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Stellingen 

1) N-acetylglucosamine komt voor in arabinogalactaneiwitten 
(AGPs) 

(dit proefschrift) 

2) Een voorbehandeling met chitinase vergroot het vermogen van 
arabinogalactaneiwitten (AGPs) om de vorming van somatische 
embryo's te bevorderen. 

(dit proefschrift) 

3) Bij het analyseren van de gevolgen van het toevoegen van (P-D-
Glc)3 Yariv phenylglucosiden aan plantencellen dient rekening te 
worden gehouden met de biofysische effecten op de celwand. 

Serpe, M.D. & Nothnagel, E.A. Planta 193, 542-550 (1994). 
Willats, W.G.T. & Knox, J.P. Plant Journal 9, 919-925 (1996). 
Serpe, M.D. & Nothnagel, E.A. Plant Physiol. 112, 1261-1271 
(1996). 

4) De strikte patroonvorming bij embryo- en wortelontwikkeling 
van onder gestandaardiseerde laboratorium omstandigheden 
gekweekte Arabidopsis thaliana verhult de natuurlijke plasticiteit 
van deze ontwikkelingsprocessen. 

Dolan, L. et al. Development 119, 71-84 (1993). 
Jiirgens, G. Cell 81, 467-470 (1995). 

5) Het vermelden van gegevens over de halfwaardetijd van 
arabinogalactaneiwitten (AGPs) is voorbarig zolang de structuur en 
de exacte functie van deze moleculen niet bekend zijn. 

Kreuger, M. & Van Hoist, G.-J. Plant Molecular Biology 30, 
1077-1086 (1996). 
Takeuchi, Y. & Komamine, A. Physiol. Plant. 50, 113-118 
(1980). 
Gibeaut, D. & Carpita, N. Plant Physiol. 97, 551-561 (1991). 

6) De Joegoslavische grondwet, die in 1974 onder invloed van Josip 
Broz Tito tot stand is gekomen, bood geen ruimte voor 
nationalistische stromingen en kon daarmee Joegoslavie als 
eenheidsstaat zo lang mogelijk in staat houden. 



7) In tegenstelling tot wat zij beweren laten McCabe et al. (1997) 
niet zien dat cellen waarvan het cytoplasma en de celwand 
gepolariseerd zijn, cellen zijn die zich kunnen ontwikkelen tot 
somatische embryo's. 

McCabe, P.F. et al. Plant Cell 9, 2225-2241 (1997). 

8) De door de producenten van softdrinks uitgeoefende druk op het 
Congres van de Verenigde Staten om een handelsboycot van Sudan 
te voorkomen en op die manier de invoer van arabische gom veilig 
te stellen, laat zien dat AGPs behalve somatische embryogenese ook 
de internationale politiek kunnen beinvloeden. 

International Herald Tribune (17 October 1997). 

9) De politieke keus voor Sarajevo, als lokatie voor het 
hoofdkwartier van de VN vredesmacht UNPROFOR, heeft het goed 
functioneren van UNPROFOR in hoge mate gehinderd. 

10) Het voorkomen van een tweede golfoorlog door bemiddeling 
van de Verenigde Naties is de grootste overwinning die deze 
volkerenorganisatie ooit behaald heeft. 
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Scope 

In vitro cultured carrot suspension cells can function as starting material for the generation of somatic 

embryos. Compounds secreted by suspension cells can influence the process of somatic 

embryogenesis. One class of such compounds, the secreted EP3 endochitinases, was found to lift the 

developmental arrest of somatic embryos formed in the temperature sensitive carrot cell line tsll, 

when cultured at restrictive temperatures. In addition, this chitinase was able to increase the number 

of tsll somatic embryos as observed at the restrictive temperatures. The bacterial 

lipochitooligosaccharide (LCO) NodRlv-V(Ac, CI8:4) was able to mimick the effects of EP3 

endochitinases on tsll somatic embryogenesis. The major goal of the study presented in this thesis 

was to identify plant produced compounds that contain an endochitinase cleavage site. Such 

compounds could then lead to the discovery of possible plant LCO analogues. 

In Chapter 1 an introduction concerning the roles and effects of compounds that influence 

embryogenesis is given. Besides a description of zygotic and somatic embryogenesis, this overview 

presents a number of classical and non-classical growth regulators that function in embryogenesis. It 

is discussed what role carbohydrates and proteoglycans can play in the initiation of embryogenesis. 

In Chapter 2 experiments are presented that identify suspension cells and plant tissues 

expressing EP3 endochitinase genes. In addition, the localisation of EP3 proteins in suspension cells 

and in seeds was determined. EP3 genes were only expressed in cells that were in the vicinity of 

zygotic or somatic embryos, but not in embryos themselves. The localisation of the secreted EP3 

enzymes in the culture medium and in the endosperm suggested a "nursing" function for EP3 

endochitinases during embryogenesis. 

In Chapter 3 the production of catalytically active carrot and Arabidopsis EP3 endochitinases 

in insect cells infected with recombinant baculoviruses is reported. Characterization of individual 

carrot EP3 endochitinase isozymes showed that all baculovirus produced carrot chitinases are able to 

cleave chitin as well as chitosan. Furthermore, the occurrence of the Arabidopsis chitinase AtEP3 in 

the medium of embryogenic Arabidopsis suspension cultures and its absence in non-embryogenic 

cultures identified AtEP3 as a good marker for the capability of such cultures to form somatic 

embryos. 

In Chapter 4 evidence is presented for the occurrence of N-acetylglucosamine (GlcNAc) in 

arabinogalactan proteins (AGPs) present in the medium of carrot embryogenic suspension cultures. 

AGPs isolated from immature carrot seeds, were found to contain endochitinase cleavage sites. The 

identification of these cleavage sites and the differences in the total population of AGPs isolated from 

carrot seeds at different stages of seed development suggested a substantial amount of processing of 

AGPs in carrot seeds. 

In Chapter 5 experiments are described that demonstrate that both EP3 endochitinases as well 

as AGPs can promote the formation of protoplast derived wild type somatic embryos. Pre-treatment 



of immature seed AGPs with chitinases before addition to carrot protoplasts was shown to increase 

the embryo-promoting effect. 

In chapter 6 the role of GlcNAc containing molecules in plant and animal development is 

discussed, with a special emphasis on the role of GlcNAc containing AGPs as the natural substrate 

for endochitinases in plant embryogenesis. 
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Plant growth regulators in embryogenesis 

Arjon J. van Hengel and Sacco C. de Vries 

(Mechanism of action of plant hormones, Eds: K Palme, R. Walden and J. Schell, in press) 



Chapter 1 

Introduction 

Traditional growth regulators such as auxins and cytokinins have always played an important role in 

studies of embryogenesis in vitro (Reinert, 1959). This was based in part on earlier work in which it 

was demonstrated that auxin could induce de novo meristem formation in tissue culture, a process 

referred to as organogenesis (Skoog and Miller, 1957). The role of exogeneously added auxins, and 

to a lesser extent cytokinins is therefore well-accepted in the formation of somatic embryos, and is 

thought to be essential in the reinitiation of cell division in explant tissues. It is less clear what their 

role is in zygotic embryogenesis. It is for instance not known at what moment in embryo development 

for the first time gradients of auxin and cytokinin are established and whether they have an instructive 

role in the establishment of embryo pattern elements. Only recently experiments have been performed 

that suggest that disruption of endogeneous gradients of auxins by various means indeed changes the 

outcome of the formation of the embryo pattern (Fisher et al., 1996; Liu et al., 1993). Another 

emerging area of research is the investigation into the role that a rapidly increasing array of diverse 

molecules such as chitinases, lipochitooligosaccharides or LCOs (De Jong et al., 1993), and 

arabinogalactan proteins or AGPs (Kreuger and Van Hoist, 1993) play in somatic embryogenesis. 

These studies have largely been performed in in vitro systems and have pointed to the existence of 

non-traditional growth regulators. 

Genetic analysis of plant zygotic embryogenesis has sofar revealed few clues as to the exact role of 

plant growth regulators in early embryo development. However, it does appear that cell to cell 

communication is one crucial mechanism employed to set up patterning and to ensure cell 

differentiation in embryogenesis (Jiirgens, 1995; Laux and Jiirgens, 1997). Such a mechanism of 

course requires long, short and intermediate range signalling molecules, some of which may be 

identical to the traditional growth regulators, while others may be identified as non-traditional ones or 

even as yet completely unknown molecules. 

In this chapter we will focus on studies that show a potential role of growth regulators in early 

embryogenesis and will attempt to identify essential developmental events in the early embryo, 

possibly under control of growth regulators. Later steps in seed development and embryogenesis, 

especially those during the onset of desication that are under control of growth regulators such as 

ABA and GA, are not discussed here. 

Embryogenesis in dicots and monocots 

The zygotic embryo begins life as a fertilized egg cell, the zygote (Fig 1 A). Concomittant, the second 

fertilization event results in the triploid endosperm, by fusion of the two polar nuclei of the central cell 

(Fig 1 A) with the second sperm nucleus. The endosperm develops into a tissue that consists of only a 
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Plant growth regulators in embryogenesis 

Figure 1. Embryonic development of dicotyledonous (A through K) and monocotyledonous plants (L through R). 
A. Ovule. The egg cell (ec) and synergids (sy) are located at the micropylar end (m) of the ovule, and the antipodal cells 
(ac) are at the chalazal end (ch). ii, inner integuments; oi, outer integuments; pn, polar nuclei. B. Zygote. C. The 
zygote has undergone the first division resulting in a smaller apical (a) cell and a larger basal (b) cell. D. Two celled 
embryo proper (e) and the suspensor (s). E. Octant stage embryo. F. 16-celled embryo where the protoderm (p) 
becomes apparent. G. Early globular stage embryo. The topmost cell of the suspensor has divided to produce the 
hypophysis (h). H. Mid globular stage embryo. I. Transition stage embryo. The cotyledons are about to emerge, the 
developing procambium (pc) and the ground meristem become visible. J. Heart stage embryo. The cotyledonary lobes 
are enlarging and the bilateral symmetry has clearly become obvious. K. Torpedo stage embryo. The morphological 
organization of the embryo has completed and all embryonic elements have become visible, the cotyledons (c) and the 
shoot apical meristem (sam) in the apical part, and the root apex (ra) in the basal part. L. The zygote has undergone the 
first division resulting in a 2-celled embryo. M. Three celled embryo with smaller apical cells and a larger basal cell. 
N. Club shaped embryo. O. Transition stage embryo, containing an embryo proper region with a protodermal cell 
layer, and a suspensor region. P. The subdistal region of the embryo starts to divide actively and the periferal shoot 
meristem becomes visible. Q. The root meristem begins to form internally and the region above the shoot meristem 
has expanded to form the scutellum (sc). R. The morphological organization of the embryo has completed and all 
embryonic elements have become visible with the shoot apical meristem with leaf primordia (si) and the coleorhiza 
including the embryonic root (cr). 
Figure adapted from West and Harada (1993), Tykarska (1976,1979) and Lindsey and Topping (1993). 
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few differentiated cell types and it is known to provide nutrients to the developing embryo and/or the 

germinating seedling (for review see Lopes and Larkins, 1993). 

The zygote elongates before the first division in the future apical-basal axis of the embryo (Fig IB). 

This coincides with a reorganization of the previously randomly orientated microtubules, that now 

become aligned perpendicular to this axis (Webb and Gunning, 1991). The first division of the zygote 

is usually an unequal transversal division that results in a larger basal cell, oriented towards the 

micropylar end, and a smaller apical cell, oriented towards the chalazal end of the embryo sac (Fig 

1C). The basal cell will give rise to the extra-embryonic suspensor, whereas the apical cell will give 

rise to the embryo proper. In the model plant Arabidopsis the uppermost cell of the suspensor (Fig 

1G) contributes to a part of the embryonic root meristem and root cap and thus to the embryo 

(Scheres et al., 1994). Many differences have been observed between dicot species concerning the 

contribution of the apical and basal cell derivatives to different parts of the embryo proper (for review 

see Mordhorst et al., in press). 

The establishment of two primary meristems in the embryo, the root and the shoot meristem, are of 

utmost importance in shaping postembryonic development and thus for generating the adult plant 

(Steeves and Sussex, 1989). Pattern formation is intensively studied by mutational analysis in 

Arabidopsis. The initiation of the two apical meristems at distal positions in the embryo (Barton and 

Poethig, 1993; Dolan et al., 1993) can be viewed as being part of an apical-basal pattern along the 

main body axis and a radial pattern perpendicular to this axis (Jiirgens, 1995). Both patterns become 

visible at very early stages in embryo development. Apical-basal pattern formation is visible as an 

unequal distribution of cellular constituents in the zygote and appears fixed by the first asymmetric 

division of the zygote, that results in two cells of unequal size and different fates in most dicot species 

(Fig 1C). Radial pattern formation commences slightly later, in the octant stage embryo, where the 

outer cell layer (the protoderm) becomes distinct from the inner cells (FiglE-F). Upon the transition 

into a heart stage embryo, the radial arrangement gives way to a bilateral symmetry by the formation 

of both cotyledon primordia. Pattern formation reaches completion in the late heart stage embryo (Fig 

1 J) with the visible presence of both apical meristems. After that, the body plan of the eventual dicot 

seedling is essentially finished (Jiirgens and Mayer, 1994). 

Controlled cell divisions in the early embryo are of utmost importance for generating the body 

organization that is apparent in the mature embryo (Jiirgens, 1995). Another factor that influences the 

body organization and the shape of the embryo is the control of cell expansion. Recently it has been 

shown that expansins, extracellular proteins that control tissue expansion, can regulate plant 

development. Fleming et al. (1997) have reported that beads loaded with purified expansin, placed on 

the apical meristem of tomato plants induce tissue expansion and can induce leaf formation. These 

results indicate that also biophysical forces have a role in plant development, so the control of cell 

expansion might also be an important factor in embryogenesis. 

It is less clear from mutational analysis whether the controlled cell divisions and subsequent 

expansion is actually instrumental in pattern formation. In mutant fass embryos the initial cell 
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Plant growth regulators in embryogenesis 

divisions are not as regular as in the wild type embryo, so that the characteristic radial organization is 

not apparent. Despite this all pattern elements develop and the mutant seedlings display all tissues 

found in wild type (Torres Ruiz and Jurgens, 1994), which seems to confirm observations made in 

many other plant species (see maize later in this section) that considerable randomness in early 

embryo cell divisions is apparent (reviewed by Mordhorst et al., in press) Based on these and other 

observations Jurgens (1995) suggested that the apical-basal pattern elements are established by 

cellular interactions in a position-dependent manner. The observed variability in early divisions shows 

that such cellular interactions can establish the embryo pattern independent of the pattern of cell 

division. Cellular interactions may also play an important role in maintaining and (possibly) initiating 

cell identity (Van den Berg et al., 1995) and tissue-specific gene expression. Further indications for 

cell-to-cell communication as a means of generating apical-basal pattern elements comes from clonal 

analysis with marker genes that show clone barriers to be variable sometimes to run across specific 

seedling structures, such as the cotyledons or the root meristem (Dolan et al., 1994; Scheres et al., 

1994). In Arabidopsis several screens have yielded mutants that are arrested in different stages of 

embryo development (Meinke and Sussex, 1979), that show changes in the apical-basal or radial 

body pattern (Barton and Poethig, 1993; Jurgens et al., 1991; Mayer et al., 1991; McConnell and 

Barton, 1995; Scheres et al., 1995) or that show specific expression of marker genes in the embryo 

(Vroemen et al., 1998) 

Several of the genes that upon mutation result in an embryo phenotype and that have been cloned 

cause rather severe phenotypes with considerable alterations at the cellular level. An example of such 

a gene is KNOLLE, encoding a syntaxin responsible for cytokinesis-specific vesicle fusion 

(Lukowitz et al., 1996). The knolle mutant was originally described as having a defect in the radial 

pattern (Mayer et al., 1991). Whether severe embryo or seedling phenotypes are the result of 

mutations in very early acting genes instructive in pattern formation remains uncertain (for review see 

Mordhorst et al., in press). The only clue from mutational analysis that cell-cell signalling events are 

required for shoot apical meristem formation during embryogenesis comes from the cloning of the 

CLAVATA 1 gene, postulated to be involved in maintaining the number of cycling and 

undifferentiated cells in the shoot apical meristem and encoding a transmembrane leucin-rich-repeat 

type receptor kinase (Clark et al., 1997). The ligand that activates this receptor is not known. 

In monocots maize is one of the model species for studying embryogenesis, and it is of interest to 

compare maize embryo development with that of the stereotype dicot embryo development because of 

the striking differences between the two. In maize fertillization results in a zygote that after the first 

two divisions gives rise to a 3-celled embryo that contains two small apical cells and one larger basal 

cell (Fig 1M). In contrast to Arabidopsis, the subsequent divisions are irregular (Randolph, 1936). In 

the transition stage the embryo has a club-shaped morphology, the emerging 'embryo proper' region 

is distinct from the 'suspensor region' since the latter does not contain a protodermal cell layer 

(Randolph, 1936) (Fig lO). The periferal shoot meristem becomes visible 6 to 7 days after 

fertilization (Fig 1P-Q), when the subdistal region begins to divide actively on the side facing away 

13 



Chapter 1 

from the endosperm (Van Lammeren, 1986). Later on, the root meristem is initiated internally. The 

embryonic meristems are initiatied at a later stage in embryogenesis then in the dicot Arabidopsis, 

while also the initiation of 3 to 5 leaf primordia during embryogenesis (Fig 1R) are characteristic for 

monocot embryogenesis. 

Besides zygotic embryogenesis other modes of embryogenesis exist in plants. Apomixis is an in vivo 

occurring process, that gives rise to embryos of gametophytic or somatic origin with maternal genetic 

properties (for reviews see Koltunow, 1993; Sharma and Thorpe, 1995). Given the variability in the 

cells that initiate apomictic embryos, it is likely that signalling systems are employed, but sofar no 

clues are available to what the nature of such signals is. One possibility is that they belong to the 

group of classical growth regulators such as gibberellic acid, that was shown to promote 

parthenocarpy in Arabidopsis (Chaudhury et al., 1994; Vivian-Smith et al., 1997). 

Zygotic embryogenesis can be mimicked in vitro by the fusion of isolated gametes (for review see 

Kranz and Dresselhaus, 1996) Zygotic embryogenesis after in vitro fertilization is comparable to the 

in vivo situation. Interestingly in vitro fertilization requires only both gametes, whereas further 

embryo development requires 'feeder' cells, usually in the form of an embryogenic suspension 

culture, suggesting that those 'feeder' cells fulfill an nursing function in early embryogenesis. It is not 

known whether this nursing function is a phenomenon restricted to the in vitro system or whether 

zygotic embryos also require such a nursing activity provided by the surrounding tissues. 

Androgenesis and gynogenesis are processes in wich gametes without fertilization can give rise to 

embryos (for reviews see Feme et al., 1995; Reynolds, 1997). The exact nature of mechanisms that 

lead to the aquisition of embryogenic potential in microspores have not been elucidated yet. 

Development of microspore embryos is dependent on stress conditions such as nitrogen starvation or 

heat treatment (Custers et al., 1994; Kyo and Harado, 1986; Touraev et al., 1996) rather then through 

the application of growth regulators. 

Somatic embryogenesis is the process by which somatic cells develop into plants via the same 

characteristic morphological stages, and with a comparable timing of development as can be observed 

in zygotic embryogenesis. Since the initial description in carrot almost 40 years ago (Reinert, 1959; 

Steward et al., 1958), in this species somatic embryogenesis has been used to study early regulatory 

events and to identify a variety of molecules including many synthetic plant growth regulators that 

promote somatic embryogenesis. More recently, also plant-produced molecules are being analysed for 

effects on the initiation and maturation of somatic embryos. These studies are of course possible 

because of the excellent accessibility of somatic embryos when compared to zygotic ones. 

While the exogeneous application of strong synthetic auxins as 2,4-D is almost universally used to 

generate embryogenic suspension cultures it is far from clear how embryogenic cells are actually 

initiated. Petiole (Ammirato, 1985) and hypocotyl explants (Kamada and Harada, 1979) require 

culturing in the presence of auxin before they produce cells that become competent to form somatic 

embryos. Even single cells from established suspension cultures (Nomura and Komamine, 1985) 
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require auxin before they become embryogenic. Auxin causes reinitiation of cell division in explants 

and proliferation of explant cells once released. Carrot hypocotyl explants can give rise to cells that 

are capable to generate somatic embryos after exposure to 2,4-D for at least 72 hrs. The only cells that 

respond to 2,4-D by proliferation are cells of the stelar cylinder, thus the embryogenic cells must 

derive from these proliferating cells (Guzzo et al., 1994). However, the number of proliferating cells 

exceeds by far the number of embryogenic cells, as determined by video recording of the 

development of many thousands of individual cells (Schmidt et al., 1997). This indicates that after 

auxin treatment only a small subset of the cell population becomes embryogenic, which was 

previously found to hold true for suspension cultured cells as well (De Vries et al., 1988; Toonen et 

al., 1994). These experiments also provide evidence that reinitiation of cell division and subsequent 

proliferation is only one step amongst many in the pathway that leads to embryogenic cell formation. 

There appears to be only a specific subset of proliferating cells, those that express the Somatic 

Embryogenesis Receptor Kinase (SERK), that can follow the developmental pathway that leads to 

embryogenesis (Schmidt et al., 1997). 

Most of the alternative systems for embryogenesis exhibit variability in the early division patterns in 

the embryo, even when the zygotic embryos of the same species exhibited regularity. It appears 

therefore that despite such variability in early division patterns between species, all dicot embryos 

develop through the characteristic globular, heart and torpedo stages. In all monocot embryos the 

globular stage is followed by a transition stage, the initiation of the periferal shoot meristem, and 

subsequently the formation of an internally located root meristem. In the following section we will 

discuss studies that demonstrate a role of growth regulators during the initiation of embryogenesis 

and in later stages of embryo pattern formation during which for instance the apical meristems are 

established. 

Classical plant growth regulators in embryogenesis 

In carrot somatic embryogenesis an initially high concentration of either endogenous free IAA or an 

exogenous auxin is required. Subsequently, the free auxin concentration must fall below a certain 

maximum in order to allow the organized development of bipolar embryos to occur. Ribnicky et al. 

(1996) have shown that exogenous auxins have profound effects on endogenous auxin metabolism, 

and it is therefore likely that removal of exogenous auxins is needed to lower the internal levels 

sufficiently for internal gradients to appear. Michalczuk et al. (1992) and Cooke and Cohen (1993) 

assumed that in somatic embryos that contain between 20 and 30 ng g"l fresh weight of total IAA, the 

free IAA concentration is low enough to allow the establishment of endogenous auxin gradients. In 

developing seeds very high levels of auxin can be measured, suggesting a requirement for auxin in 

and around the developing zygotic embryo (Michalczuk et al., 1992). In vitro fertilization initially 

requires externally applied auxins for embryo formation, so the situation in seeds can apparently be 
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mimicked by application of exogenous auxins. It is assumed, but not proven, that auxins are required 

to sustain the initial phase of rapid cell divisions in the embryo. There is increasing evidence that they 

also play a role in later stages in embryo development when pattern formation and cell differentiation 

occur. 

Plant growth regulators exist in low concentrations in cells and therefore it is difficult to localise their 

site of production and to determine their precise sites of action during embryogenesis (Liu et al., 

1993). Two approaches are followed to study the role of endogenous growth regulators during 

zygotic embryogenesis. In the first one mutants are investigated that show an embryo phenotype in 

addition to an altered transport or altered level of plant growth regulators. The second approach makes 

use of growth regulator transport inhibitors applied to excised zygotic embryos. Although both 

approaches have yielded valuable insight into the role of plant growth regulators in embryogenesis, 

they suffer from experimental restrictions. Few mutant phenotypes are amenable to measurement of 

growth regulators due to early arrests and limited availability of tissue for analysis, while excision of 

zygotic embryos is restricted to later stages of development. It is hoped that increasingly more 

efficient and reproducible in vitro systems will help to overcome these limitations. Determination of 

specific effects of any particular growth regulator is however often hampered by the fact that one 

growth regulator appears to be able to modify the synthesis of other classes of growth regulators, 

either directly or indirectly (Gaspar et al., 1996). 

In embryos of the Arabidopsis mutant fass the initial embryonic divisions are aberrant, but despite 

this, all pattern elements are developed (Torres Ruiz and Jiirgens, 1994). Seedlings of this mutant 

have been shown to contain 2.5 times higher levels of free auxin, which might in turn cause the 

higher levels of ethylene that were also observed (Fisher et al., 1996). Furthermore it was shown that 

the fass phenotype can be mimicked when wild type heart-shaped embryos are cultured in the 

presence of NAA. The fass gene product is thought to function as a negative regulator of free auxin 

formation, or as a positive regulator of auxin conjugation (Fisher et al., 1996). 

Another indication for the importance of auxin during embryogenesis comes from studies on auxin 

transport in the Arabidopsis mutant monopteros. The monopteros gene is important for the apical-

basal pattern formation during embryogenesis, since mutant embryos fail to produce hypocotyl and 

radicle (Berleth and Jiirgens, 1993). In adult plants of this mutant the presence of abnormal flowers, 

reduced or absent veins in leaf laminae, and unoriented, improperly aligned or isolated vessel 

elements, reveals post-embryonic functions of the monopteros gene (Przemeck et al., 1996). In 

monopteros plants, polar auxin transport in the influorescence axis was reduced, and it was proposed 

that the monopteros gene product canalizes a root-to-shoot signal flux in which the polar auxin flux 

might play a role. 

Pinl-1 is an Arabidopsis mutant that has several structural abnormalities in the influorescence axis, 

flowers and leaves (Goto et al., 1987; Haughn and Sommerville, 1988). Analysis of this mutant has 

shown that the polar auxin transport was decreased to only 14% of wild type (Okada et al., 1991). 

Culturing wild type plants in the presence of auxin polar transport inhibitors like 9-hydroxyfluorene-
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9-carboxylic acid (HFCA), N-(l-naphthyl)phthalamic acid (NPA), or 2,3,5-triiodobenzoic acid 

(TIB A) resulted in plants that resembled the phenotypes of the pinl mutants, indicating that the major 

genetic defect of the mutation is related to the auxin polar transport system(s). The pinl-1 phenotype 

is not restricted to the adult plant since selfing of pinl-1 heterozygous plants resulted in an offspring 

containing embryos with a fused, cylindrical cotyledon (Liu et al., 1993). This suggested that polar 

auxin transport is essential for the establishment of bilateral symmetry during plant embryogenesis. 

Other indications for the correctness of this hypothesis are also reported by Liu et al. (1993). 

Globular and heart-shaped zygotic embryos of Indian musterd were dissected and cultured in vitro, 

where embryogenesis proceeded as in the in vivo situation. Culturing these embryos in the presence 

of the auxin transport inhibitors HFCA, TIBA, or frans-cinnamic acid resulted in embryos with a 

phenotype resembling that of the pinl-1 mutant. The recently described cue mutants (Aida et al., 

1997), that are characterized by the observation that the cud cuc2 double mutant fail to organize a 

shoot apical meristem, exhibit a phenotype that is similar to the pinl-1 phenotype. This indicates that 

either the developmental pathway of organizing the shoot apical meristem in the embryo, in which the 

cue genes are involved, is also modulated by polar auxin transport, or that it is difficult to conclude 

much from the pinl-1 phenotype. Partially or completely fused cotyledons have also been observed in 

embryos of the emb30(gnom) mutant (Mayer et al., 1993; Meinke, 1985), and therefore Liu et al. 

suggested that the emb30 gene product might play a role in auxin polar transport. Cloning of the 

emb30 gene revealed that it encodes a protein that has similarity to yeast SEC proteins (Busch et al., 

1996; Shevell et al., 1994)(Shevell et al., 1994). The exact function of the EMB30 protein is still 

unknown, but Shevell et al. (1994) speculated that EMB30 functions in secretion and therefore might 

affect the transport of auxin, or, alternatively, might affect the synthesis and secretion of 

glycoproteins. Mutants of the amp/pt type exhibit an enlarged shoot apical meristem that gives rise to 

a polycotyledon phenotype in the seedling, amp plants were shown to have a variety of defects and to 

contain elevated levels of cytokinin (Chaudhury et al., 1993). Whether this elevated level of cytokinin 

is directly responsible for the polycotyledon phenotype is not established, so it is not clear whether a 

balance of auxin and cytokinin is involved in cotyledon primordium formation. 

Besides the influence of polar auxin transport inhibitors on dicot embryo development, the effect of 

auxins and polar auxin transport inhibitors has also been investigated in monocot embryogenesis 

(Fischer and Neuhaus, 1996). In the in vitro development of wheat zygotic embryos the unilateral 

formation of the scutellum was blocked when the embryos were cultured in the presence of 2,4-D, 

2,4,5-T or IAA. The effect of the auxins depended on the developmental stage of the isolated 

embryos. Addition of auxin to symmetrical globular embryos resulted in growth, but not in cell 

differentiation or meristem formation. Addition to transition stage embryos resulted in a normal 

embryo morphology, but sectioning revealed a loss in cellular organization in the treated embryos. 

Blocking auxin transport by culturing wheat zygotic embryos in the presence of TIBA did not prevent 

scutellum formation, but the relative position of the shoot apical meristem in comparison to the 

scutellum was altered and no root meristems were formed. Based on these obsevations it was 
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proposed that the non-homogeneous distribution of auxin within the embryo proper at the globular 

stage or 'auxin gradients' are instrumental in the establishment of embryo polarity (Fischer and 

Neuhaus, 1996). 

Non-classical growth regulators in embryogenesis 

In several in vitro systems it has been found that proteins secreted into the culture medium can be 

beneficial or detrimental for embryogenic cell formation and also for progression of embryogenesis 

(De Vries et al., 1988; Maes et al., 1997). The addition of extracellular proteins isolated from 

embryogenic carrot cultures could rescue embryogenesis in the temperature sensitive mutant carrot 

cell line tsll (Lo Schiavo et al., 1990). tsll is likely to be impaired in its secretion of extracellular 

proteins and polysaccharides (Baldan et al., 1997), amongst which the extracellular protein 3 (EP3) 

that caused the complementation has been purified and turned out to be an endochitinase (De Jong et 

al., 1992; De Jong et al., 1995). The acidic endochitinase EP3 was found to be a member of a small 

family of highly homologous class IV chitinase genes (Kragh et al., 1996). EP3 gene expression in 

suspension cultures was notably found in non-embryogenic cells and not in somatic embryos, while 

in plants expression was seen in the integuments of developing seeds, in the endosperm of mature 

seeds, but not in zygotic embryos (van Hengel et al., in press). The fact that EP3 has a promotive role 

in tsl 1 somatic embryogenesis, while it is produced predominantly by non-embryogenic cells points 

to the existence of protein-mediated cell to cell communication in the process of somatic 

embryogenesis. 

The effect of EP3, lifting the arrest in somatic embryo development of tsl 1, could be mimicked by 

chitin-containing bacterial signal molecules, the so-called lipochitooligosaccharides (LCOs) or Nod 

factors (De Jong et al., 1993). These results were originally interpreted to reflect the involvement of 

EP3 chitinases in the generation of plant analogues of LCOs. Staehelin et al. (1994) have shown that 

modifications in Rhizobium meliloti LCOs influence their stability against hydrolysis by root 

chitinases and they propose that the activity of LCOs may be partly determined by the action of plant 

chitinases. These data suggested that plants employ extracellular chitinases to influence a signalling 

pathway, involving bacterial LCOs, that eventually leads to the formation of root nodules. Chitin 

fragments consisting of four or more N-acetylglucosamine residues are perceived by tomato cells 

(Felix et al., 1993). Subnanomolar concentrations of these chitin fragments can induce an 

extracellular alkalinization and cause changes in protein phosphorylation in suspension cultured 

tomato cells. Thus, N-acetylglucosamine-containing LCOs trigger root nodule formation and are also 

able to affect tsll somatic embryogenesis, while chitin fragments are able to activate a signal 

transduction pathway that might be part of the plants' biochemical defence response upon pathogen 

attack. Enzymes that form and degrade biologically active oligosaccharides (termed oligosaccharins; 

Darvill et al., 1992) are almost certainly largely responsible for when and where oligosaccharides are 
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active in plant tissues (Albersheim et al., 1994). Endochitinases might therefore be part of such a 

regulatory mechanism involving chitin fragments and LCOs, both of which are oligosaccharides 

involved in cell signalling (for review see Spaink, 1996). Another indication that plant development is 

influenced by plant produced molecules that contain chitin-like fragments comes from tobacco plants 

that were transformed with the Rhizobium nodA and nodB genes and that showed severe effects in 

their development (Schmidt et al., 1993). 

Oligosaccharins can act as antagonists of auxin, which has been shown by increasing the auxin 

concentration in a system where oligogalacturonides normally can inhibit the auxin-induced formation 

of roots on tobacco leaf explants (Bellincampi et al., 1996; Bellincampi et al., 1993). A functional 

relationship between LCOs and classical growth regulators was also observed by Rohrig et al. (1995) 

who have shown that LCOs at femtomolar concentrations confer the ability of tobacco protoplasts to 

divide in the presence of high auxin concentrations. Recently it was reported that another kind of 

signalling molecules is involved in the division of protoplasts in this system, since the secreted 

peptide ENOD40 is also able to alter the response of tobacco protoplasts to auxin (Van De Sande et 

al., 1996). It appears therefore that several recently described unusual plant growth regulators are 

developmentally important and may operate through altering the response of plant cells to auxin. 

Chitin-based oligosaccharides may also be involved in animal development. In Xenopus the DG42 

gene is found to be expressed only between the late midblastula and neurulation stages of embryonic 

development (Rosa et al., 1988). The gene has some similarity with fungal chitin synthases and an 

even stronger homology with the Rhizobium nodC gene (Bulawa and Wasco, 1991). The DG42 

protein has been shown to catalyze the synthesis of short chitin oligosaccharides in vitro (Semino and 

Robbins, 1995), suggesting a role in development for molecules that contain short arrays of N-

acetylglucosamine. Homologs of DG42 are present in zebrafish and mouse (Semino et al., 1996). In 

zebrafish, recent evidence was obtained that suggests that blocking the DG42-like activity by 

microinjection of anti DG42 antibodies during zebrafish embryogenesis resulted in defects in trunk 

and tail development (Bakkers et al., 1997). 

While the above-cited examples all involve small diffusable molecules that are likely to belong to 

intermediate and long range signalling systems, short distance signal molecules must also exist in 

plants. Evidence for this comes from laser ablation studies in Arabidopsis roots where it was shown 

that cells can acquire the fate of their neighbouring cells in a directional fashion (Van den Berg et al., 

1995). The identity of such compounds is not known, but in other systems it has been suggested that 

such close-range signalling involves cell wall determinants. The marine brown algae Fucus and 

Pelvetia provide model systems to study the initiation and maintainance of polarity in embryogenesis. 

The Fucus zygote establishes a stable polar axis within 12 h after fertilization. External gradients like 

unilateral light can impose a polar axis and the first cell division results in an apical thallus cell and a 

basal rhizoid cell. Berger et al. (1994) have shown that at the two cell stage, cell walls derived from 

either the rhizoid or the thallus cells have the potential to confer and maintain rhizoid and thallus 

properties on Fucus protoplasts and in this way impose a polar axis. These results suggest that cell 
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walls can contain positional information which can be perceived by the protoplasts' cytoplasm and/or 

nucleus and thus influence its developmental fate. The establishment of the polar axis is most likely a 

result of targetted secretion, since polar secretion of Golgi-derived material at the fixed site of polar 

growth is essential for growth and differentiation of the rhizoid as well as for the first plane of cell 

division (Shaw and Quatrano, 1996). Which wall components are causative factors for the signalling 

that influences cell fate in Fucus embryogenesis remains to be elucidated, although it is tempting to 

speculate that oligosaccharides or proteoglycans are involved in this process. 

Similar studies have not been performed in higher plant zygotes, but oligosaccharides are known that 

can function as developmental markers. Several monoclonal antibodies to extracellular matrix 

polysaccharides, extensins and arabinogalactan proteins (AGPs) of higher plants have been generated 

and were shown to recognize developmentally regulated cell surface epitopes (for review see Knox, 

1997). The differentiation of Zinnia elegans mesophyll cells into tracheary elements provides a semi-

synchronous system for studying in vitro cell differentiation (Fukuda, 1992; Fukuda and Komamine, 

1980). Stacey et al. (1995), using monoclonal antibodies, have shown that changes in the secretion of 

three classes of cell wall molecules occur during differentiation. The precise timing of the appearance 

and disappearance of epitopes, that are present on either pectic polysaccharides, xyloglucans or 

arabinogalactan proteins (AGPs), provides a series of carbohydrate cell-surface markers for cell state, 

particularly correlated with the time of determination of the tracheary element fate. 

Arabinogalactan proteins 

AGPs are proteoglycans with poly- and oligosaccharide units covalently linked to a central protein 

core, and are part of the extracellular matrix of most plants (for reviews see Du et al., 1996; Kreuger 

and Van Hoist, 1996). The AGP epitopes that are recognized by the monoclonal antibodies JIM4 and 

JIM 13, are expressed in specific parts of the carrot root apex. Based upon this, a function for AGPs 

in determining plant cell fate has been postulated (Knox et al., 1991; Knox et al., 1989). A correlation 

between cell fate and the expression of a specific set of AGPs has also been found in maize 

coleoptiles that are commited to undergo programmed cell death (Schindler et al., 1995). 

Several experiments in different systems suggest that AGPs are not only a consequence of cell 

differentiation, but may also play a more instructive role in development. The 6-glycosyl Yariv 

reagent, with which AGPs interact specifically, when bound to cell wall AGPs of rose suspension 

cells inhibited growth in a reversible fashion (Serpe and Nothnagel, 1994). In suspension cultured 

carrot cells that have been induced to elongate rather than proliferate, addition of the Yariv reagent 

resulted in an inhibition of cell elongation. Due to the application of Yariv reagent to Arabidopsis 

seedlings a reduction of root growth as a result of reduced cell elongation was observed (Willats and 

Knox, 1996). The addition of AGPs, containing the ZUM18 epitope, that were isolated from mature 

dry carrot seeds was reported to increase the number of embryogenic cell clusters in carrot suspension 
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cells (Kreuger and Van Hoist, 1995). Toonen et al. (1997) have shown that AGPs can overcome the 

negative effect that the removal of particular cell populations has on the number of somatic embryos 

produced. These results suggest that AGPs, in addition to the EP3 chitinases may represent a second 

example of molecules that are involved in cell-cell communication in suspension cultures. No effect 

was seen by Toonen et al.(1997) on the number of somatic embryos produced by non-fractionated 

suspension cultures. In the conifer Norway spruce (Picea abies) addition of AGPs, isolated from seed 

extracts, can influence somatic embryo morphology by enlarging the embryonic region that is 

composed of a mixture of meristematic and expanded cells (Egertsdotter and Von Arnold, 1995). 

Taken together, these data suggest that certain AGPs can be classified as non-classical plant growth 

regulators that may have a function in plant development. Whether they are involved in specific 

processes such as cell differentiation or affect more general functions such as division and expansion 

remains to be elucidated. 

The suggested function(s) of AGPs involve cell-cell signalling and cell-matrix interactions. Based 

upon their biochemical characteristics AGPs have the potential for two types of interactions: 

macromolecule-macromolecule or macromolecule-small-ligand (Gane et al., 1995). A signalling 

function of AGPs could be envisaged by means of such interactions or, alternatively, AGPs can 

function as the locked-up form of signalling molecules (Bacic et al., 1988) and thus may require 

extracellular processing for the release of the active forms of the signal molecules. 

Cell-cell communication and 'nursing' during plant embryogenesis 

While the phenomenon that somatic embryogenesis indeed occurs in plants is often used as an 

argument against the role of a maternal contribution to plant embryogenesis, several lines of evidence 

suggest an intimate relation between the developing embryo and its surroundings. In zygotic 

embryogenesis the embryo is surrounded by the maternal integuments and the endosperm. Little is 

known about the precise developmental relationship between these three partners, but there is 

growing evidence that regulatory communication systems during seed development exist (for review 

see Lopes and Larkins, 1993). Recently Colombo et al. (1997) have provided molecular evidence for 

maternal factors that control seed and endosperm development. The floral binding protem.7 (JbpT) and 

fbpllare genes belonging to the MADS box family of transcription factors. Both genes are expressed 

in the integuments after fertilization has taken place. Plants in which both genes are downregulated by 

cosuppression showed a shrunken seed phenotype while mature seeds with a strongly reduced 

amount of endosperm were produced. The interaction between embryo, endosperm and maternal 

sporophytic tissue is also studied in the fertilization independent endosperm (fie) (Ohad et al., 1996) 

or fertilization independent seed (fis) (Chaudhury et al., 1997) mutants. The female gametophytic/ie 

mutation allows replication of the central cell nucleus and endosperm development without 

fertilization. FIE/fie seed coat and fruit undergo fertilization-independent differentiation, which shows 
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that the fie female gametophyte produces signals that activate sporophytic fruit and seed coat 

development. Furthermore, embryos that maternally inherit the mutant/ie allele are aborted, while fie 

does not affect the male gametophyte (Ohad et al., 1996). Also mfis mutants certain aspects of seed 

development are uncoupled from the event of double fertilization, resulting in partial development of 

the seed without pollination. In addition, pollination oifis plants with wild type pollen resulted mfis 

seeds that were found to contain embryos arrested at the torpedo stage. Thus, it appears that the 

genetic programs of embryo, endosperm and seed are distinct, yet point to a variety of interactions at 

different time points. 

As discussed in the previous section, there is ample evidence for a contribution of both classical and 

'novel' secreted signalling molecules to in vitro embryo development. An extreme case was recently 

reported for wheat androgenesis, where it was shown that co-cultivation with dissected ovaries was 

absolutely necessary for the induction of embryogenesis (Puolimatka et al, 1996). Together with the 

requirement for co-cultivation with 'feeder cells' used in several systems including in vitro 

fertilization, and the role of non-embryogenic cells in somatic embryogenesis, it becomes clear that 

embryogenesis in plants relies heavily on the presence of surrounding tissues and cells. An attractive 

question that can now be pursued is whether the function of integuments and the endosperm is 

mimicked in vitro by respectively 'feeder cells' and non-embryogenic cells. The precise nature of 

these signals, their site of synthesis, extracellular and intracellular transduction pathways and the 

target processes they are involved in are virtually unknown at present. However, many different 

candidates such as auxins, chitin-based oligosaccharides, AGPs and other cell wall components exist. 

Regarding the transduction of signals during plant embryogenesis, it is of interest that recently the 

SERK gene, coding for a leucin-rich repeat containing transmembrane receptor-like kinase was 

shown to be expressed in both somatic and zygotic embryos (Schmidt et al., 1997). In cells derived 

from hypocotyl explants the SERK gene is transiently expressed in a small population of enlarging 

single cells during the initiation of embryogenic cultures. SERK expression in somatic embryos 

ceased after the globular stage. In plants, expression of the SERK gene could only be detected 

transiently in the zygotic embryo up to the early globular stage. Schmidt et al. (1997) postulate that 

the SERK receptor-like kinase is a candidate for a protein with an important function in the 

communication between the early embryo and the surrounding cells, in vitro as well as in vivo. 

Identification of additional components of the SERK-mediated signal transduction chain might help to 

further elucidate such mechanisms of communication. 

A surprising observation was recently made on the possible role of oligosaccharides in pattern 

formation in Drosophila , a process known to require the regulated expression of a small forest of 

signalling molecules. Fringe (FNG), is a secreted Drosophila protein that has a key role in dorsal-

ventral aspects of wing formation (Irvine and Wieschaus, 1994), and based on homology searches 

Yuan et al. (1997) have recently suggested that FNG-like signalling molecules may be 

glycosyltransferases. The expression of glycosyltransferases was shown to increase during mouse 

embryonic development (Cho et al., 1996) and the extracellular carbohydrate moieties change during 
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development (Masteller et al., 1995). Furthermore, numerous distinct ESTs from multicellular 

organisms including Arabidopsis, suggest a vast superfamily of glycosyltransferases that might 

belong to a system of posttranslational modification independent from the Golgi apparatus 

(interestingly no match was found in yeast or other completely sequenced unicellular organisms). 

Therefore Yuan et al. (1997) state that the carbohydrate status of the cell during development might be 

a function of neighboring cells and not only of its own expression set of glycosyltransferases. When 

this holds true, oligosaccharides might be signalling molecules that are important in embryonic 

development, and their biological activity is likely to be regulated by enzymes that are produced by the 

same cells or by neighboring cells. 

Concluding remarks 

In this chapter we have pointed out experimental studies that place auxin in a central position in the 

initiation and maintenance of cell divisions in the early plant embryo. Certain aspects in embryo 

pattern formation, such as the shift from radial to bilateral symmetry are clearly disturbed both by the 

presence of auxin transport inhibitors and by the presence of high exogeneous auxin levels. Screens 

that have been performed in order to obtain embryo mutants did sofar not yet result in mutants that are 

primarily affected in auxin biosynthesis, or mutant phenotypes that can be rescued by the addition of 

auxins. 

We have also described cases where it was shown that classes of 'novel' signal molecules exist that 

either alone or in combination with classical growth regulators are involved in embryo development. 

However, the precise mechanisms of such interactions remain to be elucidated in order to determine 

which plant growth regulators or combinations of growth regulators are decisive for both the initiation 

and the subsequent development of plant embryos. Likely candidates for such 'novel' growth 

regulators are oligosaccharides and proteoglycans. Currently these molecules and their biological 

effects are topics of intense research employing experimental systems in which such molecules can be 

tested for their effect on plant embryogenesis. The importance and possible necessity of signalling 

between the developing embryo and the surrounding cells has also emerged from genetic studies 

aimed at understanding the relation between the zygotic embryo, the endosperm and the maternal 

integuments. A combination of such genetic backgrounds and in vitro systems more amenable to 

biochemical analysis is expected to provide new insights into the role of growth regulators in plant 

embryogenesis. 
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Expression pattern of the carrot EP3 endochitinase genes in suspension 
cultures and in developing seeds 

Carrot EP3 class IV endochitinases were previously identified based on their ability to rescue somatic 

embryos of the temperature sensitive cell line tsll. Employing whole mount in situ hybridisation it 

was found that a subset of the morphologically distinguishable cell types in embryogenic and non-

embryogenic suspension cultures, including tsll, express EP3 genes. No expression was found in 

somatic embryos. In carrot plants EP3 genes are expressed in the inner integument cells of young 

fruits and in a specific subset of cells, located in the middle of the endosperm of mature seeds. No 

expression was found in zygotic embryos. These results support the hypothesis that the EP3 

endochitinase has a "nursing" function during zygotic embryogenesis, and that this function can be 

mimicked by suspension cells during somatic embryogenesis. 

Arjon J. van Hengel, Flavia Guzzo, Ab van Kammen, and Sacco C. de Vries 

(Plant Physiology, in press) 
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Introduction 

Carrot cell cultures secrete many different proteins into the medium, a process that contributes to the 

conditioning of the medium. Conditioned media are reported to have a promoting effect on the 

initiation of somatic embryogenesis (Hari, 1980; Smith and Sung, 1985). The initiation of somatic 

embryogenesis results in major changes of the extracellular protein pattern, in contrast to the pattern 

of intracellular proteins (De Vries et al., 1988). Some of the secreted proteins are thought to be related 

to the formation of embryogenic cells and somatic embryos. In order to investigate whether a causal 

relationship between certain secreted proteins and embryogenic potential exists, secreted proteins that 

were differentially expressed under different culture conditions were analysed and their localisation 

was studied. The extracellular protein EP1 is only secreted by non-embryogenic cells (Van Engelen et 

al., 1991), whereas another extracellular protein, EP2, identified as a lipid transfer protein is only 

secreted by embryogenic cells and somatic embryos (Sterk et al., 1991). These results showed that 

different cell types contribute to the total pattern of proteins secreted into the culture medium (Van 

Engelen and De Vries, 1993). Another way of studying a causal relationship between secreted 

proteins and embryogenic potential has led to the identification of the extracellular protein 3 (EP3), 

identified as a chitinase. EP3 was originally purified as a protein capable of rescuing somatic embryos 

in the mutant carrot cell line tsll at the non permissive temperature (De Jong et al., 1992). The acidic 

endochitinase EP3 was found to be a member of a small family of class IV chitinase genes (Kragh et 

al., 1996). Those highly homologous isoenzymes are encoded by at least 4 EP3 genes. Two of these 

proteins, EP3-1 and EP3-3, were purified and shown to have subtly different effects on the formation 

of somatic embryos in newly initiated tsll embryo cultures (Kragh et al., 1996). 

Since the effect of the chitinases was mimicked by Rhizobium-produced Nod factors (De Jong et al., 

1993), it was proposed that the chitinases are involved in the generation of signal molecules essential 

for embryogenesis in tsll (De Jong et al., 1993). The EP3 proteins produced by tsll at the 

permissive as well as at the non-permissive temperature did not show any difference in biochemical 

characteristics compared to the ones produced in wild-type cultures and they were also capable of 

rescuing tsll somatic embryos. It was also shown that the sensitivity of tsll to chitinases coincided 

with a transient decrease in the amount present of this otherwise functional set of proteins (De Jong et 

al., 1995). 

The roots of leguminous plants are known to produce chitinases and during the interaction with 

Rhizobium these plant produced chitinases have been suggested to control the biological activity of 

Nod factors by cleaving and inactivating them. In this way, chitinases are proposed to have the 

potential to control plant morphogenesis and cell division (Staehelin et al., 1994). 

Many chitinase genes are induced upon infection, wounding and treatment with elicitors. Infection 

can lead to a 600-fold induction of chitinase activity (Metraux and Boiler, 1986). The molecular 

mechanisms and signaling pathways, responsible for this induction remain largely unclear (Graham 
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and Sticklen, 1994). The response of a plant to infection involves nonspecific responses, because 

challenge by different pathogens can induce production of the same set of PR proteins (Meins and 

Ahl, 1989). The induction is not only restricted to the infection zone, since uninfected areas of 

infected leaves and even uninfected second leaves show an increase in chitinase activity (Metraux and 

Boiler, 1986). 

In the carrot system we aimed to establish the following. First, to determine which cells in wild-type 

and tsll suspension cultures express the EP3 genes. And second, to determine whether, and where 

the same chitinases are expressed during zygotic embryogenesis. The results show that the carrot EP3 

class IV endochitinases are expressed in a subset of, most likely, non embryogenic suspension cells, 

and in carrot plants in integument cells and in the endosperm during zygotic embryogenesis. 

Results 

Cell specific expression of the EP3 genes and localisation of the encoded proteins in 

suspension cultures 

To identify the suspension cells that express the EP3 genes, whole mount in situ mRNA localisation 

was employed on entire, immobilized suspension cultures. Several cell lines, differing in 

embryogenic potential, were used to obtain a reliable indication of cell specificity in EP3 expression. 

It was not possible to distinguish between the different members of the family of EP3 genes, because 

of their very high homology (Kragh et al., 1996). But since the probe that was used has only a low 

homology to class I chitinases and spans class IV chitinase specific deletions no class I chitinases 

could be detected. 

Figure 1A shows that there was no staining above background in the majority of the cells, the EP3 

mRNAs could only be detected in a subpopulation of the total embryogenic cell culture. Counting the 

number of stained cells in several cultures revealed that between 4-6% of the total number of cells in 

an embryogenic culture express the EP3 genes. Staining was detected in morphologically different 

cells (Fig. 1A, B, C, D and E). The highest concentration of EP3 mRNAs, in both embryogenic as 

well as in non-embryogenic cultures, was found in single cells that were elongated and often strongly 

curved or coiled (Fig. IB). Staining was also often seen in small clusters of cells (Fig. IE), 

consisting at the most of about 30 cells. Cells that were loosely attached to large clusters, present in 

embryogenic cultures, occasionally showed intense staining. Figure IF shows such a large cluster 

with several EP3 expressing cells loosely attached to it. Based on this expression pattern we conclude 

that EP3 gene expression does not have a correlation with embryogenic capacity, because EP3 

expressing cells occur in embryogenic and in non-embryogenic cultures (data not shown) and the 

number of EP3 expressing cells is higher than the number of single embryonic cells in a comparable 

27 



Chapter 2 

culture (Toonen et al., 1994). In figure 1H a single EP3 expressing cell (arrow) is attached to a heart 

stage somatic embryo completely devoid of purple staining. Whole mount in situs on globular, heart 

or torpedo shaped somatic embryos did not reveal EP3 mRNAs (Fig. II). In order to determine when 

the first EP3 expressing cells appeared during embryogenic cell formation hypocotyl explants were 

used (Guzzo et al., 1994). Hypocotyl explants were treated with 2,4-D for a period of ten days, 

during which cell division was reinitiated in cells of the vascular tissue. These divisions generated a 

mass of rapidly proliferating cells. Only after this period a very small number of cells at the periphery 

of the proliferating mass was found to contain EP3 mRNA (Fig. 1 J). This is three days later as the 

appearance of the first cells that are competent to form somatic embryos in this system (Schmidt et al., 

1997). Subsequently the hypocotyls were transferred to hormone free medium and after another five 

days some of the peripheral cells started to enlarge. The EP3 positive cells were in some cases 

elongated. A population of single cells, released from these explants after 20 days, contained 

elongated, curved cells as the only cells that stained positively (Fig. IK). In all experiments sense 

controls were included, none of which ever resulted in cell-specific staining (see for an example Fig. 

1G). Using several other probes it has been shown that cell-specific expression patterns are obtained 

by employing this method of in situ hybridisation (Schmidt et al., 1996). 

Previously it was found that EP3 encoded chitinases occur in the medium (De Jong et al., 1992). To 

investigate whether all of these chitinases are secreted in the medium, or whether a part remains in the 

cell walls of the suspension cells that produce them, and whether they are present in somatic 

embryos, immersion immunofluorescence was employed (Van Engelen et al., 1991). Since EP3 

chitinases are secreted proteins and contain signal sequences for secretion (Kragh et al., 1996) we 

assume that the EP3 chitinases, as shown in figure 1L, are some component of the extracellular 

matrix. In non-embryogenic suspension cultures the EP3 chitinases were detected in approximately 

equal amounts at the surface of all cells (data not shown). In embryogenic suspension cultures a 

relatively high amount of the protein could be detected on the surface of a subset of cells. The 

chitinase was identified on single cells as well as on small clusters (Fig. 1L). On the surface of 

somatic embryos the protein could not be detected, but cells that were loosely connected with somatic 

embryos often contained EP3 (data not shown). This pattern of localisation was also observed in 

suspension cultures of the mutant cell line tsl 1 (Fig. 1M), that is also capable of producing EP3 

proteins (De Jong et al., 1995). 

Figure 1. Whole mount in situ hybridisation and immunolocaiisation of EP3 in suspension cultures. 
Plant material was analysed by light microscopy (coupled to Nomarski optics for fig. A to E and M) and photographed. 
In fig. A to K gene expression is visible as a purple precipitate in individual cells (the use of Nomarski optics resulted 
in a change from purple to brown). Bar: 50 p.m. 
A. to D. Morphologically different cells in the embryogenic cell culture Ar. E. to F. Cell clusters present in the 
embryogenic cell culture Ar. G. An embryogenic cell culture hybridized with a sense probe of the EP3. H. and I. 
Somatic embryos in various stages of development. J. Cells present at the periphery of the proliferated cell mass on a 
section of a hypocotyl explant that was cultured in the presence of 2,4-D for 10 days. K. An elongated curved single 
cell released from a hypocotyl explant that was cultured in the presence of 2,4-D for 20 days. L. An embryogenic cell 
suspension. The presence of the protein is indicated by the green fluorescent signal. M. A cell cluster in a suspension 
of the mutant cell line tsl 1. The presence of the protein is indicated by a purple precipitate. 

28 



Expression pattern of the carrot EP3 endochitinase genes. 

29 



Chapter 2 

The localisation of the EP3 proteins therefore appears to correspond to the pattern of expression of 

their encoding genes. This suggests that EP3 proteins are also retained in the cell walls of the cells 

that produce the proteins, even though a substantial amount is secreted into the medium. 

Since the production of many chitinases can be induced by pathogens and elicitors, and in carrot 

suspension cultures many chitinases are induced after treatment with fungal wall components 

(Kurosaki et al., 1990), suspension cultured cells were exposed to chitosan as an elicitor, or to 

Phytophtora infestans, or Botrytis cinerea. The media of those cultures was isolated and the amount 

of EP3 produced was determined with Western blots. Scanning of the optical density of the bands 

revealed that the constitutive production of the protein was not affected by the presence of the fungi 

used, nor of the elicitor employed (Fig 2). 

Figure 2. Western blot of EP3 chitinases in media of 
cultures treated with fungi and elicitors. 
Lane 1 Medium of a suspension culture grown in the 
presence of 0.002 mg/ml chitosan. Lane 2 Medium of a 
suspension culture grown in the presenceof 0.02 mg/ml 
chitosan. Lane 3 Medium of a suspension culture grown in 
the presence of Phytophthora infestans. Lane 4 Medium of a 
suspension culture grown in the presence of Botrytis 
cinerea. Lane 5 Medium of a control suspension culture. 
Proteins were separated by denaturing SDS-PAGE. 

Expression of the EP3 isoenzymes in suspension cultures 

With the methods employed so far it was not possible to discriminate between different EP3 

isoenzymes or the mRNAs belonging to them. By using native PAGE, 5 different EP3 chitinase 

isoenzymes have been detected in the medium of suspension cultured cells of different cell lines 

(Kragh et al., 1996). Given the subtle differences of the isoenzymes EP3-1 and EP3-3 in their 

biological effect on tsll embryo formation, it was of interest to determine whether the different 

isoenzymes were produced by the same or by different cell types. No correlation was found between 

the embryogenic capacity of a given cell line, and the EP3 isoenzymes produced (Fig 3A). However, 

fractionation of suspension cultures showed that different cell types produced different relative 

amounts of isoenzymes. A population of cells < 50 um consisted almost solely of single cells. A 

Western blot of the medium proteins showed that only the isoenzymes EP3-1 and EP3-3 were 

produced by this cell population (Fig 3B). Cells that were aggregated in large clusters did not pass the 

125 ^m sieve. This fraction produced the isoenzymes EP3-1, EP3-3, EP3-4 and EP3-5. Density 

fractionation of a 50 - 125 |0.m cell fraction on a Percoll block gradient resulted in 4 subfractions of 

cells with different densities. The subfractions with relatively high densities contained more clusters 

compared to the low density subfractions, which contained mainly single cells. After culturing for 
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another 5 days the original difference in cell types was retained. In all cell populations comparable 

amounts of EP3 proteins were produced. However, a shift in the relative amounts of the different 

isoenzymes was observed. The pattern of isoenzymes produced by the cells with the lowest density 

resembled that of the cell population that passed through the 50 u,m sieve. A relative increase of the 

isoenzymes EP3-2 and EP3-5 was observed in cell populations with higher densities. This is in 

agreement with the pattern of isoenzymes produced by other cell lines as illustrated in Figure 3A. Cell 

lines that produce isoenzymes EP3-2 and EP3-5 always contain clusters of small, usually cytoplasm-

rich cells. Presumably EP3 chitinase isoenzymes 2 and 5 are produced by these cell clusters, whereas 

single cells are preferentially responsible for the production of EP3 chitinase isoenzymes 1 and 3. 
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Figure 3. Western blots of EP3 chitinases in media of non-embryogenic, embryogenic and density fractionated 
embryogenic cultures. 
A. Detection of EP3 isoenzymes in the medium of several different suspension cultures. Lane 1 and 2, non-
embryogenic suspension cultures Lanes 3, 4, 5 and 6, embryogenic suspension cultures B. Detection of EP3 
isoenzymes in the medium of a Percoll fractionated suspension culture. Lane 1, cells < 50 Um; lane 2, cells recovered 
from 0-10% Percoll; lane 3, cells recovered from 10-20% Percoll; lane 4, cells recovered from 20-30% Percoll; lane 5, 
cells recovered from 30-40% Percoll; lane 6 cells >125 iim. Proteins were separated by non-denaturing PAGE. 
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Localisation of EP3 expression in plants 

The more sensitive method of RT-PCR was used instead of Northern blot analysis to study EP3 gene 

expression. The primers used allowed to discriminate between EP3 and chitinases of class I, since the 

downstream primer only has homology with class VI chitinases and the primers span a region that 

contains deletions that are characteristic for class VI chitinases. However, discrimination of the 

different EP3 isoenzymes was not allowed, due to their very high homology (Kragh et al., 1996). 

In leaves, stems, storage roots as well as normal roots (Fig. 4A lanes 1-4) hardly any expression of 

EP3 could be detected. In developing seeds, at 3, 7, 10 and 20 DAP, EP3 mRNA was found (lanes 

6-9). Only very low levels of EP3 gene expression occurred prior to pollination (lane 5). The highest 

expression was found in seeds 10 DAP, which roughly corresponds to the early globular stage 

embryo. In mature dry seeds the amount of EP3 mRNA had decreased (lane 10), while during 

germination the concentration of EP3 mRNA is hardly detectable (lane 11-12). The presence of EP3 

mRNA in developing seeds of 3, 7, 10 and 20 DAP could be confirmed by hybridizing a Northern 

blot with the end-labeled downstream primer that had been designed for the the RT-PCR (data not 

shown). The length of the EP3 transcripts were estimated to be around 950 nucleotides. 

10, 11,12 ,13 ,14 

B 
10, 11,12 ,13 .14 

Figure 4. Expression of EP3 genes determined by RT-PCR. 
A: EP3 Lane 1, leaf; lane 2, stem; lane 3,storage root; lane 4, root; lane 5, flower: lane 6, fruits harvested 3 DAP; lane 
7, 7 DAP; lane 8, 10 DAP; lane 9, 20 DAP; lane 10, mature seed; lane 11 seed 12 hrs after imbibition; lane 12, seed 
60 hrs after imbibition; lane 13, genomic DNA; lane 14, water control. B: Ubiquitin control 

Figure 5. In situ hybridisation on sectioned carrot seeds and immunolocalisation of the EP3 in tissue prints. 
Plant material was analysed by light microscopy (coupled to Nomarski optics for fig. A to E) and photographed. 
In the in situ hybridisations (A to F), the presence of EP3 gene expression is visible as a purple precipitate in individual 
cells. Bar: 50 urn. 
A. Cross section of a fruit, 7 DAP. i, integuments surrounding the developing embryo and endosperm; sc, seed coat. 
B. Longitudinal section of a fruit, 7 DAP. C. Cross section of a fruit 20 DAP. e, endosperm. D. Longitudinal section 
of a mature seed. E. Longitudinal section of the central region of a mature seed. F. Zygotic embryo (em) in a 
longitudinal section of a mature seed. G. Transversal section of a seed that has been imbibed in water for 60 hrs. H. 
Transversal section of a seed that has been imbibed in water for 60 hrs. 
In the immunolocalisations, the presence of EP3 proteins is visible as a dark precipitate. Bar: 100 um. 
I. Control tissue print of a mature seed stained with amido black. J. Immunolocalisation of EP3 on a tissue print of a 
fruit containing two developing seeds 20 DAP. K. Immunolocalisation of EP3 on a tissue print of a mature seed (a 
drawing of the printed seed is superimposed on the picture). 
L. Immunolocalisation of EP3 on a tissue print of a seed that has been imbibed in water for 60 hrs. 
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In situ mRNA localisation using sections of different plant tissues, such as flowers, roots, root tips, 

hypocotyls, cotyledons, shoot apices and shoot meristems confirmed that EP3 mRNA was not 

detectable in these tissues (data not shown). Only in developing and mature seeds EP3 tnRNAs could 

be found. In early stages of seed development, approximately 5-6 DAP, EP3 mRNA was detected in 

the inner integument cells, lining the surface of the embryo sac in which the zygote or the early 

embryo is located (Fig 5A and B). 

Since the highest amount of EP3 mRNAs was found 10 DAP, and the in situ hybridisations showed 

their presence in the integument cells, we conclude that the EP3 chitinases are produced by the 

integument cells shortly before they are degraded. At 20 DAP the degradation of the integuments is 

almost completed (data not shown) and in the developing endosperm at 20 DAP, EP3 mRNA could 

not be detected (Fig 5C). During the period that the number of integument cells declines and the 

volume of endosperm cells increases, until 35 days after anthesis a decline of EP3 mRNAs was 

observed. In the endosperm of mature seeds EP3 mRNA was restricted to a narrow zone of 

endosperm cells starting at the cavity in which the embryo is located up to almost the opposite end of 

the endosperm (Fig 5D and E). Transverse sections showed that the EP3 expressing zone has a width 

of 2-3 cells and is located in the middle of the endosperm. In zygotic embryos no EP3 mRNA could 

be detected (Fig. 5F). During seed development cellularisation of the endosperm starts with the outer 

layers of endosperm and is completed in the middle of the endosperm, which implies that EP3 genes 

are expressed in a place where the cellularisation of the endosperm has been completed. The cells that 

contained the EP3 mRNAs also have protein bodies, which could be made visible using Nomarski 

optics (data not shown). 

When carrot seeds are imbibed, germination is initiated, the embryo starts to develop and the central 

cavity is enlarged because of degradation of the endosperm. The cells in which EP3 mRNA is seen 

are thought to be the first ones to be degraded. The expression of the EP3 genes then shifts outward 

to the next cell layer that now lines the central cavity as shown by in situ localisation of EP3 mRNA in 

germinating seeds (Fig 5G and H). Because EP3 chitinases are secreted proteins it was of interest to 

localise these enzymes during the development of seeds and in germinating seeds. For this purpose 

tissue printing of cut seeds onto nitrocellulose was applied. Protein transfer was ensured by staining 

with amido black, revealing a protein distribution pattern in which the major seed tissues could be 

clearly observed (Fig 51). In the tissue prints the EP3 chitinase protein was localised using EP3 

antibodies. Those antibodies strongly react with all EP3 class IV chitinases, but have a weak affinity 

for the carrot 34 kD class I chitinase (Kragh et al., 1996). Control experiments were performed using 

preimmune serum or antibodies raised against the related barley class I chitinase K (a-ChitK) that only 

recognises the 34 kD class I chitinase and not the EP3 chitinases. No seed proteins present on the 

tissue prints were recognized by these sera (data not shown). Since the EP3 antiserum does not 

recognize any additional chitinases, we conclude that the tissue prints almost exclusively show EP3 

chitinases. The EP3 protein was uniformly spread in the integuments at 10 DAP and in the developing 

endosperm at 20 DAP (Fig. 5J). The presence of the chitinase proteins in the developing seeds is 
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therefore only partially in agreement with the EP3 gene expression data. This points to transport of 

the EP3 proteins from the maternal integument tissues towards the endosperm. However we cannot 

completely rule out that a very low level of gene expression occurs in the peripheral endosperm cells. 

In mature seeds the protein was restricted to the inner cell layer of the cavity that surrounds the 

embryo and to a zone of cells that starts at this cavity and ends almost at the opposite side of the 

endosperm (Fig 5K), which corresponds precisely with the expression pattern of the EP3 genes as 

determined by in situ hybridisation(Fig 5D). In imbibed seeds the protein was again found to be 

spread uniformly in the endosperm. This pattern was observed in seeds imbibed for 16 hrs as well as 

in seeds imbibed for 60 hrs (Fig 5L). In the 60 hrs imbibed seeds enlargement of the embryo and 

commencing of the degradation of the endosperm were already visible. Seeds imbibed in water 

containing ImM cycloheximide did not show any enlargement of the embryo, nor endosperm 

degradation. Tissue prints of the cycloheximide-treated seeds showed that the localisation of the EP3 

chitinase protein was the same as in the seeds imbibed in water only (data not shown). This suggests 

that there is no de novo synthesis of EP3 in the outer layers of the endosperm upon imbition, but that 

the water take up is responsible for the observed outward spread which results in a uniformly 

presence of EP3 protein in the endosperm. 

The EP3 genes are expressed in the maternal integument cells. The EP3 chitinases however, were 

detected in the developing endosperm, at a time that EP3 chitinase gene products cannot be detected in 

the endosperm and as a consequence they are of maternal origin. In mature seeds the integuments are 

completely degraded and then the EP3 proteins are produced in a subset of the endosperm cells. 

During germination the secreted EP3 chitinases diffuse in the water that is present in the cell walls to 

the outer region of the endosperm and around the embryo, in contrast to the inwards directed 

transport that occurs in the developing seeds. 

EP3-5 
• EP3-4 
EP3-3 

• EP3-2 

Figure 6. Western blot of EP3 chitinases in the medium of a 
suspension culture and in mature seeds. 
Lane 1, Control suspension culture; lane 2, Seed Proteins were 
separated by non-denaturing PAGE. 

A Western blot of partially purified seed proteins showed that at least isoenzymes EP3-2, EP3-4 and 

EP3-5 were present in dry mature seeds (Fig 6). In seeds isoenzyme EP3-1 could not be detected due 

to its low affinity for the DEAE-Sepharose FF resin that was used in the purification method, and 

isoenzyme EP3-3 is obscured by a smear. The chitinase activity was confirmed by using glycol-chitin 
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overlay gels, which showed that isoenzymes EP3-2 to EP3-5 were all capable of degrading chitin 

(data not shown). These data show that, except for isoenzyme EP3-1, all EP3 isoenzymes found in 

suspension cultures are present in developing seeds. It was striking that the relative amounts of EP3 

isoenzymes in suspension cultures were quite different from those in seeds (Fig 3). 

Discussion 

In this study the carrot suspension cells that produce EP3 carrot chitinases were identified. Employing 

whole mount in situ hybridisation, it was found that a subset of cells present in an embryogenic 

culture express EP3 genes. On the basis of the number, cell type and presence of EP3 expressing 

cells in embryogenic and non-embryogenic cultures, there was no correlation with the ability to 

produce somatic embryos and the expression of EP3. No expression in somatic embryos was found. 

The occurrence of the EP3 chitinase protein in the walls of suspension cultured cells corresponds to 

that of the EP3 mRNA expression in the cells. 

In plants, EP3 genes are expressed in the inner integuments, while the EP3 chitinase proteins are 

found in the endosperm. Later, cells in the centre of the endosperm express the EP3 genes and this is 

likely to be responsible for the EP3 chitinase proteins present during imbition and germination. No 

expression was found in zygotic embryos. Together with the absense of a pathogen- or elicitor-

induced response in EP3 gene expression the results support the earlier conclusion that the carrot EP3 

class IV chitinases are primarily involved in embryogenesis (De Jong et al., 1992). 

The EP3 chitinases that are produced by single cells were identified as isoenzymes EP3-1 and EP3-3, 

whereas isoenzymes EP3-2 and EP3-5 were predominantly produced by clusters. Purified EP3-1 and 

EP3-3 chitinases are both able to rescue the carrot somatic embryo variant tsll (Kragh et al., 1996). 

Other EP3 isoenzymes have not been tested for their capability of rescuing tsll. The arrest in somatic 

embryo development in this carrot variant tsll has been shown to be due to a transient reduction in 

secreted EP3 (De Jong et al., 1995). On the basis of the expression pattern of the EP3 genes it is 

likely that cells that produce EP3 do not develop into embryos themselves. Thus, it appears that EP3 

chitinases, or products of their enzymatic activity, diffuse via the conditioned medium to cells that are 

able to form somatic embryos and in this way play their "nursing" role in the process of somatic 

embryogenesis. 

Since EP3 expression was also found in developing carrot seeds, it could be expected that the 

chitinases play a similar role in zygotic embryogenesis. In carrot, flowers are pollinated directly after 

anthesis, and endosperm development starts soon after fertilisation. Division of the primary 

endosperm nucleus leads to a large number of endosperm nuclei before the first division of the zygote 

has taken place. These nuclei are located in the upper part of the embryo sac, around the zygote, and 

at the periphery of the embryo sac (Borthwick, 1931). Cell wall formation in the carrot endosperm 
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starts 7 days after anthesis (Gray et al., 1984), at about the time that the embryo is in the two cell 

stage (Borthwick, 1931), and is complete 21 days after anthesis. The integuments that surround the 

embryo sac start to break down 6 -7 DAP, at the moment that the endosperm becomes cellular (Lackie 

and Yeung, 1996 and Yeung personal communication). Maximum endosperm volume is reached 

about 35 days after anthesis. Mature seeds can be harvested about 80 days after anthesis. The 

endosperm of mature carrot seeds consists of two different cell types, peripheral cell layers containing 

calcium oxalate crystals and more centrally located cells containing protein bodies with globular 

inclusions (Menon and Dave, 1988). The outermost cell layer of the endosperm has a high content of 

ER, whereas the central cells contain large protein bodies and lipid droplets, or only lipid droplets. 

The endosperm cells that directly surround the embryo have very thick cell walls, contain lipid 

droplets and have a large vacuole (Timmers, 1993). 

The EP3 chitinase proteins found in the endosperm of 20 DAP seeds are most likely produced by 

integument cells. This indicates a maternal contribution to the proteins that are present in the 

endosperm. 

Recent evidence for a role of maternal tissues in endosperm formation comes from the analysis of 

gametophytic mutations in Arabidopsis. In this species, fie (fertilisation-independent endosperm) 

mutations are known (Ohad et al., 1996) that are female gametophytic and specifically affect 

endosperm formation. These data demonstrate a maternal component in endosperm formation. FIE/ 

fie integuments that surround a mutant fie female gametophyte are degraded during development and 

give rise to the seed coat in the absense of fertilisation. This implies that Arabidopsis integument and 

seed coat development are initiated in response to a signal produced by the female gametophyte (Ohad 

et al., 1996). 

In mature, dry seeds the EP3 mRNAs are located in the middle of the endosperm. In several other 

plant species, chitinases have been found in seeds. For example in cucumber an endochitinase was 

found that is only present in mature seeds and in seeds during the early stages of germination (up to 2 

days) (Majeau et al., 1990). In barley, a class I (Chi26) and a probable class II chitinase were found 

primarily in endosperm and aleurone tissues (Swegle et al., 1992). Chitinase mRNAs accumulated in 

barley endosperm and aleurone during seed development and were present from 15 days after 

anthesis until the end of germination (Leah et al., 1991; Swegle et al., 1992). For Chi26 an enhancer 

sequence has been identified that directs the aleurone specific expression of this gene (Leah et al., 

1994). Cells of the starchy endosperm of cereals are dead at maturity, and incapable of synthetic 

processes (Bewley and Black, 1994), so the synthetic processes in the aleurone layer may resemble 

those that take place in the endosperm in species that do not contain aleurone tissue, but rather live 

endosperm cells. In maize two 28-kD chitinases have been found that show high levels of expression 

in imbibed seeds. These chitinases were reported as class I chitinases, but based on current 

definitions they should be reclassified as class IV chitinases (Huynh et al., 1992). Our results show 

that the localisation of EP3 producing cells is restricted to the inner tissues of both the young fruits 

and the mature seeds. This pattern of localisation suggests that the EP3 chitinases do not primarily 
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function as enzymes that protect seeds against pathogens, as is commonly assumed for seed 

chitinases (Graham and Sticklen, 1994). 

EP3 mRNAs are found in integuments and in endosperm cells that surround the central space in 

which the embryo is located. Both tissues are destined for degradation. In barley, apoptosis in the 

aleurone has been demonstrated during seed germination (Wang et al., 1996), and fungal infection 

has been shown to induce apoptosis (Wang et al., 1996). Since pathogen induced chitinases are also 

induced prior to cell death (Kurosaki et al., 1987), this may suggest a more general role for chitinases 

in apoptosis. 

The EP3 gene expression pattern in seeds supports the hypothesis that chitinases are not only 

essential for the tsll mutant, but play a more general role in plant embryogenesis. Another, indirect 

indication for the importance of chitinases during seed development comes from a recent study of 

tobacco plants with low chitinase levels because of silencing caused by transgene expression of a 

tobacco class I chitinase. The silenced chitinases were transiently reset to a high expressing state 8-11 

DAP (Kunz et al., 1996). An explanation for the resetting of the silenced chitinases is not given by 

Kunz and coworkers, but it cannot be excluded that the requirement for chitinases during this period 

in seed development is a driving force for the resetting. 

The finding that besides the EP3 chitinases Rhizobium produced Nod factors are capable of rescuing 

embryo formation in tsll (De Jong et al., 1993) has led to the hypothesis that the presence of EP3s 

may result in the generation of N-acetylglucosamine containing molecules that have a positive effect 

upon the development of somatic embryos, although the correlation between EP3s and the Rhizobium 

Nod factors remains to be elucidated (De Jong et al., 1995). 

Several examples in different systems appear to support the hypothesis that N-acetylglucosamine 

containing oligosaccharides are important in development. During Xenopus embryonic development 

the DG42 gene is found to be expressed only between the late midblastula and neurulation stages 

(Rosa et al., 1988). This gene has some similarity with fungal chitin synthases and an even stronger 

homology with the Rhizobium NodC gene (Bulawa and Wasco, 1991). The DG42 protein has been 

shown to catalyze the synthesis of short chitin oligosaccharides in vitro. The array of chitin 

oligosaccharides formed bears a striking resemblance to the oligosaccharides produced by NodC 

(Semino and Robbins, 1995). Homologs of this Xenopus DG42 are present in zebrafish and mouse 

(Semino et al., 1996). 

Chitinases like EP3 might be involved in either releasing N-acetylglucosamine containing signal 

molecules, or modifying those signal molecules, because of their specific localisation, as shown in 

our work, and the finding that chitinases are capable of hydrolysing Nod factors (Staehelin et al., 

1994). Labeling studies indicate that plants may produce molecules that are analogous to Nod factors 

(Spaink et al., 1993). Regarding the biological function of the EP3 chitinases in plant embryogenesis 

we propose that they are involved in reinitiating cell division in embryogenic cells and embryos as 

part of a "nursing cell" system. This hypothesis is based on the following observations: 1, the EP3 

chitinases promote embryogenic cell formation and the number of somatic embryos as well as their 
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progression in development when added to tsll cultures (De Jong et al., 1992), 2, the expression of 

EP3 genes in cells that do not develop into embryos in culture and an absence of expression in 

somatic embryos, 3, the expression of EP3 genes in maternal tissue and subsequent secretion of the 

encoded proteins, resulting in the presence of EP3 in the extracellular matrix of the endosperm 

surrounding globular-stage zygotic embryos and 4, the absence of expression in zygotic embryos and 

expression in endosperm cells prior to and during germination. The role of EP3 could either be direct, 

but more likely indirect through release of an N-acetylglucosamine containing signal molecule. 

Materials and methods 

Plant material and culture conditions 

Daucus carota cell suspension cultures of cv. Autumn king / Trophy as well as tsl 1 were initiated and 

maintained as described before (De Vries et al, 1988). One week old suspension cultures were used 

for gene expression analysis and protein localisation experiments. Hypocotyl sections were prepared 

as described by Guzzo et al. (1994). The hypocotyls of one week old plantlets were divided in 

segments of 3-5 mm and incubated for ten days in B5 medium with 2 (XM 2,4-D and then returned to 

B5 medium without 2,4-D. 

One week old cell suspension cultures of an embryogenic cell line were grown in the presence of 

Phytophthora infestans or Botrytis cinerea, or supplemented with 0.002 or 0.02 mg. ml~l chitosan. 

After 2 days of incubation the cells and fungi were removed by filtration and the resulting cell-free 

conditioned media were assayed for the presence of EP3 by means of Western blotting as described 

bySterketal. (1991). 

Cell suspension fractionation analysis 

Suspension cultures were sieved to obtain cells and cell clusters with a size between 50 and 125 |J.m. 

The cells were loaded on a discontinuous gradient of 10, 20, 30 and 40% Percoll (Van Engelen et al., 

1995). After centrifugation the cells at the interfaces between the different densities of Percoll were 

recovered with the use of a syringe, washed in B5 medium containing 2 |iM 2,4-D and allowed to 

grow in B5 medium with 2 |iM 2,4-D. After 5 days the medium proteins were analysed. 
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Partial purification of seed proteins 

Dry mature seeds were ground in liquid nitrogen with pestle and mortar. 10 ml 25 mM Tris-HCl pH 

8.5 was added to 2 g of ground seeds. After incubation for 15 min on a rotary shaker at 4°C the 

resulting slurry was filtrated through Whatman filter paper and supplemented with 0.5 ml of DEAE-

Sepharose FF resin, equilibrated in 25 mM Tris-HCl pH 8.5. After incubation on a rotary shaker for 

1 hr at 4°C a column was poured of the DEAE-Sepharose FF resin. This column was washed 2 times 

with 25 mM Tris-HCl pH 8.5 and the bound proteins were eluted with 0.2 M KC1 in 25 mM Tris-

HCl pH 8.5. The protein sample was desalted by means of dialysis. 

Chitinase activity determination 

Chitinase activity was determined essentially as described by Trudel and Asselin (1989). 

In situ hybridisation 

For whole mount in situ hybridisations one week old suspension cultures, grown in B5 medium in 

the presence of 2 |XM 2,4-dichlorophenoxyaceticacid (2,4-D), were washed in B5 medium and sieved 

through nylon sieves with pore sizes of 125 or 30 |0,m mesh and allowed to grow for another week in 

the absence of 2,4-D. The cells were concentrated by centrifugation and immobilized onto poly-L-

lysine coated glass slides by mixing 0.5 ml cell suspension with an equal volume of fixation buffer 

(130 mM NaCl, 10 mM NaP04 buffer pH 6.4, 0.1% Tween 20 (PBT), 70 mM EGTA, 4% 

paraformaldehyde, 0.25% glutaraldehyde and 10% DMSO). For fixation the slides were placed on a 

heated plate (30°C) for 30 min. followed by methanol and ethanol washes. Postfixations were 

performed after xylene and proteinase K treatments. Fixed cells and embryos were prehybridized in a 

solution containing PBT, 50% deionized formamide, 0.33M NaCl and 50 |J.g/ml heparin. Single-

stranded RNA probes of 230 nucleotides in length were transcribed from pAJ41, a plasmid 

containing the Nrul-Styl fragment from EP3B cDNA (Kragh et al., 1996). Digoxygenin sense and 

antisense probes were synthesized (Boehringer Mannheim). For each slide 100 ng of RNA probe was 

denatured in a solution containing 15 u.g yeast tRNA and 50 [ig polyA RNA. This was mixed with 

prehybridisation solution and applied to the slides. The hybridisation took place for 16 hours at 42°C. 

The slides were washed, and incubated with anti-digoxigenin FAB alkaline phosphatase, diluted 

1:2500 in PBT, containing 50 u.g BSA and 25 ng plant protein extract, to reduce non specific 

staining. The non bound antibodies were washed away by several washes with PBT and the cells 

were stained in 100 mM NaCl, 5 mM MgCl2, 100 mM Tris-HCl (pH 9.5) and 0.1% Tween 20 
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supplemented with 9 ul/ml NBT and 7 ul/ml BCIP. Slides were mounted in PBS and 0.8% 

glutaraldehyde and analysed using Nomarski optics. 

In situ hybridisation on sections was essentially carried out according to the protocol of Cox and 

Goldberg (1988) except for the use of digoxygenin labeled RNA probes. 

Immunolocalisation 

Immunofluorescence labeling on suspension cells was carried out as described previously (Van 

Engelen et al., 1991). The anti-EP3 serum was obtained by immunizing a rabbit with the purified 

protein (De Jong et al., 1995). Both fluorescein isothiocyanate- and alkaline phosphatase-conjugated 

antibodies were used. For the experiments in which alkaline phosphatase-conjugated antibodies were 

used the staining was performed as described above. In control experiments preimmune serum was 

used. 

Tissue printing 

Fresh plant material was cut and pressed onto polyvinylidene fluoride (PVDF) membranes 

(Millipore). These membranes were washed in methanol and incubated in PBS. They were either 

directly stained in an amido black solution (Gershoni and Palade, 1982), or they were treated as 

immunoblots and incubated with rabbit EP3 polyclonal antibodies. 

RT-PCR 

Total RNA was isolated from different plant tissues as previously described (De Vries et al., 1982). 

From each sample 2 ug were used for reverse transcription. A mixture of RNA, 20 units RNA guard, 

1 mM dNTPs, 5 mM MgCl2, lx RT buffer (10 mM Tris pH 8.8, 50 mM KC1, 0.1% Triton X-100) 

and 50 ng oligo dTi2-i8 in a volume of 20 u.1 was incubated at 83°C for 3 min. Subsequently 

incubated at 42°C for 10 min after which 4 units of AMV reverse transcriptase was added and the 

incubation was continued for an hour. The samples were denaturated at 95°C for 5 min and diluted to 

a final volume of 100 |xl. A PCR reaction for the amplification of the ubiquitin cDNA was carried out, 

using 5 ja.1 from the RT mixture, lx Taq polymerase buffer (Boehringer Mannheim), 100 uM dNTPs, 

1 unit Taq polymerase, 100 ng downstream ubiquitin primer (5' 

TATGGATCCACCACCACGG/AAGACGGAG 3') and 100 ng upstream ubiquitin primer (5' 

TAGAAGCTTATGCAGATC/TTTTGTGAAGAC 3') (Horvath et al., 1993), in a total volume of 50 

U.1. After denaturation for 30 sec at 94°C the samples were submitted to either 15, 20 or 30 cycles of: 
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30 sec 94°C, 30 sec 48°C and 2 min 72°C. The PCR products were run on a 1% agarose gel and 

blotted on Nitran plus membranes (Schleicher & Schuell). For Southern blot analyses a full length 

ubiquitin probe was used. The concentration of cDNA was standardized by comparing the signals on 

the Southern. Equal amounts of cDNA were used for a control PCR reaction with ubiquitin primers, 

and one with EP3 primers. Both PCR reactions were done simultaneously, using the same PCR 

condi t ions . In database searches the downstream primer (5 ' 

ATGGCACGGATGGTTGCCCCGAAACCTTG 3') for EP3 showed homology only to class IV 

chitinases. So amplification of class I chitinase cDNAs cannot occur, despite their high homology to 

EP3s. By using this primer and an upstream primer (5' GTATTTTGGCCGCGGCCCTCTTCAGC 

3') a PCR product with a length of 201 nucleotides was amplified. The probe used for the detection 

of the EP3 PCR product was the 230 nucleotides insert from pAJ-41. All Southerns were washed 3 

times in 0.1% SSC, 1% SDS at 65°C, before exposing to X-ray film. 
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Production of carrot EP3 and Arabidopsis class IV endochitinases in 
baculovirus-infected insect cells 

Catalytically active carrot and Arabidopsis EP3 endochitinases can be produced by insect cells 

infected with recombinant baculoviruses. Carrot EP3 endochitinases, produced in the baculovirus 

expression system, possess both chitinase and chitosanase activity. A comparison of the specific 

chitinase activity of four different carrot EP3 isozymes revealed differences in catalytic activity that 

seem to result from minor differences in the aminoacid composition of the highly homologous EP3 

isozymes. The Arabidopsis EP3 endochitinase (AtEP3) has a higher specific chitinase activity than 

individual carrot EP3 isozymes. AtEP3 can be detected in the medium of embryogenic Arabidopsis 

cell suspension, but is nearly absent in non-embryogenic cultures. In such circumstance AtEP3 is a 

good marker for embryogenic Arabidopsis cultures. 

Arjon J. van Hengel, Marijke V. Hartog, Ab van Kammen and Sacco C. de Vries 
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Introduction 

EP3 endochitinases promote somatic embryogenesis in the carrot cell variant tsll. In this cell line two 

effects of addition of the EP3 endochitinases were noted: 1.) the arrest at the globular embryo stage 

was overcome (De Jong et al., 1992), and 2.) the number of tsll embryos formed increased (De 

Jong et al., 1993). In view of the observation that five different carrot EP3 isozymes could be 

identified, it seems possible that each effect was the result of a different individual isozyme. The 

isozymes EP3-1 and EP3-3 were purified to homogeneity from the medium of wild type suspension 

cultures. Each enzyme was able to increase the number of embryos formed in tsll, but EP3-3 was 

about two times more effective. However, only isozyme EP3-3 was able to lift the arrest at the 

globular stage and produced later stages of tsll somatic embryos (Kragh et al., 1996). Full length 

cDNAs corresponding to EP3-1, EP3-3 and two other isozymes, EP3-2 and EP3B, were obtained. 

The sequences of the cDNA clones indicated that the EP3 endochitinases are members of a small 

highly homologous family of acidic class IV chitinases (Kragh et al., 1996). The deduced amino acid 

sequences of EP3-1 and EP3-3 did not give a clue for explaning the observed difference in tsll 

rescue activity. 

In this chapter we describe the production of individual recombinant EP3 isozymes using the 

baculovirus expression system in insect cells and demonstrate that the proteins are catalytically active. 

In that way we obtained sufficient amounts of each individual chitinase for biochemical analysis, and 

we were able to compare the tsll rescue activity of individual enzymes. 

Besides the class IV EP3 endochitinases, a related carrot class I endochitinase was found to be 

effective in tsll rescue, whereas a carrot putative class II chitinase and a barley class IV chitinase 

were not effective (Kragh et al., 1996). These results suggested plant and enzyme specificity of 

chitinases able to rescue tsll. In Arabidopsis, a single related class IV endochitinase was identified in 

the culture medium and it was suggested that this AtEP3 is encoded by only one AtEP3 gene in the 

Arabidopsis genome (Passarinho et al., in preparation). Therefore, using the AtEP3 protein, 

produced in insect cells or purified from embryogenic Arabidopsis cell culture medium, might provide 

additional clues on the characteristics and specificity of chitinases capable of tsll embryo rescue. 

Results 

Production of plant chitinases 

Insect cells were infected with recombinant baculoviruses, containing a cDNA insert encoding either 

one of the carrot EP3 isozymes EP3-1, EP3-2, EP3-3, EP3B, or the Arabidopsis class IV 
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endochitinase AtEP3. Infection resulted in the presence of EP3 chitinases in both the insect cells and 

in the insect cell culture medium. In uninfected or wild type baculovirus infected cells or media no 

proteins were recognised by EP3 and chit4 antisera (data not shown). In the media only one major 

protein of around 30 kD was detected by the carrot EP3 antiserum. After electrophoresis of cellular 

proteins several proteins with molecular weights lower than 30 kD were recognised by the chitinase 

antisera, suggesting that inside the insect cells the plant chitinases are subject to degradation or 

incomplete synthesis. Therefore, the medium was used for purification of the chitinases. 

The chitinases were purified using affinity columns containing bound EP3 or chit4 antisera for carrot 

and Arabidopsis chitinases respectively. The affinity columns had a fairly low capacity and therefore 

the chitinases were also purified by means of preparative electrophoresis. The purity of the chitinases 

was analysed using PAGE followed by silver staining and western blotting (data not shown). Both 

purification methods yielded pure chitinase preparations as judged by the above described methods. 

All plant chitinases produced in the baculovirus expression system were capable of degrading tritiated 

chitin and thus are catalytically active chitinases. 

Catalytic activity of insect cell produced chitinases 

The availability of the four purified EP3-1, EP3-2, EP3-3 and EP3B chitinase isozymes allowed a 

comparison of their individual catalytic activities. Comparison of the predicted amino acid 

composition of the four carrot EP3 isozymes (Kragh et al., 1996), showed EP3-1 and EP3-2 to be 

most homologous in amino acid sequence (98.5% identity). EP3-3 and EP3B are 97.5% identical, 

but have less homology (around 90%) with EP3-1 and EP3-2. Because EP3-3, in contrast to EP3-1, 

was able to lift the embryo arrest in tsll cell suspensions, it was of interest to determine whether 

there is also a difference in catalytic activity. 

In Figure 1A the specific chitinase activity of all four carrot EP3 endochitinases in a pH range 

between 4.0 and 6.5 is compared. EP3-1 and EP3-2 do not have a clear pH optimum within the pH 

range that was used. The highest specific chitinase activity measured for isozyme EP3-1 was -150 

nmol / min / mg at pH 6.5, whereas for EP3-2 it was ~ 600 nmol / min / mg at pH 4.0. The optimal 

pH for isozyme EP3-3 was pH 5.0 when it had a specific activity of ~ 3200 nmol / min / mg. EP3B 

had optimal activity at the same pH and showed a specific activity of ~ 2000 nmol / min / mg. Thus, 

the predicted differences in amino acid composition between both groups of highly homologous 

proteins is found again as differences in specific chitinase activity and pH optimum. 

Some chitinases are known to possess both chitinase and chitosanase activity (Ohtakara et al., 1990). 

Figure IB shows that all four EP3 chitinase isozymes were capable to degrade polymeric glucosamine 

or chitosan. In contrast to the chitinase activity, no pH optimum for chitosanase activity was detected 

for either of the isozymes. EP3-3 had the highest chitosanase activity, just as it had the highest 

chitinase activity. The chitosanase activity of the isozymes EP3-3, EP3B and EP3-2 was, however, 
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7-8 times lower in comparison to their chitinase activity tested with chitin (Fig 1A). EP3-1, that had 

the lowest chitinase activity, could degrade chitosan and chitin with equal efficiency. Together, these 

results show that the four different EP3 isozymes have slightly different biochemical properties. 
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Figure 1. Comparison of the specific activities of EP3 and AtEP3 chitinases. 
A. Specific chitinase activity of insect cell produced carrot EP3 endochitinases, expressed as nanomol GlcNAc released 
during 1 minute, by 1 mg enzyme. Chitinase assays were performed using ^H-chitin, which was incubated with the 
enzymes for 24 hrs. 
B. Specific chitosanase activity of insect cell produced carrot EP3 endochitinases, expressed as nanomol GlcN released 
during 1 minute, by 1 mg enzyme. Chitosanase assays were performed using solubilised chitosan, which was incubated 
with the enzymes for 24 hrs. 
C. Specific chitinase activity of plant- and insect cell produced AtEP3 endochitinase, expressed as nanomol GlcNAc 
released during 1 minute, by 1 mg enzyme. Chitinase assays were performed using •'H-chitin, which was incubated with 
the enzymes for 24 hrs. 

Due to the small amounts that were obtained for each of the EP3 isozymes, after purification from the 

culture medium of suspension cells, it was not possible to compare the specific chitinase activity of 

EP3 isozymes produced by plant and insect cells. However, such comparison was possible with the 

EP3 homologue from Arabidopsis, AtEP3, since this chitinase is encoded by a single gene 

(Passarinho et al., in preparation). Moreover, purification of AtEP3 from the culture medium of 

Arabidopsis or insect cells could be facilitated by using antibodies against the AtEP3 chitinase. 
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Antibodies raised against carrot EP3 protein recognize AtEP3 only very poorly. Fortunately, chit4 

antibodies, raised against sugar beet chitinase 4 which do not recognize carrot EP3 (Kragh et al., 

1996), were able to recognize AtEP3, and could be used for specific immunological detection and 

purification of AtEP3. Medium proteins of insect cells infected with baculoviruses containing the 

AtEP3 cDNA showed after denaturing PAGE, followed by western blotting and immunological 

detection, a thick band of 30 kD (Fig 2, lane 1). After immunoaffinity column purification of AtEP3, 

using chit4 antibodies, a single band of 30 kD was present on immuno blots (Figure 2, lane 2). A 

similar result was obtained after purification by preparative electrophoresis. Under non-denaturing 

conditions, also only one protein was recognized by the chit4 antiserum (data not shown). This 

indicates that the Arabidopsis EP3 is a single secreted protein, in contrast to the situation in carrot 

where at least five EP3 isozymes can be identified (Kragh et al., 1996). 

1 , 2 , 3 , 4 

29 - 1 

2 4 -

2 0 -

Figure 2. Occurrence of AtEP3 in the medium of 
Spodoptera frugiperda (Sf21) insect cells, 5 days after 
infection with baculovirus containing AtEP3 cDNA before 
and after purification, and in the medium of embryogenic 
and non-embryogenic pt suspension cultures. The presence 
of AtEP3 was determined by SDS-PAGE and 
immunoblotting using chit4 antiserum. Lane 1, proteins 
present in the medium of insect cells; lane 2, AtEP3 
produced in the baculovirus expression system and purified 
by means of immunoaffinity column purification; lane 3, 
non-embryogenic culture; lane 4, embryogenic culture. The 
position of three molecular weight size markers is indicated 
at the left. 

After purification of AtEP3 from the medium of baculovirus infected insect cells and from the medium 

of Arabidopsis suspension cells the enzyme activity of the purified class IV endochitinases were 

compared. Figure 1C shows that the chitinase purified from Arabidopsis cell cultures had a 1.5 to 2 

times higher specific activity then the chitinase from the insect cells. The pH optimum for the 

chitinases purified from the two different sources was similar. The lower activity of the enzyme from 

the insect cells might be explained by the presence of not correctly folded or less stable chitinases with 

a lower enzymatic activity. The specific chitinase activity of the insect cell produced AtEP3 was 4200 

nmol / min / mg, slightly higher than that of EP3-3, the carrot EP3 isozyme with the highest specific 

chitinase activity of - 3200 nmol / min / mg (Fig 1 A). 
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AtEP3 is produced in embryogenic suspension cultures 

Subsequently, the occurrence of AtEP3 was studied in embryogenic and non-embryogenic 

Arabidopsis cell suspensions. In Arabidopsis thaliana, wild type embryogenic and non-embryogenic 

cell suspension cultures can be obtained from immature zygotic embryos (Mordhorst et al., 

submitted). Using seedlings of the mutant primordia timing (pi), both embryogenic and non-

embryogenic callus can be obtained from a single seedling. If cultured in the light, embryogenic cell 

lines consist of compact green aggregates, whereas non-embryogenic cell lines form rough yellowish 

clusters of cells. Embryogenic cell lines can also be grown in the dark which results in yellowish 

cultures that remain embryogenic. The occurrence of AtEP3 was studied in different embryogenic and 

non-embryogenic cultures. 

In the medium of an embryogenic pt cell suspension culture a single protein of 30 kD was found 

using the chit4 antiserum (Figure 2, lane 4). In contrast to carrot in which both embryogenic and non-

embryogenic cell cultures produce roughly equivalent amounts of EP3 endochitinases (Kragh et al., 

1996; van Hengel et al., in press), in Arabidopsis the AtEP3 protein was not, or barely, detectable in 

non-embryogenic pt cultures (Figure 2, lane 3). To determine whether the occurrence of the 

Arabidopsis class IV endochitinase was indeed restricted to embryogenic cultures, media of several 

different cell lines were tested for the presence of AtEP3 chitinase. In carrot, the lipid transfer protein 

(LTP) is a good marker for embryogenic suspension cultures (Sterk et al., 1991), and the 

Arabidopsis homologue, AtLTP, is expressed in both zygotic (Vroemen et al., 1996) and somatic 

embryos (Mordhorst, personal communication). Therefore, the presence of AtLTP was also 

determined in the different media. 

LTP 

3 4 5 6 7 8 

(^^•-'''••'•^iSBK 
B^tf: •j'^fflp^ 
^P^^^HH 

AtEP3 

Figure 3. A. Occurrence of LTP and B. AtEP3 in the medium of embryogenic and non-embryogenic, wild type and 
pt/ampl Arabidopsis thaliana suspension cultures grown in the light or in the dark, determined by SDS-PAGE and 
immunoblotting. Lane 1, embryogenic pt/ampl culture grown in the light; lane 2, embryogenic pt/ampl culture grown 
in the dark; lane 3, non-embryogenic pt/ampl culture grown in the light; lane 4, non-embryogenic pt/ampl culture 
grown in the dark. Lane 5, wt embryogenic culture grown in the light; lane 6, wt embryogenic culture grown in the 
dark; lane 7, wt non-embryogenic culture grown in the light; lane 8, wt non-embryogenic culture grown in the dark. For 
detection of LTP, antibodies raised against Arabidopsis thaliana LTP were used (Thoma et al., 1993) and for the 
detection of AtEP3, chit4 antibodies were used (Mikkelsen et al., 1992). 
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Figure 3 A shows that in embryogenic cultures of both pt and wild type Arabidopsis large amounts of 

LTP were present in the medium. Considerably less was found in the media of non-embryogenic 

cultures. Figure 3B shows that the presence of AtEP3 in the media went together with the occurrence 

of LTP, but AtEP3 was even more specific for embryogenic cultures. These results indicate that both 

in wild type and pt Arabidopsis suspension cultures, there is a positive correlation between somatic 

embryogenesis and the production of LTP and AtEP3. Furthermore, the presence of AtEP3 in the 

medium was not restricted to cultures that contain green cells (Figure 3B) and thus, the production of 

AtEP3 is not linked to photosynthesis. In embryogenic cultures grown in the dark, less chitinase was 

produced then in similar cultures grown in the light. Whether this difference was correlated to a 

difference in embryogenic capacity of dark- and light grown cultures, was not investigated further. 

Discussion 

Expression of each of the four carrot EP3 isozymes and the single Arabidopsis AtEP3 enzyme, in the 

baculovirus expression system, resulted in the production of recombinant proteins which were 

secreted by the insect cells into the medium. Apparently the plant EP3 signal sequences are functional 

in insect cells. The recombinant chitinases were all active enzymes capable of degrading chitin and, to 

a lesser extent, also chitosan. In addition we have shown that the occurrence of AtEP3 in Arabidopsis 

cell suspension cultures is restricted to embryogenic cell lines. 

Previously it was shown that isozymes EP3-1 and EP3-3 that were purified from the medium of 

carrot suspension cultures differed in their effect upon somatic embryogenesis in tsl 1 cultures (Kragh 

et al., 1996). The addition of either of the two isozymes to tsll resulted in an increase in the number 

of preglobular and globular embryos that were formed, but the EP3-3 isozyme was more effective 

than EP3-1, and, moreover, it could also rescue the arrest of embryogenesis at the globular stage. 

This difference in embryo rescue ability was observed over a wide range of chitinase concentrations 

added to the cultures. Therefore, it is likely that the observed difference is due to an intrinsic 

difference between EP3-1 and EP3-3 and not to the higher specific chitinase activity of EP3-3. 

At the other hand, the higher specific chitinase activity of EP3-3, compared to EP3-1, might explain 

why similar numbers of preglobuar and globular tsll somatic embryos were obtained after addition 

of 200 ng EP3-3 or 1000 ng EP3-1 respectively (Kragh et al., 1996). Kragh et al. (1996) suggested 

that the difference between EP3-1 and EP3-3 was not caused by alterations in the catalytic site, but 

rather resulted from changes in charge caused by substitution of threonine at position 154 and 

asparagine at position 164 for lysines, which might result in different affinity of the proteins towards 

chitin. Our results on the comparison of all four different EP3 isozymes show that there is a 

correlation between the presence of lysine residues at position 154 and 164 in EP3-3 and EP3B and 

the higher specific chitinase activity of these isozymes in comparison to both EP3-1 and EP3-2 that 

contain threonine and asparagine at position 154 and 164. Plant chitinases are known to have very 
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broad pH optima between pH 3-9 (Pantaleone et al., 1992), and this appears to be true for the EP3 

isozymes and AtEP3 as well. 

Some chitinases are known to possess other enzymatic activities beside their capability to degrade 

chitin. Some basic class III chitinases were shown to exhibit lysozyme activity (Bernasconi et al., 

1987; Tata et al., 1983), whereas some putative class I citrus chitinases were shown to possess 

chitosanase activity (Osswald et al., 1993). The observation that all EP3 isozymes can degrade 

chitosan shows that their substrate specificity is not restricted to N-acetylglucosamine polymers, but 

also includes glucosamine polymers. The specific chitosan activity, however, is only minor compared 

to the specific chitinase activity, which was also found for citrus chitinases (Osswald et al., 1993). At 

least one of the EP3 isozymes and a related class I endochitinase are able to rescue tsll somatic 

embryogenesis (Kragh et al., 1996). The biological significance of the other 4 EP3 isozymes in the 

carrot cultivar Trophy is not clear. It appears that only one endochitinase is required for the 

completion of tsll somatic embryogenesis, because in tsll and its parental line A+, in contrast to the 

cultivar Trophy, the class I endochitinase that can rescue arrested somatic embryos is absent, while 

only one EP3 isozyme was found in the medium (Hendriks and de Vries, 1995). When tsl 1 was 

cultured at non-permissive temperatures, a transient reduction in the amount of EP3 was observed, 

thus leaving tsll cultures devoid of both the class I and EP3 endochitinases (De Jong et al., 1995) 

and defective in somatic embryogenesis. 

The occurence of only one Arabidopsis homologue, that, just like carrot EP3, is expressed in 

developing seeds (Passarinho et al., in preparation; chapter 2) suggests that only one class IV 

endochitinase carries out an essential biological function in developing seeds. The presence of AtEP3 

in the medium of embryogenic suspension cultures and its virtual absence in non-embryogenic 

cultures makes this chitinase a good marker for somatic embryogenesis in Arabidopsis. Previously it 

was shown that in carrot, LTP could only be detected in embryogenic cultures and not in non-

embryogenic ones (Sterk et al., 1991). Our results show that also in Arabidopsis secretion of high 

amounts of LTP is a good marker for somatic embryogenesis. 

In carrot cultures EP3 gene expression occurred in suspension cells which most likely did not 

generate somatic embryos, whereas in carrot seeds, EP3 endochitinase gene expression was restricted 

to the maternal integuments and mature endosperm (chapter 2). These findings and the ability of the 

EP3 enzyme to rescue tsll somatic embryogenesis suggest an embryo "nursing" function for EP3 

endochitinases (van Hengel et al., in press). The correlation between the presence of AtEP3 and 

Arabidopsis somatic embryogenesis as described in this chapter fully supports a necessity for 

endochitinases in somatic embryogenesis. It will now be of interest to determine the cell types 

expressing AtEP3 in Arabidopsis embryogenic suspension cultures during the initiation and 

development of somatic embryos since this might reveal information on the specific role of this 

enzyme in the putative nursing of somatic embryogenesis. 
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Materials and methods 

Cloning of chitinase cDNAs 

The full length cDNAs coding for carrot EP3 endochitinases, and starting with the first AUG codon, 

were isolated from the plasmids E6, E7, HI and H5 (Kragh et al., 1996) after digestion with EcoRI 

and Sail. A full length cDNA encoding the Arabidopsis thaliana class IV endochitinase AtEP3, and 

starting with the first AUG codon, was isolated from the plasmid TAI224 (Passarinho et al., in 

preparation) after digestion with Xbal and Xhol. Blunt ends were created using the Klenow fragment 

of E. coli. All cDNAs were cloned into the BamHI site of the baculovirus recombination vector 

pAcJRl, that was kindly provided by Dr. D. Zuidema. 

Generation of plant chitinase-expressing baculoviruses 

Every pAcJRl plasmid, containing a single chitinase cDNA was gently mixed with lipofectin and 

linearized genomic baculovirus DNA devoid of the polyhedrin gene (InVitrogen, Leek, The 

Netherlands). The resulting mixtures were added to Spodoptera frugiperda (Sf) 21 insect cells. After 

2-3 days infected cells could be identified under the microscope. The medium of the insect cells was 

harvested after 5 days of culturing. The virus titer of the medium was determined and a dilution series 

of the recombinant virus obtained was added to immobilized insect cells. After plaques had formed X-

gal was added in order to detect lacZ activity. This serves as a positive control to detect infection by 

circular virus genomes that do not contain an (chitinase) insert. White plaques were carefully picked 

up and used for infection of new insect cells. 

Chitinase expression and purification 

The proteins that were present in the insect cells and in the medium after infection with recombinant 

viruses, were analysed by means of electrophoresis on denaturing polyacrylamide (PAA) gels and 

silver staining of the PAA gels (Blum et al., 1987). Immunological detection of EP3 chitinases on 

western blots was performed as described before (Kragh et al., 1996). For the detection of the 

Arabidopsis class IV endochitinase, antiserum raised against sugarbeet chitinase 4 was used 

(Mikkelsen et al., 1992). The presence of large amounts of fetal bovine serum (FBS) in the medium 

hampered purification. In order to circumvent this problem, the cells were cultured for 2 days in the 

presence of FBS, washed in medium without FBS and cultured without FBS until harvesting, that 

was done just before lysis of the cells. Isolation of the recombinant chitinases was performed by 

column purification using either EP3 or chit4 antibodies bound to Bakerbond ABx (J.T. Baker Inc. 

Phillipsburg, NJ, USA) as described by Kreuger and Van Hoist (1995). Bound proteins were eluted 
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with 0.1 M Glycine-HCl pH 2.5. The eluates were analysed for the presence of plant chitinases by 

means of immunological detection on dot blots. The purity of the preparations was determined by 

means of silverstaining of denaturing PAA gels. Aliquots of 2 ml of the eluates were collected in 5 ml 

0.1 M Tris-HCl pH 7.5 to neutralize the low pH, and subsequently desalted by pressure dialysis 

employing an YM5 filter (5-kD cut off, Amicon, Oosterhout, The Netherlands). Alternatively, the 

recombinant chitinases were isolated by preparative PAGE using a PrepCell (Biorad, Hercules, Ca, 

USA). Immunological detection on dot blots was used to determine the presence of EP3 

endochitinases in the eluates. Desalting of the eluates was performed as described above. Native 

AtEP3 was isolated from the medium of Arabidopsis embryogenic cell suspensions by means of 

preparative PAGE. 

Enzyme activity measurements 

Chitinase activity was determined as described before (De Jong et al., 1992) using ^H-labeled chitin 

as a substrate. Chitosanase activity was determined by means of a quantitative fluorometric assay as 

described by Osswald et al. (1992) using soluble chitosans as a substrate. 

Plant material 

Cell suspensions were initiated and maintained according to Mordhorst et al. (submitted). Medium of 

7 days old Arabidopsis thaliana suspension cultured cells of wild type or the primordia timing {pi) 

mutant was used. Cultures of the primordia timing (pt) allele, of the hdupling (hp), altered meristem 

programl (ampl) and the constitutive photomorphogenid (cop2) complementation group have a 

much higher regeneration capacity then wild type. 
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Plant N-acetylglucosamine-containing arabinogalactan proteins contain a cleavage 

site for carrot EP3 chitinases 

Based on labeling with D-fl-^C] glucosamine and N-acetyl-D-[l-^C] glucosamine a subpopulation 

of arabinogalactan proteins (AGPs) secreted by suspension cultured carrot cells, were shown to 

contain N-acetylglucosamine (GlcNAc) and glucosamine (GlcN). [l-l^C] GlcN and [l-l^C] 

GlcNAc was only found in AGPs from embryogenic but not from non-embryogenic cultures. AGPs 

isolated from developing seeds were shown to contain oligosaccharides susceptible to EP3 class IV 

endochitinase activity. During seed development the native electrophoretic mobility of total seed 

AGPs increased, while AGP epitopes disappear, suggesting increased processing. Seed AGPs occur 

predominantly in the endosperm. Together with the previously reported presence of the EP3 

endochitinase enzyme in the endosperm these results suggest that GlcNAc-containing AGPs are a 

natural substrate for plant chitinases. 

Arjon J. van Hengel, Ab van Kammen and Sacco C. de Vries 
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Introduction 

The carrot cell line tsll is a temperature sensitive variant in which somatic embryogenesis is arrested 

at nonpermissive temperatures. The development of embryos at nonpermissive temperatures does not 

proceed beyond the globular stage. Remarkably, addition of medium conditioned by a wild-type 

carrot cell suspension culture lifts the embryo arrest and allows further development of the embryos 

into plantlets (Lo Schiavo et al., 1990). Among the proteins in the medium of the cell suspension 

culture is a class IV endochitinase, that is capable of somatic embryo rescue in the cell line tsll at the 

nonpermissive temperature (De Jong et al., 1992; Kragh et al., 1996). This endochitinase is referred 

to as extracellular protein 3 (EP3). These results showed that certain plant chitinases have a role in 

embryo development and also suggested that plants contain targets for chitinase activity. Chitinases 

(E.C. 3.2.1.14) are enzymes that hydrolyse 6 (1-4) linkages between adjacent N-acetyl-D-

glucosamine (GlcNAc) residues in, for instance, chitin polymers. Endochitinases require at least three 

consecutive 6 (1-4) linked GlcNAc residues for activity (Molano et al., 1979; Usui et al., 1990). 

Lipochitooligosaccharides (LCOs), produced by Rhizobium bacteria, are essential for root nodule 

formation in leguminous plants, and were also found to be able to rescue somatic embryogenesis in 

the temperature sensitive variant tsll (De Jong et al., 1993) where they mimick the effect of EP3. The 

active LCOs contain more than three GlcNAc residues and can be degraded by plant endochitinases 

(Lerouge et al., 1990; Staehelin et al., 1994). Based on this result it was speculated that in plants 

chitinases may release LCO-like molecules that can have a regulatory function. In an attempt to 

identify plant analogues of LCOs, Spaink et al. (1993) labeled Lathyrus stems with ['^C] acetate and 

analysed butanol extracts from labeled stems by TLC with and without treatment with bacterial 

chitinases. They observed a difference in pattern that was ascribed to the chitinase activity and 

supported the hypothesis that plants indeed produce low molecular weight chitinase-sensitive 

components. Sofar, the chitinase-sensitive plant products detected in these experiments have not been 

further identified. 

We were then informed that certain purified membrane arabinogalactan proteins (AGPs) contain 

GlcNAc (Pennell, personal communication), although GlcNAc, nor glucosamine (GlcN) was known 

as a component of AGPs. This suggested to us that AGPs might contain cleavage sites for 

(endo)chitinases. An indication of a possible role of AGPs in somatic embryogenesis came from the 

work of Kreuger and Van Hoist (1993), who showed that the addition of carrot mature seed AGPs to 

a non-embryogenic cell line resulted in reinitiation of somatic embryo development. 

AGPs are proteoglycans that occur attached to membranes, in cell walls and are secreted into the 

apoplastic space. AGPs typically have a carbohydrate content of more than 90% of the molecular 

mass (Chasan, 1994; Kreuger and Van Hoist, 1996). Analyses of the carbohydrate composition of 

AGPs have shown that arabinose- and galactose residues are the main constituents, but a large variety 

of other sugars was also found in minor and variable amounts (Baldwin et al., 1993; Komalavilas et 
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al., 1991; Mollard and Joseleau, 1994; Serpe and Nothnagel, 1994; Serpe and Nothnagel, 1996; 

Smallwood et al., 1996; Van Hoist et al., 1981). In AGPs the polysaccharides that are attached to the 

protein core have numerous highly complex side chains with different terminal residues, and the 

monosaccharides in AGPs can be linked in a large number of different fashions (Chen et al., 1994; 

Mollard and Joseleau, 1994). 

In the present study we have investigated the possibility that AGPs contain cleavage sites for EP3 

endochitinases and might be a natural substrate. We show that cells in embryogenic suspension 

cultures, but not in non-embryogenic suspension cultures produce AGPs with GlcNAc and GlcN as 

components of their carbohydrate moiety. Furthermore, AGPs extracted from immature carrot seeds 

were shown to contain oligosaccharides that are endochitinase-sensitive, suggesting that at least three 

B (1-4) linked N-acetylglucosamines are present. In addition, AGPs were found to be localised on a 

subpopulation of suspension cells and in the endosperm of immature carrot seeds. Furthermore the 

composition of AGPs in seeds was found to change during development. 

Results 

Glucosamine and N-acetylglucosamine labeling of suspension cells 

Carrot suspension cells in basal medium, cultured in the presence or absence of 2,4-D were labeled 

with either D-[1-14C] glucosamine (14C-GlcN) or N acetyl-D-[l-14C] glucosamine (14C-GlcNAc). 

All cultures with 2,4-D proliferated as unorganized cell clusters whereas cultures without 2,4-D 

developed somatic embryos. In both types of cultures approximately 80% of the radioactivity had 

been taken up from the culture media (Fig 1A and IB), and was found in the cells. During the 

subsequent 7 days the radioactivity in the medium of l4C-GlcN labeled cultures slowly decreased 

further (Fig 1 A). In contrast, '4C-GlcNAc labeled cultures showed a slight increase of radioactivity 

in the medium during the same period (Fig IB), suggesting that secretion of labeled compounds had 

occurred. When 13-glycosyl Yariv reagent was added to the cell-free medium of '4C-GlcNAc labeled 

cultures, 60 - 70 % of the radioactivity in the medium precipitated (Fig 1C). The amount of Yariv-

precipitable radioactivity increased with culture time, whereas the amount of non Yariv-precipitable 

radioactivity remained constant. This indicates that the radioactivity in the medium is most likely 

present in the form of AGPs. The amount of radioactivity incorporated in cells grown with or without 

2,4-D remained practically the same during the period of the measurements (Fig 1C). 

Radial gel diffusion assays were used for determining the AGP concentrations (Fig 2A). At day 7, the 

medium of cells cultured in the presence of 2,4-D contained about 15 \Lg I ml AGPs and about 10 |_ig / 

ml in the absense of 2,4-D. The Yariv precipitation ring (Fig 2A) of the medium AGPs from the 
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+ 2,4-D ° 

- 2,4-D 

• + 2,4-D 
• + 2,4-D -YP 
D - 2,4-D 
E3 - 2,4-D - YP 

days 

Figure 1. Total amounts of label that were present in the media of 50 ml suspension cultures at different days after 
initiation of labeling. A. Labeling with 10"7M D-[1-14C] Glucosamine. B. Labeling with 10"7M N-Acetyl-D-[l-14C] 
Glucosamine. C. Labeling with 10"'M N-Acetyl-D-[1-'4C] Glucosamine before and after precipitation with the Yariv 
reagent. -YP is medium without Yariv precipitable material. 

GlcNAc labeled culture contained radioactivity which confirmed that labeled AGPs were secreted by 

the suspension cells (Fig 2B). 

Little difference was found between the total amount of radioactivity present in AGPs or in the 

specific radioactivity of AGPs as a result of culturing in the presence or absence of 2,4-D (Table 1). 

Therefore we conclude that culturing of carrot suspension cells in the presence of l^C-GlcNAc 

results in the production of radioactive AGPs irrespective of the presence or absence of 2,4-D. 

After 7 days of culture most of the radioactivity was taken up by the cells. Gel electrophoresis of total 

soluble cellular proteins of cells labeled with 14c-GlcNAc showed that radioactivity was incorporated 

into proteins with an apparent molecular weight (Mr) of 32 to 80 kD (Fig 2C). The insoluble, crude 

cell wall fraction of those cells also contained radioactivity, but in contrast to the rather high 

incorporation of radioactivity in AGPs, little radioactivity had been incorporated into cell walls 

(Table 1). Neither the nature of the labeled proteins, nor that of the cell wall material were investigated 

further. 
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Table 1. Incorporation of label in 
secreted AGPs and cell wall 
fractions, derived from suspension 
cultures that were cultured for 7 days 
in the presence of 10"7M N-Acetyl-
D-[1- 1 4C] Glucosamine, in B5 
medium with, or without 0.2 uM 
2,4-D. Values indicate the amount 
of radioactivity incorporated in 
AGPs as a percentage of the total 
amount of radioactivity supplied to 
the cultures, and the specific 
labeling of AGPs and cell wall 
fractions, (nd = not determined) 

Figure 2. A. A diffusion gel containing samples of gum 
arabic AGPs with concentrations of 10, 20, 30, 40, 50, 60, 
80, 100, 150, 200, 250, 300, 350 and 400 ixg/ml. B. 
Autoradiogram of a diffusion gel containing duplo samples 
of AGPs from the medium of a suspension culture that was 
labeled for 7 days with 10"7M N-Acetyl-D-[l-1 4C] 
Glucosamine. This particular AGP sample had a 
concentration of 300 Hg/ml C. Cellular proteins of a 
suspension culture that was labeled for 7 days with 10"^M 
N-Acetyl-D-[1- C] Glucosamine, separated on a 12.5 % 
polyacrylamide gel. 

Non-embryogenic cell line 

Af 

Ai 

Embryogenic cell line 

Am 

Ar 

At 

Au 

dpm/u.gAGP 

1.7 102 

2.1 102 

4.8 102 

4.2 102 

4.1 102 

4.7 102 

Since pectins are a common contaminant of Yariv-precipitated AGPs, the pectin specific monoclonal 

antibodies JIM5 and JIM7 were used to determine the possible occurrence of pectins in the AGP 

preparations used. Immunodetection of pectin epitopes was performed before and after treatment with 

pectinase. Dot blot analysis showed that after pectinase treatment no pectin epitopes could be detected 

anymore. AGP specific epitopes that are recognized by the monoclonal antibodies JIM8, MAC207 

and MAC254 remained unaltered upon reprecipitation of the AGPs after the pectinase treatments (data 

not shown). Over 80% of the radioactivity originally present in the AGPs was retained in the 

reisolated pectin-free AGP fraction, indicating that indeed the radioactivity was incorporated in the 

AGPs secreted into the medium. Electrophoresis of AGPs both before and after pectinase treatment, 

followed by silver staining of PAA gels did not reveal any contaminating proteins in the AGP fraction 

(data not shown). We conclude that 14c-GicNAc uptake by carrot suspension cultures results in the 

production of AGPs with a high specific radioactivity. 
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AGPs from embryogenic, but not from non-embryogenic cell lines contain GlcNAc 

To determine whether l^C-label m t n e newly formed AGPs occurred in GlcNAc, labeled AGPs were 

incubated with 2 M trifluoroacetic acid (TFA) for 45 min at 100°C or for 60 min at 120°C. 

Degradation was monitored by TLC followed by autoradiography and densitometric scanning of the 

autoradiographs. 

On TLC the references, labeled glucose (Glc), GlcN and GlcNAc could easily be distinguished (Fig 

3A, last three lanes). After 45 min at 100°C the GlcNAc molecules remained unaltered, whereas after 

60 min at 120°C GlcNAc is deacetylated and converted into GlcN. This is clearly illustrated by the 

behaviour of GlcNAc and GlcN used as references (Fig 3C, last three lanes). The AGP samples 

incubated at 100°C for 45 min were partially degraded (Fig 3A, first three lanes), but a peak of labeled 

compounds, coinciding with GlcNAc, was found in the hydrolysate of AGPs from the embryogenic 

cell line Ar (Fig 3B). No peak coinciding with GlcNAc was detected after incubation of AGPs at 

120°C for 60 min, but then a larger peak was found at the position of GlcN, presumably because 

GlcNAc was converted into GlcN (Fig 3D). We conclude therefore that the secreted AGPs of the 

embryogenic cell line Ar, cultured in the presence of 2,4-D contain GlcNAc, while after culturing of 

the same cell line in the absence of 2,4-D secreted AGPs were found to contain GlcN. However, 

regarding the conversion of GlcNAc into GlcN, we assume that the latter AGPs also contain GlcNAc. 

Peaks coinciding with either GlcNAc or GlcN were virtually absent in hydrolysates of AGPs from the 

non-embryogenic cell line Ai, where labeled compounds were found at the position of Glc (Fig 3D). 

This indicates that deacetylation and deamination occur during the 7 day culture period, resulting in 

the presence of label in monosaccharides such as glucose, arabinose or galactose that all have the 

same mobility on TLC. The smears of labeled material as observed in Figure 3A indicate that the 

carbohydrate moieties of the AGPs were not completely resolved into individual monosaccharides, 

whereas the smears in Figure 3C may point to an incorporation of label in non-sugar components. 

Metabolic conversion of ^C GlcNAc was also apparent after degradation of cell wall fractions of an 

embryogenic suspension culture which showed that in the cell walls radioactivity resided in sugars 

with an Rf value equal to glucose (data not shown). These results suggest that the presence of 

GlcNAc-containing medium AGPs is restricted to embryogenic cultures. Several independently 

established embryogenic and non-embryogenic cell lines were labeled with l^C-GlcNAc. The AGPs 

isolated from four embryogenic cell lines contained twice the amount of label per \xg AGP when 

compared to AGPs isolated from two non-embryogenic cell lines (Table 2). 

Figure 3. TLC analysis of the TFA degraded Yariv precipitable fractions containing the secreted AGPs of an 
embryogenic (Ar) and a non-embryogenic (Ai) cell line that were labeled for 7 days with 10"^M N-Acetyl-D-[1-'4C] 
Glucosamine, and optical density scans of the autoradiograms. A. TLC of AGP degradation by means of incubation in 
2M TFA at lOfPc for 45 min. B. Optical density scan of A. C. TLC of AGP degradation by means of incubation in 
2M TFA at 120°C for 60 min. D. Optical density scan of C. 

58 



Plant N-acetylglucosamine-containing arabinogalactan proteins... 

\ 1 \, %, ri 
\ \ 

I 
'•4 

B 

-.'.r/' 

A 
Glc / \ 

GlcNAc 

GlcN 

Ar + 2,4-D 

Ar - 2,4-D 

i. „ / / ^ " v " A 

i 

'W**Y, 

' 

*'*>*'->,;< 

% • % - % . % t % % 

'ci 

GlcN/GlcNAc 

^-.'.^,*^;,'.i-A-'M.>^',j* l^j.'.(,^1w-..^v'^v^. 

VI. 

Glc 

i\ Ar +2,4-D ,,* 

*Y' 

Ar - 2,4-D _ / 

i/ Ai + 2,4-D 

i V^'w.i a» * / 

I^H^ 

' ,% i j«(i 

"tw*A» 

59 



Chapter 4 

Degradation of AGPs by TFA, followed by TLC showed that in AGPs from all embryogenic cell 

lines, grown in the presence of 2,4-D, a part of the label was present as GlcNAc, while in AGPs 

isolated from all non-embryogenic cell lines it was only present as Glc (data not shown). There 

appeared to be a positive correlation between the embryogenic capacity and the amount of labeled 

GlcNAc incorporated in the AGPs. 

Table 2. Specific labeling of 
AGPs isolated from the 
conditioned medium of several 
independently established 
embryogenic and non-
embryogenic cell lines. 

+ 2,4-D 

- 2,4-D 

AGPs 

cell wall fraction 

AGPs 

cell wall fraction 

% of total label 
incorporated 

2.0 

nd 

1.7 

nd 

dprn/ug 

4.2 102 

15 

6.0 102 

21 

AGPs from developing carrot seeds contain a cleavage site for plant endochitinases 

After having shown that GlcNAc occurs in AGPs, we wondered if AGPs can contain cleavage sites 

for EP3 endochitinases. When l^C-GlcNAc labeled AGPs from embryogenic cell cultures were 

incubated with purified EP3 endochitinases, no reaction products could be detected upon analysis of 

the reaction mixture by TLC or by agarose gel electrophoresis. Because it could not be excluded that 

the AGPs from the conditioned medium were already cleaved by endochitinases present in the 

medium, which would make it impossible to observe cleavage by added EP3 endochitinases, we 

looked for another source of AGPs with possible endochitinase cleavage sites. As EP3 endochitinase 

genes are expressed in immature carrot seeds (Van Hengel et al., in press) it appeared possible that 

AGPs from these tissues might contain EP3 endochitinase cleavage sites. Therefore we isolated 

AGPs from immature seeds, made them pectin-free and used these purified AGPs for further 

analysis. High performance anion exchange chromatography with pulsed amperometric detection 

(HPAE-PAD) was used for the detection of cleavage products. Using HPAE-PAD, neutral 

monosaccharides are separated based on differences in pKa values, while the separation of 

oligosaccharides is based on the composition, sugar linkage type and the level of negatively charged 

residues. 
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Figure 4A shows the elution profile of AGPs isolated from immature seeds 7 days after pollination 

(DAP) upon elution from the column with a salt gradient. Only a few minor peaks with retention 

times between 1 and 6 minutes are observed, and no material is eluted with the salt gradient. 

If the 7 DAP seed AGPs were first incubated with EP3 endochitinases for 24 hrs, the elution pattern 

did not show any marked changes (Fig 4B) in comparison with untreated preparations. Apparently no 

small oligosaccharides that could have arisen by endochitinase cleavage were produced. This result is 

consistent with analyses of ^C labeled secreted AGPs derived from suspension cultures. 

Then we considered the possibility that AGPs might contain cleavage sites that were not directly 

accessible to the added endochitinase. Therefore we first incubated the AGPs with a mixture of 

purified fungal endogalactosidase, endoarabinofuranosidase, and exoarabinofuranosidase. Incubation 

of AGPs with these enzymes should split off oligosaccharides from the carbohydrate content of the 

AGPs. Subsequently EP3 endochitinases should be able to cleave further if any endochitinase 

cleavage site would be present. Upon incubation of 7 DAP AGPs with the three fungal enzymes a 

limited number of discrete oligosaccharides were produced, as illustrated by the elution profile in 

Figure 4C. Upon inclusion of EP3 endochitinases in the incubation mixture, there appeared a change 

in the elution profile. This involved a decrease of material in a peak numbered 2, eluting at 11.8 

minutes, (Fig 4C) together with an increase of material eluting at 9.1 min, in a peak numbered 1 (Fig 

4D). Such a change might point at the conversion of a larger AGP fragment into a smaller one due to 

an additional endochitinase cleavage reaction. A similar result was obtained using AGPs from 

immature seeds of 21 DAP (Fig 4E and 4F). Peak 1 does not result from the added endochitinase 

itself, as EP3 endochitinase alone eluted in a single peak with a retention time of 1.5 min (data not 

shown). 

By incubation of AGPs with only one fungal hydrolase with or without EP3 endochitinases we then 

attempted to obtain some information on the composition of EP3-sensitive oligosaccharides. The 

HPAE-PAD analyses shown in Figure 5A indicates that removal of terminal arabinoses from 7 DAP 

AGPs by exoarabinofuranosidase generated a series of oligosaccharides, whereas only one new peak 

at 3.8 min, corresponding to arabinose, was expected. Among the peaks that were generated by 

exoarabinofuranosidase activity two peaks (number 3 and 4 in Figure 5A, eluting after 7.0 and 12.2 

minutes respectively) were found to disappear after incubation with a mixture of 

exoarabinofuranosidase and the chitinases (Figure 5B) while a new one, peak 1, appeared. This peak 

1 has the same retention time (9.1 min) as peak 1 in Figure 4, that arose after incubation with the 

mixture of hydrolases and endochitinases. It is notable that treatment with exoarabinofuranosidase 

alone already enables to access the endochitinase cleavage site. 

Incubation with endoarabinofuranosidase generated a large number of oligosaccharides (Fig 5C). 

Despite the large number of peaks, little changes were observed when incubation with 

endoarabinofuranosidase was combined with endochitinases. Only one peak (peak 1) was found to 

increase as a result of the endochitinase activity (Fig 5D). 
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Figure 4. HPAE-PAD chromatograms of AGPs that were isolated from developing seeds and that had been incubated 
with several AGP degrading enzymes in the presence, or absence of the EP3 endochitinases. A. AGPs isolated at 7 
DAP. B. AGPs isolated at 7 DAP and incubated with EP3 endochitinases. C. AGPs isolated at 7 DAP and incubated 
with endogalactosidase, endo- and exoarabinofuranosidase. D. AGPs isolated at 7 DAP and incubated with 
endogalactosidase, endo- and exoarabinofuranosidase in combination with EP3 endochitinases. E. AGPs isolated at 21 
DAP and incubated with endogalactosidase, endo- and exoarabinofuranosidase. F. AGPs isolated at 21 DAP and 
incubated with endogalactosidase, endo- and exoarabinofuranosidase in combination with EP3 endochitinases. Peaks that 
change upon incubation with the EP3 endochitinases are numbered. 
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Figure 5. HPAE-PAD chromatograms of AGPs that were isolated from developing seeds 7 DAP and that had been 
incubated with single AGP degrading enzymes in the presence, or absence of the EP3 endochitinases. 
A. AGPs incubated with exoarabinofuranosidase. B. AGPs incubated with exoarabinofuranosidase in combination with 
EP3 endochitinases. C . AGPs incubated with endoarabinofuranosidase. D . AGPs incubated with 
endoarabinofuranosidase in combination with EP3 endochitinases. E. AGPs incubated with endogalactosidase. F. AGPs 
incubated with endogalactosidase in combination with EP3 endochitinases. 
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The carbohydrate part of AGPs consists of chains of (1 -3)-B-D-galactose residues with side chains of 

variable sugar components. The (l-3)-G-D-galactose chains are linked to the protein core (Clarke et 

al., 1979). Incubation with endogalactosidase should split the galactose chains into pieces and 

releases the side chains that were attached to the galactose backbone. A comparison of Figure 5E and 

5F shows that incubation with endogalactosidase produced three oligosaccharides, peak 1, 5 and 6 

arising after endochitinase activity. As a result of chitinase treatment again a peak 1 appeared with a 

retention time of 9.1 min. In addition two peaks, numbered 5 and 6, eluting after 2.7 and 3.9 

minutes, were found to increase considerably. 

These results can be summarized as follows. Exoarabinofuranosidase activity produces two AGP 

fragments, peaks 3 and 4 (Fig 5A), that contain an endochitinase cleavage site. After endochitinase 

treatment both disappear and peak 1 arises (Fig 5B). Endoarabinofuranosidase activity produces a 

large number of fragments (Fig 5C). Although none of these fragments disappear after endochitinase 

treatment, we suggest that after endoarabinofuranosidase treatment a fragment or fragments are 

produced that can be cleaved further by endochitinases, in turn leading to the production of peak 1 

(Figure 5D). Endogalactosidase produces fragments representing sidechains of the AGP carbohydrate 

moiety (Fig 5E). The amount of peaks that can be observed in Figure 5E indicates either that only a 

few different side chains are present, or that most of the side chains are too large to be analysed by 

HPAE-PAD. After endochitinase treatment of the AGP side chains three peaks, 1, 5 and 6 arise. 

We can conclude that the endochitinase cleavage site in intact 7 DAP AGPs is inaccessible for EP3 

endochitinases and that a partial hydrolysis with one of the three different fungal hydrolases is 

required to make this site accessible, resulting in a peak designated 1 as the main product of the 

endochitinase activity. Next to peaks containing a product of endochitinase activity, in Figure 4C a 

peak, designated 2, containing material with an endochitinase cleavage site, was observed. This peak 

was not produced after incubation of AGPs with only a single fungal hydrolase, indicating that the 

generation of peak 2 requires the activity of at least two of the fungal hydrolases together. 

In conclusion, these results indicate that AGPs can contain endochitinase cleavage sites, that become 

accessible after incubation with hydrolases able to degrade the carbohydrate part of AGPs. 

To determine wether the occurrence of endochitinase cleavage sites in AGPs was developmentally 

regulated, we examined whether any changes arose during seed maturation. Figures 6A, C, E and G, 

show a part of the HPAE-PAD elution pattern of AGPs isolated from seeds of 4, 7, 11 and 21 DAP 

after incubation with all three fungal hydrolases. This part of the elution pattern presents a peak 

numbered 2 (eluting after 11.8 minutes) that shows a decrease between 4 and 11 DAP, followed by 

an increase between 11 and 21 DAP. One other peak with a retention time of 12.3 minutes shows an 

increase between 4 and 7 DAP and no changes between 11 and 21 DAP. Apparently the composition 

of the carbohydrate part of the AGPs changes during development. 

If the AGPs obtained at different days after pollination were treated with EP3 endochitinase together 

with the three hydrolases (Fig 6B, D, F and H) the following changes were observed. There was a 

decrease in material of the peak numbered 2, while no changes were observed for the other peak with 
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Figure 6. Details of HPAE-PAD chromatograms of AGPs that were isolated from seeds at different stages of 
development, and that had been incubated with several AGP degrading enzymes in the presence, or absence of the EP3 
endochitinases. A; C; E and G. AGPs isolated at 4; 7; 11 and 21 DAP respectively, that had been incubated with 
endogalactosidase, endo- and exoarabinofuranosidase. B; D; F and H. AGPs isolated at 4; 7; 11 and 21 DAP 
respectively, that had been incubated with endogalactosidase, endo- and exoarabinofuranosidase in combination with the 
EP3 endochitinases. 
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a retention time of 12.3 min. However, comparing Figure 6A with Figure 6B shows that when 4 

DAP AGPs were used peak 2 does not show a decrease as a result of the presence of endochitinases 

in the incubation mixture. This indicates that at 4 DAP the material in peak 2 is not the same as at later 

stages of development. We conclude that apparently the changes in the carbohydrate part of the AGPs 

that were observed during seed development include changes in the presence of endochitinase 

cleavage sites. 

Characterization of AGPs in suspension cultures and at different stages of seed 
development 

The experiments for labeling of carrot suspension cultures showed that the amount of AGPs present 

in the medium after 7 days of subculturing was higher if the cultures were grown with 2,4-D in the 

medium then if grown in the absence of 2,4-D. Here we present data on the composition of AGPs 

produced in suspension cultures of the embryogenic cell line Ar in medium with or without 2,4-D. 

The AGPs secreted in the medium after 2 weeks of culturing in the presence or absence of 2,4-D 

showed different patterns after crossed electrophoresis (Fig 7). AGP preparations from medium that 

contained 2,4-D showed a broad partition pattern in which 3 peaks can be observed having Rf values 

of 0.4; 0.6 and 0.8. The Rf value of the major peak of AGPs that were secreted in the medium in the 

absence of 2,4-D was 0.7 and that of the minor peak 0.4. This indicates that the presence of 2,4-D in 

the culture medium affects the production of AGPs, or results in changes in the secretion of enzymes 

that can degrade AGPs. 

Figure 7. Crossed electrophoresis of 10 Ug AGPs that 
were isolated from the media of an embryogenic 
suspension culture that was grown in the presence, or 
absence of 0.2 uM 2,4-D. 

suspension culture +2,4-D 

suspension culture - 2,4-D 

Suspension cells that produce AGPs can be identified with Yariv reagent, which visualizes the 

localisation of AGPs in plant tissues (Gane et al., 1995). Figure 8A shows Yariv staining of 
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Figure 8. Plant material stained with 6-glucosyl Yariv. 
A. Suspension cells of an embryogenic cell line. Arrows indicate stained cells. B. Detail of a longitudinal section of a 
immature carrot seed 21 DAP showing staining mostly associated with endosperm (e) cells, no staining in the zygotic 
embryo (emb) and very little staining in the seed coat (sc). C. Detail of a longitudinal section of a mature carrot seed, 
showing staining in the central space (big arrow) and around endosperm cells (small arrow). D-F Developing seeds of 
Arabidopsis thaliana, showing staining in the inner cell layers. 
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suspension cells. In the majority of the cells almost no staining was observed. Some cells showed 

intermediate staining (indicated by black arrows), while only few cells showed intense staining (white 

arrow). This indicates that there are large differences in the amount of AGPs present at the surface of 

individual suspension cells. If the cells that show intense staining also produce the majority of AGPs, 

it might be that different cells do not contribute equally to the secretion of AGPs. 

In the previous section we showed that AGPs isolated at different stages of seed development differ 

in composition (Figure 6). This difference in composition of AGPs from seeds at different days after 

pollination was confirmed by using crossed electrophoresis. Figure 9 shows the differences in the 

native electrophoretic mobility of AGPs during development. AGPs from 11 DAP have the highest 

electrophoretic mobility as compared to earlier or later stages in seed development. Immunoblotting of 

AGPs after crossed electrophoresis allowed detection of AGP epitopes recognized by the monoclonal 

antibodies JIM8 and MAC207. These results are schematically represented with horizontal lines in 

Figure 9, and showed that a similar difference in electrophoretic mobility could be observed for the 

distribution of AGP epitopes that are present in the broad band of AGPs and that are recognized by 

JIM8 and MAC207. This indicates that during seed development the mobility of specific AGPs 

containing the JIM8 or MAC207 epitopes shows an increase followed by a decrease, that can be 

caused by changes in size or changes in charge of these AGPs. 

4 DAP 21 DAP 

11 DAP 
,~ 4 DAP 

11 DAP 

17 DAP 

17 DAP 

21 DAP 

. / 
AGPs containing MAC207 epitopes 

AGPs containing JIM8 epitopes 

distance from origin to peak 

Figure 9. Crossed electrophoresis of 10 |J.g AGPs that were isolated from developing seeds of 4; 11; 17 or 21 DAP,, 
and a comparison of the native electrophoretic mobility of the AGPs that contain JIM8 or MAC207 epitopes. 
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The Yariv reagent was also used to localise AGPs in immature carrot seeds. Figure 8B shows 

staining around cells of the endosperm at 21 DAP, while the embryo in the seed did not show any 

staining. The presence of AGPs in the endosperm is supported by the fact that AGPs could be 

isolated from dissected endosperms of immature carrot seeds. In mature carrot seeds AGPs were 

visualised in the central space in which the embryo is located (Figure 8C; big arrow) and around the 

endosperm cells (Figure 8C; small arrow). This implies that endosperm cells produce large amounts 

of AGPs. 

ITVU JIM8 MAC207 MAC254 ZUM15 ZUM18 

4 DAP 

11 DAP 

17 DAP 

m 
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Figure 10. Dot blot analysis of 10 (Xg samples of AGPs that were isolated at different stages of seed development (4; 
11; 17; 21 DAP) The antibodies JIM4; JIM8; MAC207; MAC254; ZUM15 and ZUM 18 were used for the detection of 
specific AGP epitopes 

Dot blot analysis using several monoclonal antibodies that recognize AGP epitopes provides 

additional information on the composition of seed AGPs. Figure 10 shows that the epitopes that are 

recognized by JIM4, JIM8, MAC207, MAC254, ZUM15 and ZUM18 are all present in AGPs that 

were derived fom developing seeds at 4 DAP, when the carrot endosperm is not yet cellularised (Gray 

et al., 1984). Cell wall formation starts 7 days after pollination and is completed at 21 DAP (Gray et 

al., 1984). In between 4 and 17 DAP there is a gradual decline in the amount of epitopes that are 

recognized by JIM4 and JIM8, while MAC254, ZUM 15 and ZUM 18 epitopes are essentially gone by 

11 DAP. At 21 DAP, when large amounts of AGPs are present in and most likely produced by the 

endosperm, there is an increase of JIM8 and MAC254 epitopes. The epitope recognised by MAC207 

remains present in comparable amounts between 4 and 21 DAP, but MAC207 binds a somewhat 

wider variety of AGPs than other monoclonals such as for instance JIM4 (Yates and Knox, 1994). 
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These results can be summarized as follows. Between 4 and 11 DAP there is a decline in the epitopes 

that are recognised by the monoclonal antibodies JIM4, JIM8, MAC254, ZUM 15 and ZUM 18, 

while the native electrophoretic mobility of the total population of AGPs increases during the same 

period. Since AGPs are components of the cell surface and the endosperm is not yet, or hardly 

cellularised between 4 and 11 DAP we conclude that AGPs are maternally produced and that 

degradation of these AGPs during development results in smaller sizes and the loss of epitopes. At 21 

DAP the population of AGPs that can be isolated from immature seeds seems to be largely derived 

from the endosperm that is cellularised by this time. This coincides with an increase of the sizes of 

AGPs between 11 and 21 DAP and in the reappearance of JIM8 and MAC254 epitopes. 

Visualisation of AGPs in developing seeds of another plant species confirmed the localisation of 

AGPs in the endosperm. Arabidopsis developing seeds show staining inside the seeds (Figure 8D, 

8E and 8F), while no staining was observed in the seed coat. The observed pattern of staining seems 

to correlate with the development and cellularization of the endosperm in this species as described by 

Mansfield and Briaty (1990). 

Discussion 

Secreted AGPs contain GlcNAc 

In this chapter we demonstrated that embryogenic carrot suspension cells secrete AGPs that contain 

N-acetylglucosamine into the culture medium, while no or hardly any GlcNAc can be detected in 

AGPs secreted by non-embryogenic cell lines. The presence of GlcNAc in AGPs was demonstrated 

by labeling embryogenic cell cultures with [^C] GlcNAc. When [^C] GlcNAc was added to 

suspension cells, the labeled compound was rapidly taken up and metabolised by the cells. A small 

amount of label was subsequently secreted into the medium and found to be present mainly in AGPs. 

Presumably some [^C] GlcNAc was used as a direct precursor of the GlcNAc incorporated in 

AGPs, because labeled GlcNAc and labeled GlcN were found after AGP hydrolysis. 

The occurrence of GlcNAc in AGPs has not been observed before in studies on the total sugar 

composition of AGPs (Baldwin et al., 1993; Komalavilas et al., 1991; Mollard and Joseleau, 1994; 

Serpe and Nothnagel, 1994; Serpe and Nothnagel, 1996; Smallwood et al., 1996; Van Hoist et al., 

1981). It is possible that GlcNAc has sofar been overlooked if GlcNAc is a rather rare component of 

AGPs. But in view of the tissue-, and stage specificity of AGP epitopes (Knox et al., 1991; Knox et 

al., 1989) and our finding that only embryogenic cell lines contain AGPs with GlcNAc it is quite well 

possible that the presence of GlcNAc in AGPs is restricted to only a few plant tissues and in a limited 

developmental time-span. This is the more attractive hypothesis since it might point to a functional 

significance of the occurrence of GlcNAc in AGPs. 
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The presence of GlcNAc in the AGPs secreted by embryogenic cell lines only may also indicate a 

more functional role of GlcNAc containing AGPs in carrot somatic embryogenesis. 

Seed AGPs contain cleavage sites for endochitinases 

We have not been able to demonstrate endochitinase cleavage sites in the AGPs fom suspension 

cultures. However, we have been able to demonstrate endochitinase cleavage sites in AGPs purified 

from immature carrot seeds. The presence of such cleavage sites could only be demonstrated after 

treatment of AGPs with endogalactosidase, endoarabinofuranosidase and, or exoarabinofuranosidase. 

Apparently the complex carbohydrate structure of AGPs had to be opened before cleavage sites 

become accessible for endochitinases. 

Endochitinases require at least three adjacent GlcNAc residues for cleavage activity (Molano et al., 

1979; Usui et al, 1990). In view of this specificity we feel confident that the AGP cleavage that was 

demonstrated upon chitinase treatment is a reflection of the presence of at least three GlcNAc 

residues. However, at present we cannot exclude that the observed chitinase mediated hydrolysis of 

AGPs is based on the presence of arrays of at least three GlcN residues instead of GlcNAc. In the 

previous chapter we have shown that, like some citrus chitinases (Osswald et al., 1993), EP3 

endochitinases also have some chitosanase activity. It is evident that the occurrence of endochitinase 

cleavage sites is a relatively rare event, because only very few differences were observed after 

endochitinase treatment. Enzymatic degradation of AGPs by hydrolytic enzymes such as 

endogalactosidase and arabinofuranosidases as we have used here to generate partially degraded 

AGPs shown to contain an endochitinase cleavage site, has also proven to be a useful tool for 

controlled degradation in structural studies of AGPs (Gleeson and Clarke, 1979; Saulnier et al., 1992; 

Tsumuraya et al., 1984; Tsumuraya et al., 1990). The enzymes and the combinations that we have 

used imply that GlcNAc is present in side chains of AGPs. However, they do not provide enough 

information to allow a more precise identification of the oligosaccharides that contain an endochitinase 

cleavage site. In addition to EP3 endochitinases, the presence of a B-galactosidase and an a-

arabinofuranosidase in the conditioned medium of carrot suspension cultures (Konno and Katoh, 

1992; Konno et al., 1994) suggests that AGPs that are present in the medium of suspension cultures 

may also be processed by such enzymes. In vivo, hydrolytic enzymes of both fungal and plant origin 

have been shown to be capable of degrading AGPs, suggesting that a stepwise AGP degradation 

mechanism occurs by means of individual hydrolytic enzymes (Nothnagel, 1997). Determination of 

the in planta localisation of such enzymes in relation to AGPs might provide important evidence 

concerning the turnover or processing of AGPs. Furthermore AGP hydrolases might provide 

information on the biological function of both AGPs and their breakdown products. The hypothesis 

that AGPs can function as the locked-up form of signalling molecules as postulated by Bacic et al. 
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(1988), implies that co-localisation of both AGPs and hydrolytic enzymes is essential for the release 

and / or degradation of such signaling molecules. 

EP3 endochitinases and AGPs are both secreted molecules and co-localise in supension cultures and 

in seeds. The EP3 endochitinase protein is secreted by the maternal integument cells and has been 

detected in the endosperm of developing carrot seeds (Van Hengel et al., in press), so in carrot seeds 

both the EP3 endochitinases and AGPs are localised in the same tissues. This supports the hypothesis 

that processing of AGPs by EP3 endochitinases occurs in the developing seed. 

Our results support earlier observations that the composition of AGPs is developmentally regulated 

(Pennell et al., 1991; Pennell et al., 1989). In suspension cultures the removal of 2,4-D was shown 

to result in a change in AGPs coinciding with the formation of somatic embryos. Previously it was 

shown that the removal of auxin from the medium of a carrot cell suspension culture is correlated with 

the expression of a plasma membrane epitope (Stacey et al., 1990). The application of monoclonal 

antibodies that recognise specific AGP epitopes has led to the finding that in general the presence of 

AGP epitopes can be tissue- and stage specific and that AGPs are developmentally regulated (Knox et 

al., 1991; Knox et al., 1989; Pennell et al., 1991; Pennell et al., 1989). Using monoclonal antibodies 

we have shown that also in carrot seeds the presence of AGP epitopes changes during development. 

The disappearance and reappearance of AGP epitopes and the observed increase and subsequent 

decrease in the native electrophoretic mobility of AGPs during seed development suggest a 

degradation, and a new synthesis of AGPs. Before fertilization and during the initial stages of seed 

development AGPs are predominantly found in maternal tissues such as the extracellular mucilage of 

the transmitting tissue and ovaries (Gane et al., 1995; Hoggart and Clarke, 1984). This suggests that 

in the initial stages of carrot seed development AGPs that were isolated from these seeds were mainly 

derived from the transmitting tissue and ovaries. In addition we have shown that in carrot later in 

development the newly cellularised endosperm contains large quantities of AGPs. 

In an earlier paper we have demonstrated that the expression of the EP3 genes changes during seed 

maturation. In seeds the integuments that surround the developing endosperm express the EP3 genes 

and the highest expression has been found around 10 DAP (Van Hengel et al., in press). Between 7 

and 21 DAP, when the AGPs in the seeds contain an endochitinase cleavage site relatively large 

amounts of EP3 endochitinases are present in these seeds. 

In conclusion there appears to be a striking coincidence in the temporal and spatial regulated transient 

presence of both EP3 endochitinases and AGPs that contain an endochitinase cleavage site. Both are 

secreted inside the developing carrot seed and present in the endosperm in close vicinity of the early 

zygotic embryo. Together with the fact that EP3 can only rescue tsll embryogenesis during the 

phenocritical period (De Jong et al., 1995), points towards a developmentally regulated processing of 

AGPs that is important for the process of embryogenesis. In the next chapter we shall present 

biological activity tests using the AGPs characterised here and the effects of endochitinases on the 

biological activity of AGPs. 

72 



Plant N-acetylglucosamine-containing arabinogalactan proteins... 

Chitinases are involved in plant development 

Earlier it was proposed that chitinases have a major role as plant defence enzymes. This was based on 

their inducibility after challenge with fungal pathogens (Herget et al, 1990; Kurosaki et al., 1987; 

Meins and Ahl, 1989). Growth retardation of fungi by dissolution of wall polymers offered a 

convenient explanation for the presence of many types of chitinases in apoplastic fluids and in 

vacuoles (Ariorio et al., 1992; Boiler et al., 1983; Schlumbaum et al., 1986; Wubben et al., 1992). 

Based on inducibility of chitinases by exposure to non-chitin-containing pathogens (Meins and Ahl, 

1989) and after abiotic stresses (Bronner et al., 1991; Van Damme et al., 1993) this idea was 

broadened and proposed a role for chitinases in more general stress responses in plants. However no 

clear model on such a function was ever put forward. In this paper we describe the occurrence of 

endochitinase cleavage sites in plant produced AGPs. Based on this finding we propose that 

endochitinases primarily function in plant development. 

AGPs are generally assumed to function in plant development, but also other roles have been 

proposed. Amongst these are involvement in plant-pathogen or plant-symbiont interactions and in 

wound healing (Clarke et al., 1979; Gollotte et al., 1995; Whistler, 1993). Remarkably these 

processes are also known to increase chitinase gene expression. If AGPs that are produced upon 

infection or wounding also contain endochitinase cleavage sites, endochitinases may generate AGP 

fragments that might not primarily function in attacking pathogens, but rather in the plants' recovery 

after wounding, either by abiotic or mechanical agents or by infection. While both infection and 

wounding, induce defence reactions, plant recovery is equally important and depends upon renewed 

development, requiring AGPs as well as perhaps endochitinases as a means to generate AGP derived 

signalling molecules. 

Materials and methods 

Plant material 

Daucus carota cell suspensions of cv. Autumn King /Trophy (S&G Seeds, Enkhuizen, The 

Netherlands) were initiated and maintained as described before (De Vries et al., 1988). One week old 

suspension cultures were used for labeling experiments. 

AGP isolation 

AGPs were isolated from suspension cultures and developing carrot seeds (S&G) by precipitation 

with Yariv reagent (Yariv et al., 1962) as described by Kreuger and Van Hoist (1993). Pectin-free 
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AGP fractions were obtained by incubating 1 mg of AGPs in 50 mM NaAc pH 5.0 containing 10 

units pectinase (Sigma) for 16 hrs followed by a second AGP isolation. The AGP concentration was 

determined by the radial gel diffusion method as described by Van Hoist and Clarke (1985). 

Labeling of suspension cultures and degradation of labeled AGP fractions 

Carrot suspension cells (2 ml packed cell volume) were cultured for 1 week in 50 ml B5 medium 

containing 0.2 \xM 2,4-D. The cells were washed with and transfered to B5 medium with, or without 

0.2 uJVI 2,4-D and grown in the presence of 10"7M D-[1-14C] glucosamine, or N-acetyl-D-[l-14C] 

glucosamine. Medium samples were taken after 2, 3,4 and 7 days. 

The degradation of the labeled AGP fractions was done by incubation with 2M trifluoroacetic acid for 

45 at lOO^C or 60 min at 1200c. After degradation the samples were analysed by TLC (n-butanol: 

acetic acid: water 6: 2: 2) next to the reference compounds D-fl-l^C] glucose, D-[l-14c] 

glucosamine and N-acetyl-D-[l-l4C] glucosamine that had been subjected to the same degradation 

reactions. 

Detection and quantification of label was done using a Phosphorlmager (Molecular Dynamics). 

Cell wall isolation, protein extraction and gel electrophoresis 

Cell wall fractions were obtained using the method described by Brown and Fry (1993). Cellular 

proteins were obtained by grinding cells in extraction buffer containing 50 mM phoshate buffer pH 

7.0, 10 mM EDTA, 0.1% triton, 0.1% sarkosyl, 10 mM fi-mercaptoethanol supplemented with 

polyvinylpyrrolidone and powdered glass. The resulting slurry was centrifuged for 30 min and the 

supernatant was used for analysis. 

Standard SDS-PAGE (Laemmli, 1970) 12.5% gels were used. Gels were silver stained according to 

the method of Oakley et al. (1980), dried under vacuum and exposed in a Phosphorlmager cassette. 

Immunochemistry and histological techniques 

JIM4, JIM8, MAC207 and MAC254 anti-AGP monoclonal antibodies and JIM5 and JIM7 anti-pectin 

monoclonal antibodies were kindly provided by Prof. Keith Roberts, John Innes Centre, Norwich, 

UK. ZUM15 and ZUM18 anti-AGP monoclonal antibodies were kindly provided by Dr. Marc 

Kreuger, S&G seeds, Enkhuizen, The Netherlands. AGP samples of 10 jxg were blotted on 

polyvinylidene fluoride membranes (Millipore) and assayed for the presence of immuno-reactive 
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epitopes as described (Knox et al., 1991). Plant material was stained for the presence of AGPs as 

desribed previously (Gane et al., 1995). 

Crossed electrophoresis 

Two aliquots of 2 ml of packed cell volume of the embryogenic cell line Ar were washed in B5 

medium with or without 2,4-D. The cells were transferred to erlenmeyer flasks with 50 ml medium 

with or without 2,4-D. After 1 week AGPs were isolated from the medium and analysed by crossed 

electrophoresis as described (Van Hoist and Clarke, 1986). 

Enzyme assays on AGPs and HPAE-PAD analysis 

Samples of 80 u.g of AGPs were incubated for 24 hrs in 10 mM MES pH 5.5 supplemented with 80-

200 ng EP3 chitinases that were isolated as described before (Kragh et al., 1996) and / or with 0.050 

units exo-arabinofuranosidase; 0.024 units endo-arabinofuranosidase and 0.030 units 

endogalactosidase, all three of which were produced by Aspergillus niger, a fungus capable of 

degrading plant material, and were kindly provided by Dr. Jaap Visser, Wageningen Agricultural 

University, The Netherlands. 

Analysis of AGPs and enzymatically degraded AGPs was performed by High Performance Anion 

Exchange Chromatography with Pulsed Amperometric Detection (HPAE-PAD), using the CarboPac 

PA-100 column (Dionex). The flow rate was 1 ml/min and the eluent consisted of 10% 0.5 M NaOH 

in combination with a linear salt gradient starting at t = 3 with 0% NaAc and ending at t = 18 with 

80% (v/v) 0.5 M NaAc. 
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Chitinases and arabinogalactan proteins promote somatic embryogenesis 
from embryogenic wild type carrot protoplasts 

EP3 endochitinases isolated from conditioned medium and arabinogalactan proteins (AGPs) extracted 

from immature carrot seeds can increase the number of somatic embryos formed from protoplasts 

obtained from wild type embryogenic suspension cultures. The immature seed AGPs were much 

more active then the chitinases. Pre-treatment of AGPs with EP3 endochitinases or N-

acetylhexosaminidase results in optimal somatic embryo-forming activity. The carbohydrate part of 

the AGPs is responsible for the embryo-promoting effect. These results demonstrate that activation of 

immature seed AGPs by hydrolytic enzymes is an important component of embryogenesis. Apart 

from the increase in embryogenesis, AGPs appear to activate a subpopulation of otherwise non-

dividing protoplasts. AGPs are only capable of promoting embryogenesis during a short period 

preceeding cell wall formation. 

Arjon J. van Hengel, Zewdie Tadesse, Ab van Kammen and Sacco C. de Vries 



Chapter 5 

Introduction 

In the carrot somatic cell variant tsll the temperature or fresh medium-induced arrest of somatic 

embryogenesis at the globular stage could be lifted by addition to the culture medium of an 

endochitinase, designated EP3 (De Jong et al., 1992). The rescue effect appeared to be due to a 

transient lack in sufficient endochitinase in the conditioned medium during the period when globular 

tsll somatic embryos were most sensitive to either temperature shock or to cultivation in fresh 

medium (De Jong et al., 1995). A second effect of the application of EP3 endochitinases to tsll cells 

was the formation of more embryogenic cell clusters (De Jong et al., 1993). The EP3 endochitinase 

was found to be a member of a small multigene family of class IV chitinases. Two of the carrot class 

IV EP3 endochitinases were tested and found to be effective in tsll rescue, as was a related class I 

endochitinase (Kragh et al., 1996). The phenotype of tsll is rather pleiotropic and is thought to result 

from a defect in the secretory apparatus. As a result, cell wall formation is disturbed (Baldan et al., 

1997). 

The biological function of the EP3 endochitinases in embryogenesis is not known. Bacterial 

lipochitooligosaccharides (LCOs) were able to increase the number of embryogenic cells in tsl 1 as 

efficiently as the EP3 chitinases. Based on this observation it was proposed that the function of the 

endochitinases was to release an LCO-like molecule from plant origin (De Jong et al., 1993). 

In the previous chapter we have presented evidence that a sofar unknown group of molecules consists 

of N-acetylglucosamine (GlcNAc)- or glucosamine (GlcN)-containing arabinogalactan proteins 

(AGPs) and can be found in the medium conditioned by embryogenic wild type carrot suspension 

cells. In addition we have found that AGPs isolated from immature carrot seeds contain endochitinase 

cleavage sites (chapter 4). 

In the present work we aimed to answer two questions: 1.) Whether the observed effect of 

endochitinases and LCOs on somatic embryogenesis is restricted to tsl I or that also wild type somatic 

embryogenesis is promoted, and 2.) Whether the previously observed cleavage of GlcN and GlcNAc-

containing AGPs by chitinases is of biological significance in somatic embryogenesis. In order to 

answer these questions a reliable and sensitive assay system based on wild type carrot cells is 

essential. However, no reproducible increase in the number of somatic embryos was ever found after 

addition of EP3 endochitinases or LCOs to such cells (De Jong, Van Hengel and De Vries, 

unpublished results). In addition, our attempts to establish an assay system to demonstrate the effect 

of AGPs on embryogenic cell formation in wild type cultures proved cumbersome (Toonen et al, 

1997), not withstanding earlier successes reported by Kreuger and van Hoist (1993). The 

demonstration of the effect of chitin fragments and LCOs on cell division in tobacco protoplasts 

(Rohrig et al, 1995), prompted us to establish a biological assay based on protoplasts prepared from 

embryogenic carrot suspension cultures. The results reported here show that EP3 endochitinases 

increase the number of somatic embryos that develop from protoplasts obtained from wild type 
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embryogenic suspension cells. LCOs were however not effective on wild type protoplasts. Immature 

seed AGPs were observed to increase the number of embryos formed more than one hundred-fold. 

These results demonstrate that chitinases, but not LCOs, have a more general effect in somatic 

embryogenesis. It appears that the biological effect of chitinases is to fully activate the embryogenic 

cell forming potential of GlcN and GlcNAc containing AGPs in immature seeds. 

Results 

A protoplast-based assay for testing chitinaceous molecules on somatic 

embryogenesis 

In tsll, the addition of both the EP3 endochitinases as well as the LCO NodRlv-V(Ac, C18:4) 

resulted in an eight-fold increase in the number of somatic embryos produced (De Jong et al., 1993). 

Protoplasts derived from a wild type embryogenic suspension culture responded to addition of 

endochitinases, resulting in an aproximately ten-fold increase in the number of somatic embryos 

formed (Table 1). Addition of LCOs only increased the number of somatic embryos at the most about 

two-fold. This increase was not statistically significant according to the F-test on the average of the 

mean (Table 1). These results demonstrate that the effect of endochitinases on somatic embryogenesis 

is not restricted to tsl 1 cells, but can be extended to wild type protoplasts. In contrast, the activity of 

LCOs on somatic embryogenesis (De Jong et al., 1993) is apparently restricted to tsl 1 cells. 

Nevertheless we concluded that the wild type protoplast assay system was useful to further study the 

biological significance of chitinases and molecules that contain endochitinase cleavage sites such as 

AGPs (chapter 4). 

Compound 

no additions 
EP3 

no additions 
LCOs 

Concentration 

(M) 

3 x 10-9 

10-11 
10-10 
10-9 
10-8 

Mean 

10.000 

10. of embryos 

protoplasts 

0.075 
0.78 

1.4 
2.1 
2.3 
2.4 
1.6 

per se 

0.04 
0.38 

0.11 
0.40 
0.22 

-
-

n 

4 
4 

5 
3 
2 
1 
1 

P values compared 

to no additions 

0.020 

0.471 
0.062 

Table 1. Effect of EP3 and LCOs on the number of somatic embryos formed from carrot protoplasts. 
The effect of addition of EP3 and LCOs is expressed as the number of globular-, heart- and torpedo stage embryos 
obtained per 10,000 protoplasts. The standard error of the mean (se) is included. The number of individual assays (n) was 
obtained in 4 independent experiments. P values less than 0.05 are regarded as significantly different from the untreated 
controls. 
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Immature seed AGPs promote somatic embryogenesis and can be activated by 

chitinases 

We next compared the effect of carrot immature seed derived AGPs on wild type cells and 

protoplasts. The results are shown in Table 2 and show that when immature carrot seed AGPs were 

added to an embryogenic suspension culture, no significant increase compared to unsupplemented 

controls could be observed (Table 2A). Addition of immature seed AGPs to protoplasts resulted in a 

clear increase in the number of somatic embryos formed (Table 2B). 

A 

B 

C 

Compound 

no additions 

17 DAP AGPs 

Compound 

no additions 

17 DAP AGPs 

medium AGPs (+2.4-D) 

medium AGPs (-2,4-D) 

no additions 

17 DAP AGPs 

17 DAP AGPs 

17 DAP AGPs 

Concentration 

2 ug / ml 

10 ug / ml 

Concentration 

0.3 ug / ml 

3.0 ug / ml 

30 ug / ml 

15 ug / ml 

15 u g / m l 

Treatment 

+ EP3 

EP3 preincubated 

Mean no. of embryos 

10.000 

per 

suspension cells 

17.8 

21.6 

16.4 

Mean no. of embryos 

10.000 protoplasts 

0.7 

4.7 

31.4 

> 100 

40.2 

53.9 

1.1 

42 

5.5 

68 

per 

se 

2.62 

2.62 

1.65 

se 

0.7 

3.5 

13 

nd 

_ 
-

0.1 

0.5 

2.5 

n 

2 

2 

2 

n 

2 

2 

2 

2 

1 

1 

2 

2 

1 

8 

P values compared 

to no additions 

0.811 

0.781 

P values compared 

to no additions 

0.131 

0.016 

nd 

_ 
-

0.000 

0.000 

P value compared 

to 17 DAP AGP 

0.030 

Table 2. A. Effect of AGPs on the number of somatic embryos formed from suspension cells. B. Effect of AGPs on 
the number of somatic embryos formed from protoplasts. C. Effect of EP3 endochitinase pretreatment of immature seed 
AGPs. For 2C, the concentration of AGPs used was 15 |Xg / ml and the concentration of chitinases used was 200 ng / 
ml. The effect of addition of AGPs is expressed as the number of globular-, heart- and torpedo stage embryos obtained 
per 10,000 suspension cells or per 10,000 protoplasts. The standard error of the mean (se) is included. The number of 
individual assays (n) was obtained in 2 independent experiments. P values less than 0.05 are regarded as significantly 
different from the untreated controls (nd = not determined). 

Figure 1 shows a representative example of the effect of addition of AGPs to protoplasts. Whereas 

AGP concentrations between 0.3 and 30 |_ig / ml were all capable of increasing the number of somatic 

embryos, this effect is clearly dose dependent. In comparing the results obtained with intact 

suspension cells and protoplasts derived from them, it is important to note that in untreated controls 

the number of somatic embryos obtained with protoplasts is 10 to 20-fold lower than with intact 
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suspension cells. This suggests that part of the effect of AGPs on protoplasts is the restoration of 

embryogenic potential, that was lost by removal of the cell walls (Table 2, compare A and B). At 

higher AGP concentrations protoplasts could produce significantly more embryos than the cells from 

which they were derived. Another source for AGPs is the conditioned medium of suspension 

cultures. Medium AGPs of an embryogenic culture grown in the presence or absence of 2,4-D were 

isolated and pectinase treated as described before (chapter 4). Addition of these medium AGPs to 

carrot protoplasts of the same cell line resulted in an increase in the number of somatic embryos as 

compared to controls (Table 2B). The results show that protoplast-derived somatic embryogenesis 

can be promoted by AGPs from the conditioned medium of suspension cells as well as by AGPs 

from immature carrot seeds. 

0 ug/ml 0.3 .ug/ml 3 |.ig/ml 30 jig/ml 

/ • / ;** 5??"" •"%. 0'' 

i ^0*g§' M 

Figure 1. Petri dishes containing somatic embryos obtained after addition of immature carrot seed AGPs to freshly 
isolated carrot protoplasts. 
AGPs were added in three different concentrations (0.3, 3.0 and 30 Jig / ml), while no AGPs were added to controls. 
After the formation of heart- and torpedo stage embryos, the plant material was tranferred to fresh B5 medium without 
mannitol for further embryo development into plantlets. (Duplicates of one single experiment are shown) 

In the previous chapter it was shown that AGPs isolated from immature carrot seeds contain a 

cleavage site for EP3 endochitinases. It was therefore of interest to determine the possible biological 

significance of such AGP cleavage on somatic embryo formation. A mixture of immature seed AGPs 

and EP3 endochitinases was added to protoplasts. Surprisingly, the number of embryos that 

developed from these protoplasts was greatly reduced in comparison to the number of embryos that 

developed after addition of AGPs alone (Table 2C). It appeared that the presence of the chitinase 

completely counteracted the promoting effect of the immature seed AGP preparation. This result 

suggested that cleavage of GlcN or GlcNAc-containing oligosaccharide side chains of AGPs, by EP3 

endochitinases, inactivates the AGPs. 

To determine that this inactivation was due to a structural alteration in the AGP molecule, AGPs were 

preincubated with EP3 endochitinase for 16 hrs and re-isolated from this mixture by Yariv 
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precipitation. This procedure removes chitinases (as determined by immuno dot blot analysis) and 

allows to recover the AGPs. Upon addition of chitinase-treated and then reisolated AGPs to 

protoplasts it appeared that the promotive effect of the AGPs on somatic embryogenesis was not only 

completely restored, but about 50% more somatic embryos were produced in comparison to non 

chitinase treated but Yariv-reisolated AGPs (Table 2C). Based on these results, we conclude that 

endochitinase treatment renders AGPs more effective in promoting somatic embryogenesis, but 

simultaneously a small inhibiting compound, presumably containing GlcN or GlcNAc, that must be 

removed before the increased promoting effect of the AGPs becomes apparent. 

GlcNAc residues in AGPs are terminally located on the carbohydrate side chains 

Endochitinases require at least three consecutive Bl-4 N-acetylglucosamines for hydrolytic activity. It 

was of interest to compare the effect of EP3 endochitinases on immature seed AGPs with that of an 

exochitinase from jack bean that has been described as a B-N-acetylhexosaminidase. That enzyme 

removes at pH 5.5 terminal GlcNAc residues that are pi-2,3,4 or 6-R linked, whereas at pH 3.5-4.0 

terminal GalNAc is preferentially removed (Li and Li, 1970). Immature seed AGPs treated at pH 5.5 

with the G-N-acetylhexosaminidase and then reisolated were more effective than endochitinase treated 

AGPs (Table 3A). This suggests that a strech of at least three 13 (1-4) linked GlcNAc residues is 

located terminally in 17 DAP AGPs and is not internally embedded in an oligosaccharide side chain. 

Pre-incubation of AGPs with a combination of EP3 endochitinases and N-acetylhexosaminidase did 

not further increase the number of somatic embryos (Table 3A), suggesting that the enzymatic 

activation of immature seed AGPs is complete and involves removal of at least two consecutive, 

terminally located GlcNAc residues. The results obtained with B-N-acetylhexosaminidase suggest that 

GlcNAc rather than GlcN residues are involved. 

To determine whether removal of terminal GlcNAc residues has consequences for the structure of 

AGPs, native crossed electrophoresis was applied. The mobility of AGPs in agarose gels is 

determined by both the molecular charge and size of the AGP molecules. Crossed electrophoresis 

results in a pattern of Yariv-precipitated AGPs in which peaks with specific Rf-values can be 

observed. It is not clear whether the peaks contain single molecules or aggregates of AGPs that 

consist of different or similar molecules. Figure 2A shows that immature 21 DAP seed AGPs run as a 

single broad peak. Incubation of these AGPs with N-acetylhexosaminidase resulted in the appearance 

of several extra peaks besides the observed broad peak (Fig 2B). Incubation of AGPs with EP3 

endochitinases also resulted in some changes (Fig 2D) in comparison to untreated AGPs (Fig 2C), 

but they were minor changes in comparison to the changes after N-acetylhexosaminidase treatment. 

The difference between the endochitinase and the N-acetylhexosaminidase treated AGPs might be 

explained by the fact that endochitinase activity requires at least three consecutive GlcNAc residues, 

and will always yield AGPs that still contain terminal single or double GlcNAc residues. Such 
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Compound 

no additions 

17DAPAGPs 
17 DAP AGPs 
17 DAP AGPs 
17 DAP AGPs 

Compound 

17 DAP AGPs BaOH treated 

17 DAP AGPs +exoA, endoA, endoG 

23 DAP AGPs added after 1 day 
23 DAP AGPs added after 2 days 
23 DAP AGPs added after 3 days 

Gum Arabic AGPs 
4 DAP AGPs 
11 DAP AGPs 
23 DAP AGPs 

17 DAP endosperm AGPs 

Preincubated with 

EP3 
HexNAc-ase 

EP3 + HexNAc-ase 

Promoting efficiency 

1 

38 
61 
83 
81 

Promoting efficiency 

36 

2 

0.83 
2 
1 

3.1 
2.5 
4.2 
18 

153 

Table 3. A. Effect of EP3 endochitinase treatment and G-N-acetylhexosaminidase (HexNAc-ase) treatment of AGPs on 
promoting the efficiency of somatic embryogenesis from protoplasts. B. Effects of BaOH treatment of AGPs, 
endogalactosidase, endo and exoarabinofuranosidase (endoG, endoA and exoA respectively) treatment of AGPs, AGPs 
added at different time points after protoplast preparation, and of AGPs derived from seeds at different stages of 
development on promoting the efficiency of somatic embryogenesis from protoplasts. Due to limited availability of 
AGPs the results in this table were obtained in single experiments, which did not allow statistical analysis. The 
promoting efficiency is expressed as the number of somatic embryos formed in dishes containing 100,000 protoplasts 
with AGPs, divided by the number of somatic embryos formed in dishes without AGPs. In all experiments the 
concentration of AGPs used was 15 |lg / ml. Enzyme treated AGPs were re-isolated after incubation with 
3 x 10"9 M EP3 endochitinase or 0.1 M HexNAc-ase. 

terminal GlcNAc residues can still be cleaved off by N-acetylhexosaminidase. It is not clear what the 

observed additional peaks with altered mobility represent. A possible explanation might be that 

spontaneous self-assembly of AGPs into larger complexes requires GlcNAc mediated interactions. 

Such self-assembly would then only be partionally affected by endochitinase activity. 

Somatic embryo promoting activity of AGPs is dependent on the carbohydrate part 

of the molecules 

To determine whether both the protein and the carbohydrate part of AGPs are important for full 

biological activity, barium hydroxide hydrolysis was employed. This cleaves carbohydrate-

polypeptide linkages (Lamport and Miller, 1971) and releases O-glycans. Barium hydroxide 
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11 DAPAGPs 21 DAPAGPs + hex-as. 

21 DAPAGPs 21 DAPAGPs+ EP3 

Figure 2. Crossed electrophoresis pattern of enzymatically treated AGPs isolated from carrot seeds 21 DAP. 
Samples of 15 |ig (EP3 endochitinase treated) or 10 Ug (B-N-acetylhexosaminidase treated) AGPs were subjected to 
electrophoresis directly (A, C), or after incubation with B-N-acetylhexosaminidase (B) or EP3 endochitinases (D). 
(I indicates where the AGPs have been loaded on the gel; [] indicates the position of bromophenol blue after the first 
electrophoresis, vertical lines indicate the position of peaks in the crossed electrophoresis pattern). 

hydrolysis of developing seed AGPs prior to addition to carrot protoplasts did not affect the relative 

number of somatic embryos that are formed when compared to untreated AGPs (Table 3B). This 

result suggests that the embryo promoting effect of AGPs is present in its carbohydrate constituents. 

It also shows that the embryo promoting effect is unlikely to be due to proteins possibly 

coprecipitated with Yariv, given the conditions of pH > 10 for 6 hrs at 100°C in the hydrolysis. 

Treatment of AGPs with fungal endogalactosidase and exo- and endoarabinofuranosidase resulted in 

degradation of AGPs into several discrete oligosaccharides (chapter 4). The resulting mixture was not 

able to increase the number of embryos from protoplasts (Table 3B), suggesting that intact 

arabinogalactan carbohydrate moieties are essential for the somatic embryo promoting activity of 

AGPs. 

In all assays described sofar, immature seed AGPs were added shortly after protoplast preparation 

and before cell wall regeneration was complete. To determine when AGPs were most effective, AGPs 

were added 1, 2 or 3 days after protoplast isolation. As a result, the relative numbers of somatic 

embryos formed were the same as in untreated controls (Table 3B). Within 24 hrs protoplasts have 

synthesised a new cell wall, as visualized by calcofluor white staining (data not shown). This 
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suggests that the AGPs are most effective before cell wall regeneration is complete. These results are 

also in line with the reported lack of embryo promoting activity on intact suspension cells (Table 1). 

To get some insight into the specificity of the effects of AGPs on protoplast-derived somatic 

embryos, AGPs were isolated from gum arabic and from immature carrot seeds at 4, 11, 17 and 23 

days after pollination (DAP). Table 3 shows that gum arabic AGPs were not active, demonstrating 

that there is a certain specificity in AGP-mediated somatic embryo formation. The numbers of 

embryos that are formed clearly show that immature seed AGPs become effective in somatic 

embryogenesis after about 11 DAP. In carrot seeds of this age the zygotic embryos are in the globular 

stage and are completely surrounded by cellularised endosperm (Gray et al., 1984). Yariv staining of 

hand-sectioned carrot seeds 21 DAP has shown that the cellularised endosperm contains AGPs. Most 

AGPs were found in the extracellular matrix of endosperm cells and in the cavity in which the embryo 

is located (chapter 4). AGPs isolated from manually dissected endosperms of seeds at 17 DAP were 

found to be highly active (Table 3B). This suggests that immature seed AGPs that are active in 

somatic embryogenesis are specifically located in the developing endosperm. 

Early effects of immature seed AGPs on protoplasts 

Sofar we have only addressed the effects of AGPs on embryogenesis in quantitative terms, which 

offers little insight into the possible mechanisms underlying these effects. Therefore, we employed 

cell tracking of protoplast-derived cells to determine whether there was a morphologically 

recognizable effect of the added AGPs. Cell tracking involves analysis of daily repeated video 

recordings made of the same area of a dish containing immobilised carrot protoplasts with and 

without added AGPs. Protoplasts were cultured both in the presence and in the absence of 2,4-D to 

compare the effect of this synthetic plant growth regulator with the effect of AGPs. 

When following the development of a population of protoplasts by cell tracking, four different 

possible developmental patterns can be distinguished (Guzzo et al., in prep.). From an initially fairly 

uniform population of protoplast-derived cells, cells can 1) divide without expanding to much more 

then their original size, resulting in small compact clusters, 2) divide and simultaneously enlarge, 

resulting in loosely attached clusters of vacuolated cells, 3) enlarge, but not divide, resulting in large 

vacuolated cells, or 4) neither divide, nor enlarge and remain unchanged in morphology during the 

period of analysis. In Figure 3 examples of these four patterns are shown. Somatic embryos only 

derive from cells that follow pattern 1 (Guzzo et al., in prep.). In Table 4 the results of the cell 

tracking experiments on protoplasts, obtained from an embryogenic suspension culture, are 

summarized. Samples of protoplasts were immobilised and cultured with and without 2,4-D and / or 

23 DAP AGPs. The results are presented as a percentage of the total number of protoplasts that 

follow either of the four possible developmental patterns as shown in Figure 3. For each treatment 

more than 600 individual protoplasts were recorded. The particular pattern followed was determined 
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Figure 3. Development of immobilised carrot protoplasts. 
Development of individual carrot protoplasts was analysed by means of video cell tracking. After comparision of images 
as obtained after 0, 3 and 6 days, four patterns of development were identified 1) cells that only divide and do not enlarge 
2) cells that only enlarge 3) cells that both enlarge and divide, and 4) cells that do not divide, nor enlarge. Cells 
representing either of the developmental patterns are indicated by arrows. 
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from the video tapes at day 6 to ensure that all cells that could have responded, had indeed done so. 

Without any addition about three quarters of the protoplasts remained unchanged (pattern 4). About 

five percent of the protoplasts followed pattern 1 (division without elongation) and the same 

percentage of protoplasts was found to follow pattern 3 (elongation). The remainder, about 13%, 

followed pattern 2 (division and elongation). The addition of 2,4-D resulted in a significant decrease 

in the number of cells following pattern 4. These now responding cells entered in either of the other 

patterns of development with a slight preferential increase for cells that elongate. Addition of AGPs 

had an effect comparable to that of 2,4-D, since the same decrease in cells following pattern 4 was 

seen, resulting in a redistribution of cells over the other three patterns of development. This decrease 

of cells following pattern 4 as a result of addition of AGPs was statistically relevant (P = 0.04). A 

subtle difference was noted in that after addition of AGPs more cells entered into pattern 1, 

suggesting that AGPs are more effective in triggering cells into a rapid cell division mode, than they 

are in promoting cell elongation. The increase in the number of cells following pattern 1 was not 

statistically significant (P = 0.06). Addition of 2,4-D and AGPs gave a synergistic effect on the 

reduction of cells following pattern 4. In following the fate of the cells that had shifted to the other 

three patterns of development,synergism between 2,4-D and AGPs could only be observed for cells 

entering into the rapid division mode without elongation (pattern 1). No synergism was seen for cells 

following the developmental patterns 2 or 3. The increase of cells in pattern 1 as a result of addition of 

AGPs and 2,4-D, in comparison to addition of 2,4-D only was statistically relevant (P = 0.04). 

Compound 

no additions 

2,4-D 

23 DAP AGPs 

2,4-D + 23 DAP AGPs 

1 

5.0 

7.8 

10.6 

14.9 

(P) 

0.12 

0.06 

0.04 a 

developmental 

2 

13.1 

17.1 

15.8 

17.5 

(P) 

0.04 

0.14 

0.91 a 

patterns 

3 

5.0 

10.4 

8.8 

10.3 

(P) 

0.04 

0.11 

0.99 a 

4 

76.9 

64.7 

64.8 

57.4 

(P) 

0.04 

0.04 

0.16 a 

Table 4. The effect of AGPs on the development of individual carrot protoplasts as analysed by video cell tracking. 
The development of 1600 protoplasts of the embryogenic carrot cell line Bj and 800 protoplasts from the embryogenic 
carrot cell line Bg was analysed. The protoplasts were categorised into 4 different developmental pathways: 1. dividing 
protoplasts; 2. dividing and enlarging protoplasts; 3. enlarging protoplasts; 4. protoplasts that do not divide nor 
enlarge. Protoplasts were cultured in the presence or absence of 2,4-D with or without AGPs that were isolated from 
immature carrot seeds, harvested 23 DAP. Protoplasts that follow either of the 4 developmental pathways are represented 
as a percentage of the total number of analysed protoplasts of one treatment. The overall effect of addition of 2,4-D or 
23 DAP AGPs was assessed by means of F tests using the absolute numbers of embryos formed after addition of 2,4-D 
or AGPs, and the absolute number of embryos formed in controls without any additions. 
a The overall effect of addition of AGPs in cultures containing 2,4-D was compared with control cultures containing 
solely 2,4-D. (P values less than 0.05 were regarded as indicative for significant differences). 

87 



Chapter 5 

We conclude that the biological effect of AGPs on protoplasts is to activate cells to enter into division 

and to a lesser extent to promote elongation. When AGPs are added together with 2,4-D they act 

synergistically on promoting the number of cells that enter into a pattern of division without 

enlargement (pattern 1). However, the increase in cells in pattern 1 is only about 2-3 fold, while 23 

DAP AGPs alone can increase embryogenesis 25 fold. This implies that the observed shifts in 

developmental patterns in the entire population may not be directly causal to the AGP effect on 

embryogenesis. 

Discussion 

In this work we have demonstrated that addition of endochitinases secreted into the conditioned 

medium of embryogenic carrot suspension cells increases the number of somatic embryos formed 

from wild type carrot protoplasts. This finding implies that endochitinases have a general role in plant 

embryogenesis and one that is not restricted to the tsll line in which the chitinase was first identified. 

Secondly we have presented evidence that GlcNAc containing AGPs are likely target molecules for 

cleavage by endochitinases and that such a cleavage is biologically meaningful and results in 

"activated" AGPs. Thus, endochitinase-activated AGPs appear important molecules for conferring 

embryogenic capacity to protoplasts. After cell wall regeneration, or in the presence of intact cell walls 

the effect of both the chitinases and AGPs was not apparent, suggesting a requirement for chitinases 

and AGPs very early in embryogenesis. Thirdly we have shown that an intact AGP protein core does 

not seem to be essential for the biological effect of AGPs on embryogenesis, while perturbation of the 

structure of the arabinogalactan moieties results in loss of embryo-promoting activity of the AGPs. 

Finally, we have shown that addition of immature seed AGPs to carrot protoplasts triggers cells that 

are derived from these protoplasts to divide, while retaining a small cell size. 

Biological role of AGPs in plant embryogenesis 

AGPs are ubiquitous plant proteins. They are present in plasma membranes and cell walls, and are 

found in vast amounts as secreted molecules in conditioned media of suspension cultures (Nothnagel, 

1997). Several approaches have been used to shed light on the biological role of AGPs. One of these 

was by the use of specific monoclonal antibodies. One of the antibodies that recognizes AGPs, JIM4, 

was found to label two segments of the vascular cylinder in carrot seedling roots (Knox et al., 1989). 

In carrot suspension cultures JIM4 was found to label a few cells at the surface of proembryogenic 

masses, and during development of somatic embryos JIM4 epitopes remained present at the surface 

of embryos. In the torpedo stage the epitope appeared in certain cells of the provascular tissue (Stacey 
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et al., 1990). AGP epitopes that are recognized by monoclonal antibodies such as JIM4 show a 

temporal and spatial localisation pattern that correlates with for instance epidermal differentiation and 

vascular differentiation. Based upon this finding, a function for AGPs in determining cell identity was 

postulated (Knox et al., 1991; Knox et al., 1989). However, formal experimental evidence that AGPs 

indeed have a function in cell identity is still lacking. A second approach that is used to study the role 

of AGPs is based on the binding of Yariv phenylglycosides to AGPs. Applying Yariv to suspension 

cultured rose cells resulted in an inhibition of culture growth that was based on supression of cell 

division. Transfer to medium without Yariv resulted in resumed cell division and culture growth 

(Serpe and Nothnagel, 1994). Also cell expansion can be perturbed by the addition of Yariv reagent 

because Arabidopsis roots grown in the presence of this compound were found to have only one third 

of the length of roots grown without Yariv. The reduction of length resulted from cells in the 

elongation zone that were found to be bulbous rather than elongated (Willats and Knox, 1996). A 

third approach to study the effect of AGPs is the direct addition of these molecules to suspension 

cultures. The addition of mature carrot seed AGPs to a non-embryogenic cell line has been shown to 

be capable of reinitiating embryogenic cell formation (Kreuger and Van Hoist, 1993). This resulted in 

the presence of clusters of small cytoplasmic rapidly dividing cells, in line with the opposite effects 

reported for the addition of Yariv reagent to rose cells (Serpe and Nothnagel, 1994). A positive effect 

on embryogenic cell formation could also result from the removal of a class of AGPs inhibitory to 

embryogenic cell formation (Kreuger and Van Hoist, 1995). In carrot suspension cultures removal of 

a subset of non-embryogenic cells resulted in a reduction of embryogenic potential. This reduction 

could be overcome by the addition of carrot mature seed AGPs, suggesting that in non-fractionated 

cultures, embryogenesis promoting AGPs are produced by this subset of non-embryogenic cells 

(Toonen et al., 1997). Part of the promoting effect of AGPs on embryogenic cell formation may 

therefore reflect a cell-cell communication system in cultured cells. Recently, compounds were 

isolated from carrot cell conditioned medium, based on the ability to bind to JIM8, a monoclonal 

antibody that recognizes AGP epitopes. Addition of these JIM8 epitope containing compounds, to a 

JIM8(-) cell population, that was found to be unable to form somatic embryos, allowed the formation 

of somatic embryos (McCabe et al., 1997). Therefore, a role for the JIM8 epitope containing AGPs in 

cell-cell communication during somatic embryogenesis was proposed. 

We have shown here that addition of unfractionated AGPs, derived from immature carrot seeds, to 

carrot protoplasts results in several effects. There is a marked decrease in the percentage of cells that 

do not divide nor elongate in basal medium, suggesting a role in reactivating "resting" cells. There is a 

clear and concomittant increase in cell division, which is fully in line with the decrease of cell division 

as a result of addition of Yariv (Serpe and Nothnagel, 1994). Addition of seed AGPs did not result in 

a marked increase in the number of cells that elongate. However, the effects of Yariv reagent on 

preventing elongation were observed using intact seedlings (Willats and Knox, 1996), a system 

completely different from that used here. 
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The most important effect of AGPs was that in the absence of the cell wall, addition of AGPs 

promoted the formation of somatic embryos. Because removal of the cell wall resulted in a much 

lowered embryogenic potential, this might indicate that particular sets of AGPs are required for cells 

in order to remain embryogenic. AGP epitopes rapidly reappear on the surface of protoplasts after 

enzymic digestion of cell surface polysaccharides (Pennell et al., 1989). The accumulation of 

extracellular polymers, including AGPs, was found to parallel the accumulation of cell wall material 

on protoplasts (Mock et al., 1990). Addition of high concentrations of immature seed AGPs to carrot 

protoplasts could not only restore the loss in embryogenic potential, but increased it as compared to 

intact suspension cells. This effect was dependent upon the source of AGPs used and resided in the 

carbohydrate moieties of the AGPs. Our results are therefore in line with the restoration of 

embryogenic potential that was observed after addition of AGPs or JIM8 reactive compounds to 

fractionated suspension cultures (McCabe et al., 1997; Toonen et al., 1997). However, an important 

difference is that we employed protoplasts, while all other studies employed intact cells. 

Thus, the evidence obtained sofar suggests a role for AGPs in the control of cell division and in 

changing the embryogenic potential of suspension cells. Possibly these two different effects can be 

attributed to different AGPs that are present in immature carrot seeds. 

Possible modes of action of AGPs 

Two main possibilities exist concerning the mode of action of AGPs in cell division or in changing 

embryogenic potential. The first is that the entire molecule performs a structural role, while the second 

is that the entire AGP or an oligosaccharide derived from it performs a signalling function. The AGPs 

that can promote somatic embryogenesis almost certainly contain a terminal array of GlcNAc 

residues, since enzymatic removal of GlcNAc residues by endochitinases or an exohexosaminidase 

results in a higher biological activity of the AGPs. We also showed that N-acetylhexosaminidase 

treatment results in the appearance of several new peaks as observed after crossed electrophoresis, 

suggesting that removal of terminal GlcNAc causes a dissociation of AGP complexes. AGPs tend to 

self-associate into aggregates as has been observed by electron microscopical imaging of carrot and 

tobacco AGPs (Baldwin et al., 1993; Cheung et al., 1995). The use of three different specimen 

preparations and a wide variety of controls supports that on the images as obtained by Baldwin et al. 

(1993) AGPs are observed in their native state. Aggregation of AGPs might be caused by oxidative 

cross linking, which was demonstrated for sugar beet plasma membrane AGPs (Kjellbom et al., 

1997). AGPs are proteoglycans and an indication that proteoglycan-to-proteoglycan binding can be 

based on self-recognition comes from a study on cell surface proteoglycans of marine sponges 

(Popescu and Misevic, 1997), showing that proteoglycans that were isolated from three different 

species only showed homophilic recognition. The binding of these proteoglycans required a 

physiological concentration of Ca2+. Baldwin et al. (1993) have presented indications that the 
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interaction between AGPs and pectins might be Ca2+ dependent. This might indicate that also the 

binding of AGPs to pectins is based on specific recognition. The observed aggregation of AGPs in 

large complexes might also be based on recognition of homologous or heterologous AGPs. Whether 

the observed increase in somatic embryo promoting activity is due to the observed dissociation of 

AGP complexes is not known. 

Apart from the structural role for AGPs as described above, they also have been proposed to function 

as locked up signalling molecules (Bacic et al., 1988). We have shown that AGPs can be activated 

after chitinase treatment indicating that AGPs themselves are signalling molecules rather than small 

molecules derived from AGPs. EP3 endochitinases can partially restore the embryogenic potential in 

wild type suspension cell protoplasts. It is likely, but unproven, that this effect is mediated through 

endogeneous AGPs present, in a similar way as outlined above. Alternatively it could be that the 

interaction between endochitinase and GlcNAc containing AGPs as putative substrates results in the 

release of a chitin-like signalling molecule, representing an oligosaccharide-based way of signalling 

between cells. The effects of AGP addition could be observed at concentrations that did not exceed 

nanomolar ranges, which seems to be in line with a signalling function for AGPs. Such an 

oligosaccharide-based way of signalling has been shown to be important for the elicitation of plant 

defence responces, since structural components of the cell walls of pathogenic fungi, like chitin 

oligosaccharides and B-glucan are released by plant synthesised chitinases and glucanases and 

enhance the plant's defence response. In addition to this the pathogens secrete enzymes that promote 

the release of plant cell wall polysaccharide fragments like oligogalacturonides that trigger plant 

defence responces (Cote and Hahn, 1994; Sharp et al., 1984). 

Our experiments show that the chitinase-mediated "activation" of AGPs may also produce a small 

dialyzable compound that could represent such a small oligosaccharide signal molecule. Fractionation 

of chitinase treated and untreated immature seed AGPs should shed more light on the exact nature of 

the active component and on the process of chitinase-mediated activation. This is also essential to be 

able to attribute the observed effects of AGPs on cell division and formation to the same ot to different 

molecules. 

A role for AGPs in zygotic embryogenesis? 

The AGP-mediated promotion of somatic embryogenesis might also provide more insight in the 

processes that occur during zygotic embryogenesis. Especially since the AGPs that were shown to be 

very effective in the protoplast bioassay were derived from carrot endosperm, while the EP3 

endochitinases that can activate the immature seed AGPs are also present in the endosperm, though 

they are produced by the maternal integuments (chapter 2). This coincidence in localisation suggests 

that EP3 endochitinases may provide a way of signalling between maternal tissues, endosperm and 

embryo. The result of this signalling most likely resides in the characteristics and the function of 
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AGPs. Therefore, changing AGPs by means of hydrolytic enzymes like EP3 might affect plant 

development by changing the identity of plant cells or by generating signal molecules. 

We suggest that the EP3 endochitinase-mediated release of oligosaccharides from endosperm AGPs, 

or alternatively, the dissociation of AGP complexes in the endosperm might have an effect on the cells 

of the developing embryo, that are in the immediate vicinity of the endosperm. An intriguing question 

that remains to be solved is the difference in timing, since "active" AGPs and EP3 endochitinases are 

present around globular stage zygotic embryos, while in the protoplast assay they promote somatic 

embryogenesis mainly by affecting single protoplasts. Regarding the effect of AGPs on the formation 

of somatic embryos we propose that the biological effect of (activated) GlcNAc containing AGPs is to 

maintain the "embryo identity" of both the somatic and zygotic embryo. 

Materials and methods 

Plant material plant and cell culture 

Carrot (Daucus carota L. cv. Trophy) suspension cultures were initiated and maintained as described 

before (De Vries et al., 1988). Protoplasts were obtained using a 3 days old suspension culture. The 

cells of the suspension culture were pelleted and overnight incubated in 1% macerozyme (Yakult 

Biochemicals Co. Ltd., Tokyo, Japan), 2% cellulase (Yakult Biochemicals Co. Ltd., Tokyo, Japan), 

50 mM citrate-HAc pH 4.8. Protoplasts were sieved through a 50 u.m nylon mesh and washed three 

times in 100 mM CaCl2; 0.3 M mannitol. After 2 hrs the protoplasts were washed once more and 

transferred to B5 medium to initiate somatic embryogenesis. 

Arabidopsis thaliana L. (cv. Landsberg erecta) immature siliques were used for the isolation of 

AGPs. 

Barium hydroxide hydrolysis 

Aliquots of 500 u.g AGPs were incubated in 1 ml 0.1 M Barium hydroxide for 6 hrs at lOO^C. The 

hydrolysate was neutralised by adding 1 N H2SO4 until the pH was stable at 7.0. After 15 min 

centrifugation at maximum speed the precipitated BaS04 was omitted and the supernatant containing 

the hydrolysed AGPs was recovered. Hydrolysed AGPs were used in the bioassay in concentrations 

that were based on the amout of AGPs from which the hydrolysate was derived. Controls in which 

AGPs were omitted were treated in the same way. 
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Bioassay 

AGPs were isolated as decribed by Kreuger and van Hoist (1993) from carrot cell suspension 

cultures 7 days after subculturing of 2 ml packed cell volume in 50 ml B5 medium with or without 2 

|0.M 2,4-D, or from immature carrot seeds. AGPs were pectinase treated as described before (chapter 

4). EP3 endochitinases and the Arabidopsis homologue AtEP3 (Passarinho et al., to be published) 

were isolated as described before (Kragh et al., 1996), or produced in the Baculovirus expression 

system (chapter 3). 

Aliquots of 30 u.g of AGPs and or 400 ng EP3 were added to 100,000 freshly isolated carrot 

protoplasts in 2 ml B5 medium containing 0.3 M mannitol. LCOs were added (De Jong et al., 1993) 

to the same amount of protoplasts. Alternatively 0.1 units N-acetylhexosaminidase (Oxford 

Glycosystems, Oxford, UK) was used. Enzyme treatment of AGPs was performed by incubation of 

100 Ug AGP and 200 ng EP3 and or 0.1 units N-acetylhexosaminidase in 1 ml 20 mM citrate buffer 

pH 5.5 for 16 hrs, followed by a reisolation of AGPs. In the controls the enzymes were replaced by 

water. Aliquots of 30 ng of reisolated AGPs were added to 100,000 protoplast in 2 ml medium. 

Statistical analysis was done by means of F-tests on the average of the mean. The overall effect of a 

treatment was regarded as significantly different when calculated P values < 0.05. 

Crossed electrophoresis 

Aliquots of 15 Jig AGPs, isolated from carrot seeds 21 DAP, were incubated for 16 hrs with 0.05 

units N-acetylhexosaminidase (Oxford Glycosystems, Oxford, UK) or with 500 ng EP3 in 20 mM 

citrate buffer pH 5.5.Crossed electrophoresis was performed according to Van Hoist and Clarke 

(1986). 

Cell tracking 

Immobilisation of protoplasts of the cell lines Bj and Bg, and subsequent video cell tracking was 

performed as described before for single cells (Toonen and De Vries, 1997), with the difference that 

the medium used contained 0.3 M mannitol. 2,4-D was added to the phytagel top layer to give a final 

concentration of 2 ̂ M. AGPs in 1 ml B5 medium were poured on top of the phytagel layers to give a 

final concentration of 13 ]ig I ml. Statistical analysis was done by using the SAS System based upon 

a generalised linear model (Aitkin et al., 1991). The overall effect of treatment was assessed by means 

of F tests and significant differences expressed with P values less than 0.05. 
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Chapter 6 

The research described in this thesis addressed the question what the role of endochitinases is during 

somatic embryogenesis. This required the identification of plant-produced compounds that can be 

cleaved by endochitinases. We have shown that certain arabinogalactan proteins (AGPs) contain 

endochitinase cleavage sites. In addition, we found that both EP3 endochitinases and AGPs that are 

present in immature carrot seeds, or are secreted in the medium of suspension cultured cells can 

promote the formation of protoplast-derived somatic embryos. In this chapter the role of N-

acetylglucosamine (GlcNAc) containing molecules in plant and animal development will be discussed. 

In addition, their possible relation with GlcNAc containing AGP species in plant embryogenesis will 

be summarized. 

Chitin and plant development 

Chitin consists of 6-(l-4) linked GlcNAc residues that form long, straight, insoluble polymers. Chitin 

is found in the exoskeletons of insects and Crustacea and is one of the most abundant biopolymers on 

earth. In Drosophila melanogaster it was found that chitin not only occurs as polysaccharides, but can 

also occur as a polysaccharide chain attached to proteins, most probably via O-glycosidic bonds 

(Kramerov et al., 1986). These glycoproteins were shown to be completely composed of, or largely 

enriched with, GlcNAc residues that are partially O-sulfated. Whether these "chitin-proteins" play a 

structural role, or are involved in morphogenesis was not determined. Indications that molecules 

containing chitin fragments not only function in protective exoskeletons come from several reports 

that were published during the last decade. These reports describe molecules that consist of, or 

contain short arrays of GlcNAc residues and appear to function primarily in developmental processes. 

One family of such molecules consists of Nod factors that were identified as molecules containing a 

chitin fragment with an N-linked fatty acid moiety (Lerouge et al., 1990). These Nod factors are 

secreted by Rhizobia bacteria as signalling molecules that can induce nodule organogenesis in the 

cortex of the roots of leguminous plants. Regarding their chemical composition, Nod factors are 

referred to as lipochitooligosaccharides (LCOs). The external addition of LCOs promotes cell division 

in tobacco protoplasts. Interestingly this effect was also observed when instead of LCOs chitin 

tetraoses were used (Rbhrig et al., 1995). This might point towards a role for chitin fragments in cell 

division, which is supported by the recent observation that chitin fragments can trigger cell division 

when they are introduced in root cells by means of ballistic microtargetting (Schlaman et al., 1997). 

The intracellular mode of action of such chitin fragments remains unclear. Identification of possible 

endogenous intracellular compounds that contain GlcNAc oligosaccharides might provide clues on the 

mode of regulation of cell division as influenced by chitin fragments. The observation that wheat 

germ agglutinin (WGA), a lectin that binds to GlcNAc and sialic acids, blocks nucleo-cytoplasmic 

transport (Finlay et al., 1987) has led to the identification of proteins of the nuclear pore complex that 

contain terminal oligosaccharides of more than five GlcNAc residues (Heese-Peck et al., 1995). 

96 



Concluding remarks 

Therefore we can speculate that chitin fragments may play a role in the assembly of nuclear pore 

complexes, or in transport of proteins through these nuclear pores. Therefore, chitin fragments may 

influence cell division indirectly by interfering with transport, over the nuclear matrix, of other 

compounds that interact directly with cell cycle regulators. 

Apart from promoting cell division, chitin fragments may also influence plant development in another 

way. An indication for a role of chitin-containing molecules in plant embryo development comes from 

the work of De Jong et al. (1993), who have shown that in the carrot cell variant tsll, that is blocked 

in the formation of somatic embryos at restrictive temperatures, the addition of bacterial LCOs can 

rescue somatic embryogenesis. Indications that chitin oligosaccharides, or compounds that contain 

arrays of GlcNAc are also important during animal embryogenesis can be deduced from the 

identification of the DG42 protein. The DG42 gene is transiently expressed between midblastula and 

neurulation stage in Xenopus, zebrafish and mouse embryogenesis, and found to be homologous to 

NodC, the Rhizobium chitin oligosaccharide synthase (Bulawa and Wasco, 1991; Semino et al., 

1996). Microinjection of antiserum raised against the Xenopus DG42 protein into fertilized eggs of 

zebrafish, leads to severe defects in trunk and tail development. The same effect was obtained after 

injection of the Rhizobium NodZ enzyme, that specifically fucosylates oligosaccharides that contain at 

least two GlcNAc residues at the reducing terminus (Bakkers et al., 1997). 

In conclusion, while high molecular weight polymers of GlcNAc serve as structural components in 

the exoskeleton of insects and Crustacea, compounds containing short arrays of GlcNAc are able to 

promote cell division and / or execute as yet unknown functions during early embryogenesis in 

animals and plants. 

Arabinogalactan proteins and development 

Arabinogalactan proteins are plant glycoproteins that contain a protein core, accounting for at most 

10% of the molecular weight. Attached to the protein core are large oligosaccharides that consist of 

chains of B-( l-3)-linked D-galactose residues with side chains of variable sugar components (Clarke 

et al., 1979). The carbohydrate content consists mainly of arabinose and galactose residues. Although 

the composition of AGPs is highly complex and no single AGP has been characterized to the extent 

that its complete chemical structure is known, studies on the structure of AGPs have revealed a large 

body of information on the core polypeptides or the carbohydrate moieties (for review see Nothnagel, 

1997). The introduction of monoclonal antibodies that recognize specific AGP epitopes has led to the 

observation that the presence of AGP epitopes is temporally regulated in a tissue-specific manner 

(Knox et al., 1991; Knox et al., 1989). The structural complexity of AGPs and the developmentally 

regulated expression of AGP epitopes are the main arguments that have led to the general hypothesis 

that AGPs function in plant development. A role for AGPs was suggested in plant reproductive 

development (Pennell et al., 1991), pattern formation in roots (Knox et al., 1991; Knox et al., 1989) 
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or maize coleoptiles (Schindler et al., 1995), and somatic embryogenesis (Pennell et al., 1992). Also 

several other functions have been suggested. Based on a variety of experimental systems AGPs have 

been implicated in cell division (Serpe and Nothnagel, 1994), cell expansion (Willats and Knox, 

1996) and cell death (Schindler et al., 1995). It is possible, but not proven that the effects of AGPs 

on these basic cellular functions underly their proposed role in plant developmental processes. In 

Chapter 5 we have presented another example of such a dual effect of AGPs through the addition of 

immature carrot seed AGPs to carrot protoplasts. This resulted in a reduction of protoplasts that 

neither divide nor elongate, and an increase in the number of protoplasts that divided without 

elongation. No clear effect on elongation was observed, so the main effect of AGPs on the entire 

population of protoplasts in our system appeared to be on the release of the cell cycle arrest. A second 

effect of AGPs, but now on a minority of the protoplasts, was seen in the form of a substantial 

increase in the number of protoplast-derived somatic embryos. Because the increase in the number of 

embryos was about 10-20 fold higher compared to the increase in the number of dividing cells, a 

direct relation between both effects is unlikely. Thus, as in the other systems described, the true 

cellular function of AGPs remains to be determined. Based on the numerical discrepancy observed 

between the effects of AGPs on promoting cell division and somatic embryogenesis, one possibility 

is that certain AGPs directly influence cell identity. 

Arabinogalactan proteins and cell identity 

In animal cells, carbohydrates are known to participate in cell-cell recognition. Evidence that cell 

surface carbohydrates are involved in cell-cell recognition has been obtained in several systems. A 

compelling example is the development of the nervous system, where the diversity and the selective 

spatial expression of cell surface carbohydrates seem to guide the formation of neural cicuits 

(reviewed by Jessell et al., 1990). 

The GlcNAc-specific lectin wheat germ agglutinin (WGA) can mask compounds on the muscle cell 

surface and thereby perturb the behaviour of growing neurites (Iglesias et al., 1996). This suggests 

that GlcNAc-bearing cell surface molecules have functional roles in the guidance of neurites. Thus, 

cell surface carbohydrates are involved in recognition of animal cells and can help to determine the 

identity of a cell. 

The temporal and spatial expression of AGP epitopes that are present on the cell surface, and the 

functions in plant development that have been proposed for AGPs, suggest that in plants the identity 

of cells or tissues might be reflected by the AGPs present in the cellular matrix (Nothnagel, 1997). If 

so, the production of AGPs that reflect cellular identity must be correlated to cell differentiation. This 

hypothesis is supported by the observation that MAC207 epitopes, that are present on a large number 

of AGPs, are lost from cells involved in sexual reproduction and are absent in early zygotic embryos, 

where the MAC207 epitope reappears after the embryos reach the heart stage (Pennell et al., 1989). 
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An almost inverse pattern was found using the JIM8 monoclonal antibody. In oil seed rape, AGPs 

containing JIM8 epitopes were localised in gametes, some cells in anthers and ovules, and in the early 

embryo (Pennell et al., 1991). Taken together, the presence of MAC207 and JIM8 epitopes 

demonstrates that the expression of certain AGP epitopes is tightly connected to flower development 

and suggests that AGPs might be involved in the regulation of differentiation. 

Assuming that AGPs are involved in determining cell identity and differentiation implies that the 

experimental removal of AGPs from the cell wall influences cellular identity and therefore might be 

considered as a part of a dedifferentiation process. 

Evidence that the presence of plant cell walls can influence cellular differentiation by altering the way 

in which a plant cell develops, comes from a study on the development of Fucus. In Fucus, after laser 

ablation of the rhizoid cell of the early embryo, contact between the wall of the rhizoid cell and thallus 

cells of the early Fucus embryo is required for rhizoid development. In the absence of the rhizoid cell 

wall, only thallus development occurs (Berger et al., 1994). Thus, cell wall material can change the 

developmental fate of cells in Fucus embryos. The causative component for this change in 

developmental fate has not been identified yet. The polar distribution of sulfated polysaccharides in 

the cell wall of Fucus zygotes suggests that carbohydrates may be involved in the observed change of 

developmental fate (Shaw and Quatrano, 1996). In chapter 5 we have shown that the removal of the 

cell wall of suspension cultured carrot cells prior to addition of AGPs is required for the AGP-

mediated promotion of somatic embryogenesis. Previously it was shown that one of the effects of cell 

wall degrading enzymes is to induce the presence of lectin binding sites on the surface of maize 

protoplasts (Sun et al., 1992). This may indicate that the lectins present on the surface of protoplasts 

can bind carbohydrates such as those present in AGPs. If AGPs indeed determine cell identity, the 

addition of immature carrot seed AGPs as presented in chapter 5 might change cell identity via 

binding of AGPs to lectins present on protoplasts. Based on their binding by Yariv phenylglucosides, 

that contain glucosyl, galactosyl, xylosyl, cellobiosyl, lactosyl, or maltosyl residues in a B-anomeric 

linkage, AGPs were also given the name 6-lectins (Anderson et al., 1977). Thus, lectin binding of 

AGPs is very well feasible. 

The presence of JIM8 epitopes was shown to have a polar localisation in the cell wall of individual 

carrot suspension cells (McCabe et al., 1997; Pennell et al., 1992). The function of this JIM8 reactive 

material is unknown. Previously it was suggested that cells containing the JIM8 epitope are an 

intermediairy cell type in somatic embryogenesis (Pennell et al., 1992). However, following the 

development of living cells decorated with the JIM8 antibody by cell tracking, revealed that the JIM8 

cell wall epitope does not coincide with the ability of single suspension cells to form somatic embryos 

(Toonen et al., 1996). The release of compounds containing the JIM8 epitope from JIM8-labeled cells 

was suggested to function as a soluble signal that may activate non-JIM8 decorated cells to enter into 

the embryogenic pathway. The removal of the cell population carrying JIM8 epitopes resulted in a 

decrease in the embryogenic potential in the remaining cell culture (McCabe et al., 1997). Addition of 

the JIM8 epitope containing soluble signals might compensate for the lack of this cell population. In 
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chapter 5 we have shown that the removal of the cell wall of suspension cultured cells also results in a 

decreased embryogenic potential, which can be restored by the addition of AGPs isolated from 

medium conditioned by embryogenic suspension cells. 

Function of chitinases 

While conventional models assume that plant chitinases are involved in protection against pathogens, 

also several other functions have been proposed for these enzymes. We will not discuss these 

conventional models in detail (because they have been extensively discussed in a review by Collinge 

et al. 1993) and instead will discuss some of the more recently proposed functions. 

LCOs are shown to be substrates for plant endochitinases in vitro, and an interesting model was 

proposed in which plant chitinases act to remove excess LCOs in order to prevent continued activation 

of cell division in target root tissues (Staehelin et al., 1994; Vasse et al., 1993). Such a model is 

attractive because in principle it explains why specific chitinases in susceptible roots are induced by 

LCOs. 

Recently it was observed that chitin fragments can trigger cell division when they are introduced in 

root cells by means of ballistic microtargetting (Schlaman et al., 1997). This suggests that the chitin 

moiety, rather than the fatty acid, is the active component in initiation of cell division. The external 

addition of chitin tetraose increases cell division in tobacco protoplasts (Rohrig et al., 1995), 

representing evidence that the response to chitin fragments is a general response of plant cells. 

Clearly, control of appropriate levels of chitin fragments is then important to prevent unscheduled cell 

division. Chitinases are likely candidates for reducing the level of active chitin fragments. 

In chapter 2 we have shown that EP3 endochitinases are transiently expressed in the maternal 

integuments surrounding zygotic embryos, and in the middle of the endosperm in mature seeds. It is 

not known whether chitin fragments occur in the endosperm and in the integuments of immature 

seeds. As a consequence, we do not know whether seed chitinases such as EP3 function in the 

control of cell division through modulation of the level of active chitin fragments. The occurrence of 

endochitinase cleavage sites in immature seed AGPs, as we have shown in chapter 4, suggested that 

GlcNAc-containing AGPs could be the source of the sofar elusive chitin fragments or LCO-like 

molecules in plants. As shown in chapter 5, the AGP molecules themselves are also capable of 

initiating cell division in carrot protoplasts. While not conclusive, these results do not provide 

evidence that small GlcNAc-containing oligosaccharides are a principal element in inactivating or 

sustaining cell division in developing embryos. It is clear from the results presented in chapter 5, that 

the seed AGPs, especially after activation by chitinases, are most active in promoting somatic 

embryogenesis. Whether this second effect operates solely through initiation of division is unlikely. 

Thus, we suggest that seed EP3 chitinases control the presence of certain active AGP species with a 

sofar unknown function in plant embryogenesis. In line with this hypothesis is the occurrence of 
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AGPs with GlcNAc residues in the medium of embryogenic carrot suspension cultures and not in the 

medium conditioned by non-embryogenic, yet rapidly dividing suspension cells (chapter 4). 

Processing of AGPs by hydrolytic enzymes as a means to control their activity 

Several recent studies suggest that AGPs or AGP fragments can function as signal molecules 

(McCabe et al., 1997; Toonen et al., 1997). Therefore, carbohydrate hydrolysing enzymes may in 

principle regulate the activity of AGPs. However, there is no evidence, except the experiments 

reported in this thesis, that AGP modification by hydrolytic activity is biologically meaningful. The 

"activation" of carrot immature seed AGPs by means of EP3 endochitinases or N-

acetylhexosaminidases, described in chapter 5, is the first indication of the importance of hydrolytic 

processing of AGPs. 

A better understanding of the biosynthesis of AGPs might elucidate the relationship between their 

core polypeptides and the carbohydrate moieties attached to it. It is for instance not clear whether 

AGP core polypeptides are always glycosylated in the same manner. Ectopic expression of AGP core 

polypeptide encoding genes resulted in an underglycosylation of these polypeptides in most tissues 

(Cheung et al, 1996), indicating that the correct glycosylation of AGPs is a tissue-specific process. 

Unfortunately, sofar only a single plant polysaccharide synthase, cellulose synthase, has been 

unequivocally identified (Arioli et al., 1998). This shows the lack in knowledge on the biosynthesis 

of complex plant polysaccharides such as attached to AGPs. 

Apart from the two examples with endochitinase and hexosaminidase reported here, other hydrolases 

may be involved in activating AGPs as well. This may also be important in generating the soluble 

signals containing JIM8 epitopes (McCabe et al., 1997). Information on the inplanta degradation of 

AGPs is largely lacking. A better understanding of the processing of AGPs and the components of 

the AGP molecules that are required to carry out their functions is clearly essential to understand their 

potential biological role as signalling molecules. 

The carrot protoplast assay 

Using carrot protoplasts for the initiation of somatic embrycgenesis, as described in chapter 5, 

provides a powerful method to study the biological effect of AGPs and has provided evidence on the 

role of AGPs in somatic embryogenesis. Apart from that, the carrot protoplast assay also allows to 

study the relationship between AGPs and enzymes that modify this specific class of proteoglycans. 

Using enzymes that are capable of degrading AGPs in a controlled manner by having a narrow 

substrate specificity might be very helpful to obtain more information on the glycosylation of AGPs 

and might eventually lead to the identification of active sites on AGPs, or on oligosaccharides that are 
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Samenvatting 

In plantenzaden bevinden zich embryo's. Zo'n embryo ontstaat nadat een eicel door pollen bevrucht 

is. Een andere manier om plantenembryo's te krijgen maakt gebruik van losse plantencellen of 

klustertjes van zulke cellen die, wanneer ze in een voedingsoplossing gekweekt worden, door 

toevoegen en vervolgens verwijderen van synthetische plantenhormonen aangezet kunnen worden tot 

het ontwikkelen van embryo's. Deze embryo's, die niet via de geslachtelijke weg ontstaan, worden 

somatische embryo's genoemd. Het proces van somatische embryogenese biedt een modelsysteem 

om het ontstaan en de ontwikkeling van embryo's te bestuderen en kan mogelijk meer inzicht geven 

over de processen die in planten leiden tot de vorming van embryo's. 

Peen (Daucus carota L.) is een plantensoort die veel gebruikt wordt voor somatische embryogenese. 

Door veranderingen aan te brengen in de erfelijke informatie van peencellen is een cellijn verkregen 

waarin bij hogere temperaturen slechts weinig embryo's ontstaan. De weinige embryo's die gevormd 

worden ontwikkelen zich niet tot zaailingen, maar hun ontwikkeling stopt al in een vroeg stadium. 

Het toevoegen van een endochitinase, een enzym dat chitine af kan breken, kan er voor zorgen dat er 

meer embryo's ontstaan, bovendien kunnen deze zich dan ook ontwikkelen tot zaailingen. Dit 

endochitinase, dat EP3 genoemd wordt, wordt gemaakt door de peencellen en kan gezuiverd worden 

uit de voedingsoplossing waarin deze cellen gekweekt worden. Aangezien er in planten nooit chitine 

of moleculen die chitinefragmenten bevatten zijn aangetoond, was het onduidelijk wat de exacte rol 

van dit enzym kan zijn. Het toevoegen van lipochitooligosacchariden (LCOs) heeft hetzelfde effect als 

EP3 endochitinases. Deze LCOs worden gemaakt door bacterien en fungeren als signaalstoffen 

tijdens de communicatie tussen deze bacterien en de planten waarmee ze in symbiose leven. Dit leidde 

tot de veronderstelling dat in planten chitinases nodig zijn voor het vrijmaken van signaalstoffen die 

een funktie zouden kunnen hebben tijdens de embryogenese. 

In hoofdstuk 1 wordt beschreven van welke signaalstoffen er bekend is dat ze de embryogenese 

van planten kunnen bei'nvloeden. Naast de plantenhormonen waarvan reeds lange tijd bekend is dat ze 

dit proces kunnen bei'nvloeden wordt ook de rol van chitinases en arabinogalactaneiwitten (AGPs) 

besproken. AGPs zijn moleculen die maar voor een klein deel uit eiwitten bestaan. De rest van deze 

moleculen bestaat uit carbohydraten. 

In hoofdstuk 2 staan experimenten beschreven waaruit afgeleidt kan worden welke cellen het 

vermogen hebben om EP3 endochitinases te produceren. Hiervoor zijn zowel cellen die gekweekt 

waren in een voedingsoplossing, als intakte planten gebruikt. In intakte planten bevinden de cellen 

waarin we transcriptie van EP3 genen konden ontdekken zich in het moederlijk weefsel random het 

embryo. Ook in suspensiecultures bevinden zulke cellen zich in de nabijheid van embryo's en soms 

zitten ze vast aan celklustertjes waaraan ook somatische embryos vastzitten. Aangezien de embryo's 

zelf geen EP3 maken suggereert deze localizatie dat in wild-type peen EP3 endochitinases belangrijk 

zijn tijdens de embryogenese en een embryo-verzorgende funktie hebben. 
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In hoofdstuk 3 staat de productie van EP3 in insectencellen beschreven. Hiervoor werden de 

genen die coderen voor verscheidene EP3 endochitinases van peen en een van de zandraket 

(Arabidopsis thaliana L.) ingebracht in het baculovirusgenoom. Vervolgens werden insektencellen 

gei'nfecteerd met deze recombinante virussen. Dit resulteerde in de produktie van enzymatisch aktieve 

EP3 endochitinases. Na zuivering van de verschillende EP3 endochitinases die op deze manier 

geproduceerd waren werd de enzymatische aktiviteit van deze chitinases vergeleken. Hierbij 

ontdekten we dat al deze EP3 endochitinases naast chitine ook chitosan af kunnen breken. Verder 

bleek dat in suspensiecultures van cellen van de zandraket EP3 alleen aan te tonen is in een 

voedingsoplossing waarin zich embryogene cellijnen bevinden en niet in voedingsoplossingen met 

niet-embryogene cellijnen. Dat impliceert dat de aanwezigheid van EP3 in de voedingsoplossing 

indicatief is voor het vermogen van zandraket suspensiekulturen om somatische embryo's te kunnen 

maken. 

In hoofdstuk 4 wordt weergegeven dat er N-acetylglucosamine voorkomt in AGPs die 

uitgescheiden worden door peencellen die gekweekt worden in een suspensiekultuur. N-

acetylglucosamine is een monosaccharide en fungeert als de bouwsteen van chitine. Verder wordt 

aangetoond dat endochitinases carbohydraten af kunnen splitsen van uit onrijpe peenzaden gei'soleerde 

AGPs. De aanwezigheid van AGPs die gesplitst kunnen worden door endochitinases, in combinatie 

met de geobserveerde veranderingen in de totale populatie AGPs in onrijpe zaden als gevolg van de 

ontwikkeling van deze zaden, doen vermoeden dat de AGPs in onrijpe peenzaden onderhevig zijn aan 

continue processen van aanmaak en afbraak. 

Hoofdstuk 5 handelt over het effect dat het toevoegen van EP3 endochitinases of AGPs heeft op 

de vorming van somatische embryos. Wanneer deze stoffen toegevoegd worden aan protoplasten 

afkomstig van peencelcultures, ontstaan er in die cultures meer somatische embryo's. Indien AGPs 

uit onrijpe zaden voorbehandeld worden met chitinases en vervolgens toegevoegd worden aan de 

protoplasten neemt het aantal embryo's dat ontstaat nog sterker toe. Deze proeven wijzen er op dat 

AGPs het proces van somatische embryogenese bei'nvloeden en misschien reguleren, terwijl 

chitinases op hun beurt de aktiviteit van deze AGPs kunnen bei'nvloeden. 

In hoofdstuk 6 wordt de rol die N-acetylglucosamine bevattende moleculen spelen tijdens de 

ontwikkeling van planten en dieren bediscussieerd. Hierbij wordt nader ingegaan op AGPs die N-

acetylglucosamine bevatten en de functie die deze molekulen toegedacht wordt tijdens de 

embryogenese van planten. 
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Nawoord 

Op deze plaats wil ik iedereen die bij heeft gedragen aan het tot stand komen van dit proefschrift 

danken. Een aantal van hen wil ik hier met name noemen. 

Zewdie Tadesse, an Msc student who did a lot of work and in that way prevented me of doing 

more experiments. Mijn co-promotor Sacco de Vries, die mij de mogelijkheid heeft geboden om in 

'zijn' embryogenesegroep te kunnen werken en die mij wist te stimuleren door altijd een kritisch oog 

op mijn werk te houden. Mijn promotor Ab van Kammen voor de vurige wijze waarop hij de goede 

lijn er bij mij in pobeerde te pompen. 

Verder wil ik iedereen bedanken die mij een ontspannende en vriendschappelijke atmosfeer 

heeft geboden en die, hoewel ze vaak niets met de tot standkoming van dit proefschrift te maken 

hebben, voor mij toch erg belangrijk zijn geweest. 

Ten slotte wil ik opmerken dat na het leven in de oorlogsrealiteit van Sarajevo het beginnen aan 

een promotieonderzoek een welkome verandering was. Alhoewel deze twee periodes van mijn leven 

te ver van elkaar afstaan om paralellen te kunnen trekken ben ik er van overtuigd dat ik na mijn 

ervaringen in Sarajevo weet dat de waarde van een proefschrift en het werk dat er aan verbonden is 

zeer relatief zijn. 
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