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Bibliographic Abstract: This thesis describes studies of root-knot nematodes 
Meloidogyne spp. - an economically important pest in agriculture - using population 
and molecular genetics. Variability in virulence to Mi bearing tomato genotypes is 
shown for Meloidogyne spp. isolates and their impact of implementation of proper 
management system is discussed. Genetic polymorphisms in Meloidogyne spp. 
were assessed using molecular techniques that reveal nuclear and mitochondrial 
DNA divergence on different hierarchical levels. cDNA library constructed from 
the pre-parasitic second stage juveniles of Meloidogyne incognita was screened by 
single pass 5'-end sequencing to investigate genes expressed at the onset of 
parasitism. One expressed sequence tag homologous to an endoxylanase was used 
to identify a novel cell wall degrading enzyme - xylanase. Several lines of evidence 
support the endogenous origin of the nematode xylanase. The amino acid sequence 
revealed a high similarity with bacterial xylanases indicating that nematode 
xylanase may have been acquired from bacteria by horizontal gene transfer. 
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1. Root-knot nematodes have acquired xylanase genes from bacteria by 
horizontal gene transfer as an evolutionary adaptation to parasitise 
monocotyledons. 
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Hurlbert JC and Preston JF (2001) Functional characterization of a novel xylanase 
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a similar level of genetic diversity. 
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3. In contrast to vertebrates saliva of sedentary plant-parasitic nematodes is 
essential not only for digestion but also for production of the food. 
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4. The time consuming morphological diagnosis of certain plant parasitic 
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Chapter 1 

GENERALINTRODUCTION 

Nematodes constitute the largest and most ubiquitous phylum of the animal king
dom (78). Often they comprise 80 to 90% of all the animals of the soil fauna. They 
can be present in numbers ranging from 1.8 to 120 millions per square meter of soil 
(54). This observation inspired Cobb (25) to make the following remark: 

"even if all matter in universe, except nematodes were 
swept away, the world will still be recognisable dimly by its moun
tains, hills, valleys, lakes, and oceans represented by a film of nem
atodes ". 

Most nematodes are microbivores, fungivores, predators or omnivores surviving in 
various terestrial, aquatic or marine environments (5). Only a small fraction of the 
nematodes species has the ability to parasitise animals and plants. 



Chapter I 

Plant parasitic nematodes 

During the course of evolution plant-parasitic nematodes have adapted to parasitise 
completely unrelated organisms. They are frequently obligatory parasites that have 
evolved various modes of actions varying from simple feeding strategies to highly 
complex relationships with the host plant. The vast majority of plant-parasitic nem
atodes are soil-dwelling and feed from the plant roots. Parasitism is established 
when the nematode pierces the cell wall by the hollow stylet - possessed only by 
plant parasitic nematodes - that has a narrow lumen through which salivary secre
tions are injected into punctured cells (90). 

Plant parasitic nematodes show great diversity in parasitic behaviour. Mi
gratory nematodes bluntly remove the cytoplasm from plant cells, frequently caus
ing cell death, and then move on to another cell to repeat the feeding process. Other 
nematodes are more subtle and feed from a single cell or a group of cells for prolon
ged periods of time. The cell and tissue modifications that are induced by root para
sitic nematodes have recently been reviewed by Cohn and Spiegel (26) and Sijmons 
et al. (77). Root parasitic nematodes belonging to the order Dorylamida cause seri
ous root damage when they occur in large populations. In addition to the physical 
damage to plant tissues they have economical importance as a vectors of several 
soil born viruses. Nematodes in the order Tylenchida seriously affect plant growth 
by inducing profound alternations in the structure of the cell from which they feed 
as well as in the anatomy and function of the roots (90). The worst effect of plant-
parasitic nematodes is debilitation of the plant without producing any specific and visi
ble symptoms leading to underestimation of the economic effects by the growers (4). 

Distribution and economical importance of root-knot nematodes 

Root-knot nematodes (RKN, Meloidogyne spp.) (39) are responsible for billions of 
dollars in annual crop losses. The majority of the plant species that account for the 
world's food supply are susceptible to root-knot nematode infection. They are wide
ly distributed and have established a complex and long-lasting parasitic relationship 
with more than 2.000 plant species (74) including monocotyledons, dicotyledons, 
herbaceous and woody plants. Decline of RKN infected host plants is usually fur
ther increased by secondary infections because the nematode's invasion often coin
cides with other soil-borne pathogenic bacteria and fungi (68). Frequently there is 
more than one nematode species involved (63) causing more economic damage to 
food crops than any other group of plant-parasitic nematodes among the Tylenchida 
(49, 73). RKN are considered as important pathogens on tomato (Lycopersicon es-
culentum Mill) (18, 58) especially in tropical, subtropical and warm temperate are
as of the world where soil temperature is high, seasons are long and several nema-
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General introduction 

tode generations are completed annually, resulting in high population densities. M. 
incognita, M. javanica, M. arenaria are found in tropical and subtropical regions 
and in glasshouses while M. hapla (and M. chitwoodi) prevail in temperate climate 
zones. 

The estimated yield loss caused by RKN is over 10% world-wide, although 
the damage inflicted in certain regions of developing countries may be as much as 
25% to 50% (80, 75). The four common species, M. incognita, M. javanica, M. are
naria and M. hapla, are responsible for nearly 90% of the losses caused by RKNs. 
For instance, Barker and Olthof (7) have shown that M. incognita suppresses yield 
of tomato cultivars by 20-30% in mountain cultivations and up to 85% in coastal 
plains (3). Some other species, like M. chitwoodi (38), are also of economic impor
tance, but have a more restricted geographical distribution (50, 30). 

The history of RKN 

For a long time the symptoms caused by Meloidogyne spp. have been attributed to 
other pathogens. Barkeley (6) noticed for the first time that nematodes were present 
in galls of cucumber roots. Since then the overall history of the genus Meloidogyne 
can be divided into three periods. Period 1855-1878, during which a correlation was 
observed between root galls and nematode incidence, followed by a relatively long 
confusing period (1879-1948) during which root-knot nematodes were included in 
the same genus as cyst nematodes (Heterodera; 76). In the final 'revival'-period 
root-knot nematodes were placed into a separate genus (24) and were hold account
able for large economic losses. According to the revision of Maggenty et al. (62,60) 
the taxonomic position of root-knot nematodes is as follows below: 

Phylum Nematoda 
Class Secernentea 

Subclass Diplogasteria 
Order Tylenchida 

Suborder Tylenchina 
Superfamily Tylencho'idae 

Family Heteroderidae 
Subfamily Meloidogyninae 

Genus Meloidogyne Goldi, 1892 

At present, there are more than 80 nominal root knot nematode species described. 
The available evidence strongly indicates that the four so-called common species 
Meloidogyne javanica (81), Meloidogyne arenaria (66), Meloidogyne incognita 
(55), Meloidogyne hapla (24) account for 95% of all populations all over the world. 

Makedonka Dautova 9 



Chapter 1 

Biology of RKN 

Root knot nematodes are obligatory endoparasites, which have evolved a very spe
cialised and complex feeding relationship with their host plant. The juvenile can 
move within the egg but is not very active (Figure 1.1 A). Hatched second stage ju
veniles (body width and length is approximately 290 and 912 mm respectively), are 
the infective stage of the species (Figure LIB). They migrate in the soil and prior to 
penetration probe the root epidermal cells at the zone of elongation by continuous 
head rubbings and occasional stylet protrusion. As vigorous stylet thrusting does 
not occur at this stage, the involvement of cell wall degrading enzymes has been 
suggested (11, 12). The release of secretions, that may include cell wall degrading 
enzymes, through the stylet prior to penetration has been observed in vitro (91). To 
complete their life cycles, J2s penetrate roots of susceptible hosts behind the root 
cap (Figure 1.1C) (42) and migrate intercellularly to the developing protoxylem in 
the vascular cylinder (91). A successful host-parasite relationship requires that these 
nematodes modify several plant root cells to obtain nourishment necessary for their 
development and reproduction (42, 51). So, initial feeding activities by J2 induce 
localized modification of host cells to form an elaborate feeding site consisting of 
several multinucleate cells, so-called giant-cells (Figure 1.1D)(41, 52). 

V 

B 
'% 

J 
SA \ 

& / m 

Figure 1.1- Life cycle of a root-knot nematode, Meloidogyne spp. Depending of environmental conditions, the 

cycle is completed within one or two months. 

Giant-cells are larger than normal cells with multiple nuclei, thickened walls with 
extensive ingrowths and dense cytoplasm with increased numbers of organelles (9, 
51). They are metabolically highly active and serve as a metabolic sink for host pho-
tosynthates that are consumed by the nematode (15, 65). The morphological chang
es involved in the formation and development of giant-cells have been thoroughly 
studied. The multinucleate state arises from repeated karyokinesis uncoupled from 
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cytokinesis, but the DNA content of the nuclei increases nonsystematically on a per-
nucleus basis (41, 53, 87). Stylet secretions, originating from the nematode's 
oesophageal glands are presumed to be responsible for protein synthesis, nuclear 
division, cell growth and differentiation in giant cells (44,48). Other components in 
the stylet secretions may form feeding tubes, which are structures that facilitate 
withdrawal of nutrients by the feeding parasite (47). Induction and maintenance of 
giant-cells are possibly separate phenomena mediated by different development 
stages of the parasite (17). The nematodes are completely dependent on these giant 
cells for their development and reproduction (41). 

After feeding for about 10-12 days in roots of susceptible plants, the J2 ceas
es feeding and moults three times over a 48-hour period. The females continue to 
feed and grow considerably larger than the males. They are swollen (median length 
440 - 1300mm, median width 330 - 700 mm) (29) and remain in the root. After the 
fourth moult the males are still slender (body length 700 - 2000 mm), leave the root 
(Figure LIE) and fertilise the females in the case of amphimictic species. However, 
parthenogenesis is often encountered in root-knot nematodes, thus fertilisation is 
not necessary for egg development and does not occur even if sperm is present in 
the spermotheca (80). The females lay their eggs in a gelatinous matrix that normal
ly protrudes out of the host tissue (Figure 1. IF) (78). After completion of its life cy
cle, the female nematode dies and the giant-cells degenerate (10). The eggs hatch 
freely in water, however, the rate of hatch is higher in the presence of host root exu
dates (78). 

Population genetics 

Genetic changes in nematode population are partially driven by the environment in
cluding the use of resistant varieties and pesticides. Studying such genetic changes 
at the population level is crucial for understanding and predicting the behaviour of 
nematodes in the field. Theoretical population geneticists have mainly been concer
ned with sexually reproducing species, often supposing that these species are out-
breeders with much opportunity for recombination between different genomes. 
However, in asexually reproducing species many generations may pass in which 
only a very limited number of recombinations will occur. The majority of root-knot 
nematodes species, Meloidogyne spp., are obligatory mitotic parthenogenetic and 
therefore, the offspring is expected to be identical to the parent. However, many 
years ago root knot nematode populations of the same species were shown to differ 
in their ability to reproduce on a variety of crops (69, 37). 

To reveal the origin of these variations in virulence nematologists have to 
enter deeply into the secrets of root-knot nematode genetics (nuclear and mitochon
drial). A wide range of molecular tools (mainly based on the polymerase chain reac-
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tion) has been adapted to investigate intra- and interpopulation genetic diversity and 
phylogenetic affinities in Meloidogyne species and populations: 

Since 1990 RAPD (Random Amplified Polymorphic DNA) has been used as a 
genetic marker (88, 85). RAPD markers are generated by the amplification of 
random DNA segments in the target genome with single oligonucleotide prim
ers of arbitrary nucleotide sequences. Because of the vast number of primers 
that can be generated the number of DNA markers is enormous (89). Since the 
introduction of the RAPD technique it has been used to establish relative de
grees of polymorphism between individuals, populations and species of the ge
nus Meloidogyne, however, the detected intraspecific polymorphisms remained 
rather low (22, 23,40, 61). 
Restriction Fragment Length Polymorphism (RFLP) are the second type of ge
netic markers that have been used to assess genetic variation in root knot nema
todes (19, 33, 35,40, 93). RFLPs are the result of genomic DNA restricted with 
specific endonucleases generating a unique set of DNA fragments typical for 
the nucleotide sequence of the genome. Nucleotide substitutions, insertions or 
deletions in the endonuclease recognition sites of species, population and iso
lates modify the RFLPs in a DNA fingerprint that can be used as a set of diag
nostic characters. RFLPs frequently arise from stretches of repetitive DNA. 
Due to the extensive variation in repetitive DNA RFLPs are valuable to assess 
diversity both between and within plant-parasitic nematode species (1). 
Amplified Fragment Length Polymorphism (AFLP) technique is a new PCR-
based approach, used for detecting and evaluating genetic variation, that has a 
considerable potential for analysing nematode genomes (34, 71, 84, 94). AFLP 
is based on selectively amplifying a sub-population of restriction fragments 
from a genomic DNA. Polymorphisms are detected as differences in lengths of 
amplified fragments. Prior to PCR amplification genomic DNA is digested by 
two restriction enzymes. Subsequently, oligonucleotide adapters are ligated to 
the resulting restriction fragments to generate template DNA for PCR. In con
trast to the RFLP procedure, the AFLP technique generates virtually unlimited 
numbers of DNA fragments from nanogram quantities of genomic DNA. In compar
ison to the RAPD approach, the AFLP technique uses stringent reaction conditions, 
which guarantees a better reproducibility. Furthermore, this technique is quantita
tive and AFLPs can therefore be used as co-dominant markers (82). 

Molecular genetics 

The rapid development of molecular tools in the last decades enabled scientists to 
reveal directly the secrets hidden in the genomes of organisms. Complete character
ization of a certain gene of interest starts with knowing the nucleic acid sequence, 
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however, true value is only achieved when the biochemical basis for its regulation is 
understood and a functional relation can be found to other biochemical pathways 
and processes. As such molecular nematologists aim at unraveling the genetic code 
of plant parasites in order to understand the underlying causes of pathogenicity. 
Conventional procedures require relatively large amounts of starting material for 
RNA preparation (72). Frequently, it is difficult to apply these methods to the mi
nute plant-parasitic nematodes, because it takes a huge effort to obtain sufficient 
quantities of mRNA. The introduction of the PCR largely enabled nematologists to 
overcome this limitation (64). 

To date, various methods have been applied to prepare and screen cDNA li
braries of plant-parasitic nematodes (28, 46, 56, 57, 70), but only a limited number 
of genes were identified and all procedures required prior knowledge of candidate 
genes or technically advanced pre-selections in mRNA pools. To address this prob
lem, it has proven to be successful to sequence at random only small portions of 
cDNAs from a library, called expressed sequence tags (EST) (2). Although the ESTs 
are short (200-500 bp) DNA sequences generated from the 3' and 5' ends, they con
tain enough information to indicate the gene's probable function and its relationship 
with other genes (2). 

Good quality cDNA-libraries constructed from different life stages of the 
nematode may generate sequence tags expressed from genes at various time points 
in the parasitic cycle. The parasitic cycle involves various distinct stages, plant pen
etration and intercellular migration, and feeding site initiation and maintenance. 
Therefore, cDNA libraries covering these main stages may provide insight in the 
molecular fundaments of plant parasitism by RKN. 

Oesophageal glands - source of pathogenicity factors 

Root-knot nematodes, as all other plant parasitic nematodes, have adapted to plant 
parasitism by evolving i) protrusible stylet, ii) muscular metacorpus containing a 
triradiate pump chamber and iii) three large oesophageal glands. The oesophageal 
glands enlarged as plant parasites evolved from free-living nematodes to the Rabdit-
ida, indicating a change in their primary function (43). Each oesophageal gland is a 
single large cell, which is entirely specialised to its secretory function (31). The 
gland cells are packed with membrane-bounded granules in which secretory pro
teins are stored and released from into the lumen of the oesophagus. This process is 
under the control of the nervous system of the nematode (32). Each of the two sub-
ventral glands has a short cytoplasmic extension that terminates in an ampulla at the 
base of the pump chamber in the metacorpus. The dorsal gland has a long cytoplas-
matic extension that terminates in an ampulla near the stylet knobs (44). The secre
tory granules formed in the nuclear region of the gland cells migrate forward 
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through the extensions in order to accumulate near the release valves in the ampul
lae (45). 

Distinct morphological changes of the oesophageal glands occur during 
parasitism. At the onset of parasitism during host penetration, the subventral 
oesophageal glands of Meloidogyne J2 initially increase in length but not volume 
(Figure 1.2A)(14). Following penetration the secretory granules accumulated in the 
subventral glands in parasitic J2 start to decrease in number (12, 91). 

Dorsal Gland Valve 
Dorsal Gland Ampulla 

Esophageal Lumen 

Metacotpus 

Pump Chamber 

Subveniral Gland Valve 

Dorsal Gland Extension 

Subventral Gland) 

Figure 1.2 - The esophagus of a phytoparasitic second stage juvenile(A) and of an adult female (B) root-knot nem

atode, Meloidogyne spp. (48). 

Following feeding site initiation the dorsal gland increases in size whereas the sub
ventral glands decrease again (13, 14). The dorsal gland in preparasitic J2 contains 
few secretory granules. However, soon after juveniles penetrate the roots, secretory 
granules accumulate in the dorsal gland cell lobe and ampulla (16). In adult fe
males, the dorsal gland predominates (Figure 1.2B) whereas the subventral glands 
are greatly reduced in size (13). 

The changes in oesophageal gland and secretory granule morphology dur
ing parasitism by Meloidogyne species indicate a different role for the two types of 
oesophageal glands and their secretions at successive stages of the nematode's life 
cycle. Based on the developmental changes in the gland cells subventral gland se-
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cretions are presumably involved in initial phases of parasitism - plant penetration ° 
and intercellular migration. The dorsal gland secretions may be involved in feeding s 
cell initiation and maintenance as well as facilitating food extraction from the feed- = 
ing site cytoplasm. ^ 

o_ 
n 
o 

Plant cell wall - the first barrier for plant-parasitic nematodes f 
(TO 
n 
3 

The architecture and function of plants depend on the structure of the cell walls, | 
which is conceived as a highly organized network composed of polysaccharides, s, 
proteins and aromatic compounds. Polysaccharides are long carbohydrate mole- I 
cules covalently linked at various positions and with side chain decorations of vari- | 
ous natures and length. The cell wall carbohydrates represent a vast spectrum of | 
polyhydroxyl aldexydes (aldoses). In aldoses, including the hexose glucose and the s 
pentose arabinose, the C-1 is the only carbon that binds to two oxygen atoms (ano- ™ 
meric). The hydroxy 1 group of the anomeric carbon can either be in a or b posi
tions, and is always accompanied by D or L designation which refers to the position 
of the hydroxy 1 group on the asymmetric carbon most distant from the C-l (21). All 
monosaccharides in the cell wall polymers are derived from a-D-Glucose. The 
homopolymer of b-1,4- linked D-glucose is the cellulose, which is the most abun
dant polysaccharide found in the plant biomass. The complete degradation of the 
cellulose involves 4 classes of enzymes (Figure 1.3). 

-4Glubl-4 Glubl-4 Glubl-4 Glubl-4 Glubl-4 Glubl-4 Glubl-4 Glubl-4 Glubl-4 Glubl-4 Glubl-4 Glubl-

-4Glubl-4 Glubl-

endoglucanase (EC 3.2.1.4) 

Cellobiohydrolase (EC 3.2.1.91) 

b-glucosidase (EC 3.2.1.21) 

exoglucohydrolase (EC 3.2.1.74) 

Figure 1.3 - Cellulose composition and enzymes involved in cellulose degradation. 

When the C-6 primary alcohol of the a-D-Glucose is oxidized to a carboxylic acid 
group a-D-Glucuronic acid is formed. Enzymatic removal of the carboxyl group 
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from the a-D-Glucuronic acid forms the pentapyranose a-D-Xylose, a sugar in 
which all of the carbons are part of the heterocyclic ring. The b-1,4- linked poly
mers of D-xylose form a polysaccharide named xylan. Next to cellulose, xylans are 
one of the most abundant biopolymers synthesized in the biosphere. Structure of 
xylans may vary from linear poly-D-xylose to highly branched hetero-polysaccha-
ride (e.g. arabinoxylan or glucuronoarabinoxylan). Hardwood xylan is typically o-
acetyl-4-o-methylglucuronoxylan with approximately 10% of xylose units a-1,2-
linked to a 4-o-methyl-glucurononic acid side-chain, and 70% of xylose residues 
acetylated at the C-2 or C-3 positions. Softwood xylans are commonly arabinoxy-
lans in which 10% of the xylose units are substituted with a-2,3-linked arabino-
furanose residues (86). Xylan, as a non-cellulosic polysaccharide, is synthesized in 
the Golgi apparatus, packaged in secretory vesicles, and exported to the cell sur
face, where they are interlinked with cellulose microfibrils (20). There is no evi
dence to confirm covalent linkage between cellulose and any other component of 
the plant cell wall, including xylans. Xylans are also believed to interact via hydro
gen bonds to cellulose microfibrils with a strength that could be inversely propor
tional to the degree of side-chain substitution (83). The two aromatic side-groups 
and 4-O-methyl glycuronic acid of xylan enables a covalent cross-linking to other 
cell wall components such as pectin or lignin. 

Degradation of the heterogenous and variable polysaccharide xylan (linear 
or highly branched hetero-polysaccharide) requires a whole suite of enzymes (8, 27) 
(Figure 1.4). 

Ara-a Ara-a 
Ac 1 1 

3 3 . £ . J L 3 
-4XylPl-4XylPl-4Xyl|3l-4XylPl-4Xylpl-4XylPl-4XylPl-4XylPl-4Xylpl-4XylPl-4XylPl-4Xyl|3l-

2 ,2 2 

H H - 1 
Ac 1 1 

MeGlcA-a Ara-a 

J L Fer/p-Cou 
-4Xylpl-4XyiPl-

, £ - endoxylanase (EC 3.2.1.8) 
J 1 P-xylosidase (EC 3.2.1.37) 

• cx-L-arabinofuranosidase(EC 3.2.1.55) 
•=> a-glucuronidase (EC 3.2.1.139) 

=> acetylxylan esterase (EC 3.1.1.72) 
- > feruloyl esterase (EC 3.2.1.-) 

Figure 1.4 - Xylan composition and enzymes involved in xylan degradation. 
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Between these enzymes a considerable degree of synergy exists (67). For example, 
many xylanases will not cleave glycosidic bonds between xylose units that are sub
stituted. Thus, side chains must be cleaved before the xylan backbone can be com
pletely hydrolysed (59). Xylans are structurally more complex than cellulose, and 
therefore require more enzymes to achieve efficient hydrolysis. However, they do 
not form tightly packed structures such as is the case with cellulose, and are more 
accessible to hydrolytic enzymes. Consequently, the specific activity of xylanases is 
generally 2-3 orders of magnitude greater than that cellulases have for their appro
priate substrates (36). 

To invade the plant, pathogens and parasites have to degrade cell walls. In 
order break down the complex network, as the plant cell wall is, pathogens require 
a diverse set of enzymes, including cellulases, xylanases, pectinases and proteases. 
Although, the biochemistry and mode of action of most hydrolytic enzymes have 
been studied extensively for bacteria and fungi (36), it is a new area of research for 
plant-nematode interactions. 

For a long time nematologists assumed that only mechanical force is in
volved in the migration of the nematodes through the plant root (92). Present find
ings indicate that a combination of mechanical force and enzymatic softening (see 
also 70, 79) of plant cell walls takes place. To date, only b-1,4-endoglucagenases 
have been identified in root-knot nematodes (70). It is expected that other types of 
enzymes are also involved in the migration through plant tissues of this nematodes 
species. 

Outline of this thesis 

The overall objective of this thesis is to study root-knot nematodes Meloidogyne 
spp. - an economically important pest in agriculture - using population and molecu
lar genetics. 

In Chapter 2 observations on the distribution of Meloiodgyne populations in 
Macedonian vegetable and tobacco fields are presented. Variability in virulence to 
Mi bearing tomato genotypes is shown for 73 Meloidogyne isolates. The impact of 
the occurrence of extensive variations in virulence is discussed for the implementa
tion of proper management system. 

In the third chapter the genetic variation in 16 Meloidogyne populations was 
assessed using molecular techniques that reveal nuclear and mitochondrial DNA di
vergence on different hierarchical levels. The AFLP technique was used to assess 
the phylogenetic relationships based on polymorphisms of total DNA. Polymor
phisms generated by differences of mtDNA in the tandem array of 63-bp repeats 
were quantified down to the level of an individual nematode. 
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Chapter 4 describes the construction of a cDNA library from the pre-parasit-
ic second stage juveniles of Meloidogyne incognita to investigate gene expression 
at the onset of parasitism. The results show that a good quality cDNA library and 
single-pass cDNA sequencing of randomly chosen primary transcripts is a powerful 
method to identify candidates for parasitism related genes in plant parasitic nema
todes. The efficiency of the method is illustrated with the production of expressed 
sequence tags for virtually all parasitism-related genes cloned to date. 

In chapter 5, one expressed sequence tag homologous to an endoxylanase of 
various bacterial origins was used to identify a xylanase in M. incognita (Mi-xyll). 
Transcription of this gene is shown to be localized in the subventral oesophageal 
glands of second stage juveniles. A recombinant Mi-xyll protein exhibited hydro-
lytic activity on both xylan and carboxymethylcellulose. 

Finally, in chapter 6 the state of the art in population and molecular genetics 
is discussed with respect to root-knot nematodes in order to summarise and illus
trate the impact of the results describe in this thesis. 
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ABSTRACT 

The occurrence of Meloidogyne in several areas of Macedonia was surveyed. Sev
enty-three isolates from 9 locations (fields and glasshouses) were identified and 
their behaviour on two susceptible and two Mi resistant tomato cultivars compared. 
M. incognita (47,9%) and M. javanica (35,6%) are the predominant species fol
lowed by M. arenaria (13,7%), and, sporadically, M. hapla (2,7%) was found. Mix
tures of species were present at nearly all locations. Virulent isolates were found in 
M. incognita (11%) and M. javanica (46%) as well as in M. arenaria (50%). M. 
hapla isolates were compatible with all tomato genotypes tested. The impact of the 
occurrence of virulence for Mi carrying tomato genotypes is discussed. 

INTRODUCTION 

The widely distributed polyphagous root knot nematodes {Meloidogyne spp.) are 
among the most damaging plant parasitic nematodes in many economically impor
tant crops. Damage by the different species, its populations (intraspecific variation) 
and subsequent control are important issues. A means of control that is environmen
tally satisfactory is the growing of resistant cultivars but this is generally hampered 
because resistance is often not universal i.e. not directed to all Meloidogyne species 
present in an area or by the occurrence of virulent field populations. Resistance 
against root knot nematodes has been described for various crops, among them to
mato (Lycopersicum esculentum) (e.g. 11, 29). 

Resistance in tomato to root knot nematodes was found about 50 years ago in 
an accession of L. peruvianum and introgressed in L. esculentum using embryo res
cue (34). All currently available root-knot resistant tomato cultivars are derived 
from this source (21). A major gene (Mi) located on chromosome 6 (12) controls 
resistance. The Mi gene confers resistance to M. incognita, M. javanica and M. are
naria but not to M. hapla (1, 14). 

There are two major limiting factors in the use of Mi: (i) at high soil temper
ature (28-30 °C) the resistance does not function (9) and (ii) the occurrence of resist
ance breaking root-knot nematode populations. M. incognita, M. arenaria and M. 
javanica include virulent field populations and isolates selected on Mr-bearing cul
tivars after several generations (e.g. 22, 24, 28, 31). Variation in virulence in M. in
cognita populations towards the Mi gene has been studied by many authors (3,5,7, 
16, 19). There are also several reports on virulent M. arenaria and M. javanica pop
ulations (23, 27, 33, 37). Currently seven additional independent dominant Mel
oidogyne resistance genes, designated Mi-2 to Mi-8, have been identified from L. 
peruvianum accessions and one from L. chilense. These genes are not yet available 
in commercial cultivars. They display resistance with different properties from Mi 

26 Makedonka Dautova 



Meloidogyne spp. in Macedonia 

and some are resistant to M. hapla or confer resistance at 32 °C. (see: 38). Because 
L. esculentum and L. peruvianum do not normally cross, the behaviour of these re
sistance genes in a tomato background is as yet hardly known. 

In spite of the economic importance of the tomato crop in Macedonia, knowl
edge on the distribution of Meloidogyne species is scarce and even completely ab
sent if intraspecific variations in virulence are considered. These omissions serious
ly impede implementation of proper management systems for Meloidogyne. As a 
first step towards such a system we report in this chapter on the distribution of Mel
oidogyne populations (a)virulent on M/-bearing tomato genotypes in Macedonian 
vegetable and tobacco fields. 

MATERIALS AND METHODS 

The susceptible tomato, L. esculentum Mill., cvs Moneymaker and Vivia - F 172, 
and the Mi resistant genotypes cv. Carmello GC 204 and cv. Manthos GC 785 were 
used. S&G Sandoz Seeds, The Netherlands, kindly provided us with the seeds, ex
cept for cv. Moneymaker. To exclude nullifying the Mi gene at high temperature (9) 
experiments were done at 20-25 SC in a glasshouse. Two weeks old seedlings were 
transplanted into 20cm plastic pots filled with sterilised sand and allowed to estab
lish for two weeks before inoculation with second stage juveniles. Pots were ferti
lised at regular intervals and watered with tap water as required. To avoid contami
nation pots were kept separate on saucers. 

In 1996 and 1997 populations of Meloidogyne from nine areas (Table 2.1), 
seven cropped with vegetables (mainly tomatoes) in glasshouses and two tobacco 
fields were collected from infested roots and rhizosphere soil. 

Only in the Gevgelija glasshouse was the Mi resistant tomato cv. Suzo 
grown. The seventy-three isolates (lines) were set up from single egg masses and 
propagated and maintained for about seven months on cv. Moneymaker. To obtain 
enough second stage juveniles (J2) for the virulence tests eggs were harvested ap
proximately 12 weeks after inoculation by dissolving egg masses in 0.5% NaOCl-
solution (15). J2s were hatched in water and stored at 4 °C until required. The aver
age egg mass contained 200 J2s. Prior to inoculation nematodes were allowed to 
pass through a cotton filter and viable juveniles were collected after one day. In vir
ulence tests 400 J2s (~ 2 egg masses (P.)) in suspension were pipetted with an auto
matic syringe onto the soil surface around the stem base of the test plant seedlings 
followed by light watering. 

Seven weeks later plants were harvested individually, their roots washed 
free from sand stained with Phloxine B solution (8) and the egg masses (P) and 
galls counted. Multiplication rates (P/P) were assessed. Host status was divided 
into three categories as follows: Pf/P. 31.0, suitable host (SH); 0.1 < Pf/P. < 1.0, 
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poor host (PH) and P/P. £ 0.1, non-host (NH). Each nematode population was test
ed in four replicates on the susceptible and resistant genotypes. For each isolate, af
ter square root transformation of the data (data not shown), pair-wise differences 
between the means were analysed for significance and Least Significant Difference 
(LSD) at P = 0.05 with ANOVA using Genstat (25). 

Table 2.1 - Origin, preceding crop and species designation of populations and isolates used. 

Location 

Bogdanci 
Hamzali 

Bansko 
llovica 
Prosenikovo 

Kocani 

Gevgelija 
Kumanovo 

Stuka 

Preceding 
crop 

tomato, cv. Priska 
cucumber 

tomato, cv. Balka 
cucumber 
tobacco 
cucumber 

cucumber 
tomato, cv. Balka 

tomato, cv. Suzo 
tomato, cv. Vivia 

tobacco 

Number of 
populations 

1 
3 
1 
1 
1 
2 
2 
1 
1 
1 
2 
1 
1 
1 
1 
1 
1 

Number of 
isolates 

7 
12 
2 
3 
4 
5 
7 
2 
1 
3 
8 
1 
1 
7 
4 
1 
5 

Species 
identified 

M. incognita 
M. incognita 
M. javanica 
M. arenaria 
M. incognita 
M. incognita 
M. incognita 
M. javanica 
M. arenaria 
M. javanica 
M. javanica 
M. arenaria 
M. hapla 
M. javanica 
M. javanica 
M. hapla 
M. arenaria 

Code* 

MiB 
MiSH 
MjSH 
MaSH 
MiSB 
Mil 
MiP 
MjP 
MaP 
MjK 
MjK 
MaK 
MhK 
MjG 
MjKu 
MhKu 
MaS 

* isolates are coded as indicated followed by numbers for field population and isolate. 

Species composition of the isolates was determined in two ways, (i) Using 
the morphological criteria of perineal pattern of adult females and morphometries 
of males and J2s (17). At least 15 perineal patterns and 25 males and juveniles of 
each isolate were examined, (ii) By amplifying the intergenic spacer region between 
the cytochrome oxidase II gene and the 16S rRNA gene in the mitochondrial ge
nome of single juveniles (26). In this approach ten individual J2s were handpicked, 
homogenised in a 15 ul drop of sterile water, frozen for future analysis or immedi
ately processed in a PCR procedure in a final volume of 25 ul as described. Follow-
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ing DNA amplification the products were separated on agarose gel, stained with 
ethidium bromide and visualised on a UV box. M. arenaria is characterised by a 
unique 1.1 kb fragment. To allow discrimination among species with identically 
sized amplification products standard restriction digestions (Dra I or Hinf I) of 5 iil 
of the amplified products were conducted for 2-4 hours at 37 °C and evaluated on 
1.5 % agarose gels. Digestion with Dra I was carried out in case of the presence of 
a 0.52 kb amplification product. A four-banded pattern (0.44,0.29,0.23 and 0.08 kb 
fragments) separated M. hapla from M. chitwoodi, M. marylandi, M. nataliei M. 
naasi and M. fallax. In case of the presence of a 1.7 kb fragment a Hinf I digestion 
distinguished M. javanica from M. incognita on basis of an undigested band and 
two-banded patterns (0.4 and 1.3 kb fragments) respectively (39). Results were ob
tained with about 90% of the individual J2s tested. 

RESULTS 

There were hardly any discrepancies between the time consuming morphological 
identifications and the rather straightforward and rapid identifications based on am
plification of intergenic spacer region of the mtDNA (Figure 2.1). Contradictory re
sults between the morphological and DNA-based identifications were obtained with 
three isolates (4.1%). The perineal patterns pointed at M. javanica and the DNA 
based identifications at M. incognita. The outcomes of the DNA analyses were fol
lowed. 
Seventy-three isolate originating from 22 Meloidogyne populations were collected 
in 11 areas previously cropped with cucumber, tobacco or tomato. Two glasshouses 
turned out to be free from Meloidogyne infestations. Mostly mixtures of species 
were found and M. javanica (Treub) Chitw. was present in nearly all tomato crops. 
Thirty-five isolates were identified as M. incognita (Kofoid and White) Chitw., 26 
as M. javanica, 10 as M. arenaria (Neal) Chitw. and 2 as M. hapla Chitw. 

Virulence characteristics of the isolates were determined on the susceptible 
cvs Moneymaker and Vivia and the Mi resistant cvs Carmello and Manthos (Table 
2.2, Figure 2.2). All M. incognita isolates reproduced on both susceptible cultivars. 
It was noticed that often the numbers of egg masses on cv. Moneymaker were high
er than the numbers of galls. On cv. Vivia the opposite was true. Four out of the 35 
M. incognita isolates (11 %) (two MiB, MiS and Mil) also produced egg masses on 
the resistant cultivars. One of the two MiB isolates, being the most virulent, repro
duced equally well on cv. Moneymaker and both resistant cultivars. 

As also shown in Table 2.2 the M. javanica isolates generally reproduced 
well on both susceptible cultivars although numbers of egg masses on cv. Vivia 
tended to be less than on cv. Moneymaker. 
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1.7 

1.3 

0.4 

Figure 2.1 - PCR amplification of mtDNA of individual J2s. Primers and conditions are as described by Powers 

and Harris (26). The 1.7 kb product is characteristic for M. incognita and M. javanica (lanes 1, 2 and 5, 6 re

spectively). After a Hinf I digestion of the 1.7 kb fragment Meloidogyne incognita (lane 3, 4) is identified by a 

two banded pattern and the M. javanica (lane 7, 8) fragments remains undigested. The 0.52 kb product (lanes 9, 

10) is characteristic for a number of Meloidogyne species. After a Dra I digestion four unique fragments identify 

M. hapla (lanes 11, 12). M. arenaria gives a 1.1 kb product (lanes 13, 14). The first and last lanes are standard 

markers. 

Twelve out of the 26 isolates (46 %) were virulent at least on one of the Mi-
bearing cultivars. Some of the isolates (MjG, MjK and MjSH) produced slightly 
more egg masses on cv. Carmello than on cv. Manthos, while for some other iso
lates from the same locations (MjG, MjK and MjKu) the opposite was true. 

The highest number of virulent isolates (50 %) was found with M. arenaria. 
All isolates reproduced on the two susceptible cultivars. Isolate MaK and two MaS 
isolates were also fully compatible with the both resistant cultivars and MaSH and 
one of the MaS lines reproduced better on cv. Manthos than on cv. Carmello. 

Both M. hapla isolates were fully compatible with all four tomato genotypes. 
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Table 2.2 - Means of the square root numbers of egg masses of 73 Meloidogyne isolates on roots of four 

Lycopersicum genotypes differing in presence or absence of the Mi gene (means are of four replicates; 

virulent populations are shaded). 

Isolates 

MiBl2.4 
MiBl2.5 

MiBl2.6 
MiBl2.7 
MiBl2.8 

MiBl2.9 
MiBl2.l0 
MiSHl7.4 
MiSHl7.5 
MiSHl7.7 
MiSHi7.9 
MiSH 17.10 
MiSH 17.12 
MiSH 25.1 
MiSH 25.2 
MiSH 25.3 
MiSH 25.8 
MiSH 26.2 
MiSH 26.3 
MJSH15.3 
MjSH 15.10 
MaSH25.4 
MaSH25.5 
MaSH 25.10 
MiSBl9.3 
MiSBi9.6 
MiSBl9.7 
MiSBl9.9 
Mil29.3 
Mil29.6 
MN29.10 
Mil30.4 
Mi 130.7 
Mi P 32.5 
Mi P 32.9 
MiP32.11 
Mi P 33.1 

Egg 

Money
maker 

8,25 «a 
10,72 -a 

7,35 *a 
3,46 *a 
8,83 *a 
9,49 *a 
5,66 *a 
6,93 *a 
7,87 -a 
7,35 a 

10,15 a 
16,09 *a 
6,00 a 
6,78 *a 

11,96 a 
8,19 " a 

13,49 *a 
9,90 a 

13,67 a 
8,72 a 

8,49 a 

15,52 a 
7,07 a 

14,18 a 
9,38 *a 

16,22 a 

7,21 a 
9,59 a 
3,87 a 
3,16 a 

11,09 a 
7,21 a 
6,93 a 
7,62 a 
4,00 a 
4,58 a 
6,71 a 

masses / Root system 

Vivia 

4,47 " b 
6,40 **b 

11,83 *b 
9,64 **b 
9,43 " a 
8,43 a 
7,28 "b 
0,00 
4,47 "b 
6,56 a 

12,04 *b 
10,10 *b 
18,28 -b 
8,77 b 

10,91 *a 
13,27 - b 

9,80 -b 
9,43 a 

10,30 " b 
2,65 *b 
3,74 b 

14,63 *a 
7,35 a 

11,18 **b 
8,06 a 
9,95 b 
4,90 *b 
8,37 *a 
2,83 a 
3,16 a 
8,25 b 
7,35 a 
7,68 a 
5,10 -b 
2,00 *b 
2,45 b 
5,83 a 

Carmello 

0,00 c 
1,41 c 
0,00 c 
2,45 " a 
0,00 c 
2,00 c 
1,00 c 
0,00 c 

0,00 -c 
0,00 c 
0,00 c 
1,00 c 
0,00 c 
0,00 c 
1,00 c 
0,00 - c 
2,00 c 
0,00 c 
0,00 **c 
0,00 c 
2,24 c 
1,41 c 
1,41 c 
1,41 c 
1,00 c 
1,00 *c 
1,00 c 
0,00 c 
0,00 c 
0,00 c 
1,00 c 
0,00 c 
1,41 c 
0,00 c 
0,00 c 
0,00 c 
0,00 c 

Manthos 

1,41 c 
0,00 d 
0,00 c 
2,65 a 
0,00 c 
5,10 d 
0,00 d 
0,00 c 
0,00 -c 
0,00 c 
1,00 d 
0,00 d 
1,41 d 
0,00 c 
0,00 d 
1,41 *d 
0,00 d 
0,00 c 
1,00 d 
1,00 d 
1,00 d 
1,00 c 
1,41 c 
2,00 c 
1,00 c 
0,00 d 
0,00 -d 
0,00 c 
0,00 c 
0,00 c 
2,00 -d 
0,00 c 
0,00 d 
0,00 c 
0,00 c 
0,00 c 
0,00 c 

Isolates 

MiP33.3 
MiP33.6 
MiP33.8 
MJP31.1 
MJP31.2 
MaP33.5 
MJK21.1 
MJK21.4 
MJK21.8 
MJK2.2 
MJK2.4 
MJK2.6 
MJK2.7 
MJK2.10 
MJK3.3 
MJK3.12 

MJK3.13 
MaK22.1 
MhK2.8 
MJG4.3 
MJG4.4 
MJG4.5 
MJG4.6 
MJG4.10 
MjG4.11 
MJG4.13 
MJKU7.3 
MJKU7.4 
MJKU7.7 
MJKU7.9 
MhKU7.6 
MaS27.2 
MaS27.5 
MaS 27.6 
MaS27.9 
Mas27.11 

Egg 

Money
maker 

9,33 a 
5,74 a 
9,06 a 
9,33 a 

10,39 -a 
8,12 -a 
8,66 a 
3,61 -a 
8,89 a 
8,25 a 
9,59 a 
7,35 a 
9,49 a 

11,05 -a 
8,25 *a 
7,87 a 

14,35 a 
11,58 a 
8,66 a 
9,22 a 
3,16 a 
9,27 a 

11,40 a 
7,48 -a 
9,00 a 
8,49 a 
9,59 -a 
8,37 a 

10,20 -a 
8,72 *a 
9,90 -a 
8,49 a 

13,67 a 

11,58 a 
8,83 a 
7,28 a 

masses / Root syste 

Vivia Carmello 

8,25 a 
4,00 *b 
8,72 a 

5,00 " b 
8,89 " b 
7,07 - a 
3,61 b 
5,29 -b 
6,00 *b 
7,00 b 
5,83 b 
4,80 b 
3,61 **b 
6,86 -b 
8,60 a 
4,58 b 

10,10 b 
12,17 a 
6,71 a 
6,48 b 
3,46 a 

12,53 a 
5,20 -b 
2,83 - b 
4,69 b 
4,58 b 
4,90 *b 
7,21 a 
7,35 " b 
5,57 -b 
5,29 - b 
8,00 a 

12,49 a 
11,09 a 
7,94 *a 
6,16 a 

0,00 c 
0,00 c 
1,00 c 
0,00 c 
0,00 *c 
0,00 c 
2,65 be 
1,00 *c 

2,45 c 
0,00 c 
0,00 c 
0,00 c 
0,00 c 
0,00 c 
1,00 c 
0,00 c 
1,00 c 
2,83 «c 
1,73 c 
1,41 c 
1,00 c 
2,24 c 
3,00 c 
1,41 *c 

1,73 c 
0,00 c 
1,41 c 
0,00 c 
1,00 c 
0,00 «c 

2,00 -c 
0,00 -c 
0,00 c 
2,24 c 
2,65 -c 
0,00 c 

m 

Manthos 

0,00 c 
0,00 c 
1,00 c 
1,00 d 
0,00 c 
0,00 c 
2,00 c 
2,45 d 
1,41 d 
0,00 c 
0,00 c 
1,00 d 
0,00 c 
0,00 c 
3,46 d 
1,00 d 
0,00 d 
4,58 *d 
3,61 a 
3,16 d 
0,00 d 
8,89 a 
2,65 c 
0,00 d 
1,41 c 
1,41 d 
2,00 c 
0,00 c 
2,24 d 
1,73 d 
2,65 " b 
0,00 -c 
1,41 d 
3,87 d 
2,00 c 
2,00 d 

* numbers of galls less that numbers of egg masses 

** numbers of galls more that numbers of egg masses 

Isolate-genotype combinations sharing a common letter do not differ significantly at P = 0.05. 
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ABSTRACT 

In order to expand our understanding of the unpredictable behaviour of root-knot 
nematodes, the genetic variation in nuclear DNA and mitochondrial DNA in Mel-
oidogyne incognita, M. arenaria and M. javanica was investigated. Despite the ob
ligate mitotic parthenogenetic mode of reproduction, a large number of AFLP poly
morphisms were observed among all 16 populations studied. Both UPGMA and 
principle coordinate analyses revealed three distinct groups that corresponded with 
the respective species identities of the 16 populations. M. incognita was genetically 
most distinct. Amplification of 63 bp tandem repeats (TR) in mtDNA from single 
individuals enabled the calculation of diversity measures at three hierarchical lev
els: within individuals, among individuals of a single population and among popu
lations. For all three species, the highest diversity was observed within individuals 
explaining 43 to 65% of the total diversity. Many individuals contained more than 
one mtDNA size variant. M. incognita harboured the most heteroplasmic individu
als and was also the most homogenous at the population level. Only 13% of the to
tal diversity was observed among populations, while this figure was 35% for M. 
arenaria. No consistent relation was observed between intraspecific distances 
based on nuclear DNA and mtDNA. The discordance between the two data sets de
rived from the two unlinked genomes and the possible causes are discussed. 

INTRODUCTION 

Knowledge of the genetic structure at the population level is a prerequisite for un
derstanding and predicting the behaviour of pathogens in the field. In order to study 
how genetic principles apply to a population of a pathogen the genetic information 
enclosed in the genome of the individuals should at least be partly revealed. Quan
tification of genetic variability has a pivotal role in contemporary phytonematology 
too, but is considered as one of the least understood aspects of nematode population 
biology (10). This especially holds true for obligatory parthenogenetic species such 
as the three most common species of root knot nematodes Meloidogyne incognita, 
M. arenaria and M. javanica (49). In these species parthenogenesis is of the mitotic 
type and the somatic (2n) number of chromosomes is maintained during maturation 
of the oocytes. Sperm for fertilisation of the oocyte is not necessary for egg devel
opment. The progenies of a single female should, therefore, be identical but genetic 
differences appear within and among populations. These genetic differences within 
species and within populations of a single species may account for the variable re
sults of various nematode control strategies such as the growth of resistant crops 
(34). Since there is no definite species concept that includes parthenogenetic organ
isms, root knot nematode species are subjective entities based on morphology and, 

3 8 Makedonka Dautova 



Nuclear and mitochondrial DNA polymorphisms 

to some extent, on host response (48). For practical reasons each of these species 
consists of a large number of field populations that share characteristics of taxo-
nomic value. 

As with all animals, the nematode genome consists of nuclear and mitochon
drial DNA (mtDNA)(25). Population genetic studies can be conducted by studying 
polymorphisms at either DNA level. The evolution of the nuclear and mtDNA are 
unlinked, and discordance between the two DNA types can be expected since the 
mitochondrial genome mutates at a substantial higher gear {e.g. 7, 13). The mtDNA 
data are therefore more likely to display useful variation at population and individ
ual levels (2). 

To date, several PCR (Polymerase Chain Reaction)-based approaches using 
genomic DNA have been applied to investigate inter- and intrapopulation genetic 
diversity in Meloidogyne species. RAPDs (Random Amplified Polymorphic DNA) 
have been broadly used as a tool to address variation (11, 12, 20, 29, 55, 59). The 
use of RFLPs (Restriction Fragment Length Polymorphism) is more reproducible 
and sensitive thus enabling more precise estimates of genetic variations (9, 15, 19, 
20). The technique, however, requires substantial amounts of high quality DNA, 
which is a major drawback when plant parasitic nematodes are the subject of the 
analysis. In contrast to the former approaches, the AFLP technique (59) generates 
virtually unlimited numbers of DNA fragments from nanogram quantities of ge
nomic DNA and the stringent reaction conditions guarantee reproducibility and 
quantification (17, 18, 53). The discriminatory power of this approach was among 
others demonstrated by Semblat et al. (43, 50) who have explored the AFLP proce
dure in a genetic analysis of root knot nematodes. 

Since the late 1970s similar attempts have been made to assess interpopula-
tion and individual genetic variations based on polymorphisms within mtDNA of 
vertebrates and arthropods (2). Hyman and Slater (25) were the first to study mtD
NA sequence variations in Romanomermis culcivorax, a parasitic nematode of mos
quitoes. Tandemly repeated sequences have been characterised in the mtDNA ge
nome of root knot nematodes (36) and were explored for studying polymorphisms 
in M. incognita populations and individuals (26, 56). Polymorphisms within the re
petitive regions in mtDNA is limited to only a few organisms such as the white stur
geon Acipenser transmontanus (8) and the Atlantic cod Gadus morrhua (1). 

In this chapter the genetic variation in 16 geographically unrelated M. incog
nita, M. javanica and M. arenaria populations was assessed using AFLP markers in 
nuclear DNA and tandem repeats in mtDNA. The AFLP technique was used to as
sess the genetic diversity among populations, while the tandem array of 63-bp re
peats allowed an estimate of the diversity at three hierarchical levels: within indi
viduals, among individuals within populations and among populations. 
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MATERIALS AND METHODS 

Nematodes. Five isolates of M. incognita, 5 of M. javanica, and 6 of M. arenaria 
were propagated on Lycopersicum esculentum cv Moneymaker under glasshouse 
conditions (Table 3.1). The geographically unrelated populations were either taken 
from our laboratory collection or obtained from the Plant Protection Service, Wage-
ningen, The Netherlands. The species identification of each isolate was done by 
testing their isozyme phenotypes of esterase and malate dehydrogenase (14) and the 
intergenic spacer region between the cytochrome oxidase II gene and the 16S rRNA 
gene in the mtDNA of single juveniles (36). 

Table 3.1 - Origin of Meloidogyne populations used in this study 

Meloidogyne 

spp. 

M. incognita 

M. javanica 

M. arenaria 

Isolate 

M 

M 

M 

M 

M 

Mj 

Mj 

Mj 

Mj 

- 1 

- 2 

- 3 

- 4 

- 5 

- 1 
- 2 

- 3 

- 4 

M j - 5 

Ma- 1 

M a - 2 

M a - 3 

M a - 4 

M a - 5 

M a - 6 

Code 

L48 

C3055 

C4756 

C9956 

D 385 - C 

LI 

C3059 

C2539 

C8032 

13 

LI 

C8526 

C7277 

14 

C6460 

C9891 

Origin 

NL 

China 

Hungary 

NL 

China 

NL 

China 

Costa Rica 

NL 

U.S.A. 

NL 

U.S.A. 

NL 

Belgium 

Columbia 

NL 

Host of 

origin 

tomato 

bonsai 

tomato 

Rhodochiton sp. 

Ligustrum sp. 

tomato 

bonsai 

Chrysanthemum sp. 

Celosia sp. 

tomato 

unknown 

Hosta lancifolia 

Hosta sp. 

tomato 

Livinstonia rotundofolia 

Philodendron sp. 

Year of 

sampling 

-
1990 

1991 

1997 

1997 

-
1990 

1990 

1995 

1997 

1994 

1996 

1994 

1997 

1993 

1997 

AFLP procedure. Egg masses were harvested from infected tomato roots and treat
ed with 0.5 % NaOCl (23). After hatching at 22 °C the mixture of second stage juve
niles (J2s) and eggs was homogenised in proteinase K buffer (20 mM Tris - pH8, 
100 mM EDTA, 0.5% SDS, 2 mg/ml proteinase K) and incubated at 50 ̂ C for 4 
hours. A single phenol and chlorophormrisoamyl extraction was followed by adding 
10 M ammonium acetate and absolute ethanol to precipitate the DNA. The DNA 
pellet was washed twice with 70% ethanol, air dried and resuspended in 20 ml TE 
buffer pH7.5 (41). 
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The AFLP procedure was performed as described by Zabeau and Vos (59). 
The digestion of genomic DNA with Eco RI and Mse I was followed by the ligation 
of an Eco Rl-adapter and an Mse I-adapter (Table 3.2). The ligation mix was used 
in a nonselective amplification (preamplification) using primers that annealed to 
the Eco RI (E+0) and Mse I adapter sequences (M+0) (Table 3.2). The PCR reac
tion was performed in a PE-9600 thermal cycler (Perkin Elmer, Norwalk, USA) us
ing the following profile: 30 cycles of 30" denaturation at 94°C, 30" annealing at 
5 6 ^ and 60" extension at 72 °C. Verification of the PCR products was done in 1% 
agarose gel in TAE buffer stained with 0.5 ml/ml ethidium bromide (41). In a typical 
reaction the DNA fragments appeared on gel as a smear from 50 bp up to 500 bp. 
The preamplification product was diluted lOx with ddH20 to prepare it as the sec
ondary template for the selective amplification. 

For selective amplification of restriction fragments, only one primer (E+GA) 
was labelled using lOmCi/ml g33P-ATP according to the recommendations of the 
manufacturer. In each reaction 5ng of labelled and 30 ng of unlabeled selective 

Table 3.2 - Sequences of adapters and primers used in this study 

EcoRI adapter 

Msel adapter 

EcoRI + Oprimer 
EcoRI + 2primer 
Msel + Oprimer 
Msel + 2primers 

Msel + 3primers 

TR-F 
TR-R 

EOO 
E+GA 
MOO 
M+AC 
M+AG 
M+AT 
M+CC 
M+CG 
M+CT 
M+GA 
M+GC 
M+GT 
M+TA 
M+TG 
M+TT 
M+AAA 
M+AAC 
M+AAG 
M+AAT 
M+ACC 

5' -CTC GTA GAC TGC GTA CC 
3' -CTG ACG CAT GGT TAA- 5' 

5' -GAC GAT GAG TCC TGA G 
3' -TAC TCA GGA CTC AT- 5' 

5' -GAC TGC GTA CCA ATT C- 3' 
5' -GAC TGC GTA CCA ATT CGA- 3' 
5' -GAT GAG TCC TGA GTA A- 3' 
5' -GAT GAG TCC TGA GTA AAC- 3' 
5' -GAT GAG TCC TGA GTA AAG- 3' 
5' -GAT GAG TCC TGA GTA AAT- 3' 
5' -GAT GAG TCC TGA GTA ACC- 3' 
5' -GAT GAG TCC TGA GTA ACG- 3' 
5' -GAT GAG TCC TGA GTA ACT- 3' 
5' -GAT GAG TCC TGA GTA AGA- 3' 
5' -GAT GAG TCC TGA GTA AGC- 3' 
5" -GAT GAG TCC TGA GTA AGT- 3' 
5' -GAT GAG TCC TGA GTA ATA- 3' 
5' -GAT GAG TCC TGA GTA ATG- 3' 
5' -GAT GAG TCC TGA GTA ATT- 3' 
5' -GAT GAG TCC TGA GTA AAA A- 3' 
5' -GAT GAG TCC TGA GTA AAA C- 3' 
5' -GAT GAG TCC TGA GTA AAA G- 3' 
5' -GAT GAG TCC TGA GTA AAA T- 3' 
5' -GAT GAG TCC TGA GTA AAC C- 3' 
5 - CTA TTT TAA AGT TAT CGA CTG-3' 
5'-CCT AAA GAC TTT TTA TCC TAA C-3' 
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primers (M + 2 and M+ 3, Table 3.2) was used. The PCR proceeded according to a 
touch-down profile of 24 cycles: 12 cycles of 30" denaturation at 9 4 ^ , 30" anneal
ing at 65 °C, 60" extension at 72°C; the annealing temperature was reduced each 
cycle by 0.7 °C for the next 12 cycles, and was continued at 5 6 ^ for the remaining 
24 cycles. A total of twelve M+2 and five M+3 primers were used in a combination 
with the labelled E+GA primer. The PCR products were mixed with an equal vol
ume of formamide-loading buffer, denaturated for 5' at 95^C and loaded on a 5% 
polyacrylamide gel (Sequagel-5, BioZym, Georgia, USA) in lxTBE electrophoresis 
buffer (41). Following transfer on Whatmann 3MM paper (Model 583, Bio-Rad), 
gels were dried, and used to expose X-Ray films (Konica, Tokyo, Japan) for 3 and 
6 days at room temperature. The autoradiograms of the DNA fingerprints were sca
nned and cross-checked with a computer package providing a semi-automatic ana
lysis, developed for quantitative analysis of DNA fingerprinting patterns. In each 
reaction the presence/absence of bands was scored. 
63-bp TR (tandem repeats) procedure. Template DNAs were prepared from the 
following sources: i) pooled genomic DNA from preparasitic second stage juveniles 
and ii) genomic DNA from individual J2s. The DNA from these individual J2s was 
obtained by maceration of the larvae in 10 ml of sterile water. The primers TR-F and 
TR-R (Table 3.2) and amplification conditions used have been according to Hyman 
and Whipple (26). The forward primer specifically anneals to a non-coding region 
fifteen bp upstream of the 63 bp repeating unit array. The reverse primer binds five 
bp downstream of the TR within the mitochondrial tRNAmet gene. PCR products 
were fractionated on Tris-Acetate-EDTA buffered (30) 2% agarose gels (Meth-
aPhor, FMC, USA). The gels were stained with gelstar (BioProduct, Rockland, ME, 
USA) and photographed with Polaroid negative film under UV light. The bands 
were scored for intensity and presence/absence. 

Data analysis. 
AFLP - The presence/absence of bands was scored for all populations. Experiments 
were repeated at least once, and only DNA fragments consistently present or absent 
were taken into account and treated as binary characters. Calculation of the genetic 
distances (GD) between populations was based on pair-wise comparisons and cal
culated according the following equation: GDxy=l-[2Nxy/(Nx+Ny)], where Nx is 
the number of fragments in genotype x, Ny is the number of fragments in genotype 
y and Nxy is the number of fragments shared by genotypes x and y (33). The den
drogram of the 16 Meloidogyne populations was constructed from the genetic dis
tance matrix by using the UPGMA algorithm (44). Thousand bootstrap replicates 
were performed to test the support of the branches (16). The binary tables were an
alysed with a Treecon software package (version 1.3b) for construction and drawing 
of dendrograms and trees (51). Principal coordinate analysis was performed to ac-
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cess interspecies relationship based on the Nei and Li (33) coefficient using the Nt-
SYS-pc software (40). 
63-bp TR - To estimate the relative frequencies of mtDNA length variants within 
and among individual nematodes, the relative intensities of bands reflecting hetero-
plasmic variations were assessed by a combination of ImageBioMax densitometry 
software and visual estimation. Characterisation of the variation within and among 
samples was done by K-indices (5). Gene diversity was calculated from the mtDNA 
size class frequencies by K-indices, where K = l-(Sx.2), where x. is the frequency 
estimate of mtDNA size class i within individuals. Kb is the diversity within an in
dividual, Kc within a population and Kd is a measure for the total diversity. For 
each species, diversity measures were calculated at three hierarchical levels: i) 
within individuals (Ci=averageKb/Kd)), ii) among individuals within a population 
(Cip=(averageKc-averageKb)/Kd) and iii) among populations within a species 
(Cps=(Kd-averageKc)/Kd) (39). By definition, Ci+Cip+Cps = 1.0 (1). To test the 
differences in allele frequency distributions among populations the G-test was em
ployed (46). 

The 63-bp repeating units were also scored as presence/absence between 
populations and treated in the same way as the AFLP fragments using the software 
package Treecon (1.3b). 
AFLP and TR Correlation - Taking into account that we deal with two variables 
(genetic distances based on AFLP and VNTR markers) and one fixed parameter (the 
examined populations) we have performed a statistical analysis. To investigate a 
possible correlation between the AFLP and TR data the 'product-moment correla
tion coefficient' (PMCC) was calculated. The PMCC between the intraspecies GD 
values of AFLP and TRs, was computed by PMCC=Sy1y2/ OSy2

1Sy2
2(47) using the 

SAS/STAT software package (42). 

RESULTS 

AFLP. Presence/absence polymorphisms in AFLP fingerprints were scored for five 
M. incognita, five M. javanica and six M. arenaria populations. The number of 
fragments per primer combination ranged from 29 to 72 with sizes varying from 50 
to 500 bp (Figure 3.1). The total number of fragments ranged from 295 to 338, 258 
to 323 and 319 to 454 for the M. incognita, M. javanica and M. arenaria popula
tions, respectively. The proportion of polymorphic DNA fragments between M. in
cognita populations (32%) was low as compared to proportions in M. javanica 
(52%) and M. arenaria (61%). There were 168,64 and 69 bands species specific for 
M. incognita, M. javanica and M. arenaria, respectively. 
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M. inco&uia Jtef arenria 

1 2 3 » 5 « 7 8 9 W U 12 13 14 13 It 

Figure 3.1 - AFLP fingerprints generated with primer combination E+GA / M+AC. Subsequent lanes contain 

amplification products from 16 Meloidogyne populations, five M. incognita, five M. javanica and six M. 

arenaria. Polymorphic bands for Meloidogyne spp. are designated with arrows. Population codes are given in 

Table 3.1. 

Based on genetic distances (Table 3.3) and UPGMA analysis the 16 Meloidogyne 
populations were grouped into three clusters, which corresponded with their respec
tive species identities. The average GD among populations within a species was 
0.15 for M. incognita, 0.27 for M. javanica and 0.22 for M. arenaria. The GD val
ues between species were much higher. Between M. incognita and M. javanica pop
ulations the GD value was 0.64. Between M. incognitalM. arenaria and M. javani-
ca/M. arenaria the GD values were 0.62 and 0.40, respectively. The branches in the 
similarity dendrogram were evaluated by 1000 bootstrap replicates. The M. incog
nita populations were assigned to one cluster with 100% bootstrap support, where
as M. javanica and M. arenaria populations were grouped in separate clusters with 
a bootstrap value of 99% (Figure 3.2). These findings were supported by principle 
coordinate analyses (Figure 3.3). 
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Table 3.3 - Genetic distance matrix of 16 screened Meloidogyne populations belonging to M. incognita, M. 

javanica and M. arenaria, generated by the formula of Nei and Li (1979), after binary transformation of the 

AFLP fragments (below the diagonal) and the TR fragments (above the diagonal). 

Mi-1 

Mi-2 

Mi-3 

Mi-4 

Mi-5 
Mj-1 

Mj-2 
Mj-3 

Mj-4 
Mj-5 

Ma-1 
Ma-2 

Ma-3 
Ma-4 

Ma-5 
Ma-6 

Mi-1 

-
0,18 

0,20 

0,21 

0,22 
0,60 

0,66 
0,64 
0,67 

0,64 
0,62 

0,59 

0,60 
0,64 

0,59 
0,62 

Mi-2 

0,03 

-
0,13 

0,15 

0,15 
0,59 

0,66 
0,62 

0,69 
0,64 
0,61 

0,59 

0,60 
0,63 

0,58 

0,58 

Mi-3 

0,03 
0,07 

-
0,10 

0,08 

0,65 
0,68 

0,66 
0,72 

0,68 
0,68 

0,65 

0,66 
0,68 

0,62 

0,63 

Mi-4 

0,03 

0,00 
0,07 

-
0,11 

0,54 

0,59 

0,58 
0,63 
0,57 
0,62 
0,57 

0,59 

0,61 

0,54 
0,57 

Mi-5 

0,09 

0,13 
0,06 

0,13 

-
0,64 

0,68 
0,67 

0,72 

0,68 
0,67 

0,63 
0,65 

0,68 
0,62 

0,63 

Mj-1 

0,36 

0,33 
0,39 

0,33 

0,44 

-
0,27 

0,22 
0,34 

0,21 

0,35 
0,35 

0,35 
0,37 

0,34 
0,29 

Mj-2 
0,07 

0,04 

0,10 
0,04 

0,16 
0,30 

-
0,28 

0,26 
0,28 
0,44 

0,45 

0,46 
0,46 

0,43 
0,42 

Mj-3 

0,11 
0,08 
0,14 

0,08 

0,20 
0,26 

0,04 

-
0,29 
0,26 
0,39 

0,39 
0,40 
0,41 

0,36 
0,35 

Mj-4 

0,20 
0,17 

0,23 

0,17 

0,29 
0,18 

0,13 

0,09 

-
0,26 
0,44 

0,45 
0,47 

0,48 
0,42 

0,45 

Mj-5 
0,07 

0,03 

0,03 

0,03 

0,09 
0,36 
0,07 

0,11 

0,20 

-
0,39 
0,37 

0,40 
0,41 

0,36 

0,38 

Ma-1 
0,20 
0,17 

0,23 
0,17 

0,29 
0,18 

0,13 
0,09 

0,10 

0,20 

-
0,08 
0,04 

0,15 

0,31 
0,32 

Ma-2 

0,25 

0,22 

0,28 
0,22 

0,33 

0,13 
0,18 
0,14 

0,16 

0,25 
0,05 

-
0,07 

0,17 

0,30 
0,32 

Ma-3 

0,30 
0,27 

0,33 

0,27 

0,38 
0,07 

0,24 

0,20 
0,22 

0,30 

0,11 
0,06 

-
0,15 
0,32 

0,32 

Ma-4 

0,11 
0,08 

0,14 

0,08 

0,20 
0,26 
0,04 

0,00 

0,09 

0,11 
0,09 
0,14 

0,20 

-
0,27 
0,32 

Ma-5 
0,00 

0,03 

0,03 

0,03 

0,09 
0,36 
0,07 

0,11 
0,20 
0,07 
0,20 

0,25 

0,30 

0,11 

-
0,19 

Ma-6 
0,12 

0,15 

0,09 

0,15 

0,08 

0,46 
0,19 

0,23 

0,31 
0,12 
0,31 

0,36 
0,41 

0,23 
0,12 

-

JiML 

_2?_ 
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_LWL 
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Figure 3.2 - Dendrogram of 16 Meloidogyne populations belonging to M. incognita, M. javanica and M. are

naria, based on AFLP data. Population codes are given in Table 3.1. 
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_ Mi-5 
Mi-4 I \ ^ ^ M i - 3 

Figure 3.3 - Relationships among 16 Meloidogyne populations belonging to M. incognita, M. javanica and M. 

arenaria obtained by principle coordinate analysis using AFLP data. Population codes are given in Table 3.1. 

63-bp TR. Successful amplifications of 63-bp TRs from pooled individuals were 
achieved for all populations. When electrophoretically resolved, banding patterns 
appeared in which each successive band was 63-bp larger than its immediately ad
jacent band. This indicated that the multiple PCR products resulted from the pres
ence of mtDNA template molecules having different numbers of the 63-bp repeat
ing unit. The band intensities refelected the copy number of the mtDNA size vari
ants. Similar banding patterns were obtained from DNA prepared from individual 
J2s, indicating that heteroplasmic nematodes containing multiple mtDNA size vari
ants help comprise the genetic structure of the nematode populations (Figure 3.4). 

M. incognita M. javanica 

' > S H 1 0 ™ « P » M B B M 
<jB0,;5P ^Hf wmm •»» H H F ^ ^ I H F f l l l lMi 

46 

Figure 3.4 - 63-bp TR profiles generated 
within M. incognita, M. javanica and M. 
arenaria individuals. Each line represents 
single second stage juvenile. 

Lane 1,2 individuals from Mi-1, 
Lane 3,4 individuals from Mi-2, 
Lane 5,6 individuals from Mj-1, 
Lane 7,8 individuals from Mj-2, 
Lane 9,10 individuals from Ma-1, 
Lane 11,12 individuals from Ma-2. 

The positions of the 2nd till the 15"1 63-bp 
repeating unit are indicated by white dots. 
The 100-bp marker is on the left. Population 
codes are given in Table 3.1. 
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In this study the various types of TRs and their frequencies were studied in 
ten to fifty J2s per population. All populations contained substantial numbers of het-
eroplasmic individuals ranging from 17 to 100% (Table 3.4). M. incognita had on 
average the highest number of heteroplasmic individuals. The number of 63 bp re
peats varied from 7 to 20. In general heteroplasmic nematodes have a higher 
number of repeats numbers than homoplasmic individuals. The genetic diversity 
was evaluated at three levels: i) within individuals (Ci), ii) among individuals (Cip), 
and iii) between populations (Cps). For all three species, the highest diversity is ob
served within individuals (Figure 3.6). The Ci values range from 65% for M. incog
nita to 43 and 48% for M. javanica and M. arenaria, respectively (Table 3.4). At 
the level of the population M. incognita was the most homogenous (Cps value of 13 
%) followed by M. javanica (24 %) and M. arenaria (35 %) (Table 3.4). A G-test 
for the frequency distributions of the various mtDNA size variants within the three 
species revealed significant differences between the three data sets (G=259,5756, 
d.f.=36; G=106,4144, d.f.=36 (Tv=67,985) and G=l 17,9254, d.f.=40, (Tv=73,402), 
P<0.001 , forM. incognita, M. javanica and M. arenaria, respectively). 

Table 3.4 - Hierarchical analysis of 63-bp repeating units of mtDNA in five M. incognita, five M. javanica and 

six M. arenaria populations. 

Meloidogyne 

species Population 
Kb range 

F(h) mm Kb Kc Kd Ci Cip Cps 

M. incognita Mi - 1 

M i - 2 

M i - 3 

M i - 4 

M i - 5 

50 

50 

12 

10 

12 

20 

34 

0 

0 

0 

0,32 

0,18 

0,65 
0,54 
0,75 
0,69 
0,77 

0,52 
0,24 
0,43 
0,53 
0,60 
0,46 

0,59 

0,31 

0,73 

0,64 

0,81 

0,62 0,71 0,65 0,22 0,13 

M. javanica M j - 1 

M j - 2 

M j - 3 

M j - 4 

M j - 5 

12 

12 

12 

10 

14 

67 
67 
0 
10 
36 

0 

0 

0,18 

0 

0 

0,50 

0,73 

0,72 

0,58 

0,73 

0,17 

0,17 

0,45 

0,43 

0,28 

0,30 

0,29 

0,22 

0,72 

0,73 

0,68 

0,53 0,69 0,43 0,33 0,24 

M. arenaria M a - 1 

M a - 2 

M a - 3 

M a - 4 

M a - 5 

M a - 6 

16 

10 

12 

16 

10 

12 

50 

50 

83 

50 

0 

17 

0 

0 

0 

0 

0,35 

0 

0,63 

0,50 

0,32 

0,66 

0,72 

0,77 

0,27 

0,17 

0,05 

0,25 

0,55 

0,52 

0,30 

0,34 

0,24 

0,06 

0,35 

0,78 

0,68 

0,41 0,62 0,48 0,17 0,35 

n - number of individuals sampled Kb-mtDNA diversity within individual 

F(h) - frequency of homoplasmic individuals Kc-mtDNA diversity within population 

Ci - % total genetic diversity within individual Kd- mtDNA diversity within species 

Cip - % total genetic diversity among individuals within populations 

Cps — % total genetic diversity among population within species (lineages) 
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Comparison of AFLP and TR data. In order to investigate the degree to which 
nuclear and mitochondrial variations in DNA are associated, the AFLP and TR data 
were compared in different ways. One way was to compare the Cps values with the 
number of AFLP polymorphisms among populations from a single species. The Cps 
value was the lowest for M. incognita (13%) and the highest for M. arenaria (35%), 
which is in agreement with the level of AFLP polymorphisms within M. incognita 
(32%) and M. arenaria (61%). 

Another way was to transform the TRs to binary data. Similar to the AFLP 
data, the 63-bp repeating units were treated as presence/absence data by comparison 
of all 16 populations and the binary table was used for calculating GDs (Table 3.3). 
The number of polymorphic TRs between the M. incognita populations was 20%, 
whereas this figure was 40% and 50% for M. javanica and M. arenaria, respective
ly. The average GD between populations of a single species were 0.06, 0.17 and 
0.20 for M. incognita, M. javanica and M. arenaria, respectively. UPGMA analyses 
showed that there is no consistent relationship between the two types of data when 
analysing the whole range of GD values. In contrast to the AFLP data (Figure 3.2), 
the similarity dendrogram based on the GD values of the TR data of the 16 Meloido-
gyne populations showed low bootstrap values for most clusters (data not shown). 
In addition, the M. arenaria and M. javanica populations were not clustered in sep
arate groups and were completely mixed. Only the five M. incognita populations 
occurred as a distinct group. 

Statistical tests for the correlation between the two types of GD data are also 
not consistent. Using the 'product-moment correlation coefficient' we found no sig
nificant correlation between the GD as determined with AFLP and the GD as deter
mined with TR between M. incognita (PMCC=-0.226973, d.f.=8) and M. javanica 
(PMCC=-0.514644, d.f.=8) populations, whereas a significant correlation (PMCC 
=0.000328, d.f.=13) exists between the two data sets for the M. arenaria popula
tions (Figure 3.5). 

0,45 

0,40 

0,35 

0,30 

fE 0,25 

O 0.20 

0,15 

0,10 

0,05 

0,00 

0,00 

- A ^ . 

Figure 3.5 - Comparison of genetic distances based 
on AFLPs and TRs data from six M. arenaria 
populations. 
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DISCUSSION 

The small size of nematodes, an obstacle for analysing single genotypes, has been 
overcome by using a PCR-based approach to study size variations in mtDNA mole
cules. To obtain an overall view of the genetic architecture of the 16 Meloidogyne 
populations, we analysed these populations also with the AFLP technique. To our 
knowledge, this is the first study in which both variations in nuclear and mitochon
drial DNA are investigated in plant parasitic nematode populations. 

AFLP fingerprints of 16 Meloidogyne populations, representing the 3 major 
mitotic parthenogenetic Meloiodygne species, displayed both common and differen
tial (e.g. species specific) bands within and between species. In our experiments the 
three Meloidogyne species were consistently grouped in three separate clustered. 
Further analysis of the AFLP fingerprints showed that at the species level M. java-
nica and M. arenaria are more related to each other than to M. incognita, what is in 
compliance with the AFLP analysis of Semblat et al. (43) and Van der Beek et al. 
(52). Baum et al. (4) and Tastet et al. (47) have found a similar genetic relationship 
based on RAPDs and protein analysis. However, evidence from mtDNA (20,22,58) 
suggests that M. arenaria is not closer related to M. javanica than it is to M. incog
nita. Others have placed M. arenaria even as the most distinct species (37). This lat
ter finding is also supported by the observation that M. arenaria is the only one that 
exists in triploid form with a somatic chromosome number larger than 50 (28). 

The dendrogram (Figure 3.2) shows no correlation between the AFLP data 
and the geographical origins of the populations. Several studies (6, 43, 50) have 
lead to similar conclusions, while others (4, 47) revealed consistent clusters due to 
common geographical origin. In our study, clustering geographically widely sepa
rated populations together (e.g., Mi-3 from Hungary and Mi-5 from China; Mj-1 
from the Netherlands and Mj-5 from USA; Ma-5 from Columbia and Ma-6 from the 
Netherlands), suggests common origins. Clustering Ma-1 and Ma-3 both from the 
Netherlands were exceptions. 

In addition to the results obtained with AFLP the structures of the 16 popula
tions were investigated using the mtDNA of individual nematodes. Generally, mtD
NA is used for population genetic studies because of two main peculiarities, i) high 
cellular copy number (24), ii) occurrence of polymorphic forms. Differences in the 
geographic distribution of mitochondrial DNA haplotypes have been used to esti
mate genetic differentiation within and among populations of various organisms 
(2). Intra- and interindividual variation in repeat numbers in mtDNA has been found 
in Meloidogyne incognita (56) and Romanomermis spp. (3, 25). At present no pop
ulation genetics have been done on M. javanica and M. arenaria using 63-bp TRs. 

In all three Meloidogyne species included in our investigation the highest di
versity in TRs was found within individuals (Ci). These results commensurate the 
diversity in mtDNA size variants in Gadus morhua (atlantic cod) for which it was 
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concluded that the generation of variation by length mutation overcomes the loss of 
variation due to random drift during cell division (1). Similar high heteroplasmy 
levels have been also reported for species of crickets (38, 39), frogs (31) and Dro-
sophila (21). 

As compared to M. incognita and M. javanica, M. arenaria shows strongest 
differentiation among populations with the lowest genetic diversity within popula
tions (Figure 3.6). These findings provide further evidence that M. arenaria is the 
most heterogenous of the three major mitotic parthenogenetic Meloidogyne species. 

nops 
• dp 

Figure 3.6 - Genetic diversity based on 63-bp tandem repeats on different hierarchical levels. 

Cps - % genetic diversity among population within species, 
Cip - % genetic diversity among individuals within populations, 
Ci - % genetic diversity within individual. 

Mutation to different 63-bp repeat copies is the primary mechanism by which 
size variation is generated in obligatory mitotic parthenogenetic root-knot nema
todes, because a paternal contribution is excluded (56). The diversity of the banding 
patterns produced by amplifying the 63 bp tandem repeats, together with the obser
vation that these patterns are stable (e.g., absence of the 8th 63-bp in all Mj-4 indi
viduals), suggest that this is a sensitive assay for substructuring of the Meloidogyne 
populations. One explanation for the lower incidence of heteroplasmy in some iso
lates may derive from the higher frequency of the single 63 bp repeat, because most 
mechanisms proposed for mutations require multiple 63-bp repeats. Several types 
of genetic rearrangements have been reported (27, 32,45, 54). 

With regard to the level of diversity among populations within a single spe
cies, both AFLP (% polymorphism) and TR (Cps values) data show that M. incog
nita has the lowest diversity and M. arenaria the highest. However, analyses of the 
relation between the genetic distances based on 63-bp TRs and AFLPs shows that 
the degree of divergence within species is not always correlated. For the six M. are-
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naria populations a positive correlation was found, whereas no correlation was ob
served for the other two species. Also similarity dendrograms based on the two 
types of genetic distances were not congruent. Only the five M. incognita popula
tions clustered as expected, while the other two species were intermingled. These 
inconsistencies between the two data sets are most likely the result of the forces that 
drive the variation in the mitochondrial and nuclear genome. It is thought that the 
rate of mutation to different 63 bp repeats copies is much higher than the rate of 
mutation in the nuclear genome. Also selection and drift are relatively strong. For 
example, not all repeat copies will be replicated at the same speed and extremely 
high copy numbers are probably not tolerated in the mitochondrial genome, setting 
a limit to the number of potential polymorphisms. In contrast to variation in nuclear 
DNA, drift is also operating on the TRs during vegetative germ line cell divisions, 
which would ultimately result in 100% homoplasmic individuals when not coun
tered by mutations. Altogether, these processes account for a highly dynamic sys
tem maintaining variation at the level of mtDNA. Together with the relatively small 
number of potential polymorphisms in 63 bp repeat copies, which favours conver
gence and parallelisms masking ancestral relationships, this is probably the most 
likely explanation for the observed disparities. 

This study shows that the species M. incognita, M. javanica and M. arenaria 
display a wide range of variations within individuals, among individuals within po
pulations, among populations within a single species and among species. AFLP ana
lyses at the latter two hierarchical levels indicated that variations in the number of 
63 bp repeats are not appropriate to study long term evolutionary processes. The 
rate at which these mitochondrial repeats evolve is probably too fast to retain the 
footprints of ancestral relationships, not only between species but also between 
populations of a single species. Nevertheless, mtDNA remains appealing because of 
the ability to study variation within a single genotype and the high evolution rate 
may also be an advantage when studying more short term evolutionary processes. 

AFLP analyses showed that despite the mitotic parthenogenetic mode of re
production the three species have a level of variation that is not very different from 
the potato cyst nematode species Globodera rostochiensis and G. pallida (17, 18) 
that have an amphimictic mode of reproduction. The intraspecific distances were 
even somewhat larger for the Meloidogyne species than for the Globodera species. 
These data challenge the prevailing view that mitotic parthenogenetic plant parasit
ic nematodes are less variable than amphimictic nematodes. The variation observed 
in this study at various hierarchical levels probably reflects the ability of Meloido
gyne species to parasitise a wide range of hosts and to adapt to various environ
ments. One of the challenges in the future will be to unravel the mechanism by 
which mitotic parthenogenetic organisms generate variation and at the same time 
maintain the integrity of the species. 
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ABSTRACT 

Expressed sequence tags (ESTs) have been widely used to assist in gene discovery 
in various organisms (e.g.,Arabidopsis thaliana, Caenorhabditis elegans, Mus mus-
culus, and Homo sapiens). In this paper we describe an EST project, which aims to 
investigate gene expression in Meloidogyne incognita at the onset of parasitism. 
Approximately 1000 5'-end sequence tags were produced from a cDNA library 
made of freshly hatched preparasitic second stage juveniles (J2). The ESTs were 
identified in the primary transformants of the cDNA library, and assigned to nine 
different functional groups, including (candidate) parasitism genes. A large fraction 
of the ESTs (45%) did not have a putative homologue in public databases. Sixty five 
percent of the ESTs that could be clustered into a functional group had putative 
homologues in other nematode species. ESTs were found for virtually all parasitism 
related genes that have been cloned from M. incognita to date. In addition, several 
novel genes were tagged, including a xylanase and a chitinase gene. The efficiency 
of EST projects, which produce sequence data for thousands of genes in months 
time without any difficult pre-selections of mRNA pools, makes random sequencing 
cDNA libraries a superior method to identify candidates for parasitism related genes 
in plant-parasitic nematodes. 

The sequences in this chapter are retrievable from Genbank with the acces
sion numbers BE191640 to BE191741, BE217592 to BE217720, BE225324 to 
BE225598, BE238852 to BE239221, and BE240829 to BE240865. 

INTRODUCTION 

Root-knot nematodes (Meloidogyne spp.) are polyphagous endoparasites, responsi
ble for billions of dollars in annual crop losses. The majority of the plant species 
that account for the world's food supply are susceptible to root-knot nematode in
fection. The hallmark of the complex nematode-plant interaction is the feeding cell 
structure that is induced by the nematode in the host plant. The feeding cell struc
ture - the giant cell - facilitates a permanent flow of plant nutrients from the vascu
lar tissue to the feeding nematode. Inadequate feeding cells result in poor develop
ment and reduced fecundity of the nematodes. Knowledge of nematode genes that 
are involved in host penetration, migration and feeding may help to design resist
ance strategies for pest control (61). 

The only published estimate of the haploid genome size of Meloidogyne is 51 
Mb (38), however, further estimates of the physical properties of the G. rostochien-
sis genome using AFLP analysis indicate that the size and the average G+C compo
sition of plant parasitic nematodes are similar to the estimates obtained for 
Caenorhabditis elegans (9.7 x 107 bp) (49). Hence, it is reasonable to assume that 
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the gene number of plant parasitic nematodes is also similar to that predicted for C. 
elegans (»19,000). 

To date various approaches have been applied to investigate gene expression in 
plant parasitic nematodes in order to identify candidate parasitism genes. In summa
ry, these approaches include screening of cDNA libraries either with monoclonal 
antibodies specific for nematode secretions (14, 15, 27) or with homologous plaque 
hybridization (29), PCR based cloning using degenerate primers (53), RNA finger
printing (17), and differential screening of cDNA libraries (31, 48). Although these 
methods have proven to be successful for a limited number of genes, all require pri
or knowledge of candidate genes or technically advanced pre-selections in mRNA 
pools. 

Random sequencing of cDNA libraries of various developmental stages has been 
applied to animal parasitic nematodes such as the filarial nematodes Brugia malayi 
and Onchocerca volvulus in order to identify expressed sequence tags (ESTs) of 
nematode genes (http://helios.bto.ed.ac.uk/mbx/fgn/net/librarylist.html and http://math. 
smith.edu/~sawlab/fgn/net/librarvlist.html). In the Brugia genome project, a combination 
of expressed sequence tag sequencing from multiple cDNA libraries representing 
the complete filarial nematode lifecycle, and comparative analysis of the sequence 
dataset has proven to be very effective in gene discovery. With the advent of high 
throughput sequencing facilities, the affordable prices of a single sequence run 
make similar EST projects feasible for plant parasitic nematodes too. Hence, appro
ximately 1000 ESTs were recently produced from the potato cyst nematodes, Glo-
bodera pallida and G. rostochiensis, and proved to be efficient tools for identifying 
novel parasitism genes (39,40). 

This chapter describes an EST project to investigate gene expression in Mel-
oidogyne incognita at the onset of parasitism. We have chosen to start with pre-par-
asitic second stage juveniles to cover the initial phases of the parasitic cycle, plant 
penetration and intercellular migration. Single-pass sequences were obtained from 
the 5' end of the cDNA inserts of the primary transformants of the cDNA library, and 
grouped into 9 functional classes, including (candidate) parasitism genes (16,43). 

MATERIAL AND METHODS 

Nematodes. Meloidogyne incognita, line 48, was propagated in greenhouse cul
tures on tomato cultivar Moneymaker at 20-25 aC. Eggs were harvested approxi
mately 12 weeks after inoculation and isolated using 0.5% NaOCl-solution (26). 
Second stage juveniles (J2) were collected from eggs in water on a cotton wool fil
ter, purified using 70% sucrose, and stored at -80 a C until further processing. 
RNA Isolation. Total RNA was extracted from 100 000 frozen pre-parasitic J2 using 
Trizol Reagent (Life Technologies, Gaithersburg, MD, USA). Following a chloro-
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form extraction, the RNA was precipitated in isopropyl alcohol. The pellet was sub
sequently washed in 75% ethanol, and the remaining RNA was dissolved in an ap
propriate volume of sterile dimethyl pyrocarbonate-treated water. Analysis of the 
total RNA on denaturing agarose gel resulted in a smear from 50 to 3000 bp with 
two distinct bands of ribosomal RNA. 
cDNA synthesis. The cDNA for the library was prepared using the Smart cDNA li
brary construction system (Clontech, Palo Alto, CA, USA) with a few modifica
tions. Briefly, 3 ml containing 50ng total RNA was transcribed into single strand 
cDNA using a Smart oligonucleotide, a modified oligo d(T)30 anchor primer, and 
Superscript II reverse transcriptase (Life Technologies). The single strand cDNA 
was amplified in 23 cycles (long-distance) of PCR according to the manufacture's 
protocol (Clontech). The amplified cDNA was digested with Sfi I restriction en
zyme, and fractionated in a Chroma-Spin-400 column (Clontech). Only the size 
fractions including cDNA ranging from 700 to 1500 bp were pooled, and subse
quently ligated into the vector plasmid pMAKl. 
Construction of library into plasmid pMAK I. The plasmid pMAKl was derived 
from the plasmid pcDNA II (Invitrogen, San Diego, CA, USA). The Eco RI - Bam 
HI element in the multiple cloning site of pcDNA II was replaced by a fragment, 
which includes two Sfi I restriction sites that allow for directionally cloning (Figure 
4.1). Briefly, two oligonucleotides 5'-AATTCGCTAGGCCATTATGGCCGCTAG-
GCCGCCTCGGCCGCTAG-3' and 5-GATCCTAGCGGCCGAGGCGGCCTAGCG-
GCCATAATGGCCTAGCGA-3' were annealed to construct a fragment that would 
produce two different overhangs (underlined) upon digestion with Sfi I restriction 
enzyme. Following propagation of the plasmid in E. coli, pMAKl was digested 
with Sfi I, dephosphorylated using alkaline phosphatase (Life Technologies), and 
purified from Sea Plaque agarose gel using Glass MAX DNA Isolation Matrix Sys
tem (Life Technologies). To construct a library the fractionated cDNA was direc
tionally ligated in the Sfi IA restriction site at the 5' end (ATTAT) and Sfi IB restric
tion site at the 3' end (GCCTC) of pMAK I. The ligation mix was introduced into E. 
coli TOPO10 cells (Invitrogen) using electroporation, which resulted in 2.2 x 106 prima
ry transformants on Luria-Bertani (LB) medium including ampicillin. 
5'End cDNA sequencing. Approximately one thousand colonies directly following 
ligation and transformation were randomly picked from the plates for single pass 
sequencing at the 5' end of the library inserts (Incyte Pharmaceuticals, Palo Alto, 
CA, USA). Either the T7 promoter primer (5'-TAATACGACTCACTATAGGG-3') or 
the Universe M13 forward primer (5'-GTAAAACGACGGCCAG-3') was used for se
quencing using the dye terminator chemistry. The vector sequences and bases called 
with Phred value £ 20 were automatically trimmed off (19). 
Sequence analysis / EST characterisation. Batches of EST sequences were ana
lysed using Basic Local Alignment Search Tool (BLAST) (3) of the 'BLAST client' 
(blastcB) server at the National Centre of Biotechnology Information (NCBI). Ini-
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tially, each sequence was translated in six reading frames, and all reading frames 
were compared with published sequences in all non-redundant databases (nr) of 
GenBank using the BLASTX algorithm (with BLOSUM62 substitution matrix and 
the standard genetic code). Sequences that produced no significant or poor homolo
gy were also compared with nucleotide databases (nr) using the BLASTN. To eval
uate the redundancy of each EST sequence to all other isolated sequences we ana
lysed our local M. incognita EST database with a 'Stand-alone BLAST' search en
gine (Blastall) downloaded from NCBI. 

5'-end 
TTA 

M. incognita cONA 3'-end 
^ T„GCC 

5'- AAT TCG CTA GGC CAT TAJ" GGC CGC TAG GCC GCC TCG G C C J J C T AG 

AGC GAT CCG GTJAATA CCG GCG ATC CGG CGG AGC CJ3GCGA TCC TAG - 5' 

SffIA SffIB 

17 [L 
* .O CO Q . .C t O CO o <n o 

x z o i x x z m m i L u i 
E o c ' 0 Sp6 

Figure 4.1 - Construction of the cDNA library in the Sfi I restriction sites of the multiple cloning site of 

plasmid pMAK I. 
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RESULTS 

The average insert size of the cDNA library that is used in this paper was 1.1 kb 
(range of 300 bp to 3.0 kb). The average length of the 1096 single read sequences 
was 650 bp. Only 2.5% of the library plasmids did not contain an insert and 14% of 
the sequences failed to meet our quality criteria (Phred value >20). For the evalua
tion of redundancy in our local EST database two nucleotide sequences were con
sidered to be similar or highly homologous if the bit score S' in the BlastN algo
rithm was larger than 200 (~E-value < 1 * e50). According to this stringent threshold 
the percentage of clones appearing only once or without highly conserved homo-
logues in the data set was 78.0 %. 

In total single pass cDNA sequencing of randomly chosen colonies resulted in 
partial nucleotide sequences of 914 primary transcripts of M. incognita that were 
used to search protein databases for putative homologues. Similarities were deter
mined using BLASTX algorithms, and ESTs were subsequently annotated and 
grouped by putative function (Table 4.1). The grouping is based on the top 'hit'. A 
similarity was considered as a 'hit' when the obtained BLAST score had an E-value 
less than 1x105, which means that 37.4% of predicted proteins had significant sim
ilarity to known sequences deposited in various databases. Out of these, approxi
mately 7.8% of the predicted proteins - so called undefined homologues - have sig
nificant similarity to sequences with poor definitions only. For 28.7% of the pre
dicted protein the searches resulted in less significant similarities (105£ E-value 
£10 ')• A substantial number of ESTs resulted in BLASTX E-values higher than 
1x10 \ and those are considered to encode novel translation products (33.9%), 
unique to this data set. A total of 398 ESTs resulted in a hit (E-value£ 1x10') with 
deposited sequences from nematode origins, which is 65.8% of all found similari
ties. All sequences with BLAST-score probabilities of 1x10' and less were catego
rized in 9 groups (Table 4.1) leaving 45% of the ESTs ungrouped. ESTs encoding 
proteins involved in the categories 'Metabolic processes' (12.6%), 'Gene expres
sion' (9.8%), and 'Structure and muscle' (7.3%) are most abundantly represented in 
the cDNA library. These three categories contain many house keeping genes that 
have conserved homologues in many unrelated organisms and for which high ex
pression levels, and therefore many ESTs, can be expected. 

These three categories are the main sources of redundancy of the cDNA library. 
Although our clustering method may be considered as arbitrary, as the same EST 
may be assigned to more than one group, the catalogue still reveals relatively relia
ble proportions of the genes expressed in pre-parasitic second stage juveniles of M. 
incognita. 

The power of single pass cDNA sequencing is well illustrated by EST MD0774 
(Figure 4.2), which tags a novel chitinase gene. A segment of 623 bp was found in 
the EST that matched chitinases of various nematodal and arthropod origins (Figure 
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4.2). This chitinase fragment contains the conserved glutamic acid of class II chiti-
nases (glycosyl hydrolase family 18), which acts as proton donor in the active site 
of the enzyme. 

DISCUSSION 

Single pass cDNA sequencing. The success of an EST project largely depends on 
the quality of the cDNA library that is used for random sequencing, which is deter
mined by the average insert size, the percentage of full-length clones, the redundan
cy in the library, and the number of plasmids that carry no insert. The average tran
script size in C. elegans is predicted to be 1.33 kb. If the same holds true for M. in
cognita then the insert size distribution in the cDNA library is similar to the mRNA 
size distribution of the nematode. For reasons of large differences in cloning effi
ciencies most of the small transcripts have been excluded from the library (see Ma
terial and methods). The percentage of the ESTs with significant or no similarity 
with the known sequences deposited in various databases are in accordance with 
previous reports on other nematode EST projects (5). 

ESTs with lxlO"5£E-value £ lxlO-1 were considered to have less significant ho
mologies (28.7%), and require further sequence analysis using more sophisticated 
algorithms {e.g., PSI-BLAST). This percentage includes 3.8% of the predicted pro
teins that align to some extent with undefined homologues and a subset of 11.4% 
that have some sequence similarity with other database accessions that have poor 
descriptions. 

Sequencing the 5' end of nematode mRNA is usually more informative as com
pared to the 3' end, because with the shorter 5' untranslated regions the sequences 
usually include a larger part of the coding region. In addition, the signal sequences 
that target proteins to be secreted into the plant are generally also located at the 
5'end, which is in our view a crucial feature of many candidate parasitism genes 
(43). In conventional methods reverse-transcriptase frequently terminates before 
transcribing the complete mRNA sequence rendering many clones in a cDNA li
brary incomplete. This is particularly true with long mRNAs primed with oligo-dT 
or if the mRNA molecule contains abundant secondary structures. To improve the 
percentage of full-length clones in cDNA libraries oligonucleotide primers based on 
a spliced-leader (SL) sequence have been used to amplify full-length cDNA only 
from the first-strand synthesis products (60). The number of mRNA species preced
ed by a spliced-leader (SL) sequence is estimated to be 70 percent for C. elegans (8) 
and more than 80 percent for Ascaris lumbricoides (37). In our laboratories cDNA-
AFLP analysis showed that approximately 60 percent of the transcripts in the pota
to cyst nematode Globodera rostochiensis have a spliced leader SL1 (L. Qin, Pers. 
Comm.). Messenger RNAs carrying a SL sequence have been isolated from M. in-
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Table 4.1 - A subdivision of the conceptual translations of 914 EST sequences of M. incognita preparasitic J2. 

The subdivision is based on the most significant homologues according to the BLASTX E-values. The total 

'number of ESTs' is broken down into two fractions - the number of ESTs ('high') that have E-values < 1x10s, 

and the number of ESTs ('low') that resulted in E-values between lxlO"5 and lxlO1. Percentages between brack

ets indicate the relative numbers of ESTs as a ratio of the total number of 914 ESTs. 

Category Description Nand examples Number of 
ESTs 

Similarity 

High Low 

1 Structural and muscle Cytoskek-teland muscleproteins 
(e. g. myosin, actin, caqionm) 67 (7.35%) 52 (5.7%) 15 (1.6%) 

Proteins involved in diverse metabolic 
2 Enzymes and Metabolic processes (e. g. GAPDH, GPD, tatty CoA 115 (12.6%) 86 (9.4%) 29 (3.2%) 

Kgase, catalase) 

Proteins involved in transcription and 
-, Gene expression and Translation (e.g. transcription factor, 

protein synthesis translation elongation factor, ribosomal 
proteins) 

90 (9.8%) 54 (5.9%) 36 (3.9%) 

4 Cell cycle 
Proteins involved in cell division and DNA 
replication (e.g. cycBn, mitogen inducible gene, 11 (1.2%) 
DNA topoisomerase, centrin) 

3 (0.3%) 8 (0.9%) 

5 Transport 
Membrane transporters and lipid transport 
proteins (e. g. clathrin heavy chain, axonal 
transport protein, transportin) 

13(1.4%) 10(1.1%) 3(0.3%) 

6 Neuron function 
Proteins involved in neuronfunction (e. g. 
neurofilament protein, synaptic vesicle 
protein, FMRF neuropeptide) 

11 (1.2%) 9 (1%) 2 (0.2%) 

7 Protein domains 
Proteins defined by specific domains and 
repeats (e. g. C2 domain, Ca2+ binding 
protein, lipoprotein-binding prot.) 

59 (6.5%) 35 (3.8%) 24 (2.6%) 

Candidate narasirkm Nematode-host interaction specific (e. g. 
8 ^nOKlate parasitism c e l lu lases> c h i t i n a s e j x y l a n a s e i S E C 2 , CBP 1, 28(3.1%) 

Ov Tl, Ov 20, cysteine proteinase) 
22 (2.4%) 6 (0.7%) 

9 Undefined homnlosues C e]£&ns, B. malayi, H. sapiens ESTs y unaetmea nomologues ( g g y k 8 c 7 - 5 ) p r o t e i n s j , c h r o m l n ) 106(11.6%) 71(7.8%) 35(3.1 

10 Unknown No matching 414 (45.2%) (3339%)1 104(H.4%)2 

1 ESTs with E-values > 1x10' in BLASTX. These ESTs are unique to this data set. 
2 These ESTs have E-values of lx l05£ E £ 1x10' in BLASTX, however, the aligning sequences have poor defi

nition lines. 
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cognita too, however, it is unclear if this counts for the majority of the transcripts. 
Some of the parasitism related genes that have been cloned to date are not preceded 
by a SL sequence (48). Therefore, we have used the SMART-oligonucleotide sys
tem to essentially obtain the same effect as libraries made of SL amplified cDNA, a 
higher percentage of full-length clones, without any possible bias (4, 12). 
Parasitism related genes. Our main focus is aimed at cDNAs encoding proteins 
that may be involved in the plant-nematode interaction. For many ESTs that are ei
ther poorly characterized (105 £ E-value £ 10') or produce open reading frames 
without significant matches in databases (E-value > 10 ') it is more difficult to de
termine whether the corresponding gene is involved in parasitism. These genes re
quire additional information regarding their function. For others the function of pu
tative homologues may be indicative for a role in plant parasitism. 

Products of two genes, msp-1 (Meloidogyne secretory protein 7; 18) and a gp-
sec2 homologue (G. pallida secretory protein 2; 42), are secreted by plant-parasitic 
nematodes at relatively high levels. We found three ESTs (MD0906, MD0676, and 
MD0432) similar to the msp-1 gene of M. incognita. Homologues of mspl have pre
viously been described as venom allergen antigens in other nematodes (25, 50). De
spite its presence in parasitic stages of At. incognita a function in plant-parasitism is 
not evident (18). 

ESTs (MD0814, MD0596, MD0421, MD0351, MD0254, and MD0298) showing 
significant homology with gp-sec2 in G. pallida (42) also appeared at a relatively 
high abundance in the dataset. Homologues of this transcript are characterized in 
several other animal-parasitic nematodes (56, 57). Moreover, a high similarity of 
these ESTs with an ABA-1 allergen of Ascaris lumbricoides (35) and Ov-20 in O. 
volvulus (56) suggests retinol- and fatty acid-binding activities for this gene. Retin-
ol deficiency in animals results in an impaired immune response to parasitic nema
todes (10) and similarly vitamin A deficiency contributes to the pathogenesis of an
imal-parasitic nematodes (47). 

Several ESTs showed homology with genes encoding cell wall degrading en
zymes produced in the oesophageal glands of nematodes. A large gene family en
coding b-1,4-endoglucanases appears to be present in M. incognita (M. Rosso, 
Pers. Comm.). This observation is confirmed by four distinct ESTs (MD0118, 
MD0139, MD0340, and MD0369) with homology (59 to 98% identity) to eng-1 
(Genbank accession number AF100549) previously cloned from M. incognita (48). 
Furthermore, MD0915 identifies a novel gene encoding a b-1,4-endoxylanase (un
published), which is another type of cell wall degrading enzyme. MD0790 is homol
ogous to the cbp-1 from M. incognita. Cbp-1 is characterized by a cellulose bind
ing-domain and despite the absence of any enzyme activity it is expected to play a 
role in parasitism of root knot nematodes (17). 

Chitinases (EC 3.2.1.14) (Figure 4.2) have been characterised in bacteria, fungi 
and animal-parasitic nematodes such as B. malayi (21), Acanthocheilonema viteae 
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(2), and O. volvulus (23). Studies showing a reaction of murine antibody with the 
cuticle of post-infective L3 of O. volvulus (23) implies that it is secreted via the hy-
podermis. Wu et al. (62) concluded that chitinases expressed in infective stages of 
filarial nematodes may play a role in moulting during post-infective development. 
In plant parasitic nematodes chitin is present in the eggshell only (6), therefore it is 
anticipated that chitinase in M. incognita is involved in hatching of the juveniles. 
However, derivatives of chitin may a function as signal molecules in plants-microbe 
interactions (33). 

Hydroxyl-3-methylglutaryl CoA reductase activity (HMGR, MD0756) has been 
localized in oesophageal glands of M. incognita and is believed to be the key en
zyme for sterol synthesis (7). It is suggested that HMGR activity in giant cells is re
lated to the high rate of sterol biosynthesis required to sustain the active demand of 
sterols for nematodes (13, 51). HMGR secreted by the nematode may regulate the 
de-alkylation of phytosterol into sterols to satisfy the extensive feeding require
ments of the developing nematode (7). 

AEO03477 CYYTNWSQYRVKIGKFVPEDIPADLCTHIIFAFGWLKKNKLS-SYESNDETKDNV-PGLY 184 
AF2 50997 CYYTNWAQYREGEGKFLPENIPNGLCTHILYAFAKVDELGDSKAFEWNDEDSEWS-KGMY 8 5 
Q11174 CYFTNWAQYRQGPAKFVPEDYTPGLCTHILFAFGWMNADYTVRAYDPADLPNDWAGEGMY 116 
Mi_MD0774 CYFTNWAIYRSGRAKFAPEDYAPGLCTHIFYAFAYFNESFEAYAIDPNDLPNDSDPLGQY 74 

AEO03477 ERMMTLKKANPKLKILLALGGWSFG—TQKFKDMSSTRYTRQTFVYSAIPFLRKRGFDGL 242 
AF250997 SGVTKLKETNPELKILLSYGGYNFG--SAIFTEIAKSAQKTERFIKSAIEFLRKNNFDGF 143 
Q11174 RRVNKLKVTDTQLKTLLSFGGWSFG--TALFQGMAASSASRKVFIDSAITFVRTWGFDGI 174 
Mi_MD0774 ARWALKKYDPNLKFVMSFGGWTFSTTTTLFQISMTSSKQNRGKFIKSSIAFIKKHGFDGI 134 

* * . . * * . . . + * . * . * .. . * . * . * * . . ***. 

AEO03477 DMDWEYPKGSDDKKNFVLLLKELREAFEAEAQELKKPRLLLSAAVPVGPDNIRGGYDVPA 302 
AF2 50997 DFDWEYPLG—VAKEHAKLVEAMKSAFVEEAKTSGKQRLLLTAAVSAGKETIDGSYDVES 201 
Q11174 DIDWEYPSGATDMANYVALVKELKAACESEAGSTGKDRLLVTAAVAAGPATIDAGYDIPN 234 
Mi_MD0774 DLDIEYPDS KENFNLLLQEFHLASCNEK--NVKTKLIITAAVAAGIDIVKNSYDIAT 189 

*.**** . *....* * *.*...*** * . **. 

AE003477 IASYLDFINLMAYDFHGKWERETGHNAPLYAPSTDSEW 340 
AF250997 LGKNFDLLFLMSYDLHGSWEKNVDLHGKLRPTKGEVSGI-- 240 
Q11174 LAPNFDFILLMSYDFFGAWASLVGFNSPLYATTELPAEW-- 273 
Mi_MD0774 MAKYVDFINLMTYDFHITSENKTGYNSPLRSKGLFEYYRCW 230 

Figure 4.2 - Amino acid sequences of chitinases of various origins aligned using the algorithm Clustal W, ver

sion 1.8 (55). Only fragments of accession with significant homology to MD0774 of M. incognita are shown. 

The putative proton donor - a glutamic acid (E) - in the active site of the chitinases is in bolded font. Two chiti

nases of nematode origin (C. elegans, swiss-prot accession Q11174, Wuchereria bancrofti, genbank accession 

AF250997) and one chitinase sequence of arthropod origin (Drosophila melanogaster, genbank accession 

AE003477) are included in the alignment. Asterisk, identical or conserved resiudes in all sequences of the align

ment; colon, conserved substitutions; single dots, semiconserved substitutions. 
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Diverse antioxidant proteins as peroxiredoxin (MD0522 and MD0716), catalase 
(MD0897, MD0884, and MD0672), glutathione peroxidase (MD0641, MD0352, 
and MD0334), and thioredoxin peroxidase (MD0127 and MD0137) were tagged by 
several ESTs. Antioxidant enzymes have been identified in many helminths (36, 9), 
and were shown to be one of the major surface-associated molecules that may 
shield the parasites by inactivating toxic products produced by host phagocytes. 
Recently, thioredoxin peroxidases (TPx) are described as a new class of antioxi
dant enzymes (32) and it is strongly suggested that this is probably the major H202-
metabolizing system in filarial nematodes that enhance defence against the host im
mune response or limit damage from host inflammatory cells. A similar protective 
function could be envisioned for plant-parasitic nematodes to counteract the active 
oxidants released by host-plants. TPx genes have been found in vertebrates, fungi, 
plants, bacteria (45) and also were cloned and characterized from the nematodes Diro-
filaria immitis (28), O. volvulus (11, 32), B. tnalayi (22) and G. rostochiensis (46). 

MD0736 identifies a cysteine proteinase with homology to a Haemonchus con-
tortus proteinase (52). Cysteine proteinase has been intensively studied in animal 
parasitic nematodes as Ostertagia ostertagi (41) and Ancylostoma caninum (24). 
They are also abundantly expressed in the intestine of C. elegans (44). Similarly, 
two cysteine proteinase genes (hgcp-I and hgcp-II) have been cloned from the plant 
parasitic nematode Heterodera glycines (59). Specific protease inhibitors expressed 
as transgenes in hairy roots of host plants resulted in a reduced fecundity of feeding 
soybean cyst nematodes (58). 
'Pioneering' sequences. The most challenging ESTs (33.9 %) are the ones for 
which no putative homologues were found in the public databases. Based on our 
experience with the potato cyst nematode Globodera rostochiensis many genes po
tentially related to parasitism are pioneering sequences. A number of analytical 
steps may help to assign a function to pioneering gene sequences. 

First, it is most likely that the majority of parasitism related genes encode secret
ed proteins (61). Single pass 5' end sequences may include the N-terminus of the 
encoded proteins, which allows for prediction of a signal peptide for secretion. The 
latest release of Signal-P at http://www.cbs.dtu.dk/services/SignalP-2.0/ has im
proved capabilities to discriminate between signal peptides and uncleaved signal 
anchors. Combined with computer software that searches for transmembrane do
mains a good overall prediction for a protein to be secreted is possible. A small 
number of secretory proteins lack a typical hydrophobic signal peptide for translo
cation via the classical secretory pathway. In these cases secreted proteins require 
the interaction with a helper-protein - usually ATP-binding-cassette (ABC)-trans-
port proteins (30). Examples of this mechanism of secretion have been found in 
both prokaryotic and eukaryotic organisms. Several secreted proteins of O. volvulus 
infective larvae, reported initially as a host protective antigen, lack a classical N-ter-
minal signal peptide (1). 

Makedonka Dautova 67 

http://www.cbs.dtu.dk/services/SignalP-2.0/


Chapter 4 

Secondly, large scale in situ hybridisation procedures would provide valuable 
data on unique EST sequences. A large scale in situ hybridisation procedure was 
developed for C. elegans by Tabara et al. (54). Similar high-throughput methods to 
obtain spatial expression patterns are being developed in our laboratories at the mo
ment. 

Thirdly, a novel high-throughput RNA fingerprinting based strategy named 
cDNA-AFLP has been recently applied to obtain temporal expression data for un
known genes of the plant parasitic nematode G. rostochiensis (43). The biology of 
the potato cyst nematode especially during hatching lends itself perfectly to a differ
ential display procedure like cDNA-AFLP. Despite more experimental difficulties a 
similar succession of distinct phases in the transition from preparasitic to parasitic 
juveniles of M. incognita should be amenable to analysis with cDNA-AFLP too. 

Alternatively, introducing double-strand RNA to disrupt gene activity may be an 
ideal contribute to assess the function of genes in plant parasitic nematodes. This 
strategy has been shown to be useful for RNA interference in C. elegans (20) and 
the effects have persisted well into the next generation. No RNA interference mu
tants of plant parasitic nematodes have been reported yet, which may be the conse
quence of their more complex mode of reproduction and obligatory parasitic nature. 

In conclusion, this small pilot EST sequencing project has produced EST tags 
for virtually all parasitism related genes that have been cloned from M. incognita at 
present. The efficiency of EST projects, which produce sequence data for thousands 
of genes in months time without any difficult pre-selections of mRNA pools, makes 
random sequencing of cDNA libraries a superior method to identify candidates for 
parasitism related genes. This method has a high potential for cost-effective analy
ses of nematode-plant interactions that mainly for economical reasons have had lit
tle attention of molecular nematologists so far. For each of the candidates with in
teresting homologies in this study further expression analysis or biological tests will 
have to demonstrate their role in parasitism. At the time this chapter was prepared 
an EST sequencing project dealing with various parasitic nematode species was in
itiated by the St. Louis Genome Sequencing Centre and Hinxton Sanger Centre 
(34). This promising initiative will reveal the presence of thousands of interesting 
genes in nematodes for which nematologists will have to provide a biological un
derstanding to assess their relative importance in the plant-nematode interaction. 
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ABSTRACT 

To invade plants parasitic nematodes have to degrade the plant cell walls - a protec
tive armour against intruders. For complete hydrolysis of a highly organised net
work as the plant cell wall parasites require an array of enzymes. So far, all previ
ously identified cell wall degrading enzymes in M. incognita are endoglucagenases. 
In this study we report the first hemicellulolytic enzyme in a plant-parasitic nema
tode. Single-pass 5'end sequencing of approximately 1,000 clones from a cDNA li
brary constructed of preparasitic M. incognita J2 has revealed a partial sequence 
with a homology to xylanases of various bacterial origins. This expressed sequence 
tag was used to obtain a full-length transcript of 1220 nt encoding an open reading 
frame {Mi-xyll) of 37.6 kDa. Hydrophobic cluster analysis classified the putative 
xylanase as a type 5 glycosyl hydrolase. Whole mount in situ hybridization showed 
specific labelling of the Mi-xyll in the subventral oesophageal glands of second 
stage juveniles. DNA blot hybridisation indicated the presence of two homologues 
in M. incognita whereas no hybridisation was found with genomic DNA fragments 
of C. elegans and cyst nematodes. Recombinant Mi-XYLl protein exhibited hydro-
lytic activity on xylan and carboxymethyl cellulose. Conclusively, root knot nema
todes (Meloidogyne spp.) make use of a suite of cell wall degrading enzymes with 
overlapping activities to facilitate plant invasion. 

INTRODUCTION 

The plant cell wall is a highly organized composite of different polysaccharides, 
proteins and phenolic compounds. Models of the cell wall architecture describe sev
eral independent but interacting structural networks. The primary structural net
work is made of scaffolding cellulose interlocked by heterogenous polymeric gly-
cans and xylans. This (hemi)cellulose framework lies embedded in a matrix of pec-
tic polysaccharides, which is sometimes reinforced by phenolic compounds. Grow
ing cells only maintain a primary cell wall, however, when growth seizes the cell 
wall is locked in place by structural proteins and the elaboration of secondary cell 
wall layers. The secondary cell wall, mainly made of cellulose microfibrils coated 
with polymeric xylans, allows the cell to build specialized structures suited to the 
cell's functions. 

The primary function of plant cell walls is to dictate size and shape of the 
protoplasts during cell growth and differentiation. However, in addition to these 
structural functions cell wall components may be involved in cell-to-cell communi
cations or metabolite transport. The cell wall may become impregnated with struc
tural proteins and lignins or deposited with callose to armour against invading or-
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ganisms. Moreover, fragments of cell wall polysaccharides may elicit specific re
sistance responses to invading pathogens and parasites. 

Of the hemicelluloses known xylan is the most abundant compound. Partic
ularly in monocots xylans form a substantial part of the cell walls (13). The main 
chain of this polysaccharide consist of b-l,4-linked D-xylopyranoside residues that 
can be partly modified by acetylation, depending on the plant species from which 
the xylan originates. The polymeric backbone can also be branched as a result of 
substitution with L-aranbinofuranose, 4-0-methyl-D-glucuronic acid and acetic 
acid (48). The L-arabinofurosyl residues can be esterified with furelic orp-coumar-
ic acid, which have been shown to cross link lignins in the secondary cell wall. In 
order to degrade the heterogenous xylans completely a complex set of enzymes is 
required (6, 15). Endoxylanases (EC 3.2.1.8) are capable to hydrolyse the xylan 
backbone at non-modified residues only. 

In order to make use of the plant nutrients as a food source plant pathogens 
have evolved ways to overcome the fortifications of cell walls by secreting cell wall 
degrading enzymes. Xylanases involved in cell wall breakdown are found to con
tribute to the pathogenicity of bacteria (10, 11, 30). Similarly, xylan degrading en
zymes are important factors for the colonization of plant tissue by plant pathogenic 
fungi. For instance, endoxylanases have been identified in the corn pathogen Coch-
liobolus carbonum and the rice pathogen Magnaporthe grisea. It is temping to sug
gest that the endoxylanase activity in pathogens is correlated to the ability to attack 
grasses. 

Root-knot nematodes, Meloidogyne spp., are obligatory plant parasites that 
feed from thousands of different plant species both monocotydelons and dico-
tydelons. They use a hollow, protrusible stylet to penetrate plant cell walls, inject 
oesophageal gland secretions and withdraw nutrients from the cytoplasm. Before 
feeding commences the infective nematode migrates intercellularly through several 
cell layers in the plant root. At an appropriate site in the vascular cylinder the nem
atode establishes a giant-cell from which it feeds for weeks to follow. It has only 
recently been discovered that nematodes use cell wall degrading enzymes in addi
tion to the physical impact of their stylets to penetrate cell walls in the initial stages 
of the parasitic cycle. Nematodes were the first animals for which it has been shown 
that they produce cellulases independent from endosymbionts. 

There is a large variety in the molecular composition and organization of 
plant cell walls components among plant species. Root knot nematodes, parasites of 
monocots and dicots, have to deal with this variety of complex substrates. This 
would implicate that these nematodes are equipped with a large suite of genes en
coding cell wall degrading enzymes. So far, a gene family encoding b-l,4-endoglu-
canases have been identified in root knot nematodes (18,41). In addition, expressed 
sequence tags made from cDNA libraries of root knot nematodes have been found 
for pectate lyases and endopolygalacturonases, however, the true nature of these 
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transcripts still needs to be confirmed. Over a hundred hemicellulolytic enzymes 
have been purified and characterized from both fungi and bacteria (44) but to date 
no hemicellulolytic enzyme has been isolated from plant parasitic nematodes. In 
this paper we present evidence for a hemicellulolytic xylanase gene in the root knot 
nematode species M. incognita. The nematode b-1,4-endo/exoxylanase gene be
longs to the glycosyl hydrolase family 5 as do the b-1,4-endoglucanases in this spe
cies, however, no significant similarity exits between the two types of cell wall de
grading enzymes, b-1,4-endo/exoxylanases catalyse the hydrolysis of 1,4-beta-D-
xylosidic linkages in xylans, and as such it may be involved in the unlocking the 
microfibrils of the secondary cell walls during migration of the nematode in plant 
tissue. 

MATERIAL AND METHODS 

Nematodes. Meloidogyne incognita, line 48, was propagated in greenhouse cul
tures on tomato cultivar Moneymaker at 20-25 gC. Eggs were harvested approxi
mately 12 weeks after inoculation and isolated using 0.5% NaOCl-solution (28). 
Second stage juveniles (J2) were collected from eggs in water on a cotton wool fil
ter, purified using 70% sucrose, and stored at -80 aC until further processing. 
Cloning of Mi-xyll. A partial sequence of the Mi-xyll gene was generated by ran
dom single-pass 5'-end sequencing of approximately 1000 clones from a cDNA li
brary constructed by Dautova et al. (17). The mRNA that served as template for 
this cDNA library was isolated from pre- parasitic second stage juveniles of Mel
oidogyne incognita. The clone that yielded EST MD0915 was further sequenced at 
the 3'-end. The open reading frame contained on the cDNA clone was incomplete, 
therefore, vector specific (pMAK15f) and internal (MI2r) primers (Table 5.1) were 
used to amplify the missing 5' end of the Mi-xyll cDNA from a plasmid prep of the 
cDNA library using Pwo-DNA Polymerase (Roche Molecular Diagnostics, Indian
apolis). 
Nucleotide sequence analysis. Sequencing reactions were performed using the 
ThermoSequenase fluorescent-labeled primer cycle sequencing kit with 7-deaza-
dGTP (Amersham-Pharmacia, Buckinghamshire) with T7 promoter primer and 
pMAK16r primer (Table 5.1). The sequencing reactions were analysed on an Auto
mated Laser Fluorescent DNA sequencer (Amersham-Pharmacia) using ALFwin 
SA2.10 software. Nucleotide sequence data were analysed using the Lasergene Bio-
computing Software for Windows (DNASTAR, Madison). The DNA sequences 
were analysed using the Basic Local Alignment Search Tool algorithm (BLAST) 
via the world-wide-web-interface at the National Centre for Biotechnology Infor
mation. The prediction of signal peptides was done at Signal-P server using the 
world-wide-web interface at http://www.cbs.dtu.dk/services/SignalP-2.0/. 
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In situ hybridisation. Single strained cDNA synthesised with linear PCR (45) was 
used to obtain digoxigenin-11-dUTP (Roche Molecular Diagnostics) labelled sense 
and anti-sense probes. The probes were amplified from the 625 to 1095 nucleotide 
region of the Ml-xyll cDNA using the MI If and Mllr primers (Table 5.1) in two 
separate reaction. The probes were checked on 1 % agarose gel and purified through 
Mini Quick Spin DNA Columns (Roche Molecular Diagnostics). Freshly hatched 
nematodes were fixed overnight in 2% paraformaldehyde (in M9 buffer; 20) and cut 
into 3 to 4 pieces. The permeabilisation and hybridisation (at 50 °C) were per
formed as described previously (20). Alkaline phosphatase activity was detected 
with X-phosphate and 4-nitro blue tetrazolium cloride (Roche Molecular Diagnos
tics). The juveniles were examined using differential interference contrast micros
copy (Leica, Deerfield). 

Table 5.1 - Oligonucleotide sequences of the primers used in this study 

Primer Location DNA Sequences of the oligoprimers 

Ml-lf 
Ml-lr 
MI-2r 
MI-2f 
MI-3r 
MI-3f 
MI-4r 
MI-4f 
MI-5r 

PMAKl-6r 
PMAKl-5f 
PcDNAII 
PcDNAII 

Svg (in situ) 
Svg (in situ) 
Internal(5' end) 
N-terminal (full length) 
C-terminal (full length) 
N-terminal (expression) 
C-terminal (expression) 
N- terminal (southern) 
Internal (southern) 

PMAKI (3'-end, vector) 
PMAKl(5'-end, vector) 
Vector specific 
Vector specific 

5' - TTATGGCACCCGAATGTGC - 3' 
5' - CTGTGATGCACACTTAACG - 3' 
5' - GAGCACATTCGGGTGCCA - 3' 
5' - GGTACTATATTCATTTAATTC - 3' 
5' - CGACTAGAAATCCTAATATC - 3' 
5 ' - GTCGACGAATTCGATAATATAGXAAAAATAAATTCTG - 3' 
5 ' - CAAGCTTGGATCCCCTAAAATTTATAGAATATTGTTG - 3' 
5' - GGTGGTTCTAGTGCTTGG - 3' 
5' - AATTCATCAACAGCAGATTG - 3' 

5' - GCTATGCATCAAGCTTGGTAC - 3' 
5' - ATATCTGCAGAATTCGCTAG - 3' 
5' - GTAAAACGACGGCCAG - 3' 
5' - TAATACGACTCACTATAGGG - 3' 

Heterologous expression in Escherichia coli. The open reading frame (117 to 
1045 bp) of Mi-xyll was amplified with Pwo-DNA Polymerase using oligonucle
otide primers MI3f and MI4r (Table 5.1) in order to introduce Eco RI and Bam HI 
restriction sites at the 5' and 3' ends respectively. Cloning into pMAL-c2 and 
pMAL-p2 expression vectors was done according the manufacturer's instructions 
(New England Biolabs, Beverly) using the Eco RI and Bam HI restriction sites. In 
the case of pMAL-p2, the Eco RI site in the oligonucleotide primer was introduced 
directly behind the predicted signal-peptide. The recombinant plasmids were trans
formed into E. coli strain TB1. Promoter Ptac driven expression of the recombinant 
protein was induced with 0.3 mM isopropylthio-b-D-galactoside at 3 7 ^ for 4h. 
Western blot analysis. The fusion proteins were transferred to semi-dry western 
blots and immunodetection were performed as described by De Boer et al. (19). The 
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recombinant protein was detected on blot with an anti-malE monoclonal antibody 
(New England Biolabs). 
DNA blot analysis. The 172 to 483 bp region of Mi-xyll was amplified using MI4f 
and MI5r oligonucleotide primers (Table 5.1) and digoxigenin-11-dUTP in a PCR 
(Roche Molecular Diagnostics). The probes were checked on 1.5% gel and purified 
using Rapid Gel Extraction System (Life Technologies, Grand Island). In each hy
bridisation reaction 10 ng DIG-labelled DNA probe was used per millilitre DIG 
Easy hybridisation solution (Roche Molecular Diagnostics). Genomic DNA was 
isolated from second stage juveniles with alkaline/SDS lysis and phenol/chloroform 
extraction (42). Prior separation on 0.6% agarose gel the genomic DNA was digest
ed with Bam HI and Eco RI restriction endonucleases. The separated DNA was 
transferred on to a positively charged Nylon Membrane (Roche Molecular Diagnos
tics). Pre-hybridization (in DIG Easy Hyb at 38^0 for 30 min.), hybridization (in 
DIG Easy Hyb at 38 <€ overnight) and stringency washes (in 0.1% SSC and 0.1% 
SDS at 68 °C) were performed as recommended by the manufacturer (Roche Molec
ular Diagnostics). The immunological detection of the digoxigenin-11-dUTP -la
belled DNA probe with CSPD (Roche Molecular Diagnostics) solution preceded 
exposure of the membrane to X-Ray films (Konica, Tokio, Japan) for 6,12, and 20 
minutes at room temperature. 
Enzyme Activity assays. A semi-quantitative birchwood xylan and carboxymethyl-
cellulose cup plate assay was used to determine the hydrolase activity of affinity-
purified heterologous fusion proteins (34). The effect of the pH on enzyme activity 
was determined by measuring the production of reducing sugars in the reaction (3). 
To this purpose birchwood xylan was resuspended to 1% in 0.05 M buffers. The 
buffers included were in the assays were acetate (pH 3.6-5.4), phosphate (pH 6.0-
7.0), Tris/HCl (pH 7.0 - 9.0), and carbonate-bicarbonate (pH 10.0-11.0). Xylan sub
strate (0.9 ml) was incubated with crude E. coli lysates harbouring the Mi-xyll gene 
(0.1 ml) for 24 hours at 30^!. Aliquots of 0.2 ml were boiled with 0.3 ml dinitrosal-
icicylic acid (36) to determine the amount of reducing sugars. The sample was dilut
ed five time prior the measurement at 540 nm using Shimadzu UV-160 recording 
spectrophotometer (Shimadzu, Kyoto, Japan). The monomer D-xylose was used as 
standard (3). The absorbance was converted to activities expressed as nanomolar 
reducing sugars released in 1 ml for a time period of 1 second. To follow the activi
ty over a period of 10 days, aliquots of 0.2 ml were removed each second day and 
activity was measured as described above. 
Sequence comparison using hydrophobic cluster analysis (HCA). HCA plots 
were made by using the program HCA-PLOT V3.0 (Doriane, Le Chesnay, France). 
In these plots, the amino acid sequence of the proteins is drawn on a duplicated hel
ical net using the standard one-letter code except for P, G, T and S which are repre
sented by stars, diamonds, squares and pointed stars, respectively. Clusters of hy
drophobic residues (V, I, L, F, W, M, and Y) are automatically drawn on the bi-di-
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mensional helical representation. Analysis of the plots was performed as described 
in the results (32) 
Nucleotide sequence accession number. The nucleotide sequences for the b-1,4-
endoxylanase encoding gene of Meloidogyne incognita is retrievable from the Gen-
Bank database under accession number AF224342. 

RESULTS 

Cloning and characterization of an endoxylanase from M. incognita. Random 
sequencing of an M. incognita cDNA library generated a 740 bp long expressed se
quence tag with homology to a b-1,4-endoxylanase in Aeromonas cavia (SWISS-
PROT accession number U86340). Further extension of the cDNA sequence at the 
5'- and 3'-end revealed a full-length transcript of 1220 nt. The largest open reading 
frame contained on the cDNA clone included 329 amino acids of which the first 21 
amino acids are predicted to function as signal peptide for secretion (Figure 5.1). 

The SignalP software indicted that the most likely cleavage site of the sig
nal peptide is between Cys21 and Asp22 rendering a mature protein of 34,9 kDa. The 
predicted isoelectric point of the mature protein sequence is 8.8. Two consensus 
sites for N-linked glycosylation (N317 to T319 and NJ21 to N323) are present close to 
carboxy terminus of the open reading frame. 

Sequence comparison. The encoded open reading frame was compared with pro
tein sequences deposited in the public database using the BLAST algorithm (2). The 
amino acid sequence showed significant similarity (E-value<l.e5) with b-l,4-en-
doxylanases of various bacterial origins (Bacillus subtilis, SWISS-PROT accession 
E69892; Aeromonas caviae, SWISS-PROT accession, U86340; Pectobacterium 
chrysanthemi, SWISS-PROT accession U41750). The homologous b-l,4-endoxyla-
nases are all members of the glycosyl hydrolase family 5 (GH 5; 27). Because of its 
sequence similarity with endoxylanases we named our cDNA clone Meloidogyne 
incognita b-l,4-endoxylanases-l (Mi-xyll). 

A b-1,4-endoglucanase produced in M. incognita is also found in GH fami
ly 5, however, direct comparison with Mi-xyll resulted in a sequence identity of 
10%. In glycosyl hydrolases structural aspects are more conserved than primary 
amino acid sequences. Therefore, with have used HCA to compare structural simi
larities using hydrophobic clusters in cellulases and xylanases of GH family 5 (Fig
ure 5.2). Four out of five hydrophobic clusters conserved in GH family 5 cellulases 
are also present in the xylanases (including Mi-XYLl) of the same GH family. The 
conserved clusters III and V facilitate in the identification of two putative active site 
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•S glutamic acids in the Mi-xyll sequence (E15g and E2J8). An asparagine residue, 
| which is conserved in GH family 5 members directly amino terminal to the putative 
Z proton donor site (E15g) is replaced by serine (S157) in Mi-XYLl. 

O M K L F N F 6 
£ GGTACTATATTCATTTAATTI^ATTAAACAAATTCAAATAAATTCAAAAAAAAG ATG AAA TTA TTT AAT TTT 72 

8 F F L F N L I L F Y Y S V K C D N I A K 26 
S TTC TTT TTA TTT AAT TTA ATT TTA TTT TAT TAT TCT GTA AAA TGC GAT AAT ATA GCA AAA 132 
c ~-
™ I N S D I T Y Q S I D G F G G S S A W L 46 
•2 ATA AAT TCT GAT ATT ACT TAT CAA TCA ATA GAT GGT TTT GGT GGT TCT AGT GCT TGG TTG 192 

G N I P D K G I G N 1 F G K L G L S I L 66 
GGT AAT ATA CCA GAT AAA GGA ATT GGA AAT ATT TTT GGT AAA CTT GGT TTA TCA ATT TTA 2 52 

R V G I V D L C K N Q K W G N Y R C I G 86 
CGT GTC GGA ATT GTT GAT TTA TGT AAA AAT CAG AAA TGG GGT AAT TAT CGT TGT ATT GGA 312 

Q E A L T A Q K A S K Y G V K I F S S P 106 
CAA GAA GCA TTA ACA GCA CAA AAA GCA TCA AAA TAT GGA GTT AAA ATT TTT TCT TCG CCA 372 

S T S P I S F K T N N N E V M G E L R E 126 
AGT ACT TCG CCA ATA TCA TTT AAA ACA AAT AAT AAT GAA GTT ATG GGA GAA CTT AGA GAA 432 

D K Y N D Y V E Y L Q S A V D E L N K V 146 
GAT AAA TAT AAT GAT TAT GTT GAA TAT TTA CAA TCT GCT GTT GAT GAA TTA AAT AAA GTT 492 CAA 

G V N L Y A I S L Q S E P D F S P P Y C 166 
GGA GTT AAT TTA TAT GCA ATA TCA TTA CAA AGT GAA CCC GAT TTT TCA CCA CCA TAT TGT 552 

S I K W S P K Q I A A F L K S Y S R K I 186 
TCA ATT AAA TGG TCA CCA AAA CAA ATA GCT GCT TTT TTA AAA TCG TAT TCT AGA AAA ATT 612 

K G P K I M A P E C A H F V P E Y N D A 206 
AAA GGA CCG AAA ATT ATG GCA CCC GAA TGT GCT CAT TTT GTA CCT GAA TAT AAT GAT GCT 672 

I L N N P D V A K G V D I I A W H M Y G 226 
ATT TTG AAT AAT CCT GAT GTA GCT AAA GGA GTT GAT ATA ATA GCT TGG CAT ATG TAT GGA 732 

M Q L V S Q T K A Q K M G K S S L D D R 246 
ATG CAA TTA GTA TCA CAA ACA AAA GCT CAA AAA ATG GGA AAA TCC AGC TTG GAT GAC AGA 7 92 

K N K W K L E K V F M E T A K D I H D C 266 
AAA AAC AAA TGG AAA TTG GAA AAA GTT TTT ATG GAA ACA GCA AAA GAT ATA CAT GAT TGC 852 

M T I A N Y N A Y V Y F W F K D P K Y V 286 
ATG ACT ATA GCA AAT TAT AAT GCT TAT GTT TAT TTT TGG TTT AAA GAT CCA AAA TAT GTT 912 

S I V D N N Y E I T S R G Y I L G Q Y A 306 
TCG ATT GTC GAT AAT AAT TAT GAA ATA ACA TCA AGA GGA TAT ATA TTA GGA CAA TAT GCA 972 

K Y I R P G Y F R I N A T E N P T T I F 326 
AAA TAT ATA AGA CCA GGA TAT TTT AGA ATT AAT GCT ACT GAA AAT CCA ACA ACA ATA TTC 1032 

Y K F 329 
TAT AAA TTT TAG GTATATAAATATACTTTTTCGTGTATATCAGTCGTTAAGTGTGCATCACAGAAGGCTACAGTT 1107 

GCAATATCCTGAGATCATTTAATAATTATTTTAATACATAGATAAGAGTTTTAAGATATTAGGATTTCTAGTCGATAAA 1186 'AAGA 
ATTTTTGTAACTTTAAAAAAAAAAAAAAAAAAAA ^ 122 0 

Figure 5.1- cDNA sequence of Meloidogyne incognita Mi-xyl-1 gene. Predicted secretion signal sequence is 
bolded and the putative cleavage site is indicated by vertical arrowhead. The first residue of the mature protein 
is D. Oligonucleotide primers sequences used in this study are indicated by arrows. The sequence of the deduced 
encoded protein is showen above the nt sequence and is numbered from the first methionine residue. * indicates 
the stop codon. 
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Heterologous expression of Mi-xyll in E. coli. In order to test whether the open 
reading frame of Mi-xyll encoded b-1,4-endoxylanase activity it was cloned into 
pMAL-p2 expression vectors and transformed into E. coli. The translational fusion 
with the maltose binding protein malE (40 kDa) appeared as single band of approx
imately 75 kDa (Figure 5.3B) on western blot. E. coli lysates tested positive on b-
xylan (Figure 5.3C) and carboxymethylcellulose (Figure 5.3D) and as compared to 
lysates of bacteria containing the empty vector pMAL-p2. 

A B 
1 2 3 4 kDa 

250 

75 

50 

37 

• 
D 

Figure 5.3 - A. Comassie Blue stained sodium dodeylsulphate/polyacrilmide gel (SDS-PAGE) of Escherichia 

coli cells (strain TBI) earring expression plasmid (pMAL-p2) containing Mi-XYLl. Line 1: cells induced 4h at 

37 °C with 0.3mM isopropylthiogalactoside (IPTG), Line 2: uninduced cells. B. Detection of recombinant MBP/ 

Mi-XYLl in E. coli lysates on western blot. Line 3: MBP/Mi-XYLl, Line 4: empty vector pMAL-p2. Molecular 

weight markers are on the right. Arrow indicating the location of MPB/Mi-XYL 1 is on the left. Detection of xy-

lanase activity (halo) on xylan (C) and CMC (D) substrate. 

Enzyme activity. The effect of the pH on the activity of Mi-XYLl was assessed 
only on recombinant protein expressed in the periplasm of E. coli. The highest 
amount of reducing sugars, after 24 hours incubation at 30°C with a enzyme: sub
strate ratio of 1:10, was detected at pH 8.0 (Figure 5.4A). Time incubations con
ducted at 30°C over a period of 10 days showed a constant increase of released re
ducing sugars (Figure 5.4B). No activit y was detected in lysates of E. coli trans
formed with empty pMAL-p2 plasmid. 
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1,200 

time (days) 

- * - Mi-xyl1 / pMAL- c2 
-*- Mi-xyl1 / pMAL- p2 

Figure 5.4 - A. Effect of pH on activity of Meloidogyne incognita xylanase cloned into pMAL-p2. Activity of 

Mi-XYLl is expressed in nmol reducing sugars in ml per sec. The optimum pH was determined by using a range 

of buffers in the standard xylanase assay as described in Material and methods. B. Increase of reducing sugars 

produced from the birchwood xylan after incubation at 30°C in a period of 10 days. Incubations were performed 

with 0.05M Tris buffer, pH 8.0. Recombinant nematode xylanase cloned into pMAL-p2 and expressed in E. coli 

showes higher activity than the one cloned into the cytoplasmic pMAL-c2. 

In situ localization of endoxylanase transcripts. To localize Mi-xyll transcripts in 
whole mount sections digoxigenin-11-UTP labelled sense and antisense cDNA 
probes were hybridised with pre-parasitic second stage juveniles of M. incognita. 
The antisense probe showed hybridisation signal specifically within the subventral 
oesophageal glands (Figure 5.5A). The transcripts were detected within the gland 
cell lobe but not hybridisation was found in the gland cell extensions and ampullae. 
Control hybridisations with sense Mi-xyll probe showed no binding to the nema
tode sections (Figure 5.5B). 

/ 
S 

•SvGs 

• DG 

- 5 * \ i J. 

Figure 5.5 - In situ localization of Mi-xyl-1 transcripts. Anterior sections of preparasitic J, of hi. incognita hy

bridized with digoxigenin-labeled cDNA probes. A. specific staining of the subventral gland cells (SvGs), no 

staining observed in dorsal gland cell (DG). m, metacorpal pump chamber. B. no staining is observed with the 

sense probe. 

Makedonka Dautova 85 



Chapter 5 

DNA Blot Hybridisation. DNA blot hybridisation using a 311 nt digoxigenin-11-
UTP labelled probe of Mi-xyll resulted in two hybridising bands with genomic 
DNA of M. incognita (Figure 5.6). Genomic DNA of seven other nematode species 
was also analysed for hybridising bands in order to determine if genes homologous 
to Mi-xyl-1 were present. One single band was observed in Eco RI restricted genom
ic DNA of M. javanica (Figure 5.6, Line 3). No hybridisation signal was observed 
with genomic DNA from M. arenaria, M. hapla, Globodera rostochiensis, Globod-
era pallida and Caenorhabditis elegans. 

1 2 3 4 kDa 

k 23.1 

9.4 
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Figure 5.6 - Southern blot hybridization of Mi-xyl-1 fragment in different nematode genomes. Genomic DNA 

from M. incognita (1, 2), M. javanica (3, 4) was digested with Eco RI and BamHI respectively and hybridized 

with dig-labeled Mi-xyll fragment. Two bands per genome were detected for M. incognita genomic DNA 

digested with EcoRI and BamHI (Lane 1,2). One band was observed in EcoRI digested M. javaniva genomic 

DNA (lane 3). BamHI digested M. javanica genomic DNA showed 2 bands (lane 4). There was no hybridization 

observed with genomic DNA of M. hapla, G. rostichiensis, G. pallida, and C. elegans (data not showen). The 

sizes of DNA markers are on the right. The bands positions are indicated by white dots. 
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DISCUSSION 

Endogenous origin of b-l,4-endoxylanase. Mi-XYLl only shares significant ami
no acid sequence identity with endoxylanases of Pectobacterium chrysanthemi, Ba
cillus subtilis and Aeromonas caviae (31 to 33%). This observation would suggest 
that the production of cell wall degrading enzymes in nematodes is depending on 
endosymbiontic bacteria. Several lines of evidence support an endogenous origin of 
the M. incognita b-l,4-endoxylanase. First, in situ hybridisation shows specific la
belling of the Mi-xyll in the subventral oesophageal glands of the nematode. De
spite extensive ultrastructural studies no indications to the presence of endosymbi
ontic bacteria in the oesophageal glands have been found {e.g., 12). Secondly, the 
coding sequence of Mi-xyll exhibits features that are typical for eukaryotes such as 
polyadenylation (33), a short 5' untranslated region and a signal peptide with a leu-
cine/phenylalanine-rich hydrophobic core sequence (37). 

To date, cellulases and pectinases were found to be expressed in the sub-
ventral oesophageal glands of plant parasitic nematodes. In all cases studied so far 
these cell wall degrading enzymes seem to be more related to their bacterial homo-
logues. Now with the cloning of the first xylanase from the nematode M. incognita 
that only shows similarity to bacterial homologues this trend seems to continue. The 
lack sequence of identity with eukaryotic homologues raises the question if ances
tors of current nematode species have acquired these genes from plant pathogenic 
bacteria by horizontal gene transfer (43). With the completion of whole genome se
quences more evidence is found to support a role for horizontal gene transfer as an 
evolutionary mechanism. However, it is very difficult to provide conclusive evi
dence for horizontal gene transfer from one organism to another (18), particularly if 
the relatedness is based on amino acid sequence analysis only. 

Structural characterization. HCA of the catalytic domains have classified all gly-
cosyl hydrolases into 85 different enzyme families (27; http://afmb.cnrs-mrs.fr/~pedro/ 
CAZY/ghf.html). Members of each family are considered to have evolved from a 
common ancestral sequence. Recent analyses of three-dimensional structure of en
zymes from different families have showed common folds, which would also sug
gest a common ancestry (26). Moreover, a shared evolutionary history of some gly-
cosyl hydrolase families deduced from i) the common physical distance between 
the active site residues, and ii) similarity in the catalytic mechanism (26, 29). 

Based on HCA, Mi-XYLl is classified as a type 5 glycosyl hydrolase and is 
one of the 6 xylanase members of this family. GH family 5 is characterized by two 
invariant glutamic acid residues (E158 and E25gin Mi-XYLl). One glutamic acid cor
responds to the experimentally identified nucleophile (47) and, therefore, the other 
is likely to be the proton donor upstream of the nucleophile. The majority of bacte-
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rial and fungal xylanases belong to structural family 10 or 11 (25, 50). Keen et al. 
(30) have cloned the first xylanase that was positioned between family 5 and 30. 

In some bacterial and fungal xylanases a conserved relationship is found 
between their molecular weight and their pi. Wong et al. (49) have proposed a di
chotomy in xylanases variants. One category is made up of low molecular weight 
proteins that have a basic isoelectric points, whereas the second category should 
consists of high molecular weight xylanases with acid pi. Among the 6 xylanase 
members of the GH family 5 there is no strong evidence to support a dichotomy, 
however, there is a inverse correlation between molecular weight and pi {i.e. Mi-
XYL1, 34.9 kDa and pi 8.8; Swiss-Prot accessions Q46961, 45.2 kDa and pi 8.5; 
P70733, 58.5 kDa and pi 6.52; 024852, 62.0 kDa and pi 7.02; Q45397 63.2 and pi 
5.35; 066065, 66.9 kDa and pi 4.89). 

In addition, the recombinant Mi-xyll activity seems to have an optimum rel
atively close its pi, which be may the consequence of the fact that a translational 
fusion with the maltose binding protein is used to assess pH optimum curves. An 
alternative construct in which the open reading frame only is included would have 
been superior, however, this has proven to be a difficulty in expression studies. 

Functional characterization. Mi-xyll encoded protein possessed detectible activi
ty on xylan and carboxymethyl cellulose. Enzymes with similar cross-activities on 
xylan as well as on cellulose have been identified in bacteria (1, 22, 24) and fungi 
(7). The ratio of the two activities may differ considerably. Palindromic sequences 
that have been found upstream of the cellulases (21,31,46) and xylanase genes (8) 
suggests that both types of enzymes involved in cell wall degradation are regulated 
by a common mechanism in Streptomyces and Thermomonospora. 

As compared to cellulose, xylans are very heterogeneous polymers. Fur
thermore, xyanases exhibit a high degree of substrate specificity (40, 49), which 
suggests that in order to degrade xylans an organism should either have multiple 
xylan loci or be able to modulate the substrate specificities by post-translational 
modifications (14, 49). A large multi-family of cellulases have been found in M. in
cognita (41), of which at least one has shown to be inactive on xylan (5). In this pa
per we present evidence for one xylanase gene and at least one closely related 
homologue in the genome of M. incognita. Moreover, in the Mi-XYLl protein two 
consensus sites for N-linked glycosylation are located at the carboxy terminus of 
the protein, which makes it eligible to functional modifications. These findings in
dicate that both mechanisms to pertain diversity in substrate specificity are active in 
the xylanase system of in M. incognita. Mi-XYLl produced in E. coli is unable to 
degrade RBB-xylan, but is capable of degrading birchwood xylan, which may illus
trate the substrate specificity of this protein. However, a shift in substrate specifici
ty may also have been introduced in the Mi-XYLl by the choice of the expression 
system. 
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Nematode b-l,4-endoxylanase is a pathogenicity factor. At the initial stages of 
the parasitic cycle of root knot nematodes the infective juveniles migrate consider
able distances intercellularly through root tissue. This process of migration involves 
a very delicate sequence of steps that is started with the emission of cell wall de
grading enzymes and is ended when the nematode separates two aligning cells 
ahead at the middle lamella in order to move on to the next layer of cells. The plas-
modesmata that connect the cytoplasm of the aligning cells are detached, but the 
cells are left intact. This whole procedure would be impossible if the nematode did 
not have a suite of cell wall degrading enzymes with overlapping activities at its 
disposal. Particularly, if one takes into account the large host range of root knot 
nematodes, including dicots and monocots, with the enormous variety in substrates 
it represents. To date, this suite of cell wall degrading enzymes appears to be made 
up of cellulases (41), pectate lyases (EST), endopolygalacturonases (EST), and xy-
lanases (this chapter). 

The invasion process of the nematodes seems to have much in common 
with that of bacteria and biotrophic fungi (4, 35), where cell wall degrading en
zymes are important virulence factors (9, 23, 38, 39). In these systems xylolytic ac
tivity is associated with virulence on some grass plants (11) due to the relatively 
high xylan content of the cell walls (16). Similarly, the xylanase genes in M. incog
nita may be an evolutionary adaptation to parasitism on grasses and other monocot
yledons. 
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Variation in virulence 

Plant damage due to root-knot nematode infection is often difficult to control. The 
difficulties lie in the diverse and unpredictable behaviour of nematode populations 
in the field. Detailed knowledge on nematode incidence, distribution and virulence 
is a first step to avoid obstacles that impede implementation of proper management 
systems. 

Parasite populations are always analysed in relation to their host. Mainly 
two approaches can be used to assess the differences in virulence in populations. 
First, the single isolate test, which tends to be very labour intensive thus limiting the 
number of populations that can be tested. The technique, however, yields very accu
rate results within the constraints of the restricted sample sizes. The bulk sample 
test makes the second option, in which the number of infections on a resistant plant 
relative to a (susceptible) control gives an estimate of the relative frequency of the 
virulent phenotypes in populations. 

Differential survival of individuals in a Meloidogyne population on Mi re
sistant tomato cultivar may result from: 

i) genetic variation because of a certain percentage of virulent geno
types {e.g. 56), 

ii) overcoming resistance by mutations or genetic rearrangements (e.g. 
42) being the result of small effective mutations at an unusual high 
frequency (56), 

iii) resistance, which is not effective against all Meloidogyne species 
(e.g. M. hapla; 23), 

iv) resistance, which is not effective at temperatures above 28°C (e.g. 
16). 

The results presented in Chapter 2 on the occurrence of Meloidogyne spp. in Mace
donia and their behaviour on susceptible and Mi resistant tomato cultivars are of in
valuable importance to the growers. Often the apparent populations investigated 
consisted of mixtures of species (Table 2.1) that had to be separated into Meloido
gyne isolates derived from single egg masses for further analyses. The various Mel
oidogyne isolates differed in their ability to overcome the resistance gene (Table 
2.2). The multiplication rate of the virulent isolates on both resistant cultivars also 
varied considerably (Figure 2.2). 

In the areas where virulence for the Mi gene was not found (Table 2.2) a 
successful control of root knot nematodes could be achieved with Mi-gene harbour
ing cultivars (18). This situation may not hold for long, because after repeated selec
tion by M/-carrying cultivars virulent populations may arise from avirulent ones (11). 

In the fields like Bogdanci, Gevgelija, Kocani and Stuka (Table 2.2), where 
significantly virulent populations are present, a combination of control strategies is 
necessary. A successful integrated nematode management may include a variety of 
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environmentally satisfactory approaches such as steam sterilisation, biological con
trol and trap crops, as an alternative to the use of traditional nematicides. Regarding 
the number of life-cycles of RKN that can be completed during a growth period of 
a susceptible crop extended fallow periods may be an alternative too (17). 

Furthermore, due to the lack of sexual reproduction in the mitotic obligato
ry parthenogenic M. incognita, M. javanica, and M. arenaria, the inheritance of 
avirulence and virulence in these major species cannot be tested directly by recom
bination. One approach is to isolate (a)virulence genes from Meloidogyne by differ
ential molecular analyses of near isogenic (a)virulent lines but frequently their di
versity in overcoming the Mi resistance gene hinders the situation (12). Attempts to 
detect (a)virulence characters by AFLP analysis of (a)virulent lines failed, as the 
clustering of the populations was not associated with their (a)virulence against the 
tomato Mi resistance genes (50, 57). 

An alternative procedure to address this problem is to make use of transpos-
able elements found in many organisms. Their use in reverse genetics as molecular 
tools for gene tagging (36,49) have inspired Leroy et al. (32) to assess the presence 
of mariner-like elements (MLEs) in different Meloidogyne genomes. In four Mel
oidogyne species they detected MLEs and these may become valuable tools for 
gene (virulence character) tagging in these species. 

Assessment of polymorphisms in nuclear and mitochondrial DNA 
of Meloidogyne spp. 

Genetic changes driven by the environment, including the use of resistant varieties 
and pesticides, influence the virulence behaviour of the mitotic parthenogenetic 
species of Meloidogyne. At present, only a few investigations have been conducted 
to study these genetic changes at different hierarchical levels. RAPD and RFLP, two 
commonly used techniques, fail to provide us with consistent patterns at low tem
plate DNA concentrations (Chapter 1). Therefore, we have applied the AFLP proto
col being the most reliable procedure to distinguish genetic polymorphisms in Mel
oidogyne spp. 

The AFLP patterns have generated 738 informative markers for genetic 
analysis of root knot nematodes (Chapter 3). Using 17 primer combinations (Table 
3.2) we have characterised five-M. incognita, five M. javaniva and six M. arenaria 
populations. Based on genetic distance matrixes and UPGMA analysis the popula
tions were clustered in three distinct groups that corresponded with the respective 
species identities. Populations of a single species from the same state were not clus
tered together, excluding any correlation between genomic similarity and geograph
ical origin of the populations. On the intraspecific level, M. arenaria showed the 
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highest variability, which is in compliance with Semblat et al (51). In contrast to 
this latter paper M. incognita was the least polymorphic instead of M. javanica. 

In order to obtain information on lower hierarchical levels we have investi
gated size variations due to a variable number of tandem repeats in the mtDNA mol
ecules of the same populations. The availability of complete or nearly complete 
mtDNA sequences for several helminth species provides us with a rich source of 
genetic markers for studying genetic variability in helminth groups (7, 19). 

The metazoan mitochondrion contains at least one relatively large non-cod
ing control region that harbours the promoters for the initiation of transcription 
(52). The non-coding control region is the most variable portion of the genome both 
in terms of length and nucleotide sequence. This region has been used for many in-
tra-specific studies in different organisms (e.g. 21). 

In Chapter 3 we have assessed the genetic polymorphisms in the 63-bp tan
dem repeats region of mtDNA of Meloidogyne spp., which is located in the non-
coding region of the Meloidogyne mtDNA genome (38). In all three Meloidogyne 
species the highest degree of diversity was detected within individuals (Ci). The 
highest degree of heterogeneity (Cps) was revealed among populations within M. 
arenaria (Table 3.4). 

The correlation between AFLPs- and TR-based polymorphisms was not sig
nificant in all cases. With regard to the diversity among populations within a single 
species, with both approaches M. incognita showed lowest genetic diversity where
as M. arenaria showed the highest diversity (Table 3.3, Table 3.4). The dendro
grams produced from both methods were not congruent. Based on the AFLP pat
terns, all populations from a single species cluster together in a separate group (Fig
ure 3.2). In contrast, in the dendrogram based on the TR marker M. incognita popu
lations clustered together, whereas the populations of M. javanica and M. arenaria 
failed to cluster in two separate groups (Chapter 3). The only positive correlation 
between outcomes of the two approaches was found among the M. arenaria popula
tions (Figure 3.5). 

The discordance between patterns of mtDNA variation and those seen for 
nuclear gene markers are expected as mtDNA represents only a single locus un
linked to the nuclear genome. The fact that mtDNA evolves at a faster rate than nu
clear genes makes mtDNA suitable for discriminating closely related organisms (3). 
Indeed, most of the understanding of the population genetics of many eukaryotic 
species owes much to studies using mtDNA. Furthermore, mutational events and 
gene rearrangements in the mitochondrial genome are normally uncomplicated and 
taxon-specific, so that the mtDNA sequences are often regarded as valuable for the 
study of inter- and intra-specific variation (22). Consequently, sequences generated 
from the mitochondrial genome provide excellent molecular markers for defining 
population groups, for tracing the genetic history of an individual or a particular 
group of related individuals (8). 
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Conclusively, despite the mitotic parthenogenetic mode of reproduction 
Meloidogyne spp. display a wide range of variations on all hierarchical levels stud
ied in Chapter 3. The AFLP fingerprints gave highly informative marker profile, re
vealing reliable genetic relationships on inter- and intraspecific level. These results 
were in compliance with other studies. However, analyses of the relation between 
the genetic distances based on 63-bp TRs and AFLPs show that the degree of diver
gence within species is not always correlated between both methods. The main rea
son for such a discrepancy is the high gear at which the mitochondrial repeats 
evolve, which is probably too fast to retain the footprints of ancestral relationships. 
Nevertheless, mtDNA remains appealing offering possibility to study variation 
within a single genotype and a high evolution rate may also be an advantage when 
studying more short term evolutionary processes, such as the accumulation of muta
tions during a limited number of generations. 

Expressed sequence tags - an efficient approach for investigating gene 
expression 

Conventional procedures in molecular biology require relatively large amounts of 
starting material for RNA isolation (45). Frequently, obtaining sufficient quantities 
of mRNA from microscopic organisms like nematodes is difficult. The introduction 
of the PCR has largely overcome this limitation (34). Small adaptations of this tech
nique combined with an efficient cDNA synthesis protocol can produce good quali
ty cDNA libraries from only 50-ng total RNA (Chapter 4). A proper screening meth
od of the cDNA library is equally important as the construction of the library. Ran
dom sequencing of a small portions of a library, yielding expressed sequence tags, 
is a rapid method for determining the nucleotide sequence of genes expressed in an 
organism and offers many advantages above other screening methods (1) (Chapter 
4). At the time that we started a small pilot project involving ESTs from M. incog
nita there were only few EST from plant-parasitic nematodes available in the pub
lic databases. One year later the number has increased rapidly, which illustrates the 
attractiveness of the method (Table 6.1). The rapid increase in EST entries in the 
public database offers an enormous quantity of information concerning the genes 
expressed in plant-parasitic nematodes. The next step for scientists should be to re
veal the function of the most challenging group of ESTs - the 'pioneering sequenc
es' . Much effort is currently invested in the development of protocols that are capa
ble of assigning a function of these sequences (see Chapter 4). 
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Table 6.1 - Cumulative number of public entries of 'expressed sequence tags' in 2000 and 2001 summarised 

by organism. * Indicates plant-parasitic nematode species. 

Nematode species 

Caenorhabditis elegans 
Brugia malayi 
Onchocerca volvulus 
Haemonchus contortus 
Meloidogyne javanica* 
Heterodera glycines* 
Globodera rostochiensis* 
Meloidogyne incognita* 

February 2000 

101,232 
20,941 

8,981 
246 

22 
2 
0 
0 

February 2001 

109,215 
22,392 
14,347 
2,749 
1,223 
1,421 

849 
6,626 

cDNA libraries constructed from different life stages of the nematodes will 
yield ESTs of genes expressed at various time points of the parasitic cycle. Random 
sequencing of the cDNA library from pre-parasitic J2 of root-knot nematode Mel
oidogyne incognita represented the genes expressed at the onset of parasitism 
(Chapter 4). As expected, ESTs identifying proteins involved in diverse metabolic 
processes (12.6%), gene expression (transcription and translation, 9.8%) and cy-
toskeletal and muscle proteins (7.3%) were most abundantly represented in the li
brary (Table 4.1). Only 3.1% of the ESTs were assigned to the 'candidate parasitism 
genes' category based on similarity with known pathogenicity factors in bacteria 
and fungi and parasitism related genes in animal-parasites. The ESTs in preparasit-
ic J2 of M. incongita that have no apparent homologue in C. elegans have a high 
potential as evolutionary adaptations to parasitism. Genes involved in parasitism are 
frequently conserved among animal-parasitic nematodes species, which may also 
proof to be the case for the plant-parasitic species (29, 40). Evidence for this is al
ready found in the finding of cellulase genes in practically all plant-parasitic nema
tode species that have been investigated at present (14). 

The group of 'candidate parasitism genes' included all parasitism genes 
identified to date. These genes were often isolated following years of hard work and 
dedication, and were tagged in the cDNA library of M. incognita with only a frac
tion of that effort. In our view this makes EST projects undoubtedly an extremely 
powerful tool to identify parasitism genes in nematodes. 
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From gene-structure to gene-function 

The current classification of glycosyl hydrolases (GH) and related enzymes include 
90 different Enzyme Commission (EC) entries that are classified into 81 GH fami
lies (http://afmb.cnrs-mrs.fr/~pedro/CAZY/ghf.html). Forty-seven families are 
monospecific (containing only one EC number), while 34 families are found to con
tain at least 2 EC numbers (polyspecific). Relatedness based on sequence similarity 
and on 3D structures has yielded 10 major clans of related families. 

Degradation of a highly organised and complex network as the cell wall is, 
requires an entire spectrum of enzymes (Chapter 1), including xylanases. On the 
basis of sequence similarities and function, the enzymes involved in xylan degrada
tion are classified into cellulases family A, F, and G (27) also known as glycosyl 
hydrolases (GH) family 5, 10,11 (26). The majority of bacterial and fungal xylanas
es belong to families 10 and 11. Recently, three xylanases has been classified as GH 
family 43 (Table 6.2). 

GH family 5 contains mainly endogluganases and only 6 xylanases (Table 
6.2). M. incognita xylanase (Mi-Xyll, this thesis) is one of the members of GH 
family 5 that is classified in clan GH-A, characterised by a catalytic domain shaped 
as a classical eight-fold b/a-barrel structure in which conserved Glu function as 
catalytic nucleophile and acid/base catalytic residues. Four out of five hydrophobic 
clusters conserved in GH family 5 cellulases are also present in Mi-xyll (Chapter5, 
Figure 5.2). The conserved clusters III and V facilitate in the identification of two 
putative active site glutamic acids in the Mi-XYLl sequence (E158 and E258). An as-
paragine residue, which is conserved in GH family 5 members directly amino termi
nal to the putative proton donor site (E158) is replaced by serine (S157) in Mi-XYLl. 
A similar substitution (NE ® SE) at the same position is found in a GH family 17 
member - a b-1,3-1,4- endoglucanase of Hordeum vulgare (Swiss-Prot accession 
P12257). A functional explanation for this similarity remains a subject of investiga
tion. 

Mode of action of the xylanases 

Knowledge of the mechanism of xylan-degrading enzymes has been gained from 
studies on substrate specificity, the role of side chain substitutions on activity, the 
specificity of bonds cleaved and the end products. Generally, xylanases appear to be 
specific towards the intersugar linkage (15). For example, the xylans of fungal ori
gin are characterised as non-debranching (41) and debranching (35). It is common
ly observed that substitutions in the highly branched polysaccharides interfere with 
xylanase activity. However, enzymes having more affinity for main chain linkages, 
near branch points, are also reported (15). 
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Table 6.2 - Xylanases from various origins classified into glycosyl hydrolase families. 

e 

GH-5 

GH-10 

GH-11 

GH-43 

Protein 

Endoglucanase 
Xylanase 
CMC-xylanase 
beta-mannosidase 
exo-1,3-glucanase 
endo-1,6-glucanase 
beta-mannanase 
Cellobiohydrolase 
Endoglycoceramidase 
Cellodextrinase 
non-defined 

Endoglucanase 
Xylanase 
endo-1,3beta-xylanase 
Cellobiohydrolase 
non-defined 

Xylanase 
non-defined 

Xylanase 
beta-xylosidase 
alfa-L-arabinofuranosidase 
Arabinanase 
non-defined 

EC number 

EC 3.2.1.4 
EC 3.2.1.8 
EC 3.2.1.14 
EC 3.2.1.25 
EC 3.2.1.58 
EC 3.2.1.75 
EC 3.2.1.78 
EC 3.2.1.91 
EC 3.2.1.123 
EC 3.2.1.-
-

EC 3.2.1.4 
EC 3.2.1.8 
EC 3.2.1.32 
EC 3.2.1.91 
-

EC 3.2.1.8 
-

EC 3.2.1.8 
EC 3.2.1.37 
EC 3.2.1.55 
EC 3.2.1.99 
-

Sequences 

113 
6 
1 
2 
12 
1 

16 
2 
2 
3 
52 

1 
117 

1 
1 

20 

97 
12 

3 
10 
7 
3 
7 

The hydrolysis reaction catalysed by xylanases as well as cellulases pro
ceeds through an acid-base mechanism involving two residues.The first residue acts 
as a general catalyst and protonates the oxygen of the oxidic bond. The second one 
acts as a nucleophile, which in the case of retaining enzymes interacts with the oxo-
carbonium intermediate. In the case of inverting enzymes it promotes the formation 
of an OH" ion from a water molecule. The critical distance between two catalytic 
carboxylic acids (» 5.5A) is less in retaining enzymes as compared to that in invert
ing glycosidases (» 10A). Lawson et al. (31) has also observed that the precise 
placement of the acid/base catalyst is not critical, since both shortening and length-
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ening this carboxyl side chain resulted in approximately the same modest decrease 
in kcat/Km values. Thus, the positional requirements for proton transfer are less de
manding than for carbon-oxygen formation. The Mi-XYLl protein is classified in 
GH family 5, which implicates that xylan hydrolysis occurs with retention of ano-
meric configuration (53). 

Biochemical characteristics of xylanases 

The available information on the properties of xylanases stems mostly from studies 
with bacterial and fungal enzymes, although xylanases are produced as well by a 
plethora of organisms like algae, protozoa, gastropods and arthropods (15). Micro
bial xylanases are single-subunit proteins with molecular masses in the range of 8-
145 kDa (55). Xylanases are usually stable over a wide pH range (3-10) and show 
optimum pH in the range of 4 and 7. The xylanases from fungi (20, 28) exhibit opti
mum pH towards acid (pH 2-6). The isoelectric points for endoxylanases from vari
ous sources range from 3 to 10. Generally, bacteria are known to produce two xyla
nases: i) high molecular mass acidic xylanase, ii) low molecular mass basic xyla-
nase. 

Mi-XYLl showed an optimum pH of 8.0, retaining more than 50% activity 
in a range of pH 7.5 to pH 8.5. This value is higher than that of the xylanases from 
other plant pathogens (e.g. Erwinia chrysanthemi) (9). The apoplast in plants has a 
pH between 5 and 6.5, which is also significantly different from the pH optimum of 
the Mi-XYLl activity. The translational fusion partner of Mi-Xyll, the maltose 
binding protein, may influence the optimum activity, which makes a direct compar
ison less opportune. In addition, the ionic strength of intercellular fluids and inter
actions with other proteins and carbohydrates may also contribute to this discord
ance. 

Multiplicity of cell wall degrading enzymes 

Frequently, within the genomes of plant pathogens an entire complex of cell wall 
degrading enzymes is found. This often includes more representatives from a single 
enzyme class. For example at least 15 cellulases, two xylanases and two b-glucosi-
dase genes have been isolated from the anaerobic thermophilic bacterium Clostrid
ium thermocellum (25). To degrade the glycosilic bonds of the polysaccharides 
anaerobic microorganisms secrete a highly active cellulolytic complex, so-called 
cellulosome (4,6) in which xylanase activity is also detected (24, 37). Contrary, aer
obic microorganisms secrete individually but synergistically acting enzymes for the 
same purpose. 
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Endogenously production of the two cellulases in the cyst nematode G. ros-
tochiensis and in H. glycines (54) indicates existence of a multiple enzyme complex 
in plant parasitic nematodes too. Homologous xylanases were detected in each of 
the genomes of M. incognita and M.javanica (Chapter 5, Figure 5.6), but at present 
it's not known how these genes relate to each other. 

The existence of multiple cellulases and xylanases in a single organism re
flects the heterogeneous nature of plant cell walls that these organisms have to deal 
with. Although cellulose molecules are chemically homogeneous, structurally they 
are quite diverse. It is possible, therefore, that various isoenzymes hydrolyse b-1,4 
bonds that are in different physical environments within the cellulose molecule. 
This argument can also be applied to xylan hydrolysis in view of the heterogeneity 
in both the chemical and the physical nature of the polymer. 

Isoenzymes may be transcribed from different genes. However, isoenzymes 
may also arise from post-translational modifications through glycosylation and par
tial proteolysis. Based on biochemical studies it is difficult to determine, whether 
the apparent isozymes are the products of multiple genes, the result of the modifica
tion of the single enzymes (59) or a combination of both. We have not raised an an
tibody against Mi-xyll, therefore, it is not clear at this stage if in addition to the two 
homologous genes further differentiation in specificity by post-translational modifi
cation is occurring in the nematode xylanases. 

The role of cell wall degrading enzymes in parasitism and pathogenicity 

Knock-out mutants or inhibitory antibodies would provide us with more conclusive 
evidence for the importance of cell wall degrading enzymes in the parasitic cycle of 
nematodes. However, the state of the art in molecular nematology has not reach to 
this level yet. Progress in the development of protocols to knock out genes in para
sitic nematodes, either by stable transformation or by RNA interference, is still slow 
due to the complex mode of reproduction and the obligatory parasitic behaviour of 
the nematodes. 

Instead of providing conclusive evidence for nematodes some lessons may be 
learned from cell wall degrading enzymes in other plant-pathogens. In 1886, DeBa-
ry published the first indications that extracellular enzymes may be involved in the 
infection process of plant pathogenic fungi. Since then numerous reports of cell 
wall degrading enzymes in fungi have appeared showing their importance in the 
breakdown of plant cell walls and colonisation of plant tissue (10, 13). In plant-
pathogenic bacteria, it is not always so clear-cut whether cell wall degrading en
zymes are crucial for pathogenicity and virulence. The outcome of the experiments 
largely depended on the species of the bacteria and its host (5, 33, 44). In both bac
teria and fungi, disruption of the export mechanism can result in a simultaneous loss 
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of extracellular enzyme activity and a reduction in virulence or loss of pathogenici
ty (30, 58). 

The difficulty in correlating the enzyme production to virulence or patho
genicity in plant pathogens is the existence of multiple isozymes of cell wall de
grading enzyme in most of them. Disruption of individual genes (e.g. in C. carbon-
urn) fails to show that they are crucial for pathogenicity, as the mutants show the 
same virulence as the wild type (2, 47, 48). In these cases knocking out a single 
gene may have little influence on the total fitness of the pathogen that can use simi
lar enzymes to compensate for the loss in specificity. 

Mi-xyll cloned from root knot nematode Meloidogyne incognita is probably 
one of at least two xylanases (Chapter 5). It is not possible yet to determine wheth
er Mi-Xyll is crucial for parasitism of plants by M. incognita. However, to date a 
multigene family of at least five endoglucanases (43) and two xylanases (this the
sis) have been identified in this species, and it is difficult to envision that maintain
ing such an array of glycosyl hydrolases would not pay off for the nematode. There
fore, it is reasonably to assume that penetration and subsequent migration of the 
nematode through the plant root is facilitated by enzymatic weakening of the cell 
walls. Typical for Meloidogyne spp. is that migration proceeds intercellularly dur
ing which the plant cell walls of two aligning cells ahead are separated at the mid
dle lamella. Such a subtle process, that leaves the cells intact, gives some insight in 
the importance of cell wall degrading enzymes. 

In contrast to cyst nematodes, root knot nematodes are polyphagous nema
todes, including monocots and dicots in their host range. The cell wall composition 
of monocots and dicots is significantly different. For instance, the xylan content of 
monocots is much higher as compared to dicots. Our finding of xylanases next to 
the previously cloned cellulases in Meloidogyne spp. suggests an evolutionary ad
aptation towards monocots in root knot nematodes. In spite of intensive studies, xy
lanases have not been found in Globodera rostochiensis and Heterodera glycines, 
parasites of dicots only, which is in favour of this hypothesis. 

Evolutionary relationships between xylanases 

To gain more insight in the evolutionary relationships between xylanases of various 
plant-pathogens we have done a phylogenetic analysis of representatives of the 
three main GH families that contain xylanases. 

Xylanases of GH-5, GH-10 and GH-11 are clustered as monophyletic groups 
supported with a bootstrap value of 100%. One exception is the xylanase M83379 
of GH-5 that shows high homology to endoglucanases. The two sequences from the 
GH-5 (M75706 and U94826) that represent ORFs with multiple activities (e.g., en-
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Summary 

Variability in the behaviour of a nematode population is a reflection of the 
genetic structure of that population. Revealing the genetic information contained in 
the nematode's genome contributes to reliable predictions of their behaviour in the 
field. The genome of the all animals consists of nuclear and mitochondrial DNA. 
Population genetic studies can be conducted by studying polymorphism at the DNA 
level of both subsets. 

In Chapter 3 we have studied genetic variation in 16 M. incognita, M. java-
nica and M. arenaria, populations. In this chapter, genetic variation in the Meloido-
gyne spp. populations was assessed using amplified fragment length polymorphism 
(AFLP) markers in nuclear DNA and tandem repeats (TR) in mtDNA in order to re
veal genetic divergence at different hierarchical levels. Even though the examined 
populations belong to obligatory mitotic parthenogenetic species genetic differenc
es were detected within and among populations. The proportion of polymorphic 
fragments in the nuclear and mtDNA genomes respectively were lower in M. incog
nita (32% and 20% respectively) as compared to portions in M. javanica (52% and 
40% respectively) and M. arenaria (61% and 50% respectively). Genetic distances 
based on the AFLP patterns have assigned the populations into three clusters com
mensurate with their respective species identities. The three principle coordinate 
analysis situated M. incognita as the most genetically distinct of the three species. 
Polymorphisms generated by differences of mtDNA in the tandem array of 63-bp 
repeats, showed that M. incognita individuals were the most heteroplasmic, where
as at the population level M. incognita was the most homogenous (13% overall di
versity) followed by M. javanica (24%) and M. arenaria (35%). Comparing the in-
traspecific genetic distances based on nuclear and mtDNA markers has only re
vealed a positive correlation between both approaches with regard to the M. arenar
ia populations. 

Exploring the nematode's genome with molecular techniques may directly 
lead us to the genes involved in parasitism of plants. By definition these nematode 
genes are pivotal for host penetration, intercellular migration and feeding on plants. 
Their identification may help to design resistant strategies for pest control as they 
potentially make good targets for bioengineering anti-nematode strategies. In 
Chapter 4, we have presented the analysis of 1,000 random sequences obtained 
from a cDNA library. These so-called expressed sequence tags (EST) have shown to 
be a powerful method to identify genes expressed at a certain time point of the nem
atode life cycle. The parasitic cycle involves various distinct stages, plant penetra
tion and intercellular migration, and feeding site initiation and maintenance. There
fore, cDNA libraries covering these main stages may provide insight in the molecu
lar fundaments of plant parasitism by root knot nematodes. 

In chapter 4 a cDNA library of preparasitic J2s of Meloidogyne incognita 
was used, which covered the initial phases of the parasitic cycle - plant penetration 
and intercellular migration. The ESTs were clustered into 9 functional groups. 
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'Candidate parasitism genes' (3.1%) included all parasitism genes identified to date 
as well as novel ones. A more challenging group is the class 'Pioneering sequenc
es' (33.9% of the ESTs). Several analytical steps that may help in assigning a func
tion to these novel sequences are discussed. 

One of the expressed sequence tag was categorised into the 'Candidate 
parasitism genes' group because it showed homology to a cell wall degrading en
zyme - a xylanase (Chapter 5). The partial sequence of the EST was used to obtain 
a full-length transcript of 1220 nt encoding an open reading frame (Mi-Xyll) of 
37.6 kDa. Hydrophobic cluster analysis classified the putative xylanase as a family 
5 glycosyl hydrolase. Whole mount in situ hybridisation showed specific labelling 
of a Mi-xyll probe in the subventral oesophageal glands of second stage juveniles. 
DNA blot hybridisation indicated the presence of two homologues in M. incognita 
whereas no hybridisation was found with genomic DNA fragments of Caenorhabdi-
tis elegans and cyst nematodes. Recombinant Mi-xyll protein, produced in Es
cherichia coli, exhibited hydrolytic activity on xylan and carboxymethylcellulose. 

The plant cell wall can be considered as an effective barrier that protects the 
plant from invasion by pathogens and parasites. It is a highly organised network 
composed of different polysaccharides, proteins and phenolic compounds. Recent
ly, endoglucagenases were identified in plant-parasitic nematodes. In this thesis ev
idence is provided for the presence of hemicellulolytic enzymes in plant-parasitic 
nematodes. This finding suggests that plant parasitic nematodes make use of a suite 
of cell wall degrading enzymes with overlapping activities to facilitate plant inva
sion. Root knot nematodes are able to propagate on both monocots and dicots. It is 
hypothesised that the xylanases genes in these nematode species enable invasion of 
monocots, which have a significantly higher xylan content in the cell walls. 

Based on phylogenetic and hydrophobic cluster analysis the nematode xyla
nases seem to be closer related to bacterial xylanases than to homologues in other 
animals, plants and fungi. This observation is commensurate with the findings with 
pectinases and cellulases in nematodes, which suggests that this type of genes may 
have been acquired from bacteria by horizontal gene transfer. More lines of evi
dence are needed to support these hypotheses. 
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De resultaten uit hoofdstuk 2 tonen aan dat het telen van tomatenrassen 
met het Mz'-resistentiegen voordelig kan zijn mits er sprake is van avirulente popu-
laties. Het is echter eerder al gebleken dat na langdurige selectie virulente popula
tes kunnen ontstaan uit avirulente populaties. In die situatie zullen de beheers-
maatregelen een combinatie moeten zijn van vruchtwisseling, biologische bestri-
jding en braaklegging. Eventueel kan dit worden uitgebreid met sterilisatie door 
stoom en de toepassing van nematiciden. 

De variatie in de reactie van nematoden populaties op allerlei beheers-
maatregelen is een afspiegeling van de genetische structuur van de populaties. 
Ontsluiting van de genetische informatie die is opgeslagen in het genoom van de 
nematoden draagt bij aan de betrouwbaarheid van de voorspellingen van het ge-
drag van populaties in het veld. Het genoom van dieren bestaat uit het nucleaire 
DNA en het mitochondriale DNA. Populatiegenetica kan worden bedreven door 
polymorfismen te onderzoeken in beide DNA subsets. 

In hoofdstuk 3 is genetische variatie onderzocht van 16 populaties met M. 
incognita, M. javanica en M. arenaria. De variatie in het nucleair DNA is bepaald 
met behulp van zogenaamde Amplified Fragments Length Polymorphisms 
(AFLP), terwijl de variatie in het mitochondriaal DNA is geanalyseerd via de zo
genaamde Tandem Repeats (TR). Op basis van deze uitkomsten is de genetische 
divergentie tussen populaties bepaald op verschillende hierarchische niveaus. De 
onderzochte soorten zijn obligaat mitotisch parthenogenetisch, maar ondanks deze 
wijze van reproductie bleken de verschillen in variatie binnen en tussen populaties 
aanzienlijk. De fractie polymorfe fragmenten in het nucleaire en mitochondriale 
DNA was het laagst in M. incognita (respectievelijk 32% en 20 %) in vergelijking 
met M. javanica (respectievelijk 52% en 40%) en M. arenaria (respectievelijk 
61 % en 50 %). In de dendrogram op basis van de genetische afstand (GD) afgeleid 
van de AFLP merkers zijn de drie soorten gegroepeerd in drie monofeletische clus
ters wat in overeenstemming is met de identiteit van de soorten. Volgens een three 
principle coordinate analyse blijkt dat M. incognita het minst verwant is van de 
drie soorten. Uit de TR analyse bleek dat individuen van M. incognita het meest 
heteroplasmisch zijn. Op populatie-niveau was deze soort het meest homogeen 
(13% totale diversiteit) gevolgd door M. javanica (24% totale diversiteit) en M. 
arenaria (35% totale diversiteit). Een vergelijking van de intraspecifieke genetisch 
afstand zowel op basis van de AFLP als de TR analyse resulteerde alleen in een 
positieve correlatie voor M. arenaria populaties. 

Het onderzoeken van het genoom van nematode met behulp van molecu-
lair biologische technieken kan leiden tot de identificatie van genen die betrokken 
zijn bij het parasitisme. Per definitie kunnen deze genen van belang zijn voor de 
penetratie van de plant, de intercellulaire migratie in weefsel en het onttrekken van 
voeding aan planten. De identificatie van deze genen kan de basis vormen voor bi-
otechnologische strategieen die de ontwikkeling van resistentie tot doel hebben. In 
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hoofdstuk 4 is de analyse gepresenteerd van 1000 random sequenties uit een cDNA 
bibliotheek van M. incognita. Deze zogenaamde Expressed Sequence Tags (EST) 
blijken een uiterst doeltreffend middel om genen te identificeren op een bepaald ti-
jdstip in de levenscyclus van de nematode. De parasitaire cyclus van een nematode 
bestaat uit een aantal afzonderlijke fasen - penetratie, intercellulaire migratie en 
voedingscel inductie en onderhoud. Analyse van cDNA bibliotheken gemaakt van al 
deze fasen kan leiden tot inzicht in de moleculaire basis van de plant-nematode in-
teractie. 

In hoofdstuk 4 is een cDNA bibliotheek geanalyseerd van preparasitaire 
nematoden waardoor de gen expressie in de eerste fasen van de parasitaire cyclus is 
onderzocht. De ESTs zijn gegroepeerd in negen functionele klassen. De categorie 
'candidate parasitism genes' bevatte tevens alle tot dan toe gekloneerde en gekara-
kteriseerde parasitisme genen uit M. incognita. Een interessante groep zijn de 'pio
neering sequences' (33,9 %van de ESTS). Enkele analytische stappen die kunnen 
helpen bij het toewijzen van een functie aan sequenties in deze laatste groep worden 
besproken in dit hoofdstuk. 

Een van de ESTs, in de categorie 'candidate parasitism genes', toonde ho-
mologie met een celwand afbrekend enzym - een xylanase (hoofdstuk 5). De par-
tiele sequentie van de EST is gebruikt om een transcript (1220 nt) met een compleet 
open leesraam (37,6 kDa) te isoleren. Vanwege de homologie met xylanases is dit 
open leesraam Mi-Xyll genoemd. Volgens de hydrofobe cluster analyse behoort 
Mi-Xyll tot de familie 5 van de glycosyl hydrolases. In situ hybridisatie met een 
probe afgeleid van Mi-Xyll toonde een specifieke interactie met de subventrale 
speekselklieren van preparasitaire juvenielen. Uit analyse van het genomische DNA 
bleek dat een vermoedelijk twee homologe xylanase genen in het M. incognita aan-
wezig zijn. In Caenorhabditis elegans en in cystenaaltjes zijn geen homologe genen 
gevonden. Recombinant Mi-Xyll, geproduceerd in Escherichia coli, bleek enzyma-
tisch actief op xylan en op carboxymethylcellulose. 

De celwanden in planten vormen een barriere tegen de invasie door patho-
genen en parasieten. The celwand is een complexe composiet van allerlei polysac
charide^ eiwitten en fenolachtige verbindingen. Recent zijn endoglucanases 
aangetroffen in plantenparsitaire nematoden. In dit proefschrift is voor het eerst 
bewijs geleverd voor de aanwezigheid van hemicellulolytische enzymen in deze 
parasieten. Deze vondst suggereert dat nematoden bij de penetratie en intercellu
laire migratie kunnen beschikken over een reeks van celwand afbrekende enzymen 
met deels overlappende activiteiten. Wortelknobbelaatjes kunnen zich vermeerder-
en moncotielen en dicotielen. Monocotielen hebben een aanzienlijk hoger xylan ge-
halte in de celwanden, en naar aanleiding van de resultaten in dit proefschrift wordt 
verondersteld dat xylanase in wortelknobbelaaltjes met name een rol speelt bij het 
parasiteren van monocotielen. 
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Op basis van de hydrofobe cluster en fylogenetische analyse lijkt Mi-Xyll 
meer verwant met bacteriele homologen, dan met die uit andere dieren, planten en 
schimmels. Deze observatie is in overeenstemming met de situatie van pectinases 
en cellulases in nematoden. Dit feit suggereert dat nematoden de vooroudergenen 
van deze celwand afbrekende enzymen hebben verkregen via horizontale gen over-
dracht vanuit bacterien. Er is echter meer eenduidig bewijs nodig om deze hypoth-
ese te ondersteunen. 
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COflPiKHHA HA flHCEPTAUHJATA 

IlonyjiauHOHa H MOJicKyjiapiia reueTHKa Ha rajioBHTe HeiviaTOflH 

HeMaTOflHTe ro npeTCTaByBaaT HajraneMHOT H HajSpoJHHOT (pnjiyM BO XHBOT-

HHCKOTO uapcrBO. TjiaBHO XHBeaT BO BOflaTa H noHBaTa. Bo noHBaTa ce npncyTHH BO 

eHopMeH 6poj KOJ nocTHrHyBa on 1.8 no 120 MHJIHOHH no KBanpaTeH MeTap. MHory 
Maji jjeji on HHB ce HMaT npncnoco6eHO na ra napa3HTHpaaT pacreHHJaTa ((pHTona-
pa3HTHH). $HTonapa3HTHHTe HeMaTOflH ce npoynyBaaT rjiaBHO nopann eKOHOMCKHTe 
IUTeTH KOH TH npeflH3BHKyBaaT KaKO pe3yjITaT Ha MOpCpOJIOHIKHTe H (pH3HOJIOIHKHTe 
aSHopMajiHOCTH IHTO TH npHHHHyBaaT Kaj pacTeHHJaTa, KOH flOBenyBaaT no cHnnnpH-
KaHTHo HaMa^yBaite Ha npHHocoT. 

TajioBHTe HeMaTOflH, KOH npHnafaaT Ha poflOT Meloidogyne (Goeldi, 1892), ja 
coHHHyBaaT HajrojieMaTa rpyna ofl (pHTonapa3HTHH HeMaTOflH H ce ofl orpoMHO eKO-
HOMCKO 3HaHeH>e. HHBHaTa HinpoKa pacnpocrpaHeTOCT H cnoco6HOCTa ga oncTaHaT 
BO pa3JiH*fflH KjiHMaTCKH ycjioBH HM OBO3MO>KHJIO ̂ a BocnocTaBaT KOMnjieKCHH napa-
3HTCKH oflHOCH co noBeice ofl 2000 pacTHTejiHH BH^OBH. ro^HHiHHTe uiTeTH on rajio-
BHTe HeMaTO^H ce npoueHe™ Ha 10% OJJ BKynHHTe CBCTCKH 3ary6n npeflH3BHKaHH OH 

(pHTonapa3HTHH HeMaTOflH. OBHC 3ary6H MoacaT «a flocrarHaT H #O 25% BO 3eMJHTe 
BO pa3Boj. JJo neHec ce onHmaHH ocyvmeceT BHHOBH rajioBH HeMaTOflH, HO caMO neTH-
pn OH HHB, H Toa M. incognita, M. javanica, M. arenaria H M. hapla, ce OflroBopHH 3a 
90% on BKynHHTe uiTeTH npenH3BHKaHH OH rajioBH HeMaTO^H. EKOJioniKa H Hajnorofl-
Ha MepKa 3a 3aiHTHTa Ha npoH3BoncTBOTO on Hanan Ha rajioBHTe HeMaTOflH e Oflnie-
nyBafteTO Ha OTnopHH copTH. flocra necTo, nojaBaTa Ha BHpyjieHTHH nonyjiauHH, KOH 
ja coBJiaayBaaT OTnopHocTa, ja HaMaJiyBaaT e(pHKacHOCTa Ha OBOJ 3auiTHTeH npnc-
Tan. 

H noKpaj raneMOTO CKOHOCMKO 3HaHeH>e Ha flOMaTOT KaKO rpajjHHapcKa 
KyjiTypa BO MaKeflOHHj'a, MajiKy ce 3Hae 3a pacnpocTpaHeTocTa Ha BH ôBHTe o# po-
flOT Meloidogyne Ha noBpiHHHHTe BO MaKeflOHHJa, flOfleKa naK noflaTOUH 3a HHTepBH-
HOBaTa BapHJauHJa H noTnojiHO HejjocTacyBaaT. OBHe HeflocraTOUH SjrajaaT cepno3HO 
Bp3 H3pa6oTKaTa H npHMeHaTa Ha noroflHa H e<pHKacHa nporpaMa 3a 3amTHTa Ha 
KyjiTypHTe ofl Melodogyne spp. BO MaKejjoHHJa. KaKO npB neKop KOH ycneuiHa 
3aniTHTa e fleTepMHHHpaite Ha npHcyTHHTe Meloidogyne spp. BO MaKeflOHHj'a KaKO H 
HeTeKTHpan>e Ha BHpyjieHTHHTe nonyjiauHH KOH pe3HCTeHTHHTe copTH flOMaTH. O T -
nopHOCTa Ha HOMaTHTe KOH Meloidogyne spp. e pe3yjiTaT Ha noceflyBaiteTO Ha M/-reH-
OT KOJ e JIOHHpaH Ha 6-THOT XpOM030M BO flOMaTHHOT reHOM. 

Bo BTOPOTO norjiaBJe OH flHcepTaunjaTa, Ĥ eHTHCpHKyBaHH ce cenyMfleceT H 

Tpn Meloidogyne H30Jiara KOH noTeKHyBaaT ofl fleBeT jioKauiiH (nojiCKH H opaH-
acepncKH) H cnopeflyBaHo e HHBHOTO BJinjaHHe Bp3 oceTjiHBHTe H OTnopHHTe copTH 
HOMaTH. HaJ3acTaneHH 6ea BHflOBHTe M. incognita (47,9%) H M. javanica (35,6%), a no-
peTKO 6enie 3acTaneH BH^OT M. arenaria (13,7%) flOfleKa M. hapla (2,7%) 6euie #e-
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TeKTHpaHa cnopaflHHHO. Bo CKopo CHTe JioKajiHTeTH e yTBpneHO npHcycTBO Ha no-
Beice 03 efleH BHfl. BHpyjieHTHH H30JiaTH ce yTBpneHH Kaj: M. incognita (11%), M. java-
nica (46%) a Kaj M. arenaria (50%). JfaoJiaTHTe oft M. hapla 6ea KOMna™6HjiHH co 
CHTe TecTHpaHH reHOTHnoBH ofl flOMaTOT, UITO Moxe H fla ce oqeicyBa nopajjH Toa 
UITO M-reHOT He flonpHHecyBa 3a pe3HCTeHTHOCT KOH M. hapla. 

TopeHaBefleHHTe pe3yjiTaTH yicaxyBaaT Ha Toa fleKa oflrjienyBaiteTO Ha OT-
nopHH copTH flOMaTH e npenHocT Kaj JiOKauHHTe Ka^e HMa npHcycrBO Ha aBapyjieHT-
HH nonyjiauHH. JJojiroponeH ceJieKipioHeH npHTHCOK Moxe fla flOBeae JJO BHpyjieHT-
HOCT Kaj HeBHpyjieHTHHTe nonynauHH, UITO flOBejryBa flo npoSjieM npn 0flnieflyBaH>e-
TO Ha oTnopHHTe copTH. Bo TOJ cjiy^aj noTpe6HO e KOM6HHHpaH>e Ha MepKHTe 3a 
3auiTHTa KaKO UITO ce: njioflopen, yrap H 6HJiouiKa KompoJia HJIH naK ynoTpe6a Ha 
HeMaTOUHHH. BapHJa6HJiHocra BO 0flHecyBaH>eT0 Ha noojmeJiHHTe HHflHBHjryH BO eflHa 
nonyjiauHJa on HeMaTojni e pe3yjiTaT Ha reHeTCKaTa crpyKTypa Ha Taa nonyjiainija. 
OTKpHBaiteTO Ha reHeTCKHTe HH(popMauHH KOH ce HHKopnopnpaHH BO HeMaTOflHHOT 
reHOM Moace fla nonpHHece fla ce npejjBHflH HHBHOTO oflHecyBaite BO nojicKH ycJioBH. 
HMajKH BO npeflBHfl neKa reHOMOT Ha CHTe XCHBOTHH, BKjiyqyBaJKH rn H HeMaTOjpTe, 
ce COCTOH ofl ja^peHa H MHTOxoHflpHajraa flHK, HcnHTyBaaaTa BO paMHKHTe Ha non-
yjiauHOHaTa reHeraKa MoacaT fla SHflaT cnpoBe^eHH co npoynyBaifce Ha nojiHMOp(pH3-
MOT Kaj flHK H BO flBaTa reHOMH. 

Bo TpeTOTO norjiaBJe npoynyBaHa e reHeTCKaTa BapHJaSHJiHocr BO 16 nony-
Jiau,HH OH M. incognita, M. javanica H M. arenaria. Bo OBaa norjiaBJe, co noMOiu Ha 
AFLP (amplified fragment length polymorphism) MapKepH BO jajjpeHaTa flHK H TR (tan
dem repeats) BO MTJJHK, 6ea OTKpHeHH reHeTCKHTe pa3JiHKH Ha pa3JiHHHH xnepap-
XHCKH HHBoa. HaKO HcnHTyBaHHTe BHHOBH ce KapaKTepH3HpaaT co o6jinraTopHO MH-

TOTCKo-napToreHeTCKO pa3MHoacyBaH>e 6ea ^eTeKTHpaHH reHeTCKH BapHpaita BO H 
noMefy nonyjiauHHTe. IlponopuHOHajiHaTa 3acTaneHOCT Ha nojiHMopdpHHTe cppar-
MeHTH BO ja^peHHOT H MHTOxoH p̂HJajiHHOT ,n,HK reHOM 6eme noMaJia BO M. incogni
ta (32%, 20%) cnopefleHO co M. javanica (52%, 40%) H M. arenaria (61%, 50%). TeHeT-
CKHTe pa3JiHKH 6a3HpaHH Ha AFLP npodpajra ra miacHCpHHHpa nonyjiauHHTe BO Tpn 
rpyna corjiacHO HHBHHTC BH^OBH HfleHTHTe™. IloHaTaMOHiHHTe aHanH3H noKaacaa 
fleKa on TpHTe HcnHTyBaHH BH^OBH M. incognita e reHeTCKH HajoflflajieHeH BHH. IIOJIH-

MopdpH3MHTe HITO pe3yjiTHpaaT on TRs T.e. pa3JiHKHTe BO 6pojoT Ha nocjiejjoBaTejiHo 
noBTopyBaHaTa 63-6n ceKBeHua noKaxaa fleKa JiapBHTe Ha M. incognita ce co HaJBH-
coKa xeTeponjia3MHj'a flo,neKa Ha nonyjiauHCKO HHBO M. incognita 6euie HajxoMoreHa 
(13%) BO OJJHOC Ha M. javanica (24%) H M. arenaria (35%). CnopejryBaiteTO Ha HHTepcne-
iHKpHHHHTe reHeTCKH pa3JiHKH Ha janpeHaTa H MHTOxoHflpHJajmaTa JJHK noKaxa no-
3HTHBHa Kopejiaunja noMefy ^BaTa npnofla BO O^HOC Ha nonyjianHHTe on M. arenaria. 

IlpHMeHaTa Ha MOJieKynapHH TCXHHKH 3a H3yHyBanbe Ha HeMaTOflHHOT reHOM 
BOJJH HHpeKTHo KOH reHHTe KOH ce oflroBopHH 3a napa3HTHpaH>e Ha pacreHHJaTa 03 
CTpaHa Ha HeMaTojjHTe. I lo flecpHHHHHJa THe reHH HMaaT rjiaBHa yjiora npH HaBJiery-
BaiteTo, MefyKjieTOHHOTo flBroKeite H xpaHeite Ha HeMaTOflHTe 03 pacTeHHeTO. HHB-
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