further exploitation of halorespiring bacteria as dedicated 

degraders in biological in situ remediation processes (Chapter 4, 6, 7). 

Throughout a major part of this study, the versatile strictly anaerobic ort/io-chlorophenol 

respiring Gram-positive Desulfitobacterium dehalogenans was used as model organism, 

representing one of the most significant groups of halorespiring isolates. 

In close collaboration with a complementary project that focused on the biochemistry and 

physiology of halorespiration by Desulfitobacterium dehalogenans (Bram A. van de Pas, PhD 

thesis, Wageningen University, 2000), the key enzyme ort/jo-chlorophenol reductive 

dehalogenase from D. dehalogenans has been characterized at the biochemical and genetic 

levels, revealing significant similarities with chloroethene-reductive dehalogenases at the 

mechanistic and structural level (Chapter 2). The detailed molecular analysis of the cpr gene 

cluster, including the ort&o-chlorophenol reductive dehalogenase-encoding cprBA genes, 

showed the halorespiration-specific expression of at least seven genes, coding for proteins 

potentially involved in function, maturation and regulation of the reductive dehalogenase 

complex (Chapter 3). 

To enable the in vivo study of function and regulation of chromosomal genes involved in 

halorespiration, a comprehensive set of genetic tools has been developed forZ). dehalogenans. 

Chapter 4 describes the development of an efficient plating, delivery and screening system 

based on the conjugative broad host-range transposon TnP76, that was instrumental for the 
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isolation of halorespiration-deficient mutants. The physiological and genetic characterization 

of the isolated mutants led to the identification of several genes that might code for (i) 

polypeptides playing a role in regulation and functional assembly of the respiratory network 

and (ii) redox complexes involved as structural components. These and other respiratory 

complex-encoding genes were further characterized at the molecular level and their 

expression was studied at the biochemical and transcriptional levels (Chapter 5). 

Chapter 6 focuses on the development and initial application of efficient host-vector 

systems for D. dehalogenans. Gram-positive broad host-range cloning vectors could be 

introduced by electroporation and were stably maintained. Conditionally replicating 

thermosensitive vectors are demonstrated to be useful for the functional disruption of 

chromosomal genes. In Chapter 7, the development and evaluation of molecular methods for 

the detection of reductive dehalogenation potential (DNA) and activity (mRNA) is described. 

Known and novel potentially functional and cryptic reductive dehalogenase-encoding genes 

were isolated from the chromosome of halorespiring bacteria using a multiple PCR-approach, 

and their expression was analyzed by RT-PCR. Finally, Chapter 8 summarizes our current 

knowledge on the molecular basis of the halorespiratory network that has been gained in this 

and other studies, including recent data that were obtained from the almost complete genome 

sequence of the halorespiring Dehalococcoides ethenogenes. Furthermore, implications for 

the optimization of biological remediation strategies and possibilities for the application of 

innovative metabolic engineering approaches are discussed. 
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HALORESPIRING BACTERIA - MOLECULAR 

CHARACTERIZATION OF KEY ENZYMES AND DETECTION 

This chapter has in parts been published in: 
- Enzyme and Microbial Technology (2000) 27:812-820. 
- Biotechnology for the Environment, S.N. Agathos and W. Reineke (eds.), Focus On 
Biotechnology, Vol. 3 (2001), In press. 

Abstract 

Halorespiring bacteria are able to couple the reductive dechlorination of halogenated 
aliphatic and aromatic compounds to energy conservation and hence to microbial growth. 
Isolation of these strains and their expected potential for application in in situ biodegradation 
of haloorganic compounds also have led to an increased interest in the molecular basis of the 
halorespiratory pathway. Integrated physiological, biochemical and molecular genetic 
approaches have provided deeper insights in the structure, function and regulation of the 
halorespiratory electron transfer chain. The identification of reductive dehalogenases as the 
key enzymes in this process was followed by their detailed molecular characterization. This 
revealed considerable similarities at both the mechanistic and structural level, suggesting that 
these enzymes constitute a novel class of corrinoid containing reductases. Our current 
knowledge on the phylogeny of halorespiring bacteria and on the molecular characterization 
of their dehalogenating systems provides a sound basis for the further exploitation of these 
microorganisms as dedicated degraders in polluted environments. 



Chapter 1 

Introduction 

Halogenated hydrocarbons are present in the environment in high quantities due to their 

past and present application in industry and agriculture e.g. as solvents, pesticides and 

preservatives, compromising environmental integrity and health (Ahlborg & Thunberg, 1980; 

Hileman, 1993; Jensen, 1996). However, as more than 2000 haloorganic compounds are 

naturally produced at considerable levels, they should not be regarded as of solely 

anthropogenic origin. Rather, the abundance of natural halogenated compounds has been the 

selective pressure that has resulted in the evolution of microbial dehalogenating populations. 

This might explain the unexpectedly high microbial capacity to dehalogenate different 

classes of xenobiotic haloorganics (Gribble, 1996; Haggblom et al, 2000). 

The biodegradability of halogenated hydrocarbons largely depends on their chemical 

structure and the environmental conditions. The degradation of lower halogenated 

compounds, which proceeds relatively efficiently under aerobic conditions has been studied 

in considerable detail at the physiological, biochemical and genetic level (Janssen et al, 

1994; Slater et al, 1997; Fetzner, 1998). However, dehalogenating systems that depend on 

molecular oxygen are only suited for the attack of haloorganic compounds carrying a limited 

number of highly electronegative halogen-substituents, resulting in the persistence of 

polyhalogenated compounds in aerobic environments. Whereas e.g. the co-metabolic 

oxidation of partially chlorinated mono- di- and trichloroethene is fortuitously catalyzed by 

mono- and dioxygenases in various bacteria, the fully halogenated tetrachloroethene is not 

degradable under these conditions (Arp, 1995; Leisinger, 1996). During the last two decades, 

it has been shown for a large variety of halogenated aliphatic and aromatic compounds, that 

reductive dehalogenation is the crucial step, by which the degradation of these pollutants can 

be initiated in anoxic environments. The abiotic or co-metabolic conversion under different 

redox conditions by numerous anaerobic mixed and pure cultures is proposed to be catalyzed 

in most cases by metal ion-containing heat stable tetrapyrroles or enzymes, in which these 

compounds are incorporated as cofactors (Gantzer & Wackett, 1991; Holliger & Schraa, 

1994; El Fantroussi et al, 1998). In addition, a great number of anaerobic bacteria has 

recently been isolated that are able to couple the reductive dehalogenation of halogenated 

aliphatic and aromatic compounds to energy conservation and hence to microbial growth (El 

Fantroussi et al, 1998; Holliger et al, 1999) (see also Figs. 1.1 and 1.2). In contrast to the 

above-mentioned co-metabolic conversions, in these microorganisms dehalogenation is 
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catalyzed with high specific activity and affinity at specific enzymes. This novel respiratory 

process has previously been described as halorespiration (7*a/ogenated hydrocarbons as 

terminal electron acceptor in anaerobic respiration), (Sanford et al., 1996). Although the 

alternative term dehalorespiration has been proposed to be more appropriate (defta/ogenation 

as terminal electron accepting process in anaerobic respiration) (Holliger et al, 1999), we 

refer to this process as halorespiration for priority reasons, its analogy to other respiratory 

processes, such as fumarate- nitrate- or iron-respiration, and because of the obvious direction 

of the conversion. 

The different mechanisms by which bacteria are able to dehalogenate haloaliphatic and 

haloaromatic compounds have been recently reviewed in several excellent communications 

and their detailed exhaustive description goes far beyond the scope of this introduction (see 

Fetzner, 1998; Lee et al, 1998; Holliger et al, 1999; Middeldorp et al, 1999; Bradley, 2000; 

Wiegel & Wu, 2000; and references therein). 

This introduction will focus on the current knowledge on the key characteristics of 

halorespiring bacteria and the structure, function and regulation of halorespiratory systems 

that operate in these microorganisms. In addition, molecular approaches towards the 

detection of the reductive dehalogenation potential and activity of halorespiring 

microorganisms in polluted environments will be discussed. 

Halorespiring Bacteria -Thermodynamic Rationale, Phylogeny and 

Key Characteristics 

Estimation of Gibbs free energies and redox potentials have indicated that halogenated 

aliphatic and aromatic compounds should potentially be good electron acceptors in anaerobic 

environments (Dolfing & Harrison, 1992; Dolfing & Janssen, 1994). As an example, the 

Gibbs free energy available from the reductive dehalogenation of 2,3-dichlorophenol to 2-

chlorophenol has been calculated to -147.9 kJ, whereas the standard redox potential of this 

couple amounts to +353 mV. This value is significantly higher than those calculated for the 

redox couples SO42" / H2S (£V = -217 mV) and fumarate/succinate {Eo = +30 mV), and 

comparable to the redox potential of NO3" / NO2" (£V = +433 mV). Even when taking into 

account that H2-partial pressures in anaerobic environments are orders of magnitude below 
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standard conditions, reductive dehalogenation seems energetically still highly competitive 

with other occurring anoxic terminal electron accepting processes (Thauer et al., 1911; 

Doffing & Harrison, 1992). 

Over the past decade, a rapidly increasing number of bacteria has been isolated based on 

their ability to use chloroalkenes, such as tetrachloroethene (PCE) and trichloroethene (TCE), 

or chloroaromatic compounds like chlorophenols and chlorobenzoates as the terminal 

electron acceptor (Fig. 1.1). Strains have been isolated from various polluted and pristine 

environments, ranging from activated- and anaerobic granular sludge to freshwater- and 

estuarine sediments. These microorganisms have gained significant attention because of their 

potential in bioremediation of contaminated anoxic environments, the novel respiratory 

pathways they possess and the capacity of various isolates to dechlorinate both 

chloroaromates and chloroalkenes. 

With one exception (Dehalococcoides ethenogenes, see below), halorespirers have been 

affiliated with distinct phylogenetic branches of the bacterial domain, namely the groups of 

the low G+C Gram-positives, 8- and e-proteobacteria (Fig. 1.2), and their main 

characteristics have recently been summarized in two exhaustive reviews (El Fantroussi et 

al., 1998; Holliger et al, 1999). Most of these isolates are rather versatile with respect to 

their ability to use, besides fermentative growth on the expense of e.g. pyruvate, a whole 

range of different electron donors and acceptors for growth. However, also a small number of 

apparently obligate halorespiring isolates has been identified to date. 

PCE CI CI coOH 

CI CI CH2 2e-,2H + 

\z 
CI H 

TCE ^ = < 

2e-2H + 

HCI 

C l C | 3-CI-4-OH-PA 

Figure 1.1 Examples of reductive dehalogenation reactions as they are performed by halorespiring 

microorganisms. (PCE = tetrachloroethene; TCE = trichloroethene; PA = phenylacetic acid) 
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Low-GC Gram-positives 

Desulfitobacterium hafniense * 
Desulfitobacterium frappieri TCE1 ** 

Syntmphobotulus glycolicus Desulfitobacterium frappieri PCP-1 * 
Dehalobacterrestrictus TEA" \ i Desulfitobacterium chlororesplrans ' 

Dehalobacter restrictus PER-K2 X \ P Desulfitobacterium dehalogenans " * 
SJA47.^>~ ;r-

l-vnesu«JtobacteriumPCE1 — 
SJA7-^^ y \ ^~ • 

SJA19 

St10 

Syntrophomonas spp. 

* Desulfotomacutum orientis 

Selenomonas spp. 

- Dehalobacterium formicoaceticum 

Desulfuromonas chloroethenica 
Desulfuromonas acetexigens 

Geobacter spp. 

Desulfomonile tiedjei 

Syntrophobacter wolinii 

Desulfovibrio TBP-1 * 

Desulfovibrio acryiicus 

Dehalococcoides ethenogenes * 

Chtoroflexus spp. 

Wolinella succinogenes 

Campylobacter spp. 

Sulfurospirillum bamesii 

I Dehalospirillum multivorans * 
6-proteobacteria e-proteobacteria 

0.1 

Figure 1.2 Phylogenetic tree based on bacterial SSU rRNA sequences. Halorespiring bacteria are indicated in 
bold. The reported capacity to dehalogenate chloroaromates (*), chloroalkenes (**) or both (***) is indicated. 
Alignment and phylogenetic analysis were performed with the ARB software (Strunk & Ludwig, 1995), and the 
tree was constructed following maximum parsimony criteria with nearest neighbor optimization. No SSU rRNA 
sequences were available for Desulfitobacterium strains PCE-S and Vietl, Desulfuromonas strain BB1, and 
strains 2-CP1 and 2-CPC. The reference bar indicates 10 nucleotide exchanges per 100 nucleotides. 

The phylogenetically deeply branching hydrogenotrophic Dehalococcoides ethenogenes is 

currently the only pure culture known to completely dechlorinate and, hence, detoxify the 

abundant bulk contaminant PCE. While the reductive dehalogenation of PCE, TCE, cis-

dichloroethene (cis-DCE), 1,1 -DCE and dichloroethane (DCA) to vinylchloride (VC) is 

coupled to growth, the conversion of trans-DCE and VC occurs at comparably slow rates 

with first-order kinetics, indicating co-metabolic conversion (Maymo Gatell et al, 1997; 

Maymo Gatell et al, 1999). Two closely related isolates of the low G+C Gram-positive 

Dehalobacter restrictus have been described that are both strictly dependent on anaerobic 

respiration, coupling the oxidation of H2 to the reductive dehalogenation of PCE and TCE to 

predominantly cis-DCE (Wild et al, 1997; Holliger et al, 1998). Moreover, the 

Dehalobacter-relaied strain ST-10 could be identified as one of two dominant species in a 

thermophilic (65°C) PCE-dehalogenating enrichment culture using a 16S rRNA gene-based 
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molecular approach (Kengen et al, 1999). Using general bacterial 16S rRNA gene-specific 

fingerprinting techniques, amplicons have been isolated in several cases that showed highest 

sequence similarity with obligate halorespiring isolates. In one recent study, a clone family 

could be identified from an anaerobic trichlorobenzene degrading community that showed 

98.8 to 99.4 % sequence identity with the 16S rRNA gene of Dehalobacter restrictus (SJ7, 

SJ19, SJ47) (von Wintzingerode et al, 1999). Interestingly, a DehalococcoidesAiks strain 

was shown to be specifically stimulated in an actively 2,3,5,6-tetrachlorobiphenyl-ortfto-

dechlorinating microbial consortium (Holoman et al, 1998). 

The first bacterial isolate, for which halorespiration was unambiguously proven, is the 

sulfate-reducing 3-chlorobenzoate (3-CB) degrading Desulfomonile tiedjei (DeWeerd et al, 

1990; Mohn & Tiedje, 1991). The organism is able to couple the reductive dehalogenation of 

3-CB to pyruvate-, formate- and H2-oxidation (Mohn & Tiedje, 1990; DeWeerd et al., 1991). 

With hydrogen as the electron donor, chemiosmotic coupling of reductive dehalogenation 

and proton-driven ATP-synthesis could be demonstrated, as uncouplers and ionophores 

reduced the ATP-pool relative to dehalogenation activity (Mohn & Tiedje, 1991). 

Among the halorespiring pure cultures that have been reported to date, the genus 

Desulfitobacterium comprises a major group of isolates that all belong to the Gram-positive 

bacteria. All of Desulfitobacterium spp. are rather versatile with respect to their metabolic 

properties. In most cases, the coupling of reductive dehalogenation to the oxidation of H2 

and/or formate could be demonstrated, indicating energy conservation via electron-transport-

coupled phosphorylation (Sanford et al, 1996; Loffler et al, 1997; Mackiewicz & Wiegel, 

1998; Gerritse et al, 1999). Like other halorespiring isolates, most Desulfitobacterium spp. 

also couple the oxidation of other substrates (e.g. pyruvate, lactate) to reductive 

dehalogenation. However, as these substrates also support energy conservation via substrate-

level phosphorylation, it can not be excluded that under these conditions reductive 

dehalogenation merely serves as an electron sink rather than supporting electron-transport-

coupled phosphorylation (Holliger et al, 1999; van de Pas et al., 2001). Haloorganic 

compounds that are used as terminal electron acceptor by Desulfitobacterium spp., include 

chlorinated ethenes - either PCE (Gerritse et al, 1996; Loffler et al, 1997; Wiegel et al, 

1999) or PCE / TCE (Miller et al, 1997; Gerritse et al, 1999) - and halogenated phenolic 

compounds. In most cases, these are or/Ao-chlorinated compounds including several 

hydroxylated PCB's (Utkin et al, 1994; Bouchard et al, 1996; Christiansen & Ahring, 

1996a; Gerritse et al, 1996; Sanford et al, 1996; Wiegel et al, 1999), but also meta- and 
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para-substituted isomers are dehalogenated (Bouchard et al, 1996). Interestingly, two of the 

isolates, strain PCE1 and D. frappieri PCP-1, were shown to have two independent activities, 

namely PCE- and or^o-chlorophenol-dechlorination and dehalogenation of chlorophenols at 

the ortho- and mefa-/para-position, respectively. This is indicative for the presence of 

multiple enzyme systems, as it was also reported for Dehalococcoides ethenogenes (see 

below) (Bouchard et al, 1996; Magnuson et al, 1998; Gerritse et al, 1999). 

Gram-negative microorganisms that have been isolated for their halorespiring capacity 

include the e-proteobacterium Dehalospirillum multivorans, which uses chlorinated ethenes 

as the terminal electron acceptor (Scholz-Muramatsu et al, 1995). The study of physiology, 

bioenergetics and, to some extend, molecular biology of halorespiration in this organism has 

significantly contributed to our understanding of this process (recently reviewed in Holliger 

et al, 1999). The first example of a halorespiring microorganism from an estuarine 

environment is the recently isolated Desulfovibrio strain TBP-1, which couples the reduction 

of ortho-and para-brominated phenols to the oxidation of lactate (Boyle et al, 1999). The 

only facultative anaerobic halorespiring bacteria reported to date are the closely related 

strains 2-CP1 and 2-CPC, which use ort/zo-chlorinated phenols and fumarate as e-acceptors. 

16S rRNA gene-based phylogenetic analysis revealed that they are most closely related to the 

myxobacteria within the 5-proteobacteria (Cole et al, 1994; Loffler et al, 1999). 

Although several reports have recently emerged on strains that use acetate rather than 

other compounds as source of electrons for reductive dehalogenation, many halorespiring 

isolates are able to use hydrogen or formate as the electron donor (Krumholz et al, 1996; 

Loffler et al, 2000; Sun et al, 2000). Based on thermodynamic considerations and 

confirmed by H2-threshold measurements, it has been concluded that halorespiring bacteria 

should be able to out-compete hydrogenotrophic sulfate reducers and methanogens in 

environments, where hydrogen is the main source of electrons (Fennell & Gossett, 1998; 

Loffler et al, 1999). Thus, close syntrophic interactions of hydrogenotrophic reductively 

dechlorinating bacteria with H2-producing microorganisms that, due to thermodynamic 

limitations, depend on low H2-partial pressures, are highly feasible. Indeed, experimental 

evidence has been obtained with enrichment cultures that under conditions resulting in the 

generation of low levels of hydrogen (application of slowly fermented substrates like 

propionate or the administration of very low concentrations of readily fermented compounds 

such as lactate), dechlorination was specifically stimulated versus methanogenesis (Smatlak 

et al, 1996; Ballapragada et al, 1997; Fennell et al, 1997; Fennell & Gossett, 1998). 
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Key Components of Halorespiratory Chains 

Isolation of halorespiring bacteria and their expected potential for application in in situ 

biodegradation of haloorganic pollutants also led to an increased interest in the molecular 

basis of this novel anaerobic respiratory pathway. To date, investigations have mainly 

focused on reductive dehalogenase as the key enzyme in halorespiration. However, efforts 

have also been made to identify additional structural and regulatory components of the 

halorespiratory electron transport chain (see below). 

It is known from physiological experiments that in several halorespiring bacteria 

described to date, reductive dehalogenase activity is induced in the presence of a halogenated 

substrate. Moreover, the influence of alternative electron acceptors on the activity of the 

dehalogenating system has been investigated, indicating that particularly sulfur oxyanions are 

potential inhibitors of halorespiration. However, insight in the regulatory circuits involved in 

the induction and repression of the halorespiration process is still very limited. Evidence is 

now emerging that at least partly, regulation takes place at the level of transcription (see 

below). 

Reductive Dehalogenases - Enzymes and Genes 

Major Characteristics of Reductive Dehalogenases 

To date, several haloaryl- and haloalkyl reductive dehalogenases have been partially or 

completely purified and characterized at the biochemical, and in some cases, the genetic 

level. As one would expect for a respiratory complex, all enzymes were shown to be 

membrane-associated. Only the PCE reductive dehalogenase from Dehalospirillum 

multivorans was isolated from the cytoplasm (Neumann et ah, 1996). However, evidence is 

available from the molecular characterization of the encoding gene that the catalytic subunit 

might be anchored to the cytoplasmic membrane through an integral membrane protein 

(Neumann et al, 1998; see below). In some cases, the electron-accepting site of the enzymes 

was inaccessible for reduced methyl viologen (MV) in whole cells. As MV is not able to 

permeate the cytoplasmic membrane, it was concluded that the enzyme is facing the 

cytoplasm (Jones & Garland, 1977). Nonetheless, molecular analysis revealed that the 

proteins are produced as pre-proteins, in which the mature polypeptides are preceded by a 
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twin arginine-type signal sequence characteristic for periplasmic respiratory complexes 

(Berks et al, 2000). Moreover, experimental evidence is available that the reductive 

dehalogenases present in Dehalococcoides ethenogenes are indeed located at the outside of 

the cytoplasmic membrane, indicating that unequivocal elucidation of the topology of 

reductive dehalogenases has to await further study (Nijenhuis & Zinder, 2000). Major 

characteristics of all enzymes are summarized in Table 1.1. 

The first dehalogenating enzyme that has been purified from a halorespiring pure culture 

and characterized at the biochemical level, was the inducible 3-CB reductive dehalogenase 

from the sulfate reducing Desulfomonile tiedjei (Ni et al, 1995). As for all reductive 

dehalogenases isolated since then, the enzymatic activity could be measured in vitro using 

reduced MV {E0' = -446 mV) rather than benzyl viologen (BV, Eo = -360 mV) as artificial 

electron donor. The enzyme was purified from the membrane fraction as a heterodimer, 

which was insensitive to oxygen. A yellowish chromophore, proposed to be a heme, was 

present in the small 37-kDa subunit of the enzyme. In vivo, the reductive dehalogenation of 

w-chlorinated phenols and chlorinated ethenes (PCE, TCE) is co-induced by 3-CB, 

suggesting co-metabolic conversion of these compounds by the 3-CB reductive 

dehalogenase. However, no data are available for the purified enzyme (Mohn & Kennedy, 

1992; Townsend & Suflita, 1996). 

In contrast to the reductive dehalogenase from Desulfomonile tiedjei, all other proteins 

characterized to date have been isolated as monomers, probably containing Fe-S clusters as 

well as a corrinoid as cofactors, indicating a common mode of catalytic action (Table 1.1, see 

below). 

Involvement of Transition Metal Cofactors and Fe-S Clusters in Catalysis 

Photoreversible inactivation by iodoalkanes indicated that cob(I)alamin is probably 

involved in the reductive dehalogenation of chlorinated aliphatic and aromatic compounds in 

most halorespiring bacteria (Neumann et al, 1995; Schumacher & Holliger, 1996; Miller et 

al, 1997; Magnuson et al, 1998; van de Pas, 2000). The 3-CB reductive dehalogenase from 

Desulfomonile tiedjei was not inhibited by 250 mM 1-iodopropane, and it has been 

concluded that no corrinoid is involved in its catalytic activity (Louie & Mohn, 1999). 

Rather, heme (yet another transition metal cofactor) seems to be present in the small subunit 

of this enzyme (Ni et al, 1995). However, in two cases, namely the 3-chloro-4-hydroxy-

phenylacetic acid (Cl-OHPA)- and PCE reductive dehalogenases from Desulfitobacterium 
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hqfniense and Dehalococcoides ethenogenes, respectively, the involvement of a corrinoid 

was demonstrated despite the fact that no inhibition by 1-iodopropane was observed 

(Christiansen et al, 1998; Magnuson et al, 1998). This indicates that it can not be 

unambiguously excluded that a corrinoid plays a role in the Desulfomonile tiedjei 

dehalogenase. It is noteworthy that for different classes of transition metal cofactors, 

including corrinoids and hemes, abiotic reductive dehalogenation activity has been 

demonstrated, indicating their potential role as cofactors also in enzyme catalyzed 

dechlorination (Gantzer & Wackett, 1991; Glod et al, 1997). 

For two enzymes, the presence of cofactors and their involvement in catalytic activity has 

been demonstrated by optical and electron paramagnetic resonance (EPR) spectroscopic 

analysis. Studies on the purified ort/*o-chlorophenol (o-CP) reductive dehalogenase of 

Desulfitobacterium dehalogenans revealed the presence of a cobalamin (£7M(CO1+/2+) = -370 

mV and £w(Co2+/3+) > 150 mV), one [4Fe4S] cluster {Em « -440 mV) and one [3Fe4S] 

cluster {Em ~ +70 mV). The reoxidation of fully (light/deazaflavin/EDTA) reduced enzyme 

with Cl-OHPA yielded base-off cob(II)alamin (van de Pas et al, 1999). Similar results were 

obtained with purified PCE reductive dehalogenase from Dehalobacter restrictus. However, 

this enzyme contains two [4Fe4S] clusters with Em ~ -480 mV, rather than one high- and one 

low-potential cluster (Schumacher et al, 1997). The observed redox potentials of the 

corrinoid are significantly higher than those found for other corrinoid containing enzymes, 

indicating that activation is probably not required prior to reduction to the Co(I)-state. 

Rather, this could easily be accomplished by the low-potential Fe-S centers. It was therefore 

suggested that a single-electron transfer occurs from a yet unknown electron donor via the 

two cubanes and the corrinoid to the chlorinated substrate (Schumacher et al, 1997). 

Nevertheless, experimental proof for a single-electron transfer yielding an alkyl-radical 

intermediate is still lacking. 

Alternatively, Wohlfarth & Diekert proposed that the dehalogenation reaction proceeds 

through addition of cob(I)alamin to a carbon of the halogenated substrate with subsequent (3-

elimination of a chlorine ion (Wohlfarth & Diekert, 1997). This model assumes the splitting 

of electrons into one low-potential and one high-potential electron via the two Fe-S clusters. 

The low-potential electron would be required for the reduction of cob(II)alamin to 

cob(i)alamin prior to catalysis, the high potential electron for the reduction of cob(III)alamin 

to cob(II)alamin after dechlorination (Wohlfarth & Diekert, 1997). 
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Figure 1.3 Proposed reaction mechanisms of (A) corrinoid-containing PCE reductive dehalogenases according 

to (Holliger et al., 1999) and (B) o-CP reductive dehalogenase from Desulfitobacterium dehalogenans (van de 

Pas etal, 1999). 

However, it has recently been observed that the PCE reductive dehalogenases from both 

Dehalospirillum multivorans and Desulfitobacterium frappieri PCE-S also convert trans-1,3-

dichloropropene to 1-chloropropene. This favors the involvement of a one-electron transfer 

mechanism as it was suggested for the Dehalobacter restrictus PCE reductase rather than the 

proposed p-elimination, since only the former would yield the actual dehalogenation product 

(Fig. 1.3A) (Holliger et al, 1999). 

Still, in both enzymes for which the different cofactors have been analyzed by EPR 

spectroscopic analysis, the corrinoid could not be oxidized to the cob(III)alamin form, 

suggesting that it might not play a role in the catalytic cycle of reductive dehalogenation. 

Similarly, it was proposed that cob(III)alamin is not involved in the reductive dehalogenation 

of PCE by free cobalamin (Glod et al, 1997). Aiming at the incorporation of all experimental 

evidence obtained to date, yet another reaction mechanism can be proposed for the o-

chlorophenol reductive dehalogenase from Desulfitobacterium dehalogenans (Fig. 1.3B) 

(van de Pas et al, 1999). This model involves activation of the oxidized cob(IT)alamin to 

cob(I)alamin by an electron from the low-potential [4Fe4S] cluster. The reduced 

cob(I)alamin might then donate one electron to the chlorinated substrate, yielding the release 

of a chlorine ion and an alkyl-radical intermediate, which, however, has not been 

unambiguously demonstrated. The dehalogenated product would then be released following 

the transfer of a second electron from the high-potential [3Fe4S] cluster. Future experiments 

have to reveal, whether both, haloalkene- and haloaryl reductive dechlorination proceed 
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through identical mechanisms, or whether the various enzymes catalyze the reactions along 

similar, albeit different pathways. 

Molecular Characteristics of Reductive Dehalogenases 

Using a reversed genetics approach based on the N-terminal amino acid sequences of the 

purified enzymes, the o-CP- and PCE reductive dehalogenase-encoding genes were isolated 

from genomic libraries of Desulfitobacterium dehalogenans, Dehalospirillum multivorans 

and Desulfitobacterium strain PCE-S, respectively, cloned and sequenced (Neumann et al, 

1998; Neumann et al, 1999; van de Pas et al, 1999). In all cases, sequence analysis revealed 

the presence of two closely linked genes: (i) cprA andpceA, coding for the catalytic subunit 

of the respective reductive dehalogenases; and (ii) cprB, pceB and orfl, encoding small 

integral membrane proteins of 11, 8.4 and 11 kDa, that are composed of two (PceB) or three 

(CprB, Orfl) transmembrane helices (Fig. 1.4). As cotranscription of both genes could be 

demonstrated for Desulfitobacterium dehalogenans and Dehalospirillum multivorans, it has 

been proposed that the integral membrane protein acts as a membrane anchor for the 

reductive dehalogenase (Neumann et al, 1998; van de Pas et al, 1999; Smidt et al, 2000). 

Dehalospirillum I I 
multivorans . ' 

Desulfitobacterium i 
PCE-S I 

pceA 

T N 
Leader Fe/S 

r 
Leader pe/S 

cprB • ^ B cprA T Desulfitobacterium 
dehalogenans 

= Shine Dalgarno sequence 

= Promoter r 
f = Terminator 

1 kb 

Figure 1.4 Comparison of o-chlorophenol- and PCE reductive dehalogenase-encoding operons from different 

halorespiring microorganisms (Neumann et al., 1998; Neumann et al., 1999; van de Pas et at, 1999; Smidt et 

al, 2000). 
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The smaller size and lack of a third transmembrane helix in PceB, as compared to the 

Desulfitobacterium counterparts, might explain the significantly looser attachment of the 

Dehalospirillum catalytic subunit to the cytoplasmic membrane, as it was observed during 

purification (Neumann et al, 1996). 

Furthermore, all reductive dehalogenases share a rather long twin arginine (RR) signal 

sequence of 30 to 42 amino acids, which is cleaved off in the purified proteins (Fig. 1.5). 

These signal peptides (consensus (S/T)-R-R-x-F-L-K) are thought to play a major role in the 

maturation and translocation of mainly periplasmic proteins binding different redox cofactors 

by the recently described Twin Arginine Translocation (TAT) system (Berks et al, 2000). 

This is in obvious contradiction to a possibly cytoplasmic orientation of the reductive 

dehalogenases, and the only other RR-enzyme with a proposed cytoplasmic location is the E. 

coli DMSO reductase (Weiner et al, 1998). It has been hypothesized that the presence of a 

membrane anchor might prevent translocation by the TAT-system (Neumann et al, 1998). 

Still, the actual role of the TAT system in maturation and, possibly, translocation of reductive 

dehalogenases from halorespiring microorganisms deserves further study. 

CprA 
PceA 
PceS 
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AETMN 
GVPGA 
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: 35 

CprA 
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LAPDKPIDFGLLDfSRV&iSlftDNgBNDAIT FDEDPIE-YNGYLR WNSDFKKgrE : 369 
LVH>KPIDJ?SVTBifaE,I®a®UJEa3SKAITEGPRTPEGRSIHNQSGKLQ HONDYMSgLG : 4 1 1 

PSWRElSslSCKBiBJAaSAQAISHEKDPKVLQPEDCEASENPYTEKSfHVBSERBGS 

CprA 
PceA 
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Figure 1.5 Partial primary sequence alignment of reductive dehalogenases from halorespiring bacteria. The 

alignment was performed using the programs Clustal X and GeneDoc (Thompson et al, 1997; K. B . Nicholas 

& H. B. J. Nicholas, GeneDoc: a tool for editing multiple sequence alignments, 1997). The apparent sites of 

leader cleavage, deduced from the N-terminal sequence of the purified proteins, are indicated by the vertical 

arrow. Conserved residues are highlighted as follows: conserved residue; ifli^Mfflfflj; ^ ^ ^ Q J ^ ^ ^ f f i 

[ ^ Q ^ ^ ^ ^ ^ . Conserved tryptophan and histidine residues are indicated by stars. CprA, Desulfitobacterium 

dehalogenans o-CP reductive dehalogenase (Rdh) (ace. no. AAD44542); PceA, Dehalospirillum multivorans 

PCE-Rdh (ace. no. AAC60788); PceS, Desulfitobacterium PCE-S PCE-Rdh (Neumann et al, 1999). 
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The presence of two Fe-S clusters, as determined by EPR-analysis, was confirmed by the 

identification of one ferredoxin-like and one truncated Fe-S cluster binding motif in the 

sequence of CprA (Fig. 1.5). The same two motifs are also present in the sequence of the two 

PCE reductive dehalogenases, indicating a conserved mode of intramolecular transfer of 

electrons to the enzyme's active site that contains the cobalamin. These enzymes thus might 

differ in Fe-S cluster contents from the PCE reductive dehalogenase of Dehalobacter 

restrictus, for which EPR analysis had indicated the presence of 2 [4Fe4S] clusters of 

identical midpoint potential. Similarly, 3 Fe-S clusters have been suggested for the Cl-OHPA 

reductive dehalogenase from Desulfitobacterium hafniense. Nevertheless, these differences 

still have to be supported by the yet unidentified primary structures of both proteins. 

Although the reductive dehalogenases share highly conserved sequences in the C-terminal 

part of the proteins, they all lack the consensus sequence for the binding of the corrinoid 

cofactor, which is common to known methylcobalamin-dependent methyltransferases and 

mutases (Ludwig & Matthews, 1997). This is, however, not surprising as EPR analysis 

revealed that the active CprA enzyme contains the corrinoid in the base-off form, which is in 

contrast to the above mentioned proteins (van de Pas et al., 1999). Of special interest is the 

presence of highly conserved tryptophan and histidine residues that have been shown or 

proposed to be involved in the stabilization of the leaving halide in hydrolytic dehalogenases 

and dichloromethane dehalogenases, respectively (Fig. 1.5) (Marsh & Ferguson, 1997; 

Damborsky & Koca, 1999). 

The elucidation of structure-function relations and the identification of residues involved 

in catalysis in this novel class of corrinoid-containing reductases will have to await the 

availability of a structural model as well as heterologous expression systems, which are an 

obligate prerequisite for site-directed- and other mutagenesis approaches. Recently, 

heterologous expression of the PCE reductive dehalogenase-encoding gene pceA from 

Dehalospirillum multivorans could be achieved in Escherichia coli in the presence of a 

helper plasmid, which supplied the expression host with the rare E. coli tRNA^8, correcting 

for differences in codon usage between E. coli and Dehalospirillum multivorans. However, 

expression of the full-length pceA led to the production of unprocessed inactive pre-protein, 

still containing the RR-signal peptide. Neither truncation of the signal sequence from the 

construct nor expression in the presence of Dehalospirillum multivorans corrinoids led to 

functional expression (Neumann et al, 1998). 
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Multiple Activities in Halorespiring Bacteria - Involved Enzymes and Evolutionary 

Aspects 

It is known from several halorespiring bacteria that they possess multiple dechlorinating 

activities. Thus, the question arises, whether this is due to single enzymes with rather broad 

substrate specificities or a set of highly specific isoenzymes. Support for the latter scenario 

has been obtained by substrate-dependent differential induction patterns in several 

Desulfitobacterium spp. 

Desulfitobacterium frappieri PCP-1 has been shown to possess one specific 

dehalogenating system inducible for ort^o-dehalogenation and one for meta- and para-

dehalogenation (Bouchard et al, 1996). Moreover, Cl-OHPA is transformed to 2-

chlorophenol rather than being dehalogenated, indicating, that the ort/?o-dehalogenating 

enzyme system differs from the o-CP- and Cl-OHPA reductive dehalogenases isolated from 

Desulfitobacterium dehalogenans and Desulfitobacterium hafniense (Dennie et al, 1998). 

Desulfitobacterium PCE1 is able to reductively dehalogenate as well o-chlorinated 

phenolic compounds as well as PCE. However, cells grown in the presence of Cl-OHPA as 

the electron acceptor showed only 0.25% of the PCE reductive dehalogenation activity of 

cells that used PCE as electron acceptor, indicating that two distinct enzyme systems might 

be involved in both activities (Gerritse et al, 1999). As the o-chlorophenol reductive 

dehalogenase of the closely related Desulfitobacterium dehalogenans does not convert PCE, 

it is tempting to speculate that the low PCE dechlorinating activity present in this organism 

could be due to a similar protein as it is active in Desulfitobacterium PCE1, of which either 

catalytic functionality or induction have been drastically impaired (Wiegel et al, 1999). 

Similarly, the 3,5-DCP meta-dechlorinating activity of Desulfitobacterium hafniense could 

be possibly due to a distinct enzyme, which might resemble the highly active catalyst in the 

closely related Desulfitobacterium frappieri PCP-1 (Christiansen & Ahring, 1996a). 

From the PCE-detoxifying Dehalococcoides ethenogenes, two distinct enzyme systems 

have been partially purified, a 51-kDa PCE reductive dehalogenase and a 61-kDa TCE/cis-

DCE reductive dehalogenase (Magnuson et al, 1998). Recently, the partial genome sequence 

of Dehalococcoides ethenogenes has been released, and sequence comparison led to the 

identification of at least sixteen non-identical copies of potentially reductive dehalogenase-

encoding genes. Moreover, these were all closely linked to genes, coding for CprB/PceB like 

small hydrophobic proteins of-10 kDa (Preliminary sequence data was obtained from The 

Institute for Genomic Research website at http://www.tigr.org). The presence of these 
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multiple alleles in the genome of Dehalococcoides ethenogenes might reflect a common 

strategy that should enable the organism to relatively fast acquire novel degradation 

capacities upon exposure to an environmental trigger such as the anthropogenic release of 

non-natural halogenated hydrocarbons. It has been suggested that the cryptification of 

dehalogenase genes and their decryptification by environmentally directed mutations might 

play an important role in adaptive evolution (Thomas et al, 1992; Hill et al, 1999). Hill and 

co-workers used degenerated primers to PCR-amplify halocarboxylic acid dehalogenase-

encoding genes (deh) from a wide variety of bacterial isolates. Expression studies on the 

identified genes allowed for the discrimination between cryptic or silent, as well as active 

deh genes, and yielded the identification of several cryptic genes that either encoded non

functional gene products or had been silenced by the absence of an active promoter (Hill et 

al, 1999). It is tempting to speculate that e.g. the high PCE reductive dehalogenase activity 

in Desulfitobacterium PCE1 and its hardly detectable presence in the closely related 

Desulfitobacterium dehalogenans might be another example of such a silencing / unsilencing 

process. 

The Halorespiratory Chain 

Physiological, biochemical and molecular genetic approaches have been used to unravel 

structure, function and regulation of the halorespiratory electron transfer chain. Studies have 

mainly focused on halorespiratory chains in which either hydrogen or formate serves as the 

electron donor, as in these cases energy can only be conserved by electron-transport-coupled 

phosphorylation. For several organisms, additional evidence for energy conservation via a 

chemiosmotic coupling mechanism has now arisen from the application of uncouplers, 

protonophores and oxidant pulses (Mohn & Tiedje, 1991; Miller et al, 1996; Miller et al, 

1997). Based on these and other results that have been collected to date and which are 

summarized below, basic models for structure and function of halorespiratory chains have 

been proposed (Fig. 1.6A-C) (Holliger et al, 1999; Louie & Mohn, 1999). An essential 

assumption for these models is the cytoplasmic location of the dehalogenating enzyme. In 

case this is located at the outside of the cell membrane, as is suggested based on the above-

mentioned evidence, these models do not apply. An alternative model is proposed, assuming 

an extracytoplasmic orientation of the reductive dehalogenase (Fig. 1.6D). 
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Figure 1.6 Proposed models of the halorespiratory chains in Dehalospirillum multivorans (A, adapted from 
Holliger et al, 1999), Dehalobacter restrictus (B, adapted from Holliger et at., 1999), Desulfomonile tiedjei (C, 
adapted from Louie et al, 1999) and Desulfltobacterium dehalogenans (D). Abbreviations: H2ase(j), (inducible) 
hydrogenase; Fdhj, inducible formate dehydrogenase; Cytj, inducible cytochrome; Cyt b, b-type cytochrome; 
RDase, reductive dehalogenase; MK, menaquinone; Q, quinone; out/in, outer/inner face of the cytoplasmic 
membrane. 

Topology of the Halorespiratory Chain 

The enzymes catalyzing the electron donating process have been characterized from 

different halorespiring strains, indicating an extra-cytoplasmic location in all cases. In 

Desulfitobacterium strain PCE-S and Dehalospirillum multivorans, membrane-associated 

extra-cytoplasmic hydrogenases and formate dehydrogenases have been identified (Miller et 

al, 1996). Similarly, hydrogenase activity was localized on the outside of the cytoplasmic 

membrane of Desulfomonile tiedjei and Dehalobacter restrictus, as MV-dependent activity 

was similar in intact and lysed cells. Moreover, proton liberation from H2 as the electron 
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donor was inhibited by membrane impermeable Cu2+ (Holliger & Schumacher, 1994; 

Schumacher & Holliger, 1996; Louie & Mohn, 1999). A periplasmic formate dehydrogenase 

was induced in Desulfomonile tiedjei when grown in the presence of formate as the electron 

donor (Louie & Mohn, 1999). 

Based on the apparent extra-cytoplasmic location of the electron donating process and the 

proposed cytoplasmic location of the terminal reductive dehalogenase, a scalar mechanism of 

proton translocation was suggested, which would theoretically yield an FTVe" ratio of 1. 

However, from yield studies on Dehalospirillum multivorans cells grown with H2 / PCE and 

acetate as the carbon source, it was calculated that only 0.4 mol ATP were formed per mol 

CI" released, suggesting an HVe" ratio of 0.5 (Scholz-Muramatsu et al, 1995; Miller et al, 

1996). In view of the proposed reaction mechanism for PCE reductive dehalogenase, which 

requires the endergonic transfer of a high-potential electron for the reduction of 

cob(III)alamin to cob(II)alamin, the results point towards the involvement of a reversed 

electron flow, driven by the electrochemical proton potential (Fig. 1.3). As reductive 

dehalogenation was still observed in the presence of protonophores in Dehalobacter 

restrictus and Desulfomonile tiedjei, whereas proton liberation was abolished, reverse 

electron flow does not seem to be required for in vivo reductive dehalogenase activity in 

these systems (Mohn & Tiedje, 1991; Schumacher & Holliger, 1996). Contrarily, fast proton 

liberation during electron transport from H2 to PCE and TCE in Dehalobacter restrictus 

resulted in an H+/e" ratio of 1.25 ± 0.2. Similarly, an H+/3-CB ratio of 2.1 was observed 

during halorespiration in Desulfomonile tiedjei, indicating that additional vectorial proton 

translocation cannot be excluded in these systems. However, experimental proof is still 

missing. 

Electron Mediating Components of the Halorespiratory Chain 

Membrane-bound menaquinone (MK), which could possibly act as proton pump, was 

shown to be directly involved in electron mediation from hydrogenase to PCE reductase in 

Dehalobacter restrictus. Nevertheless, oxidant pulse experiments with the MK/MKH2 

analogues DMN/DMNH2 indicated that MK is not involved in vectorial proton translocation 

(Schumacher & Holliger, 1996). Furthermore, MK is presumably not the direct physiological 

electron donor for the reductive dehalogenase, suggesting the presence of an additional 

electron-mediating component, which remains to be identified (Holliger et ah, 1999). In 

contrast, it was assumed that MK is not involved in electron transfer in Dehalospirillum 
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multivorans, as PCE reduction was not effected by 2-heptyl-4-hydroxyquinoline-N-oxide 

(HOQNO), which is an inhibitor of many quinone-dependent redox reactions. However, the 

insensitivity of normally MK-dependent fumarate reduction might suggest that the inhibition 

experiment should be interpreted with caution (Miller et ah, 1996). Neither ubi- nor 

menaquinone could be detected in Desulfomonile tiedjei. However, a yet unidentified quinoid 

could be extracted from the organism. An essential function of this component in 

halorespiration was proposed based on the observation that reductive dehalogenation in 

whole cells of Desulfomonile tiedjei is severely inhibited by HOQNO. Moreover, reductive 

dehalogenation of this organism is dependent on 1,4-naphtoquinone, which might be an 

essential quinoid-precursor. However, the isolated quinoid failed to replace MV in in vitro 

activity measurements, indicating that it is not the direct electron donor for reductive 

dehalogenation (Louie & Mohn, 1999). 

Yet another class of potent electron-mediating components are the cytochromes. Both b-

and c-type cytochromes have been isolated from virtually all halorespiring bacteria. 

Nevertheless, involvement in halorespiratory electron transport has not been investigated. 

Interestingly, a high spin c-type cytochrome was co-induced with dehalogenation activity in 

Desulfomonile tiedjei, and the corresponding gene has been cloned and sequenced (Louie et 

al, 1997). The 50-kDa gene product exhibited two conserved c-type heme binding motifs 

(CxxCH), but substantially differed from known cytochromes and also no homologues could 

be identified from the Dehalococcoides ethenogenes partial genome sequence. However, as 

the above-mentioned quinoid, also the induced cytochrome presumably is not the 

physiological electron donor for the dehalogenating system (Louie & Mohn, 1999). 

Regulation of Halorespiration 

It is known from physiological experiments that in several halorespiring bacteria 

described to date, reductive dehalogenase activity is induced by the presence of a 

halogenated substrate (Table 1.1). In most cases, the inducer is also substrate for the 

dehalogenating system, as might be expected. Occasionally, as it was observed for the meta-

dehalogenating enzyme in Desulfomonile tiedjei, reductive dehalogenase activity is not only 

inducible by the substrate, but by a whole variety of also non-halogenated compounds 

(DeWeerd & Suflita, 1990; Mohn & Tiedje, 1992). 
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In strains of Desulfitobacterium that contain multiple dehalogenating activities, 

independent induction of the various enzyme systems has been observed (Gerritse et al, 

1999). In at least Desulfitobacterium dehalogenans and Desulfitobacterium frappieri PCP-1, 

induction is dependent on de novo protein biosynthesis, as dehalogenating activity did not 

develop in case chloroamphenicol had been added prior to the inducer (Utkin et al, 1995; 

Dennie et al, 1998). Only for a few strains, constitutively present dehalogenating activity has 

been described to date (Neumann et al, 1994; Miller et al, 1997; Gerritse et al, 1999; 

Maymo Gatell et al, 1999). One of these is the versatile Dehalospirillum multivorans, for 

which the isolation of three different variants has been reported: one of the isolates was 

found to be inducible for its dehalogenating activity, one expressed this system constitutively 

and one isolate could not be induced by the addition of the chlorinated substrate (Neumann et 

al, 1994). 

A better understanding of the regulatory circuits that are involved not only in the 

induction, but also the occasional repression of halorespiration activity by various 

environmental factors, is believed to be highly relevant for the application of halorespiring 

microorganisms for the in situ bioremediation of contaminated environments and the 

optimization of such processes (Gerritse et al, 1999). Being one of the relevant parameters, 

the influence of alternative electron acceptors on the activity of the dehalogenating system 

has been investigated for a few isolates, indicating that particularly sulfur oxyanions are 

potential inhibitors of halorespiration (DeWeerd & Suflita, 1990; Townsend & Suflita, 1997; 

Gerritse et al, 1999). Extensive chemostat studies on the PCE dehalogenating 

Desulfitobacterium frappieri TCE1 showed that dehalogenation was especially sensitive to 

the presence of various alternative electron acceptors under electron donor-limiting 

conditions, whereas only sulfite significantly inhibited PCE reduction when the culture was 

PCE-limited (Gerritse et al, 1999). Contrarily, the presence of equimolar concentrations of 

sulfite did not inhibit Cl-OHPA dechlorination in non-acclimated cultures of 

Desulfitobacterium dehalogenans (Mackiewicz & Wiegel, 1998). 
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Detection of Halorespiration Potential and Activity 

In situ biological remediation strategies that exploit the reductive dehalogenation capacity 

of anaerobic microorganisms, are considered to be of great importance for the efficient 

removal of chlorinated pollutants such as PCE, as they potentially yield the complete 

dechlorination in a single one-phasic process (Lee et al, 1998). Such approaches may 

include the stimulation of the intrinsic dehalogenating microbiota or the augmentation with 

specific degrading populations at sites, where such organisms are not present in sufficient 

numbers. In order to identify and maintain the optimal conditions for such processes, both, 

natural attenuation and bioaugmentation strategies require reliable and efficient methods to 

follow fate, distribution and activity of the relevant dehalogenating microorganisms (Vogel, 

1996; Stapleton et al, 1998). As it is widely accepted that current microbiological culture 

techniques often capture only a minor fraction of the bacteria present in the environment and, 

in addition, require extended incubation periods, increasing efforts are currently being made 

to develop novel molecular tools for the monitoring of bioremediation processes, and the 

identification and isolation of yet unknown dehalogenating microorganisms. 

Ahring et al. used an immunofluorescence-based approach to follow fate and localization 

of Desulfomonile tiedjei added to unsterile anaerobic granular sludge. The authors could 

show that the bacteria had formed microcolonies inside the granules (Ahring et al, 1992). 

Taking a similar approach, the formation of uniformly distributed net-like structures of 

Desulfitobacterium hafniense that had been added to sterile sludge granules was 

demonstrated, suggesting that ecological parameters inside a granule, such as structure and 

viability of the present microbial community, might have a major impact on the colonization 

performance of de novo added specific strains (Christiansen & Ahring, 1996b). Comparable 

results were obtained in studies on the performance and distribution of cells of the PCE-

dechlorinating Dehalospirillum multivorans that had been added to sterile and non-sterile 

granular sludges. However, in this case, the organism was organized in microcolonies within 

the sterile granules, whereas net-like structures were observed on the surface of the living 

granules, indicating that the localization within the ecosystem also largely depends on the 

specific characteristics of the de novo introduced cells (Horber et al, 1998). Cells of 

Dehalospirillum multivorans could be specifically detected and quantified from a PCE-

dechlorinating mixed-culture biofilm from a fluidized-bed reactor using an enzyme-linked 

immunosorbent assay (ELISA), confirming that immunofluorescence-based methods are not 
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only highly suited for the detection, but to a certain extent also for the quantification of 

specific degraders in microbial ecosystems of high cell density and complexity (Bauer-

Kreisel etal, 1996). 

In a yet different approach targeting specific biomolecules, the detection of signature lipid 

biomarkers (lipopolysaccharide branched 3-hydroxy fatty acids) has been used for the 

detection of Desulfomonile tiedjei cells that had been added to aquifer sediment microcosms 

(50 g scale). With this method, the detection of > 4X106 cells / g of soil was possible, 

indicating its usefulness in the monitoring of the fate of dehalogenating microorganisms 

during bioaugmentation (Ringelberg et al, 1994). 

Although the above-mentioned approaches proved to be instrumental for the specific 

detection of various halorespiring strains in different dehalogenating systems, rather high cell 

densities of the target organism were required for reliable results. However, microbial 

communities present in e.g. polluted soils and sediments are often rather low in cell numbers, 

indicating that more sensitive methods have to be available for the application in such highly 

relevant ecosystems. 

Several 16S rRNA gene targeted PCR approaches have been reported that significantly 

improved the detection threshold. In a nested PCR approach, as little as 103 and 10s cells per 

gram of soil could be detected after introduction of Desulfitobacterium dehalogenans and 

Desulfomonile tiedjei, respectively, into soil slurry microcosms (El Fantroussi et al, 1997). 

Recently, Desulfomonile tiedjei was used for bioaugmentation at a more realistic pilot scale 

(0.5 m3), and the previously designed nested PCR approach was instrumental for monitoring 

the fate of the added strain (El Fantroussi et al, 1999). Similarly, nested PCR was used to 

detect cells of Desulfitobacterium frappieri PCP-1 in DNA extracted from soil that was 

amended with different concentrations of the organism, enabling for the detection of 100 

cells / g soil (Levesque et al, 1997). This method was subsequently further optimized for the 

development of a competitive PCR protocol to quantify Desulfitobacterium frappieri PCP-1 

in mixed bacterial populations and inoculated in soil (Levesque et al, 1998). The approach 

was applied to monitor strain PCP-1 in bioaugmented PCP-contaminated soil as well as in 

anaerobic upflow sludge bed reactors, to which it had been added to improve the PCP-

degradation performance (Beaudet et al, 1998; Tartakovsky et al, 1999). 

Taking a more physiological rather than a molecular approach, Loffler et al. could show 

that a combination of measurements of H^-consumption threshold values, and determination 

of the fraction of electrons used for reductive dechlorination was highly useful to indicate 
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whether or not halorespiration was occurring in both pure and mixed cultures (Loffler et al, 

1999). 

Very interesting results were obtained in a recent study that combined the 16S rRNA 

gene-based detection of acetate-oxidizing Desulfuromonas and hydrogenotrophic 

Dehalococcoides species with the monitoring of dechlorination activity in microcosms. In 

samples, for which the molecular approach indicated the presence of dechlorinating species 

of Desulfuromonas, acetate-dependent dechlorination was found in the microcosm 

experiments. Similarly, Dehalococcoides-specific amplicons were obtained from those 

sediments, in which dehalogenation was detected when H2 was added as the electron donor, 

indicating that such molecular approaches can indeed be a powerful tool for the prediction of 

halorespiring potential in polluted environments (Loffler et al., 2000). 

Conclusions 

It is now widely accepted that anaerobic halorespiring bacteria are among the key players 

in biological dehalogenation processes in anoxic environments. Our rapidly increasing 

knowledge on the phylogeny and molecular characteristics of these microorganisms has 

brought us to a better understanding of the novel respiratory chains they possess. The 

detailed characterization of chlorophenol- and chloroethene reductive dehalogenases from 

phylogenetically distinct halorespiring bacteria at the biochemical and genetic levels has 

revealed significant similarities in structure and function, suggesting that they comprise a 

novel class of corrinoid-containing enzymes. 

The development and optimization of culture-independent molecular approaches now 

allows for the in situ detection of reductive dehalogenation potential and activity. The 

integrated application of different halorespiration-specific molecular markers will be helpful 

in further improvement of biological remediation strategies, and will stimulate the 

exploitation of halorespiring bacteria as dedicated degraders for the clean-up of polluted 

sites. 
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PURIFICATION AND MOLECULAR CHARACTERIZATION OF 

O/?7//O-CHLOROPHENOL REDUCTIVE DEHALOGENASE, A KEY 

ENZYME OF HALORESPIRATION IN DESULFITOBACTERIUM 

DEHALOGENANS 

Bram A. van de Pas, Hauke Smidt, Wilfred R. Hagen, John van der Oost, Gosse Schraa, 
Alfons J.M. Stams and Willem M. de Vos 

Reprinted with permission from Journal of Biological Chemistry (1999) 274:20287-20292. 

Abstract 

or?/w-Chlorophenol reductive dehalogenase of the halorespiring Gram-positive 
Desulfitobacterium dehalogenans was purified 90-fold to apparent homogeneity. The purified 
dehalogenase catalyzed the reductive removal of a halogen atom from the ortho position of 3-
chloro-4-hydroxyphenylacetate, 2-chlorophenol, 2,3-dichlorophenol, 2,4-dichlorophenol, 2,6-
dichlorophenol, pentachlorophenol, and 2-bromo-4-chlorophenol with reduced methyl 
viologen as electron donor. The dechlorination of 3-chloro-4-hydroxyphenylacetate was 
catalyzed by the enzyme at a Vmax of 28 U/mg protein and a Km of 20 uM. The pH and 
temperature optimum were 8.2 and 52°C, respectively. EPR analysis indicated one [4Fe-4S] 
cluster (midpoint redox potential (Em) = -440 mV), one [3Fe-4S] cluster (Em = +70 mV), and 
one cobalamin per 48-kDa monomer. The Co(I)/Co(II) transition had an Em of -370 mV. Via 
a reversed genetic approach based on the N-terminal sequence, the corresponding gene was 
isolated from a D. dehalogenans genomic library, cloned, and sequenced. This revealed the 
presence of two closely linked genes: (i) cprA, encoding the o-chlorophenol reductive 
dehalogenase, which contains a twin-arginine type signal sequence that is processed in the 
purified enzyme; (ii) cprB, coding for an integral membrane protein that could act as a 
membrane anchor of the dehalogenase. This first biochemical and molecular characterization 
of a chlorophenol reductive dehalogenase has revealed structural resemblance with 
haloalkene reductive dehalogenases. 
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Introduction 

Anaerobic bacteria that are able to conserve metabolic energy from the dechlorination of 

chlorinated compounds have gained a lot of attention because of their role in bioremediation 

of contaminated sites and the novel respiration pathways they possess (El Fantroussi et al, 

1998). Halorespiring bacteria have been found within the groups of low G+C Gram-positives, 

green non-sulfur bacteria, and 8- and e- proteobacteria. These bacteria can use chloroalkenes, 

e.g. tetrachloroethene (PCE) and trichloroethene (TCE) or chloroaromatic compounds such as 

chlorophenols or 3-chlorobenzoate as the terminal electron acceptor. 

The halorespiratory pathway of anaerobic PCE degradation has been studied in some 

detail. A key enzyme in this respiratory pathway is the PCE reductive dehalogenase, which 

catalyzes the reductive removal of a chlorine atom from PCE and TCE. A 58-kDa PCE 

reductive dehalogenase was purified from Dehalospirillum multivorans, which contains 

cobalamin and probably two iron-sulfur clusters (Neumann et al, 1996). Cloning and 

sequencing of the corresponding pceA gene revealed the presence of an additional open 

reading frame, pceB, being cotranscribed with pceA and coding for an 8-kDa membrane-

spanning protein (Neumann et al, 1998). The PCE reductive dehalogenases isolated from 

Dehalobacter restrictus (60 kDa) and Desulfitobacterium frappieri strain PCE-S (65 kDa) 

resemble the enzyme from Dehalospirillum multivorans with respect to cofactor content and 

catalytic properties (Schumacher et al, 1997; Miller et al., 1998). Electron paramagnetic 

resonance (EPR) analysis of the D. restrictus enzyme confirmed the presence of cobalamin 

and two [4Fe-4S] clusters. All chloroalkene reductive dehalogenases characterized up to now 

are monomelic and either membrane-bound or membrane-associated. 

Enzymes involved in chloroaryl respiration have been studied in Desulfomonile tiedjei and 

Desulfitobacterium species (Ni et al, 1995; Loffler et al, 1996; Christiansen et al, 1998). 

However, no further molecular characterization of these enzymes was reported. 

We investigated ortAo-chlorophenol dechlorination in Desulfitobacterium dehalogenans. 

This organism is able to couple the reductive dechlorination of different ort/jo-chlorinated 

phenolic compounds to growth with lactate, pyruvate, formate, or hydrogen as electron donor 

(Utkin et al, 1994; Utkin et al, 1995). Comparison of biomass yields on pyruvate and 

different electron acceptors indicated that chlorophenol dechlorination in D. dehalogenans is 

an energy-yielding process (Mackiewicz & Wiegel, 1998). This study for the first time 

describes the purification and characterization of the catalytic subunit of the ortho-
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chlorophenol reductive dehalogenase (o-CP dehalogenase) from Desulfitobacterium 

dehalogenans. Its redox properties were studied by EPR spectroscopy, and the corresponding 

cprA gene was cloned and characterized revealing structural resemblance with haloalkene 

reductive dehalogenases. 

Experimental Procedures 

Bacterial Strains, Plasmids, and Growth Conditions 

D. dehalogenans strain JW/IU-DC1 (DSM 9161) was cultivated under anaerobic 

conditions (100% N2 gas phase) in 25-liter vessels containing 20 liters of basal medium as 

described by Neumann et al. (Neumann et ah, 1994), supplemented with 0.2% yeast extract, 

20 mM lactate sodium salt, 20 mM 3-chloro-4-hydroxyphenyl acetate (Cl-OHPA), 50 mM 

NaHCCh, and trace elements and vitamin solution as recommended by the German 

Collection of Microorganisms. The 20-liter cultures were incubated at 37°C for 2 days. After 

1 day of incubation, 250 ml of 2 M NaOH was added to the culture to avoid acidification of 

the medium. 

Escherichia coli XLl-Blue (Stratagene) was used as a host for cloning vectors. The strain 

was grown in Luria Bertani medium at 37°C, and ampicillin was added at 100 |J.g/ml when 

appropriate. The cloning vectors pUC18 and pUC19 were purchased from Amersham 

Pharmacia Biotech and pMON38201 was obtained from Monsanto. 

Preparation of Cell Extracts 

Late-exponential-phase cultures of D. dehalogenans were harvested by continuous flow 

centrifugation at 16,000 x g (Biofuge 28RS, Heraus Sepatech) which yielded 1.6 g of 

concentrated cells per liter of culture. The concentrated cells were stored at -20°C. 8 g cells 

was resuspended in 8 ml of buffer 1, consisting of 100 mM potassium phosphate (KPi), pH 

7.5, and 2.5 mM dithiothreitol (DTT). A few crystals of DNase I were added to the cell 

suspension. Cells were broken by sonication (Vibra, Sonic Materials Inc.) under anaerobic 

conditions. The cell debris was removed by centrifugation for 5 min at 20,000 x g. The 

supernatant was incubated for 10 min in the presence of 0.5 M KC1 and 0.02% Triton X-100 

and then separated into a membrane fraction and a soluble fraction by centrifugation for 90 

min at 140,000 x g and 4°C. The membrane fraction was resuspended in 8 ml of buffer 1 
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supplemented with 1% Triton X-100 and 20% glycerol and incubated for 60 min under 

anaerobic conditions at 4°C. The insoluble fraction was removed from this preparation by 

centrifugation for 60 min at 140,000 x g and 4°C. The solubilized enzyme fraction was stored 

under a N2 gas phase at 4°C. 

Column Chromatography 

All chromatographic steps were performed by fast protein liquid chromatography 

(Amersham Pharmacia Biotech) in an anaerobic chamber with N2/H2 (95/5%) gas phase. The 

Triton X-100 concentration of the sample was raised to 3% before it was applied to a column 

to prevent protein aggregation. The solubilized enzyme preparation was loaded on a Q-

Sepharose column (2.2 x 8.9 cm) (Amersham Pharmacia Biotech) equilibrated with buffer A 

(50 mM KPi pH 6.0, 0.1% w/v Triton X-100, 20% glycerol, and 1 mM DTT). The column 

was eluted with a 75-ml linear gradient from 0 to 300 mM NaCl in buffer A at a flow of 2.5 

ml/min. The o-CP dehalogenase activity was eluted at a NaCl concentration of approximately 

180 mM. Fractions containing the highest dechlorinating activity were pooled and diluted 

with an equal volume of buffer A. The sample was applied on a Mono Q column (Amersham 

Pharmacia Biotech) equilibrated with buffer A. The enzyme was eluted with a 40-ml linear 

gradient from 0 to 400 mM NaCl in buffer A and a flow rate of 1.0 ml/min at a NaCl 

concentration of 180 mM. 

Combined fractions containing dechlorinating activity were mixed with an equal volume 

of buffer B (50 mM Tris-HCl, pH 7.8, 0.1% w/v Triton X-100, 20% glycerol, and 1 mM 

DTT) and applied on a Mono Q column equilibrated with the same buffer. The enzyme 

activity was eluted with a 40-ml linear gradient from 0 to 400 mM NaCl in buffer B, and a 

flow rate of 1.0 ml/min at a NaCl concentration of 280 mM. 

Enzyme Assay 

Chlorophenol reductive dehalogenase activity was assayed in stoppered 1-cm cuvettes at 

30°C and pH 7.8 by photometric recording of the oxidation of titanium(III)citrate reduced 

methyl viologen at 578 nm (£573 = 9.7 mM'1 x cm"1) as described by Schumacher and 

Holliger (Schumacher & Holliger, 1996). The assay mixture contained 0.3 mM methyl 

viologen, and had an initial absorption at 578 nm of 2.6. The assay was started by the 

addition of 20 uT of 50 mM Cl-OHPA to give a final concentration of 1 mM Cl-OHPA. One 

unit is defined as the amount of enzyme that catalyzed the reduction of one junol of chlorinated 
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substrate or the oxidation of two nmol of reduced methyl viologen per minute. The same specific 

activity was obtained whether methyl viologen oxidation, Cl-OHPA disappearance, or 4-

hydroxyphenyl acetate appearance was followed. The protein content of the samples was 

determined according to Bradford with bovine serum albumin as standard (Bradford, 1976). 

Kinetic Parameters 

The pH optimum was determined in a 200 mM Tris-maleate buffer ranging from pH 5.5 to 

9.0. Michaelis-Menten constants were determined from Lineweaver-Burk representations of 

data obtained by determining the initial rate of Cl-OHPA reduction under the assay 

conditions described above and using 5 uM to 10 mM substrate in the cuvette. 

Composition of o-CP Dehalogenase 

The molecular mass of the denatured protein was determined by SDS-polyacrylamide gel 

electrophoresis according to Laemmli (Laemmli, 1970). A low molecular weight marker 

(Biorad) was used as reference. The gels were stained with Coomassie Brilliant Blue R50. 

The concentration of acid labile sulfur of three individual samples was determined according 

to Rabinowitz (Rabinowitz, 1978). The iron and cobalt content of three independent enzyme 

preparations was measured by inductively coupled plasma mass-spectrometry (Elan 6000, 

Perkin-Elmer). The protein concentration of the samples was determined by measuring the 

absorbance changes in the Rose Bengal binding assay as described by Elliot & Brewer with 

bovine serum albumin as standard (Elliott & Brewer, 1978). A correction factor was 

determined with purified o-CP dehalogenase to compare the Rose Bengal protein 

determination and the Bradford protein determination. A correction factor of 1.10 was 

applied for the Rose Bengal determinations. 

Cobalamin and Iron-Sulfur Cluster Analysis by EPR 

EPR spectra were recorded on a Bruker 200 D spectrometer with cryogenics, peripheral 

equipment, and data acquisition as described previously (Pierik & Hagen, 1991). The protein 

concentration of the EPR samples was 0.4 mg/ml in buffer B. The enzyme was completely 

reduced in 45 min by deazaflavin/EDTA mediated light reduction as described by Massey 

and Hemmerich (Massey & Hemmerich, 1977). Deazaflavin was synthesized according to 

Janda and Hemmerich (Janda & Hemmerich, 1976). 
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N-Terminal Amino Acid Sequence 

Purified enzyme was transferred from a 12% SDS polyacrylamide gel onto a 

polyvinylidene difluoride membrane (Immobilon polyvinylidene difluoride, Milipore 

Corporation) by blotting with a Trans-Blot SD semidry transferring cell (Biorad). Blotting 

was carried out at 14 V for 2 hours using a transfer buffer containing 48 mM Tris, 39 mM 

glycine, and 20% methanol, pH 9.1. The transferred protein was stained with Coomassie 

Brilliant Blue R-250. The N-terminal amino acid sequence of the blotted protein was 

determined as described by Schiltz et al. (Schiltz et al., 1991). 

DNA Isolation, Manipulation and Oligonucleotides 

Chromosomal DNA from D. dehalogenans was isolated as follows. Protoplasts were 

prepared from 12 ml of culture (A^o = 0. 4) as described by van Asseldonk et al, recovered 

at 13,000 g for 2 min, and resuspended in 100 (0.1 of THMS buffer (30 mM Tris-HCl, pH 8.0, 

and 3 mM MgCl2 in 25 % sucrose) (van Asseldonk et al, 1993). After the addition of 400 ul 

of 50 mM Tris-HCl (pH 8.0), containing 5 mM EDTA, 50 mM NaCl and 0.5 % SDS, 

chromosomal DNA was purified through successive steps of phenol/chloroform extraction 

and recovered by ethanol precipitation. 

Plasmid DNA was isolated from E. coli by using the alkaline lysis method, and standard 

DNA manipulations were performed according to established procedures (Sambrook et al, 

1989) and manufacturers instructions. Enzymes were purchased from Life Technologies Inc, 

Roche Molecular Biochemicals, or New England Biolabs. Oligonucleotides and [a-32P]dATP 

were obtained from Life Technologies Inc., and Amersham Pharmacia Biotech, respectively. 

Prehybridization and hybridization were performed at 65°C and 50°C, respectively. 

Posthybridization washes were conducted at 40°C. 

Oligonucleotides used in this study were BG 444 (5' GCI GA(A/G) ACI ATG AA(C/T) 

TA(C/T) GTI CCI GGI CCI ACI AA(C/T) GCI GCI (A/T)(C/G)I AA(A/G) (C/T)TI GGI 

CCI GT 3', nucleotides 644 - 703), BG 458 (5' GCC GGA GCC TTG ATC GC 3', 

nucleotides 427 - 411) and BG 475 (5' GGC AGG TCT GGG AGA ATT G 3', nucleotides 

1366 - 1384). In order to restrict the extent of degeneration for BG 444, inosine (I) was used 

at 3- or 4-fold degenerated positions. 
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DNA Amplification by Inverse PCR 

Inverse PCR (Triglia et ah, 1988) was performed as follows. Chromosomal DNA was 

digested with Hindi and ligated at a concentration of 0.5 ng/(jl 5 ng of self-ligated DNA was 

used as the template in a 25-fi.l PCR reaction, containing the following: 2 ng/|xl each primer; 

2.25 mM MgCl2; 200 uM dATP, dCTP, dGTP, and dTTP; and 1 unit of Expand Long 

Template enzyme mixture (Roche Molecular Biochemicals). The DNA was amplified using 

the GeneAmp PCR System 2400 (Perkin Elmer Cetus). After preheating to 94°C for 2 min, 

35 cycles were performed, consisting of: denaturation at 94°C for 20 s, primer annealing at 

50°C for 30 s, and elongation at 68°C for 3 min. After 10 cycles, the elongation time was 

extended with 20 s/cycle. A final extension of 7 min at 68°C was included. PCR products 

were purified from agarose gel by Gene Clean (Bio 101) and cloned into pMON38201, cut 

with Xcml. 

DNA Sequencing and Sequence Analysis 

DNA sequencing was performed using a Li-Cor DNA sequencer 4000L. Plasmid DNA 

used for sequencing reactions was purified with the QIAprep Spin Miniprep kit (Qiagen 

GmbH). Reactions were performed using the Thermo Sequenase fluorescent labeled primer 

cycle sequencing kit (Amersham Pharmacia Biotech). Infrared labeled oligonucleotides were 

purchased from MWG Biotech. Sequence similarity searches and alignments were performed 

using the BLAST 2.0 program (Altschul et ah, 1997) (NCBI) and the programs Clustal X and 

GeneDoc (Thompson et ah, 1997; K. B. Nicholas & H. B. J. Nicholas, GeneDoc: a tool for 

editing multiple sequence alignments, 1997), respectively. 

Nucleotide Sequence Accession Number 

The nucleotide sequence of the Hindi fragment carrying the cprA locus has been 

deposited in the GenBank database under GenBank Accession Number AF115542. 
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Table 2.1 Purification scheme for orrto-chlorophenol reductive dehalogenase of D. dehalogenans. o-CP 

dehalogenase activity was monitored throughout the fractionations of the cell extract of D. dehalogenans. 

Sample 

Cell free extract 
Membrane fraction 

Solubilized fraction 

Q-sepharose fraction 
MonoQ, pH 6.0, fraction 

MonoQ, pH 7.8, fraction 

One unit (U) of activity is 

Protein 
mg 

419.0 

240.0 
91.0 

21.1 
4.4 

2.1 

Activity 

U* 

129 
101 

109 

101 
64 

59 

defined as the oxidation of 2 

Yield 

% 
100 
78 

84 

78 
50 

46 

Specific activity 
mU/mg 

308 
423 

1210 

4786 
14612 
27872 

pmol of reduced methyl violof 

Purification 
factor 

1.0 
1.4 

4.0 

15.0 
47.0 

90.0 

»en. 

Results 

Purification and Characterization of o-CP Dehalogenase 

o-Chlorophenol reductive dehalogenase was purified under strict anaerobic conditions 

from the membrane fraction of D. dehalogenans grown on lactate and Cl-OHPA (Table 2.1). 

The specific activity increased 90-fold upon purification and amounted to 28 U/mg protein 

with reduced methyl viologen as an artificial electron donor. The purified enzyme had a pH 

and temperature optimum of 8.1 and 52°C, respectively. At 30°C, the enzyme showed 

Michaelis-Menten kinetics for Cl-OHPA. The Km for this chlorinated substrate was 

determined to be 20 uM at a methyl viologen concentration of 0.3 mM. Cl-OHPA showed no 

inhibitory effect up to 10 mM, which was the highest concentration used. Several 

halogenated compounds were tested as possible alternative substrates for o-CP dehalogenase. 

Activity of o-CP dehalogenase was observed with 2-chlorophenol (2-CP), 2,3-dichlorophenol 

(2,3-DCP), 2,4-DCP and 2,6-DCP, and pentachlorophenol (PCP) as substrate (Table 2.2). 

3-CP, 4-CP, and 2,5-DCP were not dechlorinated. Additionally, 2-bromo-4-chlorophenol 

(2Br-4CP), but not 2-fluoro-4-chlorophenol (4C1-2FP), could be dehalogenated. This 

confirms that reductive dehalogenation is the reaction mechanism of o-CP dehalogenase, 

since bromide and chloride are more readily reductively removed than fluoride. No activity 

was measured with PCE or TCE, indicating that chlorinated aliphatics do not serve as a 

substrate for the o-CP dehalogenase. 
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Table 2.2 Substrate specificity profile of purified o-CP dehalogenase. The rate of methyl viologen oxidation 

catalyzed by o-CP dehalogenase in the presence of different possible electron acceptors was 

spectrophotometrically followed at 30°C. The reaction mixture contained 0.3 mM methyl viologen, 7 ug of 

dehalogenase, 1 mM electron acceptor, and 50 mM Tris-HCl at pH 7.8. One unit is defined as the amount of 

enzyme that catalyzed the oxidation of 2 umol of reduced methyl viologen per min. 3-CP, 4-CP, 2,5-DCP, 4C1-2FP, 

PCE, and TCE were dechlorinated at a rate below the detection limit (0.12 U/mg). 

Substrate 

Cl-OHPA 

2-Br-4-CP 
2,3-DCP 

2,4-DCP 

2,6-DCP 

PCP 

2-CP 

Specific activity 
(U/mg) 

12.0 

24.3 
15.5 

4.2 

0.8 
0.2 

0.2 

Ratio % 

(compared to Cl-OHPA) 

100 

202 

129 
35 

7 
2 

2 

SDS-polyacrylamide gel electrophoresis analysis of the purified enzyme preparation 

revealed one band of approximately 48 kDa (Fig. 2.1). An accurate determination of the 

native size of the enzyme was not possible due to the high concentration of detergent needed 

to prevent protein aggregation (data not shown). 

The analysis of metals revealed the presence of 0.7 ± 0.1 mol cobalt and 7 ± 1.4 mol of 

iron atoms per mol of monomer. Acid labile sulfur analysis showed 9.9 ± 1.2 mol of sulfur 

atoms / mol of monomer. We conclude from these results and the EPR data (see below) that 1 

cobalamin and 2 iron-sulfur clusters are present per mol of enzyme. 

N-Terminal Sequence, Cloning and Sequencing of the cprA Locus 

The N-terminal amino acid sequence of the o-CP dehalogenase purified from D. 

dehalogenans was determined and revealed the sequence NH2-

AETMNYVPGPTNARSKLRPVHDFA. A 59-bp 256-fold degenerated oligonucleotide (BG 

444) was designed based on the sequence of the first 20 N - terminal amino acids. Southern 

blot analysis of £coRI-.rY/ndIII digested chromosomal DNA of D. dehalogenans revealed a 

2.7-kb fragment that hybridized strongly to radiolabeled BG 444. This fragment was cloned 

in E.coli using EcoRl - HindUl digested pUC18, resulting in pLUW910. Sequence analysis of 

the HindUl - Hindi 1.8-kb fragment of pLUW910 revealed the determined N-terminal 

amino acids immediately downstream of the HindUl site, indicating that pLUW 910 lacks the 
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translation start of the gene of interest. Therefore, the divergent primer pair BG 458 / BG 475 

was used to specifically amplify the pLUW910 upstream flanking fragment in an inverse 

PCR reaction from Hindi digested chromosomal DNA. To ensure determination of the 

correct nucleotide sequence, three independently obtained PCR products were cloned 

yielding pLUW912a-c. From these, Hindi deletion clones were prepared, giving the 

corresponding pLUW913a-c. Fig. 2.2 shows a restriction map of the DNA region cloned and 

sequenced. 

Organization of the cprA Locus 

Sequence analysis revealed the presence of two closely linked open reading frames, 

namely cprB (nucleotides 194 - 505) and cprA (nucleotides 518 - 1861). A third open reading 

frame, ORF1, starts at nucleotides 1958. Preceding each of the three open reading frames, 

potential Shine Dalgarno sequences were found (data not shown). 

The predicted gene product of cprA is a polypeptide of 447 amino acids with a molecular 

mass of 49,720 Da. The first 42 N-terminal residues of CprA comprise a leader sequence that 

is cleaved off upon maturation of the protein, leaving a mature 405-amino acid polypeptide 

with a calculated molecular mass of 45,305 Da. The leader sequence contains an RR motif 

being characteristic for a large number of mainly periplasmic proteins binding different redox 

cofactors (Berks, 1996). These twin arginine signal sequences (consensus (S/T)RR^FLK) are 

thought to play a major role in the maturation and translocation of such proteins. As all twin 

arginine signal sequences, the CprA leader sequence shows the structural characteristics of 

standard Sec signal sequences. Furthermore, the established cleavage site ~VANA4AETM~ 

follows the '-1/-3 - rule' of von Heijne (von Heijne, 1984). 

The D. dehalogenans CprA sequence reveals the presence of an extended cluster of 

cysteine residues (Cys330 - Cys387, Fig. 2.3). The first group of four cysteines Cys330 - Cys340 

is identical to the consensus sequence of bacterial ferredoxin type clusters 

(COTCXYCAXXCP), including the conserved proline at position 341 (Bruschi & Guerlesquin, 

1988). The second cluster shows the same conserved residues (Cys380 - Pro388) but lacks the 

first cysteine. The B]2 binding motif DmQfG-(41)-SJYL-(26-28)-GG, as it was determined 

for a subset of B12-dependent enzymes, is not present in CprA (Ludwig & Matthews, 1997). 
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— - 97.4 ( phosphorylase b) 
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Figure 2.1 12% SDS polyacrylamide gel electrophoresis with the purified ort/io-chlorophenol reductive 

dehalogenase of D. dehalogenans (5u.g) in lane 1. Molecular size markers are shown in lane 2. The arrow 

indicates the purified protein band. The gel was stained with Coomassie Brilliant Blue R-250. 
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Figure 2.2 Restriction map of the D. dehalogenans genomic cpr - region. The vertical arrows mark DNA 
restriction sites. The horizontal bars indicate fragments, cloned either in pUC18 or pMON38201. The horizontal 
arrows indicate open reading frames. Oligonucleotides used in this study are shown. The 32 C-terminal amino 
acids of ORF X show some similarity with the C-terminal part of GroEL - type chaperonines. ORF1 exhibits no 
significant similarities with known proteins. 
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CprA : MlNNEQRQQTGMNM|s|LiV GftftATTM- -GVIGftlK&PAKVANAAETMN : 47 
PceA : MEKKKKPE---LsHJD|G|LIIGGGAAMIAPFGVPaftNAaEKE-KNAAEIRQQFAMTAG : 56 

CprA : YVPGPTNARSKLRPVHDFAGAKVRFVENNDEWLGTTKIIS §V : 89 
PceA : SPIIVNDKLERYAEVRTAFTHPTSFFKPNYKGEVKPWFLSAyDEKVRQIENGENGPKMlA : 116 

CprA : KKTSKADAGFMQAVRG LYG-PDPQRGFFQFIAKHPFGGTISHaRNLIAA--EJW : 141 
PceA : KNVGEARA9RALEAAGWTLDINYGNIYPNR-FFMLWSGETMTNTQLWaPVGLDRRPPITT : 175 

CprA : DGDAEPTKTPIPDPEQMSQHI RDCCYFLRADEVGIGKMPEYGYYTH-HVSDTVGLMS : 197 
PceA : DPVEL.TNYVKFAARMAGADLVGVARLNRNWVYSEAVTIPADVPYEQSLHKEIEKPIVFKD : 235 

CprA : KPVEECVTPVTKIYPHVIWMIDQGIETMWASTGYDGISGAMSMQSY-FTSGCI-AVIMA : 255 
PceA : VPLPIE-TDDELIIPNTCENVTVAGIAMNREMMQTAPNSMACATTAFCYSRMCMFDMWLC : 294 

CprA : KYIRTLGYNARXHHAKiYEAIMPVCI^4AAGLGELSRTGDCAIHPRLGYRHKVAAVTTDLP : 315 
PceA : QFIRYMGY--YAIPSCKtGVGQSVAFAVEftGLGQASRMGAC-ITPEFGPNVRLTKVFTNMP : 351 

CprA : LAPDKPIDFGLLDffiRVlKKffl&DNraNDMT FDEDPIE-YNGYLRHNSDFKKCTE : 369 
PceA : LVPDKPIDFGVTEFBET#CK^REESKMTEGPRTFEGRSIHNQSGKLQWQNDYNKCLG : 411 

CprA : FRTTNEEGSSBSTfcKVffiWNSKEDSSFHKMVWGSKGEAASTFLKSIDDIFGYGTETI : 429 
PceA : YWP--ESGGYg3vBvA\SiFT-KGNIWIHDGVEMLIDNTRFLDPLMLGMDDALGYGAKRN : 468 

CprA : EKYKWWLEWPEKYPLKPM : 44 7 
PceA : -ITEVMDGKINTYGLDADHFRDTVSFRKDRVKKS : 501 

F igure 2.3 Primary sequence alignment for the ort/jo-chlorophenol reductive dehalogenase from D. 

dehalogenans (CPR) and the PCE dehalogenase from Dehalospirillum multivorans. The alignment was 

performed using the programs Clustal X and GeneDoc (Thompson et ah, 1997; K. B. Nicholas & H. B. J. 

Nicholas, GeneDoc: a tool for editing multiple sequence alignments, 1997). The light gray boxes mark identical 

residues. The dark gray boxes show residues from the twin arginine consensus motif. Residues highlighted in 

black indicate the conserved iron-sulfur cluster binding motifs. CprA: or/Ao-chlorophenol reductase from D. 

dehalogenans (GenBank accession Number AF115542); PceA: PCE dehalogenase from D. multivorans 

(GenBank accession Number AF022812). 

Upstream of cprA, a second potential gene, cprB, was found, that could encode a 103 

amino acid polypeptide with a calculated molecular mass of 11,517 Da. The predicted cprB 

gene product does not exhibit significant similarities with any known proteins present in the 

data bases. A hydrophilicity plot indicates the presence of three membrane spanning helices 

(Fig. 2.4). Following the positive-inside rule for integral membrane proteins, the N-terminus 

of this polypeptide is predicted to point outward, whereas the C-terminal part is located at the 

cytoplasmic face of the membrane (von Heijne & Gavel, 1988). cprB and cprA are separated 

by only 12 nucleotides. Neither transcription termination nor initiation signals are present 

between the two genes. Preliminary experiments suggest co-transcription of both genes (data 

not shown). 
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Figure 2.4 Hydrophilicity plot and charge distribution for CprB. The hydrophilicity plot was determined 
according to the method of Kyte and Doolittle (Kyte & Doolittle, 1982). The analysis was performed using the 
program Protean from the DNAstar software package. 

Cobalamin Involved in Electron Transfer in o-CP Dehalogenase 

Cobalt in biological systems occurs in oxidation states 3+, 2+, and 1+. Only the Co2+ 3d7-

system is half-integer spin and, therefore, readily detectable in EPR spectroscopy. In 

cobalamin, the Co2+ is low spin S = 1/2. The EPR of D. dehalogenans o-CP dehalogenase, as 

isolated, exhibits a signal characteristic for Cob(II)alamin in the base-off form and a weak, 

near-isotropic, S = 1/2 signal around g = 2 indicative for [3Fe-4S] (see below). 

Previously, it was found that full chemical reduction of another reductive dehalogenase, 

the PCE reductase from D. restrictus, could not be achieved with dithionite (Schumacher et 

al, 1997). Therefore, we used the light-induced strongly reducing system of deazaflavin plus 

EDTA. Prolonged illumination resulted in a clear EPR spectrum which is dominated by a 

signal with g-values 2.05, 1.93, and 1.87, typical for reduced [2Fe-2S] or [4Fe-4S] clusters 

(Fig. 2.5, trace A). The signal rapidly broadens above 20 K, which indicates that its origin is a 

[4Fe-4S]1+ cluster. Cob(II)alamin in the base-on form is present as a minor component in 

trace A, while the base-off form of Cob(II)alamin is fully reduced. 

When the enzyme is anaerobically hand-mixed with the substrate Cl-OHPA and 

immediately frozen in liquid nitrogen (i.e. a reaction time of = 0.5 min), another spectrum is 

obtained (Fig. 2.5, trace B). This is the signal of the base-off form of Cob(II)alamin 

(Schumacher et al, 1997). The signal is essentially identical to that obtained from enzyme as 

isolated. In a control experiment where water, flushed with nitrogen gas, was added to a 

reduced o-CP dehalogenase sample no base-off cobalamin signal developed. Addition of an 

excess of ferricyanide did not affect the signal, and this indicated an unusually high oxidation 
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potential for the Co(II/III) couple, as previously found for the D. restrictus dehalogenase 

(Schumacher et ai, 1997). Estimation of the spin-Hamiltonian parameters by simulation 

gives g-values 1.99, 2.35, and 2.35 and cobalt hyperfine (I = 7/2) values of 14, 7.5, and 7.5 

mT. These values are close to those found for the dehalogenase from D. restrictus 

(Schumacher et al, 1997). The simulation indicates furthermore that the spectrum contains a 

minor second component, namely a base-on form of Cob(II)alamin; this form is also 

detectable as a minor component in trace A. 

Upon incubation with excess potassium ferricyanide, the Co2+ signal is still present at 

maximal amplitude, but it is now hardly discernible, as the gain has been reduced for the 

observation of a near isotropic signal around g = 2 typical for a [3Fe-4S]1+ cluster (Fig. 2.5, 

trace C). The broad peak at low field is the gz from excess [Fe(CN)e]3+. 

Hfn*"*f*,t>-

B 

220 320 

B(mT) 

420 

Figure 2.5 EPR spectra of D. dehalogenans o-CP dehalogenase. Trace A, the [4Fe-4S] signal from enzyme 

fully reduced by illumination with visible light for 50 min in the presence of 20 |JM deazaflavin and 2 mM 

EDTA. Base-on Cob(II)alamin can be detected as a minor component in trace A. Trace B, the base-off 

Cob(II)alamin signal from enzyme reoxidized by 0.5 min anaerobic incubation with 2 mM Cl-OHPA. Trace C, 
the [3Fe-4S] signal from enzyme fully oxidized by anaerobic incubation with 2 mM potassium ferricyanide for 

5 min. EPR conditions were as follows: microwave frequency, 9.41 GHz; microwave power 5 mW (trace A: 0.8 

mW); modulation frequency, 100 kHz; modulation amplitude, 0.63 mT; temperature, 9.5 K (trace A), 30 K 

(trace B), 15 K (trace C). 
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All three signals, the [4Fe-4S] + signal, the Cob(II)alamin signal, and the [3Fe-4S]1+ signal 

integrate to approximately the same value corresponding to a spin count close to 1 spin per 

48-kDa monomer. 

The signals behave as expected in reductive (dithionite) and oxidative (ferricyanide) bulk 

redox titrations in the presence of a mixture of redox mediators (Fig. 2.6): in an oxidative 

titration, the signal ascribed to a [3Fe-4S] cluster appears with an oxidation potential of Emj.$ 

= +70 mV; in a reductive titration the Co2+ signal disappears with a reduction potential of 

Em,7.8= -370 mV; and the signal from the [4Fe-4S] cluster appears with Emj.s = -440 mV. The 

Em values for Co(II) and [4Fe-4S] are similar to those found for the D. restrictus 

dehalogenase. However, that enzyme contains two [4Fe-4S] clusters (Schumacher et al, 

1997). The EPR of the present D. dehalogenans enzyme strongly suggests the presence of 

one [4Fe-4S] and one [3Fe-4S] cluster, consistent with sequence analysis (see above). 
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Figure 2.6 EPR-monitored redox titration of the metal centers in D. dehalogenans o-CP dehalogenase. (+) 

[3Fe-4S]'+; ( • ) Cob(II)alamin; (A) [4Fe-4S]l+. Starting from a redox potential of -130mV, the sample was 

reduced by substoichiometric additions of dithionite, and oxidized by substoichiometric additions of 

ferricyanide, both in the presence of a mixture of redox mediators covering the full potential axis. Amplitudes 

are given as a percentage of maximal signal intensities. The latter correspond to enzyme fully oxidized by 

excess ferricyanide or enzyme fully reduced by light/deazaflavin/EDTA. These extreme forms have undefined 

potentials and are presented in the figure as points on the vertical borders. EPR conditions were as in Fig. 2.5. 

The solid traces are fits to the Nernst equation assuming single electron transfer. 
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Discussion 

ort/zo-chlorophenol reductive dehalogenase is the terminal reductase involved in the 

halorespiratory chain of D. dehalogenans. Here we describe the purification and molecular 

characterization of this key enzyme and its gene cprA. This membrane-associated enzyme 

mediates the electron transfer from a yet unidentified electron donor to the halogenated 

substrate. The substrate spectrum of the purified enzyme was similar to that reported for 

resting cells, indicating that a single enzyme is involved in dehalogenation of ortho-

halogenated phenols (Utkin et al, 1995) (Table 2.2). 

The purified o-CP dehalogenase contains one [4Fe-4S] cluster, one [3Fe-4S] cluster, and 

one cobalamin per monomer. The presence of two iron-sulfur clusters was confirmed by the 

identification of one ferredoxin-like and one truncated iron-sulfur cluster binding motif (Fig. 

2.3) in the sequence of CprA. These iron-sulfur clusters might be involved in the electron 

transfer to the active site that contains the cobalamin. The primary sequence alignment of 

CprA with PceA, the PCE reductive dehalogenase of D. multivorans , revealed a rather high 

degree of similarity on the amino acid level in the C-terminal part of both enzymes (Fig. 2.3) 

(Neumann et al, 1998). In PceA, the same two iron-sulfur cluster binding motifs are present, 

indicating a conserved mode of intramolecular transport of electrons. Both reductive 

dehalogenases probably differ in iron-sulfur cluster contents from the PCE reductase isolated 

from D. restrictus, where two [4Fe-4S] clusters were identified (Schumacher et al, 1997). In 

the case of the 47-kDa Cl-OHPA reductive dehalogenase of the closely related 

Desulfitobacterium hafniense, the presence of three iron-sulfur clusters has been reported 

(Christiansen et al, 1998). However, more sequence information on both the enzymes from 

D. restrictus and D. hafniense is not yet available. 

The formation of Co(II) in base-off conformation upon the addition of Cl-OHPA to light-

reduced o-CP dehalogenase confirms the involvement of the cobalamin in the dechlorination 

reaction. PCE reductase from D. restrictus, which converts PCE via TCE to 1,2-cw-DCE, 

also contains cobalamin (Em = -350 mV) in its base-off conformation (Schumacher et al, 

1997). A similar mechanism could account for both chlorophenol and PCE dechlorination, 

although PCE is not a substrate for o-CP dehalogenase and D. restrictus is not capable to 

dechlorinate chlorophenols. 

The cprA gene encodes a proprotein, in which the mature polypeptide is proceeded by a 

twin arginine-type signal sequence characteristic for periplasmic enzymes containing 
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complex redox cofactors. A similar leader sequence is present in the pceA gene product. For 

both dehalogenases, it has been proposed by dye-mediated activity measurements in intact 

and broken cells that the dehalogenating activities are located at the inner face of the 

cytoplasmic membrane (data not shown; Neumann et ah, 1998). The only other twin arginine 

enzyme with similar contradictory results concerns the E. coli DMSO reductase (Berks, 1996; 

Weiner et ah, 1998). Additional experiments will be required to solve the topology of these 

enzymes. 

Elucidation of the nucleotide sequences upstream and downstream of cprA revealed the 

presence of a second potential gene, cprB. The hydrophobic gene product, CprB, might have 

a role in anchoring the catalytic subunit of the o-CP reductive dehalogenase to the 

cytoplasmic membrane. A similar function has been proposed for PceB in D. multivorans 

(Neumann et ah, 1998). 

Although CprA and PceA exhibit highly conserved boxes, both primary sequences lack 

the consensus sequence for the binding of the corrinoid cofactor conserved among several 

methylcobalamin dependent methyltransferases and mutases (Ludwig & Matthews, 1997). 

The role of cobalamin in the reductive dehalogenases from chlorophenol and PCE 

degrading organisms is of special interest, since it does not mediate the "usual 

rearrangement" or alkyl transfer but an elimination reaction (Ludwig & Matthews, 1997). 

Two models have been proposed for the reaction mechanism of PCE reductive 

dehalogenation. One model involves the formation of a Co(III)-chloroethene carbon-metal 

bond (Neumann et ah, 1996), whereas the second model postulates the formation of a 

chloroethene radical (Schumacher et ah, 1997). However, neither of these intermediates has 

been demonstrated unequivocally for PCE reductive dehalogenases. Based on our data, it is 

not possible to determine which model applies for or/Ao-chlorophenol reductive 

dehalogenase from D. dehalogenans. On one hand, an essential intermediate in the first 

model, Cob(III)alamin, was not formed upon oxidation of the enzyme. On the other hand, 

there was no radical formation upon addition of substrate to the reduced enzyme. The latter 

could be due to the slow reaction time, which makes it difficult to detect a reactive compound 

such as a phenol radical. Additional experiments are required in which the supposed radical 

would be stabilized. 

The similarities between the o-chlorophenol reductive dehalogenase of D. dehalogenans 

and the PCE reductive dehalogenases of Dehalospirillum multivorans and Dehalobacter 
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restrictus on both mechanistic and structural properties as well as their primary sequences 

suggest that these enzymes constitute a novel class of corrinoid containing reductases. 
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IN 0/?7//0-CHLOROPHENOL RESPIRING DESULFITOBACTERIUM 

DEHALOGENANS 

Hauke Smidt, Maarten van Leest, John van der Oost and Willem M. de Vos 
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Abstract 

To characterize the expression and possible regulation of reductive dehalogenation in 
halorespiring bacteria, a 11.5-kb genomic fragment containing the o-chlorophenol reductive 
dehalogenase-encoding cprBA genes of the Gram-positive bacterium Desulfitobacterium 
dehalogenans was subjected to detailed molecular characterization. Sequence analysis 
revealed the presence of eight designated genes with the order cprTKZEBACD, and with the 
same polarity except for cprT. The deduced cprC and cprK gene products belong to the 
Nirl/NosR- and CRP-FNR families of transcription regulatory proteins, respectively. CprD 
and CprE are predicted to be molecular chaperones of the GroEL type, whereas cprT may 
encode a homologue of the trigger factor folding catalysts. Northern blot analysis, reverse 
transcriptase PCR, and primer extension analysis were used to elucidate the transcriptional 
organization and regulation of the cpr gene cluster. Results indicated halorespiration-specific 
transcriptional induction of the monocistronic cprT gene and the biscistronic cprBA and 
cprZE genes. Occasional read through at cprC gives rise to a tetracistronic cprBACD 
transcript. Transcription of cprBA was induced 15-fold upon addition of the o-chlorophenolic 
substrate 3-chloro-4-hydroxyphenylacetic acid within 30 min with concomitant induction of 
dehalogenation activity. Putative regulatory protein binding motifs that to some extent 
resemble the FNR box, were identified in the cprT-cprK and cprK-cprZ intergenic regions 
and the promoter at cprB, suggesting a role of the FNR-like CprK in the control of expression 
of the cprTKZEBACD genes. 
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Introduction 

Halorespiring bacteria have received increasing attention during the last decade, as they are 

able to couple the reductive dehalogenation of a large variety of halogenated aromatic and 

aliphatic hydrocarbons to energy conservation and hence to microbial growth. These 

compounds are present in the environment as a consequence of their past and present 

application in industry and agriculture and due to natural production, compromising 

environmental integrity and health (Hileman, 1993; Gribble, 1996). Halorespiring bacteria are 

believed to play an important role in the in situ bioremediation of soil and groundwater 

polluted with halogenated hydrocarbons. The ability to perform halorespiration appears to be 

widespread throughout the Bacteria, as halorespiring bacteria have been found in the groups 

of low G+C-content Gram-positive bacteria, green non-sulfur bacteria, and 8- and 8-

proteobacteria (El Fantroussi et al, 1998). Among these, the Gram-positive genus 

Desulfitobacterium comprises a major group of isolates. The versatile Desulfitobacterium 

dehalogenans has been isolated because of its ability to use o-halogenated phenolic 

compounds as terminal electron acceptors in an anaerobic respiratory chain with lactate, 

pyruvate, formate, and molecular hydrogen as electron donors (Utkin et al, 1994). Recently, 

the reductive dehalogenation of tetrachloroethene and hydroxylated polychlorinated biphenyls 

by the halorespirational system of D. dehalogenans has been reported (Wiegel et al, 1999). 

In order to understand the molecular basis of this novel respiratory system, efforts have 

focused not only on the reductive dehalogenases as the central enzymes in halorespiration 

(Neumann et al, 1998; Holliger et al, 1999; van de Pas et al, 1999), but also on the 

identification of additional structural and regulatory components of the halorespiratory 

electron transport chain. An efficient conjugation system has been used for the integration of 

the conjugative transposon Tn916 into the chromosome of D. dehalogenans, leading to the 

isolation of a number of halorespiration-deficient mutants, which were characterized at the 

physiological, biochemical and genetic levels (Smidt et al, 1999). 

It is known from physiological experiments that halorespiration is induced by the presence 

of a halogenated substrate in most halorespiring bacteria described to date. For two 

halorespiring strains, Desulfomonile tiedjei and Desulfitobacterium frappieri TCE1, the 

influence of alternative electron acceptors on the activity of the dehalogenating system has 

been described, indicating that particularly sulfur oxyanions are potential inhibitors of 

halorespiration (Townsend & Suflita, 1997; Gerritse et al, 1999). In contrast, expression of 
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halorespiration by 3-chloro-4-hydroxyphenylacetic acid (Cl-OHPA) in non-acclimated 

cultures of D. dehalogenans was not affected by the presence of equimolar amounts of sulfite 

(Mackiewicz & Wiegel, 1998). However, the level at which regulation takes place, the control 

mechanisms involved, and the inducing signal remain to be elucidated. 

This study addresses the molecular analysis of the regulation of reductive dehalogenation 

in a halorespiring bacterium. Chromosomal fragments flanking the o-chlorophenol reductive 

dehalogenase-encoding gene cprA in D. dehalogenans were cloned and characterized, 

revealing the presence of open reading frames that encode polypeptides possibly involved in 

regulation and maturation of the dehalogenating system. The expression of the different genes 

identified in the cpr gene cluster was studied under various growth conditions and found to be 

tightly controlled at the transcriptional level. 

Materials and Methods 

Materials 

Cl-OHPA was purchased from Sigma-Aldrich Chemie (Zwijndrecht, The Netherlands) and 

filtered prior to use. All gasses were obtained from Hoek Loos (Schiedam, The Netherlands). 

When appropriate, experiments were carried out in an anaerobic glove box (Coy Laboratories 

Products, Grass Lake, Mich.) under an atmosphere of 96% N2 and 4% H2. The oxygen 

concentration was kept low with the palladium catalyst RO-20 provided by BASF (Arnhem, 

The Netherlands). 

Bacterial Strains, Plasmids, Growth and Induction Conditions 

D. dehalogenans strain JW/IU-DC1 (DSM 9161) (Utkin et al, 1994) was routinely grown 

under anaerobic conditions (100% N2 gas phase) at 37° C in rubber stoppered serum bottles 

containing basal mineral medium as described by Neumann et al. (Neumann et al., 1994), 

supplemented with 0.1% peptone, 30 mM NaHCCh, and trace elements and vitamin solution 

as recommended by the German Collection of Microorganisms and Cell Cultures 

(Braunschweig, Germany). An electron donor and acceptor were added to a concentration of 

20 mM from anaerobic stock solutions. Growth was monitored spectrophotometrically by 

determining the optical density at 600 nm (̂ 60o)- The concentrations of Cl-OHPA and OHPA 

during growth in the presence of Cl-OHPA as the electron acceptor were determined by 
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HPLC analysis on a SpectraSystem high-performance liquid chromatograph, with a 

SpectraSystem P2000 pump, an AS3000 autosampler and a UV1000 UV-detector 

(ThermoQuest, Austin, Tex). The sample (20 yd) was injected into a Chrompack pesticide 

reversed-phase column (Chrompack, Middelburg, The Netherlands). The mobile phase was 

acetonitrile-0.01 M H3PO4 (10:90 [vol/vol]). A flow rate of 1 ml min"1 was applied, and Cl-

OHPA and OHPA were quantified by their absorption at 206 nm. For the induction with Cl-

OHPA, cells were grown with pyruvate to A60o of 0.1 and supplemented with 5 mM of Cl-

OHPA. Samples were taken before and after induction and stored on ice prior to further 

processing. 

Escherichia coli XLl-Blue (Stratagene, La Jolla, Calif.) was used as a host for cloning 

vectors. The strain was grown in Luria Bertani medium at 37°C (Sambrook et al, 1989) and 

ampicillin was added at 100 ug/ml when appropriate. The cloning vectors pUC18 and pUC19 

were purchased from Amersham Pharmacia Biotech (Uppsala, Sweden) and the PCR product 

cloning vectors pGEM-T and pMON38201 (Borovkov & Rivkin, 1997) were obtained from 

Promega (Madison, Wise.) and Monsanto (St. Louis, Mo.), respectively. 

DNA Isolation and Manipulation 

Chromosomal DNA of D. dehalogenans was isolated as described previously (van de Pas 

et al, 1999). Plasmid DNA was isolated from E.coli by using the alkaline lysis method and 

standard DNA manipulations were performed according to established procedures (Sambrook 

et al., 1989) and manufacturers instructions. Enzymes were purchased from Life 

Technologies B.V. (Breda, The Netherlands), Roche Molecular Biochemicals (Mannheim, 

Germany), and New England Biolabs (Beverly, Mass.). Oligonucleotides were obtained from 

Eurogentec (Seraing, Belgium), Life Technologies Inc., and MWG Biotech (Ebersberg, 

Germany). PCR products were purified prior to subsequent manipulation using the QIAquick 

PCR purification kit (Qiagen GmbH, Hilden, Germany). A Hybond-N+ nylon transfer 

membrane (Amersham Pharmacia Biotech) was used for Southern blot analysis. Probes for 

hybridization experiments were labeled by nick translation in the presence of [a-32P]-dATP 

(Amersham Pharmacia Biotech). 

Sequence Analysis of the cpr Gene Cluster 

In order to extend the sequence downstream of the cprA locus, as it was determined 

previously from pLUW910 and pLUW913 (van de Pas et al, 1999) (Fig. 3.1), a 0.9-kb 
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Hincll-EcoRl restriction fragment of pLUW910 was subcloned in pUC19, yielding 

pLUW910£7/2, and sequenced. Subsequently, Southern blot analysis of HincK-Hindlll-

digested chromosomal DNA of D. dehalogenans revealed a 1.9-kb fragment that strongly 

hybridized with the aforementioned radiolabeled 0.9-kb fragment. The 1.9-kb fragment was 

cloned in E.coli using /fmcll-i/mdlll-digested pUC19, resulting in pLUW911. pLUW916 

was obtained by inverse PCR, which was performed as described previously from Ncol-

digested and self-ligated chromosomal DNA of D. dehalogenans with the divergent primer-

pair BG580-BG581 (BG580, positions 9023 to 9002, and BG581, positions 9671 to 9692 of 

the cpr gene cluster; Fig. 3.1) (Triglia et al, 1988; van de Pas et al, 1999). The resulting 1.8-

kb PCR-product was cloned in E.coli using Xcml-digested pMON38201. Subsequently, PCR 

was performed with chromosomal DNA of D. dehalogenans with primers BG581 and HS22 

(positions 10260 to 10240) and HS23 and HS27 (HS23, positions 10237 to 10257, and HS27, 

positions 11117 to 11097). Both PCR-products were cloned in E.coli using XcwZ-digested 

pMON38201, yielding pLUW921 and pLUW922, respectively. 

Ncol 

W/ndllll 

4 
HindU) 

WIJJCII 

• 

HindlU 

1 Pstl 

I 
Hindi 

1 
Ncol 

EcoRl 

11 
HinAlU 

1 
Ncol 

1 
29 24 31 32 25 28 624 57757X600 475 476 26 619 620 580 SSI 23 22 27 

cprT cprK cprZ cprE cprB cprA cprC cprD 

mRNA 

pLUW918 pLUW910 pLUW921 

PLUW915 PLUW911 pLUW922 

pLUW920 pLUW919 pLUW914 

pLUW913 

pLUW916 

Figure 3.1 Physical map of the cpr gene locus in D. dehalogenans. Horizontal arrows, open reading frames; 
triangles, oligonucleotides used in this study; vertical arrows, DNA restriction sites, which were relevant for the 
construction of clones (bars); mRNA: solid bars, apparent halorespiration-specific transcription products; dashed 
and dotted lines, apparent constitutive and halorespiration-repressed transcripts, respectively. 
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To elucidate the sequence upstream of cprB, inverse PCR products were obtained from 

Hindlll- or Ps/I-digested and self-ligated chromosomal DNA using the divergent primer pair 

BG577-BG578 (BG577, positions 5443 to 5423, and BG578, positions 5459 to 5485), 

resulting in pLUW914 and pLUW915, respectively. pLUW9\5EN was obtained by 

subcloning a 2.3-kb iscoRI-TVcoI-fragment of pLUW915 in E.coli using iscoRI-TVcoI-digested 

pMON38201. Finally, pLUW918, pLUW919 and pLUW920 were obtained after PCR using 

chromosomal DNA as the template and primers BG577 and HS25, HS24 and HS28 or HS29 

and HS30 (HS24, positions 2244 to 2267; HS25, positions 3521 to 3545; HS28, positions 

3628 to 3605; HS29, positions 1768 to 1748; HS30, positions 266 to 284), respectively. 

Using the above-mentioned set of clones, the almost-complete double-stranded cpr gene 

cluster nucleotide sequence could be elucidated. Where the sequence was only single-

stranded, sequence analysis of multiple, independently obtained PCR-products was used to 

obtain an unambiguous result. 

Amplification, Cloning and Sequencing of rRNA Genes 

The 16S rRNA-encoding gene was amplified from chromosomal DNA of D. dehalogenans 

with the universal primer pair 7f-1510r (Lane, 1991). Primers 1492f (Lane, 1991) and 23InsR 

(Roller et al, 1992) were used for the amplification of the 3 '- and 5'-ends of the 16S and 23S 

rRNA genes, respectively, and the 16S-23S intergenic spacer. PCR products were cloned in 

the pGEM-T vector, yielding pLUW900 (16S) and pLUW901 (16S-23S) and their 

authenticity was verified by nucleotide sequence analysis. 

DNA Sequencing and DNA and Protein Sequence Analysis 

DNA sequencing was performed using a Li-Cor DNA sequencer 4000L (LiCor, Lincoln, 

Nebr.). Plasmid DNA used for sequencing reactions was purified with the QIAprep Spin 

Miniprep kit (Qiagen GmbH). Reactions were performed using the Thermo Sequenase 

fluorescently labeled primer cycle sequencing kit (Amersham Pharmacia Biotech). 

Fluorescently (IRD 800) labeled universal sequencing primers were purchased from MWG 

Biotech. Sequence similarity searches and alignments were performed using the BLAST, 

version 2.0, program (Altschul et al, 1997) (National Center for Biotechnology Information, 

Bethesda, Md.), and the programs Clustal X, GeneDoc (Thompson et al, 1997; K. B. 

Nicholas & H. B. J. Nicholas, GeneDoc: a tool for editing multiple sequence alignments, 

1997) and the DNAstar package (DNASTAR Inc., Madison, Wis.), respectively. Protein 
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secondary structure and helical transmembrane region predictions were performed with the 

profile network systems PHDsec and PHDhtm, respectively (Rost & Sander, 1993; Rost & 

Sander, 1994; Rost et al., 1995). Prediction of helix-turn-helix (H-T-H) DNA-binding motifs 

was performed using the method of Dodd and Egan (Dodd & Egan, 1990). 

Isolation of Total RNA, Northern Analysis, RT-PCR and Primer Extension 

Total RNA was isolated from exponentially growing cultures of D. dehalogenans by the 

Macaloid method described by Kuipers et al. (Kuipers et al., 1993). For Northern blot 

analysis, 7 (ig RNA was separated on a formaldehyde-1% agarose gel, transferred to Hybond-

N+ nylon transfer membrane (Amersham Pharmacia Biotech) by downwards capillary 

transfer as described by Chomczynski with 5 x SSC, 10 mM NaOH as transfer liquid and 

immobilized by UV-crosslinking (Chomczynski, 1992). Prehybridization and hybridization 

were performed in ULTRAhyb - hybridization buffer (Ambion, Austin, Tex.) as 

recommended by the manufacturer. 

A qwvl-specific probe was generated by PCR amplification from chromosomal DNA of D. 

dehalogenans with the primer pair BG475-BG476 (BG475, positions 6778 to 6797; BG476, 

positions 7213 to 7192). As probes specific for cprC, cprD and cprE, PCR products that were 

obtained after PCR amplification with primer pairs BG619-BG620 (BG619, positions 7632 to 

7658, and BG620, positions 8282 to 8255), BG581-HS22 and BG624-BG577 (BG624, 

positions 4147 to 4171), respectively, were used. For the detection of transcription products of 

ORFU, cprT, cprK and cprZE, probes were generated by PCR with primer pairs HS29-HS30, 

HS24-HS28, HS31-HS32 (HS31, positions 2906 to 2927, and HS32, positions 3440 to 3419) 

and HS25-BG577, respectively. 

Reverse transcriptase PCR (RT-PCR) was performed to analyze the transcriptional 

organization of the genes in the cpr gene cluster. 500 ng of DNAse-treated RNA (RQ1 

RNAse-free DNAse, Promega) was used in a 25-^1 reaction, containing the following: 25 

pmol of each primer, 200 |jM dATP, dCTP, dGTP, and dTTP, 1.7 mM MgS04, 5 JJ.1 of 

AMV/7J7 5x Reaction buffer and 2.5 U of AMV RT and Tfl polymerase (Access RT-PCR 

system, Promega). In negative controls, AMV RT was omitted and chromosomal DNA of D. 

dehalogenans was added to positive-control reaction mixtures. cDNA synthesis and 

subsequent PCR amplification were performed using the GeneAmp PCR System 9700 

(Perkin Elmer Cetus, Norwalk, Conn.). The reaction mixture was incubated at 48°C for 45 

min. After the mixture was preheated to 94° C for 2 min, 40 amplification cycles, consisting 
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of: denaturation at 94° C for 20 s, primer annealing at 50° C for 30 s and elongation at 68° C 

for 1 min 30 s were performed. A final extension of 7 min at 68° C was performed. 

Primer extension analysis was performed to determine the transcription start sites of the 

cprBA and cprCD transcripts. For this purpose, 10 or 30 ug of RNA and 4 pmol of the 

fluorescently (IRD 800) labeled oligonucleotides BG600 (positions 5670 to 5648) and HS26 

(positions 7476 to 7456), respectively, were dissolved in 10 ul 1* RT buffer (50 mM Tris-

HC1 pH 8.3, 75 mM KC1, 3 mM MgCl2 and 10 mM dithiothreitol), incubated at 70°C for 5 

min, and slowly cooled to room temperature. After addition of 10 \l\ l x RT buffer containing 

2 mM of dATP, dCTP, dGTP, and dTTP, 10 U of RNAsin, and 200 U of Superscript II RT 

(Life Technologies), the sample was incubated at 48°C for 30 min. RNase (0.2 mg/ml) was 

added, and the sample was precipitated with ethanol and washed once with 70% ethanol. The 

pellet was dried, dissolved in 2 |j.l formamide loading buffer, and separated on a Li-Cor 

4000L DNA sequencer. 

Nucleotide Sequence Accession Numbers 

The nucleotide sequence of the cpr gene cluster described here has been deposited in the 

GenBank database under accession no. AF115542. 

Results 

Genetic Organization of the cpr Gene Cluster 

Previously we analyzed the nucleotide sequence of the cprBA genes that encode the 

catalytic subunit and putative membrane anchor of the o-chlorophenol-reductive dehalogenase 

in D. dehalogenans (van de Pas et al., 1999). Here we report the transcriptional organization 

of the cprBA genes. The chromosomal regions flanking the cluster were characterized by 

sequence and transcriptional analysis, revealing the presence of six additional transcribed 

genes, tentatively designated cprC, cprD, cprE, cprK, cprT and cprZ and one untranscribed 

open reading frame ORFU (Fig. 3.1; see below). With the exception of cprT, all genes are 

transcribed in the same direction as cprBA. In front of each of the genes potential Shine-

Dalgarno sequences are present; these sequences are complementary to the 3'-end of the D. 

dehalogenans 16S rRNA (3'-AGAAUCUUUCCUCCA-5'; see below). The cprC gene, 

previously designated orfl (van de Pas et al, 1999), is located downstream of the structural 
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gene for the o-chlorophenol-reductive dehalogenase (cprA), and is predicted to encode a 

polypeptide of 395 amino acids with a molecular mass of 43,867 Da. Secondary structure 

prediction suggests the presence of six transmembrane helices (Fig. 3.2). Within the C-

terminal cytoplasmic domains, two cysteine-rich signatures of the type CXXXCP were 

identified. For the C-terminal part of the predicted protein CprC, significant similarity was 

observed with membrane-bound regulators of the NosR/Nirl type, which have been shown to 

play a role in a signal transduction pathway that eventually controls the transcription of the 

nitrous oxide (nos) and nitrite reductase (nir) gene clusters of Pseudomonas stutzeri and 

Paracoccus denitrificans, respectively (Cuypers et aL, 1992; Saunders et ah, 1999). This 

similarity was most pronounced in the vicinity of the cysteine-rich motifs (Fig. 3.2). 
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Figure 3.2 Amino acid sequence alignment of CprC from D. dehalogenans with NosR from Pseudomonas 

stutzeri (accession no. Q00790; PsNosR) and Nirl from Paracoccus denitrificans (accession no. AJ001308; 

PdNirl). Residues conserved between two or all sequences are highlighted in gray and black, respectively. 

Horizontal bars, cysteine-rich motifs; boxes, predicted transmembrane helices; i and o, intra- and 

extracytoplasmic domains, respectively. 
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Figure 3.3 Alignment of CprK with proteins of the CRP-FNR family of regulatory proteins (Lv-PrfA, Listeria 

ivanovii listeriolysin regulatory protein PrfA, accession no. CAA51231; Dr, Deinococcus radiodurans putative 
transcriptional regulator, accession no. AAF11910; Ec-FNR, Escherichia coli FNR, accession no. P03019; Rm-
FixK, Rhizobium meliloti FixK, accession no. S04122; Rs-NNR, Rhodobacter sphaeroides NNR-like protein, 
accession no. AAD27624; Pd-NNR, Paracoccus denitrificans Fnr-like transcriptional activator, accession no. 
AAA69977.1). Cysteine residues and residues conserved between three or more sequences are highlighted in 
black and gray, respectively. Asterisks, cysteine residues essential for activity of the E.coli FNR protein. 
Predicted H-T-H DNA-binding motifs are indicated. 

However, CprC is significantly smaller than known proteins of the NosR/Nirl family, due 

to a much shorter N-terminal extracytoplasmic loop (approximately 170 amino acids 

compared to 350) and the lack of a C-terminal cytoplasmic domain containing two additional 

ferredoxin-like motifs binding either [2Fe-2S] or [4Fe-4S] clusters in NosR and Nirl (Bruschi 

& Guerlesquin, 1988). 

Downstream of cprC and upstream of cprB, two other genes, cprD and cprE (the latter was 

previously designated orfX; van de Pas et al., 1999), were identified, both potentially coding 

for chaperonins of the GroEL type (Fig. 3.1). The predicted gene products of cprD and cprE 

are polypeptides of 537 and 516 amino acids with calculated molecular masses of 58,002 Da 

and 54,632 Da, respectively. The two proteins share a sequence identity of 34 % on the amino 

acid level. Highest values of sequence similarity were observed with proteins from Thermus 

thermophilus (P45746; 45 % identity on the protein level for CprD and 40 % for CprE) and 

Clostridium thermocellum (P48212; 44 % identity for CprD and 39 % for CprE). 

Upstream of cprE, the cprK, cprT and cprZ genes and the open reading frame ORFU were 

identified (Fig. 3.1). ORFU potentially encodes a polypeptide of 388 amino acids with a 

calculated molecular mass of 43,887 Da with no homologue in the databases. The predicted 
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gene product of cprT is a polypeptide of 311 amino acids with a molecular mass of 35,667 

Da. CprT exhibits significant similarity to the trigger factor, a peptidyl prolyl isomerase that is 

considered to act as a protein folding catalyst (Fink, 1999). Highest similarities were observed 

with RopA from Streptococcus pyogenes (AAC82391, 15 % identity on the amino acid level) 

and the trigger factor from Bacillus subtilis (P80698, 14 % identity). Relatively low values of 

sequence identity are mainly caused by the fact that CprT lacks an approximately 110-amino 

acids N-terminal region which is present in known trigger factor homologues. CprT, however, 

still contains the complete FKBP-domain, which is associated with the peptidyl prolyl 

isomerase activity of known Trigger factors (Fink, 1999). Downstream of cprT is the location 

of cprK, which could encode a polypeptide of 233 residues with a calculated molecular mass 

of 26,646 Da. CprK revealed low, but significant, sequence similarity with known members 

of the CRP-FNR family of transcriptional regulators (Fig. 3.3). Preliminary results indicate 

that CprK deeply branches within subclass III (NtcA) of the CPR-FNR family (Vollack et al, 

1999). By applying the method of Dodd and Egan, an H-T-H motif could be predicted with 71 

% probability, aligning with the H-T-H motif that is conserved among members of the CRP-

FNR family (Dodd & Egan, 1990). However, the sequence E--SR, which is conserved in the 

recognition helix of nearly all FNR-like proteins, is only partially conserved in CprK (Fig. 

3.3). This suggests that the recognition motif for CprK binding might be different from the 

common FNR box TTGAT-N4-ATCAA (Fig. 3.3) (Zumft, 1997). cprZ is located downstream 

of cprK, overlapping with cprE over 4 nucleotides, and may code for a polypeptide of 138 

amino acids with a calculated molecular mass of 15,546 Da. Significant sequence similarity of 

24 % identity on the protein level was observed only with a hypothetical protein from 

Synechocystis sp. (BAA17004). Substantial conservation of the CprZ N-terminus and a well-

defined ribosome binding site suggested an alternative translation start codon (GTG) for cprZ. 

Transcriptional Analysis of the cpr Gene Cluster 

The observation that the cprBA genes for the o-chlorophenol-reductive dehalogenase are 

flanked by five genes that could encode proteins which can be expected to play a role in 

regulation, maturation or action of CprA, prompted us to investigate the transcription of these 

genes under different conditions. Northern blot analysis was performed on total RNA isolated 

from cells grown with pyruvate as the electron donor and either Cl-OHPA, fumarate, nitrate 

or pyruvate as the electron acceptor. 
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Figure 3.4 Northern blot analysis of total RNA extracted from cells of D. dehalogenans grown with pyruvate as 
the electron donor and various electron acceptors (C, Cl-OHPA; F, fumarate; N, nitrate; P, pyruvate). 32P-labeled 
probes that were specific for genes present at the cpr gene locus and the 16S rRNA-encoding gene of D. 

dehalogenans were applied. RNA size markers are in kilobases. Arrows, specific hybridizing signals that were 
obtained after 3- to 48-h exposures. The high-molecular weight hybridization signals obtained with RNA 
isolated from fumarate-grown cells are due to residual amounts of chromosomal DNA. 

The sizes of the transcripts were estimated by comparison with RNA molecular weight 

markers. Hybridization with a 32P-labeled cp/^4-specific probe revealed the presence of two 

transcripts of approximately 1.7 and 5.2 kb, which were solely detectable in RNA isolated 

from cells grown by halorespiration (Fig. 3.4). The major hybridizing transcript of 

approximately 1.7 kb indicated co-transcription of the structural gene cpr A with cprB, as was 

anticipated because of the fact that both genes are only 12 nucleotides apart (van de Pas et ah, 

1999) (Fig. 3.4). Hybridization with probes specific for genes downstream of cprA unveiled 

transcripts of approximately 2.4 and 5.2 kb for cprC and 0.7, 2.4 and 5.2 kb for cprD. All 

transcripts were only observed in RNA obtained from cells grown with Cl-OHPA as the 

electron acceptor (Fig. 3.4). The presence of a large transcript of about 5.2 kb hybridizing 

with probes specific for cprA, cprC and cprD, and its concentration relative to that of the 

major 1.7-kb cprBA transcript, indicate occasional read-through after cprA. This would imply 

that the cprBACD genes are cotranscribed from the promoter preceding cprB (see below). The 

smaller transcripts (2.4 and 0.7 kb) detected with the cprC- and cprD-specific probes could be 

products of posttranscriptional processing of either the large 5.2-kb polycistronic cprBACD 
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mRNA or a 3-kb biscistronic cprCD transcript transcribed from a promoter preceding cprC. 

Hybridization with probes specific for cprE, cprZE and cprT indicated a biscistronic 

transcript of cprE and cprZ and monocistronic transcription of cprT specifically induced 

under halorespiring conditions (Fig. 3.4). A small 0.5-kb transcript that was detected with the 

cprZis-specific probe in RNA from cells grown on pyruvate, fumarate or nitrate as the 

electron acceptor, was absent from halorespiring cells, indicating that halorespiration induced 

read-through between cprZ and cprE. A transcript of approximately 2.6 kb could be detected 

with a probe specific for cprK, which was constitutively produced at very low levels. The 

same transcript was also detected with probes specific for cprE and cprZE, indicating 

constitutive transcription of a tricistronic cprKZE transcript (Fig. 3.4). Transcription of ORFU 

could not be detected by Northern blot analysis. 

To verify the transcriptional organization of the cpr gene cluster as proposed from the 

results of the Northern blot analysis, RT-PCR was performed using primer pairs that were 

designed to detect (i) transcription of each single gene and (ii) cotranscription of two 

neighboring genes. The results was in perfect agreement with the Northern blot analysis, i.e., 

cotranscription of cprB-cprA, cprA-cprC, cprC-cprD and cprK-cprZ could be demonstrated, 

whereas no RT-PCR product was obtained for cprE-cprB (data not shown). 
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Figure 3.5 Analysis of the transcription initiation sites (arrows) at the cprB (A) and cprC (B) promoters by 

primer extension. Primer extension was performed with RNA isolated from cells grown on pyruvate (lane 1) or 

pyruvate and Cl-OHPA (lane 2). Primer extension products were electrophoresed in parallel with a sequence 

ladder (lanes A, C, G, and T) generated with the same primer on the noncoding strands of cprB and cprC, 

respectively. 
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Transcription Initiation from Putative cprB and cprC Promoters 

The results obtained by Northern blot analysis and RT-PCR indicated transcription 

initiation under halorespiring conditions from a promoter preceding cprB. The start site of Cl-

OHPA-specific transcription from the cprB promoter could be identified 43 nucleotides 

upstream of the translation start site by primer extension using total RNA extracted from cells 

of D. dehalogenans grown by halorespiration with pyruvate as the electron donor and Cl-

OHPA as the electron acceptor (Fig. 3.5A). 
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Figure 3.6 Detailed analysis of the cprE-cprB- (A), cprT-cprK- (B), cprK-cprZ- (C), and cprA-cprC- (D) 
intergenic regions. Bent arrows (+1), apparent transcription initiation sites; boldface, apparent and putative -10 
regions and ribosome binding sites (RBS); horizontal arrows, palindromic sequence (P) and inverted repeats (1-1 
to 1-9); parentheses, hypothetical elements of putative promoters preceding the cprT and cprZ genes; dark and 
light gray boxes, protein-encoding sequences and FNR box-like motifs, respectively. (E) Alignment of putative 
CprK-recognition motifs with the E.coli FNR recognition consensus motif (Spiro & Guest, 1990). Conserved 
residues within the recognition motifs, and at apparent and putative -10 consensus motifs are indicated in gray. 
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No primer extension product was obtained with RNA isolated from cells grown by 

pyruvate fermentation. Upstream of the transcription initiation site, the consensus sequence 

for a -10 region could be detected, but no consensus -35 region was observed (Fig. 3.6A). 

Northern blot analysis also suggested posttranscriptional processing of a polycistronic mRNA 

or another transcription initiation at a site preceding cprC. A halorespiration-specific primer 

extension product indicated that this site is localized 58 nucleotides upstream of the 

translation start of cprC (Fig. 3.5B). 

Kinetics of Induction of the cprBA Operon Expression 

To investigate the induction kinetics of cprBA expression under halorespiring conditions, 

cells grown with pyruvate as the sole carbon and energy source were amended with Cl-OHPA 

during exponential growth, and cprBA transcription and dechlorination of Cl-OHPA to OHPA 

were determined. Normalized by comparison to the 16S rRNA levels, transcription of cprBA 

was already induced 15-fold 30 min after induction, whereas significant amounts of the 

dechlorination product OHPA (5.8 % of Cl-OHPA added) were detected after 2 h (Fig. 3.7). 

Considering a specific growth rate of approximately 0.2 h"1 (generation time [to] ~ 3 h), the 

massive induction of halorespiration-specific transcription within 0.15 x to is fast. Maximal 

induction of 18-fold was observed 3 h after addition of Cl-OHPA. 
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Figure 3.7 Kinetics of induction of cprBA transcription and dechlorination of Cl-OHPA. Northern blot analysis 

was performed with total RNA extracted from D. dehalogenans cells grown on pyruvate that were amended with 

Cl-OHPA during exponential growth. Relative transcription values were obtained after quantification of 

hybridization signals with 32P-labeled probes that were specific for cprA and the 16S rRNA-encoding gene of D. 

dehalogenans ( • ) . The unusual ratio obtained after 2 h of induction may be due to degradation of the cprBA 

transcript compared to the 16S rRNA. Concentrations of Cl-OHPA and OHPA were determined by reverse-

phase high-performance liquid chromatography analysis. The degree of conversion of Cl-OHPA to OHPA was 

calculated as [OHPA] x 100% / ([Cl-OHPA] + [OHPA]) (A). 
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Discussion 

Halorespiring bacteria have been demonstrated to be actively involved in the reductive 

dehalogenation of chlorinated aliphatic and aromatic compounds of natural and anthropogenic 

origin. Hence they contribute significantly to the detoxification of these contaminants in the 

environment (Fetzner, 1998). The reductively dehalogenating enzymes from a limited number 

of halorespiring bacteria have been characterized at the biochemical and genetic levels, 

indicating similar modes of catalytic action (Holliger et ah, 1999). However, insight in the 

regulatory circuits involved in the induction and repression of the halorespiration process is 

still very limited. For the first time, we here present the molecular analysis of the control of 

halorespiration-specific gene expression. 

We have cloned and sequenced extended chromosomal fragments up- and downstream of 

the ort/20-chlorophenol-reductive dehalogenase-encoding cprBA gene cluster in halorespiring 

D. dehalogenans. Previously, we showed that cprA codes for a pre-protein containing a twin 

arginine (RR) signal sequence (van de Pas et ah, 1999). This signal peptide is cleaved off in 

the mature protein and is thought to play a major role in the maturation and translocation of 

mainly periplasmic proteins binding different redox cofactors by the recently described twin 

arginine translocation system (Berks et ah, 2000). Putative functions of the newly detected 

open reading frames could in most cases be assigned by similarity to proteins present in the 

databases. CprC and CprK are potentially involved in regulation of transcription at different 

levels, whereas CprD, CprE and CprT share significant similarity with molecular chaperones 

being involved in the correct folding, processing and assembly of proteins. However, no 

function could be assigned to the predicted gene products of ORFU and cprZ. 

CprD and CprE belong to the family of GroEL chaperonins, which are found in 

prokaryotes, chloroplasts and mitochondria. GroEL chaperonins are tetradecameric proteins 

that are involved in preventing protein aggregation, and facilitating protein folding and 

assembly (Fink, 1999). In addition, it has been suggested that accessory proteins like GroEL 

might play a role in correct assembly and cofactor insertion during the maturation of RR 

signal peptide containing proteins, such as the reductive dehalogenases from halorespiring 

bacteria (Santini et ah, 1998; Berks et ah, 2000). CprT has significant similarity to the trigger 

factor, a prolyl peptidyl isomerase that catalyzes proline cis-trans isomerization, a potential 

rate-limiting step in protein folding (Fink, 1999). Studies on trigger factor from E.coli showed 

its association with nascent polypeptide chains and the 50S ribosome, suggesting a role in 
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protein folding (Stoller et al, 1995; Valent et al, 1995). Interestingly, complexes between 

trigger factor and GroEL formed in vivo have been reported to have a much higher affinity for 

partially folded polypeptides than GroEL alone (Kandror et al, 1997). Moreover, 

overexpression of trigger factor together with GroEL and GroES significantly improved the 

solubility of recombinant proteins, normally prone to aggregation into inclusion bodies 

(Nishihara et al, 2000). Unlike known trigger factors, CprT lacks part of the N-terminal 

domain, which is non-catalytic but which appears to be required for full activity in protein 

folding (Zarnt et al, 1997). Nonetheless, the specific coordinated expression of cprD, cprE 

and cprT under halorespiring conditions suggests a synergistic role of these molecular 

chaperones in the maturation of the dehalogenating complex. 

Northern blot analysis and RT-PCR revealed that the transcription of almost all genes 

identified in the cpr gene cluster is induced under halorespiring growth conditions, whereas 

no or significantly less-abundant transcription was observed under pyruvate-fermenting and 

fumarate- or nitrate-respiring conditions. We could reveal the transcriptional organization of 

the locus, i.e. two biscistronic units cprZE and cprBA, with occasional read through at cprC, 

yielding expression of the polycistronic cprBACD genes. Possibly, transcription of a third 

biscistronic unit, cprCD, might be initiated at a promoter preceding cprC. cprT, encoding a 

trigger factor, is obviously transcribed into a monocistronic mRNA (Fig. 3.4). Low-level 

constitutive transcription under all tested conditions was solely observed for tricistronic 

transcript cprKZE. Transcription from the cprB promoter was strongly induced within 30 min 

upon the addition of Cl-OHPA to cells growing by fermentation of pyruvate with concomitant 

dehalogenation of Cl-OHPA to OHPA, indicating o-chlorophenol-reductive dehalogenase 

activity. This is in agreement with the earlier result that dehalogenation can not be induced in 

the presence of chloroamphenicol, showing that activation of dehalogenation requires de novo 

protein synthesis (Utkin et al, 1995). 

Sequence analysis revealed the presence of a gene cprK, constitutively expressed at a low 

level, encoding a potential transcription regulatory protein. The observed tight control of the 

expression of the structural and putative accessory cpr genes might imply a direct 

involvement of CprK in the functionality of the D. dehalogenans halorespirational system. 

CprK has significant similarity to FNR- and FixK-like regulators, which are important trans

acting factors in regulatory networks of anaerobic assimilation and dissimilation. Like FixK, 

CprK lacks the N-terminal cysteine cluster, characteristic for FNR, which is involved in 

binding of an Fe/S center, and as such in redox-sensing (Zumft, 1997). However, CprK does 
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show an unusually high content of five cysteine residues, among which is the conserved 

internal cysteine residue Cys105. In the E.coli FNR protein, the corresponding Cys122 has been 

shown to be essential for Fe-binding, disulfide bond formation and covalent modification 

(Green et ah, 1993). The FNR- and FixK-like regulatory proteins share a common conserved 

DNA-binding motif in their C-terminal recognition helices, which is complementary to a 

palindromic recognition motif, the so-called FNR or anaerobox in the promoter of target 

genes (TTGAT-N4-ATCAA) (Spiro & Guest, 1990). In positively regulated promoters, this 

FNR binding motif is preferentially centered at a distance of 41.5 nucleotides upstream of the 

transcription start (Spiro & Guest, 1990). Inspection of the mapped halorespiration-inducible 

cprB promoter showed that it lacks the -35 consensus motif of strong constitutive promoters 

but does contain an anaerobox-like palindromic structure (1-1, TTAAT-N4-ACTAA). This 

putative regulatory protein binding motif is centered 41.5 nucleotides upstream of the 

apparent transcription start, suggesting positive regulation of transcription by an FNR-like 

factor (Fig. 3.6A). Another interesting feature of the cprB promoter is the presence and 

position of an additional long inverted repeat (1-3) that overlaps with the transcription start 

site, suggesting a function in control of transcription initiation. Northern blot analysis 

revealed that expression from putative promoters preceding cprT and cprZ was also 

stimulated under halorespiring conditions. FNR box-like motifs centered 87.5 bp and 77.5 bp 

upstream of cprT and cprZ, respectively (1-7 and 1-9; Figs. 3.6B and C), could be identified. 

Moreover, in both cases conserved -10 consensus motifs were found at the same distance (19 

bp) downstream of the FNR box-like motifs as in the mapped cprB promoter (Figs. 3.6B, C 

and E). Both, the lower degree of conservation of the proposed FNR box-like motif at cprC 

(Figs. 3.6D and E) and the small difference in spacing to the transcription start (45.5 bp 

instead of 41.5 bp) and a less well conserved -10 motif favor the idea that the mapped start 

site of the cprCD mRNA is the site of processing of the larger tetracistronic unit cprBACD 

rather than of transcription initiation. 

In conclusion, it is tempting to speculate that the FNR-homologue CprK is the factor 

binding to the different anaerobox-like motifs preceding at least the 3 halorespiration-

inducible promoters present in the cpr gene cluster. An alignment of the identified motifs 

revealed a consensus sequence for all analyzed promoters that only slightly differs from the 

FNR box (Fig. 3.6E), which could reflect corresponding differences in the recognition helix 

of CprK (Fig. 3.3). CprK might be activated by the addition of a halogenated substrate, either 

directly or via an o-chlorophenol-sensor, such as the two component regulatory system that 
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was previously detected from the detailed analysis of halorespiration-deficient mutants (Smidt 

et ah, 1999). If so, active CprK then induces transcription from the apparent cprB promoter 

and the putative cprT and cprZ promoters, generating the set of polypeptides required to 

obtain a functional dehalogenating complex. Such a model suggests a similar regulatory loop 

as has been proposed recently for nitrite reductase- and nitrous oxide reductase-encoding gene 

clusters from denitrifying bacteria. There, the expression of both the structural genes, nirS and 

nosZ, and of the membrane-bound regulator, encoded by nirl and nosR, are under the control 

of FNR-like regulatory proteins NNR and FnrD, respectively (Cuypers et ah, 1995; Saunders 

et ah, 1999). However, the exact function and mode of action of the Nirl- NosR- and CprC 

regulatory proteins remain unknown. Interestingly, the analysis of the partially available 

genome sequence of the halorespiring Dehalococcoides ethenogenes has revealed the 

occasionally close linkage of reductive dehalogenase-encoding genes with cprC and cprK 

homologues, as well as with genes, potentially coding for two-component regulatory systems 

(Preliminary sequence data were obtained from The Institute for Genomic Research website 

at http://www.tigr.org). This might serve as an additional, although only indirect, indication 

for the involvement of such regulatory proteins in the regulation of expression of reductive 

dehalogenases. 

The molecular analysis of the cpr gene cluster reported here, for the first time provides 

insight in the molecular basis of regulation and maturation of the halorespiratory system and 

suggests regulatory circuits which are similar to those proposed for respiratory complexes 

present in denitrifying bacteria. The remarkably fast induction of halorespiration-specific gene 

expression and its relative insensitivity towards the presence of alternative electron acceptors 

indicate the potential of D. dehalogenans as a dedicated degrader in contaminated 

environments (Mackiewicz & Wiegel, 1998; Smidt et al., unpublished results). 
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RANDOM TRANSPOSITION BY TN916 IN 

DESULFITOBACTERIUM DEHALOGENANS ALLOWS FOR 

ISOLATION AND CHARACTERIZATION OF HALORESPIRATION-

DEFICIENT MUTANTS 

Hauke Smidt, Song Donglin, John van der Oost and Willem M. de Vos 
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Abstract 

To allow for the molecular analysis of halorespiration by the strictly anaerobic Gram-
positive bacterium Desulfitobacterium dehalogenans, halorespiration-deficient mutants were 
selected and characterized following insertional mutagenesis by the conjugative transposon 
Tn916. To facilitate rapid screening of transconjugants, a highly efficient method for the 
growth of single colonies on solidified medium has been developed. A streptomycin-resistant 
mutant of D. dehalogenans was isolated and mated with Enterococcus faecalis JH2-2 
carrying Tn916. Insertion of one or two copies of Tn9/6 into the chromosome of D. 
dehalogenans was observed. From a total of 2500 transconjugants, 24 halorespiration-
deficient mutants were selected upon their inability to use 4-chloro-3-hydroxyphenylacetic 
acid as electron acceptor. Physiological characterization led to the definition of three 
phenotypic classes of mutants that differed in their ability to use the additional terminal 
electron acceptors nitrate and fumarate. The activities of hydrogenase and formate 
dehydrogenase were determined, and the transposon insertion sites in selected mutants 
representing the different classes were analyzed on the sequence level following amplification 
by inverse PCR. The results of the molecular characterization as well as the pleiotropic 
phenotype of most mutants indicate that genes coding for common elements shared by the 
different respiratory chains present in the versatile D. dehalogenans have been disrupted. 
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Introduction 

Halogenated hydrocarbons are present in the environment in high quantities due to their 

past and present application in industry and agriculture, e.g. as solvents, pesticides and 

preservatives, and to natural production, compromising environmental integrity and health 

(Gribble, 1996. The biodegradability of these compounds under different environmental 

conditions has been studied extensively (Fetzner, 1998). In particular, higher halogenated 

hydrocarbons can often be degraded solely under anaerobic conditions by reductive 

dehalogenation. In contrast to aerobic degradation processes, however, only limited 

knowledge exists on reductive dehalogenation at the molecular level (Mohn & Tiedje, 1992). 

Recently, a rapidly expanding group of anaerobic bacteria has been isolated that are able to 

couple the reductive dehalogenation to energy conservation and hence to growth (El 

Fantroussi et al., 1998; Holliger et al, 1999). These bacteria can use chloroalkenes, e.g. tetra-

and trichloroethene, or chloroaromatic compounds, such as chlorophenols or 3-

chlorobenzoate, as the terminal electron acceptor. Among these, the Gram-positive genus 

Desulfitobacterium comprises a major group of isolates, including D. dehalogenans, which is 

able to couple the reductive dechlorination of different or7/*o-chlorinated phenolic compounds 

to growth with lactate, pyruvate, formate or hydrogen as the electron donor. In addition, 

pyruvate is also used for fermentative growth (Utkin et al, 1994). 

Isolation of these strains and their expected potential for application in in situ 

biodegradation of haloorganic pollutants also led to an increased interest in the molecular 

bases of this novel anaerobic respiratory pathway. To date, efforts have mainly focused on the 

reductive dehalogenase as the key enzyme in halorespiration. The inducible ortho-

chlorophenol reductive dehalogenase was purified from D. dehalogenans and characterized at 

the biochemical and genetic level (van de Pas et al, 1999). A comparison with other 

chlorophenol- and tetrachloroethene-reductive dehalogenases shows that all enzymes are 

either membrane-bound or membrane-associated, contain Fe-S clusters and, with one 

exception, a corrinoid as redox centra (for a recent review, see Holliger et al, 1999). The 

presence of two iron-sulfur clusters as determined by electron paramagnetic resonance 

analysis was confirmed by the identification of one ferredoxin-like motif and one truncated 

iron-sulfur cluster binding motif in the deduced primary sequence. Similar results were 

obtained for the tetrachloroethene-reductive dehalogenase of the Gram-negative 
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Dehalospirillum multivorans (Neumann et al, 1998). Furthermore, both reductive 

dehalogenases share a twin arginine (RR) leader sequence, which is cleaved off in the mature 

proteins. These RR - leader sequences are thought to play a major role in the maturation and 

translocation of mainly periplasmic proteins binding different redox cofactors (Berks, 1996). 

In order to enable a molecular characterization of additional components involved in 

halorespiratory electron transport, as well as in folding, targeting and regulation of the 

reductive dehalogenase in D. dehalogenans, we tested the use of the conjugative transposon 

Jn916 for the isolation of halorespiration-deficient (HRD) mutants. Tn916 was the first 

conjugative transposon to be identified, and members of the Tn916-Tnl 545 family have been 

found in or introduced into more than 50 different Gram-positive and -negative species 

(Clewellefa/., 1995). 

We report here the development of an efficient conjugation system for the integration of 

Tn916 in the chromosome of the newly described halorespiring D. dehalogenans. This 

allowed for the isolation of HRD mutants that were characterized by analyzing their 

respiratory and biochemical properties as well as by sequence analysis of the insertion sites. 

Table 4.1 Bacterial strains used in this 

Strain 

Enterococcus faecalis JH2-2 

Escherichia coli XL-1 Blue 

Desulfitobacterium dehalogenans 

JW/IU-DC1 (DSM9161) 

HSS1 

HRDO 

HRD2 (Class I) 

HRD1, 3-5, 7-24 (Class II) 

HRD6 (Class III) 

study. 

Relevant characteristics 

Rif, Fusr, Tn9/<5 (Tetr) 

recAl, endAl, gyrA96, thi hsdR17, supE44, 

relAl, [F'.lacPZMlS, Tn/0 (Tetr)] 

wild-type strain 

Strr 

Strr, Tn9/6 (Tetr) 

Strr,Tn9/6(Tef),HRD 

Strr, 7n916 (Tef), HRD, Nar" 

Strr, Tn916 (Tef), HRD, Nar", Ffr 

Reference or source 

(Jacob & Hobbs, 1974) 

Stratagene 

DSMb 

This study 

This study 

This study 

This study 

This study 

a Rif, rifampicin resistant; Fus', fusidic acid resistant; Tef, tetracycline resistant; Strr, streptomycin resistant; 
HRD, no growth with Cl-OHPA plus formate or lactate; Nar", no growth with nitrate plus formate or lactate; 
Ffr, no growth with fumarate plus formate.b DSM, Deutsche Sammlung von Mikroorganismen. 

77 



Chapter 4 

Materials and Methods 

Materials 

4-chloro-3-hydroxyphenylacetic acid (Cl-OHPA) was purchased from Sigma-Aldrich 

Chemie (Zwijndrecht, The Netherlands) and filtered prior to use. All gasses were obtained 

from Hoek Loos (Schiedam, The Netherlands). When appropriate, experiments were carried 

out in an anaerobic glove box (Coy Laboratories Products, Grass Lake, Mich.) under an 

atmosphere of 96% N2 and 4% H2. The oxygen concentration was kept low with the 

palladium catalyst RO-20 provided by BASF (Arnhem, The Netherlands). 

Bacterial Strains, Plasmids, and Culture Conditions 

The bacterial strains used in this study are listed in Table 4.1. Strains of Escherichia coli 

were grown in Luria Bertani medium at 37°C (Sambrook et ah, 1989). Enterococcus faecalis 

was cultivated at 30°C in Ml7 broth (Oxoid, Basingstoke, United Kingdom), supplemented 

with 0.5 g of glucose/liter. Strains of D. dehalogenans were routinely grown anaerobically 

(100% N2 gas phase) at 37°C in a phosphate-buffered medium (pH 7.5) with a low chloride 

concentration. The basal medium contained (in grams per liter demineralized water): 

Na2HP04 • 2H20, 3.56; K2HPO4, 3.31; KH2P04, 0.87; (NH4)2HP04, 0.61; MgCl2 • 6H20, 

0.22; CaCl2 • 2 H20, 0.03; resazurin, 0.0005. Prior to inoculation, the basal medium was 

supplemented with 0.04 g of Na2S/liter, 0.04 g of cysteine-HCl/liter, lg of yeast extract/liter, 

and trace elements and vitamin solution as recommended by the German Collection of 

Microorganisms. The electron donor and acceptor were added to the desired concentrations. If 

appropriate, media were amended with ampicillin (100 |ig/ml), streptomycin (2,000 ug/ml) 

and tetracycline (5 u.g/ml). For the long term storage of cultures of D. dehalogenans at -80°C, 

prior to freezing them, glycerol was added to a final concentration of 20 % from an anoxic 

stock solution inside the glove box. 

The cloning vectors pUC18 and pUC19 were purchased from Amersham Pharmacia 

Biotech (Uppsala, Sweden) and the PCR product cloning vectors pGEM-T and pMON38201 

were obtained from Promega (Madison, Wis.) and Monsanto (St. Louis, Mo.) respectively. 

Plating of D. dehalogenans 

Basal medium was autoclaved in serum bottles in the presence of agar. After addition of 

vitamins, trace elements, 0.1 g of yeast extract/liter, 20 mM electron donor, and -acceptor and, 
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if necessary the appropriate antibiotics, the medium was reduced with 0.04 g of both Na2S and 

cysteine-HCl/liter. Plates were poured in the glove box and stored there for 1 day. Cells from 

the exponential growth phase were diluted appropriately into reduced basal medium and 

distributed on the solidified medium in aliquots of 100 ul with sterile glass beads. The plates 

were incubated at 37°C upside down under N2 in a gas-tight jar. Application of 0.8% BBL 

agar purified (Becton Dickinson, Meylan, France) resulted in an average efficiency of plating 

(EOP, equal to CFU / number of cells counted) of 0.85 ± 0.14, compared to 0.15 ± 0.05 in the 

case of agar of normal purity (Difco Laboratories, Detroit, Mich.). An agar concentration of 

1% or higher resulted in a 2.7-fold decrease in efficiency. For all subsequent experiments, 

0.8% of BBL agar purified was routinely used for the plating of D. dehalogenans. 

For further subcultivation, colonies were picked inside the glove box, resuspended in 0.5 

ml of reduced basal medium, and transferred to 120-ml serum bottles with 20 ml anaerobic 

medium, containing the appropriate substrates and antibiotics. 

Isolation of D. dehalogenans HSS1 

Spontaneous streptomycin-resistant mutants of D. dehalogenans were isolated, following 

growth in liquid culture in the presence of 20 mM pyruvate and 10 |ig of streptomycin/ml. In 

subsequent cultures, the concentration of streptomycin was raised stepwise to 150 ug/ml. 

Strain D. dehalogenans HSS1 was finally isolated from a single colony grown on a plate 

containing 20 mM lactate, 20 mM Cl-OHPA, and 200 |ig of streptomycin/ml. 

Filter Mating, Selection of Transconjugants, and Screening for Halorespiration 

Deficiency 

For the conjugation experiments, exponentially growing cultures of E. faecalis JH 2-2 and 

D. dehalogenans HSS1 were diluted into fresh medium containing the appropriate antibiotics 

and grown to an A660 of 0.4 to 0.5 and 0.2 to 0.3, respectively. E. faecalis JH 2-2 was 

cultivated at 30 or 37°C under either aerobic or anaerobic conditions (optimized protocol, 

37°C and anaerobic). Subsequently, the cultures were transferred to a glove box, washed 

twice and resuspended in reduced basal medium. Donor and recipient cultures were mixed in 

different ratios and filtered on a 0.45 urn HA - filter (Millipore, Bedford, Mass.). The 

membrane was placed with the bacterium side up on an agar plate containing 20 mM 

pyruvate, and incubated at 30 or 37°C in an anaerobic jar under N2 for 6 to 16 h (optimized 

protocol, 37°C for 16 h). The cells were resuspended from the membrane in reduced basal 
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medium, and transconjugants were selected on plates containing 20 mM pyruvate, 2000 \xg of 

streptomycin/ml and 5 ug of tetracycline/ml. To determine the influence of the mating 

procedure on the viability of D. dehalogenans HSS1, plates without tetracycline were 

inoculated in parallel. Screening for HRD mutants of D. dehalogenans HSS1 was performed 

by streaking colonies of transconjugants on plates containing 2000 ug of streptomycin/ml, 5 

|ig of tetracycline/ml, and either 20 mM pyruvate or 20 mM lactate and 20 mM Cl-OHPA. 

DNA Isolation and Manipulation 

Chromosomal DNA of D. dehalogenans was isolated as described previously (van de Pas 

etal, 1999). 

Plasmid DNA was isolated from E. coli by using the alkaline lysis method, and standard 

DNA manipulations were performed according to established procedures (Sambrook et al, 

1989) and manufacturers instructions. Enzymes were purchased from Life Technologies B.V. 

(Breda, The Netherlands), Boehringer Mannheim GmbH (Mannheim, Germany) or New 

England Biolabs (Beverly, Mass.). Oligonucleotides were obtained from Life Technologies 

B.V.. Hybond-N+ nylon transfer membrane (Amersham Life Science, Little Chalfont, United 

Kingdom) was used for Southern blot analysis. Probes for hybridization experiments were 

labeled by nick translation in the presence of [oc-32P] dATP (Amersham Pharmacia Biotech). 

As specific probe for the tetracycline resistance determinant tetM, a 4.2-kb Hindi restriction 

fragment of the Tn9/P tetM- gene from pCI182 was used (Hill et al, 1988). 

Characterization of Jn976 Insertion Sites 

Chromosomal fragments flanking the sites of Tn916 insertion were amplified by inverse 

PCR (Triglia et al, 1988). The divergent primer pairs BG 285-BG 287 (BG 285, 5' GAC 

CTT GAT AAA GTG TGA TAA GTC C 3', nucleotides (nt) 62 to 38; BG 287, 5' GGA GTT 

TTA GCT CAT GTT GAT GC 3', nt 12141 to 12163) and BG 286-BG 288 (BG 286, 5' CTC 

GAA AGC ACA TAG AAT AAG GC 3', nt 17956 to 17978; BG 288, 5' CCA CGC TTC 

CTA ATT CTG TAA TCG 3', nt 12231 to 12208) were used to specifically amplify the 

upstream and downstream flanking fragments, respectively. The sequence of the primers was 

based on the nucleotide sequence of Tn916 (GenBank accession no. U09422) (Flannagan et 

al, 1994). Chromosomal DNA was digested with Hindlll and ligated at a concentration of 0.5 

ng/|0.1. Five nanograms of self-ligated DNA was used as the template in a 25-ul PCR reaction 

mixture containing 2 ng of each primer, 2 mM MgCl2, 200 uM of dATP, dCTP, dGTP, and 
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dTTP; and 1 U of Expand Long Template enzyme mixture (Boehringer Mannheim GmbH). 

The DNA was amplified with the GeneAmp PCR System 2400 (Perkin Elmer Cetus, 

Norwalk, Conn.). After the mixture was preheated to 94°C for 2 min, 35 amplification cycles 

were performed, consisting of denaturation at 94°C for 20 s, primer annealing at 55°C for 30 s 

and elongation at 68°C for 3 min. From cycle 6 onwards, the elongation was extended with 20 

s per cycle to increase the yield. A final extension of 7 min at 68°C was performed. The PCR 

products were purified from agarose gel by Gene Clean (Bio 101, La Jolla, Calif.) and cloned 

into E. coli using pGEM-T or pMON38201. 

For the further elucidation of the D. dehalogenans hyd locus identified in HRD mutant 6 

(HRD6), the divergent primer pair BG 345-BG 346 (BG 345, 5'-CCA TTC GAT ACC ATG 

AGA CC-3', nt 1235 to 1254; BG 346, 5'-GTA CTA ATG ATT CGA TAC TGG G-3', nt 

1222 to 1201) was used for inverse PCR from PM-digested chromosomal DNA of the 

parental strain. The reaction conditions were as described above, and the PCR product was 

cloned and sequenced. For additional information on the hyf-hyc locus (HRD4), a 2.5-kb 

EcoRl - BamHl fragment was isolated from a D. dehalogenans genomic library, cloned, and 

sequenced. 

DNA Sequencing 

DNA sequencing was performed using a Li-Cor (Lincoln, Nebr.) DNA sequencer 4000L. 

Plasmid DNA used for sequencing reactions was purified with the QIAprep Spin Miniprep kit 

(Qiagen GmbH, Hilden, Germany). Reactions were performed using the Thermo Sequenase 

fluorescent-labeled primer cycle sequencing kit (Amersham Pharmacia Biotech). Infrared-

labeled universal sequencing primers were purchased from MWG Biotech (Ebersberg, 

Germany). Sequence similarity searches and alignments were performed with the BLAST 2.0 

program (Altschul et al, 1997) (National Center for Biotechnology Information, Bethesda, 

Md.) and the DNAstar package (DNASTAR Inc., Madison, Wis.), respectively. 

Enzyme and Protein Assays 

Harvesting of cells and preparation of cell extracts by sonication under anoxic conditions 

were performed as described previously (van de Pas et al, 1999). Enzyme activities in cell 

extracts were determined spectrophotometrically at 30°C in rubber stoppered N2-flushed 

cuvettes by following the oxidation or reduction of benzylviologen or methylviologen at 578 

nm (£578 = 9.2 mM"1 x cm"1 or 9.7 mM"1 x cm"1, respectively). Formate dehydrogenase and 
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hydrogenase were assayed in 1 ml 100 mM Tris-HCl (pH 8.0) containing 1 mM 

benzylviologen and 10 mM formate or 1 ml H2, respectively. Fumarate reductase activity was 

determined in 1 ml 100 mM sodium phosphate buffer (pH 7.5) containing 5 mM 

titanium(III)citrate-reduced benzylviologen and 10 mM fumarate. For all assays, one U of 

enzyme activity corresponds to the amount of enzyme catalyzing the conversion of 1 umol 

substrate or 2 |xmol of benzyl- or methylviologen per minute. For the semiquantitative 

determination of formate-H2 lyase activity, 200 ul cell extract was added to 1.8 ml of 100 mM 

Tris-HCl (pH 7.8) buffer containing 10 mM formate and incubated at 30°C. The formation of 

hydrogen was followed by gas chromatography. Protein was determined according to the 

method of Bradford, with bovine serum albumin as the standard (Bradford, 1976). 

Nucleotide Sequences 

The nucleotide sequences of the sites of TnP/<5 insertion in the different mutants have been 

deposited in the GenBank database under GenBank Accession Numbers AF157637 (HRD2 

upstream), AF157638 (HRD2 downstream), AF157642 (HRD22), AF176224 (HRD4 - 1), 

AF157639 (HRD4 - 2 upstream), AF157640 (HRD4 - 2 downstream) and AF157641 

(HRD6). 

Results 

Development of a TnS 76-Based Transposition System for D. dehalogenans 

To allow for the genetic analysis of halorespiration by D. dehalogenans, a transposition 

system was designed and optimized based on the broad host-range conjugative transposon 

Tn916 (Clewell et al., 1995). Previously, it had been reported that D. dehalogenans showed a 

poor EOP on agar plates (Utkin et al, 1994). However, application of strict anaerobic 

conditions, an optimized agar concentration (0.8 %), and an appropriate source of agar (BBL 

agar purified), resulted in a highly efficient plating system (EOP, 0.85 ± 0.14). On plates 

containing 20 mM pyruvate, colonies that were translucent, white and spherical with a 

diameter of 2 - 3 mm appeared after 3 days of incubation. Similar results were obtained with 

20 mM of pyruvate or lactate as the electron donor and nitrate, fumarate, or Cl-OHPA as the 

electron acceptor (data not shown). 
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Table 4.2 Conjugation frequencies for the mating of E.faecalis JH2-2 and D. dehalogenans HSS1. 

Preincubation E.faecalis Mating Donor / recipient conjugation frequency 

conditions ratio (107)a 

aerobic, 37°C 37°C, 16 h 0.5 1.1 

aerobic, 30°C 30°C, 6 h 10.0 4.0 

aerobic, 37°C 37°C, 6 h 6.0 6.7 

anaerobic, 37°C 37°C, 16 h 4.0 30.0 

Conjugation frequencies were calculated as number of transconjugants per recipient. 

To enable counterselection following conjugation, a streptomycin-resistant mutant, strain 

HSS1, was isolated, which showed an EOP of 0.85 ±0.1 on plates containing up to 4000 ug 

of streptomycin/ml, while for the parental strain, D. dehalogenans DSM 9161, the EOP was 

below 10"8 on plates containing 50 ug of streptomycin/ml. No resistance to other antibiotics 

(tetracycline, chloroamphenicol or rifampicin) was observed in strain HSS1 (data not shown). 

The conjugative transposon Tn916 was introduced into D. dehalogenans strain HSS1 by 

filter mating with the streptomycin-sensitive E. faecalis JH2-2, which carries a single copy of 

Tn9/6" on its chromosome and is widely used as TnP7(5 donor in matings of Gram-positive 

bacteria (Clewell et al., 1995; de Vos et al, 1997). After 5 days of incubation on plates 

containing streptomycin and tetracycline, transconjugant colonies of D. dehalogenans 

developed. Subsequently, conjugal transfer was optimized by varying growth of the donor, 

mating conditions and the donor / recipient ratio (Table 4.2). The highest conjugation 

frequencies were observed when the E. faecalis donor was grown at 37°C in the absence of 

oxygen and mated in a four fold excess over the recipient D. dehalogenans HSS1 for 16 h at 

37°C, resulting in 3 x 10"6 transconjugants per recipient. 

The insertion of Tn916 in the chromosome of D. dehalogenans HSS1 was confirmed by 

Southern blot analysis with a te^M-specific probe and revealed many single copy insertions, 

occasional insertion of two copies and an apparently random distribution (data not shown) 

(see below). 

HRD Mutants and their Phenotypic Classification 

A total of 2500 tetracycline-resistant transconjugants obtained from several independent 

matings were analyzed for halorespiration deficiency. Transconjugants, which showed growth 
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on pyruvate but not on lactate - Cl-OHPA within 7 days, were considered HRD. After 

rescreening, a total of 24 HRD mutants was isolated and subsequently subjected to a series of 

20-ml batch incubations in the presence of 20 mM lactate or formate as the electron donor and 

fumarate, nitrate, or Cl-OHPA as the electron acceptor. As a control, fermentative growth 

with 20 mM pyruvate was followed. Furthermore, a transconjugant, which had not lost the 

ability to grow upon halorespiration (HRDO), was used as a control strain. Deficiency in using 

a certain combination of electron donor and acceptor was defined by a lag phase increased 

more than two-fold in growth compared to strain HRDO. This criterion was chosen because 

continuous incubation in the medium resulted in the growth of tetracycline-resistant revertants 

in which the transposon probably had moved from the original site of integration to another 

site. This was confirmed by Southern analysis with a fe?M-specific probe, as the specific 

hybridizing signals progressively disappeared with successive cultivation under selective 

conditions (results not shown). Based on the results, the strains could be grouped into 3 major 

classes, which differed in their capacities to utilize additional electron acceptors (Table 4.1). 

The first class contained only one mutant, HRD2, that was found to be solely deficient in 

halorespiration with lactate or formate as the electron donor. Class II was the major group, 

comprising 22 HRD mutants, which had lost the ability to grow by both halorespiration and 

nitrate respiration with lactate or formate as the electron donor. The third phenotypic group 

again included only a single mutant, strain HRD6, which was not only impaired in the use of 

Cl-OHPA and nitrate, but also fumarate as electron acceptor. The pleiotropic phenotype of 

most mutants indicates the disruption of genes that encode common elements shared by the 

different respiratory chains present in this organism. 

Genetic Characterization of HRD Mutants 

Chromosomal DNA was isolated from HRD transconjugants and digested with HindRl. 

Tn916 contains one single Hindlll site, yielding left end right arms of 12.2 and 5.8 kb, 

respectively (Flannagan et al, 1994). The fragments were separated by agarose gel 

electrophoresis and transferred to membranes that were hybridized to a 4.2-kb Hindi 

restriction fragment of the Tn9/9 tetM gene (Fig. 4.1). While no DNA fragments from the 

recipient D. dehalogenans strain HSS1 hybridized with the tetM probe, most of the mutant 

strains exhibited 2 hybridizing fragments, indicating chromosomal integration of a single 

copy of Tn916. Only HRD1, -3 and -4 showed more than 2 hybridizing bands, suggesting 

multiple transposon insertions. The difference in size of the hybridizing fragments in the 
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mutants indicates that the transposon inserted in an apparently random manner into the 

chromosome of D. dehalogenans. An additional 18-kb hybridizing fragment was found with 

different intensities in all mutants, suggesting the presence of a circular intermediate of Tn916 

(Gawron-Burke & Clewell, 1984). 

Characterization of the Tn916 Insertion Sites in Different HRD Mutants 

Inverse PCR was used to specifically amplify the Tn916 - flanking fragments from the 

chromosomal DNA of representative HRD mutants. The identity of relevant PCR products 

was verified by Southern blot analysis of //iwdlll-digested chromosomal DNA isolated from 

the different mutants. Fragments hybridizing with the different PCR products also hybridized 

strongly with a radiolabelled tetM probe, confirming that the primers used specifically yielded 

the amplification of Tn916 - flanking fragments (data not shown). 

Characterization of the Jn916 insertion sites indicated that 4 of the 24 HRD mutants 

isolated carried the transposon inserted at the same site but in different orientations (HRD5 -

HRD24 and HRD9 - HRD 10). Interestingly, all these mutants arose from independent mating 

experiments. Similarly, Tn916 insertion sites were identical for HRD3, HRD20, and HRD22, 

with HRD20 carrying the transposon in the inverse orientation compared to those in HRD3 

and HRD22. 

Wt 1 2 4 6 12 13 14 16 19 3 20 22 5 9 10 24 

23.1 - , „ „ 

9 . 4 - < • * , . . 
6.5 - *— 

4.4 -

Figure 4.1 Hybridization of //;«dIII-digested chromosomal DNA from wild-type (wt) and tetracycline-resistant 
HRD mutants of D. dehalogenans with a probe for tetM (obtained from pCI182) (Hill et ai, 1988). The 
autoradiograph was digitally corrected for differences in DNA concentration. Lanes: 1, strain HSS1; 2 to 17, 
mutant strains HRD1, -2, -4, -6, -12, -13, -14, -16, -19, -3, -20, -22, -5, -9, -10 and -24, respectively. DNA size 
markers are in kilobase pairs. Fragments smaller than 4 kb were not found to hybridize with the tetM probe. The 
arrow indicates the possible 18-kb circular intermediate of Tn916. 
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HRD2 TCTTAAATGRRCAGGGGNGGTTTTAACTA A TATGCTATTTTTAACTAAAAATAAT 

HRD3 TCCTACTTCTTTCTTTTTAGGCATA^IF (TAGTTAA) AAAAAAATAAAATGTTTATGAG 

HRD20 TCCTACTTCTTTCTTTTTA (AC) TA A (TAACTAA) AAAAAAATAAAATGTTTATGAG 

HRD4 AATGGTTAGGGAATTTTTTTAGTTA^IPTGTATAAAAAAATGTTTTACCCTCTGAGCA 

HRD6 AATGAGATACCCTCATTTTTTT(CACCAGG) A TCTAATTAAAAACGACATGAACTTT 

Figure 4.2 Nucleotide sequences of the TnP/6 insertion sites in different HRD mutants of D. dehalogenans. The 
triangles indicate the site and orientation of Tn9/6 insertion (nt 1 to 18032). The bases given in parentheses for 
HRD3, -6 and -20 were not present in the wild-type sequence. 

Nucleotide sequence analysis of the flanking chromosomal regions showed that the target 

sites are generally AT rich (Fig. 4.2). In two cases, the wild-type sequence of the insertion site 

was determined, revealing the presence of additional nucleotides after the insertion event, as 

shown for HRD3, HRD20, and HRD6. These short so-called coupling sequences are a 

common feature of Tn976 insertion sites and are a result of the integration event (Clewell et 

al, 1995). The insertions were located in the vicinity (i.e. within potential promoter and 

terminator sequences) of open reading frames that encode regulatory proteins or enzymes of 

anaerobic respiratory pathways present in D. dehalogenans (Fig. 4.3). 

Four representatives of class I, II, and III mutants were analyzed in detail. In the class I 

mutant HRD2, Tn916 had inserted downstream of hrd2-l, which shows limited similarity (20 

% identity at the amino acid level) with cheX, encoding a chemotaxis - related protein in 

different strains of Treponema. It is located upstream ofhkhA, revealing significant similarity 

(22 % identity at the protein level) with a gene coding for a sensory transduction histidine 

kinase in Methanobacterium thermoautotrophicum (GenPept accession no. AAB84866). 

In the class II mutant HRD22, the transposon inserted in the hrd22-l gene, which could 

encode a 30-kDa protein of unknown function. This gene is followed by hkhB, which may 

encode a member of the two-component sensor histidine kinases (28 % identity at the protein 

level with YwpD from Bacillus subtilis; GenPept accession no. CAB05945). One kilobase 

downstream of the transposon insertion site in HRD22 is the hemN gene, which shows strong 

similarity with genes coding for oxygen-independent coproporphyrinogen III oxidases that are 

involved in porphyrin biosynthesis (Fig. 4.3). 
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Figure 4.3 Physical map of the Tn9I6 insertion sites in different class I, II and III HRD mutants of D. 
dehalogenans. Triangles indicate the sites and orientations of transposon integration. The horizontal arrows show 
identified open reading frames. Restriction sites and oligonucleotides are indicated by vertical arrows and by 
arrowheads, respectively. 

The class II mutant HRD4 contains two Tn916 insertions (Fig 4.3). One copy of the 

transposon inserted in the pitH gene showing significant similarity with genes encoding low-

affinity inorganic phosphate transporters (60% identity at the protein level with YkaB from 

B. subtilis, GenPept accession no. CAB13141). A second copy of TnP/6 had inserted 

downstream of hrd4-2, coding for a hypothetical protein, and rhpA, exhibiting significant 

similarity with genes encoding putative regulatory proteins (44% identity at the protein level 

with the hypothetical protein YwhH from B. subtilis, GenPept accession no. CAB15775; and 

25% with EbsC from E. faecalis, GenPept accession no. AAC36853). The putative proteins 

encoded by the two genes identified downstream of the insertion, hyfB and hycD, show the 

highest similarity to the gene products of hyfB (31 % identity) and hycD (25 % identity), 

respectively, which are integral membrane subunits of two formate-hydrogen lyase complexes 

present in E. coli, and to the proteins encoded by genes from an unidentified Mycobacterium 

tuberculosis operon (Andrews et ah, 1997; GenBank accession no. Z74410). 
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In the class III mutant strain HRD6, Tn916 had inserted downstream of an open reading 

frame hrd6-l, encoding a protein of unknown function, and in the presumed promoter-region 

200 bp upstream of a potential hydrogenase-encoding gene cluster (Fig. 4.3). The predicted 

gene products of hydA, hydB and hydC show significant homology with the small, large and 

B-type cytochrome subunits of membrane bound periplasmic quinone-reactive hydrogenases 

of different bacteria. 

Biochemical Characterization of HRD Mutants 

The results of both the physiological and the genetic characterization of the isolated HRD 

mutants indicated the disruption of either structural or regulatory components shared by 

different respiratory chains present in D. dehalogenans. Key respiratory enzyme activities 

were determined for the class II mutants HRD4 and HRD22, as well as for HRD6 (class III), 

and compared to those of a transconjugant strain showing wild-type phenotype with respect to 

its halorespiring ability (HRDO). The class I mutant HRD2 revealed a rather high degree of 

instability, making a more detailed biochemical characterization impossible. Formate 

dehydrogenase, hydrogenase, and fumarate reductase activities were determined in cell 

extracts prepared from cells grown by fermentation on 20 mM pyruvate. These experiments 

indicated that the class II mutant strain HRD4 had strongly reduced activity in both formate 

dehydrogenase (50 U/mg) and hydrogenase activity (60 U/mg) in contrast to the fumarate 

activity (1910 U/mg), which was even higher than that found in the wild-type strain (520, 

640, and 720 U/mg in HRDO for the above mentioned enzymes, respectively). 

Semiquantitative determination of H2 formation upon formate addition indicated no 

significant differences in formate-H2 lyase activity in HRDO and HRD4. Similar results were 

obtained for the class III mutant, HRD6. Remarkably, the class II mutant HRD22 was affected 

only in formate dehydrogenase activity (40 U/mg). The results obtained from the activity 

measurements could be qualitatively confirmed by hydrogenase and formate dehydrogenase 

activity staining experiments. After polyacrylamide gel electrophoresis of cell extracts under 

non-denaturing conditions, the experiments were performed with benzylviologen as the 

electron acceptor and showed single bands for each enzyme although some material did not 

enter the gel (data not shown). 
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Discussion 

Halorespiration is a recently discovered mode of anaerobic respiration carried out by a 

rather wide range of Gram-positive and -negative bacteria. Nevertheless, our current 

knowledge on the architecture, bioenergetics and control of this respiratory pathway at the 

molecular level is very limited and is restricted to the molecular characterization of reductive 

dehalogenases (Neumann et al., 1998; van de Pas et al, 1999). Here we describe the 

development of a plating, delivery and screening system that allowed integration of the 

conjugative transposon Tn916 in the chromosome of the newly described o-chlorophenol 

respiring Gram-positive bacterium D. dehalogenans. Subsequently, HRD mutants that were 

genetically and physiologically characterized and found to be deficient in the biosynthesis of 

one or more of the components of the halorespiratory electron transfer chain were isolated. 

Using E. faecalis JH2-2 as a donor in anaerobic filter matings, we were able to accomplish 

Tn916 integration into the chromosome of genetically marked Desulfitobacterium 

dehalogenans HSS1 with a frequency of 3 X 10"6 transconjugants per recipient (0.8 x 10~6 per 

donor). This transposition frequency is within the range commonly observed for Jn916, 

which varies from <10"9 to >10^ per donor (Clewell et al, 1995). Based on their inability to 

use Cl-OHPA as electron acceptor, we isolated a total of 24 HRD mutants. Based on 

subsequent physiological characterization, the mutants could be grouped in three major 

phenotypic classes. Only one mutant was deficient solely in halorespiration (class I). The rest 

of the mutants (22 class II- and 1 class III mutant) were all impaired in both halorespiration 

and nitrate respiration. This suggests that the nitrate respiratory and halorespiratory chains 

share common components, the function of which has been affected by the insertion of the 

transposon. 

Southern blot analysis revealed that Tn916 integrated in single copy, but occasionally two 

copies, into the chromosome of D. dehalogenans. Furthermore, the presence of a large 18-kb 

Tn976 - specific band suggests there is a circular intermediate of Tn9J6 in virtually all 

mutants, indicating that the transposon is still mobile in D. dehalogenans (Fig. 4.1) (Gawron-

Burke & Clewell, 1984). Both the occurrence of multiple insertions and the remaining 

mobility of the transposon in transconjugants of D. dehalogenans might explain the relative 

instability of the mutants, which was most pronounced in the single class I mutant HRD2. 
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Table 4.3 Characterization and putative function of selected HRD mutants 

Clone Class additional 
phenotype3 

Putative disruption Putative function 

HRD2 I 

HRD22 II 

HRD4 II 

Nar" 

Nar" 

HRD6 III Nar, Ffr" 

upstream hkhA (regulator) 

downstream hemN (maturation), 

upstream hkhB (regulator) 

upstream hyf- hyc, 

downstream rhpA (regulator) 

upstream hydABC 

regulation, 
Cl-OHPA sensing 

regulation or maturation 

formate-hydrogen lyase 
(respiration) 

Uptake hydrogenase 

(respiration) 

a All HRD mutants are deficient in growth with Cl-OHPA plus formate or lactate; Nar", no growth with nitrate 
plus formate or lactate; Ffr", no growth with fumarate plus formate. 

The repeated isolation of identical integrants from independent conjugation experiments 

suggests saturation mutagenesis. Another possible explanation would be the preferential 

integration of Jn916 at specific sites, i.e. the occurrence of hot spots of mutation. Sequence 

analysis revealed that the insertion sites are very AT rich, ranging from 75 to 91 %, compared 

to an average AT content of the D. dehalogenans genome of 55% (Utkin et al, 1994). In most 

cases, insertions were situated in the immediate vicinity of potential promoter and terminator 

sequences. This is a frequently observed feature of transposons belonging to the Tn916 -

Tnl545 family and it was proposed that the special conformation of DNA carrying those 

sequences, like strong bending or supercoiling, could possibly be recognized by the integrase 

(Scott et al, 1994; Renault et al, 1995). 

The results of the genetic characterization of the Tn916 insertion site in HRD2 indicate that 

regulatory functions might be impaired in this class I mutant (Table 4.3). Considering that 

halorespiration is induced in D. dehalogenans by the presence of different o-chlorophenols, it 

is tempting to speculate that the hkhA gene product may be the o-chlorophenol sensing part of 

a two component regulatory system (Utkin et al, 1995). Unfortunately, high instability made 

a more detailed physiological and biochemical investigation of this interesting mutant 

impossible. 

In the class II mutant HRD22, the site of Tn976 integration was located 0.5 kb upstream of 

a second putative sensor histidine kinase-encoding gene, hkhB, and downstream of hemN, a 

gene encoding a protein involved in porphyrin biosynthesis. This suggests that regulatory 
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functions involved in maturation of redox complexes might be disrupted in this mutant (Table 

4.3). 

The results from both molecular and biochemical analysis of different class II and III HRD 

mutants indicate an involvement of respiratory complexes in halorespiration in D. 

dehalogenans (Table 4.3). In HRD6, Tn916 inserted upstream of a hydrogenase-encoding 

operon. HRD4 carried two copies of the transposon, of which one had inserted in a gene 

encoding a putative phosphate transporter. However, the second copy was found upstream of 

genes encoding subunits of a putative formate-H2 lyase, suggesting that this insertion is 

responsible for the observed respiration-deficient phenotype. As HRD6 can not utilize any of 

the tested electron acceptors, the presumed hyd gene product seems to play a central role in 

the different respiratory chains. The hydrogenase might play an essential role in electron 

transfer to the terminal reductases. For a long time, it has been assumed that formate-H2 lyase 

(Hyc-complex) complex is only involved in fermentation in the extensively studied facultative 

anaerobe E. coli (Sawers, 1994). However, it was recently proposed that the formate-H2 lyase, 

which is likely to be encoded by the E. coli hyfoyeron, might be proton-translocating and 

thereby involved in respiratory metabolism (Andrews et al., 1997). According to this 

hypothesis, the hydrogen evolved by Hyf would be oxidized by an electron transport chain 

involving a menaquinone-reducing uptake hydrogenase and a terminal reductase (Andrews et 

al, 1997). Such a respiratory chain may be impaired in HRD4 and HRD6, suggesting that it 

may indeed be an essential part of both the halo- and nitrate respiratory chain in D. 

dehalogenans. In both mutants, hydrogenase and formate dehydrogenase activities were 

severely affected, suggesting coordinated regulation of the different enzyme complexes within 

the proposed respiratory chains. Inactivation of the hydrogenase thus also affects formate 

dehydrogenase activity (which might be part of the formate-hydrogen lyase complex), and 

vice versa. In the latter case, the lack of hydrogen formation in a formate-hydrogen lyase 

deficient mutant might affect the induction of the hydrogenase. 

A priori, it was expected that the HRD mutants obtained would be impaired in the key 

enzyme o-chlorophenol reductive dehalogenase (CprA), additional structural components of 

the halorespiratory chain, and enzymes involved in processing and targeting of respiratory 

complexes or regulatory functions. However, the characterization of the 24 HRD mutants 

isolated revealed that none of the first type was obtained. A mutation in cprA is not expected 

to be lethal, as the organism is rather versatile in its ability to use alternative electron 

acceptors. The possibility of multiple copies of cprA can also be ruled out based on results 
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obtained by Southern blot analysis (van de Pas et ah, 1999). The detailed analysis of the 

isolated mutants at the physiological, biochemical and genetic levels reported here 

complements our earlier identification of the cpr-operon, provides insight into the complexity 

of halorespiration, and indicates that the halorespiratory chain and other electron transport 

chains are integrated. 

Acknowledgments 

This work was partly supported by grants of the Studienstiftung des Deutschen Volkes and 

the Chinese Academy of Sciences and contract BIO4-98-0303 of the European Union. 

References 

Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J. H., Zhang, Z., Miller, W., and Lipman, D. J. 
(1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic 

Acids Res 25: 3389-3402. 
Andrews, S. C , Berks, B. C , McClay, J., Ambler, A., Quail, M. A., Golby, P., and Guest, J. R. (1997) A 12 

cistron Escherichia coli operon ihyf) encoding a putative proton translocating formate hydrogenlyase 
system. Microbiology 143: 3633-3647. 

Berks, B. C. (1996) A common export pathway for proteins binding complex redox cofactors? Mol Microbiol 

22: 393-404. 
Bradford, M. M. (1976) A rapid and sensitive method for the quantification of microgram quantities of proteins 

utilizing the principle of protein-dye binding. Anal Biochem 72: 248-254. 
Clewell, D. B., Flannagan, S. E., and Jaworski, D. D. (1995) Unconstrained bacterial promisquity: The TnP/6-

Jnl545 family of conjugative transposons. Trends Microbiol 3: 225-236. 
de Vos, W. M., Kleerebezem, M., and Kuipers, O. P. (1997) Expression systems for industrial Gram-positive 

bacteria with low guanine and cytosine content. Curr Opin Biotechnol 8: 547-553. 
El Fantroussi, S., Naveau, H., and Agathos, S. N. (1998) Anaerobic dechlorinating bacteria. Biotechnol Prog 

14: 167-188. 
Fetzner, S. (1998) Bacterial dehalogenation. Appl Microbiol Biotechnol 50: 633-657. 
Flannagan, S. E., Zitzow, L. A., Su, Y. A., and Clewell, D. B. (1994) Nucleotide sequence of the 18-kb 

conjugative transposon Tn916 from Enterococcus faecalis. Plasmid 32: 350-354. 
Gawron-Burke, C , and Clewell, D. B. (1984) Regeneration of insertionally inactivated streptococcal DNA 

fragments after excision of transposon Tn916 in Escherichia coli: Strategy for targeting and cloning of 
genes from gram-positive bacteria. J Bacteriol 159: 214-221. 

Gribble, G. W. (1996) Naturally occurring organohalogen compounds - a comprehensive survey. Fortschr 

Chem Org Naturst 68: 1-423. 
Hileman, B. (1993) Concerns broaden over chlorine and chlorinated hydrocarbons. Chem Eng News 71: 11-20. 

92 



Halorespiration-Deficient Mutants 

Hill, C , Venema, G., Daly, C , and Fitzgerald, G. F. (1988) Cloning and characterization of the tetracycline 

resistance determinant of and several promoters from within the conjugative transposon TnP/P. Appl 

Environ Microbiol Si: 1230-1236. 
Holliger, C , Wohlfarth, G., and Diekert, G. (1999) Reductive dechlorination in the energy metabolism of 

anaerobic bacteria. FEMS Microbiol Rev 22: 383-398. 
Jacob, A. E., and Hobbs, S. J. (1974) Conjugal transfer of plasmid-borne multiple antibiotic resistance in 

Streptococcus faecalis var. zymogenes. JBacteriol 117: 360-372. 
Mohn, W. W., and Tiedje, J. M. (1992) Microbial reductive dehalogenation. Microbiol Rev 56: 482-507. 
Neumann, A., Wohlfarth, G., and Diekert, G. (1998) Tetrachloroethene dehalogenase from Dehalospirillum 

multivorans: Cloning, sequencing of the encoding genes, and expression of the pceA gene in Escherichia 

coli. J Bacteriol 180: 4140-4145. 
Renault, P., Nogrette, J. F., GaUeron, N., Godon, J. J., and Ehrlich, S. D. (1995) Specificity of insertion of 

TnI545 transposon family in Lactococcus lactis subsp. lactis. Dev Biol Stand 85: 535-541. 
Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular cloning: a laboratory manual. 2nd edition. 

Cold Spring Harbor, Cold Spring Harbor Laboratory Press. 
Sawers, G. (1994) The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie Leeuwenhoek 

66: 57-88. 
Scott, J. R., Bringel, F., Marra, D., Van Alstine, G., and Rudy, C. K. (1994) Conjugative transposition of 

Tn9/6: Preferred targets and evidence for conjugative transfer of a single strand and for a double-stranded 

circular intermediate. Mol Microbiol 11: 1099-1108. 
Triglia, T., Peterson, M. G., and Kemp, D. J. (1988) A procedure for in vitro amplification of DNA segments 

that lie outside the boundaries of known sequences. Nucleic Acids Res 16: 8186. 
Utkin, I., Dalton, D. D., and Wiegel, J. (1995) Specificity of reductive dehalogenation of substituted ortho-

chlorophenols by Desulfitobacterium dehalogenans JW/IU-DC1. Appl Environ Microbiol 61: 346-351. 
Utkin, I., Woese, C , and Wiegel, J. (1994) Isolation and characterization of Desulfitobacterium dehalogenans 

gen. nov., sp. nov., an anaerobic bacterium which reductively dechlorinates chlorophenolic compounds. Int 

J Syst Bacteriol 44: 612-619. 
van de Pas, B. A., Smidt, H., Hagen, W. R., van der Oost, J., Schraa, G., Stams, A. J. M., and de Vos, W. 

M. (1999) Purification and molecular characterization of ort/io-chlorophenol reductive dehalogenase, a key 
enzyme of halorespiration in Desulfitobacterium dehalogenans. J Biol Chem 274: 20287-20292. 

93 



94 



5 

MOLECULAR CHARACTERIZATION OF REDOX COMPLEX-

ENCODING GENES IN HALORESPIRING DESULFITOBACTERIUM 

DEHALOGENANS 

Hauke Smidt, John van der Oost and Willem M. de Vos 

A modified version of this chapter has been submitted for publication. 

Abstract 

To gain insight in the composition and regulation of the halorespiratory network in the low 
G+C gram-positive Desulfitobacterium dehalogenans, several gene clusters potentially 
encoding respiratory redox complexes were characterized at the molecular level and their 
expression under different physiological conditions was studied by biochemical and Northern 
analyses. 
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The capacity to couple the reductive dehalogenation of chlorinated aliphatic and aromatic 

compounds to growth in a novel type of anaerobic respiration has led to the identification and 

isolation of an increasing number of halorespiring bacteria from various bacterial phyla (El 

Fantroussi et ah, 1998; Fetzner, 1998; Holliger et ah, 1999). The high metabolic activity and 

apparent ubiquitous occurrence not only in polluted but also in pristine environments, suggest 

a significant contribution of these bacteria to dehalogenation in anoxic environments. These 

findings have highly stimulated efforts to unravel structure, function and regulation of the 

halorespiratory network (Holliger et ah, 1999; Louie & Mohn, 1999; Smidt et ah, 2001a). 

Several studies have focused on the versatile low G+C Gram-positive Desulfitobacterium 

dehalogenans, which couples the oxidation of pyruvate, lactate, formate or H2 to the reduction 

of, among others, ort/jo-chlorinated phenols (o-CP), fumarate and nitrate (Utkin et ah, 1994). 

Recently, the key enzyme, ort/ao-chlorophenol reductive dehalogenase, has been characterized 

and shown to belong to a novel family of corrinoid-containing Fe-S proteins (van de Pas et 

ah, 1999). Furthermore, it has been shown that reductive dehalogenation is strongly induced 

at the transcriptional level (Smidt et ah, 2000). In yet another approach, random integration of 

the conjugative transposon Tn9/6 into the chromosome of D. dehalogenans resulted in the 

isolation of halorespiration-deficient (HRD) mutants, which had lost the ability to use 3-

chloro-4-hydroxyphenylacetic acid (Cl-OHPA) as electron acceptor, whereas fermentative 

growth with pyruvate was unaffected (Smidt et ah, 1999). The molecular analysis of these 

mutants revealed that the transposon had inserted adjacent to several genes that are predicted 

to code for respiratory complexes. To study whether the genes in the proximity of the Tn976 

insertion site in 3 distinct HRD mutants are indeed functional components of a halorespiratory 

network, we analyzed their expression under different growth conditions at the transcriptional 

and enzymatic levels. 

Characterization of Redox Complex-Encoding Genes of D. dehalogenans 

Halorespiration-deficient mutant HRD4 contains a copy of Tn916 inserted upstream of the 

hy/B and hycD genes that could encode formate-^ lyase integral membrane subunits (Smidt 

et ah, 1999). To further characterize this chromosomal locus, sequences downstream from the 

hycD gene were amplified by inverse PCR with divergent primer pair BG358-BG359 from 

iscoRI-digested and self-ligated D. dehalogenans chromosomal DNA isolated as described 

previously (Fig. 5.1) (van de Pas et ah, 1999). Analysis of the /;ycZ)-downstream region 

revealed the presence of an additional open reading frame ihyfF) that could code for a protein 
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with highest similarity (44% identity on the amino acid level) to HyfF, another integral 

membrane subunit of the E. coli formate-F^ lyase complex (Andrews et al, 1997). 

In HRD6, the transposon was found inserted immediately upstream of the uptake 

hydrogenase-encoding hydABC gene cluster, and inverse PCR with oligonucleotide primers 

BG564-BG565 was used to amplify AydC-downsstream sequences from £coRI-digested and 

self-ligated D. dehalogenans chromosomal DNA. A fourth gene was identified downstream 

of hydC, namely hydD, that could encode a polypeptide with significant similarity (36% 

identity on the amino acid level with Desulfovibrio gigas HynC) with members of the 

HupD/HyaD family of hydrogenase processing proteins (Sawers, 1994) (Fig. 5.1). 
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Figure 5.1 Physical map of analyzed putative redox-complex encoding gene clusters of D. dehalogenans. 

Triangles, site and orientation of Tn916 integration in HRD mutants (Smidt et al, 1999); dotted line, sequence 
not determined; horizontal arrows, identified open reading frames; downwards pointing arrows and arrowheads, 
relevant restriction sites and oligonucleotides (BG358, position 241 to 221 and BG565, position 2614 to 2635 of 
ace. no. AF157640; BG564, position 3999 to 4021 and BG565, position 3548 to 3525 of ace. no. AF157641; 
BG566, position 1623 to 1603 and BG567, position 2271 to 2293 of ace. no. AF299114); solid bars, gene-
specific probes used for Northern analysis; dashed arrows, apparent transcription products. 
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The detection of an approximately 4.3-kb polycistronic transcript hybridizing with a hydA-

specific probe (see below) and the presence of highly AT-rich putative promoter sequences 

immediately upstream of hydA suggests that the hyd operon might contain one additional 

small open reading frame downstream hydD, as it is known from other hydrogenase-encoding 

gene clusters (Smidt et al, 1999). 

In order to screen for the presence of additional redox enzyme-encoding genes with a 

possible function in the halorespiratory network, the Tn916 insertion sites of another available 

HRD mutant, HRD13, was analyzed at the sequence level. A 3.3-kb region around the 

transposon insertion site in HRD 13 was amplified by inverse PCR with Tn975-specific 

divergent primer pair BG286-BG288 and divergent primer pair BG566-BG567 from EcoRl-

or 2?amHI-digested and self-ligated chromosomal DNA from D. dehalogenans (Fig. 5.1) 

(Smidt et al, 1999). 

Sequence analysis revealed the presence of three open reading frames, designated hrdl3-l, 

fdhA and irhA. The hrdl3-l and irhA genes potentially code for polypeptides that exhibit 

highest similarity with CDP-alcohol phosphatidyltransferase class I proteins and iron-

responsive repressor proteins, respectively. The predicted fdhA gene product is a polypeptide 

of 311 amino acids with a calculated molecular weight of 34,343 Da. It exhibits significant 

similarity to the N-terminal domain of the catalytic subunit of NAD(P)+-dependent formate 

dehydrogenases and hydrogenases, and NuoG of the E.coli NADH-ubiquinone oxido-

reductase (40% identity on the amino acid level with the NH2-terminal domain of Moorella 

thermoacetica FdhA). This domain is thought to be part of the diaphorase (NADH 

dehydrogenase) entity of these complexes and contains 5 conserved ferredoxin-like Fe-S 

cluster binding motifs involved in intramolecular electron transfer (Oh & Bowien, 1998). 

Although the D. dehalogenans FdhA lacks the major part of the catalytic C-terminal domain, 

similar functional splitting of the ferredoxin- and the catalytic domain into two subunits has 

also been observed for the NAD+-linked hydrogenase from Ralstonia eutrophus and a 

putative respiratory chain oxido-reductase-encoding operon in Streptomyces coelicolor (Tran-

Betcke et al, 1990; ace. no. AL034443). 

Finally, the 0.4-kb partial sequence of an open reading frame, designated porX, was by 

coincidence detected upstream of a cryptic reductive dehalogenase-encoding gene homologue 

(Chapter 7 of this thesis). The predicted porX gene product shows high similarity to the C-

terminus of the 1175-amino acid Clostridium pasteurianum pyruvate ferredoxin oxido-

reductase (45 % identity on the amino acid level) (Fig. 5.1). 
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Figure 5.2 Northern blot analysis of total RNA extracted from cells of D. dehalogenans grown with pyruvate, 
lactate, formate or H2 as the electron donor and various electron acceptors (C, Cl-OHPA; Fu, fumarate; N, 
nitrate; P, pyruvate). [32P]-labeled probes were applied that were specific for the various redox-complex 
encoding gene clusters and the 16S rRNA-encoding gene of D. dehalogenans, respectively. RNA size markers 
are in kilobase. Arrows indicate specific hybridizing signals that were obtained after 8 to 68 h exposures. The 
occasionally obtained high molecular weight hybridization signals are due to residual amounts of chromosomal 
DNA. No hybridization was observed with probes specific for hyfB (data not shown). Relative transcription 
values were obtained after quantification of hybridization signals using the ImageQuant software package 
(Molecular Dynamics, Sunnyvale, Calif.) and were calculated as {([mRNA] / [16S rRNA])„ / ([mRNA] / [16S 
rRNA])^ } x 100%. 

Isolation of Total RNA, Northern Analysis, and Enzyme Assays 

To gain insight in the function of the characterized redox genes, their transcription was 

determined in parallel with the activity of the redox enzymes in cultures of D. dehalogenans 

grown in the presence of different electron donors (pyruvate, lactate, formate, and H2) and 

acceptors (Cl-OHPA, fumarate, nitrate, and pyruvate) (Fig. 5.2 and Table 5.1). The anaerobic 

conditions for growth have been described previously (Smidt et al, 2000), and for growth 

with H2 as electron donor, the N2 - headspace was replaced by H2. Enzyme activities in cell 

extracts (van de Pas et al, 1999) were determined at 30°C by following the oxidation or 

reduction of benzyl viologen at 578 nm (£578 = 9.2 mM'^cm"1). 
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Table 5.1 Oxido-reductase activities in cell extracts of D. dehalogenans grown with pyruvate, lactate, formate or 
H2 as the electron donor and Cl-OHPA (C), fumarate (F), nitrate (N) or pyruvate (P) as the electron acceptor. 

Donor 

Acceptor 

H2asea 

Fdha 

Porab 

C 

0.21 

1.43 

0.29 

pyruvate 

Fu N 

0.81 0.73 

1.17 1.46 

0.85 0.61 

P 

0.10 

1.15 

0.50 

lactate 

C 

0 

1.09 

-0.49 

Fu 

0.04 

0.35 

0.20 

N 

0.05 

0.40 

0.19 

formate 

C Fu 

1.20 1.59 

3.83 5.09 

-1.40 -3.33 

H2 

C 

1.32 

2.37 

-1.26 

Fu 

1.26 

2.79 

-1.31 

"Enzyme activities are given in [U / mg of protein]. For all assays, one unit (U) of enzyme activity corresponds 
to the amount of enzyme catalyzing the conversion of 1 |imol substrate or 2 nmol of benzyl viologen per 
minute. ''Negative values indicate HS-CoA independent reduction of pyruvate with Ti(IH)citrate-reduced 
benzyl viologen as the electron donor. 

Formate dehydrogenase, hydrogenase and pyruvate ferredoxin oxido-reductase were 

assayed in 1 ml of 100 mM Tris-HCl (pH 8.0) containing 1 mM benzyl viologen and 10 mM 

formate sodium salt, 1 ml H2 or 10 mM pyruvate sodium salt and traces of HS-coenzyme A, 

respectively. Cl-OHPA reductive dehalogenase activity could not be determined in cell 

extracts prepared from mid-exponential phase cultures due to high background methyl 

viologen-oxidizing activity. However, dehalogenase activity was confirmed in Cl-OHPA-

respiring cultures by following the release of CI" ions (data not shown). Protein was 

determined according to the method of Bradford, with bovine serum albumin as the standard 

(Bradford, 1976). 

Total RNA was isolated from D. dehalogenans as described previously and used for 

Northern analysis with gene-specific probes and, after deprobing, with a probe for the 16S 

rRNA which served as an internal standard (Smidt et ah, 2000) (Fig. 5.2). The 

halorespiration-specific expression of the o-chlorophenol reductive dehalogenase-encoding 

cprBA bis-cistronic operon, as previously reported for cultures grown with pyruvate as the 

electron donor, could be confirmed with all electron donors tested (Smidt et ah, 2000) (Fig. 

5.2). Similarly, halorespiration-specific transcription was also observed for the other 

transcripts of the cprTKZEBACD gene cluster (data not shown) (Smidt et ah, 2000). 

Hybridization with a porX-STpecific probe revealed the presence of a 4.2-kb transcript, 

probably reflecting the monocistronic transcription of the complete porX gene, which in 

analogy with known pyruvate ferredoxin oxido-reductases is expected to have a size of 

approximately 3.5 kb. The gene was solely expressed under pyruvate- and lactate-oxidizing 
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conditions, which coincided with significant HS-CoA dependent oxidation of pyruvate (Table 

5.1, Fig. 5.2). In contrast, under growth conditions during which no porX transcription could 

be detected, only HS-CoA independent reduction of pyruvate was observed. 

The genes and gene clusters, which were identified in the vicinity of the Tn916 insertion 

site in HRD mutants have previously been proposed to be essential for expression of a 

functional halorespiratory chain (Smidt et al, 1999). Transcriptional analysis offdhA revealed 

the constitutive presence of a 1.3-kb transcript, indicating monocistronic transcription. 

Consensus promoter sequences were present immediately preceding fdhA. Expression was 

specifically induced when pyruvate or lactate was used as the electron donor (Fig. 5.2). The 

transcription pattern corresponds to the formate dehydrogenase activities determined in 

pyruvate- and lactate-grown cells, suggesting that the fdhA gene product indeed is part of a 

formate dehydrogenase complex. The fdhA expression profile, however, does not correspond 

to the strongly induced formate dehydrogenase activity in formate- and Ff2-grown cells (Table 

5.1). 

A similar discrepancy was obtained for hydrogenase activity and hydA expression. High 

hydrogenase activity was observed under hydrogen- and formate-oxidizing conditions and 

moderate (2-20 fold reduced) activity in cultures grown with pyruvate as the electron donor; 

no hydrogenase activity was found in lactate-grown cells. Hybridization with a hydA-specific 

probe, however, revealed measurable transcription of an approximately 4.3-kb polycistronic 

messenger solely in pyruvate-grown cultures (Fig. 5.2). These results indicate the presence of 

at least two distinct hydrogenases and formate dehydrogenases expressed under different 

physiological conditions, as it is also known e.g. fori:, coli (Sawers, 1994). Indeed, additional 

experiments revealed that the formate-dehydrogenase activity induced in the presence of 

formate is localized at the outer face of the cytoplasmic membrane, whereas cytoplasmic 

activity was constitutively present under all conditions tested (data not shown). This is in 

complete agreement with earlier results, obtained with cells of D. dehalogenans grown under 

formate-oxidizing conditions with either fumarate or Cl-OHPA as the electron acceptor, that 

indicate the presence of both cytoplasmic and extracytoplasmic formate dehydrogenase 

activity (van de Pas, 2000). In addition, only the cytoplasmic formate dehydrogenase showed 

activity with oxidized cytochrome C partially purified from Syntrophobacter fumaroxidans as 

an electron acceptor (data not shown; de Bok, personal communication). 

Interestingly, enzyme activity measurements in cell extracts of the 3-chlorobenzoate-

respiring Desulfomonile tiedjei similarly indicated the specific induction of a periplasmic 
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hydrogenase in the presence of pyruvate, and the presence of two differentially expressed 

formate dehydrogenases, one of which was induced in formate-grown cells (Louie & Mohn, 

1999). The fdhA gene product might be involved in acetate production via the reductive 

acetyl-coA pathway, as significant CC>2-fixation could be shown for D. dehalogenans during 

pyruvate fermentation (Ragsdale, 1991; van de Pas, 2000). A similar function has been 

suggested for a cytoplasmic formate dehydrogenase that was induced under pyruvate-

fermenting conditions in D. tiedjei (Louie & Mohn, 1999). 

The results presented here indicate that the porX-, fdhA- and hydABCD-encoded oxido-

reductases are all transcribed and hence may indeed play a role in anaerobic respiratory 

processes by D. dehalogenans. Although the detailed transcriptional analysis indicated that 

neither of these genes is specifically expressed under halorespiring conditions, their 

involvement in the respiratory network was demonstrated. Nevertheless, as expression of the 

hydABCD gene cluster could only be observed in cultures grown with pyruvate as the electron 

donor, an essential role in the halorespiratory network can be ruled out for the corresponding 

enzyme. This also might be the case for the predicted formate-H2 lyase encoding gene cluster, 

for which no measurable transcription could be detected under any of the conditions tested 

(not shown). It remains to be elucidated whether the disruption of additional genes in the 

vicinity of the inserted transposon, i.e. proteins involved either in maturation of respiratory 

complexes or regulation (as irhA in HRD13), or other polar effects of the insertion are the 

cause for the halorespiration-deficient phenotype of the mutant strains. 

The specific induction of oxido-reductases during respiration by D. dehalogenans and their 

detailed characterization at the sequence and transcription level presented here, extend our 

knowledge of the molecular basis of the complex respiratory network present in this ortho-

chlorophenol-respiring organism. In addition, the results indicate the need for the specific 

gene inactivation systems that have recently been developed for D. dehalogenans (Smidt et 

al., 2001b) and are expected to be instrumental in further elucidating the structure and 

function of its halorespiratory network. 

Nucleotide Sequence Accession Numbers 

The nucleotide sequences of the different genes and operons described have been deposited 

in the GenBank database under accession numbers AF157640 (hyfB-hycD), AF157641 

(hydABCD), AF299114 (fdhA), AF299115 (hyfF), and AF299116 (porX). 
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6 
DEVELOPMENT OF A GENE CLONING AND INACTIVATION 

SYSTEM FOR THE HALORESPIRING DESULFITOBACTERIUM 

DEHALOGENANS 

Hauke Smidt, John van der Oost and Willem M. de Vos 

Reprinted with permission from Applied and Environmental Microbiology (2001) 67: 591-
597. 

Abstract 

Efficient host-vector systems have been developed for the versatile strictly anaerobic halo-
and fumarate-respiring Gram-positive bacterium Desulfitobacterium dehalogenans. An 
electroporation-based transformation procedure resulting in approximately 103 to 104 

transformants per (ig of the cloning vector pIL253 was developed and validated. The broad 
host-range vector pG+host9 was shown to replicate at a permissive temperature of 30°C, 
whereas the replicon was not functional at 40°C. The D. dehalogenans frdCAB operon, 
predicted to encode a fumarate reductase, was cloned, characterized, and targeted for 
insertional inactivation by pG+host9 carrying a 0.6-kb internal frdA fragment. Single-
crossover integration at the frdA locus occurred at a frequency of 3.3 x 10"4 per cell and 
resulted in partially impaired fumarate reductase activity. The gene cloning and inactivation 
systems described here provide a solid basis for the further elucidation of the halorespiratory 
network in D. dehalogenans and allow for its further exploitation as a dedicated degrader. 
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Introduction 

It has been shown for a wide range of haloorganic compounds that reductive 

dechlorination is the first crucial step in the degradation of such pollutants (Mohn & Tiedje, 

1992; Fetzner, 1998). Halorespiring bacteria have received increasing attention during the 

past decade due to a significant contribution to reductive dehalogenation processes occurring 

in anoxic polluted environments such as soils, aquifers, and sediments (El Fantroussi et al, 

1998; Middeldorp et al, 1999). In contrast to the co-metabolic reductive dehalogenation 

catalyzed by various metal-containing tetrapyrrol cofactors in a variety of anaerobic bacteria, 

this reaction is catalyzed at much higher rates by specific enzymes in halorespiring microbes, 

where it is coupled to energy conservation by electron transport-coupled phosphorylation (El 

Fantroussi et al, 1998; Holliger et al, 1999; Smidt et al, 2001). One of these strains is the 

versatile low G+C Gram-positive bacterium Desulfitobacterium dehalogenans, which is able 

to link the oxidation of several electron donors such as hydrogen, formate, lactate, and 

pyruvate to the reduction of various organic and inorganic acceptors, including ortho-

chlorinated phenols (o-CP), fumarate, and nitrate (Utkin et al, 1994). Recently, the o-CP-

reductive dehalogenase (CPR) from D. dehalogenans has been purified and characterized at 

the biochemical and genetic levels (van de Pas et al, 1999; Smidt et al, 2000). Comparison 

with other chloroalkene- and haloaromate-reductive dehalogenases isolated and characterized 

from various phylogenetically distinct halorespiring bacteria indicated that these enzymes 

share significant similarities in both structural and functional properties, suggesting that they 

constitute a novel class of corrinoid-containing reductases (for a recent review, see Holliger et 

al, 1999; Smidt et al, 2001). 

The detailed molecular analysis of the cpr-gene cluster in D. dehalogenans led to the 

identification of genes encoding putative regulatory proteins and protein folding catalysts, the 

transcription of which was specifically induced under halorespiring conditions. From these 

results, their potential involvement in regulation and maturation of the reductive dehalogenase 

complex has been suggested (Smidt et al, 2000). Additional genomic loci that appear 

essential for functional o-CP respiration of D. dehalogenans have been identified by means of 

random chromosomal integration of the conjugational transposon Tn916 (Smidt et al, 1999). 

Nevertheless, detailed structural and functional analysis of these proteins has been hampered 

by the absence of genetic techniques for D. dehalogenans, including transformation, gene 
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cloning, and specific gene disruption and insertion. Moreover, the development of such 

genetic modification tools would also enable the design of strains with improved performance 

in the bioremediation of polluted environments (Keasling & Bang, 1998; Timmis & Pieper, 

1999). 

Host - vector systems that allow for the genetic, metabolic, and protein engineering of low 

G+C Gram-positive bacteria (LGB) have been developed and optimized mainly for 

industrially applied strains of lactic acid bacteria, for bacilli and, to a lesser extent, Clostridia 

(for reviews see de Vos & Simons, 1994; de Vos et al, 1997; de Vos, 1999; Young et al, 

1999). It has been shown that vectors based on the theta replicon of the broad host-range 

conjugative plasmid pAMpl (Bruand et al, 1991), among which are the cloning vectors 

pIL252 and pIL253, are functional in all genera of LGB studied, indicating their potential use 

for halorespiring genera of LGB, such as Desulfitobacterium and Dehalobacter (Simon & 

Chopin, 1988; de Vos & Simons, 1994). Similarly, vectors of the pG+host series of 

thermosensitive derivatives of yet another broad host-range plasmid, pWVOl, have been 

proven to be instrumental for high-efficiency gene inactivation, replacement, and insertional 

mutagenesis, especially in poorly transformable LGB (Maguin et al, 1992; Biswas et al, 

1993; de Vos & Simons, 1994; Maguin et al, 1996). 

The main objectives of this study were (i) to develop an efficient protocol for the 

transformation of D. dehalogenans, (ii) to investigate the suitability of gene transfer systems 

previously developed for other LGB, (iii) to confirm temperature-sensitive replication of 

pG+host9 in D. dehalogenans, and (iv) to demonstrate its applicability for specific gene 

disruption using the putative fumarate reductase-encoding_/hi4 gene as a model target. 

Materials and Methods 

Materials 

All gases were obtained from Hoek Loos (Schiedam, The Netherlands). When appropriate, 

experiments were carried out in an anaerobic glove box (Coy Laboratory Products, Grass 

Lake, Mich.) under an atmosphere of 96% N2 and 4% H2. The oxygen concentration was kept 

low with the palladium catalyst RO-20 provided by BASF (Arnhem, The Netherlands). 
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Bacterial Strains, Plasmids, and Culture Conditions 

Desulfitobacterium dehalogenans strain JW/IU-DC1 (DSM 9161) (Utkin et al, 1994) was 

routinely grown under anaerobic conditions (gas phase, 100% N2) at 37°C in basal mineral 

medium as described by Neumann et al. (Neumann et al, 1994), supplemented with 0.1% 

peptone, 30 mM NaHCCb, and trace elements and vitamin solution as recommended by the 

German Collection of Microorganisms and Cell Cultures (Braunschweig, Germany). An 

electron donor and an electron acceptor were added to the appropriate concentrations from 

sterile anaerobic stock solutions. 

Strains of Escherichia coli were grown in Luria Bertani medium at 37°C (Sambrook et al, 

1989). E. coli XL 1-Blue (Stratagene, La Jolla, Calif.) was generally used as a host for cloning 

vectors. As a host for the rolling-circle pG+host vectors, E. coli MCI061 was used 

(Casadaban & Cohen, 1980). Lactococcus lactis MG1614 (Gasson, 1983) was grown at 30°C 

in M17 broth (Difco, Detroit, Mich.) supplemented with 0.5% glucose (GM17). Where 

appropriate, media were amended with ampicillin (100 (Xg/ml) or erythromycin (150 ug/ml 

for E. coli, 10 |J.g/ml for L. lactis and 5 |ig/ml for D. dehalogenans). The MIC of 

erythromycin for D. dehalogenans was determined on plates containing 0 to 5 |i.g of 

erythromycin/ml, and 20 mM lactate and fumarate as the electron donor and electron 

acceptor, respectively. 

The cloning vectors pUC18 and pUC19 were purchased from Amersham Pharmacia 

Biotech (Uppsala, Sweden), and the PCR product cloning vectors pGEM-T and pMON38201 

(Borovkov & Rivkin, 1997) were obtained from Promega (Madison, Wis.) and Monsanto (St. 

Louis, Mo.), respectively. Plasmids pIL253 (Simon & Chopin, 1988) and pG+host9 (Maguin 

et al, 1996) were kindly provided by Richard van Kranenburg (NIZO Food Research, Ede, 

The Netherlands) and Emmanuelle Maguin (Laboratoire de Genetique Microbienne, Institut 

National de la Recherche Agronomique, Jouy en Josas Cedex, France). 

DNA Isolation and Manipulation 

Total DNA of D. dehalogenans was isolated as described previously (van de Pas et al., 

1999). Plasmid DNA was isolated from E. coli by using the alkaline lysis method, and 

standard DNA manipulations were performed according to established procedures (Sambrook 

et al, 1989) and manufacturers' instructions. Isolation of plasmid DNA from L. lactis was 

performed as described previously (de Vos et al, 1989). L. lactis was transformed according 

to the method of Wells et al. (Wells et al, 1993). Large-scale preparations of plasmid DNA 
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(pIL253, pG+host9) were purified by CsCl density gradient centrifugation (Sambrook et al, 

1989). 

Enzymes were purchased from Life Technologies B.V. (Breda, The Netherlands), Roche 

Molecular Biochemicals (Mannheim, Germany), or New England Biolabs (Beverly, Mass.). 

Oligonucleotides were obtained from Eurogentec (Seraing, Belgium), Life Technologies Inc., 

and MWG Biotech (Ebersberg, Germany). PCR products were purified prior to subsequent 

manipulation using the QIAquick PCR purification kit (Qiagen GmbH, Hilden, Germany). 

Transformation Procedure and Competence of D. dehalogenans 

For the transformation of D. dehalogenans, the electroporation-based method described by 

Wells et al. was modified and optimized for use with anaerobic bacteria (Wells et al, 1993). 

Cells of D. dehalogenans were grown in the presence of 40 mM glycine with 20 mM lactate 

as the electron donor and 20 mM fumarate as the electron acceptor. Unless otherwise 

indicated, all subsequent steps were carried out in the anaerobic glove box. Exponentially 

growing cells were harvested at an 6̂oo of approximately 0.2 by centrifugation at 2,600 x g 

for 10 min at 4°C and then resuspended in 0.15 volume of ice-cold anaerobic washing buffer 

(0.5 M sucrose - 10% glycerol). Cells were recovered by centrifugation at 4,000 x g for 10 

min at 4°C, washed with 0.05 volume of washing buffer, recentrifuged, and finally 

resuspended in 0.001 volume of washing buffer. For electroporation, DNA was added in 0.5 

to 1.0 ul of deionized water to 40 ul of concentrated cell suspension and transferred to 

precooled 0.2-cm electroporation cuvettes. A single pulse was applied outside the glove box 

at different settings (field strength, 12.5 kV x cm"1; capacitance, 25 uF; resistance, 200 to 800 

Q.) using a Gene Pulser (Bio-Rad, Hercules, Calif). Immediately after electroporation, cells 

were moved back into the anaerobic glove box, mixed with 0.96 ml of recovery medium 

(growth medium containing 20 mM lactate and fumarate and 0.5 M sucrose), and incubated at 

37°C for 5 h. To determine the influence of the transformation procedure on the viability of 

D. dehalogenans, appropriate dilutions were inoculated onto plates without erythromycin 

containing 20 mM of lactate and fumarate as described previously (Smidt et al., 1999). 

Transformants were selected on plates containing 20 mM lactate and fumarate, and 5 ug of 

erythromycin/ml. Further subcultivation of single colonies in liquid medium was performed 

as described previously (Smidt et al, 1999). Plasmid DNA was isolated from D. 

dehalogenans using a protocol modified from (de Vos et al, 1989). Briefly, protoplasts were 

prepared from 12 ml of early stationary phase culture in 250 ul of THMS buffer (30 mM Tris-
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HC1 [pH 8.0] and 3 mM MgCh in 25% sucrose), containing 20 mg of lysozyme/ml (van 

Asseldonk et al, 1993). Subsequently, plasmid DNA was purified by alkaline lysis and 

recovered by isopropanol precipitation. Agarose gel electrophoresis and Southern blot 

analysis were used to check for the presence of plasmids. 

Thermosensitivity of pGhost9 in D. dehalogenans 

To determine the segregational stability of the thermosensitive vector pG+host9 in D. 

dehalogenans, an early-stationary-phase culture of plasmid-carrying D. dehalogenans that 

was grown in the presence of 40 mM pyruvate and 5 |ig of erythromycin/ml at 30°C was 

diluted 40-fold into medium without antibiotics and incubated at 30°C to stationary phase (0 

h). This culture was then diluted 100-fold into fresh medium without antibiotics and incubated 

at 30, 37, and 40°C. Appropriate dilutions were inoculated onto plates with or without 

erythromycin (5 ug/ml) at 0.1, 16, and 40 h after dilution and were incubated at 30°C. After 

40 h of growth, all cultures had reached stationary phase. Cultures were again diluted 10-fold 

and kept for an additional 24 h at the respective temperatures until stationary phase was 

reached (68 h). Total DNA was isolated from samples taken at 0, 40, and 68 h, digested with 

EcdSl, and analyzed by Southern blot analysis. Linearized pG+host9 was used as a plasmid-

specific probe for hybridization. Hybridization with a probe specific for the D. dehalogenans 

frdAC genes was used as an internal standard. This probe was a PCR-product obtained with 

primers BG355 (positions 942 to 974 of the/rt/ gene cluster) and IK04 [5'-(A/G)TG NGC 

NCC NC(G/T) NS(A/T) (C/T)TC-3'; positions 3157 to 3140] (see below and Fig. 6.3). A 

Hybond-N+ nylon transfer membrane (Amersham Life Science, Little Chalfont, United 

Kingdom) was used for Southern blot analysis, and probes for hybridization experiments were 

labeled by nick translation in the presence of [oc-32P]-dATP (Amersham Pharmacia Biotech). 

Cloning of a Putative Fumarate Reductase-Encoding Operon 

The degenerated primers IK01 [5'-GA(A/G) (A/G/T)(G/C)N (G/T)(G/C)N A/C)GN GGN 

GAN GGN GG-3', positions 2312 to 2334] and IK04, which were designed based on an 

amino acid sequence alignment of known bacterial fumarate reductases, were used to PCR 

amplify a fragment of a putative fumarate reductase-encoding operon from the chromosomal 

DNA of D. dehalogenans. The resulting 0.85-kb PCR product was cloned in E. coli using 

Xc/wl-digested pMON38201, yielding pLUW902. Subsequently, Southern blot analysis of 

PM-iicoRI-digested chromosomal DNA of D. dehalogenans revealed a 3-kb fragment that 
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strongly hybridized with the radiolabeled 0.85-kb PCR product. The 3-kb fragment was 

cloned in E. coli using ftfl-fi'coRI-digested pUC18, resulting in pLUW903. pLUW904 was 

obtained by inverse PCR (Triglia et al, 1988) that was performed as described previously 

(van de Pas et al, 1999) with ZtamHI-digested and self-ligated chromosomal DNA of D. 

dehalogenans by using the divergent primer pair BG283 and BG284 (positions 2456 to 2477 

and positions 2356 to 2335, respectively). 

Plasmid Constructions and Single-Crossover Integration into the D. dehalogenans 

Chromosome 

A 578-bp Apal-EcoRI internal fragment of the D. dehalogenans frdA gene was cloned in 

E. coli MC1061 using Apal-EcoRI - digested pG+host9, yielding pLUW906. Subsequently, 

electrocompetent cells of D. dehalogenans were transformed with plasmid DNA isolated from 

E. coli MCI061 using the QIAprep Spin Miniprep kit (Qiagen GmbH). Recovery after 

electroporation and cultivation on selective plates were performed at 30°C. Erythromycin-

resistant colonies that appeared within 5 days were transferred to liquid selective medium 

containing 40 mM pyruvate and were incubated at 30°C. Cultures were diluted 20-fold in the 

same medium, grown at 30°C for 8 h to reach log phase, and then shifted to 40°C for 16 h (3 

to 5 generations). Appropriate dilutions were incubated on plates in the presence of 20 mM 

pyruvate and erythromycin at 40°C in order to detect integration events and on nonselective 

plates at 40°C for the determination of viable cell counts. The ratio of the two counts was 

used to determine the frequency of integration per cell as described by Biswas et al. (Biswas 

et al, 1993). Integrants that were isolated at 40°C were subsequently routinely maintained in 

selective medium containing 20 to 40 mM pyruvate. Southern blot analysis of i/wcll-digested 

chromosomal and plasmid DNA and preparation of pG+host9- and D. dehalogenans frdAC-

specific probes were performed as described above. 

DNA Sequencing and Sequence Analysis 

DNA sequencing was performed using a LiCor (Lincoln, Nebr.) DNA sequencer 4000L. 

Plasmid DNA used for sequencing reactions was purified with the QIAprep Spin Miniprep kit 

(Qiagen GmbH). Reactions were performed using the Thermo Sequenase fluorescent-labeled 

primer cycle sequencing kit (Amersham Pharmacia Biotech). Fluorescently (IRD 800) labeled 

universal sequencing primers were purchased from MWG Biotech. Sequence similarity 

searches and alignments were performed using the BLAST 2.0 program (Altschul et al, 
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1997) (National Center for Biotechnology Information, Bethesda, Md.) and the Clustal X and 

GeneDoc programs (Thompson et al, 1997; K. B. Nicholas & H. B. J. Nicholas, GeneDoc: a 

tool for editing multiple sequence alignments, 1997) and the DNAstar package (DNASTAR 

Inc., Madison, Wis.), respectively. 

Enzyme and Protein Assays 

Harvesting of cells and preparation of cell extracts by sonication under anoxic conditions 

were performed as described previously (van de Pas et al, 1999). Fumarate reductase 

activities were determined spectrophotometrically at 30°C in 1 ml of 100 mM Tris-HCl (pH 

8.0) as described previously (Smidt et al, 1999). One unit of enzyme activity corresponds to 

the amount of enzyme catalyzing the conversion of 1 |J.mol of substrate or 2 (imol of benzyl 

viologen per min. Succinate dehydrogenase activity was measured with 2,6-

dichlorophenolindophenol and phenazine methosulfate as an artificial electron acceptor as 

described by Schirawski and Unden (Schirawski & Unden, 1995). Protein was determined 

according to the method of Bradford, with bovine serum albumin as the standard (Bradford, 

1976). 

Nucleotide Sequence Accession Number 

The nucleotide sequence of the putative fumarate reductase-encoding operon has been 

deposited in GenBank under accession no. AF299117. 

Results 

Development of an Electroporation-Based Transformation Protocol for D. 

dehalogenans 

To allow for the application of plasmid vector systems for genetic manipulation of the 

strict anaerobe D. dehalogenans, an electroporation-based transformation protocol for this 

bacterium was designed and optimized using the promiscuous plasmid pIL253 (Simon & 

Chopin, 1988). Because this cloning vector, which is a derivative of the broad host-range 

theta-replicating plasmid pAM(3 1, carries an erythromycin resistance marker, we checked D. 

dehalogenans for its sensitivity to this antibiotic. On plates that contained 0.1 u.g of 

erythromycin/ml, 6.5 x 106 CFU/ml was obtained, compared to 4 x 107 CFU/ml on plates 
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without any antibiotic. At erythromycin concentrations of 0.25 and 0.5 ug/ml, micro-colonies 

appeared after 4 days, whereas no colonies developed at concentrations of > 1 |ig of 

erythromycin/ml, indicating that the frequency of spontaneous resistance to erythromycin is 

below 2.5 x 10" per CFU. Subsequently, a concentration of 5 |ig of erythromycin/ml was 

used in solid and liquid media for the selection of strains of D. dehalogenans, carrying the 

erythromycin resistance marker. 

Electrocompetent cells of D. dehalogenans were prepared from exponential-phase cells 

that had grown in the presence of the cell wall-weakening agent glycine as described by Wells 

et al. (Wells et al, 1993). Cells were washed and finally concentrated approximately 1,000-

fold in ice-cold anaerobic washing buffer. On average, approximately 70% of the cells could 

be recovered as viable CFU on nonselective plates after the cell collection and washing 

procedure. Electroporation of 40-ul aliquots of concentrated cell suspension in the presence or 

absence of different amounts of plasmid DNA was performed outside the anaerobic chamber 

at a field strength of 12.5 kV x cm'1, a capacitance of 25 uF and a resistance of 200 of 800 Q. 

After a subsequent incubation of 5 h in the presence of 0.5 M sucrose, cells were inoculated 

onto plates with or without 5 (ig of erythromycin/ml. 

6000 r 

4000 -

100 

Resistance [a] 

Figure 6.1 Survival and transformation efficiency of cells of D. dehalogenans after electroporation. Survival 

was defined as CFU per milliliter of cell suspension on non-selective plates ( • ) . Efficiency of transformation of 

D. dehalogenans was determined on plates containing 5 |lg of erythromycin/ml and calculated as CFU per 

microgram of CsCl-purified pIL253 ( • ) . 
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After 3 days of incubation at 37°C, colonies were counted to determine survival and 

transformation efficiency. The pulse resulted in a 40 to 65% decrease in CFU on nonselective 

plates with decreasing resistance compared to the survival of an aliquot of concentrated cells 

that was kept inside the anaerobic chamber and was not subjected to a pulse (Fig. 6.1). The 

highest numbers of transformants were obtained at a resistance of 400 Q, resulting in a pulse 

time constant of approximately 7.5 ms. Both shorter and longer pulse times (200 Q, 4.7 ms; 

600 £2, 12.8 ms; 800 Q, 16.4 ms) resulted in significantly lower numbers of transformants 

(Fig. 6.1). Routinely, 3,000 ± 1,900 transformants (maximal value, 6.6 x 103) were obtained 

per u.g of CsCl-purified pIL253, independent of the amount of plasmid DNA (ranging from 

50 to 800 ng) used in the electrotransformation. In order to check the transformants for the 

presence and concentration of plasmid, erythromycin-resistant colonies were transferred to 

liquid selective medium containing 20 mM lactate and fumarate, and plasmid DNA was 

isolated from early-stationary-phase-cultures (̂ 6oo = 0.25). Plasmid DNA was detectable by 

agarose gel electrophoresis, and quantification indicated a concentration of 5 ng of pIL253/ml 

of culture, corresponding to approximately 10 copies per cell (data not shown). 

Segregational Stability and Thermosensitivity of pG+host9 in D. dehalogenans 

The thermosensitive broad host-range pG+host vector family has been shown to be 

instrumental for high-efficiency gene inactivation and replacement in Gram-positive bacteria 

(Biswas et al, 1993). In order to study the applicability of this system in the halorespiring 

bacterium D. dehalogenans, electrocompetent cells were transformed with CsCl-purified 

pG+host9. To ensure functional replication, post-transformation incubation and cultivation on 

selective media were performed at 30°C. Transformation yielded, on average, 600 

transformants per fxg of plasmid DNA. Colonies that appeared on selective plates were 

transferred to liquid medium. Plasmid DNA was isolated from early-stationary-phase cultures 

and could be detected by agarose gel electrophoresis (data not shown). In order to determine 

the permissive and nonpermissive temperatures for the replication of pG+host9 in D. 

dehalogenans, the segregational stability of the plasmid at nonselective concentrations of 

erythromycin was analyzed at different temperatures. A culture of D. dehalogenans 

containing the plasmid was diluted into fresh medium without any antibiotic and incubated at 

30, 37, and 40°C. The ratio of the CFU on selective plates to the CFU on nonselective plates 

at 30°C was determined at 0,16, and 40 h after dilution. 
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B 

Figure 6.2 Segregational stability and thermosensitivity of pG+host9 in D. dehalogenans under nonselective 

culture conditions at 30°C ( • ) , 37°C ( • ) and 40°C (A). A) Ratio of CFU on selective and nonselective plates. 

B) Normalized ratio of hybridization signal intensities obtained with probes specific for pG+host9 and frdAC. 

Whereas this ratio decreased only 50% for the culture that was incubated at 30°C (0.51 at 0 

h and 0.26 at 40 h), it dropped 72- and 48,000-fold at 37 and 40°C, respectively, within 7 

generations (Fig. 6.2A). No influence of the incubation temperature on segregational stability 

was observed in the case of the non-fhermosensitive plasmid pIL253 (data not shown). 

Similar results were obtained by Southern blot analysis of total DNA that was isolated before 

and 7 (40 h) and 10 generations (68 h) after the shifting to nonselective conditions, 

respectively (Fig. 6.2B). The amount of plasmid-derived sequences detected following growth 

for 10 generations at 37 or 40°C was found to be more than 1,000-fold lower than that 

detected in cells grown at 30°C. 

Cloning and Sequence Analysis of a Putative Fumarate Reductase-Encoding 

frdBAC Gene Cluster 

The versatile Gram-positive anaerobe D. dehalogenans has the ability to utilize fumarate 

as the terminal electron acceptor for anaerobic respiration with H2, formate, lactate, or 

pyruvate as the electron donor. High fumarate reductase activity is readily detectable in cell 

extracts of D. dehalogenans grown in the presence of fumarate or yeast extract (Utkin et al, 

1994; Smidt et al, 1999). In order to provide an easy-to-screen target gene for the 

development of genetic modification approaches, we amplified a 0.85-kb fragment from the 

chromosome of D. dehalogenans using degenerated primers that were designed based on a 
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primary sequence alignment of known succinate:quinone oxido-reductases (Hagerhall, 1997). 

Sequence analysis indicated significant similarity with the flavoproteins of fumarate 

reductases and succinate dehydrogenases present in the databases. 

'Hindi 
Kpnl 

frdC > 

' EcoKl S.stl 
\BamHl 
Hindi 

I K 0 l | 

BG284^ |MG283 

frdA ~y\ fids y aabH y 
pLUW903 • 

- — pLUW904 

• pLUW902 

- pLUW906 

B 

HincU EcoRl Apai 

FP, FP, 

Hindi Hindi £coRI AptA Hindi 

Hindi 

frdA' JrepA] 

Hindi EcoRl Apal Hindi 

ImE^M'fi-d^IJdB) I aabH) 

Figure 6.3 Physical maps of the D. dehalogenans frd gene locus (A), pLUW906 (linearized) (B) and the frd 

gene locus after recombination (C). Horizontal arrows, open reading frames; triangles, oligonucleotides used in 
this study; horizontal bars; clones, constructs and hybridizing fragments (F, to F3, fragments hybridizing solely 
with the,/hi4C-specific probe; Pi to P3, fragments hybridizing solely with the pG+host9 -specific probe; FP, to 
FP3, fragments hybridizing with both probes). DNA restriction sites, which were relevant for the construction of 
clones and constructs, are indicated. 
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The subsequent isolation and analysis of a 5.3-kb Pstl-BamHl chromosomal fragment from 

D. dehalogenans revealed the presence of three closely linked genes, frdCAB, and a fourth 

open reading frame aabH, potentially encoding a polypeptide with significant similarity to 

ATP-binding cassette transporter binding proteins. The three genes frdC, frdA, and frdB 

potentially code for polypeptides of 208, 578, and 251 amino acids with calculated molecular 

masses of 23,728, 64,441, and 28,043 Da, respectively (Fig. 6.3A). The predicted gene 

products exhibit significant similarities with the type B membrane anchor, flavoprotein, and 

iron-sulfur-protein subunits of known succinate:quinone oxido-reductases, respectively 

(Hagerhall, 1997). The highest similarities were found with the succinate dehydrogenases of 

Bacillus subtilis and Paenibacillus macerans (identities on the amino acid level, 72 and 74 % 

for FrdA; 58 and 59 % for FrdB; and 42 and 29 % for FrdC, respectively). Upstream of each 

of the genes, potential Shine Dalgarno sequences that are complementary to the 3' end of the 

D. dehalogenans 16S rRNA could be identified (not shown) (Smidt et al, 2000). 

Gene Specific Single-Crossover Integration in the D. dehalogenans Chromosome 

An internal 0.6-kb fragment of the D. dehalogenans frdA gene was cloned into pG+host9 in 

E. coli MC1061. The resulting plasmid, pLUW906 (Fig. 6.3B), was introduced by 

transformation into D. dehalogenans, where it was stably maintained at 30°C. Subsequently, 

cultures of D. dehalogenans containing either pLUW906 or pG+host9 were shifted to 40°C to 

induce single-crossover or spontaneous chromosomal integration, respectively. Single-

crossover integration at the frdA locus would result in the generation of two chromosomal 

copies of the frdA gene, truncated either at the 3' or the 5' end, and interrupted by the vector 

(Fig. 6.3C). Integrants were selected as erythromycin-resistant colonies appearing at 40°C, 

and integration of pLUW906 occurred at a frequency of 3.3 x 10"4 ± 6.6 x 10"5 per cell 

compared to 4.8 x 10"6 ± 6.9 x 10"6 per cell for pG+host9. 

In order to investigate whether the significantly higher number of integration events was 

due to specific chromosomal integration into the frdA gene, pLUW906 integrants were further 

analyzed at the physiological, biochemical and genetic levels. Southern blot analysis of 

//mcll-digested total DNA from pLUW906 integrants with radiolabelled frdAC- and 

pG+host9-specific probes revealed the loss of a 1.7-kb wild-type genomic frdBA fragment 

(F3), whereas two fragments (FPi and FP3) appeared in the integrant DNA, which also 

hybridized with the pG+host9 probe, as would be expected in the case of specific integration 

of pLUW906 into the frdA gene of D. dehalogenans (Figs. 6.3C and 6.4). Furthermore, the 
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1.4-kb pLUW906 fragment (FP2) hybridizing with both probes was absent from integrant 

DNA, indicating the lack of free plasmid (Fig. 6.4). Similar results were obtained by PCR 

analysis with primers IK04 and BG355, as the 2-kb wild-type amplification product shifted to 

a distinct integrant-specific 6-kb fragment (data not shown). 

Whereas fumarate-dependent growth was not significantly impaired in the pLUW906 

integrants grown with lactate as the electron donor and fumarate as the electron acceptor, 

fumarate reductase activity was reduced, although not completely diminished (0.17 + 0.01 and 

0.09 ± 0.06 U/mg in two independently obtained pLUW906 integrants, compared to 0.36 ± 

0.11 U/mg in a pG+host9 integrant control strain). 

B 

9 . 4 -

6 . 6 -

4.4 -

• P 3 

• <*-P, 

1 2 3 4 5 1 2 3 4 5 

Figure 6.4 Hybridization of //i'ncll-digested total DNA from wild-type D. dehalogenans and pLUW906 
integrants of D. dehalogenans with probes specific for frdAC (A) and pG+host9 (B). pG+host9 and pLUW906 
plasmid DNAs was used as controls. The autoradiograph was digitally corrected for differences in signal 
intensities between lanes containing total DNA and lanes containing plasmid DNA. Lanes: 1, wild-type; 2 and 3, 
pLUW906 integrants; 4, pLUW906; 5, pG+host9. DNA size markers are in kilobase pairs. F[ to F3, fragments 
hybridizing solely with the ̂ -d^C-specific probe; P, to P3, fragments hybridizing solely with the pG+host9 -
specific probe (P| and P2 originate from an additional Hincll-site between the ficoRI- and ^4;?al-sites in 
pG+host9); FP! to FP3, fragments hybridizing with both probes. 

118 



Host - Vector Systems 

Discussion 

The recent detailed molecular analysis of the halorespiratory system in the o-CP-respiring 

Gram-positive bacterium D. dehalogenans has brought us to a deeper understanding of 

structure, function, and control of this novel respiratory pathway (Smidt et al, 1999; van de 

Pas et al, 1999; Smidt et al, 2000). Previously, we described the development of an efficient 

plating, delivery, and screening system that has been useful for the isolation of 

halorespiration-deficient mutants following the chromosomal integration of the conjugative 

transposon Tn916 (Smidt et al, 1999). These mutants have been instrumental in the 

identification of genes potentially encoding polypeptides, which might be involved as 

structural components of the halorespiratory network or might play a role in their control and 

functional assembly. However, the instability of some of these mutants and the occurrence of 

preferential integration has to some extent hampered their further physiological and 

biochemical characterization. Here we report on the development and validation of host -

vector systems for the genetic modification of the environmentally important, strictly 

anaerobic, low G+C Gram-positive bacterium D. dehalogenans. 

An efficient electroporation-based transformation procedure was designed using a protocol 

that had previously been optimized for the high-frequency electrotransformation of L. lactis 

(Wells et al, 1993). Routinely, we obtained 1.0 x 103 to 6.6 x 103 erythromycin resistant 

transformants per \xg of plasmid DNA from the 4.8-kb theta-replicating pAMpi derivative 

pIL253. These values observed for D. dehalogenans are in the same range as or higher than 

transformation frequencies obtained for several other LGB, such as Clostridium spp., but are 

lower than those obtained in genetic model strains of/-, lactis (Chen et al, 1996; Klapatch et 

al, 1996; Buckley et al, 1999; Young et al, 1999). Although pIL253 was maintained in D. 

dehalogenans at only moderate copy numbers of approximately 10 copies per cell, compared 

with 45 to 85 copies fori, lactis (Simon & Chopin, 1988; de Vos & Simons, 1994), the stable 

replication of the vector indicates its potential use as a cloning vector in D. dehalogenans. 

Plasmids based on the thermosensitive replicon pG+host were previously shown to 

conditionally replicate in various LGB as well as in E. coli (Maguin et al, 1992; Maguin et 

al, 1996). One of these, the 3.8-kb rolling-circle-replicating, thermosensitive pWVOl 

derivative pG+host9, was used for the development of a system for specific gene disruption in 

D. dehalogenans. Transformation efficiencies for pG host9 were on average 1 order of 

magnitude lower (6 x 102) than those for pIL253. These differences in frequency of 
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transformation might be due to the difference in the mode of replication, as was previously 

reported for various other strains of LGB, but could also be caused by differences in marker 

gene expression (Kiewit et al, 1993; de Vos & Simons, 1994; O'Sullivan & Fitzgerald, 1999). 

We were able to confirm thermosensitive replication, which was essentially absent at 40°C in 

D. dehalogenans. Although moderate segregational instability was also observed at the 

permissive temperature of 30°C, the relative number of viable cells able to grow on selective 

plates was reduced to 2 x 10"5 at 40°C within 7 generations. The nonpermissive temperature 

that we found for D. dehalogenans is somewhat higher than that reported for L. lactis 

(Maguin et al, 1992). However, as D. dehalogenans is still growing at almost maximum 

growth rates at 40°C, this does not affect the applicability of the pG+host system (Utkin et al, 

1994). 

In order to provide a model target to test the thermosensitive vector pG+host9 for its 

applicability for specific gene disruption, we cloned and sequenced the putative fumarate 

reductase-encoding^rc/C4.5 operon from D. dehalogenans. A pG+host9 derivative containing 

a 0.6-kb internal frdA fragment was successfully introduced and maintained in D. 

dehalogenans under permissive conditions. Chromosomal integration at nonpermissive 

temperatures was significantly more efficient in the case of pLUW906 compared to the empty 

vector, and the observed integration frequencies were similar to those found for L. lactis 

(Biswas et al, 1993). However, although stable site-specific chromosomal integration of 

pLUW906 into the frdA gene could be unambiguously demonstrated by Southern blot 

analysis and PCR analysis, the fumarate reductase activity was only partly reduced and no 

changes in growth with fumarate were observed compared to the growth of D. dehalogenans 

containing pG+host9. One possible explanation could be that at least one of the truncated frdA 

genes present in the pLUW906 integrant is still coding for a (partially) active fumarate 

reductase enzyme due to a polar effect from the inserted vector sequences. This, however, is 

rather unlikely, since both the 3'- and the 5'-truncated frdA copies lack several conserved 

residues that are probably essential for fumarate reductase activity (Bourgeron et al, 1995; 

Hagerhall, 1997). Another possibility could be that the frdCAB operon actually encodes a 

succinate dehydrogenase. Nevertheless, no significant succinate dehydrogenase activity could 

be detected in cell extracts of D. dehalogenans. Northern analysis of total RNA isolated from 

cultures of D. dehalogenans grown with different electron donors and 3-chloro-4-hydroxy-

phenylacetic acid, nitrate, or fumarate as the electron acceptor indicated that transcription of 

the frdCAB operon is constitutive rather than being induced in the presence of fumarate. This, 
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however, is not in agreement with the highly induced fumarate reductase activity that has 

been measured in fumarate-grown cells of D. dehalogenans (H. Smidt et al, unpublished 

data). This suggests that the frdCAB operon only partially codes for the fumarate reductase 

activity, which is measured with benzyl viologen as an artificial electron donor. If so, this 

strongly supports the presence of at least one additional fumarate reductase-encoding gene 

cluster. 

The development of the various gene transfer systems reported here is the first example of 

a genetic system for a halorespiring microbe. It has significantly improved our possibilities 

for studying the function and regulation of chromosomal genes in D. dehalogenans, including 

those relevant for the novel halorespiratory pathway this organism possesses. Moreover, the 

present set of genetic tools will enable the further exploitation of D. dehalogenans and related 

strains as dedicated degraders of recalcitrant environmental pollutants. 
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DIVERSITY AND EXPRESSION OF REDUCTIVE DEHALOGENASE-

ENCODING GENES FROM HALORESPIRING BACTERIA 

Hauke Smidt, Meta van Heusden, Ineke G. A. Heikamp-de Jong, Maurice L. G. C. Luijten, 
John van der Oost, Antoon D. L. Akkermans and Willem M. de Vos 

A modified version of this chapter has been submitted for publication. 

Abstract 

A multiple PCR approach was developed for the specific amplification of reductive 
dehalogenase-encoding genes from anaerobic halorespiring cultures. Multiple sets of specific 
and highly degenerate oligonucleotide primers were designed based on conserved sequence 
motifs of known or/Ao-chlorophenol- and chloroethene reductive dehalogenases. Their 
application yielded the amplification of novel putative reductive dehalogenase-encoding gene 
homologues from the chromosome of various Gram-positive and -negative halorespiring 
bacteria from the genera Desulfitobacterium and Dehalospirillum. RT-PCR analysis of total 
RNA isolated from Desulfitobacterium spp. showed halorespiration-dependent differential 
expression of the various genes in the presence of different halogenated substrates, indicating 
that the current approach provides a valuable basis for the molecular monitoring of 
halorespiration potential and reductive dehalogenase activity. 
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Introduction 

Several anaerobic halorespiring bacteria have been isolated during the last decade from 

numerous polluted and pristine ecosystems that have the ability to couple the reductive 

dehalogenation of chlorinated aliphatic and aromatic compounds to energy conservation by 

electron-transport-coupled phosphorylation and hence to growth (El Fantroussi et al, 1998; 

Holliger et al, 1999; Smidt et al, 2000a; Smidt et al, 2001a). Such halogenated compounds 

have been and are still being released into the environment at significant levels due to natural 

and anthropogenic activities, and their persistence, toxicity and bioaccumulation is of major 

concern (Hileman, 1993; Gribble, 1996). Because of their high metabolic activities and almost 

ubiquitous occurrence, it is now widely accepted that halorespiring microorganisms play an 

important role in the bioremediation of anaerobic environments polluted with halogenated 

hydrocarbons. The identification and maintenance of optimal process conditions, however, 

requires the availability of fast and accurate methods for the assessment of microbial 

degradation potential and activity (Stapleton et al, 1998). As classical microbial cultivation 

techniques fail to give a complete picture of composition, properties and in situ metabolic 

activity of complex microbial ecosystems, various molecular microbial ecological methods 

have been developed to comprehensively address these issues (von Wintzingerode et al, 

1997; Head et al, 1998). Among these, polymerase chain reaction (PCR) based approaches, 

targeting not only phylogenetic (rRNA-encoding genes) but also metabolic markers (e.g. 

degradative enzyme-encoding genes), have proven to be powerful tools to assess the 

biodegradation potential within a polluted site (Power et al, 1998). Where actual degradation 

is reflected by the transcription of specific genes, the combination with a reverse transcriptase 

(RT) reaction can be used for the sensitive detection of mRNA's to monitor activity 

(Selveratnam et al, 1995; Stapleton et al, 1998; Wilson et al, 1999). Nevertheless, although 

anoxic processes are often crucial steps in the bioremediation of polluted sites, most work has 

focused on aerobic pathways (Power et al, 1998). 

The potential of halorespiring bacteria for the clean-up of contaminated environments as 

soils, aquifers and sediments and the novelty of their respiratory pathways has stimulated the 

unraveling of the (eco-)physiological properties of these strains and triggered efforts to 

elucidate the molecular basis of halorespiration. This lead to the identification of a novel class 

of corrinoid-containing reductive dehalogenases as the key enzymes in halorespiration 

(recently reviewed by Holliger et al, 1999; Smidt et al, 2001a). The detailed biochemical and 
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molecular characterization of the proteins and their encoding genes has revealed significant 

similarities at the structural and functional levels between chlorophenol- and chloroethene 

reductive dehalogenases from phylogenetically distinct microorganisms. For two enzymes, 

the presence of Fe-S clusters was shown by EPR-spectroscopic analysis (Schumacher et al, 

1997; van de Pas et al, 1999). These results could be confirmed in case of the ortho-

chlorophenol reductive dehalogenase (CprA) from Desulfitobacterium dehalogenans by the 

detection of two highly conserved Fe-S binding motifs in the corresponding primary structure 

(van de Pas et al, 1999). An almost identical signature was identified in the sequence of the 

PCE reductive dehalogenase (PceA) from Dehalospirillum multivorans, suggesting a similar 

mechanism of intramolecular electron transport (Neumann et al, 1998). Moreover, both 

sequences share the presence of twin-arginine (RR) signal peptides, which are characteristic 

for periplasmic proteins containing complex redox cofactors, and which are cleaved off in the 

mature proteins (Neumann et al, 1998; van de Pas et al, 1999; Berks et al, 2000). 

This study aims at the development of a PCR-based approach for the specific amplification 

of putative reductive dehalogenase-encoding genes, and the detection of the expression of 

these genes by RT-PCR in order to provide a basis for the direct molecular assessment of 

halorespiring potential and activity at polluted sites. Moreover, the gained knowledge on 

novel sequences will be helpful for the elucidation of structure-function relations within this 

novel class of environmentally highly relevant biocatalysts, and might provide insight into the 

evolutionary history of reductive dehalogenases. 

Materials and Methods 

Bacterial Strains, Plasmids, and Culture Conditions 

Desulfitobacterium spp. were routinely grown under anaerobic conditions (100% N2 gas 

phase) at 37° C in rubber stoppered serum bottles as described previously (Smidt et al, 

2000b). Namely, the following strains were used in this study: D. dehalogenans, 

Desulfitobacterium PCE1, D. hafniense, and D. frappieri strains PCP-1, TCE1 and DP7 

(Utkin et al, 1994; Bouchard et al, 1996; Christiansen & Ahring, 1996a; Gerritse et al, 

1996; Gerritse et al, 1999; van de Pas et al, 2001b). Electron donor and acceptor were added 

to the appropriate concentration from sterile anaerobic stock solutions. Unless otherwise 

stated, strains were grown in the presence 20 - 40 mM of pyruvate. Dehalospirillum 
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multivorans strain PCE-M2 was grown in a previously described low-chloride mineral 

medium, from which yeast extract was omitted, with hydrogen as the electron donor and PCE 

as the electron acceptor (Holliger et ah, 1993; Luijten et ah, 2001). All gasses were obtained 

from Hoek Loos (Schiedam, The Netherlands). 3-chloro-4-hydroxyphenylacetic acid (Cl-

OHPA) was purchased from Sigma-Aldrich Chemie (Zwijndrecht, The Netherlands) and 

filtered prior to use. Growth was monitored spectrophotometrically by determining the optical 

density at 600 nm (ASM), and reductive dehalogenase activity in dechlorinating cultures was 

confirmed by following the release of chloride-ions (Chlor-o-Counter, Marius Instrumenten, 

Utrecht, The Netherlands). 

Table 7.1 Reductive dehalogenase-specific oligonucleotide primers used in this study. 

Primer nucleotide 
sequence 

sense (s) / 
antisense (as) 

target 
(residue number) 

Gene-specific primers 

PS 1 5 '-GCATTOCTTGGATCCTTTTGACTACGG-3' 

PS2 5'-CCGGAATTCGATTATCTGCCTTAGG-3' 

PS3 5'-ATGGAAAAGAAAAAAAAGCCTGAACTC-3' 

PS4 5'-CTTCATCAGCGCTTTGAATTCACTCC-3' 

PS5 5'-CATCCCCTATAATCAGTGTCTACCG-3' 

PS6 5' -CTC ATTACCCCAGAATATGGCCCG-3' 

8f 5'-CACGGATCCAGAGTTTGAT(C/T)(A/C)TGGCTCAG-3' 

151 Or 5 '-GTGAAGCTTACGG(C/T)TACCTTGTTACGACTT-3' 

cpr (5469-5485) 

cpr (7353-7329)" 

pee (3272-3298)" 

pce(5146-5121)" 

Dd-rddA (1002-978)" 

Dd-rddA (1196-1219)" 

16SrRNA(8-27)b 

16SrRNA(1513-1492)b 

Degenerate primers 
Dl 5'-AA(C/T)(A/C)G(A/C/G)(A/C)G(A/C/G)AA(C/T)TT(C/T)CT(C/G/T)AA-3' 

D2 5 '-GCIGA(C/T)AT(A/C/T)GTIGCICC-3' 

D3 5'-CA(A/G)OA(A/0)(A/T)(C/G)(C/T)GA(A/G)(A/T)(C/Q)(C/T)GCNAT(C/T)OT-3' 

D4 5'-GGIGCIGA(C/T)(C/T)TIGTIGG-3' 

D5 5 '-CT(C/G/T)GCNCC(C/G/T)GA(C/T)AA(G/A)CC-3 • 

D6 5 •-GC(A/G)T(A/T)(A/G)TA NCC(A/C/G)AG-3' 

D7 5'-ATIGG(CAr)TT(A/G)TClGG-3' 

D8 S'-GCfA/G^AfC/TITTYTHA/OCA-S' 

D9 5'-TCCA(A/C/G)GG(A/G)CANAC-3' 

RR NRRNFLK (13-19) 

ADIVAPd 

QESESAlVd 

C I GADLVG(170-175)C 

C 4 LAPDKP (316-321)° 

C 2 LGY(Y/N)A (261-265)° 

C 4 PDKPI (318-322)° 

FS 1 CKKCA (333-337)° 

FS2 VCPWN (386-390)° 

"Residue numbers of specific primers are taken from the D. dehalogenans cpr cluster- and the D. multivorans 
pee cluster nucleotide sequences (GenBank ace. no. AF115542 and AF022812, respectively) and the D. 
dehalogenans rddA locus. See also Fig. 7.1 for genetic architecture. b16S rRNA-targeted primers are numbered 
according to the E.coli sequence; 'residue numbers of degenerate primer target sequences are taken from the D. 
dehalogenans CprA sequence (GenPept ace. no. AAD44542); dprimer D2 and D3 are based on the N-terminal 
sequences of the PCE-reductive dehalogenases purified from Desulfitobacterium frappieri TCE1 and 
Desulfitobacterium PCE1, respectively (van de Pas et al, 2001a). 
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Escherichia coli strains XLl-Blue (Stratagene, La Jolla, Calif.) and JM-109 (Promega, 

Madison, Wise.) were used as a host for cloning vectors and were grown in Luria Bertani 

medium at 37°C (Sambrook et al, 1989). Where appropriate, media were amended with 

ampicillin (100 |lg/ml). The PCR product cloning vectors pGEM-T and pMON38201 

(Borovkov & Rivkin, 1997) were obtained from Promega and Monsanto (St. Louis, Mo.) 

respectively. 

DNA Isolation and Manipulation 

Total DNA was isolated from Desulfitobacterium spp. and Dehalospirillum multivorans as 

described previously (van de Pas et al, 1999). Plasmid DNA was purified from E. coli with 

the QIAprep Spin Miniprep kit (Qiagen GmbH, Hilden, Germany), and standard DNA 

manipulations were performed according to established procedures (Sambrook et al, 1989) 

and manufacturers instructions. Enzymes were purchased from Life Technologies B.V. 

(Breda, The Netherlands), Roche Molecular Biochemicals (Mannheim, Germany) or New 

England Biolabs (Beverly, Mass.). Oligonucleotides were obtained from Life Technologies 

B.V. and MWG Biotech (Ebersberg, Germany). 

PCR Amplification of Potential Reductive Dehalogenase-Encoding Genes 

Primers used for the specific amplification of putative reductive dehalogenase-encoding 

genes are listed in Table 7.1. PCR amplification was performed from total DNA isolated from 

the various strains in a 10 to 50-ul PCR reaction mixture containing 0.2 uM of each primer, 2 

mM of MgCl2; 200 uM of dATP, dCTP, dGTP, and dTTP; and 1 U of Taq polymerase (Life 

Technologies B.V.). The DNA was amplified with an UnoII- or T-gradient-Thermocycler 

(Biometra, Gottingen, Germany). After the mixture was preheated to 94°C for 2 min, 35 

amplification cycles were performed, consisting of denaturation at 94°C for 20 s, primer 

annealing at different temperatures (20°C - 50°C) for 30 s and elongation at 68°C for 1 min. 

A final extension of 7 min at 68°C was performed. Usually, an annealing temperature of 35°C 

- 40°C gave optimal amplification of specific products when degenerate primers were used 

(50°C for specific primers). The PCR products were purified either directly from the reaction 

mixture or from agarose gel using the QIAquick PCR purification kit (Qiagen GmbH) and the 

Concert-Matrix gel-extraction kit (Life Technologies B. V.), respectively, and cloned into E. 

coli using pGEM-T or Xc/wl-digested pMON38201. 
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To further characterize the rddA loci identified in Desulfitobacterium dehalogenans and 

Desulfitobacterium PCE1, fragments flanking rddA were amplified by inverse PCR with the 

divergent primer pair PS5 / PS6 (Table 7.1) from EcoRl- or 7/wdIII-digested and re-ligated 

chromosomal DNA as described previously (Triglia et al, 1988; van de Pas et al, 1999). 

RNA Isolation and RT-PCR Amplification of Expressed Reductive Dehalogenase-

Encoding Genes 

Total RNA was isolated from exponential-phase cultures of Desulfitobacterium spp. as 

described previously (Smidt et al, 2000b). RT-PCR was used to analyze expression of 

reductive dehalogenase-encoding genes upon growth in the presence or absence of different 

chlorinated electron acceptors. 50-150 ng of DNAse-treated RNA (RQ1 RNAse-free DNAse, 

Promega) was used in a 25-(0.1 reaction, containing the following: 5 pmol of each primer, 200 

uM dATP, dCTP, dGTP, and dTTP, 1.7 mM MgS04, 5 ul of AMV/Tfl 5x Reaction buffer 

and 2.5 U of AMV RT and Tfl polymerase (Access RT-PCR system, Promega). 16S rRNA-

targeted universal primers 8f and 1510r were used in positive and negative control reactions 

(in negative controls, AMV RT was omitted) (Lane, 1991; Table 7.1). cDNA synthesis and 

subsequent PCR amplification were performed using a T-gradient-Thermocycler (Biometra). 

The reaction mixture was incubated at 35°C for 45 min. After the mixture was preheated to 

94° C for 2 min, 40 amplification cycles, consisting of: denaturation at 94° C for 30 s, primer 

annealing at 35° C for 1 min and elongation at 68° C for 2 min were performed. A final 

extension of 7 min at 68° C was performed. The RT-PCR products were purified from the 

reaction mixture using the QIAquick PCR purification kit (Qiagen GmbH) and cloned into E. 

coli using Xcm I-digested pMON38201. 

DNA Sequencing and Sequence Analysis 

DNA sequencing was performed using a Li-Cor DNA sequencer 4000L (LiCor, Lincoln, 

Nebr.). Reactions were performed using the Thermo Sequenase fluorescent-labeled primer 

cycle sequencing kit (Amersham Pharmacia Biotech.). Fluorescently (IRD 800) labeled 

universal sequencing primers were purchased from MWG Biotech. Sequence similarity 

searches and alignments were performed using the BLAST 2.1 program at 

[http://www.ncbi.nlm.nih.gov/blast/blast.cgi] (Altschul et al, 1997) (National Center for 

Biotechnology Information, Bethesda, Md.) and the programs Clustal X, GeneDoc 

(Thompson et al., 1997; K. B. Nicholas & H. B. J. Nicholas, GeneDoc: a tool for editing 
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multiple sequence alignments, 1997) and the DNAstar package (DNASTAR Inc., Madison, 

Wis.), respectively. 

Nucleotide Sequence Accession Numbers 

The nucleotide sequences of the putative reductive dehalogenase-encoding gene loci have 

been deposited in the GenBank database under accession numbers AY013363 (D. 

dehalogenans rddA), AY013361 {Desulfitobacterium PCE1 rddA), AY013360 

{Desulfitobacterium PCE1 cprBA), AY013365 (D. hqfhiense cprBA), AY013362 (D. 

frappieri TCE1 rdfA), AY013364 (D.frappieri PCP-1 rdfA), AY013366 (D. hqfhiense rdfA), 

AY013367 (Dehalospirillum multivorans PCE-M2 pceAB), and AY013368 {Dehalospirillum 

multivorans PCE-M2 rdmA). 

Results and Discussion 

Detection of Potential Reductive Dehalogenase-Encoding Genes 

To date, only two reductive dehalogenases have been characterized at the molecular level, 

namely the o-chlorophenol- and PCE-dechlorinating enzymes from Desulfitobacterium 

dehalogenans and Dehalospirillum multivorans, respectively (Neumann et ah, 1998; van de 

Pas et al, 1999). In addition, a partial amino acid sequence has been reported for the 

Desulfitobacterium PCE-S PCE-reductive dehalogenase, the N-terminus of which is almost 

identical to the Dehalobacter restrictus PCE-reductive dehalogenase, but different from that 

of the D. multivorans enzyme (Holliger et al, 1999; Neumann et al, 1999). The comparison 

of the different known chlorophenol- and chloroalkene-reductive dehalogenase-encoding 

genes revealed significant similarities in gene architecture, which is reflected by the presence 

of sequence motifs that are highly conserved at the amino acid level. These include a twin-

arginine signal sequence (RR), one ferredoxin-type and one truncated Fe-S cluster (FS1, FS2) 

and 5 additional highly conserved motifs (C1-C5) (Figs. 7.1A and 7.2). Assuming that the 

characteristic gene architecture is also conserved in other reductive dehalogenases not yet 

characterized at the molecular level, degenerate oligonucleotide primers were designed 

targeting the various conserved motifs to allow for the detection and characterization of yet 

unknown reductive dehalogenase-encoding genes (Table 7.1, Fig. 7.1A). In addition, we used 

specific oligonucleotide primers to screen for the presence of cprBA- and pceAB homologues 
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in strains of Desulfitobacterium spp. and Dehalospirillum multivorans that show 

dechlorinating activities similar to those catalyzed by CprA and PceA (cprBA, PS1/PS2; 

pceAB, PS3/PS4; Table 7.1 and Fig. 7.1 A). 

The application of cprBA- specific primers yielded PCR-products of the expected size from 

the chromosome of Cl-OHPA-respiring D. dehalogenans, Desulfitobacterium PCE1 and D. 

hafniense DCB-2, whereas a pce^45-specific product was obtained for Dehalospirillum 

multivorans PCE-M2 (Table 7.2). 

A 

PSl |> 

Dl D2 

D3 

D4 D5 

• 

D6 D7 D8 D9 

W>I cprA > 

4 PS2 

I / / / \ \ W 
RR C1 C2 C3 C4 FS1 FS2 C! 

~» "IT pceB P 

B 
-//- -//-

porX I • II l««"l T> 
/ / \ i \ \ 

C1 C2 C3 C4 FS1 FS2 
PS5 <| ^ PS6 

/ / \ 

Figure 7.1 A) Sequence motifs conserved among known reductive dehalogenases and position of specific and 
degenerate oligonucleotide primers used in this study. The architecture is shown of the D. dehalogenans cprBA 

genes (o-chlorophenol reductive dehalogenase; van de Pas el al., 1999) and the D. multivorans pceAB genes 
(PCE reductive dehalogenase; Neumann et ah, 1998). RR, twin-arginine consensus sequence motif; FS, F-S 
cluster binding motif; C, conserved sequence motif; PS, gene-specific primers; D, degenerate primers; 
arrowheads, position and orientation of oligonucleotide primers. B) Physical map of D. dehalogenans I 

Desulfitobacterium PCE1 rddA locus. Restriction sites used for inverse PCR are indicated. porX, partial (C-
terminal) sequence of putative pyruvate ferredoxin oxidoreductase-encoding gene (Smidt et al, 2001b). 
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Table 7.2 PCR amplification of partial reductive dehalogenase-encoding genes and their designations from 
halorespiring bacteria. 

Strain 

D. dehalogenans 

D. PCE1 

D. hafniense 

D. frappieri VCV-X 

D. frappieri DP7 

D. frappieri TCE1 

D. multivorans PCE-M2 

nd, not determined; + 

PS1 
PS2 

+(cprA) 

+(cprA) 

+(cprA) 

nd 

nd 

nd 

nd 

specific PCR-proc 

PS3 
PS4 

-
nd 

nd 

nd 

nd 

nd 

+(pceA) 

uct; -, no 

D4 
D7 

+(rddA) 

+(rddA) 

-

-
-

-
+(rdmA) 

PCR-product. 

D4 
D8 

+(rddA) 

+(rddA) 

-

-
-
-

+(pceA) 

D2 
D7 

-

-
+ (rdfA) 

+ (rdfA) 

-
+ (rdfA) 

-

Dl 
D8 

+(cprA) 

+{cprA) 

nd 

nd 

nd 

-
nd 

Amplification by PCR using different pairs of degenerate primers in combination with 

chromosomal DNA of halorespiring strains of Desulfitobacterium spp. and Dehalospirillum 

multivorans PCE-M2 resulted in specific products (Table 7.2). However, not all potential 

primer combinations gave rise to specific PCR amplification products, and combinations that 

included a C3-targeting degenerate primer did not yield a product for any of the tested strains 

(data not shown, Table 7.2). No PCR-product was obtained in case of D. frappieri DP7, a 

non-dehalogenating isolate that was recently obtained from human faeces, indicating that its 

inability to perform halorespiration is caused by a deficiency in dehalogenase-related 

sequences (van de Pas et al, 2001b). 

Molecular Characterization of Reductive Dehalogenase-Specific Amplification 

Products 

Cloning and sequence analysis revealed that c/?r&4-specific amplification products 

obtained from total DNA isolated from Desulfitobacterium strain PCE1 and 

Desulfitobacterium hafniense were almost identical (> 99% on the amino acid level for CprA 

and CprB) to those of D. dehalogenans (Figs. 7.2 and 7.3). Similarly, the PS3/PS4-amplicon 

obtained from the chromosome of the newly isolated Dehalospirillum multivorans strain 

PCE-M2 was found to be highly similar to the type-strain genes (PceB, > 99% identity on the 

amino acid level; PceA, 92% identity). 
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LGVASALTAG JVGAMRTLPVSAAEAVA-
'GAAATTMGV GAIKAPAKVANA 
'GAAATTMGV GAIKAPAKVANA 
'GAAATTMGV GAIKAPAKVANA 
JIGAGAAAT RPF 
. IIGGGAAAlfjAPF 

- MGE| | t^NBMASMLGAAAAA2JASAS W K G W S PLVADA • 

-AVLAENNLPHEFKDVDDLLSAGKALEGDHANKVNNHPWWVTT^ 
STGSSGSVNGAl 
STGSSGSVNGAl 
STGSSGSVNGAl 

AETMNYVPGPTNAg 
AETMNYVPGPTNAg 
AETMNYVPQPTNAS 

>vl 

-ADIVAPITBTSEPPYKVDAKYQRYNS 

DNCFVIHEQl jlCEWSSK H N Q S | M K F Q § A T I 
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iALGIFS 
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iTISWi 
iTISWJ 
iTISWJ 

jSMLWSGET 
FMLWSGET 

iSjtt 
IGLHEFGHAD i iTTNYPKI 

PNQFJLPI 
PNQEgLPI 
PNQE|LPI 

D AEPTgTPIPy 
AEPTgTPI 
AEPTgTPI 
LDRRPPDT' 
LDRRPPDT' 

380 
258 
178 
195 
195 
185 
185 
185 
211 
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Dt-RdfA 
Dh-RdfA 
Df-RdfA 
Dh-CprA 
Dp-CprA 
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Dd-RddA-a 
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^RAHHFANYJ 
:RAHHFANYi 
iRAHHFANYi 
iRAHHAKNYEAII 

HAKNYEAII 
IRXHHAKNYEAII 
JIPCCNTV GQSVJ 
jIPSCNGV GQSVAF, 

-GQSVAF, 

-A i s ipg ; 
- A I S I 

D d - R d d A - b 
D c - T c e A 
D t - R d f A 
D h - R d f A 
D f - R d f A 
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Figure 7.2 Partial amino acid sequence alignment of known and putative reductive dehalogenases. Black boxes, 
consensus residues of twin arginine leader peptide and Fe-S cluster binding motifs; gray boxes, conserved 
residues; vertical arrow, apparent and predicted leader-peptide cleavage sites; bold face, N-terminal amino acid 
sequences as determined from the purified proteins. Prediction of cleavage sites was performed with the SignalP 
VI.1 program at [http://www.cbs.dtu.dk/services/SignalP/] (Nielsen et ah, 1997). Conserved sequence motifs 
(C1-C5, FS1, FS2 and RR) are indicated by horizontal bars. Dd-CprA, D. dehalogenans o-CP reductive 
dehalogenase (Rdh) (ace. no. AAD44542); Dh-CprA, D. hqfhiense CprA-homologue; Dp-CprA, 
Desulfitobacterium PCE1 CprA-homologue; Dc-TceA, Dehalococcoides ethenogenes TCE-Rdh (ace. no. 
AAF73916); Ds-PceA, Desulfitobacterium PCE-S PCE-Rdh partial sequence (Neumann et ai, 1999); Dm-PceA, 
Dehalospirillum multivorans PCE-Rdh (ace. no. AAC60788); Dm2-PceA, Dehalospirillum multivorans PCE-
M2 PceA-homologue; Dm2-RdmA, Dehalospirillum multivorans PCE-M2 Rdh homologue; Dd-RddA-a, b, D. 

dehalogenans, Rdh homologue, N- and C-terminal homologous domain; Df-RdfA, D. frappieri PCP-1, Rdf 
homologue; Dh-RdfA, D. hafniense, Rdh homologue; Dp-RddA, Desulfitobacterium PCE1, Rdh homologue; Dt-
RdfA, D. frappieri TCE1, Rdh homologue. 
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The very high level of sequence identity of the newly characterized operons to the 

respective genes from D. dehalogenans and D. multivorans is not surprising, as it reflects 

highly similar in vivo dehalogenating activities of the organisms (Christiansen & Ahring, 

1996a; Gerritse et al, 1996; Luijten et al, 2001). Unexpectedly, the D. hafniense cprA gene 

product exhibits the same two conserved Fe-S cluster binding motifs as does CprA from D. 

dehalogenans and Desulfitobacterium PCE1, which contradicts the previously assumed 

presence of three such clusters in the D. hafniense Cl-OHPA reductive dehalogenase 

(Christiansen et al., 1998). It is unlikely that the D. hafniense cprBA gene cluster described 

here encodes a yet different protein, as the N-terminus of the deduced CprA is almost 

identical to that reported for the purified enzyme (only 5/24 mismatches, Fig. 7.2). 

Sequence analysis of PCR-products obtained from the application of degenerate primers 

revealed that the chosen set of oligonucleotides yielded the amplification of diverse known 

and novel potential reductive dehalogenase (Rd)-encoding genes from phylogenetically 

distinct halorespiring microorganisms (Figs. 7.2 and 7.3). 

Dd-CprA (AAD44542) 

Dh-CprA 

Dp-CprA 

Dt-RdfA 

Dh-RdfA 

4 Df-RdfA 

Dc-TceA (AAF73916) 

Dd-RddA-b 

Dp-RddA-a 

Dd-RddA-a 

Dm2-RdpA 

0.1 

Dm-PceA (AAC60788) 

Dm2-PceA 

Figure 7.3 Phylogenetic tree of deduced partial amino acid sequences of reductive dehalogenases. The tree was 
constructed with sequences between conserved motifs CI and C4 (see also Figs. 7.1 and 7.2). Multiple sequence 
alignment and construction of the phylogenetic tree using the neighbor-joining method (Saitou & Nei, 1987) 
were performed using the Clustal X (Thompson et al, 1997) and TreeView (Page, 1996) programs. The 
reference bar indicates 10 amino acid exchanges per 100 amino acids. For names of sequences, see Fig. 7.2. 
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Novel genes, for which no unambiguous evidence on their function could be obtained, 

were designated here according to their source (i.e. rdfA, D. frappieri I hafiiiense cluster; 

rddA, D. dehalogenans I PCE1 cluster; rdmA, Dehalospirillum multivorans). Moreover, in 

several cases, the molecular characterization of the obtained PCR-products unveiled the 

presence of more than one potential reductive dehalogenase-encoding gene homologue on the 

chromosome of halorespiring bacteria. Amplification with primer-pairs D4/D7 and D4/D8 in 

combination with chromosomal DNA of the PCE-dehalogenating Dehalospirillum 

multivorans PCE-M2 resulted in two, non-identical, amplicons, namely the above-described 

pceA - homologue, Dm2-pceA, and a novel reductive dehalogenase homologue, referred to as 

Dm2-rdmA, that only shares 66 % identity with PceA on the amino acid level (Figs. 7.2 and 

7.3). 

The same primer pairs (D4/D7 and D4/D8) unexpectedly not resulted in the amplification 

of the cprA gene from the chromosome of D. dehalogenans and Desulfitobacterium PCE1, 

but rather a novel reductive dehalogenase gene homologue {rddA), which revealed highest 

levels of sequence identity with the PCE-reductive dehalogenase from D. multivorans (34% 

on the amino acid level for the region from CI and C4; Figs. 7.2 and 7.3). Cl-upstream- and 

C4-downstream sequences were cloned and sequenced following their amplification by 

inverse PCR. This revealed the presence of a 1.5-kb open reading frame, assuming a TTG as 

alternative start-codon. Remarkably, the deduced 54-kDa polypeptide is composed of two 

domains, RddA-a and RddA-b, both sharing significant similarity with known reductive 

dehalogenases (Figs. 7. IB and 7.2). It is of interest to note that PCR with the various reverse 

primers in combination with D3, based on the N-terminal amino acid sequence of a PCE-

reductive dehalogenase isolated from Desulfitobacterium PCE1, did not yield any 

amplification products from Desulfitobacterium PCE1 genomic DNA (van de Pas et ah, 

2001a). 

Several strains of the D. frappieri / D. hafniense cluster have been isolated that either 

reductively dehalogenate chlorinated alkenes (strain TCE1), chlorinated phenolic compounds 

(strains PCP-1 and DCB-2) or are not able to grow by halorespiration (strain DP7) (Bouchard 

et al, 1996; Christiansen & Ahring, 1996a; Gerritse et al, 1999; van de Pas et al, 2001b). 

With genomic DNA from strains TCE1, PCP-1 and DCB-2, only PCR with the degenerate 

primers D7 or D8 in combination with D2, designed based on the N-terminal amino acid 

sequence of the previously purified D. frappieri TCE1 PCE reductive dehalogenase, yielded 

the amplification of a novel reductive dehalogenase-encoding gene homologue, termed rdfA. 
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However, no product was obtained for the closely related non-dehalogenating D. frappieri 

strain DP7. Sequence analysis of the obtained PCR-products revealed that the D2-primer 

sequence could not be retrieved from the amplicons, and PCR with D7 or D8 alone revealed 

the amplification of the same products as were obtained in the presence of D2. However, all 3 

almost identical rdfA genes did contain a RR-signal sequence, and well-conserved potential 

ribosome binding sites could be identified upstream of the respective ATG-start codon of the 

PCP-1 and DCB-2 genes (data not shown). Highest sequence similarity was observed with 

ort/zo-chlorophenol reductive dehalogenase-encoding cprA (63% on the amino acid level for 

C1-C4, Fig. 7.3). It is tempting to speculate that the D. frappieri rdfA gene codes for the meta-

/para-chlorophenol reductive dehalogenase, which is functional in D. frappieri PCP-1 and, 

probably to a lesser extent, might also be active in D. hafniense (Christiansen & Ahring, 

1996b; Dennie et ah, 1998). Interestingly, the D. frappieri TCE1 rdfA gene product was 

found to be N-terminally truncated by 17 amino acids due to a frame-shift, also resulting in 

the lack of a well-conserved ribosome binding site (not shown, Fig. 7.2). This might be the 

reason for lack of chlorophenol-dehalogenating activity in this organism (Gerritse et ah, 

1999). 

Detection of Reductive Dehalogenase-Gene Expression by RT-PCR 

It has previously been shown by Northern blot- and primer extension analysis, that activity 

of the or?/*o-chlorophenol reductive dehalogenase is induced at the transcriptional level in D. 

dehalogenans (Smidt et ah, 2000b). Moreover, enzyme activity measurements indicated, that 

o-chlorophenol- and PCE-reducing activities are differentially expressed in cultures of 

Desulfitobacterium PCE1 grown in the presence of the respective halogenated substrates (van 

de Pas et ah, 2001a). Similarly, induction studies on the pentachlorophenol-degrading D. 

frappieri PCP-1 revealed that the differential induction of ortho- and meta/para-

dehalogenating systems was dependent on de novo protein biosynthesis, as no induction was 

observed in the presence of chloroamphenicol (Dennie et ah, 1998). To enable not only the 

detection of potential reductive dehalogenase-encoding genes, but also their expression, and, 

hence, activity of the produced enzymes, we tested the applicability of the previously 

developed multiple sets of degenerate primers in a reverse transcriptase-PCR (RT-PCR) based 

approach. The closely related strains D. dehalogenans and Desulfitobacterium PCE1, which 

only differ in their ability to utilize PCE efficiently as electron acceptor, were grown either by 

fermentation of pyruvate (20 mM) or under halorespiring conditions with 20 mM of lactate as 
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the electron donor and 20 mM of Cl-OHPA as the electron acceptor. Desulfitobacterium 

PCE1 was in addition also grown in the presence of 10 mM of PCE as the electron acceptor. 

RT-PCR amplification with degenerate primers D5 and D9 revealed the differential 

halorespiration-specific expression of reductive dehalogenase-encoding genes in the Cl-

OHPA-respiring cultures of D. dehalogenans and Desulfitobacterium PCE1, whereas no 

amplification product was obtained from total RNA isolated from pyruvate-fermenting and 

PCE-respiring cultures (Fig. 7.4, left panel). Cloning and sequence analysis of the respective 

amplicons confirmed the specific expression of cprA in both strains in the presence of the 

chlorophenolic substrate Cl-OHPA, as it was already demonstrated for D. dehalogenans by 

detailed transcriptional analysis (Smidt et ah, 2000b). 

Application of degenerate primer pair D4 / D7 yielded a specific RT-PCR product from 

total RNA isolated from PCE-respiring cultures of Desulfitobacterium PCE1, whereas only 

background-amounts of amplification product were obtained from Cl-OHPA-respiring and 

pyruvate-fermenting cultures (Fig. 7.4, right panel). Molecular analysis of the PCE-respiration 

specific amplicon unveiled that the Desulfitobacterium PCE1 rddA gene was specifically 

expressed under PCE-respiring conditions. Additional experiments that aim at the 

determination of the start-site of rddA transcription are currently on their way and might help 

us to further understand the mechanisms involved in halorespiration-specific gene expression. 

Figure 7.4 RT-PCR analysis of reductive dehalogenase-gene expression in Desulfitobacterium PCE1 and D. 

dehalogenans (deh.) under fermentative and halorespiring conditions. Left panel, primers D5/D9; right panel, 

primers D4/D7. M, DNA-size marker (in basepairs); -, growth by pyruvate fermentation; C, lactate + Cl-OHPA; 

P, lactate + PCE. 

138 



Diversity and Expression of Reductive Dehalogenases 

Conclusions 

We here for the first time report on a reductive dehalogenase-encoding gene-targeted PCR 

/ RT-PCR-based approach that allows for the detection of halorespiration potential and 

activity. We could show that the application of multiple pairs of highly degenerate primers 

designed based on sequence motifs conserved among known reductive dehalogenases yielded 

the PCR-amplification of yet unknown potential reductive dehalogenase-encoding genes from 

halorespiring cultures. Experiments are currently on their ways that aim at the application of 

the developed array of degenerate primers to reductively dehalogenating consortia and 

environments. The halorespiration-specific differential expression of known and yet 

undescribed genes could be shown by RT-PCR using the same set of degenerate primers, 

indicating that this approach will be useful for the monitoring of fate and activity of 

halorespiring microorganisms during biological in situ remediation processes of anoxic 

environments polluted with chlorinated compounds. In addition, the gained knowledge 

provides a solid basis for the further elucidation of structure, function and regulation of this 

novel family of reductive dehalogenases and will help us to understand evolution of 

halorespiration. 
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GENERAL DISCUSSION 

Ecophysiological and molecular ecological studies of the past decade have indicated that 

halorespiring bacteria are the key players in the reductively dehalogenation process in anoxic 

microbial ecosystems. They have been isolated from different polluted and pristine anaerobic 

environments, such as granular sludges, estuarine- and freshwater sediments. Based on 

thermodynamic considerations, hydrogenotrophic halorespiring bacteria should be able to out-

compete hydrogenotrophic sulfate reducers and methanogens in environments where 

hydrogen is the main source of electrons (Fennell & Gossett, 1998; Loffler et ah, 1999). 

Hence, tight syntrophic interactions of hydrogenotrophic reductively dechlorinating bacteria 

with H2-producing microorganisms (that, due to thermodynamic limitations, depend on low 

H2-partial pressures) are highly feasible. Indeed, at low concentrations of hydrogen 

enrichment cultures have been obtained, in which dechlorination was specifically stimulated 

on the expense of reduced methanogenesis (Smatlak et ah, 1996; Ballapragada et ah, 1997; 

Fennell et ah, 1997; Fennell & Gossett, 1998). Moreover, the recent discovery of acetotrophic 

halorespiring bacteria in estuarine and river sediments has once more indicated the 

environmental relevance of these microorganisms in diverse ecosystems (Krumholz et ah, 

1996; Loffler et ah, 2000; Sun et ah, 2000). 

This thesis describes molecular approaches aiming to gain insight in the composition, 

function and regulation of the halorespiratory network in the versatile ort&o-chlorophenol 

degrading strictly anaerobic Gram-positive Desulfitobacterium dehalogenans. In addition, it 

describes the development of molecular tools for the further exploitation of halorespiring 

microorganisms as dedicated degraders in biological remediation approaches. 
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Molecular Characteristics of Reductive Dehalogenases 

Reductive dehalogenases are key enzymes in the respiratory network of dehalogenating 

microbes. The ort/jo-chlorophenol reductive dehalogenase from D. dehalogenans is a 

membrane-associated corrinoid- and Fe-S containing protein, which is encoded by the cprBA 

operon. The catalytic subunit of the enzyme, CprA, is produced as a pre-protein, containing a 

twin arginine signal sequence that is characteristic for extracytoplasmic redox-complexes. The 

predicted function of the hydrophobic cprB gene product is that of a membrane anchor for the 

catalytic subunit. Activity of the enzyme is strongly induced at the transcriptional level by the 

addition of 3-chloro-4-hydroxyphenylacetate (van de Pas et ah, 1999; Smidt et ah, 2000). The 

characterization of different chlorophenol- and chloroalkene reductive dehalogenase-encoding 

genes has revealed the presence of several highly conserved sequence motifs, reflecting 

mechanistic and structural similarities between dehalogenating enzymes from 

phylogenetically distinct bacteria. The similarities include a twin arginine signal sequence, 

one ferredoxin-type and one truncated iron-sulfur cluster-binding motif. In addition, several 

residues are highly conserved, among which various histidine and tryptophan residues that 

might play a role in binding of the corrinoid cofactor or stabilization of the leaving halide, 

respectively. As only a few hypothetical proteins with unknown function to some extend 

share these sequence similarities, it has been suggested that reductive dehalogenases comprise 

a novel class of corrinoid-containing Fe-S proteins (see Chapter 1 of this thesis). Additional 

support for this hypothesis has recently been obtained from the analysis of the complete 

genome of the chloroaliphate-respiring Dehalococcoides ethenogenes (Preliminary sequence 

data was obtained from The Institute for Genomic Research website at http://www.tigr.org). 

This revealed the presence of at least 17 putative reductive dehalogenase-encoding gene 

homologues (rdhAB; Fig. 8.1). One of these is tceAB, encoding the trichloroethene reductive 

dehalogenase that has previously been characterized at the biochemical level (Magnuson et 

ah, 1998; AAF73916). The identified multiple paralogs are organized in at least two major 

clusters of six and four rdhAB-operons, respectively (Fig. 8.1). The vast majority of the 

above-mentioned conserved sequence motifs and residues are also present in the D. 

ethenogenes homologues, confirming their potential importance for structure and function of 

these enzymes. 

144 

http://www.tigr.org


General Discussion 

Figure 8.1 Putative reductive dehalogenase-encoding gene containing genomic loci in Dehalococcoides 

ethenogenes (Preliminary sequence data was obtained from The Institute for Genomic Research website at 

http://www.tigr.org). Putative open reading frames were identified using the DNAstar package (DNASTAR Inc., 

Madison, Wis.), and sequence similarity searches were performed using the BLAST, version 2.0, program 

(Altschul et al, 1997) (TIGR Blast search engine for unfinished microbial genomes; and National Center for 

Biotechnology Information, Bethesda, Md.). 
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In contrast to the significant sequence similarities between the different reductive 

dehalogenase-encoding genes from phylogenetically distinct halorespiring bacteria, the 

genetic context of the genes is not conserved, indicating that recent horizontal transfer 

between species is rather unlikely (see below). 

In order to allow for the further elucidation of structure-function relations in reductive 

dehalogenases, heterologous expression systems will be required to enable (i) the production 

of sufficient quantities of active enzyme for the determination of the 3-dimensional structure, 

and (ii) the analysis of modified enzymes that have been altered by site-directed and random 

mutagenesis approaches. Earlier attempts to use Escherichia coli as expression host failed, 

probably due to non-functional assembly of the overexpressed polypeptide (Neumann et al, 

1998). However, the development of host-vector systems for D. dehalogenans now provides a 

promising basis for a heterologous expression system for enzymes from other, closely related 

low G+C Gram-positive Desulfitohacterium and Dehalobacter species (Chapter 6 of this 

thesis). Moreover, the analysis of codon usage in Dehalococcoides ethenogenes suggests that 

functional expression of D. ethenogenes genes in Desulfitohacterium should be feasible. In 

recent experiments, an extrachromosomal copy of the D. dehalogenans cprBA could be 

introduced and stably maintained in D. dehalogenans using the broad host-range cloning 

vector pIL253. Nevertheless, overexpression could not yet be unambiguously demonstrated, 

and efforts to clone the D. multivorans PCE-M2 pceAB-operon in D. dehalogenans did not 

succeed. In this case, however, toxic effects of the construct could not be excluded, as also 

cloning of this operon in Lactococcus lactis MG1614 appeared not to be possible (Smidt et 

al, unpublished results). These findings indicate that future cloning strategies should include 

alternative (shuttle-) vectors and well-characterized, inducible indigenous promoters. 

Topology of the Reductive Dehalogenase Complex 

The molecular analysis of the D. dehalogenans cpr gene cluster and the Dehalospirillum 

multivorans pceAB operon revealed cotranscription of the catalytic subunit-encoding genes 

cpr A and pceA with the cprB and pceB genes, respectively, which code for small hydrophobic 

integral membrane proteins. This led to the assumption that the hydrophobic polypeptide 

might act as a membrane anchor for the reductive dehalogenase (Neumann et al., 1998; van 

de Pas et al., 1999; Smidt et al, 2000). Remarkably, all putative reductive dehalogenase-

encoding genes identified from the Dehalococcoides ethenogenes genome show the same 

close physical linkage with genes that code for hydrophobic proteins (Fig. 8.1). As CprB, they 
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all are predicted to contain three transmembrane helices, whereas the Dehalospirillum 

multivorans PceB is composed of only two such helices, which might explain the observed 

differences in the degree of membrane association (Smidt et al, 2001). Furthermore, it has 

been speculated that association with the membrane anchor PceB might prevent Sec-

independent translocation of the RR-protein PceA by the twin-arginine translocon (TAT), 

which then would solely play a role in enzyme maturation (Neumann et al, 1998). However, 

reductive dehalogenase activity could recently be detected in whole cells with the membrane-

impermeable artificial electron acceptor methyl viologen for D. dehalogenans o-chlorophenol 

reductive dehalogenase as well as for D. ethenogenes PCE- and TCE reductive dehalogenases 

(Nijenhuis & Zinder, 2000; van de Pas et al, 2001b). This is indicative for an at least partial 

accessibility of the enzymes' electron-accepting site at the extracytoplasmic face of the 

membrane, suggesting that the TAT-system is also involved in enzyme translocation (see 

below; Figs. 8.3 and 8.4). The use of export reporters, such as the pFUN vector based on the 

Staphylococcus aureus secreted nuclease as a reporter for Gram-positive bacteria might be 

helpful in the further elucidation of the enzymes' topology (Poquet et al, 1998). 

Yet another approach is the identification and functional characterization of components of 

the TAT-system present in halorespiring bacteria. Interestingly, one single cluster oitatA- and 

tafC-homologues is present in the D. ethenogenes genome, where it is located upstream of 

two genes, encoding for proteins with significant similarity to the putative membrane bound 

regulatory protein CprC from D. dehalogenans (Fig. 8.1, see below). Efforts to amplify tatA/E 

and ta?C-homologuous genes from the chromosome of D. dehalogenans with degenerate 

primers were not yet successful. A functional TAT-system should however be present in D. 

dehalogenans since not only the reductive dehalogenase catalytic subunit is produced with a 

RR-signal sequence, but also the small subunit of a periplasmic Fe/Ni-hydrogenase (HydA) 

(Smidt et al, 1999). It has been shown in various bacteria that the presence of a TAT-system 

is essential for translocation of a functional H2ase-complex (Sargent et al, 1998; Gross et al, 

1999; Bernhard et al, 2000). 

Evolution of Reductive Dehalogenases 

The remarkable phylogenetic diversity of halorespiring microorganisms has brought up the 

question of the evolutionary origin of the unique ability to respire haloorganic compounds. 

The molecular characterization of the key enzymes of this process, the reductive 

dehalogenases, indicated the presence of highly conserved potentially function-related 
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sequence motifs. It is thus most likely that halorespiration is an evolutionary ancient process 

involved in the degradation of naturally produced chlorinated compounds, rather than a recent 

development triggered by anthropogenic release of halogenated hydrocarbons into the 

environment. The phylogenetic analysis of the deduced primary structures of the different 

Dehalococcoides ethenogenes reductive dehalogenase encoding gene homologues (rdhAB) 

revealed that multiple alleles of rdhAB, which share only a moderate degree of identity at the 

amino acid sequence level (< 53% for RdhA and < 71% for RdhB), are grouped in two major 

clusters (Fig. 8.2). These results suggest that rather ancient recombination events, including 

gene duplications, are probably responsible for the presence of multiple genes. Furthermore, 

spreading by lateral gene transfer between closely related species might also be an 

explanation for the occurrence of multiple copies. 
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1629-RdhA 
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1617-RdhA2 

1617-RdhA1 
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Figure 8.2 Phylogenetic tree of deduced amino acid sequences of apparent and putative reductive dehalogenase 
(Rdh)-encoding genes from halorespiring bacteria. Multiple sequence alignment and construction of the 
phylogenetic tree using the neighbor-joining method (Saitou & Nei, 1987) were performed using the Clustal X 
(Thompson et al, 1997) and Tree View (Page, 1996) programs. Dd-CprA, Desulfitobacterium dehalogenans 

ortAo-chlorophenol-Rdh (AF115542); Dh-CprA, D. hafhiense CprA-homologue; Dp-CprA, D. PCE-1 ortho-

chlorophenol-Rdh; Dm-PceA, Dehalospirillum multivorans PCE-Rdh (AF022812); Dm2-PceA, Dehalospirillum 

multivorans PCE-M2 PceA-homologue; Dc-TceA, Dehalococcoides ethenogenes TCE-Rdh (AAF73916); 
RdhA, putative Rdh deduced from the D. ethenogenes genome; Af-Fe/S-protein, Archaeoglobus fulgidus 

putative Fe-S cluster binding protein (AAB91256). The Af-Fe/S-protein sequence was used as an outgroup for 
tree-rooting. The reference bar indicates 10 amino acid exchanges per 100 amino acids. 
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General Discussion 

Several phenotypes that have been under recent evolutionary pressure, like dehalogenation 

in aerobic microorganisms, antibiotic resistance and heavy metal resistance, are encoded on 

mobile genetic elements including plasmids and transposable elements (Ochman et al, 2000). 

Such a mechanism of lateral gene transfer can not be excluded for halorespiration. It might be 

interesting to note that several of the Dehalococcoides ethenogenes putative reductive 

dehalogenase-encoding gene clusters are flanked by sequences with some similarity to 

bacterial integrase- and transposase-encoding genes (Fig. 8.1). The relatively low similarity 

with proteins from other halorespiring bacteria, namely Dehalospirillum multivorans PceAB 

(< 23% for PceA and < 18% for PceB) and Desulfitobacterium dehalogenans CprBA (< 20% 

for CprA and < 18% for CprB) suggests that recent acquisition by lateral gene transfer from 

phylogenetically distinct genera is not very likely. 

Regulation of Halorespiration 

The detailed molecular analysis of the D. dehalogenans cpr gene cluster as well as the 

characterization of halorespiration-deficient mutants suggested the involvement of 

transcriptional regulators and environmental sensors in the regulation of halorespiration 

activity. Moreover, the halorespiration-specific expression of genes, encoding molecular 

folding catalysts, such as GroEL-like chaperonins (CprD, CprE) and Trigger factor (CprT), 

was observed (Smidt et al, 2000). The expected role of the various proteins in D. 

dehalogenans has been summarized in a working model for the mechanisms of regulation and 

functional assembly of the reductive dehalogenase complex (Fig. 8.3). 

Comparison of three apparent and putative halorespiration-induced promoters indicated 

that these might be under the control of an FNR-like transcriptional regulator, possibly 

encoded by the cprK gene (Fig. 8.3) (Smidt et al, 2000). Similarly, putative transcriptional 

regulator-encoding genes were also identified in the vicinity of reductive dehalogenase-

encoding alleles of Dehalococcoides ethenogenes, including fnrH, encoding the only FNR-

like transcriptional regulator-gene present in the entire genome of this halorespiring bacterium 

(Fig. 8.1). In addition, three genes (marRl-3) were found, which potentially code for proteins 

of the MarR-family of phenolic compound-sensing transcriptional regulators (Sulavik et al., 

1995). It might be interesting to note that recent studies revealed the involvement of two 

FNR-CRP-like proteins (AadR, HbaR) and one MarR-type regulator (BadR) in the regulation 
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of anaerobic 4-hydroxybenzoate -and benzoate degradation in Rhodopseudomonas palustris 

(Egland & Harwood, 1999; Egland & Harwood, 2000). 

Halorespiration-specific expression in D. dehalogenans was also observed for cprC, 

coding for a protein with significant similarity to putative membrane-bound transcriptional 

regulators of the Nirl / NosR-family (Smidt et al, 2000). A striking analogy of Nirl / NosR / 

CprC containing gene clusters is the presence of genes, which are predicted to code for RR-

proteins. Like the reductive dehalogenase catalytic subunit (CprA), also the nitrous oxide 

reductase catalytic subunit NosZ is produced with a RR-signal sequence, and functional 

assembly was impaired in a translocation-deficient NosZ mutant (R20D) (Glockner & Zumft, 

1996). Moreover, nirland nosR are cotranscribed with the nirX and nosX genes, respectively, 

probably encoding RR-proteins that might be involved in functional assembly of the redox-

centers of the respective catalytic subunits, NirS and NosZ (Saunders et al., 2000). Finally, 

napH, encoding a topological homologue of CprC, is clustered with the napA gene that is 

coding for the RR-leader-containing periplasmic nitrate reductase in Escherichia coli (Berks 

etal, 1995). 

CI-OHPA + 2 H* H-OHPA + HCI 

CprA ) •*-

Figure 8.3 Model for the regulation and functional assembly of orf/ao-chlorophenol reductive dehalogenase 
complex in D. dehalogenans. Abbreviations: Me, metal-ions that may be involved in control of gene expression 
and are incorporated in the mature enzyme complex; HK, histidine kinase; ReRe, response regulator; RR, twin 
arginine signal sequence; TAT, twin arginine-specific translocon. Dotted lines indicate anticipated signal 
transduction. 
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A total of four CprC-like proteins are encoded by open reading frames present in the 

genome of Dehalococcoides ethenogenes, two of which are closely linked with rdhAB-

clusters. Surprisingly, the other two genes were identified immediately downstream of the 

only tatAC cluster present in the genome (Fig. 8.1). It is thus tempting to speculate that such 

CprC-like proteins indeed play a role in regulation and/or maturation of RR-redox complexes 

containing metal-cofactors, such as corrinoids (Co, reductive dehalogenases), Cu-centers 

(nitrous oxide reductase) and hemes (nitrite reductase) (Fig. 8.3). 

In two halorespiration-deficient mutants of D. dehalogenans (HRD2, HRD22), the 

conjugative transposon Jn916 had inserted upstream of putative histidine kinase-encoding 

genes. This led to the suggestion that the corresponding two-component signal transduction 

systems (TCS) might play a role in regulation of halorespiration, i.e. in sensing of the 

chlorinated substrate (Fig. 8.3) (Smidt et ai, 1999). Strong support for this assumption has 

been gained from the identification of at least 10 clusters of putative histidine kinase- and 

response regulator-encoding genes upstream of rdhAB clusters in the genome of 

Dehalococcoides ethenogenes (Fig. 8.1). 

The Halorespiratory Network 

Besides fermentative growth with pyruvate as the sole carbon and energy source, 

Desulfitobacterium dehalogenans is able to use various electron donors (hydrogen, formate, 

lactate and pyruvate) and electron acceptors (o-chlorinated phenolic compounds, nitrate, 

fumarate and several sulfuric compounds) for growth by anaerobic respiration. Biochemical 

and genetic studies have shown that the halorespiratory network of D. dehalogenans is partly 

integrated in the fumarate- and nitrate-respiratory chains (Chapter 4 and 5 of this thesis; van 

de Pas, 2000). 

Integration of the results obtained by (i) the physiological, biochemical and molecular 

characterization of halorespiration in Desulfitobacterium dehalogenans, and (ii) the analysis 

of halorespiration-deficient (HRD) mutants (Chapter 2-5 of this thesis, and van de Pas, 2000), 

has resulted in a working model of the halorespiratory network present in D. dehalogenans 

(Fig. 8.4). In this model, an extracytoplasmic orientation of the key enzyme, the o-

chlorophenol reductive dehalogenase, is assumed (see above). Because D. dehalogenans can 

grow with either H2 or formate as electron donor, and since these substrates do not give rise to 
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substrate-level phosphorylation, an extracytoplasmic location of CprA requires the generation 

of a membrane potential at the level of the menaquinone (MK)-pool (Fig. 8.4, left panel). In 

contrast, no significant contribution of electron transport-coupled phosphorylation could be 

determined for lactate and pyruvate as the electron donor (van de Pas et ah, 2001b) (Fig. 8.4, 

right panel). In these cases, however, growth is supported by substrate-level phosphorylation 

via acetate production. 

Surprisingly, enzyme activity- and transcription analysis revealed the differential 

expression of two periplasmic uptake hydrogenases under hydrogenotrophic and pyruvate-

oxidizing conditions, respectively. The presence of the latter complex might be indicative for 

so-called intraspecies hydrogen cycling (Chapter 5 of this thesis). 

2 H+ / 2e-
2 q+ / 2e-

0 H* / 2e 
0 q« / 2e-

H2 2 H * HCOOH C O , + 2 H 

H2aseH 

CI-OHPA + 2 H* H-OHPA + HCI 

ATP • + — A D P 

acetate 

Figure 8.4 Working model for structure and function of the D. dehalogenans halorespirational network. 
Abbreviations: CprBA, ort/io-chlorophenol reductive dehalogenase; Por, pyruvate ferredoxin oxidoreductase; 
H2aseH, respiratory (H2-induced) uptake hydrogenase; FdhF, respiratory (formate-induced) formate 
dehydrogenase; MK(H2), (reduced) menaquinone; Fdred ' ox, reduced / oxidized ferredoxin; Cytb, b-type 
cytochrome; Cyt,;, c-type cytochrome. See text for further explanation on the charge separation boxes. 

152 



General Discussion 

Although no significant hydrogen-production could be determined in pyruvate-fermenting 

cultures of D. dehalogenans, intermediate evolution of low amounts of hydrogen could occur 

along different, albeit similar pathways. Firstly, it could be the result of a combined activity of 

pyruvate-formate lyase and formate-hydrogen lyase, as has been proposed for E.coli. This was 

supported by the presence of putative formate-hydrogen lyase subunit-encoding genes in the 

direct vicinity of the transposon-insertion site in one of the analyzed HRD mutants (Andrews 

et al, 1997; Smidt et al, 1999). Nonetheless, transcriptional analysis revealed that these 

genes were neither expressed during fermentative nor during respiratory growth of D. 

dehalogenans (Chapter 5 of this thesis). Secondly, a hydrogen-producing, ferredoxin-

dependent hydrogenase might be similarly involved in the regeneration of reduction 

equivalents obtained from the oxidation of low-potential electron donors, as it has been 

proposed for sulfate-reducing Desulfovibrio and methanogenic Methanosarcina species 

(Odom & Peck, 1981; Meuer et al, 1999). Finally, it can not be excluded that either pyruvate-

ferredoxin oxidoreductase (Por) or CO-dehydrogenase, both expressed in D. dehalogenans 

(Chapter 5 of this thesis; and van de Pas et al, 2001b), exhibit hydrogen production activity, 

as it was observed for the respective enzymes in Clostridium thermoaceticum. It was 

proposed that pyruvate- or CO-dependent proton reduction might help to maintain a 

physiological redox balance of the cell under electron-acceptor (e.g. ferredoxin) limiting 

conditions (Menon & Ragsdale, 1996). 

Additional experiments will be required to further elucidate the structure and function of 

the complex respiratory network functional in D. dehalogenans, and to reveal the relative 

contribution of the various pathways to the generation of membrane potential and redox 

balance-maintenance. 

Molecular Ecology of Halorespiring Bacteria 

During the past decade, halorespiring bacteria have been isolated from various pristine and 

polluted environments, indicating an almost ubiquitous occurrence of these microorganisms, 

which belong to various distinct phylogenetic branches of the eubacterial kingdom of life. In 

most cases, new genera have been defined, consisting solely of halorespiring microbes. The 

only exceptions are strains from the 8-proteobacterial genera Desulfuromonas and 

Desulfovibrio (Chapter 1 of this thesis). Additional evidence for this observed tendency of 
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halorespiration-specific phylogenetic groups has recently been provided by a comparison of 

bacterial community structure in different reductively dehalogenating anaerobic microbial 

consortia. This revealed the presence of four monophyletic bacterial clusters, which to date 

have only been detected in anaerobic dehalogenating freshwater ecosystems (Schlotelburg et 

al, 2000). These findings indicate that group-specific 16S rRNA-targeted molecular 

fingerprinting analyses might be instrumental for the detection of organisms that are 

indicative for reductive dehalogenation potential in environmental samples. Indeed, such 

approaches have already been proven useful for the molecular monitoring of bioaugmentation 

plots and the discrimination between hydrogenotrophic and acetotrophic halorespiration 

potential (for a summary, see Chapter 1 of this thesis). 

However, the isolation of non-halorespiring strains from the halorespiring 

Desulfitobacterium frappieri and Dehalospirillum multivorans (Neumann et al, 1994; van de 

Pas et al, 2001a) has indicated that rather than the purely phylogenetic ribosomal target 

sequences, monitoring approaches should focus on functional markers, such as reductive 

dehalogenase-encoding genes and the corresponding transcription products (Chapter 7 of this 

thesis) (Stapleton et al, 1998). Moreover, the recent development of host-vector systems for 

D. dehalogenans now also enables the application of halorespiration-specific promoter-based 

reporter strains in anaerobic environments, which might be useful to (i) determine optimal 

process conditions for microbial remediation processes, and (ii) deepen the insight in aspects 

of bioavailability and toxicity of recalcitrant contaminants (Power et al, 1998). Other 

promising approaches towards the unraveling of structure and function of halorespiring 

microbial consortia include ecosystem-metagenome analysis (Rondon et al, 2000) and meta-

transcriptome-analysis of whole ecosystems by differential display- and microarray 

techniques. 

Outlook 

We now know that both biological and non-biological factors contribute to the persistence 

of biohazardous compounds in the environment. There is obviously an urgent need not only 

for optimized in situ bioremediation approaches, but also for newly engineered degradation 

pathways (Keasling & Bang, 1998; Timmis & Pieper, 1999). The present knowledge on the 

phylogeny of halorespiring bacteria and the molecular characteristics of their reductive 
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dehalogenases has enabled the development of culture-independent molecular tools for the 

detection of halorespiring potential and actual activity, and will enable the fine-tuning of 

current in situ bioremediation strategies. Moreover, it will allow for the application of 

metabolic engineering strategies aiming at enhanced performance of halorespiring bacteria 

with improved and / or novel metabolic capacities as dedicated degraders in polluted 

anaerobic environments. 
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Breathing halogenated hydrocarbons in the absence of molecular oxygen is a common 

feature among anaerobic so-called halorespiring bacteria. The isolation of an increasing 

number of phylogenetically distinct halorespirers from various pristine and polluted sites and 

their study by ecophysiological and molecular approaches have indicated that these 

microorganisms significantly contribute to biological dehalogenation in anoxic environments. 

Nevertheless, the often observed persistence of halogenated pollutants in natural ecosystems 

suggests that either prevailing environmental conditions do not support complete 

dechlorination by the indigenous microbiota or no potential degraders are present. 

Optimization of such processes, however, i.e. engineering of process parameters such as 

substrate availability and physicochemical conditions, and addition of efficient degraders 

(bioaugmentation), requires a thorough understanding of halorespiration at the physiological 

and molecular levels. This thesis describes molecular approaches aiming at the unraveling of 

the molecular basis of the halorespiration process and the development of genetic tools to 

enable the monitoring and further exploitation of halorespiring bacteria as dedicated degraders 

in biological remediation processes. 

Chapter 1 provides a comprehensive overview of our current knowledge on ecology, 

physiology, biochemistry and molecular biology of halorespiring microorganisms, including 

some of the results presented in subsequent chapters of this thesis. 

Chapter 2 describes the purification, biochemical and molecular characterization of ortho-

chlorophenol reductive dehalogenase, key enzyme in the chlorophenol-respiratory pathway of 

the halorespiring model organism used throughout major parts of this thesis, the strictly 

anaerobic versatile Gram-positive Desulfitobacterium dehalogenans. Cloning and sequence 

analysis revealed the presence of two closely linked genes, one of which (cprA) encodes the 

reductive dehalogenase as a pre-protein, containing a twin-arginine signal sequence that is 

cleaved off in the mature protein. Such signal sequences are characteristic for 

extracytoplasmic respiratory enzymes containing complex redox cofactors. The cprB gene 

codes for a small hydrophobic protein, which might function as a membrane anchor coupling 

the catalytic subunit to the membrane-associated respiratory network. Comparison with 

known haloalkene reductive dehalogenases revealed significant structural and functional 

resemblance, suggesting that these enzymes constitute a novel family of corrinoid-containing 

iron-sulfur proteins. 

Earlier experiments had shown that reductive dehalogenation activity is inducible in most 

halorespiring bacteria isolated to date. In order to get insight in the mechanisms involved in 
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the functional expression of o-chlorophenol reductive dehalogenase in D. dehalogenans, a 

large genomic fragment containing the cprBA genes was cloned and sequenced, revealing the 

presence of eight closely linked genes within the cprTKZEBACD cluster. Transcriptional 

analysis revealed the halorespiration-specific expression of seven out of eight genes, 

including not only the o-chlorophenol reductive dehalogenase-encoding cprBA genes, but also 

genes that code for molecular protein folding catalysts, possibly involved in functional 

assembly of the dehalogenase complex. Furthermore, two putative transcription regulator-

encoding genes were identified, one of which also being transcribed solely under 

halorespiring conditions. Comparison of three halorespiration-specific promoters present in 

the cpr gene cluster suggested that the constitutively expressed FNR-like cprK gene product 

might be involved in control of halorespiration-dependent expression. Transcription of the 

cprBA operon was 15-fold induced within 30 minutes after addition of the o-chlorophenolic 

substrate 3-chloro-4-hydroxy-phenylacetic acid to a fermentatively growing culture with 

concomitant development of dehalogenating activity, indicating that regulation occurs 

exclusively at the transcriptional level (Chapter 3). 

To further elucidate components involved in structure and function of the halorespiratory 

network in D. dehalogenans, we developed a protocol for the efficient random chromosomal 

integration by the conjugative transposon Tn976. A total of 24 halorespiration-deficient 

mutants could be isolated based on their inability to utilize 3-chloro-4-hydroxy-phenylacetic 

acid, and their characterization at the physiological, biochemical and genetic levels indicated 

the at least partial integration of the different respiratory pathways present in this versatile 

organism. In most cases, a single copy of the transposon was found to be inserted in the 

immediate vicinity (i.e. putative promoter regions) of genes encoding for (i) proteins that 

might be involved in regulation or functional assembly of respiratory complexes, and (ii) 

structural components of respiratory complexes, such as hydrogenase, formate dehydrogenase 

and formate-hydrogen lyase (Chapter 4). The analysis of gene expression and activity of these 

and other respiratory complexes during anaerobic respiration and fermentation revealed that 

they might indeed be involved in respiratory processes in D. dehalogenans, although not 

specific for halorespiration (Chapter 5). 

To enable the application of metabolic engineering approaches aiming at an optimized 

exploitation of D. dehalogenans and related strains as dedicated degraders of recalcitrant 

pollutants, as well as to improve the possibilities to study function and regulation of 

chromosomal genes in this organism, efficient host-vector systems were developed for D. 

161 



Summary 

dehalogenans (Chapter 6). An electroporation-based transformation procedure was optimized 

for the application under strict anaerobic conditions and the promiscuous Gram-positive broad 

host-range cloning vector pIL253 was introduced and stably maintained at moderate copy 

numbers in D. dehalogenans. Moreover, the conditionally replicating temperature-sensitive 

pGh+host9 vector was instrumental for the specific disruption of the gene for a fumarate 

reductase, resulting in partially impaired fumarate reduction activity of D. dehalogenans. 

Both the optimization of bioremediation process conditions and the introduction of 

specialized degrading strains require sensitive methods to follow the fate and activity of the 

dehalogenating population. The isolation of non-dehalogenating strains from halorespiring 

species has reinforced the notion that purely phylogenetic markers such as ribosomal RNA 

molecules do not necessarily reflect metabolic capacity and in situ activity of an organism. 

Therefore, we aimed at the development of PCR-based molecular monitoring approaches 

using reductive dehalogenase-encoding genes as a functional marker (Chapter 7). By applying 

degenerate oligonucleotide primers based on potentially function-related sequence motifs, 

highly conserved among known chloroaromate- and chloroalkene-converting enzymes, 

putative functional and cryptic reductive dehalogenase-encoding genes could be retrieved 

from various halorespiring cultures. Moreover, the halorespiration-specific expression of 

known and novel genes was demonstrated by Reverse Transcriptase-PCR, indicating the 

potential of such approaches to estimate the metabolic characteristics of reductively 

dehalogenating microbial systems. 

In chapter 8, the results of this thesis are discussed in the light of recent findings obtained 

in related studies, with special emphasis on the data that has been gained from the analysis of 

the only recently released complete genome sequence of the hydrogenotrophic PCE-

degrading Dehalococcoides ethenogenes. It is suggested that halorespiration is an 

evolutionary rather ancient capacity, being probably regulated by similar control mechanisms 

in the phylogenetically distinct bacteria Desulfitobacterium dehalogenans and 

Dehalococcoides ethenogenes. In addition, a working model of the (halo)-respiratory network 

of D. dehalogenans is presented that integrates the findings described here with the results of 

a complementary study which focused on the biochemistry and physiology of halorespiration 

in Desulfitobacterium dehalogenans (Bram A. van de Pas, 2000. PhD thesis. Wageningen 

University, The Netherlands). Finally, perspectives are outlined for the application of 

halorespirers as dedicated degraders of recalcitrant halogenated pollutants, including the use 

of metabolic engineering approaches. 
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Vaak is een van de eerste vragen, die een onderzoeker te horen krijgt: 

Leuk, hoor,je onderzoek...en waar is dat nou goed voor? 

Deze samenvatting is bedoeld om op deze en andere vragen een antwoord te geven. 

Met het onderzoek dat in dit proefschrift beschreven staat hebben we in samenwerking met 

het onderzoeksproject van Bram van de Pas binnen het Laboratorium voor Microbiologic 

geprobeerd te begrijpen, hoe bacterien op een efficiente manier van milieuverontreinigende 

verbindingen, namelijk chloorkoolwaterstoffen (CKW's), kunnen leven, en ons op deze wijze 

een handje kunnen helpen bij het opruimen van deze schadelijke stoffen. 

Om wat voor stoffen gaat het, en waarom willen / moeten we ervan af? 
Chloorkoolwaterstoffen zijn organische moleculen, waaraan een of meer chlooratomen 

gebonden zijn (zie Figuur 1). Een bekend voorbeeld is tetrachlooretheen (PCE; ook wel PER 

genoemd) dat als oplosmiddel in de chemische wasserij en als ontvettingsmiddel in de 

industrie wordt gebruikt. Een ander 

voorbeeld is vinylchloride, een 

grondstofvoordeproductie van plastic CI CI H H 

PVC. En ook chloorfenolen kom je in C'J Q c i l H 

het dagelijks leven tegen. Zo werd Tetrachlooretheen Vinylchloride 

pentachloorfenol tot kort geleden als 

conserveringsmiddel aan houtverf 

toegevoegd. De meeste van deze 

verbindingen zijn op de een of andere 

manier giftig, of omdat ze zelf een Pentachloorfenol 

schadelijk effect hebben, of omdat ze 

in levende wezens worden omgezet tot 

giftige afbraakproducten. Het is 

algemeen bekend dat de afgelopen decennia grote hoeveelheden van deze verbindingen in het 

milieu zijn terechtgekomen. Ze vormen hier niet alleen een bedreiging voor de gezondheid 

van levende wezens, maar ze hebben ook een negatieve invloed op het functioneren van hele 

ecosystemen. 

Figuur 1 Voorbeelden van chloorkoolwaterstoffen 
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....en wat kunnen wij (of eigenlijk: de micro-organismen) hieraan doen? 

Onderzoekers hebben kunnen aantonen, dat micro-organismen, schimmels en bacterien, in 

staat zijn, deze giftige verbindingen om te zetten in producten die veel minder giftig of zelfs 

onschadelijk zijn. Micro-organismen zijn dus niet alleen verantwoordelijk voor enge ziektes, 

voetschimmel en zwarte aanslag op de badkamermuur. De meeste zijn onmisbaar voor een 

goed functionerend ecosysteem. Het zou meer dan een heel proefschrift vergen, om hier 

uitputtend op in te gaan, maar bekende voorbeelden zijn onder andere het menselijk 

maagdarmkanaal, de composthoop en een waterzuiveringsinstallatie. Natuurlijk maken micro-

organismen zich ook nog erg nuttig in tal van toepassingen in de industrie, bijvoorbeeld bij de 

productie en het houdbaar maken van voedsel zoals kaas, salami en bier. 

Bij het onschadelijk maken van chloorverbindingen is het verwijderen van de 

chlooratomen meestal de kritische stap. Soms gebeurt dit "per ongeluk", doordat enzymen 

(eiwitten die chemische reacties in organismen katalyseren) toevallig ook de gechloreerde 

koolwaterstoffen kunnen afbreken. Maar er zijn ook bacterien, die CKW's als voedselbron 

kunnen gebruiken. Daarbij worden deze in een aantal kleine stapjes door enzymen afgebroken 

en met zuurstof verbrand, net zoals wij dat met ons voedsel doen. Er blijft dan in de meeste 

gevallen ook niet meer achter dan kooldioxide (CO2), zoutzuur (HC1) en water (H2O). De 

energie die bij deze afbraak vrij komt, kan de bacterie dan gebruiken voor zijn eigen 

instandhouding en voor de aanmaak van nieuwe cellen (bacterien vermeerderen zich alleen 

door middel van verdubbeling). De bio-afbreekbaarheid van de CKW's hangt echter wel voor 

een groot deel af van de heersende milieuomstandigheden en het type CKW. Hierbij speelt 

vooral de hoeveelheid zuurstof in de lucht een belangrijke rol. Zo kan bijvoorbeeld 

vinylchloride wel in de aanwezigheid van zuurstof worden afgebroken, terwijl daar in het 

geval van PCE geen sprake van is. De verzadiging van dit molecuul met 4 chlooratomen zorgt 

ervoor, dat er geen reactie met zuurstof meer mogelijk is. 

We weten dat zuurstof, voor ons van levensbelang om de energie uit ons voedsel te kunnen 

halen, niet overal op de aarde in dezelfde concentratie voorkomt. In de sedimenten van 

rivieren en meren bijvoorbeeld is, afgezien van in het bovenste laagje, geen spoor van 

zuurstof te bekennen. Deze milieus worden dan ook anoxisch of anaeroob (vrij van zuurstof) 

genoemd. De micro-organismen die hier leven, anaerobe micro-organismen genoemd, 

gebruiken in plaats van zuurstof andere stoffen, om hun voedsel te verbranden. En hier komen 

we bij de eigenlijke hoofdrolspelers van dit proefschrift. Er zijn recent bacterien ontdekt die in 

staat zijn gechloreerde verbindingen zoals tetrachlooretheen in te ademen. Dan halen ze er een 
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of meerdere chlooratomen vanaf en ademen het gedechloreerde product plus zoutzuur weer 

uit. Dit proces - ook wel chloorademhaling (halorespiratie) genoemd - verloopt snel en 

efficient. Vooral als je het vergelijkt met de boven genoemde afbraak die min of meer "per 

ongeluk" verloopt. Daarom zijn deze bacterien zeer belangrijk voor een gedegen schoonmaak 

van verontreinigde zuurstofloze milieus, zoals onze bodem en grondwater. 

Er is echter regelmatig gebleken, dat het opruimen van vervuild grond en grondwater door 

bacterien vaak niet zo voorspoedig verloopt als we zouden willen. Regelmatig vallen de 

afbraaksnelheden erg tegen, en vaak ademen de bacterien ook tussenproducten uit, die 

minstens zo schadelijk zijn als de oorspronkelijke vervuiling; zo is bijvoorbeeld het 

kankerverwekkende vinylchloride een van de tussenproducten bij de PCE-afbraak. Daarom is 

het belangrijk om te snappen hoe de chloorademhaling eigenlijk werkt, en onder welke 

milieuomstandigheden de betreffende bacterien dit het beste doen. 

Chloorademhaling - Wie doet het en hoe werkt het? 

De volgende vraag: wat voor bacterien kunnen het, en hoe doen ze dat? Wat voor voedsel 

vinden ze het lekkerst? Dat te weten is wel erg belangrijk, om de schoonmaak optimaal te 

laten verlopen. 

Het eerste dat ons opviel, was dat er niet een, maar meer dan tien verschillende soorten 

bacterien in staat bleken te zijn om door middel van chloorademhaling te groeien. En er 

worden nog steeds regelmatig nieuwe soorten ontdekt! Sommige van deze micro-organismen 

bleken erg beperkt in hun voedselkeuze. Ze konden alleen maar leven met een combinatie van 

CKW's, waterstof als substraat en een koolstofbron, bijvoorbeeld azijnzuur. Weer andere 

daarentegen bleken zeer veelzijdig; naast waterstof vonden deze bacterien ook andere 

substraten erg lekker, zoals mierenzuur, melkzuur en soms zelfs ethanol en boterzuur. Een 

van deze bacterien, Desulfltobacterium dehalogenans, hebben wij uitgekozen om achter het 

mechanisme van de dechlorering te komen. Deze bacterie gebruikt chloorfenolen voor zijn 

ademhaling en groeit met waterstof, mierenzuur en melkzuur als substraat. 

In de eerste plaats hebben we het eiwit dat voor de dechlorering van chloorfenolen 

verantwoordelijk is uit de eel gei'soleerd. Dit om eigenschappen en werkingsmechanisme 

ervan te kunnen bestuderen. Verder hebben we gekeken, hoe en onder welke omstandigheden 

het eiwit (het chloorfenol dehalogenase) door de eel wordt aangemaakt. Met andere 

woorden: onder welke omstandigheden vindt er daadwerkelijk afbraak van de verontreiniging 
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plaats. De resultaten hiervan kunnen we het beste bekijken tijdens een reis door het binnenste 

van de eel van Desulfitobacterium dehalogenans (zie Figuur 2). 

EEN KORTE REIS DOOR EEN BACTERIECEL 

Laten we onze reis beginnen bij de erfelijke eigenschappen van onze bacterie. Deze 

erfelijke eigenschappen, de genen, bevinden zich bij bacterien op een enkel groot molecuul, 

het chromosoom, dat zoals bij alle organismen gemaakt is van DNA. Een menselijk eel heeft 

46 chromosomen; een bacterie slechts 1. Een gen bevat alle informatie die nodig is om een 

eiwit, bijvoorbeeld het chloorfenol dehalogenase, te produceren. Deze informatie is in een 

speciale code geschreven en is ten eerste de volgorde van de bouwstenen in het eiwit, de 

aminozuren (zie Figuur 2 voor de details). Ten tweede is er ook nog informatie beschikbaar 

die aangeeft onder welke omstandigheden het eiwit moet worden aangemaakt en hoeveel er 

dan nodig is. In de eerste stap wordt het gen overgeschreven naar een mRNA molecuul. De 

machine, die hiervoor verantwoordelijk is, kan je het beste met een Formule 1 raceauto 

vergelijken dat tijdens de rit op het gen een mRNA molecuul aanmaakt. Voor aan het gen ligt 

de promotor, een soort startteken op de gen-racebaan. Dit stoplicht moet aangeven, wanneer 

de raceauto's mogen starten, en hoeveel er de baan op mogen. Met andere woorden: de 

promotor geeft aan, of en hoe vaak een gen daadwerkelijk via het mRNA molecuul 

overgeschreven en vertaald wordt naar een actief eiwit (zie Figuur 2). 

...WEER TERUG BIJ DESULFITOBACTERIUM 

Nadat we het chloorfenol dehalogenase in zuivere vorm in handen hadden gekregen, 

hebben we hiervan een klein stukje van de aminozuurvolgorde kunnen bepalen. Deze 

informatie is dan gebruikt, om het bijbehorende chloorfenol dehalogenase gen en nog een 

aantal andere genen, waarvan we dachten, dat ze ook belangrijk zouden kunnen zijn voor 

chloorademhaling, in kaart te brengen. Door het gen verder te analyseren, en de afgeleide 

aminozuur-sequentie te vergelijken met reeds bekende dehalogenases van andere 

chloorademhalende bacterien, zijn we erachter gekomen dat al deze eiwitten min of meer 

dezelfde opbouw hebben. Het blijkt dan ook dat alle tot nu toe bekende dehalogenases uit 

deze bacterien volgens een vergelijkbaar mechanisme lijken te werken. 
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Figuur 2 Korte reis door een eel van Desulfitobacterium dehalogenans. Het erfelijk materiaal van alle levende 
wezens is DNA, een lange ketting die is opgebouwd uit 4 verschillende bouwstenen, de basen adenine (A), 
cytosine (C), guanine (G) en thymine (T). Telkens zijn twee strengen DNA aan elkaar gebonden in een 
spiraalvormige structuur, die gestabiliseerd wordt door zijn waterstofbruggen tussen twee tegenover elkaar 
liggende basen (A - T en C - G). In een bacterie bevinden zich de meeste erfelijke eigenschappen (de genen) op 
een groot DNA-molecuul, het chromosoom. De volgorde (sequentie) van de basen in een gen bepaalt de 
volgorde van de 20 verschillende aminozuur-bouwstenen in een eiwit. Aan de hand van een code worden daarbij 
telkens drie opeenvolgende basen (het codon, bijvoorbeeld ATG) 'overgeschreven' en 'vertaald' naar een 
aminozuur. In het geval van ATG is dat methionine. Een gen dat codeert voor een eiwit van 100 aminozuren 
heeft dus een lengte van 300 basen. Maar de vertaling van gen naar eiwit vind niet rechtstreeks plaats. Het DNA 
van een gen moet hiervoor eerst door een speciale machine worden overgeschreven naar een ander molecuul, het 
zogenoemd boodschapper RNA (messenger RNA, afgekort met mRNA). Dit proces heet transcriptie, en de 
machine is het beste met een raceauto te vergelijken dat tijdens zijn rit op het gen een mRNA molecuul 
aanmaakt. Het mRNA molecuul dient dan als matrijs voor de eiwit synthese (de vertaling) aan de ribosomen, de 
eiwitfabriekjes van een eel. Niet altijd worden alle eiwitten aangemaakt, omdat dat een grote verspilling van 
energie en grondstoffen zou zijn. In veel gevallen wordt met de eiwitsynthese pas begonnen, als het eiwit echt 
nodig is. Vaak wordt deze go / no go beslissing voor het overschrijven van DNA naar mRNA genomen. Direct 
voor een gen bevindt zich een soort 'transcriptie-stoplicht' (de promotor), dat aangeeft of en hoeveel raceauto's 
de gen-racebaan opmogen. In het geval van eiwitten die altijd nodig zijn staat het stoplicht permanent op groen; 
in andere gevallen moet er eerst op het knopje gedrukt worden. Dat laatste is het geval bij de chloorademhaling 
in Desulfitobacterium dehalogenans. Voor de aanmaak van het chloorfenol dehalogenase eiwit wordt dit 
signaal door een chloorfenol molecuul gegeven. 
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Vervolgens hebben wij onderzocht, onder welke omstandigheden het chloorfenol 

dehalogenase gen in chloorfenol dehalogenase mRNA wordt overgeschreven en in actief 

dehalogenase wordt vertaald. Hierdoor is het gelukt, standplaats en werkingswijze van het 

'promotor-stoplicht' op te helderen. Het bleek, dat het stoplicht normaal gesproken op rood 

staat, en overschrijving (transcriptie) van DNA naar mRNA alleen plaats vindt als er ook 

daadwerkelijk een passend CKW in de buurt aanwezig is. Daarnaast hebben we ook kunnen 

aantonen, dat er verder geen stoplichten te bekennen zijn op de weg tussen het gen en de 

aanwezigheid van een actief dehalogenase. Met andere woorden: als er dehalogenase mRNA 

aanwezig is in de eel, dan kan hieruit direct de aanwezigheid van actief eiwit en dus afbraak 

van de verontreiniging afgeleid worden. 

We hebben gezien dat de aanmaak van actief eiwit in het geval van de dehalogenases 

gelijk is aan de productie van dehalogenase mRNA. Van deze kennis hebben we geprofiteerd 

bij de ontwikkeling van een methode, waarmee je door mRNA te meten snel en betrouwbaar 

dehalogenase activiteit (en dus actieve afbraak van de verontreiniging) aan zou kunnen tonen. 

Zo een methode zou erg nuttig zijn, om de milieuomstandigheden tijdens een sanering zo in te 

stellen, dat er optimale afbraakactiviteit resulteert. Hierbij volgen we de normale weg van 

DNA naar eiwit in omgekeerde richting. Met behulp van een bijzondere reactie in de 

reageerbuis is het mogelijk, mRNA weer over te schrijven naar het bijbehorende gen, dus naar 

een DNA-molecuul. Dit DNA-molecuul kan dan in een tweede stap opgespoord worden door 

middel van de zogenoemde PCR reactie (PCR staat voor Polymerase Ketting Reactie). Hierbij 

wordt een specifiek stuk DNA, in dit geval het dehalogenase gen, in een reageerbuis 

vermenigvuldigd tot een hoeveelheid die te meten of zelfs zichtbaar te maken is. Tot nu toe 

hebben we deze methode alleen uitgeprobeerd in het laboratorium bij gei'soleerde bacterien. 

We denken dat we binnenkort ook in staat zullen zijn, onze test toe te passen op verontreinigd 

grond en grondwater, waar we met mengsels van verschillende micro-organismen te maken 

hebben. 
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Een Moleculaire Gereedschapskist voor Desulfitobacterium 

Een belangrijk deel van dit proefschrift gaat over het inrichten van een moleculaire 

gereedschapskist voor Desulfitobacterium dehalogenans. Wat zit er nou precies in en waar 

kunnen die verschillende gereedschappen dan voor gebruikt worden? In het kort gezegd, het 

grootste deel van de inhoud van onze gereedschapskist kan worden gebruikt om 

veranderingen aan te brengen in de erfelijke eigenschappen van de bacterie. Een soort 

bouwdoos dus (zie Figuur 3). 

Groei van bacteriekolonies 
op een vast medium Chromosooi 

Marker 

Transposon 

Plasmide vectoren 

Figuur 3 Een moleculaire gereedschapskist voor Desulfitobacterium dehalogenans. Transposons kunnen 
worden gebruikt voor het ongericht uitschakelen van genen, terwijl plasmide vectoren het gerichte manipuleren 
(toevoegen, uitschakelen of veranderen) van erfelijke eigenschappen mogelijk maken. De meeste van deze 
moleculaire technieken resulteren wel in een mengsel van bacterien die in hun erfelijke eigenschappen een klein 
beetje verschillen (bijvoorbeeld kunnen verschillende genen zijn uitgeschakeld). Om deze verschillende cellen 
een voor een te kunnen bestuderen, is het nodig om dat kakelbonte celmengsel in enkele cellen te scheiden. Als 
je nu de cellen uit dat mengsel voldoende verdund op een vast medium laat groeien, ontstaan na een dag of drie 
kleine celhoopjes, zogenoemde bacteriekolonies. Elke bacteriekolonie ontstaat uiteindelijk uit een enkele eel; 
alle cellen binnen een kolonie hebben dan ook dezelfde erfelijke eigenschappen en worden ook wel klonen 
genoemd. Alleen op deze manier kunnen verschillende cellen onafhankelijk van elkaar kunnen worden 
bestudeerd. Tenslotte is er dan nog de mogelijkheid, om met behulp van een aantal reactiestappen in de 
reageerbuis de aanwezigheid van chloorfenol dehalogenase mRNA en dus afbraakactiviteit aan te tonen. 

170 



Samenvatting 

Een van de gereedschappen, een zogenoemd transposon, is zelf een mobiel stukje DNA 

met daarop alle nodige informatie om op een willekeurige plek het chromosoom van een 

bacterie in te springen. Daarbij komt het transposon natuurlijk ook in genen terecht, waardoor 

deze onderbroken worden, en dan dus niet meer functioneren. Het bijbehorende eiwit kan niet 

meer op de goede manier worden aangemaakt. Zodoende hebben wij een aantal genen op 

kunnen sporen, die een rol bleken te spelen bij een goed functionerende chloorademhaling. 

Een tweede set van instrumenten zijn de plasmide vectoren. Dit zijn eveneens stukjes 

erfelijk materiaal, die zich in een bacteriecel onafhankelijk van het chromosoom kunnen 

vermenigvuldigen. De plasmide vectoren kunnen gebruikt worden om de functie van 

bestaande genen te achterhalen door deze genen gericht uit te schakelen. Dat gaat min of meer 

op de manier zoals die beschreven is voor transposons. 

Maar er kunnen ook veranderingen aangebracht worden die tot een gewijzigde functie 

leiden. Zo zou bijvoorbeeld het 'stoplicht' voor een gen anders afgesteld kunnen worden. Je 

zou er dan, bij wijze van spreken, voor kunnen zorgen dat het dehalogenase eiwit altijd wordt 

aangemaakt. Tenslotte kunnen via een plasmide vector ook geheel nieuwe genen aan de 

erfelijke eigenschappen van een bacterie worden toegevoegd. Een voorbeeld zou zijn, om de 

bacterie in staat te stellen, een ander substraat te gebruiken, dat bijvoorbeeld goedkoper is. 

De Moraal van het Verhaal 

Micro-organismen, CKW's, leven zonder zuurstof, eiwitten, genen, veranderen van 

erfelijke eigenschappen, 

maar ook: schoonmaken van verontreinigde grand. 

We hebben geprobeerd, een nieuwe bacterie te karakteriseren en de eigenschappen ervan 

aan het licht te brengen. Met behulp van wat we daarbij geleerd hebben, kunnen we deze 

bacterien nu misschien nog beter voor ons laten werken bij het verwijderen van CKW's uit 

grand en grondwater. 

....Het blijkt dat de kloof tussen fundamenteel wetenschappelijk onderzoek en toepassing 

vaak veel kleiner is dan wordt aangenomen. 
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Zusammenfassung 

Oft ist eine der ersten Fragen, die einem Wissenschaftler gestellt werden: 

Istja sehr interessant...,und was bringt uns das? 

Diese Zusammenfassung versucht, auf diese und weitere Fragen eine Antwort zu geben. 

Mit den Experimenten, die in dieser Dissertation beschrieben sind, haben wir in enger 

Zusammenarbeit mit dem Forschungsprojekt von Bram van de Pas am Institut fur 

Mikrobiologie versucht zu verstehen, wie Bakterien auf effiziente Weise von 

umweltbelastenden Verbindungen, genauer gesagt von Chlorkohlenwasserstoffen (CKW's), 

leben und uns so bei der Beseitigung dieser Schadstoffe nutzlich sein konnen. 

Um welche Stoffe geht es, und warum wollen wir / miissen wir sie 

beseitigen? 

Chlorierte Kohlenwasserstoffe sind organische Molekiile, an die ein oder mehrere 

Chloratome gebunden sind (siehe Abbildung 1). Ein bekanntes Beispiel ist Tetrachlorethen 

(PCE; friiher auch Perchlorethylen genannt), welches als Losungsmittel bei der chemischen 

Textilreinigung und als Entfettungsmittel in der Industrie verwendet wird. Ein weiteres 

Beispiel ist Vinylchlorid, der 

Grundstoff fur die PVC-Produktion. 

Aber auch Chlorphenolen begegnet 

man im taglichen Leben. So wurde 

Pentachlorphenol bis vor kurzem 

Holzschutzfarben als Konservierungs-

mittel zugefugt. Die meisten dieser 

chlorierten Verbindungen sind auf die 

eine oder andere Art und Weise giftig; 

entweder aufgrund toxischer Effekte 

einer Substanz selbst oder durch Abbildung 1 Beispiele chlorierter Kohlenwasserstoffe 

Umsetzung in giftige Abbauprodukte 

in Lebewesen. Es ist allgemein bekannt, dass wahrend der vergangenen Jahrzehnte wiederholt 

groBe Mengen dieser Schadstoffe in die Umwelt geraten sind, wo diese nicht nur die 

Gesundheit von Lebewesen bedrohen, sondern auch das Funktionieren ganzer Okosysteme 

beeintrachtigen. 

CI CI 

X 
a a Tetrachlorethen 

OH 

$ 
a 

•c\ 

H H 

W 
CI H Vinylchlorid 

Pentachlorphenol 
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....und was konnen wir (bzw. eigentlich die Mikroorganismen) tun? 

Wissenschaftler konnten zeigen, dass Mikroorganismen, Bakterien und Pilze, in der Lage 

sind, die hier genannten giftigen Stoffe in weniger giftige oder selbst in unschadliche 

Produkte umzusetzen. Mikroben sind also nicht nur fur gefahrliche Krankheiten, FuBpilz und 

Schimmelbelag auf Badezimmerwanden verantwortlich. In den meisten Fallen sind 

Mikroorganismen unentbehrlich fur ein funktionsfahiges Okosystem. Es wiirde mehr als eine 

komplette Doktorarbeit erfordern, um hierauf erschopfend einzugehen, aber bekannte 

Beispiele sind der menschliche Magen-Darm-Kanal, der Komposthaufen und die Klaranlage. 

Natilrlich machen sich Mikroorganismen auch in der Industrie, z. B. bei der Produktion und 

Konservierung von Lebensmitteln wie Kase, Salami und Bier, sehr niltzlich. 

Fiir das Unschadlichmachen chlorierter Kohlenwasserstoffe ist die Entfernung der 

Chloratome normalerweise der kritische Schritt. Dies kann aus Versehen passieren, wenn 

Enzyme, d.h. EiweiBe, welche chemische Reaktionen in Lebewesen katalysieren, zufallig 

auch diese CKW's umsetzen konnen. Es gibt aber auch Bakterien, welche chlorierte 

Kohlenwasserstoffe als Nahrungsquelle verwenden konnen. Dabei werden diese Stoffe Schritt 

fur Schritt durch Enzyme abgebaut und mit Sauerstoff verbrannt - genau so wie wir das auch 

mit unserer Nahrung machen. Oft ist das Einzige, was dann ubrig bleibt, Kohlendioxid (CO2), 

Salzsaure (HC1) und Wasser (H2O). Die Energie, die bei diesem Abbau freigesetzt wird, kann 

die Bakterie dann fur seine eigene Erhaltung sowie die Erzeugung neuer Zellen verwenden 

(Bakterien vermehren sich ausschlieBlich durch Verdopplung). Der biologische Abbau von 

CKW's hangt zu einem groBen Teil von den Umweltbedingungen ab. Dabei spielt vor allem 

der Sauerstoffgehalt in der Luft eine entscheidende Rolle. So wird zum Beispiel Vinylchlorid 

in der Gegenwart von Sauerstoff effizient abgebaut, wogegen PCE unter diesen Umstanden 

nicht angegriffen wird. Aufgrund der Sattigung dieses Molektils mit 4 Chloratomen ist ein 

Abbau mit Sauerstoff nicht mehr moglich. 

Wir wissen, dass Sauerstoff, welcher fur uns lebenswichtig ist, um die Energie aus unserer 

Nahrung zu holen, nicht uberall auf der Erde in der gleichen Konzentration vorkommt. In 

Fluss- und Seesedimenten ist Sauerstoff zum Beispiel nur in der obersten dunnen Schicht 

anzutreffen. Diese Milieus werden darum auch anoxisch oder anaerob (frei von Sauerstoff) 

genannt. Die Mikroorganismen, die hier leben, auch als anaerobe Mikroorganismen 

bezeichnet, verwenden start Sauerstoff andere Verbindungen, um ihre Nahrung zu 

verbrennen. Und damit sind wir bei den Hauptdarstellern dieser Arbeit angelangt. Unlangst 

wurden namlich Bakterien entdeckt, die in der Lage sind, start Sauerstoff chlorierte 
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Verbindungen wie z. B. PCE einzuatmen. Einmal eingeatmet, entfemen sie ein oder mehrere 

Chloratome des PCE's und atmen schlieBlich das dechlorierte Produkt und Salzsaure wieder 

aus. Dieser Prozess - auch Chloratmung (Halorespiration) genannt - verlauft schnell und 

effektiv - vor allem, wenn man ihn mit dem oben genannten zufalligen Abbau vergleicht. 

Darum sind diese Bakterien sehr wichtig fur eine griindliche Sanierung verunreinigter 

sauerstofffreier Milieus, worunter unsere Boden und Grundwasser fallen. 

Allerdings hat sich gezeigt, dass der biologische Abbau der Schadstoffe oftmals nicht im 

wunschenswerten AusmaB stattfindet. Regelmaflig bleiben die Abbaugeschwindigkeiten weit 

hinter den Erwartungen zuriick. Haufig atmen die Bakterien auch unerwunschte 

Zwischenprodukte aus, welche nicht selten giftiger sind als die Ausgangssubstanz selbst; zum 

Beispiel wird das krebserregende Vinylchlorid oft als Endprodukt des PCE-Abbaus 

angetroffen. Darum ist es sehr wichtig zu verstehen, wie Chloratmung funktioniert, und unter 

welchen Umweltbedingungen dieser Prozess optimal verlauft. 

Chloratmung - Wer kann's und wie funktioniert es? 

Die nachste Frage: Welche Bakterien sind hierzu in der Lage, und wie machen sie das? 

Welche Nahrung bevorzugen diese Mikroorganismen? Dies zu wissen, ist sehr wichtig, um 

eine Umweltsanierung so effizient wie moglich verlaufen zu lassen. 

Das Erste, was uns auffiel, war die Tatsache, dass nicht eine, sondern mehr als zehn 

verschiedene Arten von Bakterien in der Lage waren, mittels Chloratmung zu wachsen. Und 

noch immer werden regelmafiig neue Arten entdeckt! Einige dieser Bakterien entpuppten sich 

als sehr wahlerisch. Das Einzige, was diese Bakterien zu schatzen wissen, ist eine 

Kombination von CKW's, Wasserstoff als Substrat und einer Kohlenstoff-Quelle, z. B. 

Essigsaure. Andere haben hingegen einen umfangreichen Speisezettel; neben Wasserstoff 

wachsen sie auch mit Ameisensaure und Milchsaure, und manche selbst mit Ethanol und 

Buttersaure. Eine dieser Bakterien, Desulfltobacterium dehalogenans, haben wir ausgewahlt, 

um hinter den Mechanismus von Chloratmung zu kommen. Dieses Bakterium ist in der Lage, 

Chlorphenole einzuatmen und unter anderem Wasserstoff, Ameisen- und Milchsaure als 

Substrat zu verwenden. 

Zunachst haben wir das EiweiB, welches fur die Dechlorierung verantwortlich ist, aus der 

Zelle gereinigt, um dessen Eigenschaften und Wirkungsweise genauer untersuchen zu 

konnen. Weiterhin haben wir uns mit der Frage beschaftigt, wie und unter welchen 

Bedingungen dieses Enzym (die Chlorphenoldehalogenase) von der Zelle produziert wird; 
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mit anderen Worten: Unter welchen Bedingungen findet tatsachlich Schadstoffabbau start. 

Die Ergebnisse konnen wir uns am besten wahrend einer kurzen Reise durch das Innere einer 

Zelle von Desulfitobacterium dehalogenans vor Augen fuhren (siehe Abbildung 2). 

EINE KURZE REISE DURCH EINE BAKTERIENZELLE 

Wir beginnen unsere Reise bei den erblichen Eigenschaften unseres Bakteriums. Trager 

dieser erblichen Eigenschaften sind die Gene. Diese befinden sich bei Bakterien auf einem 

einzelnen groBen Molekul, dem Chromosom, welches, wie in alien Lebewesen, aus DNA 

besteht. Eine menschliche Zelle hat 46 Chromosomen, ein Bakterium besitzt dahingegen nur 

1 Chromosom. Ein Gen enthalt alle Informationen, die notwendig sind, um ein EiweiB (wie 

unsere Chlorphenoldehalogenase) zu synthetisieren. Zum einen ist dies die Reihenfolge der 

Bausteine im EiweiB, den Aminosauren. Diese Information ist in einem speziellen Code 

verschliisselt (siehe Abbildung 2). Zum anderen wird angegeben, unter welchen Bedingungen 

wieviel EiweiB produziert werden muss. Im ersten Schritt wird das Gen in ein mRNA-

Molektil iibertragen. Die Maschine, die fur die mRNA-Produktion verantwortlich ist, kann 

man am besten mit einem Formel 1 Rennwagen vergleichen, der bei jeder Fahrt auf der 

Genrennstrecke jeweils ein mRNA-Molekiil produziert. Unmittelbar vor dem Gen befindet 

sich der Promotor, eine Art Startampel am Beginn der Strecke. Diese Ampel zeigt an, wann 

die Rennwagen starten dtirfen und wieviel Autos losgelassen werden. Mit anderen Worten: 

Der Promotor entscheidet, ob und wie haufig ein Gen tatsachlich via ein mRNA-Molekiil in 

aktives EiweiB iibertragen und iibersetzt wird (siehe Abbildung 2). 

...WIEDER ZURUCK ZUM DESULFITOBACTERIUM 

Nachdem wir die Chlorphenoldehalogenase gereinigt hatten, haben wir die Reihenfolge 

der ersten Aminosauren bestimmt. Mit Hilfe dieser Information haben wir dann das 

dazugehorige Chlorphenoldehalogenase-Gen sowie eine Reihe anderer Gene, wovon wir 

annahmen, das sie ebenfalls eine wichtige Rolle bei Chloratmung spielen konnten, kartiert 

und naher untersucht. 
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Zelle 

Chromosom 

Codon 

, ACGTTAT6GGATGC 
^ TGCAATACCCTACG ^ 

Dehalogenase Sen 

(T) Obertragung 
(Transkription) \ / 

Dehalogenase mRNA 

(2) Ubersetzung 

Dehalogenase 
Enzym 

Abbildung 2 Kurze Reise durch eine Zelle von Desulfitobacterium dehalogenans. Das erbliche Material aller 
Lebewesen auf dieser Erde besteht aus DNA, einer langen Kette, die aus 4 unterschiedlichen Bausteinen besteht, 
den Basen Adenin (A), Guanin (G), Cytosin (C) und Thymin (T). Jeweils zwei DNA-Strange sind in einer 
spiralfbrmigen Struktur aneinander gebunden, die durch sogenannte Wasserstoffbriicken zwischen zwei 
gegenuberliegenden Basen (A-T und G-C) stabilisiert wird. In einer Bakterienzelle befinden sich die meisten 
erblichen Eigenschaften, die wir Gene nennen, auf einem groBen DNA-Molekill, dem Chromosom. Die 
Reihenfolge (Sequenz) der Basen in einem Gen bestimmt die Reihenfolge der 20 verschiedenen 
Aminosaurebausteine in einem Eiweiflmolekiil. Anhand eines Codes werden dabei jeweils drei 
aufeinanderfolgende Basen (das Codon, z.B. ATG) in eine Aminosaure iibertragen und ilbersetzt. Das ATG wird 
z.B. in die Aminosaure Methionin ubersetzt. Ein Gen, dass fur ein EiweiB von 100 Aminosauren codiert, hat also 
eine Lange von 300 Basen. Allerdings findet die Ubersetzung vom Gen zum EiweiB nicht auf direktem Wege 
statt. Die DNA eines Gens muss dafur erst durch eine besondere Maschine in ein anderes verwandtes Molektil, 
die sogenannte Boten RNA (messenger RNA, abgekilrzt mit mRNA), iibertragen werden. Dieser Vorgang wird 
auch Transkription genannt. Die Maschine lasst sich am besten mit einem Formel 1 Rennwagen vergleichen, 
der wahrend jeder Fahrt auf der Genrennstrecke ein mRNA-Moleklil produziert. Die mRNA dient dann als 
Matrize fur die EiweiBsynthese (die Ubersetzung) an den Ribosomen, den EiweiBfabriken der Zelle. Es werden 
jedoch nicht zu jedem Zeitpunkt alle moglichen EiweiBe produziert; dies ware reine Verschwendung von 
Energie und Rohstoffen. Zumeist wird mit der EiweiBsynthese erst begonnen, wenn das EiweiB auch wirklich 
benotigt wird. Oft wird diese go / no go Entscheidung getroffen, bevor die Ubertragung in mRNA stattfindet. 
Unmittelbar vor einem Gen befindet sich eine Art Transkriptionsampel (der Promotor), die entscheidet, wieviel 
Rennwagen auf die Strecke diirfen. Im Fall derjenigen EiweiBe, die permanent gebraucht werden, steht diese 
Ampel dauerhaft auf griin; in anderen Fallen muB erst jemand auf den Knopf drucken. Dies gilt auch fur die 
Chloratmung in Desulfitobacterium dehalogenans. Fur die Produktion der Chlorphenoldehalogenase wird 
dieses Signal von einem Chlorphenolmolekul gegeben. 
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Zusammenfassung 

Durch den Vergleich der abgeleiteten Aminosauresequenz der Chlorphenoldehalogenase 

mit der bereits bekannter Dehalogenasen anderer Chloratmer haben wir herausgefunden, dass 

alle diese EiweiBe eine mehr oder weniger vergleichbare Struktur haben. Anscheinend 

verlauft die Dechlorierung mit alien bisher bekannten Dehalogenasen, die aus chloratmenden 

Bakterien gereinigt wurden, nach dem gleichen Reaktionsmechanismus. 

Anschliefiend haben wir untersucht, unter welchen Bedingungen das 

Chlorphenoldehalogenase-Gen in Chlorphenoldehalogenase-mRNA ubertragen und in 

aktive Dehalogenase iibersetzt wird. Es ist uns gelungen, Standort und Wirkungsweise der 

Promotor-Ampel herauszufinden. Dabei hat sich herausgestellt, dass diese normalerweise auf 

Rot steht, und Ubertragung (Transkription) nur stattfindet, wenn auch wirklich ein passender 

CKW in der Nahe ist. Weiterhin haben wir zeigen konnen, dass auf dem Weg zwischen Gen 

und der Anwesenheit aktiver Chlorphenoldehalogenase keine weiteren Ampeln stehen. Mit 

anderen Worten heiBt das: Wenn sich Dehalogenase mRNA in der Zelle befindet, kann daraus 

direkt auf die Anwesenheit aktiver Dehalogenase, und somit auf aktiven Schadstoffabbau 

geschlossen werden. 

Wir haben gesehen, dass die Produktion aktiven EiweiBes im Falle der 

Chlorphenoldehalogenase gleichbedeutend ist mit der Produktion von Dehalogenase mRNA. 

Von diesem Wissen haben wir bei der Entwicklung neuer Methoden profitiert, mit denen wir 

in der Lage sind, Dehalogenaseaktivitat (also aktiven Abbau) durch Messen der Dehalogenase 

mRNA schnell und zuverlassig nachzuweisen. So eine Methode ware sehr niitzlich, um die 

Umweltbedingungen wahrend einer Schadstoffsanierung maBgeschneidert auf optimale 

Abbauleistung einstellen zu konnen. Bei dem gewahlten Ansatz gehen wir eigentlich den 

normalen Weg vom Gen zum EiweiB in umgekehrter Richtung. Mit Hilfe einer besonderen 

Reaktion im Reagenzglas ist es moglich, ein mRNA-Molektil zuriick in das dazugehorige Gen 

zu ubertragen, also in ein DNA-Molekul. Dieses DNA-Molekul kann dann in einem zweiten 

Schritt mit Hilfe einer sogenannten PCR-Reaktion aufgespiirt werden (PCR steht fur 

Polymerasekettenreaktion). Dabei wird ein bestimmtes DNA-Molekul, in diesem Fall also das 

Dehalogenase-Gen, solange selektiv vervielfaltigt, bis es nachweisbar oder sogar sichtbar 

gemacht werden kann. Bisher haben wir diese Methode nur mit Bakterien gepruft, die im 

Laboratorium isoliert wurden. Wir denken aber, dass wir demnachst auch in der Lage sein 

werden, unseren Test auf verunreinigte Boden und Grundwasser anzuwenden, wo wir es mit 

Mischungen verschiedenster Bakterien zu tun haben. 
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Ein Molekularer Werkzeugkasten fur Desulfitobacterium 

Ein wesentlicher Teil dieser Arbeit beschaftigt sich mit dem Einrichten eines molekularen 

Werkzeugkastens fur Desulfitobacterium dehalogenans. Was befindet sich nun genau in 

diesem Kasten, und wofur konnen die unterschiedlichen Werkzeuge benutzt werden? Der 

grofite Teil des Inhalts unseres Werkzeugkastens kann verwendet werden, urn die erblichen 

Eigenschaften des Bakteriums zu verandern der Werkzeugkasten ist also eigentlich ein 

Baukasten (siehe Abbildung 3). 

Wachstum von Bakterienkolonien 
auf f esten Medien Chromosom 

Transposon 

Plasmidvektoren 

Abbildung 3 Ein molekularer Werkzeugkasten fur Desulfitobacterium dehalogenans. Ein Transposon kann 
benutzt werden, um Gene unspezifisch auszuschalten, wogegen Plasmidvektoren verwendet werden konnen, 
um die erblichen Eigenschaften einer Bakterienzelle gezielt zu manipulieren (verandern, ausschalten und 
hinzuftigen). Die meisten dieser molekularen Techniken resultieren allerdings in einer Mischung von 
Bakterienzellen, die jeweils kleine Unterschiede in ihren genetischen Eigenschaften haben. Will man diese 
Unterschiede untersuchen, muss man in der Lage sein, die einzelnen Zellen dieses Gemisches voneinander zu 
trennen. Lasst man die Bakterien in diesem Gemisch nun ausreichend verdunnt auf einem festen Medium 
wachsen, entstehen nach einiger Zeit kleine Zellhaufen, sogenannte Bakterienkolonien. Jede dieser 
Bakterienkolonien entsteht letztendlich aus einer einzelnen Zelle; alle Zellen innerhalb einer Kolonie besitzen 
dann dieselben erblichen Eigenschaften und werden auch Klone genannt. Nur so konnen die Eigenschaften 
unterschiedlicher Zellen unabhangig voneinander untersucht werden. SchlieBlich haben wir noch eine Methode 
entwickelt, um mit Hilfe einiger Reaktionsschritte im Reagenzglas die Anwesenheit von 
Chlorphenoldehalogenase-mRNA und somit aktiven Schadstoffabbau nachzuweisen. 
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Eines der Werkzeuge, ein sogenanntes Transposon, ist selbst ein mobiles Stuckchen 

DNA, welches alle notigen Informationen enthalt, um an einer willkurlichen Stelle in das 

Chromosom einer Bakterienzelle zu springen. Dabei kann es natiirlich auch passieren, dass 

das Transposon mitten in ein Gen springt, welches dann unterbrochen wird und nicht mehr 

funktioniert. Das bedeutet, dass von diesem Gen kein aktives EiweiB mehr produziert werden 

kann. Auf diese Art und Weise ist es uns gelungen, eine Reihe von Genen aufzuspuren, die 

vermutlich eine wichtige Rolle in der Chloratmung spielen. 

Eine zweite Gruppe von Instrumenten ist die der Plasmidvektoren. Auch dies sind DNA-

Molekule, welche sich in einer Bakterienzelle unabhangig vom Chromosom vervielfaltigen 

konnen. Plasmidvektoren konnen verwandt werden, um die Funktion unbekannter Gene 

aufzuklaren, indem diese gezielt ausgeschaltet werden. Das funktioniert ungefahr auf die 

gleiche Weise wie es gerade ftir ein Transposon erklart wurde. Allerdings konnen wir 

Plasmidvektoren auch benutzen, um die Funktion eines Gens zu verandern, aber nicht 

auszuschalten. Zum Beispiel ist es m6glich, die Ampel vor einem Gen so einzustellen, dass 

das entsprechende EiweiB permanent produziert wird. SchlieBlich ist es auch denkbar, den 

erblichen Eigenschaften des Bakteriums neue Gene hinzuzuftigen. So konnte man das 

Bakterium in die Lage versetzen, ein anderes Substrat zu verwenden, das z. B. billiger ware. 

Die Moral von der Geschichte 

Mikroorganismen, CKW's, Leben ohne Sauerstoff, Eiweifie, Gene, Veranderung 

genetischer Eigenschaften, 

....aber eben auch: Sanierung verschmutzter Boden und Grundwasser. 

Wir haben versucht, eine ktirzlich entdeckte Gruppe von Bakterien zu charakterisieren und 

ihre Eigenschaften ans Licht zu bringen. Unsere Ergebnisse konnen uns jetzt helfen, diese 

Bakterien noch effizienter ftir den Abbau chlorierter Kohlenwasserstoffe einzuspannen. 

...Womit wieder mal bewiesen ware, dass die Kluft zwischen Grundlagenforschung und 

Anwendung oft kleiner ist, als haufig angenommen wird. 
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Bijna precies zes jaar geleden heb ik voor het eerst de Wageningse Berg beklommen, om 

aan boord van "het Schip van Blaauw" aan te monsteren voor een ontdekkingsreis over de 

wereldzeeen van het microbiologisch onderzoek. Al snel kwam ik erachter, dat ook op deze 

reis goed en slecht weer elkaar afwisselden. Er waren perioden met zon; maar ook fases met 

zwaar onweer. Soms kwam ik ook in dikke mist terecht - je ziet niets, en je hebt het gevoel, 

wekenlang geen millimeter vooruit te komen. Bijzonder opwindend waren de momenten, 

waarop totnogtoe onbekende eilandjes plotseling aan de horizon verrezen. Deze reis nadert nu 

zijn einde, en ik schrijf op een zonnige zondagmiddag met vioolconcerten van J. S. Bach op 

de achtergrond de laatste regels van deze reisverhalen - mijn proefschrift. Ik wil dan ook op 

deze plaats iedereen bedanken die het mogelijk gemaakt heeft, dat dit boekje tot stand is 

gekomen - binnen het laboratorium, maar ook daarbuiten. Jullie bijdrage is nauwelijks in 

woorden te beschrijven, maar toch veel te belangrijk, om het hierbij te laten! 

Bram, een groot gedeelte van deze reis hebben we samen gedaan. Het uitwisselen van 

ideeen en de leuke discussies, als we weer eens van mening verschilden - "Binnen of buiten, 

dat was de vraag". Bedankt voor de toffe samenwerking. Ik had deze kruisbestuiving niet 

willen missen. 

Willem, de kapitein van het schip, maar vooral promotor en begeleider op deze reis. Zelfs 

in de drukste tijden ben je toch altijd beschikbaar gebleven, als de koers van het onderzoek 

weer eens uitgezet moest worden. Daarbij heb je mij altijd die vrijheid gegeven die ik zelf 

wilde hebben. De invloed die je niet alleen had op de ontwikkeling van het onderzoek, maar 

ook heel algemeen op mij als wetenschapper was en is enorm. Bedankt voor jouw motivatie, 

je steun en vooral ook het vertrouwen, dat je in mij gesteld hebt. 

John en Antoon - jullie hebben als co-promotoren een zeer belangrijke rol gespeeld bij 

mijn speurtocht. John, jouw optimisme en je niet te stoppen vloed van ideeen waren 

onmisbare drijfveren voor mij. Altijd goed voor een inspirerende discussie; op het lab, in de 

kroeg of al lopend op zondag ochtend om acht uur in het bos bij -10°C. Antoon, voor je 

vertrouwen ben ik je erg dankbaar. De afgelopen twee jaar heb ik door onze vele discussies 

enorm veel opgestoken. Je hebt niet alleen mijn interesse voor de microbiele ecologie gevoed; 

je was ook een belangrijke katalysator als het erom ging beslissingen voor de toekomst te 

nemen. 

Bram en Thijs, fijn om te weten dat ik op jullie kan rekenen. Bedankt, paranimfen! 

Tony, I still remember our cooperation with great pleasure. Without you, this thesis would 

have been much thinner. Ans en Ineke, bedankt voor het draaien van talloze sequentiegelen, 

maar ook voor de vrolijke sfeer op het lab. Ineke, hartstikke bedankt voor de bijzonder 

plezierige samenwerking in het Chlorem-project en voor het aanhoren van mijn gezeur als ik 
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weer eens niet verder kwam met mijn proefschrift. Joyce, je hebt me aangestoken met je 

enthousiasme en zo nu en dan terug op de rails gezet door jouw belangstelling. Ana, Ariane, 

Arjen, Corne, Don, Gael, Gerti, Johan, Leon, Serve, Thijs E., Yannick, en Wilfried, ik heb erg 

genoten van de leuke samenwerking en vooral de gezellige sfeer bij BacGen. Alcina, Arjan, 

Cinzia, Christine, Elaine, Erwin, Hans, Hugo, Jiro, John, Kaouther, Kathrin, Kees, Maaike, 

Mark, Nora, Reetta, Sergey, Yao Wen, Yoyok and Wilma, thank you all for the nice time at 

the MolEco's and the 104 cakes we had together during the past two years. Maurice, bedankt 

voor al die kweken, en de erg plezierige samenwerking in het dehalo-clubje. Fons en Gosse, 

onze talrijke discussies over alle aspecten van dehalogenering waren erg behulpzaam en 

inspirerend. Fred, zonder jou bijdrage was hoofdstuk 2 een stuk minder geweest. 

Alle studenten, Joost, Maarten, Mark, Meta, Ronnie en Sonja; bedankt voor jullie 

enthousiaste inzet en gezelligheid. Dit had ik nooit allemaal alleen kunnen doen. 

Bedankt, Ria, voor de (vroege) koffie. Alle pogingen ten spijt, is het mij nooit gelukt, om 

voor jou in het gebouw te zijn. Frits en Wim, bedankt voor jullie hulp met de hard- en 

software op het lab en het bureau. Ans en Francis, Nees, Jannie, Renee, voor de administratie 

en alle transacties, de keuken en de bieb. Micro's, allemaal ontzettend bedankt voor de 

fantastische tijd op de berg. 

I would like to thank all colleagues in the Chlorem-project. I very much enjoyed our 

cooperation on the "European" scale, the nice meetings and the fruitful discussions during the 

last two years. Many thanks to the Studienstiftung des Deutschen Volkes and the European 

Union for funding my project. 

Helena, Joost, Judith, Koen, Ludo, Margreet, Noeky, Rolf en Thijs, de Engelenbak was een 

echte thuishaven. Jullie kookkunsten, jullie betrokkenheid en de Engelengeduld met 

oosterbuurse eigenaardigheden hebben voor de nodige brandstof en rust gezorgd om deze reis 

te laten slagen. Alette, Ans, Caroline, Fons, Jan en John, Berlijn was gewoon geweldig. 

Peddel-maatjes van de Bovenste Polder, ik heb erg genoten van de gezamenlijke tochten op 

het "echte water", die voor de nodige ontspanning hebben gezorgd. Er is meer dan genoeg 

groot water rond Seattle voor honderd tochten! 

Gemot und Wolfhart, Gunda und Ulli, Holm, Matti, Nadine, Thede und Yvonne, Omi, 

Mama und Papa, jetzt musst Ihr Euch schon wieder an einen neuen Akzent gewohnen. Eure 

Unterstiitzung und Zuneigung sind unersetzlich. Bopa, dieses Buch ist auch fur Dich. 

Mama und Papa, ohne Euch waren nicht nur diese Seiten weiss geblieben. Schon, dass es 

Euch gibt. 

Wageningen, 21 januari 2001 
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