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cv 

Propositions 

I am very little inclined on any occasion to say anything 

unless I hope to produce some good by it. —Abraham Uncoln 

1. The diversity of crops is not the only explanation for the effects of crop rotations 

on weed populations. Different sequences of the same set of crops can result in 

different weed population growth rates and patterns of sensitivity to changes in 

underlying biological processes. 
(This thesis.) 

2. Organic farmers who aim to reduce weed population densities in the long term by 

minimising weed seed production require less labour for hand weed control. 
(This thesis.) 

3. Policies aimed at increasing on-farm plant species diversity, including weed 

diversity, will lead to increases in weed densities, and costs of weed control. 
(This thesis.) 

4. Even though a wide crop row-spacing combined with mechanical hoeing in cereal 

crops will result in lower weed densities, weed seed production will be the same as 

or higher than in a narrowly spaced cereal crop where weed mortality due to 

mechanical weed control is lower. 
(This thesis.) 

5. More effective weed management strategies can be developed if increased 

attention is given to the perspective and role of individual weed plants in the 

population. 
(This thesis.) 



6. A mathematical model [of a biological population] is neither a hypothesis nor a 
theory. Unlike scientific hypotheses, a model is not verifiable directly by an 
experiment. For all models are both true and false... The validation of a model is 
not that it is "true" but that it generates good testable hypotheses relevant to 
important problems. 
Levins, R. 1966. The strategy of model building in population biology. American Scientist54:421-31. 

7. Though the general public may consider demography to be a dry science, it is the 
life-blood of long-term policy development and so gives bounds to our 
uncertainty of the future. 

8. The Global Environment Facility, in being answerable for global benefits, must 
ensure its projects have local benefits. Only then will a sense of collective 
responsibility for the environment be created and sustained global benefits be 
achieved. 
Mertens, S.K. 1994. Towards accountability in the restructured Global Environment Facility. Review 
of European Community andInternationalEnvironmentalLaw 3:105-110. 

9. Nothing is truer than Pasteur's famous statement that only 'the prepared mind' 
makes discoveries. But litde thought has been given up to now to the process by 
which the mind is prepared. 
Mayr, E. 1982. The Growth of Biological Thought. Diversity, Evolution, and Inheritance. Belknap Press. 

Cambridge. USA. 

10. ... how difficult it is for one to become a Human Being where one is not born a 
Citizen. 
From the dedication of George Anastaplo to his parents, as Immigrants from Greece, in his book 
Human Being and Citizen. Essays on Virtue, Freedom and the Common Good. (1975) Swallow Press. Chicago. 
USA. 

Shana K. Mertens 
On Weed Competition and Population Dynamics 

Wageningen University, 14 October 2002 



Abstract 

Experiments, monitoring studies and modelling of weed population 

dynamics were carried out to investigate potential methods for reducing weed 

populations in farming systems where herbicides are not applied (organic farming). Six 

years of monitoring weed populations on five organic farms showed that farmers who 

took a long-term approach to weed management had lower weed populations. Farms 

with low weed densities also had a lower diversity of weed species. An experiment was 

carried out to investigate whether using the combination of a wide row spacing and 

aggressive weed control (mechanical hoeing) or a narrow row spacing and less 

aggressive weed control (harrowing) would decrease weed populations more. Using 

weed seed production as the criterion for comparing the row spacing/weed control 

combinations, it was concluded that a narrow row spacing with less aggressive control 

resulted in fewer weed seeds being produced. Because the experiment involved 

marking individual plants of the species Polygonum convolvulus, Polygonum persicaria, and 

Stellaria media, it was possible to investigate how individual plant biomass and survival 

are related to descriptors of the local environment. In this case the descriptors were 

distance to the nearest crop plant and the local row width. For all three species it was 

shown that the same form of predictor gave the best fit and included distance to the 

nearest crop plant and the crop row spacing where the plant is located. Survival in the 

wide spacing could be predicted using the distance to the nearest crop row, while in 

the other row spacings all plants had an equal chance of survival. Predictors of 

individual plant biomass and survival can be used in modelling the spatial dynamics of 

weed populations. Finally the effect of crop sequence on weed population dynamics 

was investigated. Using a periodic matrix model, it was shown that the order of crops 

in a crop rotation will affect the weed population growth rate and its sensitivity to 

changes in underlying parameter values. It is stressed that research on weed ecology 

and non-herbicide management would benefit from long-term experiments and 

monitoring studies and a closer integration of modelling of weed population dynamics 

and long-term data. 



Preface 

Having attended my father's lectures on human population growth and 

worked by my mother in the garden, it was unexpected, though perhaps inevitable, 

that I should end up studying aspects of weed demography and ecology. The last four 

years have been the start of setting out my ideas in the terrain of plant ecology and 

this thesis represents a distillation of those ideas. Setting out one's own ideas, forming 

them into answerable and relevant questions, and finding the means —intellectual and 

practical- of answering them is often arduous, lonely, and to a certain extent selfish. 

Along the way, I have been fortunate to have had much company from people who 

have helped to lighten the load through direct contributions in this process of 

distillation, through patience and support during the hard times, and through sharing 

of the joyful moments. 

My adopted supervisors, Hans Heesterbeek and Frank van den Bosch 

showed me how I could find answers to my questions on weed population dynamics 

and have given me the confidence and necessary feedback to work through the other 

ideas. Discussions with Jacco Wallinga at all stages of this work have been 

instrumental in clarifying my ideas and in finding methods for answering the 

questions. Leo Vleeshouwers and Jacob Weiner have provided instructive comments 

on several of my manuscripts, and Hans de Kroon pointed out a critical reference. In 

analysing the data of my experiments, I have benefited from discussions, corrections, 

and over-the-shoulder lessons from Wies Akkermans, Hans Jansen, Remy van de 

Ven, and Jacques Withagen. There would have been no data to analyse were it not for 

the logistical assistance and hours of back-breaking and tedious labour from a number 

of people, including Andries Siepel, Marco Siepel, Henk Pepping, Henk de Rein, Piet 

de Man, Adrie Kooijman, Herman Peeters, Nettie van Dijk, Roel Groeneveld, Wim 

van der Slikke, Henk van Roekel, Elisabeth Oosterhuis, Evert Walraven, and John van 

der Lippe. In my pursuit of understanding weed populations on farms, Sjaak Twisk, 

Henk Leenstra, Sialto Eskes, Henk Oosterhuis, and Digny van den Dries, have let me 

walk through their crops and shared their knowledge and philosophy of weed 

management and farming with me. 

Athina Amanatidou, Eric Esveld, Andreas Karatzas, Sophie Margulien, 

Vasiliki Palli, Hector Planella, Maria Vasquez-Perez, Bjorn Dirks, Jacco Wallinga, and 

others, all guests at the 2000 Greek Easter Party, took time from eating, drinking and 

dancing to help with labelling stakes. Corrie and Lieuwe Wallinga provided me with 



company and shelter during my stays in the NoordOostPolder, lightening the days of 

heavy fieldwork. I am grateful to Martin Kropff for initiating the project and allowing 

me the freedom to follow my own ideas and to the programme leaders Remmie Booij, 

Bert Lotz, and Jaap Schroder for making space in their budgets. Marijn de Visser 

saved me much time with her excellent translation for the Dutch summary. 

Completing a PhD thesis often depends on a critical discussion, a quick 

introduction to a new method, the cutting of bureaucratic snarls, or small acts of 

kindness, all of which help to remove obstacles from the path, or provide a step over 

them. Lammert Bastiaans, Daniel Baumann, Gijs-Bertje Berkhout, Astrid Bon, Ton 

Claassen, Dirk Creybolder, Jacques Davies, Ries de Visser, Tom Dueck, Els Geurts, 

Eltje Groendijk, Anton Haverkort, Lia Hemerik, Bert Jansen, Corne Kempenaar, 

Peter Leffelaar, Carin Lombaers-van der Plas, Ellis Meekes, Frank Nieuwenhuijsen, 

Elma Schoenmaker, Mira Teofanovic, Marcel van Oijen, Wolter van de Zweerde, 

Linda van Duijn, Wopke van de Werf, Gon van Laar, and Ronald Visser, perhaps 

without their realising, have made a difference when it was needed. 

My family and friends all require a much more personal thanks than I can 

give here. Suffice it to say that they have been an indispensable support, even in the 

face of neglect on my part, and I only hope their patience does not run out before my 

thanks arrive. 
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CHAPTER 1 

Introduction and Overview 

MOTIVATION FOR THE STUDY 

In his painting, "Weeding flax in Flanders', Emile Claus has succeeded in 

depicting the drudgery of weeding by hand. Recendy, the possibility of observing such 

labour again in Western Europe has increased with the increasing favour of farming 

methods which do not use synthetic pesticides. The forces acting to reduce synthetic 

pesticide inputs range from concerns on impacts of runoff on the environment, and 

health and safety concerns, to fears concerning the power of multinational chemical 

corporations and to more undefined spiritual reasons that farming without synthetic 

inputs is somehow morally better. In Europe the societal demand and perception of a 

need for less intensive farming methods (coupled with the need for reform the 

agricultural sector in general) has lead to various national and EU wide policies to 

increase the proportion of land that is farmed without synthetic inputs (Lucas and Pau 

Vail 1999, LNV 2000). 

A question of major importance, in the face of imposed and voluntary 

reductions in pesticide use, is how to manage non-crop plants growing in a field with a 

crop — in other words, how to manage weeds. Such questions are of particular 

importance for farmers who choose to eschew any use of pesticides and artificial 

fertilisers, and instead use what are called organic farming methods, or for farmers 

who do not have any choice but to use hand, animal or mechanical methods of weed 

control. While weeds can have beneficial uses (Vieyra-Odilon and Vibrans 2001), they 

can also reduce crop yield and the quality of the harvested product, e.g., due to 

poisonous seeds. Organic farmers rely mainly on mechanical and hand control, as well 

as using ecological knowledge to manipulate the agroecosystem so that weed 

populations are reduced. For example organic farmers may have a more diverse crop 

rotation and use wide variety of implements such as hoes, harrows, fingerweeders, and 

flame weeders (Lampkin 1990, Mohler 2001). 
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Hand-weeding and mechanical control (in the broad sense), however, carry 

their own costs and risks. While mechanical weed control is more efficient than hand-

weeding, its effectiveness depends on the weather, it can damage the crop, cause 

erosion or damage soil structure, or just may not be possible, such as on steep slopes. 

Flame weeding, whereby weeds are burned prior to crop emergence requires heavy 

use of fossil fuels. With regard to hand weeding, finding sufficient labour for hand 

weed control is more and more difficult, notwithstanding the growth in the world 

population. In Europe and North America enough more attractive jobs than weeding 

exist, while in many parts of Africa, for example, migration to urban areas and the 

HIV/AIDS epidemic is severely reducing the able-bodied population in rural areas 

(FAO 1995, Mwenya 2000). 

As with herbicides, mechanical and hand weed-control both rely on the fact 

that germinating or emerged weed plants are killed. Weed plants, like any other 

organism, do not exist independendy of their environment, whether biotic or abiotic. 

Therefore knowledge of an organism's interactions with its environment, i.e. its 

ecology, and the resulting effects on life-cycle processes such as reproduction, survival 

and dispersal, can give insights which lead to other means of management and thus 

lessen the efforts needed for killing plants. Many examples already exist of how 

knowledge of plant ecology has contributed to weed management. For example, it has 

long been known that weed plants have windows of germination and emergence 

(Roberts and Neilson 1980). The sowing date of some crops can be delayed so that 

seedlings of early germinating weed species can be removed through regular 

cultivation prior to sowing. Another example is use of the knowledge that when 

individual plants are crowded by other plants, they do not grow as large and produce 

fewer seeds. By adjusting crop row spacing or planting another species (e.g., clover) 

around the crop, weed seed production may be lowered and crop yield increased 

(Teasdale 1998). If it is known how weed seeds are dispersed, then implements (e.g., 

harvesters, hoes) can be designed to prevent the seeds from being returned to the soil. 

Corncockle {Agrostemma githago), for example, has disappeared from the European 

weed flora due to improved crop seed-cleaning techniques, which prevented the weed 

seeds from being sown again with the crop (Salisbury 1961). 

While much has been achieved in weed management through formal and 

informal knowledge of plant ecology, there is still much to learn, both about the 

ecology of specific weed species, and about more general principles of how weeds 

interact with their environment and farmer decisions. On the one hand, detailed 

knowledge about the ecology of specific weed species may be more likely to lead to 

direct applications, but is very time consuming to acquire, particularly when one 

begins to consider the variation that exists within a species. General principles, on the 
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other hand, may be less likely to lead to direct application. The insight they provide, 
however, can open previously un-thought of avenues for exploration. 

OBJECTIVES 

Two important research strands in weed ecology are weed-crop competition 
and weed population dynamics. The former deals with how crowding of weed plants 
by the crop plant affects weed growth and reproduction, and also reduces negative 
effects on crop yield. The latter strand is concerned with how the number of weeds 
changes over time and the factors that influence the changes. A basic measure in 
examining population dynamics is the population growth rate, i.e., the magnitude of 
the weed population change (as a fraction or multiple) of the population that was 
present a year ago. Competition and population dynamics are joined by the fact that 
competition can affect the weed population growth rate and also the qualitative 
pattern of the population dynamics, for example whether or not the population shows 
cyclic behaviour in time. Aspects that have not received sufficient attention within 
weed ecology are the roles of weed control and farmer strategies regarding crop and 
weed management. The choices that a farmer makes will affect weed population 
dynamics, and he or she may also use weed-crop competition deliberately. 

Through following and linking these two strands, this thesis seeks to expand 
the set of weed management options available to practitioners, the set of concepts and 
methods used by weed ecologists, and to raise questions that should be answered by 
policymakers. Not every chapter addresses each of these aspects equally — one chapter 
may address more practical questions, while another is more theoretical in nature. 
Furthermore, while the immediate motivation for this thesis are the problems faced by 
Dutch organic farmers, it is hoped that at least parts of this work will be of use to 
farmers and weed scientists in general, and indeed for managers and researchers 
concerned with invasive or endangered plant species. 

Competition, population dynamics and weed control are broad topics and 
must necessarily be focused. The three specific objectives of this thesis are therefore 
to increase understanding of weed population dynamics in crop rotations, particularly 
with regard to the effect of crop order, to investigate how weed populations may be 
influenced by competition from the crop and the trade-offs that may occur due to 
constraints of weed control, and lastly to study factors affecting weed populations on 
organic farms. 
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CONTEXT AND APPROACHES: A N OVERVIEW OF THIS THESIS 

Within each of the objectives of this thesis exist a multitude of questions and 
approaches to answering them. Below is an overview of the questions that are posed 
in Chapters 2 through 5, the context from which they arose, the methods used to 
answer them, and the resulting conclusions and extensions. In Chapter 6, based on the 
experience gained in carrying out the studies presented in Chapters 2 to 5, broad 
perspectives for future research in weed ecology are offered. 

The questions treated in Chapters 2 to 5 range from the applied to the 
theoretical, and consequently the methods range from observational and experimental 
to the mathematical. And, while the questions may differ substantially, a unifying 
theme behind them is that a long-term perspective to weed management is imperative. 
This is because, unlike many crop pests and diseases, weed seeds can remain viable in 
the soil for substantial amounts of time and therefore seeds produced one year will 
contribute to future weed populations. One can only make a fair evaluation of weed 
management strategies by considering the longer-term effects, at the minimum 
considering what are the consequences for the following growing season. Taking a 
long-term perspective, however, does not mean that the weed population dynamics 
are observed or modelled in every chapter. For example in Chapter 3, the goal of the 
experiment was to minimise weed seed production, but the motivation for the 
experiment was to reduce weed populations in the long term. 

Discovering the problem 

In order to be able to start to find strategies and methods for managing 
weeds on organic farms, it is important first to know what the problem is, whether a 
problem exists at all, and what are the possible causes of the problem. At least an 
initial, if only partial understanding, can be achieved by surveying and monitoring 
weed populations on organic farms, using statistical analysis to investigate whether 
there is any relationship between the weed population, and various controllable or 
uncontrollable factors, and lastly by discussing with farmers what their approach to 
management is. Such is the primary aim of the study presented in Chapter 2. Weeds 
were monitored on five organic farms for a total of six years (1995, and 1997 to 2001), 
in every field and the farmers recorded information on weed and crop management. 

The analysis presented in Chapter 2 focuses on the factors governing 
variability in weed diversity and abundance. It was very clear that weed densities were 
consistendy low on certain farms and consistendy high on other farms. Farms with 
many hours of hand-weeding were also the farms with higher weed densities. It 
appears that the farmers with low weed densities and few hours of hand weeding 
deliberately take a long-term approach to weed control, for example by removing 
flowering individuals of certain weed species from grain fields. Farms with high weed 
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densities also had a higher species richness than farms with low weed densities. The 

apparent trade-off between weed density and diversity raises important questions for 

policymakers, if they believe that one of the aims of organic farming is to increase 

biodiversity. 

Crop planting patterns to minimise weed seed production 

On farm monitoring of weed populations often leads to new questions 

concerning weed ecology and the interaction with management. During the 1997 

survey, two questions arose. The first question was whether it was better to use a 

wider or narrow row spacing in cereal crops if the criterion for evaluation was the 

number of seeds produced per seedling at the start of the season. The second 

question was whether the order of crops in a crop rotation could affect weed 

population dynamics. 

The context for the first question is the method of weed control in spring 

cereals (wheat, barley, oats), used by many organic farmers, including all but one 

farmer in the weed monitoring study. Typically a wide row spacing (22-30 cm) is used 

in order to be able to use a mechanical hoe, which is considered to control weed 

plants in cereal crops better than other implements. However, because of the wider 

row spacing it is likely that weed plants will grow larger and produce more seeds than 

in a narrower row spacing. In a narrow row space, though, more weed plants might 

survive weed control. Chapter 3 contains the results of an experiment designed to 

address these questions. By combining data on weed seed production and survival it 

was possible to calculate seed production per seedling, which is a common currency 

for comparing the effects of the different treatments. Three weed species were 

studied: ladysthumb {Polygonum persicarid), wild buckwheat {Polygonum convolvulus), and 

common chickweed {Stellaria media). The results showed that, taking into account 

differences in mortality, seed production was lowest in the more narrowly spaced 

crop. Weed mortality in the wide row spacing would have to increase in order to reach 

the levels of seed production found in the narrowest row spacing. It seems, therefore, 

that organic farmers would be better off using a narrow row spacing and less intensive 

weed control measures. On-farm trials on a wider variety of soils, with other weed 

species, and higher crop sowing densities would be useful for investigating the wider 

validity and applicability of the results and for convincing farmers. 

The row spacing experiment was unique in comparison to most other studies 

on weed-crop competition. First the emphasis was on weed seed production rather 

than on plant densities as the criteria for evaluating different treatments. Secondly, the 

experiment focused on survival and reproduction of individual weed plants. Most 

weed-crop competition studies have focused on plant density and when weed mass 

has been measured, it has usually been on a unit area basis, rather than on an 

individual basis. An important disadvantage of making measurements on a unit area 
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basis is that knowledge of the variability between individuals is lost. As it is individuals 

that interact with the local environment (biotic and abiotic), an understanding of the 

variability between individuals is crucial for evaluation and developing weed 

management strategies cf. (Harper 1964). 

Predicting individual weed mass and survival 

In the row spacing experiment presented in Chapter 3, the individual as the 

unit of reference arose naturally from the criterion that weed seeds should not replace 

themselves. While such a perspective necessarily resulted in a laborious experiment, 

one of the advantages was that it was possible to investigate whether there was a 

relationship between the local environment of a weed plant, its mass (a measure of 

potential reproductive output) and chance of survival. By understanding which weed 

plants contribute most to future generations and how their performance is related to 

their local environment, it may be possible, for example, to find optimal combinations 

of crop row spacing and mechanical control or to answer such questions as whether 

different crop planting patterns lead to different weed spatial patterns. 

Descriptors of the local environment include the local density of crop plants 

around a target weed plant, its distance to the nearest crop plant, or direct measures of 

resource availability. In the row spacing experiment described in Chapter 3, 

measurements were made of the distance between each weed plant and the nearest 

crop plant. In Chapter 4, these descriptors of the local environment were used to 

form statistical predictors of individual weed plant mass and survival, such as those 

found by Weiner (1982) and Silander and Pacala (1985). Using logistic regression, it 

was found that individual weed mortality increased with increasing distance from the 

crop row only in the widest row spacing treatments, where hoeing could be carried 

out. 

With regard to plant mass, the same form of the predictor (of 32 tested 

predictors) gave the best fit for all three species studied, even though the growth 

habits of each species were different. The predictor had a linear form (in the 

parameters), with the distance measures squared, w = bo +b\u2+ biv1, where w is the 

predicted mass of a plant, u is its distance to the nearest crop plant, v is the crop row 

spacing where the plant is located, and the k are parameters estimated from the data. 

While this linear form is applicable only for a limited range of distances, because 

plants will not grow to an infinite size as distance increases, it is not likely that the 

distances in a cereal crop will be much larger than those measured in the experiment. 

Furthermore, this model is intuitively satisfying because one might expect that the 

amount of resources available (particularly light) would be related to the area available, 

i.e., distance squared. 
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Crop rotations and weed population dynamics 

In Chapter 5, the second question raised by studying on-farm weed 

populations is addressed, namely does the order of crops in a rotation affect weed 

population dynamics. It is known that crop rotations with a higher diversity of crops 

tend to have less weed problems (Leighty 1938, Fream and Robinson 1949). 

Furthermore the farms in the survey were required to follow a crop rotation that 

alternated mown crops (cereals, legumes) with lifted crops (potatoes, onion, carrots). 

A natural question is whether such a rotation is necessarily the best one, considering 

that seeds produced during the years of a mowed crop may lead to an increase in the 

hours of hand weeding needed during the following year of lifted crops. Experimental 

studies of the effects of crop rotations on weed populations have tended to focus on 

comparing monocultures with a crop rotation and possibly the interaction with 

different tillage methods (Kegode et al. 1999, Blackshaw et al. 2001). Frequently the 

analysis in such studies has focused on determining which treatment had the largest 

effect at the end of the last crop in the rotation cycle, rather than on whether the weed 

population has increased or decreased over a complete rotation cycle. In comparing 

different rotations it is possible that the weed population size will be much larger in 

one crop than in another crop. 

One approach towards answering the question of whether the order of crops 

matters for weed population dynamics is to use a mathematical model of how a weed 

population changes over time in a crop rotation. A mathematical model necessarily 

involves many simplifications. However, because the assumptions and structure of the 

model are known, with enough effort it is possible to explain the results fully. This 

does not imply that the results will reflect reality, but the insights gained can lead to 

new ideas for management and to more focused experiments. 

Using a model of weed seedbank population dynamics, we showed that the 

order of crops in a rotation affects the weed population growth rate and its sensitivity 

to changes in underlying parameter values. In this periodic matrix model, the seed 

population was structured by depth in the soil, i.e., seeds at different depths could 

differ in their ability to germinate, reproduce or survive. A variety of rotations were 

examined, all based on two crops, one in which the population declined and the other 

in which it increased. By examining the reproductive value and stable depth 

distribution of seeds in the different rotations, it was possible to explain how the 

differences in growth rates and elasticities (proportional sensitivities) arose. 

Some of the implications for weed management are that it is important to 

consider crop order when designing a crop rotation and when making changes to 

weed management strategies within a crop. The long-term impact on the population 

growth rate of a proportional change in weed survival, for example, may depend on 

both the crop in which this change is made and the position that a given crop holds in 
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the cycle. It is also likely that weed population size and short-term dynamics will be 

affected by the interaction of initial conditions (the distribution of seeds over the soil) 

and the crop with which a new rotation is started. Such effects will be investigated 

both theoretically and experimentally in an upcoming project. 

While periodic matrix models have been applied to organisms in natural 

ecosystems (Gotelli 1991, Hoffmann 1999), there has been little systematic examination 

of the effects of different orders of events (fire, flooding, grazing) on population 

growth rates or possibilities for management, rather the focus has been on randomly 

recurring events. As the results from this analysis show, it would be useful for 

researchers and managers of other ecosystems to consider effects of event order and 

how differences in population growth rates arise. 



CHAPTER 2 

Variability in Weed Species Diversity and 
Abundance: Results from Monitoring 

Annual Broadleaf Weeds on Five 
Organic Farms 

ABSTRACT 
Knowledge of the variability of weed diversity and abundance on farms and the relation with 
management practices is critical for identifying potential weed problems, evaluating the effectiveness 
of current management strategies, discovering new strategies developed by farmers, and for 
clarifying decisions that must be taken by policymakers. Addressing these issues is particularly 
important in organic farming systems, due to the high costs of hand weed control and loss of yield 
due to weeds. Regular monitoring of weeds on the same group farms, which are on the same soil 
type and using a similar rotation, allows investigation of the effects of year and also of weed 
population changes over time. For the years 1995, and 1997 through 2001, weed populations were 
monitored at the end of the season on every field on five organic farms in the Netherlands and weed 
management information was collected from the farmers. There were differences between farms in 
weed species diversity and abundance, and in the amount of mechanical and hand weed control 
applied. Stellaria media was by far the most dominant species, with a relative abundance close to one 
and median densities of about 10 plants nr2. Farms with low weed species diversity had low densities 
and few hours of hand-weeding. The factors farm, crop, and hand and mechanical weed control 
explained variation in weed densities. Cereal and potato crops had the highest densities, while grass-
clover, onion, and carrot crops had the lowest densities. Weed densities declined with increasing 
number of mechanical control operations. Weed densities and hours of hand weed control were 
positively correlated, reflecting densities at the start of the season. This study raises questions 
concerning trade-offs between low weed densities and increased species richness, and concerning 
the strategies farmers use for weed management. 

Adapted from: Mertens, S. K. Variability in weed species diversity and abundance, and growth rates: 
results from six years of monitoring annual broadleaf weeds on five organic farms. In preparation. 



10 Chapter 2 

INTRODUCTION 

When a population is in need of management, whether because it is on the 

edge of extinction due to human causes or because it interferes with the functioning 

of another ecosystem, then it is critical to understand the underlying causes of natural 

fluctuations in the population size, the interactions with exogenous interference and 

the consequences for management. Examples of the former are fisheries on the verge 

of collapse (Myers et al. 1997), while examples of the latter are invasive exotic plants 

(Zavaleta et al. 2001) or, according to most farmers, weeds in an agro-ecosystem. 

Variability at the community or individual level can also be of importance. For 

example, do management strategies increase species diversity or change the species 

composition? Or, are individuals of a certain genotype selected by repeated 

application of a certain management tactic? Management itself can be a cause of 

variability of populations and depending on its effect, different adjustments to future 

management may be necessary. 

Non-crop plants, i.e. weeds, growing in competition with crop plants are an 

example of a group of organisms in need of management. While weeds can play a 

beneficial role (Datta and Banerjee 1979, Vieyra-Odilon and Vibrans 2001), too 

many of them at the wrong time or place will cause unacceptable loss of yield (Parker 

and Fryer 1975, Bridges and Anderson 1992), while controlling them creates other 

costs (Akobundo 1990, Chandler 1991). It is therefore crucial to determine how 

variable weed populations are, what the sources of variability are, and whether it is 

possible to manipulate the factors determining variability. In considering weeds in 

agro-ecosystems, one may be interested in variability in species composition and 

diversity, in population abundances of a species or a group of species, or one may be 

interested in genetic or phenotypic variability. Because farmers are a population in 

themselves, variability in weed management strategies and the interaction with weed 

diversity and abundance is also of interest. 

Depending on the comparisons one chooses to make, one will always find 

differences. For example if one compares a desert and coral reef, one will surely find 

variation in species diversity and abundance. Likewise, if one compares the diversity 

and abundance of weeds on farms where herbicides are being used, with those on 

farms where herbicides are not being used, the species diversity, composition and 

abundances are also likely to differ and the reasons may be rather clear and easily 

testable in an experiment. A rather more interesting question is how variable weed 

communities and population abundances are over time on a set of farms, which are 

on similar soil types and using similar approaches to crop production. 
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Understanding variability in weed species diversity and abundance over time 

and between farms is particularly important with regard to farming systems where 

synthetic pesticides are not used, i.e., 'organic' farming systems. At a political level, a 

government may want to promote organic farming with the aim of increasing species 

diversity. At an economic level, organic farmers may be faced with high costs of hand 

weed control. Relevant questions are: Do organic farms have higher levels of plant 

species diversity? Do trade-offs exist between species diversity and abundance? Do all 

organic farms have the same levels of weed abundances? Are populations increasing 

or decreasing? Is there a relationship between management strategies and population 

densities and growth rates? 

Surveys and regular monitoring of weed communities and populations can 

provide answers to these questions. While elucidating causes and effects is more 

difficult than in an experimental setting, on-farm studies can lead to new insights 

concerning factors of importance as well as lend or remove support for existing 

theories on factors governing weed populations (Derksen 1996). Importandy, more 

information on the range of variability in weed abundance and diversity is available. 

Most investigations of on-farm weed populations have taken the form of 

surveys whose aims were either to identify problematic or potentially problematic 

species (Froud-Williams and Chancellor 1982, Lemerle et al. 2001) or to investigate 

effects of management or environmental variables on the weed community (Saavedra 

et al. 1990, Andreasen and Streibig 1991). Occasionally a survey may be repeated in 

order to discern broad trends in weed populations, such as shifts in species 

composition (Thomas 1991, McWhorter 1993, van Acker et al. 2000). Typically 

each edition of the survey uses a different set of fields, so that changes in weed 

populations at the field level are not discernible. There is an implicit assumption that a 

region has an "average" management strategy and that the farmers change their 

strategies in a similar way over time. 

There are very few examples of monitoring of on-farm weed populations on 

the same fields over time. An exception is a study by Davies and colleagues (1997), 

where the populations of weed seedbanks and plant densities were monitored twice 

during the conversion period of two organic farms. The closest comparable studies 

have been experiments to compare various aspects of different types of farming 

systems. In these studies (Dessaint et al. 1992, Marshall and Arnold 1994, Mayor 

and Dessaint 1998, Squire et al. 2000), an effort has been made to keep methods 

similar to on-farm practices for each type of farming system and weed seedbank or 

plant densities were monitored regularly during the course of the experiment. 

However, as the aim of these studies was to compare different farming systems, very 

little information was available on the variability in weed populations and 

communities within a farming system. 
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In 1995, a survey was carried out on organic farms in the Netherlands in 
order to identify which weed species were the most problematic (i.e., contributing 
most to the time spent hand-weeding) and whether there was any relationship with 
the management strategies being used (Schotveld and Kloen 1996). In 1997, the 
survey was repeated for the annual broadleaf population in the same fields in order to 
determine whether the populations differed between years. In order to determine 
whether weed populations were increasing or decreasing and to have more data to 
investigate the effects of management, the survey was continued until 2001. The 
purpose of this chapter is to describe the broad differences between farms in weed 
diversity, abundance and management practices, and to investigate the factors 
contributing to variability in weed abundances. Future analysis of the data will 
consider the effects on growth rates of the weed populations. 

METHODS AND MATERIALS 

Background to the project 

Monitoring of weed populations on the farms began in 1995 with monthly 
observations of populations of blooming and seed-setting weeds on each of the farms 
(Schotveld and Kloen 1996). In 1997 the monthly observations were repeated, 
however the density of vegetative as well as blooming and seed-setting plants were 
monitored (Mertens 1998). In 1998 a decision was made to continue monitoring the 
weed populations, but to limit observations to August only. 

The five farms in the weed monitoring project formed part of a larger project 
on developing 'prototype' or model methods for organic farming (Vereijken et al. 
1994) and in which a multitude of aspects of the farming system were monitored. The 
farms were selected for inclusion in the prototyping project on the basis of the 
farmers' interest in following a prescribed rotation. The project was limited to farms 
in the Flevoland region. When weed monitoring was re-initiated in 1997, only the five 
farms that had been in the prototyping project the longest were selected. 

Study sites 

Geographical region 

All farms in the survey were located in the central clay region of the 
Netherlands, at about 52° North and 5° East, in the province of Flevoland. The soils 
in the region are marine clays with varying fractions of sand. The entire area consists 
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Table 1. Background information on farms in the survey. 

Farm 

3 

5 

6 

8 

9 

Area 
(ha) 
42.9 

25.5 

34.9 

32.3 

22.8 

Year of conversion to organic 
management 

1991 

1990 

1990 

1990 

1979 

Farm 
type 

Commercial 

Commercial 

Commercial 

Commercial 

Research 

of polders, land that was claimed from the sea through dike construction and 

drainage. Three of the farms are located on the Noord-Oost Polder, which was 

opened in 1942 and two farms are located in the Oostelijk Flevoland Polder, which 

was opened in 1957. The topography is flat and the elevation ranges from about sea 

level to several meters below sea level. 

General description of farms 

Organic farming methods were used on all farms and therefore pesticides 

and synthetic fertilisers were not applied. Four of the farms were arable and Farm 8 

had a beef herd, although the cattle were not grazed on-site (Table 1). The area of 

these farms ranged from about 23 to 43 ha. When weed monitoring was initiated in 

1995, the farms were following a prescribed rotation (Vereijken et al. 1994, Vereijken 

et al. 1995) which consisted of alternating mown type crops with root or row 

vegetables. There was some flexibility in choice of crops. The main crops were 

potatoes, carrots, onions, cereals, and legumes (Table 2), and two farms incorporated 

a grass-clover crop in their rotation. Some crops, particularly legumes had often been 

harvested before weeds were monitored. During 2000-2001, two of the farms 

experienced large changes (loss or acquisition of land) which resulted in changes to 

their rotations, and another farmer started to include lettuce in his rotation. While 

there were patterns in the sequence of crops found on each farm, there were relatively 

few fields where the rotations in 2001 began with the same crops as in 1995. Table Al 

(Appendix) lists the crops grown on each field for the period 1995-2001. 

Monitoring Procedure 

Weed populations 

Weeds were monitored in 10 quadrats arranged along a diagonal transect in 

each field. The quadrats had an area of 1 m2, however different shapes were used in 

order to maintain the same proportion of crop row to inter-row space found in the 

field as a whole. The quadrats were spaced approximately 25 meters apart. Each year 

the transects were in approximately the same place. 
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Factors influencing weed densities 

Screening for important factors. Factors influencing weed densities were 
investigated by fitting a linear mixed-effects model of all a priori selected factors that 
could be influencing weed densities. These factors were farm, year, crop, hours of 
hand-weeding and number of mechanical control operations, and interactions 
between crop and weed control (both mechanical and hand-weeding). The random 
component of the model was fields within farms. Factors with/) < 0.1 were excluded 
from the model in a stepwise fashion. Once a model including only important factors 
was achieved, contrasts between factor levels were investigated. The model was fit in 
the statistical package R, using the linear mixed-effects function (lme). 

Effects of the factors were investigated for blooming and total average 
densities per field of S. media and of the other species excluding S. media. The data 
were log-transformed in order to satisfy the assumptions of normality. However, 
because there were quadrats with densities of zero, a constant had to be added. In 
order to determine which constant would yield residuals that fulfilled the assumption 
of normality, preliminary fitting of the models with different constants was carried out 
in order to examine which constant would be most appropriate for the analysis of 
each data set. 

The full model was first fit using the coarsest level of grouping the crops 
(level 2), which required only four degrees of freedom. At several stages in the 
analysis, the effect of using the lower level of grouping (level 1) was analysed by 
comparing the Aikake Information Criterion (AIC) values of models with the two 
different levels of grouping. At any point in the analysis, if a more detailed level 
yielded a lower AIC, then the model selection procedure was repeated, using the level 
1 crop grouping. The AIC is a measure of the amount of information in the data that 
is explained by the model and takes into account the number of parameters fitted 
(Burnham and Anderson 1998). It is calculated as —2£ + 2p , where i is the log-
likelihood resulting from fitting the data and p is the number of parameters in the 
model. The lower the AIC, the better the fit of the model. 

Investigating the effects of factor levels. After the most parsimonious model was 
found, the effects of the various factors were investigated by examining the 
coefficients of the models. For the factors other than farm, the coefficients were 
tabulated to show the contrasts between the different levels of each factor (e.g., 
differences between years or crops). In tabulating the contrasts, the aim was to 
identify general patterns, for example that one crop generally has a higher weed 
density than other crops. The structure of the data is too unbalanced to draw 
inferences concerning the value of particular factor levels. An absolute /-value greater 
than 2 was used as a guide to which factor levels are 'important' (the critical /-value for 
a 5% significance level is 1.96). 



Variability in weed species diversity and abundance 17 

RESULTS 

Patterns in weed abundance diversity and management 

Over the six years of the survey a total of 25 species were observed. S. media, 
with an average density close to 18 plants m~2, was by far the dominant species (Table 
3). No other species had average densities above 1. S. media was also the most 
abundant species on each farm with average densities ranging from 10 to 32 plants 
m2 (Table A2 in Appendix). Considering the dominance of S. media, for the 
remainder of the descriptive statistics, results are presented on the total weed densities 
on each farm with and without S. media. 

Table 3. Mean density and standard deviation per 
plot, averaged over fields, farms and year. 

Species Density (m~2) 
Capsella bursa-pastoris (L.) Medicus 0.662 (3.410) 
Cardamine hirsuta L. 0.002 (0.063) 
Chenopodium spp. 0.151 (0.749) 
Galeopsis tetrahit L. 0.001 (0.032) 
Galium aparineL. 0.001(0.032) 
Galingsogaparviflora Cav. 0.001 (0.032) 
Lamium spp. 0.050 (0.759) 
Matricaria discoidea DC. 0.195 (1.485) 
Myosotis arvensis (L.) Hill 0.001 (0.032) 
Oenothera biennis (L.) 0.014 (0.164) 
Plantago spp. 0.021(0.207) 
Polygonum aviculare L. 0.098 (0.561) 
Polygonum convolvulus L. 0.052 (0.354) 
Polygonum persicaria L. 0.115 (0.837) 
Ranuculus sceleraturs L. 0.201 (1.722) 
Rorippapalustris (L.) Besser 0.151 (0.848) 
Senecio vulgaris L. 0.851(10.66) 
Sinapis arvensis L. 0.001(0.032) 
Solanum nigrum L. 0.313 (1.849) 
Sonchus asper (L.) Hill 0.663 (3.382) 
Stellaria media (L.) Vill. 17.852 (36.129) 
Taraxacum officinalis Web. 0.375 (2.170) 
Thlaspi arvense L. 0.033 (0.397) 
Urtica urens L. 0.306 (3.454) 
Veronica persica Poiret 0.466 (4.928) 
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Table 4. Summary statistics on weed species diversity, density, and weed control. 

Farm 

3 

5 

6 

8 

9 

Species diversity 

Mean Total 

12.6 
(2.1) 
16.4 
(3.0) 
11.2 
(1.3) 
8.0 

(2.0) 
14.2 
(3.4) 

18 

20 

15 

15 

21 

Total weed 

+ 5. media 

19.9 
(26.0) 
42.4 

(40.2) 
14.8 

(12.3) 
19.4 

(37.8) 
16.9 

(30.0) 

density 

-S. media 

Blooming weed density 

+ S. media 

2.6 
(3.4) 
9.7 

(14.0) 
4.7 

(6.3) 
0.7 

(1.1) 
6.3 

(15.6) 

4.2 
(4.7) 
8.7 

(8.2) 
3.6 

(4.6) 
9.8 

(24.4) 
6.2 

(14.1) 

—S. media 

0.3 
(0.6) 
1.0 

(1.7) 
0.4 

(0.7) 
0.1 

(0.3) 
1.8 

(4.1) 

Weed control 

Hand 

hours ha-1 

32.8 
(37.6) 
81.6 

(99.7) 
30.5 

(41.4) 
14.0 

(16.8) 
47.1 

(72.7) 

Mechanical 

—number— 

4.1 
(1.5) 
3.5 

(1.6) 
3.5 

(1.4) 
1.6 

(1.4) 
4.7 

(2.9) 

Viewed from a variety of angles, several patterns emerge with regard to 

differences between farms. Farm 8 had the lowest number of species observed per 

year, by far the lowest total and blooming weed densities when S. media was excluded, 

and the fewest mean hours of hand-weeding and number of mechanical control 

operations (Table 4). When S. media was taken into account, the average weed density 

on Farm 8 was much higher, and no longer the lowest of all farms. Farms 5 and 9 

were at the other end of the spectrum, with higher number of species observed, high 

densities of blooming plants, and more hours of hand-weeding and mechanical 

control operations. Farm 5, though, had high total weed densities, while those on 

Farm 9 were relatively low. 

The high average for total weed densities on Farm 8 can be explained by 

examining the boxplots of the total and blooming densities for all species (Fig. 1). 

Because of the skewed nature of the data, the densities have been plotted on the log 

scale. The median total density on Farm 8 (Fig la) is the lowest of all farms. The high 

average densities on Farm 8 are therefore due to a few fields with very high densities, 

and which were composed mainly of S. media (compare Fig. la-b with Fig. lc-d). Farm 

5 remained as the farm with the highest densities in all categories. 

Rank-abundance diagrams indicate how evenly total abundance (over all 

species) is shared by the various species present on a farm (Fig. 2). If there are equal 

numbers of each species, then points will fall on a horizontal line when a random 

ranking is assigned to the species. The more negative the slope of the line drawn 

through the points, the more unequal the distribution of species. Farm 8 again stands 

out as being the farm with the most uneven distribution of species, while Farm 9 has 

the most even distribution. Within farms, there appear to be differences between years 
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Fig. 1. Box plots of weed densities (log scale) per field, with and without S. media populations. 
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10 15 

Year 
• 1997 

• 1998 

• 1999 

• 2000 

o2001 

0 5 10 15 10 15 
Species rank 

Fig. 2. Rank-abundance diagrams. Relative abundance and ranks averaged over year each farm, 
where abundance was the mean over all fields. 

in species richness and evenness. This may in part be due to differences in the number 

of fields and the type of crops monitored in a given year. 

Compared to other species, S. media was much more evenly distributed over 

quadrats, as it occurred in a large fraction of quadrats (Fig. 3), and its mean density, 

given that it occurred, was much higher than for the other species. On Farms 3 and 8 

most of the other species occurred on a small fraction of the quadrats, whereas on the 

other farms more species were found on a higher fraction of quadrats. The occurrence 

density also tended to be higher as the fraction of plots with a species increased. Some 

species on each farm were rather clumped — they occurred on a small fraction of 

quadrats but their occurrence density was relatively high. These clumped species 

differed from farm to farm. 
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Fig. 3. Mean weed density of each species per plot, given that the species occurs on the plot, 
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Fig. 4. Dot plots of hand-weeding on each farm for each crop type (level 1 grouping). 
Vertical random jitter has been added to increase visibility of overlying points. Not all crop 
types were grown on each farm. 

Hand-weeding was concentrated in carrot- and onion-like crops (Fig. 4), and 

no hand-weeding was carried out in grass-clover crops. Levels of hand-weeding were 

also low in potato and cereal crops. The number of mechanical control operations was 

lowest in grass-clover crops and also tended to be lower in potato crops (Fig. 5). In 

cereal crops, Farm 8 carried out no mechanical control and Farm 9 consistendy had 

the highest number of control operations. 
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Fig. 5. Dot plots of mechanical control operations on each farm for each crop type (level 1 
grouping). Vertical random jitter has been added to increase visibility of overlying points. Not 
all crop types were grown on each farm. 

Factors influencing weed densities 

The factors with important effects on weed densities varied slightly between 

the four groups of data (populations of all and blooming/seed-setting plants, with and 

without S. media — Table 5). For example, there were effects of mechanical control and 

hand-weeding on both total and blooming populations of S. media. For the 

populations of other weed species, there was an effect of hand-weeding only for the 

blooming population and no effect of mechanical control on either the total or 

blooming population. A better fit was achieved by the more fine level of crop 
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Table 5. Results of screening data for important effects. Results are given only for factors with 
p < 0.1. No interactions were found between crop group and hand-weeding or mechanical 
control. 

Factor 

Intercept 

Farm 

Year 

Crop group 1 

Crop group 2 

Mechanical 
control 

Hand-weeding 

Time of 
observation3 

F 

307.5 

2.6 

6.0 

— 

3.8 

7.8 

3.4 

-

Total 
S. media 

p-value 
(df) 

<0.000 
(1,97) 
0.0589 
(4,25) 
0.0002 
(4,97) 

— 

0.0121 
(1,97) 
0.0064 
(1,97) 
0.0678 
(1,97) 

-

population 
Other species 

F 

1.6 

14.9 

4.6 

7.4 

— 

-

— 

-

p-value 
(df) 

0.2080 
(1,95) 

O.0001 
(4,25) 
0.0021 
(4, 95) 

O.0001 
(7,95) 

— 

-

— 

-

F 

154.4 

1.7 

8.2 

10.4 

— 

6.4 

— 

2.8 

Blooming population 
S. media 

p-value 
(df) 

<0.0001 
(1,122) 
0.1798 
(4,25) 

O.0001 
(5, 122) 
<0.0001 
(7, 122) 

— 

0.0129 
(1,122) 

— 

0.0971 
(1, 122) 

Other species 
F 

192.2 

9.7 

— 

6.2 

— 

-

5.2 

5.7 

p-value 
(df) 

<0.0001 
(1, 127) 
<0.0001 
(4, 127) 

— 

<0.0001 
(7, 127) 

— 

-

0.0146 
(1, 127) 
0.0183 
(1, 127) 

"Relative to time of crop harvest 

grouping (see Table 2) for all populations, except the total population of S. media. The 

effect of farm was most important for the total and blooming population of S. media. 

There was some effect of time of observation relative to harvest time only for the 

blooming populations, and particularly for the population of species other than S. 

The coefficients for hours of hand-weeding were positive but small, such that 

weed densities and hours of hand-weeding were found to be slightly correlated (Table 

6). On the other hand, the coefficients for mechanical control were negative, 

indicating that fewer weeds were found as the number of mechanical weed control 

operations increased. Densities of blooming plants were slighdy smaller as the time 

Table 6. Coefficients for hours of hand weeding and number of mechanical control operations. 
Mechanical control Time of observation 

Hours hand-weeding operations relative to harvest 
df Coefficient t-statistic Coefficient -̂statistic Coefficient -̂statistic 

(St. error) (p-value) (St. error) (p-value) (St. error) (p-value) 
S. media 97 

total 
S. media 121 

blooming 
Other species 127 

blooming 

0.0038 
(0.0020) 

-

0.0055 
(0.0023) 

1.8473 
(0.0678) 

-

2.3460 
(0.0205) 

-0.1725 
(0.0574) 
-0.1044 
(0.0433) 

-

-3.0073 
(0.0034) 
-2.4041 
(0.0178) 

-

-

-0.0056 
(0.0033) 
-0.0131 
(0.0055) 

-

-1.6720 
(0.0971) 
-2.3904 
(0.0183) 
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Table 7. Contrasts and /-values (in parentheses) for the factor crop. The contrasts give the 
effect of year in a row relative to the year heading each column. Results are given for models 
where crop had p < 0.1. 

value 

1997 
1998 

1999 

2000 

2001 

1997 

1998 

1999 

2000 

2001 

1995 

_ 
-

0.570 
(2.878) 
1.295 

(6.546) 
0.762 

(3.814) 
0.485 

(2.308) 
0.534 

(2.659) 

S. media-
1997 1998 

_ _ 
0.749 
(3.02) 

-0.298 -1.047 
(-1.169) (-4.145) 

0.605 -0.144 
(2.288) (-0.544) 
-0.059 -0.808 

(-0.234) (-3.261) 

_ _ 

0.7255 
(3.694) 
0.1919 -0.534 
(0.951) (-2.618) 

-0.0843 -0.810 

1999 2000 1995 

_ 

0.904 
(3.391) 

0.24 -0.664 
(0.946) (-2.517) 

-0.276 
(-0.402) (-3.778) (-1.287) 
-0.035 -0.761 -0.2271 0.049 

(-0.170) (-3.662) (-1.077) (0.226) 

1997 1998 1999 

_ _ 
0.335 

(0.968) 
-0.864 -1.199 

(-2.429) (-3.312) 
-0.264 -0.599 

(-0.704) (-1.570) 
-0.359 -0.694 

(-1.014) (-1.926) 

— _ 

-

_ 
-

0.600 
(1.576) 
0.505 

(1.357) 

_ 

-

2000 

_ 
-

-0.096 
(-0.253) 

_ 

-

interval between observation and harvest increased. Using the /-values as a rough 

guide for the importance of contrasts between the levels of the categorical variables 

(year and crop), most differences between years were found for the total population of 

S. media (Table 7). In general, 1998 appears to have had higher weed densities, but the 

effect was important only for the S. media population. The important effect of year in 

1995 is due to the counting method used in 1995, such that when densities were 

higher than four plants per m2, they density class was five plants per m2. With regard 

to contrasts between crops (Table 8), in all four populations potatoes and cereals had 

more weeds than other crops and grass-clover crops had fewer weeds than other 

crops. Carrot and onion crops also tended to have fewer weeds than most other 

crops. The contrasts for the blooming population of the species other than S. media 

were less strong, in part due to the high proportion of observations with zero density. 
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DISCUSSION 

The aim of this paper has been to describe variability in weed diversity, abundance, 
and management practices and to explore the relation between weed densities and 
factors such as farm, year, choice of crop, hours of hand-weeding, and number of 
mechanical control operations. The results show that there is variation due to farm, 
year, and management practices. However, because factors affecting weed densities 
are intertwined, for example crop choice will influence the management options, it is 
difficult to unravel cause and effect. Examining the relationships from various angles 
and using anecdotal information from the farmers, it is possible to identify likely 
relations and to provide avenues for management, particularly through raising 
questions about the aims of management. 

Community aspects 

A frequently used argument for supporting policies to reduce use of 
herbicides and to encourage organic farming, is that such practices will contribute to 
increasing biodiversity (Kleijn et al. 2001, LNV 2002). There is evidence that higher 
use of herbicides does lead to reduced number of weed species (Ebregt et al. 1988, 
Crawley 1997, Squire et al. 2000, Mader et al. 2002). An important question is 
whether it is possible to have a high level of weed species diversity and still maintain 
weed densities at low enough levels so that a farmer is able to reach financial targets. 
From the observations on these farms, it appears that weed diversity is positively 
correlated with weed density. The level of diversity may still be higher than that found 
on conventionally managed farms, but it appears that managing for a low weed 
density, regardless of the method, is likely to lead to a lower species diversity — that 
there will be fewer species and the community is more likely to be dominated by a 
single species. If weed control pressure is not reduced because of low weed densities, 
then rare species are likely to become locally extinct. 

The possible trade-off between species diversity and weed abundance raises 
the question of what the goal of increasing weed diversity in organic systems is. Is it 
because some plants are aesthetically important? Is it that increasing diversity 
contributes to increasing crop yield by harbouring predators of crop pests? Or that 
certain weeds are an important food source for other organisms that have ecological 
or aesthetic value beyond crop production? A better understanding of the ecological 
function that different weed species play in an agro-ecosystem may help to clarify the 
objectives of increasing biodiversity in agricultural settings. Squire and colleagues 
(2000) suggest that, in evaluating weed diversity, species could be weighted by their 
functional role. 
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If the importance of a weed species is for aesthetic values or ecological roles 
beyond crop production, then it is important to know how increasing such 
populations will affect crop yield and financial aspects, in order to develop 
management strategies and policies that will achieve multiple goals. Furthermore it 
may be necessary to consider the spatial structure of such weed populations at the 
landscape level, and whether concentrations of certain weeds (patches) play a role in 
the metapopulation dynamics of dependent organisms. The metapopulation dynamics 
of weeds may be less important from the perspective of serving as a host to another 
organism, because of the possibility of selective hand-weeding. Of course, if such a 
species is unwanted in other fields or farms, then it is crucial to consider the 
metapopulation dynamics and dispersal characteristics of the species. 

Factors influencing weed densities 

For effective management of weed populations, it is critical to know which 
factors are influencing a weed population, the magnitude of their effect, and whether 
it is possible to exert any control over important factors. In screening for factors 
influencing weed density, it was clear given the summary analysis of the data that 
some factors, such as farm, would have an effect. The effect of farm can come about 
through choice of crop, location of the farm, or the management strategy adopted by 
the farmer. While there were some differences in the crops grown, the effect of farm 
was probably in most part due to the weed management strategy. On Farms 3 and 6, 
and particularly on Farm 8, attention is given to removing seed-bearing plants, even if 
there is not a threat to current yield. On Farm 8, for example, flowering and seed-
bearing plants of species other than S. media are removed from the wheat fields, while 
on Farm 3, time allowing, seed-bearing plants are removed from the onion field prior 
to harvest. In contrast, on Farm 5, germinating seedlings surrounded seed-bearing 
plants that have been observed to be left in the field after weeding. 

The finding that weed densities were positively correlated with hours of 
hand-weeding is an indication that the weed densities prior to control were very high, 
rather than hand-weeding being a cause of high plant densities. Understanding how 
hours of hand-weeding are related to weed densities at the start of the season will be 
important in developing models of weed population dynamics in organic farming 
systems and for finding optimal methods of hand control. For example does the 
removal rate (plants removed per minute) depend on the weed population density? 
One might expect that the removal rate would be a type 2 functional response 
(Holling 1959), where the removal rate first increases with density and then levels off. 
As the density increases, one does not need to travel as much to reach the next weed. 
On the other hand, at higher densities search time may increase because more weeds 
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may be hidden by the crop, and therefore at a certain density the removal rate might 

decrease. 

The effects of year were in the range of those for the factor crop, suggesting 

that factors beyond a farmer's control may have just as high an impact on weed 

densities as controllable factors. However, as the effect of year may have been 

influenced by the combination of crops sown in a given year, it is difficult to conclude 

from this study the actual degree of the impact of year. In improving weed control 

strategies it would be useful to have more concrete data on the variation due to 

uncontrollable factors and their possible interaction with weed management strategies. 

The pattern that cereal crops tend to have higher weed densities is not 

surprising given the difficulty of hand-weeding in a cereal crop. While the greater 

competitiveness of cereal crops relative to many weed species allows production of a 

reasonable yield, even in the presence of weeds, including too high a proportion of 

cereal crops in a rotation can lead to high inputs to the weed seedbank. These inputs 

of weed seeds will lead to extra efforts in controlling weeds in subsequent, less 

competitive crops. While the results indicated that weed densities were lower with 

more mechanical weed control operations, this does not necessarily mean that a 

higher kill rate will lead to lower weed densities in the long term. Future weed 

densities depend on the amount of weed seeds produced. Mertens and Jansen 

(Mertens and Jansen 2002) have shown that the kill rate must be very high in cereal 

crops which are sown at a wide enough row spacing to accommodate mechanical 

control, in order to have a seed production level as low as that found in a narrowly 

spaced crop. Farm 8 uses such a strategy of sowing the wheat crop at a narrow 

spacing and undersowing with clover much earlier than the other farms. Consequendy 

no mechanical weed control is carried out in the wheat crop. 

A second clear pattern that emerged was that grass-clover crops had very low 

weed densities compared with all other crops. There is much evidence suggesting that 

a properly managed grass-clover crop has very few weeds (Lueschen et al. 1993, 

Davies et al. 1997, Ominski et al. 1999, Sjursen 2001) and also that farmers perceive 

that they have fewer weed problems when the proportion of grass-clover years 

increases in the rotation (Entz et al. 1995). For the two farms that did include grass-

clover crops in their rotation, this crop consistendy had fewer weeds than the other 

crops. However, considering that Farm 9 had rather high overall weed densities, and 

that the sample consisted of just two farms, it is difficult to conclude whether the 

grass-clover crop is contributing to long-term reductions in weed densities. 

The effect and role of a grass-clover ley in weed management may be viewed 

from several perspectives. On the one hand it can serve to deplete the weed seedbank. 

The strength of such an effect may however depend on the species composition of 

the weed seedbank, as some weed species have persistent seedbanks (Roberts and 
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Feast 1972, 1973). On the other hand, if the weed seedbank increases only slighdy, a 

grass-clover ley can allow farmers to focus their resources on weed control in other 

crops, such as onions. Doing so gives the possibility of reducing the weed population 

much more than if wheat, for example, had been planted instead of grass-clover. The 

position that the grass-clover ley has in the crop rotation may also be important 

(Mertens et al. 2002). For example reductions in the weed population may be greater 

if the grass-clover ley precedes an onion crop. On Farm 8 such a strategy is adopted. 

The farmer reasons that the weed seedbank population, particularly that of S. media, 

declines during the grass-clover ley and that remaining seedlings are grazed by insect 

larva in preference to onion seedlings. Then, with the combination of flame weeding 

and mechanical control, the weed population is reduced to such levels that very few 

hours of hand-weeding are necessary. It is important to recall that on Farm 8, the 

weed population is dominated by S. media. In contrast, on Farm 9, the densities of 

species with persistent seedbanks are relatively higher. Furthermore the grass-clover 

ley usually occurs before a wheat crop, which, from the perspective of weed 

management, may not be the most beneficial position in the crop rotation. The impact 

of the grass-clover ley on reducing the weed population may therefore be less than 

could be expected. 

Considerations for future studies 

The aims of this study have been broad, and the methods used in monitoring 

have necessarily included some compromises. In this study the same quadrat size and 

number has been used regardless of the question at hand, e.g., species diversity or 

species abundance. It is well known that the number of species observed increases 

with the area surveyed. A more true impression of species richness may be achieved 

by monitoring a larger fraction of the field. Because some species are rare, while they 

may be present in a quadrat one year, the following year they may be just outside the 

quadrat. Therefore the quadrat size may need to vary between species, given the 

estimated abundance of each species at the start of the study. 

Management information, such as hours of hand-weeding or number of 

mechanical control operations give an indication of the approach a particular farmer 

uses for weed management. The goals a farmer has regarding weeds, the strategy used 

and the reasons for the operations carried out are much more difficult to quantify. 

These more qualitative aspects, however, provide valuable clues to variation in weed 

diversity and abundance as well as useful directions for research to improve weed 

management strategies. Some farmers may have a high density because they do not 

weed intensively in order to encourage a more diverse flora. Or it could be due to an 

injury that prevented mechanical control at a crucial period, and allowing many weeds 
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to reproduce at the end of the season. Such qualitative aspects cannot be captured via 
quantitative measures alone. 

As weeds are an essentially human-constructed problem, a better integration 
of the human dimensions, e.g., political, economic, and social aspects, into the study 
of weed ecology can help to focus research on relevant questions and help to design 
more effective management strategies. Long-term monitoring studies that incorporate 
quantitative data on weed populations, management, and environment, with 
qualitative information about farmer goals, strategies, tactics, and mishaps, are one 
method of incorporation human aspects with the biological aspects. 
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APPENDIX 

Table A l . Crops growing on each farm in the period 1995 to 2001 

Year 
Farm 3 
1995 
1996 
1997 
1998 
1999 
2000 
2001 

Farm 5 
1995 
1996 
1997 
1998 
1999 
2000 
2001 

Farm 6 
1995 
1996 
1997 
1998 
1999 
2000 
2001 

Farm 8 
1995 
1996 
1997 
1998 
1999 
2000 
2001 

Farm 9 
1995 
1996 
1997 
1998 
1999 
2000 
2001 

1 

Barley 
Carrots 
Wheat 
Onions 
Beans 

Potatoes 
Lettuce 

Peas 
Leek 
Oats 

Carrots 
Wheat 

Belgian endive 
Maize 

Potatoes 
Maize 
Onions 
Carrots 
Beans 

Potatoes 
Pumpkin 

Maize 
Peas 

Wheat 
Potatoes 
Wheat 

Shallots 
Cabbage 

Carrots 
Potatoes 
Wheat 
Onions 
Wheat 

Belgian endive 
Peas 

2 

Spelt 
Onions 
Peas 

Potatoes 
Wheat 
Carrots 
Oats 

Oats 
Potatoes 
Wheat 
Onions 
Oats 

Potatoes 
Pumpkin 

Onions 
Spelt 

Carrots 
Beans 

Potatoes 
Peas 

Wheat 

Grass 
Onions 
Maize 

Peas/Broccoli 
Wheat 

Potatoes 
Grass 

Wheat 
Onions 
Oats 

Carrots 
Peas 

Potatoes 
Grass 

3 

Poppy 
Potatoes 
Barley 
Carrots 
Wheat 
Onions 
Lettuce 

Onions 
Spelt 

Belgian endive 
Peas 

Potatoes 
Cauliflower 

Onions 

Celery 
Peas 

Potatoes 
Corn 
Wheat 
Onions 
Carrots 

Cabbage 
Wheat 

Potatoes 
Grass 

Onions 
Cabbage 
Onions 

Carrots 
Peas 

Potatoes 
Grass 
Celery 
Wheat 

Belgian endive 

Field 
4 

Onions 
Peas 

Potatoes 
Wheat 
Carrots 

Oats 
Cabbage/Onions 

Potatoes 
Peas 

Onions 
Wheat 
Carrots 
Wheat 
Beans 

Wheat 
Onions 
Wheat 
Onions 
Carrots 
Beans 

Potatoes 

Potatoes 
Grass 

Onions 
Maize 

Peas/Broccoli 
Wheat 
Onions 

Onions 
Oats 

Carrots 
Peas 

Potatoes 
Grass 

Sugar beet 

5 

Cabbage 
Barley 
Carrots 
Wheat 
Onions 
Beans 

Potatoes 

Carrots 
Beans 

Potatoes 
Maize 
Onions 
Carrots 
Beans 

Wheat 
Carrots 
Beans 

Potatoes 
Maize 
Wheat 
Onions 

Wheat 
Potatoes 

Grass 
Onions 
Maize 

Peas/Broccoli 
Potatoes 

Potatoes 
Wheat 
Onions 
Wheat 
Carrots 
Peas 

Potatoes 

6 

Carrots 
Wheat 
Onions 
Beans 

Potatoes 
Lettuce 
Celery 

Flax 
Belgian endive 

Maize 
Potatoes 
Cabbage 
Shallots 
Wheat 

Peas 
Potatoes 
Maize 
Wheat 
Onions 
Carrots 
Beans 

Onions 
Maize 

Peas/Broccoli 
Wheat 

Potatoes 
Grass 

Shallots 

Oat 
Carrots 
Peas 

Potatoes 
Grass 

Sugar beet 
Wheat 
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INTRODUCTION 

In Northern Europe agricultural policies are being implemented to encourage 

farming systems that do not use herbicides or other artificial inputs (Lucas and Pau 

Vail 1999). In the Netherlands, for example, currendy about 1% of agricultural land is 

managed without artificial inputs and the goal is to increase this to 10% by 2010 (LNV 

2000). A major concern for these farmers is weed control. 

In cereal crops, farmers relying on non-herbicide-based systems of weed 

control often use a wider row spacing of 23 to 30 cm compared to their conventional 

(herbicide-applying) colleagues, who typically sow in the range of 9 to 12 cm. The 

wider row spacing allows mechanical weed control with a hoe using goosefoot or V-

shaped blades, as well as with a harrow. In narrower spaced crops only the harrow can 

be used. The efficacy of harrowing is highest with weed seedlings, while a hoe is able 

to control plants with more developed root systems (Rasmussen and Ascard 1995). 

Consequendy hoeing, particularly in combination with harrowing, tends to be more 

effective, in terms of fraction of weeds killed, than harrowing alone. 

Much previous work has shown, however, that weed biomass and density in 

cereal crops is reduced with a narrower crop row spacing, a higher planting 

population, or a combination of both (Teasdale and Frank 1983, Medd et al. 1985, 

Champion et al. 1998). Furthermore it is known that that seed production per plant 

tends to increase with biomass (Samson and Werk 1986, Thompson et al. 1991). Thus 

one expects that crop spatial arrangement will also affect weed seed production. The 

few studies addressing seed production per weed plant and crop spatial arrangement 

support this contention (Wilson et al. 1995, Teasdale 1998, Young et al. 1999). 

The decision to use a row spacing suitable for hoeing may therefore carry the 

trade-off of higher seed production per weed plant. A crucial question is whether the 

increased efficacy of hoeing is great enough to balance potential increases in seed 

production of surviving plants caused by a wider row spacing. From a long-term 

perspective a reasonable criterion for effective weed management is a declining weed 

population, which implies that weed seeds are not able to replace themselves. 

Minimising seed production per seedling can be an important part of lowering the 

weed population growth rate. It does not matter, though, whether seed production 

per seedling is decreased by lowering the density of plants by killing them or by using 

interference from the crop to decrease seed output per adult plant. 

Our aim was to investigate whether seed production per surviving plant is 

higher in a widely spaced wheat crop and, if so, whether more aggressive weed control 

can compensate for it. We considered three weed species common to the Netherlands 

and having different growth habits: wild buckwheat, ladysthumb, and chickweed, 
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growing in spring wheat sown at three row spacings and two sowing densities. Spring 

wheat is commonly grown by farmers in the Netherlands who do not use herbicides. 

The three row-spacing treatments (10, 20, and 30 cm) encompassed the range of 

spacings used in practice and in which the 30 cm spacing allows hoeing. The lower 

sowing density (140 kg ha-1) was typical, while the high density (180 kg ha-1) was 

considered to be the upper limit of sowing densities that farmers would use. 

M A T E R I A L S A N D M E T H O D S 

Experimental Methods 

Study Site 

The experiment was conducted in 1999 and 2000 at the Lovinkhoeve 

Experimental Farm (52°41' N and 5°53' E), near Marknesse in the Netherlands. The 

experiment was in a different field each year. The soils on both fields were calcareous 

polder vague soils with a loamy surface, a particle distribution of 12% sand, 68% silt, 

30% clay (de Vos et al. 2000), and had 2 .3% organic matter and a pH of 7.4 (AB-DLO 

1997). Each year the crop preceding the spring wheat crop was sugar beet. The 

experimental fields had been managed without pesticides or inorganic fertilisers since 

1995. 

Cultural Practices 

The fields were moldboard ploughed in the winter, and in April of each year 

catde manure was injected. This was immediately followed by seedbed preparation 

and sowing. See Table 1 for details on dates of operations and amounts of manure. 

Weed control consisted of harrowing or hoeing and harrowing. Harrowing was carried 

out with an Hatzenbichlet spring tine harrow with a working width of 12 m, and 

hoeing with a Rabe hoe with a working width of 3 m (10 rows) and using 20 cm wide 

V-shaped blades. 

Experimental Design 

To expedite field operations a randomised split-plot design with four 

replicates was used for testing the effects of row spacing/weed control intensity 

(associated with main plots) and sowing density (associated with sub-plots). Main 

plots were 3 m by 80 m and split plots were 3 m by 40 m. Three levels of row spacing 

were used, 10, 20, and 30 cm. The two sowing densities were 140 and 180 kg ha -1. 

This corresponded to 330 and 430 seeds m~2 for the cultivar Lavette and 350 and 450 

seeds m~2 for the cultivar Baldus. In 1999 the row spacing/weed control combinations 

used were (a) 10 cm and harrowing twice, (b) 20 cm and harrowing twice, and (c) 30 
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method of harvesting these plants was to step 60 cm from the used area and harvest 

the first n individuals encountered in each row, with the number n determined so that 

about 10 plants were harvested per treatment, with approximately an equal number 

from each row. A total of 404 individuals were harvested. 

Weed harvest and processing. For all experiments, surviving weed plants were 

harvested 12 weeks after seedling germination (4 weeks before the crop was 

harvested). This harvest time represented a balance between minimising seed loss due 

to shedding and allowing as many mature seeds as possible to be produced. 

Immediately after harvesting the plants were dried at 80°C for 24 hours. 

Prior to weighing they were re-dried for two hours at 80°C and sealed. Seed 

production was determined by randomly drawing 10 plants from six (1999) or five 

(2000) dry-mass classes in each of the three row spacing treatments, combining plants 

across replicates and sowing densities. Plants were threshed and the viable seeds were 

separated using a Dakota Seed Blower and then counted by hand. The airflow in the 

blower was adjusted so that immature, cracked and aborted seeds were blown out, 

leaving only seeds that would have passed the test of being squeezed with forceps. 

Data Analysis 

Weed Seed Production 

Seed production per plant. Weed seed production per surviving plant was 

modelled by regressing seed production per plant against individual plant dry mass. 

Effects of year, population (planted or natural), and row spacing/sowing density 

treatment were investigated by including these terms sequentially in the model. In 

determining which regression model to use for seed production, we examined which 

factors had significant F-probabilities (p < 0.05), the possible causes of differences 

between the models, and whether models with more parameters resulted in large 

differences in the predictions of seed number. 

Average seed production per seedling. First the average seed production per surviving 

plant of each species was calculated by inserting the average biomass per plant in the 

regression equation for seed production per plant. Average seed production per seedling 

was then calculated by multiplying average seed production per surviving plant by the 

estimated mean fraction of plants surviving in a given row spacing/ sowing density 

treatment: 

4 = 4A, (i) 
where Ski is the average seed production per seedling in the kth row spacing level and 

Ah sowing density level, hu is the mean fraction of plants surviving, and Yu is average 

seed production per plant, as calculated with the regression equation for seed 
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production. Mean plant survival was given by the predicted means resulting from 

logistic regression of plant survival. The logistic regression model was fitted in a 

stepwise fashion to account for the split-plot design. 

Presentation of results. Results of calculations of seed production per plant and 

per seedling were plotted on graphs where the Ar-axis represents a range of seed 

production per surviving plant (Ykl), the j -axis represents plant mortality (Mki), and 

where isolines indicate constant amounts of seeds per seedling for a range of seeds 

produced per surviving plant and all possible mortality levels. The equation for the 

isolines is 

MU=\-SJYU (2) 

where Mu is plant mortality, and S, Y, k, and / are as given for equation 1. For a given 

treatment, the average fraction of plants dying and seeds per surviving plant have been 

measured. These pairs are plotted on the graph and the number of seeds produced per 

seedling can be inferred from the position of each point in relation to the isolines. 

Note that by rearranging equation 2 so that Ski = (1—Mki)Yki, one arrives at equation 2 

because hki - \—Mki. 

Effects of Row Spacing and Sowing Density 

Dry mass per plant. Calculating seed production per seedling involves 

combining variables with different distributions; consequendy it is difficult to direcdy 

compute effects of the treatments on seed production per seedling. However, it is 

straightforward to calculate the effects of the treatments on plant dry mass. 

Furthermore the effects of survival can be incorporated by considering dead plants as 

having zero mass. Analysis of plant dry mass gives an indication of the effects of the 

treatments on seed production per individual (plant or seedling) because of the linear 

relation between seed production and plant dry mass. 

Effects of the treatments on the biomass of surviving plants and all plants 

were investigated by fitting a generalised linear model, based on the normal 

distribution, to the log-transformed plant dry weights (Neter et al. 1996a). For the 

analysis including dead plants, the transformation was log (dry mass + 1) in order to 

avoid taking the logarithm of zero. The model was fitted sequentially in order to 

generate the appropriate block and error terms for a split-plot design. Data from 

different years and populations were analyzed separately. 

Crop yield. Analysis of variance using error terms appropriate for a split-plot 

design was used to analyze crop yield. Data for each year were analyzed separately. 
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RESULTS AND DISCUSSION 

Weed Seed Production 

Seed Production per Plant 

For all species, seed number per plant clearly increased with dry mass per 

plant (Fig. 1). Using the arithmetic average of plant dry mass (Table 2), we calculated 

average seed production per surviving plant (consider x-coordinates of points in Fig. 

2). Up to 3 times more seeds were produced per surviving plant in the 30 cm 

treatments than in the 10 cm treatments. Differences in seeds produced per surviving 

plant reflect differences in plant dry mass, and are discussed in connection with effects 

of row spacing and sowing density. 

Table 2. Arithmetic means of plant dry mass and estimated mean fraction of surviving 
plants. In 2000, wild buckwheat seedlings were planted only in the 10 cm treatments (both 
sowing densities) and in the 30 cm, 140 kg ha"1 treatment. 

Species 

Wild buckwheat 

Ladysthumb 

Common chickweed 

Year 
(population) 

1999 (natural) 

2000 (planted) 

1999 (natural) 

2000 (planted) 

2000 (natural) 

1999 (natural) 

2000 (planted) 

Row 
spacing 

cm 
10 
20 
30 
10 
20 
30 

10 
20 
30 
10 
20 
30 
10 
20 
30 

10 
20 
30 
10 

20 
30 

Plant mass 

140 

e 
0.546 
1.071 
1.162 
0.188 

-
0.254 

0.426 
0.814 
1.153 
0.402 
0.363 
0.397 
0.421 
0.860 
1.102 

0.328 
0.470 
0.727 
0.107 

0.121 
0.145 

Survival 
sowing density (kg ha ') 

180 
planr1 

0.404 
0.757 
1.331 
0.180 

-
-

0.378 
0.547 
0.591 
0.303 
0.396 
0.438 
0.421 
0.662 
0.789 

0.280 
0.363 
0.639 
0.092 

0.108 
0.142 

140 180 
fraction 

0.9 
0.9 
0.6 
0.9 

-
1.0 

0.9 
1.0 
0.6 
0.8 
1.0 
1.0 
-
-
-

0.8 
0.9 
0.6 
1.0 

1.0 
1.0 

0.9 
0.9 
0.6 
0.9 

-
-

0.8 
0.9 
0.5 
1.0 
0.8 
1.0 
-
-
-

0.8 
0.9 
0.5 
1.0 

1.0 
1.0 
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1000 
a. Wild buckwheat 

y = 75.816X + 2.6666 
R2 = 0.9575 

J I 1 1 1 

0 1 2 3 4 5 6 7 8 9 10 11 12 

1500 

y = 141.71x-16.55 
R2 = 0.8037 

0 1 2 3 4 5 6 7 8 9 

900 
ogg c. Common chickweed 

700 • 

—I L 

y = 166.71x+22.841 
R2 = 0.6623 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 
Rant dry mass (g) 

Fig. 1. Relationship between plant dry mass and seed number. 
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Fig. 2. Isoline graphs of seed number per seedling for given levels of seeds produced per 
surviving plant and levels of mortality. Isolines are of equal numbers of seeds per seedling and 
value can be read from intercept with x-axis. (a) wild buckwheat, (b) ladysthumb, and (c) 
common duckweed. 
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The simplest model for seed production, including only dry mass per plant, 

was used for each species. There were significant effects of different factors for each 

species: for wild buckwheat there was a significant effect of year (p = 0.013); and for 

ladysthumb and common duckweed, there was a significant effect of row spacing (p — 

0.005 and p — 0.034, respectively), and of an interaction between row spacing and 

sowing density (p = 0.043 and p = 0.007, respectively). These significant effects are 

due to overfitting, as the few observations of plants with a high dry mass had a high 

leverage, particularly when factors besides dry mass were included in the model. There 

was no systematic pattern in the predictions of the models including the different 

factors, as one might expect if there was a biological reason for the effects. We 

therefore opted to model seed production using only dry mass per surviving plant. 

For each species, this one-variable model slightly overestimated plant mass in the 10 

cm treatments, and slightly underestimated plant mass in the 30 cm treatments, 

compared to the models including the factors with significant effects. 

It is likely that seed production per surviving plant, particularly in the 30 cm 

treatments may have been underestimated, if plants had been allowed to remain in the 

field until crop harvest and if all seeds could have been collected. During harvesting 

and cleaning the seeds it appeared that large plants may have had a higher fraction of 

immature seeds, which could perhaps have matured by the time of crop harvest. At 

the time of harvest very few seeds appeared to have been shed from the wild 

buckwheat and ladysthumb plants and care was taken not to lose any during the 

harvest. For common chickweed, as it started flowering earlier, the fraction of seeds 

shed was higher than for the other two species, but losses were probably less than 

10%. For all species, a higher fraction of seeds was probably lost from larger plants 

than from smaller plants. If seed production of the larger plants was indeed higher 

than we measured, then the slopes of the regression line for seed production would 

have been higher, and therefore the average amount of seeds per surviving plant 

would have been higher, particularly for larger plants, than the results we obtained 

here. 

Average Seed Production per Seedling 

After taking into account plant survival (Table 2), average seed production 

was still lower in the 10 cm spacing than in the 20 and 30 cm treatments and was 

generally lower in the 180 kg ha - 1 treatments than in the 140 kg ha_I treatments (Fig. 

2). Seed production per seedling in the 10 cm treatments was about one half to three 

quarters of that found in the 30 cm spacing, for all sowing densities. The exception 

was ladysthumb (experiment 2, 140 kg ha -1), where the same level of seed production 

per seedling was achieved in both the 10 and 30 cm treatments. In the 20 cm 

treatments, particularly at the higher sowing density, the average seed production per 
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Usefulness of the Method 

In this work we have used the individual as our unit of reference, e.g., seed 

production is reported per plant or per seedling rather than per plot or per unit area. 

The individual as a unit of reference arises naturally from the criterion that weed seeds 

should not replace themselves. While such a perspective necessarily results in 

laborious experiments, it provides a number of advantages. Firsdy, one can 

immediately interpret results from the perspective of weed population dynamics, e.g., 

for the time interval and conditions observed, one has an impression of whether the 

weed population is growing (seeds are more than replacing themselves), or declining 

(seeds are not replacing themselves). Secondly, weed plants usually have a 

heterogeneous spatial distribution. Therefore when plant mass or seed production is 

reported per unit area or per plot, or when the efficacy of weed control is reported 

with reference to a control plot, the results may be difficult to interpret as the density 

is unknown. For the same reason it is difficult to compare results between studies. 

Thirdly, non-linear relations may be present, for example between seed production 

and plant mass, or between mortality and plant density. If one wished to predict 

average seed production per plant from a non-linear relation between seed production 

and plant mass, then the mass of individual plants is needed rather than average mass 

per plant as calculated from total mass per plot divided by plant density. 

Other advantages of an individual perspective are that one obtains many 

more data points per unit area and that one can measure resource availability in terms 

of effects on individual plants. For the former advantage, with more data points one 

can obtain better estimates of the shape and parameters of distributions for plant 

mass or seed production per plant. With respect to the latter advantage, one can 

measure the local density or other aspects of the local environment around a target 

weed plant. For example, the mass of a target plant may bear little relation to densities 

reported on a per unit area basis because weed density is heterogeneous; what matters 

is how many plants were close to the target weed plant. 

In this study, we have been concerned with the combined effects on 

mortality and seed production of crop planting pattern and weed control. By taking 

this combined perspective it is possible to save space and time because the factor 'no 

weed control' does not need to be included in the experiment. If one wished to 

attribute separately the effects to crop planting pattern and weed control, the 

additional 'no control' factor is of course necessary to avoid confounding of the 

results. 
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Implications of Results for Non-Herbicide Weed Management 

Our aim has been to examine whether a widely spaced wheat crop, in 

combination with more intensive weed control, produces more or less weed seeds 

than a wheat crop grown under a narrow row spacing with less intensive weed 

control. The results indicate that it would indeed be beneficial, at least for the weed 

species concerned and in spring wheat, to use a narrow row spacing and less intensive 

methods of control. Although more plants survived in the narrowly spaced 

treatments, their seed production was so low that the lower plant survival in the wide 

row spacing could not counterbalance the higher seed production per plant. While the 

higher sowing density (180 kg ha-1) tended to decrease seed production, the 

differences were not large. We expect, however that a sowing density higher than 180 

kg ha - 1 may have a greater effect, particularly in the 10 cm treatment. The recent work 

of Weiner et al. (2001) indicates that using uniform crop planting pattern and a high 

sowing density could lead to even greater reductions in weed size and hence greater 

reduction in weed seed production. 

As we examined effects of row spacing/weed control and sowing density on 

only three weed species, it is useful to consider whether the conclusions may apply to 

other species, and to winter cereal crops. In spring crops the benefits of using a 

narrow row spacing are likely to carry over to most annual species. The three species 

considered here have rather different growth forms, with common chickweed and 

particularly wild buckwheat being able to forage for light by winding their stems 

through and up the crop. All three species still showed significant effects of the row 

spacing treatment. This suggests that a substantial effect of a different row spacing 

and sowing density may be on early growth, and that the effects cannot be overcome 

by an ability to forage for resources. Using a narrow spacing may not have large 

benefits over a wide row spacing and hoeing when weeds are able to emerge earlier 

than the crop and when early crop growth is slow, a situation common in fall and 

winter sown crops. Considering the large area devoted to winter cereal crops in 

Northern Europe and North America, further research on trade-offs between crop 

spatial pattern and control would, however, be useful. 



CHAPTER 4 

Local Predictors of Biomass and Survival 
for Weeds Growing in a Crop 

ABSTRACT 
Key questions in weed ecology concern the probability of a weed surviving and the number of seeds 
it will produce. We ask whether weeds growing in a crop experience different local environments, 
and whether these local environments can be used to predict individual survival and reproductive 
potential. In an experiment with spring wheat, we created a variety of environments by imposing 
three row spacing/weed control treatments and two sowing density treatments on the crop. The 
widest row spacing level was associated with mechanical hoeing and harrowing, while the other two 
row spacing levels were associated with harrowing or no control. The local environment around 
each weed plant was described by the distances to the nearest crop and other weed plant, and the 
local crop row width. The survival and dry mass of three naturally occurring weed species (Polygonum 
convolvulus, Polygonum persicaria L. and Stellaria media (L.) Vill.) was measured. Plant survival declined 
with distance to the nearest crop plant only in the wide row spacing, where weed control was with a 
mechanical hoe. Plant dry mass for all species increased linearly with the square of the distance to 
the nearest crop plant and the square of the local row spacing. Reciprocal predictors of plant mass 
did not fit the data well. Local predictors, based on local environments, can be used to predict 
individual weed survival and reproductive potential and thus provide a means to examine the effect 
of crop planting patterns and weed control on weed population dynamics. 

Adapted from: Mertens, S. K. Local predictors of biomass and survival for weeds growing in a crop. 
Submitted. 
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INTRODUCTION 

Plants, as sedentary organisms, grow and reproduce in response to their local 

environment and variability in local environments is thought to be responsible in part 

for the variability in plant size (Harper 1977). The local environment around a plant 

can be described by the local density of other plants, the amount of unoccupied space, 

or specific measures of resource availability. 

Research on weed-crop competition has rarely been conducted at the level of 

individual weed performance in relation to the local environment. Early research was 

more concerned with the effect of weeds on crop yield (e.g., Bleasdale 1960, Appleby 

et al. 1976, Buchanan and Hauser 1980, Martin et al. 1987), and therefore attention 

was given to the environment of crop plants. With the increasing focus on developing 

weed management strategies where weeds are not allowed to replace themselves in 

future generations, more attention is being given to the effects on weed plant 

performance due to competition with the crop. Most of the studies (e.g., Teasdale 

and Frank 1983, Medd et al. 1985, Champion et al. 1998) have examined either 

effects on weed density or on weed mass per unit area, implicitly assuming that the 

mean environment of an individual plant is an adequate description of what it 

experiences. But, the environment is likely to be different for individuals in different 

locations (Fig. 1). The range of possible environments will depend on the crop 

planting pattern (dictated by the row spacing and sowing density) and the evenness 

with which the crop emerges. Therefore an individual-based approach to studying the 

effects of crop spatial arrangement on weed performance may be more appropriate. 

The few studies (Teasdale 1998, Young et al. 1999) that have examined the effects of 

the local environment on individual weed plants have manipulated the placement of 

plants so that information on differences in environments in a more typical weed-crop 

setting is unknown. 

A central question in weed ecology and management is which weeds 

contribute most to future generations and how their performance is related to their 

local environment. In order to address this question it is necessary to know whether 

there are differences in the local environment that weed plants experience and 

whether these differences are reflected in measures of plant performance. We 

addressed these aspects using naturally occurring populations of Polygonum convolvulus, 

Polygonumpersicaria L. and Stellaria media (L.) Vill., growing in spring wheat at three row 

spacings and two sowing densities. Different row spacing levels were associated with 

different types of mechanical weed control. In the widest row spacing, mechanical 

hoeing and harrowing were applied, while in the two narrower row spacing levels only 
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harrowing or no control was applied. The measures of plant performance 
were survival and plant mass. Because there is a close relationship between plant mass 
and seed production, mass can be used as a measure of reproductive potential 
(Samson and Werk 1986, Weiner 1988, Thompson et al. 1991). Below we briefly 
review past work on descriptors of the local environment and predictors of plant 
performance. 

Descriptors of the local environment 

The local environment around a plant can be described using either summary 
measures (local density or space available) or specific measures such as local levels of 
light, water or nutrients. Studying plant performance in relation to specific 
measurements of resource availability is important for establishing the biological 
processes influencing plant performance. Changes in a plant's local environment, 
however, are most likely to come about through changes in summary measures, such 
as distance to, or size of neighbouring plants. Summary measures also have the 
advantages that they are simple to measure, are not specific to a particular system, and 
that future environments can be calculated from the past environment using spatially 
explicit models of plant population dynamics. 

The most common summary descriptors of the local environment around a 
target plant have been the density of neighbouring plants around a target plant 
(Weiner 1982, Firbank and Watkinson 1987) or the amount of unoccupied space 
(Mead 1966, Firbank and Watkinson 1987). In the neighbourhood approach, the 
number of neighbouring plants is counted in an area surrounding the target plant, 
giving the neighbourhood density. An optimal neighbourhood can be found by using 
a radius that gives the best fit to the relationship between target plant mass and 
neighbourhood density (Silander and Pacala 1985). The relationship between plant 
performance and other descriptors such as the biomass or size of neighbouring plants, 
their distance to the target plant or their angular dispersion relative to the target plant 
has also been investigated (Ross and Harper 1972, Mack and Harper 1977, Weiner 
1982, Silander and Pacala 1985). Local density approaches have tended to be more 
informative compared to area-available approaches. 

In this study we used distance measures, such as the distances to the nearest 
crop plant and nearest other weed plant, and the local row spacing, to describe the 
local environment around target weed plants rather than neighbourhood density. 
Because crop plants are arranged in a regular pattern, the number of crop plants for a 
given neighbourhood size is likely to be the same for different target weed plants, 
unless the neighbourhood size is very different from a multiple of row width. Weed 
plants are also likely to be affected most by crop plants in the adjacent rows and 
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therefore the neighbourhood size is likely to be closely related to row width and 
distance to the nearest crop plant. 

Predictors for plant mass and survival 

Local predictors of plant performance are the models relating plant mass, 
reproductive effort, or chance of survival to descriptors of the local environment. 
Local predictors of plant mass have often been based on models developed to study 
the relationship between yield (mass or reproductive output per unit area) and density 
(Kira et al. 1951, Bleasdale and Nelder 1960, de Wit 1960, Holliday 1960). In a 
review by Willey and Heath (1969), two main forms of relationships between yield 
and density are given — linear ones with or without quadratic terms, and nonlinear 
ones, principally of a hyperbolic form. A hyperbolic form of predictor is intuitively 
satisfying because it can be derived from assumptions concerning plant growth over 
time, because the parameters have biological interpretations, and because as density 
goes to zero, yield per unit area will reach a constant level. 

Local predictors of plant mass typically use the local density in place of mean 
density and predict individual plant mass rather than mass per unit area. Area available 
or distance measures can be incorporated by using the reciprocal of these descriptors. 
Some studies have used multiple linear regression to relate measures of the local 
environment to plant performance (Hickman 1979, Waller 1981), while others have 
used non-linear equations analogous to those developed to describe yield-density 
relations (Soetono and Puckridge 1982, Weiner 1982, Silander and Pacala 1985). 
Different basic forms of local predictors for plant mass have rarely been compared. In 
this study we fitted both linear and reciprocal forms of the local predictors and 
examined the effect of using linear, quadratic, or cubed transformations of the local 
descriptors. 

Local predictors of plant survival have rarely been developed and when they 
have, results have not been consistent (Pacala and Silander 1990). Because local 
densities must often be so high to induce mortality (Harper 1961, Watkinson and 
Lonsdale 1983), plants in such situations may all experience nearly identical 
neighbourhoods and therefore the chances of survival will be similar for all 
individuals. In other situations, where an outside control agent can be applied, survival 
may be related to the local environment of a plant. For example in an agro-ecosystem, 
the effectiveness of mechanical control or herbicide spraying may be influenced by the 
distance a weed plant is from a crop plant. Local predictors of plant survival can then 
be developed using, e.g., logistic regression since survival is a binary variable. 
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M E T H O D S A N D M A T E R I A L S 

Experimental methods 

General. The experiment was conducted during 1999 and 2000 with spring 

wheat (Triticum aestivum L.) at the Lovinkhoeve Experimental Farm in the Netherlands 

and in 1999 at the Wageningen University Unifarm. In 1999 the variety was Lavette, 

while in 2000 it was Baldus. Table 1 summarises the experimental set-up at each of 

the locations and the sample siaes for each of the species. Further details of the 

experimental method at the Lovinkhoeve site are given in Chapter 3. 

At the Lovinkhoeve site, the row spacing levels were 10, 20, and 30 cm and 

the sowing densities were 140 and 180 kg ha -1 , corresponding to 330 and 430 seeds 

m~2 for the cultivar Lavette and 350 and 450 seeds per m - 2 for the cultdvar Baldus. A 

split-plot design with four replicates was used, where row spacing/weed control 

intensity was associated with main plots and sowing density was associated with sub

plots. Weed control consisted of only harrowing with a spring-tine harrow (in the 10 

and 20 cm treatments), or hoeing and harrowing (only in the 30 cm treatments). The 

harrow consisted of thick wires, 50 cm long, mounted 10-20 cm apart on a 12 by 2 m 

frame that was dragged behind the tractor. It was used in all treatments. The hoe 

consisted of 10, 20-cm wide, V-shaped blades that were dragged behind the tractor 

and could only be used in the 30 cm treatments. In 1999 harrowing was carried out 

twice and hoeing was carried out once. In 2000, because of weather conditions, no 

control was possible. 

At the Unifarm site, there were two replicates of three row spacing levels: 9.3, 

18.6, and 27.9 cm and the sowing density was 140 kg ha -1. The only weed control was 

manual hoeing in the 27.9 cm treatments using two passes with a 15 cm hoe blade 

pushed just under the soil surface. 

Study species and method. The three weed species considered in this study were 

naturally occurring populations oi Polygonum convolvulus, Polygonum persicaria, and Stellaria 

media. Following the fate of individual plants was made possible by marking 

individuals with aluminium rings and recording the co-ordinates of their positions in 

each plot. At the Lovinkhoeve site in 1999, for most of the plots, all individuals of P. 

convolvulus and P. persicaria present in a plot were marked. Due to high densities at the 

Unifarm site and one plot at the Lovinkhoeve site (for P. convolvulus only) the 

individuals were randomly selected. Because of the range in sizes of S. media plants, 

only those with four true leaves were considered. For 2000, data were only collected 

for P. persicaria, as there were insufficient numbers of naturally occurring P. convolvulus, 

and S. media individuals. Furthermore the naturally occurring P. persicaria population 

was sparse and could only be identified at the time of harvesting. Therefore no 

mortality data were available. 
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Table 1. Overview of experimental set-up, data collected, and sample sizes in each of the 
three experiments. 

Experimental set-up 
Row spacing (cm) 
Sowing density (kg ha"1) 
Number of replicates 
Variety of spring wheat 

Individual plant performance 
Plant mass 
Plant survival 

Neighbourhood descriptors 
Distance to nearest crop plant (cm) 
Local row spacing (cm)a 

Distance to nearest other weed plant 

Sample sizes (varied row spacing) 
Polygonum convolvulus (# surviving) 
Polygonum persicaria (# surviving) 
Stellaria media (# surviving) 

Lovinkhoeve 

10,20,30 
140, 180 

4 
Lavette 

Yes 
Yes 

Yes 
Yes 
Yes 

906 (733) 
578 (444) 
1041(790) 

1000 
- 1 7 7 7 

Unifarm 

9.3,18.6,27.9 
140 
2 

Lavette 

Yes 
Yes 

Yes 
Yes 
Yes 

258(200) 
249(186) 

0 

—2000— 
Lovinkhoeve 

10,20,30 
140, 180 

4 
Baldus 

Yes 
Yes 

Yes 
Yes 
No 

0 
402(402) 

0 

In 2000 the local row spacing was measured as the gap width. See section Methods and Materials 
(Neighbourhood descriptors), and Fig 2 for explanation. 

For all experiments, the above-ground part of surviving weed plants was 

harvested 12 weeks after seedling germination, 4 weeks before the crop was harvested. 

Immediately after harvesting the plants were dried at 80°C for 24 hours. Plants were 

then weighed and survival was noted. 

Neighbourhood descriptors. The descriptors of a weed's neighbourhood were the 

distance of a target weed plant to the nearest crop plant, the distance to the nearest 

other weed plant, and the local row width (Fig. 2). Measurements of the local row 

width were made because the row spacing within each treatment varied due to effects 

of the tractor wheels during sowing (the wheels caused furrows which then pushed 

the pipes of the sowing machine away from their neutral position). Per row there was 

little variability and therefore the row width was measured at the start of each row. In 

2000, when there was a gap in the row wider than the width of the row where the 

weed plant was located, then the local row spacing was measured at the position of 

the plant. The distance to the nearest other weed species was not collected in 2000, as 

exploratory analysis showed no relationship between target plant mass and distance to 

the neighbouring weed plant. 
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Fig. 2. Neighbourhood measures used. GW - gap width. OR - observed row spacing. 

NC - distance to nearest crop plant. NW - distance to nearest weed plant. X indicates a crop 

plant, • indicates target weed plant, and A indicates a non-target weed plant. 

Data analysis 

Variability in descriptors of local environment, and weed mass. We used schematic 

box plots to summarise the variability in the data of distances to the nearest crop plant 

and of the dry mass of weed plants. For the observed row widths we present the 

minimum, maximum, and median widths. 

'Localpredictors of weed survival and mass. Logistic regression models were used to 

investigate the effect of distance to the nearest crop plant and observed row spacing 

on plant survival. The probability for the ith weed to survive was related to the 

descriptors of the local environment (H, and v,) through: 

71', = 
exp(a0 + axut + a2vj) 

1 + exp(a0 + a]uj + a2vi) 
(1) 

As survival is a binary variable, it follows the binomial distribution with the parameter 

Hi, resulting in the following log-likelihood function for the parameters (ao, aj, and ai), 
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given the data of whether a plant survived or not (Yj is 1 or 0), where » is the number 
of observations (Neter et al. 1996b): 

n 

t(a0,al,a2;Y) = Y,[Yi(a<l +axulH-a2v,)+ln(l + exp(a0 +aiui+a2vi))] (2) 
1=1 

The parameters were estimated in Genstat (release 4.21), using step-down regression. 
As previous analysis (Chapter 3) showed that row spacing/weed control treatment 
had an effect on weed survival, parameters were estimated separately for each row 
spacing/site combination (the weed control treatments were site-dependent). 

The descriptors of the local environment that were most related to above-
ground dry mass of the weed plants were found using Spearman rank correlations. 
Only distance to the nearest crop plant (w,) and observed row width (v,) showed a 
relation with plant mass (Appendix, Table Al). Therefore predictors of plant mass 
were based on only these two variables. Two general predictors of plant mass were 
investigated, where the predicted mass of the ith plant (wpi(\j;b)) was a function of 
the neighbourhood descriptors (vector v,), given the parameters (vector b). The first 
model form describes a linear relation with regard to the parameters, 

^ ( v ' b l ^ . + V . ' + V ^ V . ' v ? (3) 

while the second form describes a reciprocal relation: 

(v -b) = ^ W "pi\ 
i+bju* +bjvl" +bJ{uiVjy 

The parameters, bo, bi, b2, and bj, were estimated from the data and q was a parameter 
for transformations of the variables with q = 1,2, and 3 being considered. In order to 
avoid division by zero, 1 was added to all ut. For both of these predictors, reduced 
models were created by setting parameters associated with particular variables to zero. 
Table A2 of the Appendix lists all the models fitted. 

The parameters were estimated using maximum likelihood methods based on 
the gamma distribution, with the following log-likelihood function for the parameters 
(or and b), given the data of observed plant masses (w0): 

£(a,b;w0) = ± 
w (v,;b) 

-lnw0, -lnr(ar) (5) 

where woi is the observed mass of the ith plant, n is the number of plants in the 
sample, oris the shape parameter of the gamma distribution, and w?/(v,;b) is given by 

equation 3 or equation 4. The decision to use the gamma distribution was because the 



64 Chapter 4 

data appeared to follow the gamma distribution, a finding supported by other studies 

(Pacala and Silander 1990), because the link function of gamma distribution has a 

reciprocal form which is appropriate for the predictor given in equation 4 (McCullagh 

and Nelder 1989), and because predictions can be kept on the original scale of 

measurement. Furthermore inspection of plots of residuals against fitted values 

showed no trend. 

The fitting procedure involved first using a random search for parameter 

estimates that yielded the lowest negative log-likelihood value. These estimates were 

then used as starting values for the minimisation routine of Mathematica Version 3.0 

(Wolfram 1996). The Aikaike Information Criterion (AIC) was used as the basis for 

model selection. More traditional goodness-of-fit measures (likelihood-ratio test or F-

test) were not appropriate for model selection because the two model forms 

(equations 3 and 4) were not nested and because the log-likelihood function was not 

based on the normal distribution. 

A low AIC value resulting from a particular model indicates that a larger 

amount information contained in the data is explained by the model relative to the 

other models examined (Burnham and Anderson 1998). The AIC is calculated as 

— 2(. + 2p, where £ is the log-likelihood value resulting from a particular model and p 

is the number of parameters estimated. For each model, the difference in AIC (AAIC) 

was calculated relative to the model with the lowest AIC. The model with the lowest 

AAIC was used for further analysis. All predictors given in the Appendix (Table A2) 

were fit to the data for each combination of species, site, and year. Based on the 

model finally selected, we tested for differences between sites and years for each 

species and for effects of the three row spacing/weed control levels and the two 

sowing density levels, using the likelihood-ratio test statistic (Hilborn and Mangel 

1997) 

LR = 2{i(w;mJ-Ydi(w;m\, (6) 

where w are the data, ma is a single model fit to the data aggregated over year, site, or 

experimental treatment and where ms are models that are fit to the data separated by 

year, site, or experimental treatment and the log-likelihoods resulting from each model 

are summed. The likelihood ratio test statistic (UR) has an approximate ^-distribution 

with the degrees of freedom given by the difference in the number of parameters 

between ma and the total number of parameters over all the ms. Standard errors of the 

parameters for the models with the best fit on the basis of the likelihood-ratio test 
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were then calculated in Genstat (release 4.21). The goodness-of-fit was measured by 
comparing the deviance with the residual degrees of freedom. If the value of the 
deviance is near that the number of residual degrees of freedom, then the fit is 
considered good (McCullagh and Nelder 1989). 

RESULTS 

Variability in descriptors of local environment and plant mass 

The distribution of distances to the nearest crop plant was rather symmetrical 
around the median value (Fig. 3). The minimum distance was zero for all treatments 
except one. The median and range of distances increased with increasing row spacing. 
Distances that were larger than half the treatment row spacing were due to occasions 
when crop plants were missing from the crop row, or the observed row width was 
wider than the treatment row width. The median distances in the Lovinkhoeve 2000 
experiment (Fig. 3iii) were lower in the 180 kg ha~' sowing density treatment than in 
the 140 ha-1. This was most likely due to the smaller sample size than to an effect of 
the sowing density treatment. 

For the observed row widths, the range in widths was smallest for the 27.9 
and 30 cm treatments (Table 2). The median row widths were close to the treatment 
row spacing. In 2000, 40 plants were in gaps, with 34 of the plants in the 10 cm row 
spacing treatment. In that treatment the gap size ranged from 11 to 24 cm, with a 
median gap size of 16 cm. In the 20 cm treatment the five plants were in gaps of 36 
and 38 cm, while only one plant was in a gap (58 cm) in the 30 cm treatment. 

The distribution of plant masses was highly skewed towards high masses for 
all treatments (Fig. 4). Maximum plant masses were often well over 10 times the 
median plant mass. The minimum plant mass in each treatment was usually close to 
zero grams. In the 180 kg ha-1 sowing density treatments, median plant masses tended 
to be lower than in the 140 kg ha-1 sowing density treatments. 

Table 2. Observed row widths 

Minimum 
Maximum 
Median 

—10 
1999 

5 
20 
10 

cm— 
2000 

4 
18 
10 

(cm) for each row spacing 

—20 
1999 

13 
26 
20 

cm— 
2000 

14 
25 
20 

—30 
1999 

-
-
-

treatment in each 

cm— 
2000 

26 
33 
30 

9.3 cm 

4 
18 
9 

experiment. 

18.6 cm 27.9 cm 

11 20 
22 29 
18 28 

- no observations available. 
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Local predictors of plant survival and mass 

Plant survival. There was a significant effect on individual weed survival of 

only distance to the nearest crop plant in the widest row spacing treatments at both 

sites (Table 3). Survival decreased with increasing distance from the crop plants (Fig. 

5). Visual inspection of the fitted predictor and the observed values shows good 

agreement, except for cases where there were few observations. At the Unifarm site, 

survival dropped more suddenly with distance from the nearest crop plant compared 

to the Lovinkhoeve site (Fig. 5(ii)a-b). The decrease in plant survival with increasing 

distance in the wide row spacing was due to mechanical hoeing. 

Plant mass. When the predictors of plant mass were ranked by the difference 

in AIC (AAIC) calculated over all species and experiments, the model 

*fp, = b0 + b,uf +b2vf was clearly the most parsimonious overall predictor (Table 4). It 

was the best model for P. convolvulus and P. persicaria, and the second best for S. media. 

In the Appendix (Table A3) we show the AAIC for all the models for each species. As 

the linear predictor with squared variables was clearly the best model, we investigated 

whether the fit was affected by aggregating data over sites and years, or separating it 

according to experimental treatment. Fitting the model to data aggregated over sites 

and years did not lead to a lower AIC (Table 5). When the model was fit to data 

separated by sowing density, the fit was much improved for all species in the 1999 

experiment (Table 6). In 2000 the fit was not improved by separating the data by 

Table 3. Effect of distance to the nearest crop plant and observed row width on plant survival, 
measured as approximate ^-values from the analysis of deviance for the logistic regression. 
The regression model was fit to data separated by row spacing treatment. Two degrees of 
freedom were lost by fitting the model. 

-Lovinkhoeve Unifarm-
Dist. to nearest Observed Residual Dist. to nearest Observed Residual 

crop plant row width df crop plant row width df 
10 cm 9.3 cm 

P. convolvulus 
P. persicaria 
S. media 

P. convolvulus 
P. persicaria 
S. media 

P. convolvulus 
P. persicaria 
S. media 

0.662 
0.144 
0.875 

0.183 
0.555 
0.770 

<0.001 
<0.001 
<0.001 

0.937 
0.281 
0.880 

0.309 
0.313 
0.467 

-
-

351 
191 
346 

196 
152 
324 

349 
236 
362 

0.847 
0.290 

-

0.578 
0.053 

-

<0.001 
O.001 

-

0.678 
0.557 

0.987 
0.951 

0.117 
0.248 

-

6 
82 

-

79 
76 

-

84 
82 

-
no observations available. 
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Fig. 5 Relationship between chance of survival and distance from the nearest crop plant (1999 
data only), (a) P. convolvulus, (b) P.persicaria. (c) S. media. 
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Table 4. The four predictors of plant mass with the lowest AAIC for each species and 
over all species. 

Model P. convolvulus P. persicaria S. media Total 

*o+W+v,2 

z>0+V,3+V,-3 

60+£,(«,+V,)2 

b0 + blui + b2vi 

b0 +bl(ul +v,.)' 

&0+M"/V;)' 

60+A,v,-' 
K 

l + bju'+bjv' 

ba+bM+^y 

0.0 

0.2 

13.9 

-

17.0 

-

-
-

-

0.0 1.9 

5.2 

0.0 

_ 

0.0 

24.4 

29.8 

33.6 

4.7 

9.0 

17.7 

5.2 

- predictors with a ranking higher than 4 for a given species. 

Table 5. Difference in model fit between years and sites for P. convolvulus and P. persicaria for the 

predictor wpi = ba + Kuf + bav}. 

Contrast 
P. convolvulus 

Sites 

P. persicaria 
Sites 
Years 
Years and sites 

AIC-

Aggregated data 
(# of parameters) 

no convergence 

277.0 (4) 
4664.1 (4) 
705.2 (4) 

Separate data 
(# of parameters) 

792.9 (8) 

232.3 (8) 
797.3 (8) 
641.4(12) 

AAIC 

-

47.7 
3866.8 
63.8 

Likelihood ratio test 
statistic (p-value) 

-

55.7 («0.0001) 
3874.8 («0.0001) 
71.8 («0.0001) 

Table 6. Difference in model fit between sowing densities for all three species at the 

Lovinkhoeve site for the predictor wpi =b0 + b0u? + b0vf • 

Year 
P. convolvulus 

1999 
P. persicaria 

1999 
2000 

S. media 
1999 

AIC 

Aggregated data 
(# of parameters) 

999.7 (4) 

388.2 (4) 
409.1 (4) 

66.6 (4) 

Separate data 
(# of parameters) 

990.8 (8) 

385.2(8) 
409.1 (8) 

60.7 (8) 

AAIC 

8.9 

3.0 
0.0 

5.9 

Likelihood ratio 
test statistic (p-value) 

16.9 (0.002) 

11.0 (0.027) 
0.0 (1.00) 

13.9 (0.007) 
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Table 7. Deviance, residual degrees of freedom, and parameter values with the standard 

errors in parentheses resulting from fitting the model wpi = b0 + b0u? + b0v? to the data 

sets in the table. 

Deviance 
Residual df 

Mxio-') 

6, (x KT1) 

62(xl0"3) 

p 

i n n n 

Lovinkhoeve 

140 
283.0 
297 
2.84 

(0.55) 
5.02 

(1.46) 
6.69 

(1.34) 

180 
370.1 
428 
2.25 

(0.33) 
8.01 

(1.26) 
3.96 

(1.00) 

Unifarm 

140 
141.7 
196 
0.43 

(0.14) 
4.00 

(0.76) 
2.83 

(0.55) 

i n n n 

Lovinkhoeve Unifarm 
Sowing density (kg ha ') 

140 
224.6 
237 
1.44 

(0.44) 
4.70 

(1.46) 
5.96 

(1.21) 

180 
191.2 
199 
2.71 

(0.56) 
2.52 

(1.19) 
2.29 

(1.22) 

140 
169.7 
182 
0.40 

(0.18) 
5.77 

(1.25) 
2.23 

(0.68) 

—2000— 
Lovinkhoeve 

370.6 
398 
2.41 

(0.45) 
4.70 

(1.45) 
4.02 

(0.94) 

—S. media— 
—1999— 

Lovinkhoeve 

140 
247.2 
422 
2.18 

(0.25) 
4.26 

(0.69) 
1.55 

(0.48) 

180 
189.8 
360 
1.91 

(0.22) 
3.52 

(0.52) 
1.10 

(0.46) 

sowing density treatment. Fitting the model to data separated by rowing spacing 

treatment failed to converge for most data sets. 

The fit of the final models was good as the deviance values were close to the 

number of residual degrees of freedom. The parameter values resulting from fitting 

the selected model were positive, so plant mass increased with increasing distance 

from a crop plant and increasing row width. Confidence intervals based on the 

standard errors in Table 7 would exclude zero. For all species, the intercept was of 

magnitude 10_1. The parameter fc, associated with distance to the nearest crop plant 

was one order of magnitude larger than b\. Therefore plant mass increased faster with 

distance from the nearest crop plant than with increasing row width. Plants at the 

Unifarm site were predicted to be smaller than their counterparts in 1999 at the 

Lovinkhoeve site, regardless of the sowing density treatment. 

DISCUSSION 

In this study we have sought to identify which weed plants will contribute 

most to future generations and whether there is a pattern in the contributions. We 

have considered naturally occurring weed plants growing in a spring wheat crop at 

three row spacing/weed control levels and two sowing densities. We first examined 

whether weed plants experienced different environments, both within and between 

crop planting patterns. Secondly, we identified predictors of plant mass and survival 

based on descriptors of the local environment. 

Weed plants experienced a range of local environments both between and 

within the experimental treatments. For all species, plant mass increased with the 

square of the distance to the nearest crop plant and the square of the observed row 
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crop emergence? — Do different crop planting patterns lead to different weed spatial 

patterns? 

Almost 40 years ago, Harper stated that there was a widening gulf between 

experiments on individuals and experiments in populations and he wished to focus 

attention on 'the reaction of a plant to its neighbours as a critical, often the most 

critical, part of the autecology of a species and to suggest that this type of study has a 

cementing and unifying function in the science of plant ecology' (Harper 1964). His 

remarks are very relevant to weed ecology today because most ecological studies of 

weeds have been at the level of the population. We have shown that individual weed 

plants in a crop have different probabilities of survival and have different reproductive 

potentials and that these differences are related to differences in the local 

environments perceived by the individuals. It is therefore not sufficient to remain at 

the population level for the development of management strategies. Further insights 

on the ecology of weeds will come about through an increased focus on the role of 

the individual. 
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APPENDIX 

Table A l . Spearman rank correlations between mass per plant and local predictors. See 
section Methods and Materials: Experimental methods and Fig. 2 for descriptions of the 
various distance measures. 

Site 

Unifarm 1999 

Lovinkhoeve 1999 

Lovinkhoeve 2000 

Species 

P. convolvulus 
P. persicaria 

P. convolvulus 
P. persicaria 
S. media 
P. persicaria 

Nearest 
crop plant 
0.34*** 
0.33*** 

0.35*** 
0.38*** 
0 29*** 

0.38*** 

Observed 
row width 
0.37*** 
0.39*** 

0.37*** 
0.30*** 
0.37*** 
0.40*** 

Nearest 
weed plant 

-0.10 
0.16* 

0.09* 
0.05 
0.05 
-

Levels of significance: *** (/><0.0005), **(0.0005</><0.001), *(0.001</><0.05) 

Table A2. Codes for the models fitted to the data. The entries of the table are the abbreviations 
for each model/variable combination that was fitted to the data. The letter T of the coding 
stands for the linear model form, while the 'r' stands for the reciprocal model form. Models 
with only one variable are given in (a) and models with two or variables are given in (b). 

& 
Variable —Model form— 

K 
X 

u' 
u2 

u3 

v1 

v2 

v3 

(u+v)1 

(u+v)2 

(u+v)3 

(uv)1 

b0 + bxx 

lu1 

lu2 

lu3 

lv1 

lv2 

lv3 

l(u+v)' 
l(u+v)2 

l(u+v)3 

Kuv)1 

1+6, /* 
ru' 
ru2 

ru3 

rv1 

rv2 

rv3 

r(u+v)' 
r(u+v)2 

r(u+v)3 

r(uv)' 

M 

h 
Xi X-L b0+blxl+b2x2 b0+b1xl+b2x2+blx1x2 1 + b{/x, + b2/x2 

u1 v1 lu'v1 lu'v'x ru'v1 

u2 v2 lu2v2 luVx ru2v2 

u3 v3 lu3v3 luVx ru3v3 

K 
\ + bJx{+b2lx2+b-ilxxx1 

ru'v'x 
2 2 

ru v x 
ru3v3x 
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Table A3. Ranking of models for each species 
their differences relative 
species and over all data 

P. convolvulus 

Model 
l uV 

luV 

l(u+v)2 

lu' 

l(uv)1 

l(u+v) 

r(u+v)' 

l(u+v)3 

ru'v1 

r(u+v)2 

r(uv)' 

lv1 

r(u+v)3 

lv2 

rv1 

lv3 

rv2 

lu2 

lu3 

lu1 

rv3 

ru1 

ru2 

ru3 

lu'v'x 

lu2v2x 

lu3v3x 

ru2v2 

ru3v3 

ru'v'x 

ru2v2x 

ru3v3x 

AAIC 
0.0 

0.2 

13.9 

17.0 

17.8 

26.7 

26.7 

29.0 

32.8 

42.9 

63.7 

83.1 

85.8 

87.5 

88.3 

104.5 

107.5 

107.8 

110.1 

123.3 

139.6 

163.4 

215.7 

234.4 

-
-
-
-
-
-
-
-

by the sum of the AIC values over 
to the model with the lowest AIC sum 

sets. 

P. persicaria 

Model 
l uV 

l(uv)1 

lv1 

ru'v1 

l(u+v)2 

luV 

r(u+v)' 

l(u+v)' 

r(u+v)2 

l(u+v)3 

r(uv)' 

r uV 

r(u+v)3 

lu2 

lu1 

lu3 

lv1 

rv1 

lv2 

rv2 

ruV 

ru1 

lv3 

rv3 

ru2 

ru3 

lu'v'x 

luVx 

luVx 

ru'v'x 
2 2 

ru v x 
ru3v3x 

— no convergence in parameter 

AAIC 
0.0 

4.7 

9.0 

17.7 

17.9 

21.0 

28.2 

28.2 

28.7 

30.9 

40.0 

47.0 

62.7 

64.2 

68.6 

79.7 

85.6 

86.4 

90.0 

94.7 

99.1 

105.9 

111.0 

126.9 

179.2 

225.9 

-
-
-
-
-
-

estimation. 

S. media 

Model 
l(u+v)2 

luV 

l(u+v)3 

luV 

l(u+v)' 

luVx 

luV 

r(u+v)' 

lv2 

lv3 

ru'v' 

ru'v'x 

lv' 

l(uv)' 

rv1 

r(u+v)2 

ru2v2 

r(uv)' 

rv2 

r(u+v)3 

ruV 

lu2 

rv3 

lu3 

lu' 

ru1 

ru2 

ru3 

lu'v'x 

luVx 
2 2 

ru v x 
ru3v3x 

AAIC 
0.0 

1.9 

2.3 

5.2 

8.4 

8.9 

9.6 

14.6 

21.4 

22.3 

26.5 

28.5 

29.3 

29.9 

43.4 

44.4 

64.1 

70.8 

75.5 

79.7 

98.4 

105.0 

106.6 

108.2 

111.6 

143.8 

161.2 

166.4 

-
-
-
-

over each data 

Total-

Model 
l uV 

luV 

l(u+v)2 

luV 

l(uv)' 

l(u+v)3 

I(u+v)' 

r(u+v)' 

ru'v' 

r(u+v)2 

r(uv)' 

lv' 

lv2 

rv' 

r(u+v)3 

lv3 

lu2 

rv2 

lu3 

lu1 

rv3 

ru' 

ru2 

ru3 

lu'v'x 

luVx 

lu3v3x 

ruV 

ru3v3 

ru'v'x 

ru2v2x 

ru3v3x 

all and 
set per 

AAIC 
0.0 

24.4 

29.8 

33.6 

50.5 

60.3 

61.4 

67.6 

75.1 

114.0 

172.5 

196.1 

197.0 

216.2 

226.2 

235.8 

275.0 

275.7 

296.1 

301.7 

371.2 

411.1 

554.2 

624.7 

-
-
-
-
-
-
-
-



CHAPTER 5 

Weed Populations and Crop Rotations: 
Exploring Dynamics of a Structured 

Periodic System 

ABSTRACT 
The periodic growing of a certain set of crops in a prescribed order, called a crop rotation, is 
considered to be an important tool for managing weed populations. Nevertheless, the effects of crop 
rotations on weed population dynamics are not well understood. Explanations for rotation effects 
on weed populations usually invoke the diversity of environments caused by different crops that a 
weed population encounters. Using a periodic matrix model, we show that the number of different 
crops is not the sole factor, and that the sequence of a given set of crops can play an important role. 
In the model the weed population is structured by seed depth in the soil, and ploughing moves seeds 
between layers. For illustration of concepts, we use parameter values thought to be characteristic for 
Polygonum perskaria growing in carrots (crop A) and spring wheat (crop B) in the Netherlands. We 
systematically examine the population growth rates for P. perskaria and their sensitivity to changes for 
all rotations of two to six years based on crops A and B. We include eight scenarios that differ in the 
effects of ploughing and seed survival over winter. Differences between rotations can be striking. 
For example the weed population growth rate in the baseline rotation AABB (assuming 100% winter 
survival) is nearly 25% lower than in rotation ABAB. The elasticity (a measure to quantify the effect 
of proportional changes in model parameters on population growth) to seedling survival is nearly 
75% higher in the B years of rotation ABAB than in the B years of rotation AABB. Changing 
parameter values changes the relation between population dynamics and rotation organization, but 
not the conclusion that there are consequences for population dynamics and management due to 
choice of a rotation. While our example is an agronomic one, the question — Does sequence matter? 
— and the methods applied should be of interest to researchers and managers concerned with the 
periodic management of other ecosystems. 

Adapted from: Mertens, S. K., F. van den Bosch, and J. A. P. Heesterbeek. 2002. Weed populations 
and crop rotations: exploring dynamics of a structured periodic system. Ecological Applications. 12: 
1125-1141. 

77 



78 Chapter 5 

INTRODUCTION 

Crop rotation —the growing of different crops in recurring succession on the 
same land— has long been advocated as a method to increase crop yields and reduce 
inputs (Leighty 1938, Fream and Robinson 1949). Explanations for increased yields of 
crops grown in a rotation system rather than as a continuous monoculture crop 
include the periodic changes in the environment that prevent particular pests, diseases, 
and weeds from dominating, and the decreased stress on the soils by including crops 
that require less cultivation or that increase nutrient and organic matter inputs 
(Crookston 1984, Crookston et al. 1991). The development of problematic weed 
populations is thought to be prevented by the diverse environments that weed 
populations encounter over the course of a crop rotation cycle (Liebman and Dyck 
1993, Liebman and Gallandt 1997). For example, sowing dates, weed-control 
methods, and competition from the crop will differ from season to season as the crop 
species change. 

Each of the diverse environments is characteristic of a given crop. A crop 
rotation, by definition, extends over several cropping seasons. A rotation's 
organisation includes the crop species, their proportion and order, and the length of 
the rotation (number of cropping periods). A natural question is whether the 
organisation of a crop rotation, given a set of crops, will affect weed-population 
growth rates. For example, would a rotation of alternating carrot and wheat crops 
result in a different weed-population growth rate than a rotation consisting of two 
consecutive years of carrots followed by two consecutive years of wheat? 

Up to now there have been few experimental or theoretical studies that 
direcdy and systematically address the effect of crop sequence on weed-population 
growth rates. Most studies have concentrated on comparing a continuous 
monoculture crop with one or more different rotations, usually in combination with 
different tillage or weed control treatments (Martin and McMillan 1984, Schwei2er et 
al. 1988, Blackshaw et al. 1994, Doucet et al. 1999, Kegode et al. 1999). Some 
modelling studies of weed population dynamics have included crop rotations, but did 
not systematically examine the effect of different crop rotations based on their set of 
crops (Gonzalez-Andujar and Fernandez-Quintanilla 1991, Jordan et al. 1995, 
Lindquist et al. 1995, Squire et al. 1997). 

In a more general ecological setting, the realisation of the importance of the 
timing of events in a periodic system is not new; Darwin and Williams (1964) found 
that the season of hunting affected the population growth rate of an age-structured 
population of rabbits. More recent studies have concentrated on the frequency of 
nominally periodic events, such as fire and drought (Gotelli 1991, Gross et al. 1998, 
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Hoffman 1999), but have not examined the effect of systematically different orders of 

events on growth rates or on possibilities for management. Golubov et al. (1999) in 

their study of Prosopis glanduhsa (honey mesquite) calculated the periodic growth rates 

for all combinations of their four, yearly transition matrices. However their aim was to 

obtain a confidence interval for the periodic growth rate. The population dynamics of 

annual weeds in a crop rotation represent a very simple periodic system, but one 

allowing multiple avenues for intervention, for example through changing the rotation 

itself or through changing the weed population's vital rates, through management, in a 

particular crop. A better understanding of weed population dynamics in crop rotations 

may contribute insights applicable to the understanding and management of species in 

other ecosystems. 

Our purpose is the systematic examination of the effects of different crop 

rotations on weed population dynamics and on possibilities for management. Our 

questions pertain to how the proportion of crops, their order, and number affect the 

population growth rate of a depth-structured seedbank and the growth rate's 

sensitivity to changes in life-cycle processes. Answering these questions with field 

experiments, because of their long-term nature, is practically difficult. We therefore 

find answers through use of a mathematical model that captures essential features of 

our system but that is simple enough to allow in-depth investigation of the processes 

affecting weed population dynamics in crop rotations. Our investigation is restricted 

to a weed with a semelparous life history, growing in two crops, where its seedbank is 

structured by depth and seeds can be moved vertically in the soil by ploughing. A 

particularly suitable description is a periodic matrix model. This choice also allows 

application of a considerable body of theory (de Kroon et al. 1986, Caswell 1989, 

Caswell and Trevisan 1994, Benton and Grant 1999, de Kroon et al. 2000). We 

illustrate concepts with parameter values characteristic for Polygonum persicaria L. 

(redshank) growing in a variety of rotations, composed of carrots and spring wheat in 

the Netherlands. 

M E T H O D S 

Model construction 

The transition matrices. As the ability of a seed to germinate and emerge varies 

with depth (Vleeshouwers 1997a), and as tillage operations redistribute seeds in the 

soil (Cousens and Moss 1990), a weed seed population can be considered as being 

structured by the depth at which seeds are located. We distinguish two soil layers, 
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Layer 1 hh\ 

Layer 2 

Fig. 1. Transitions in a two-year rotation of crops A and B. Weed seeds in soil are in either 
layer 1 or 2, and n = the number of weed seeds in layer 1 or 2 at time t; ay — the contribution 
of one seed in layer y at time t to the population of seeds in layer i at time t+1. 

where the top layer is indexed 1 and the bottom layer indexed 2. The number of seeds 

in soil layers 1 and 2 at time / can be represented as a vector, n{i): 

n(0 = 
."2(0. 

(1) 

We regard time in discrete steps of 1 yr, where one crop is grown per year. 

Each time step the weed seed population in each soil layer can be calculated by 

applying a matrix of transition rules to the population vector resulting from the 

previous time step. The transition rules, also called transitions, describe seed survival, 

reproduction, and movement between soil layers. These rules, and therefore the 

matrices, will be different depending on the particular crop grown each year. We 

consider two crops only, A and B, and assume that the transition rules only depend on 

the crop in question and not the crop that was grown, say, in the previous year. For a 

two-year rotation of crops A and B, the seeds will follow the transitions given in Fig. 

1. These yearly transitions yield matrices A and B, for the respective crops, e.g., for 

crop A 

>\ 

(2) 
f. 

A = 

Vfl21 * 2 2 / 

where the element ay of matrix A is the contribution of one seed in layer/, at time /, to 

the population of seeds in layer i, at time t+1. The population over a complete cycle of 
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the rotation AB, is given as: 

n ( / + 2 ) = B A n ( / ) , (3) 

i.e., first apply the transition matrix A and then the matrix B (since crop A is grown 

first, followed by crop B). 

In order to distinguish different years within a rotation cycle and in keeping 

with the terminology of Caswell and Trevisan (1994), we call each year of a rotation a 

'phase' and number the phases with respect to some 'reference rotation.' Defining 

rotation AB as the reference rotation, then crop A occurs in phase 1, denoted At1), 

and crop B occurs in phase 2, denoted B(2). The rotation B(2)AW is the cyclic 

permutation of AB, and starts with phase 2 of the reference rotation AB. Different 

cyclic permutations of some reference rotation will have the same population growth 

rate, but other properties, such as the distribution of seeds over soil layers at the end 

of the rotation, will differ for each cyclic permutation of the reference rotation. Cyclic 

permutations of a given rotation will have identical population growth rates because in 

the long term the rotations are identical. Properties such as the depth distribution of 

seeds are expected to change because processes occurring during the previous crop 

act on the depth distribution present at the start of that crop. More details on these 

effects are given in following sections. 

We also wish to distinguish rotations that cannot be cyclically permuted to 

give identical rotations. Rotations ABAB and AABB are such rotations, and we call 

them 'essentially different.' Essentially different rotations are expected to produce 

different population growth rates. 

In general, for some given rotation, the dynamics are: 

n(t + p) = Mwn(t) (4) 

where M is the matrix product of the yearly transitions, starting in phase h, where h 

will be in {1, 2, 3,..., p}, and p is the length (period) of the rotation. We define 

reference rotations lexicographically, so that the largest block of consecutive A crops 

in the rotation occurs first. Thus, for example, rotations consisting of consecutive 

blocks of two A crops and two B crops will have the reference rotation AABB, whose 

matrix product is M(1) =B(4)B(3)A(2)A(1). If the rotation starts with the last B crop, 

giving rotation BAAB, the matrix product is M(4)= B(3)A<2)A(1)B(4). 

For our example crops, A and B, we systematically examine all essentially 

different cropping sequences of two to six years, as well as monocultures of both 

crops. In practice crop rotations do not usually exceed six years. For each rotation 

length, all possible ratios of the two crops and all essentially different orders are 
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investigated. We also examine the effect of increasing rotation length while keeping 

the proportion of each crop the same for the series AB, AABB, AAABBB, and so on. 

Life history underlying the transitions. As it is difficult to direcdy measure the 

transitions ay and by, and as it is not possible to direcdy manipulate them because they 

are composed of a variety of biological and management processes, we must consider 

a weed's life cycle and the parameters that underlie transitions from one stage to the 

next. Fig. 2 illustrates the life cycle for a summer annual weed growing in a crop, 

where tillage occurs in the fall. By following the paths seeds take over their life, one 

arrives at the transition values. For example, the contribution of this year's seeds in 

layer 1 to next year's population in layer 1, i.e., an or b\\, can be broken down as 

follows: at time t a certain fraction a, emerge from the top layer, of which a fraction v 

plants survive, with each surviving plant producing y seeds. The newly produced seeds 

are added to the fraction of seeds that did not emerge and that survived, (1— (ii)(l— (Xi), 

where \i\ is the fraction of seeds in the top layer that died or were lost. The seeds are 

then moved between layers by ploughing in the fall, with a fraction 8n remaining in 

layer 1, i.e., moving from layer 1 back to layer 1, and then a fraction Oi survive over 

the winter to time t+l. In short the transition rule for remaining in layer 1 of crop A is 

ct\\ = aivy8iiOi + (1—(ii)(l—ai)5nOi. The other transitions can be calculated in a similar 

fashion, giving for crop A 

a 12 = ot2vy8nOi + (l-Li2)(l-a2)812ai 

a2\ = <Xivy52iCJ2 + ( l -u1)( l -a1)82 i02 (5) 

a22 = a2vy§21a2 + ( l -u 2 ) ( l -a 2 )8 2 2a 2 

Each transition consists of two terms, the first one representing 

reproduction, and the second representing survival. The subscripts on the parameters 

for seed movement (5y) indicate transfer of seeds from layer y to layer /. All parameter 

values can depend on the crop and can therefore be different for crops A and B. 

Parameter values used. For the purposes of illustration we have used parameter 

values that resemble those for Polygonum persicaria, growing in crops similar to carrots 

(crop A) and spring wheat (crop B), under non-herbicide weed-management regimes 

in the Netherlands (Table 1). The life cycle begins 1 April and continues until 31 

March the following year. The depths of the soil layers are 0-5 cm for layer 1 and 5-20 

cm for layer 2. Vleeshouwers (1997a) has shown that P. persicaria does not usually 

emerge from depths > 5 cm. The parameters for seed movement are based on a 

ploughing matrix experimentally measured by Cousens and Moss (1990). 

The values of the parameters for emergence and mortality are derived from 

experiments by Vleeshouwers (1997b) on the emergence and fate of P. persicaria seeds 

in relation to the timing of disturbance (e.g., seedbed preparation, shallow cultivation). 



0.45 
0.00 
1.00 
0.20 
0.001 
400 
1.00 
0.02 
0.29 
0.98 
0.71 

0.15 
0.00 
0.3 
0.20 
0.60 
90 

1.00 
0.02 
0.29 
0.98 
0.71 
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Table 1. Baseline (Oi = l) parameter values (based on Polygonum persicaria growing in carrots (A) 
and spring wheat (B) under non-herbicide weed-management regimes in the Netherlands. 

Parameter Description Crop A Crop B 
a, seedling emergence from layer 1 
Ob seedling emergence from layer 2 
H i seed mortality layer 1 
| i 2 seed mortality layer 2 
v fraction of seedlings surviving weed control 
y seed production per surviving plant 
a, survival over winter 
8n fraction of seeds remaining in layer 1 
812 fraction of seeds moving from layer 2 to layer 1 
621 fraction of seeds moving from layer 1 to layer 2 
§22 fraction of seeds remaining in layer 2 

The timings of disturbances used by Vleeshouwers (1997b) are similar to those that 

would occur for seedbed preparation of carrots (crop A) and spring wheat (crop B). 

Experiments by Roberts and Neilson (1980) indicate that seed age does not have an 

important effect on the probability of emergence of P. persicaria seedlings. Under a 

non-herbicide weed-management regime, the fraction of seedlings surviving control 

(v) is much lower for carrots than for spring wheat, because of the increased efficacy 

of mechanical and hand control in carrot crops. The number of seeds produced per 

surviving weed (y) is much higher in carrots than in wheat because a carrot crop is less 

competitive than a wheat crop. As there is no information concerning winter survival 

of P. persicaria seeds these parameters (a;) have been set to 1. 

Using the parameter values for crops A and B in the above setting (the 

'baseline (o i=l ) ' parameter set) and the equations for the transition elements 

(equation 5), we obtain the following matrices 

T0.0036 0.2320̂ i 
A = 

B = 

v0.1764 0.5680, 

^0.1739 0.2320̂ 1 

v8.5211 0.5680, 

(6) 

In the analysis of different rotations it is useful to appreciate that in the top 

layer of crop A, before ploughing, about 0.2 seeds are produced per seed (flu + 021), 

while in the top layer of crop B, also before ploughing, about 9 seeds are produced 

per seed (b\\ + 621). In the bottom layer of both crops, 0.8 seeds per seed are produced 

before ploughing (fl|2 + 022, 1̂2 + ^22,)-
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Table 2. Parameter values used for each crop in each scenario. 

Scenario 
Baseline No-till A No-till B 

o,= l a, = 0.8 C i= l CM = 0.5 o,= l a, = 0.5 
Parameter A B A B A B A B A B A B 

No-till A and B 
a, = 1 a, = 0.5 

A B A B 

6„ 
52, 

6,2 

522 

a. 

0.02 0.02 -
0.98 0.98 -
0.29 0.29 -
0.71 0.71 -
1.00 1.00 0.80 

- 0.98 
- 0.02 
- 0.02 
- 0.98 

0.80 -

• 0.98 -
• 0.02 -
- 0.02 -
- 0.98 -
- 0.50 -

- 0.98 
- 0.02 
- 0.02 
- 0.98 

-

- 0.98 0.98 0.98 0.98 0.98 
- 0.02 0.02 0.02 0.02 0.02 
- 0.02 0.02 0.02 0.02 0.02 
• 0.98 0.98 0.98 0.98 0.98 
• 0.50 - - 0.50 0.50 

Notes: For convenience we repeat the relevant baseline (o,=l) parameter values and for the 
other scenarios we show only differences with respect to the baseline (o,=l) scenario. The 
name of each scenario indicates in which crop tillage (ploughing) is not carried out, and the 
level of winter survival in the top soil layer. 

We also investigated the effect of changing the values for winter survival in 

the top layer (oi) and for seed movement (Sy). These two parameters were chosen 

because there is great uncertainty in the values for survival over winter, and because in 

many agricultural regions minimum-tillage cropping systems are used. In such systems 

ploughing is carried out less frequently or plough types are used that do not invert the 

soil. Not ploughing is expected to decrease seed survival over winter because crop 

residues left on the soil surface may, for example, increase microbial activity or 

populations of seed predators. The values for these seven additional scenarios are 

given in Table 2. Throughout this chapter we use the terms 'ploughing' and 'tillage' 

interchangeably. We label the scenarios, for example, as no-till A (oi=0.5), to indicate 

the scenario where ploughing is not carried out at the end of the A phases so that 

most seeds remain in each layer, and where only half of the seeds in the top layer of 

the A phases survive over the winter. We examine the population growth rates and 

elasticities for all essentially different rotations up to six years long. 

Model analysis 

Growth rate. When examining different crop rotations, a question of primary 

importance is how fast a weed population grows in each crop rotation. The growth 

rate over a complete rotation cycle is given by the dominant eigenvalue (A,) of the 

matrix product M w (Luenberger 1979, Caswell 1989, Caswell and Trevisan 1994). For 

A, >1 the population will eventually increase geometrically, for A,<1 the population will 

eventually decrease geometrically. In order to compare rotations of different lengths, 

we need a mean growth rate per year. This is given by the geometric mean of the cycle 

growth rate 
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Utf1* (7) 

where p is again the length of the rotation cycle. 
Stable depth distribution and reproductive value. Insight into differences in the 

growth rates and their sensitivities to changes is gained through examining the stable 
depth distribution and reproductive value. The stable depth distribution is the 
distribution of seeds over the various soil layers, approached over the long term. The 
reproductive value is a measure of the contribution of seeds in a given layer to future 
population growth, and is also approached over the long term. For an annual weed, 
when emergence and reproduction does not depend on seed age, the reproductive 
value will depend on a seed's probability of surviving until able to reproduce, and the 
amount of future reproduction (cf. Caswell 1989). In a periodic system the stable 
depth distribution and reproductive values are cyclically stable. When examined from 
one projection period to the next these quantities do not change. They will, however, 
differ from one phase to the next. 

Mathematically, the stable depth distribution and reproductive value 
correspond, respectively, to the right (w( *) and left (v* *) eigenvectors associated with 
the dominant eigenvalue (A.) of M( \ Usually the right eigenvector is normalized so 
that the elements sum to 1, while elements in the left eigenvector are divided by the 
value of the first element so that the reproductive values of lower layers are relative to 
that in the top layer. The eigenvectors are defined as 

vwT
Mw= X v<» 

(8) 

where T indicates the transpose and h indicates a phase in the rotation and is in 
{1,2,...p] and/? is the length of the rotation. The phase index on the eigenvectors 
indicates the rotation matrix with which they are associated. The eigenvectors, though, 
are achieved at the end of a rotation starting with phase h. We therefore display the 
eigenvectors with the final phase with which they were achieved rather than with the 
starting phase of the rotation from which they were calculated. Thus in rotation 
AABB, the stable depth distribution after phase B(3) is the right eigenvector w<4), 
associated with the matrix M(4)= B(3) A(2)A(1)B<4). The left eigenvector v<4) indicates the 
reproductive value of seeds in each layer at the end B(3) and gives the contribution of 
seeds to future generations starting with phase B . 

Elasticity analysis. The response of A, to perturbations in the transition 
elements and the underlying parameters is likely to depend on the composition of the 
crop rotation. These responses are usually represented as either sensitivities or 
elasticities. Sensitivities give the absolute change in X in response to an absolute 
change in a transition element or underlying parameter. Elasticities give the 
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proportional change in X in response to a proportional change in a transition elements 
or underlying parameter (de Kroon et al. 1986). We focus on elasticities, as in a weed-
management context it is more typical to consider proportional rather than absolute 
changes in parameters. See Caswell (2001) for further discussion of differences 
between sensitivities and elasticities. 

The calculation of elasticities is based on that for sensitivities. An elasticity is 
the product of the ratio of a transition element or parameter to the growth rate and of 
its sensitivity. Caswell and Trevisan (1994) provide an equation for calculating the 
sensitivity matrices for the phases in a periodic matrix model 

s(*) = [c( / ,-1)c(/ ,"2L.C(l)C(/')C(p" l)...C(;!+l)f S W . (9) 

ScJ is the matrix of sensitivities, with elements dXldcf , of either crop A or B in 
phase h. C( ' is either matrix A(A) or B( , and c\P is an element corresponding to one 
of these two matrices in phase h. The first term on the right-hand side is obtained as 
follows: cyclically permute the crop matrices of the rotation so that the h crop matrix 
(C( *) occurs first, then exclude this matrix, and transpose the resulting product. The 
second term, S^' , is the sensitivity matrix of the product matrix M, rotated to phase 
h. The elements, dik/drnf , of S^' are calculated using the right (yi(h>) and left (v(A>) 
eigenvectors 

(10) 
dm™ w w v w 

where mf Ate. the elements of M(h\ and w(,!).v(/!) is the inner product of the right and 
left eigenvectors of Mw (Caswell 1989). The elasticities associated with the transitions 
in each phase of a crop rotation can then be calculated as 

e W = f t f ™1_ (11) 
"'J 

*• & < * > 
V 

where dA/dcjjh) are the elements of S^ ' , given in Equation 9. The elasticities in each 
phase sum to 1, thus the element containing the largest elasticity must always have an 
elasticity > 0.25. 

The elasticities to the transition elements are a useful guide in pointing out, in 
a general way, how the growth rate will respond to changes. However, changes in the 
transition elements can only be made by adjusting the parameter values. Therefore it is 
of practical interest to examine the elasticities to the parameters, for each phase of the 
rotation. The general expression for calculating the elasticity to the underlying 
parameters is obtained by applying the chain rule for differentiation, giving 
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xdX _ x-^ dX °gy / ^ 

Xdx \ ^ dgy dx 

for some parameter x in a matrix G with elements gy (Caswell, 1989). In a periodic 
system, as with the transition elements, one must consider the phase in which the 
parameters occur, so that the elasticity to a parameter in the hl phase is: 

*<*> dX = x ' * ) y dX dcf 

*• &<*> X fdc^dx^' 

Again, dX/dc^ ' are given by elements of Sc (Equation 9). 

Simulation and yearly growth rates. With the models considered here, most of the 
characteristics of a weed's population dynamics can be obtained through direct 
analysis of the matrices. The iterated solution to the model, however, aids 
understanding through the possibilities of graphical representation and calculation of 
yearly growth rates given an initial population. Each simulation started with 10 seeds 
per layer. The yearly growth rates were calculated by dividing the population size at 
time t+l by the population size at time t, once the rotation growth rate and stable 
depth distribution were 99.99% of the analytically calculated quantities. 

RESULTS 

Having the basic crop matrices and a means of analyzing periodic matrix 
models, we can now systematically examine a variety of crop rotations. First we 
present results of the effects of different crop rotations on mean weed population 
growth rates per year (A) and of effects on the elasticity of the growth rate to 
transition elements and parameters. Then, using the stable depth distributions and 
reproductive values, we give a biological explanation for the differences in growth 
rates and elasticities, between rotations and between the scenarios indicated in Table 
2. 

Effects of crop rotation on growth rate 

We first examine, for all scenarios, general patterns in the relationship 
between A and the proportion of each crop. Subsequendy we consider the effect of 
crop order and increasing rotation length. 

General patterns in A • For each scenario, A decreases as the fraction of crop 
A increases (Fig. 3a-d). The mean annual population growth rate of the baseline 
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Fig. 3. Mean annual population growth rates (Z) for all four scenarios and all essentially 
different rotations up to six years long of crops A and B. (a) Baseline scenarios, (b) No-till A 
scenarios, (c) No-till B scenarios, (d) No-till A, B scenarios. Solid circles indicate scenarios with 
seed survival over winter 0"i=l, open triangles indicate scenarios with (a) O"!=0.8, and (b)-(d) 
O"i=0.5. In the no-till scenarios for a particular crop, the values for the parameters governing 
seed movement are such that very little movement of seeds between layers occurs. See Tables 1 
and 2, and section Methods: Model construction: Parameter values used for a complete explanation of 
the parameter values used in the scenarios. 

(Oi=l) monoculture B is about 1.79 and that of the baseline A monoculture is about 

0.63. The form of the decrease varies between scenarios. For example, scenarios that 

do not include ploughing at the end of the B years result in a more concave pattern in 

the relationship between X and the fraction of crop A compared to the baseline and 

no-till A scenarios. In the no-till A (<7i=0.5) scenario, rotations with a low fraction of 

B have a X lower than that of a monoculture of A (Fig. 3b). In the scenarios where 

ploughing is not carried out in the B years, the X of the monoculture B is much 

higher than the baseline situation. Adding a low proportion of crop A, though, causes 

a large decrease in X (Fig. 3c-d). Decreasing survival over winter in the top layer 

tends to decrease X, but the effect is less in rotations with a high proportion of crop 

A. 
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Table 3. Effect of the order of crops (A and B) on X, the mean weed population growth rate 
per year. 

Rotation 
B 

ABABBB 
ABBABB 
AABBBB 

AABBB 
ABABB 

ABAB 
AABB 

AABAAB 
AAABAB 
AAAABB 

A 

Fraction 
crop A 
0.00 

0.33 
0.33 
0.33 

0.40 
0.40 

0.50 
0.50 

0.67 
0.67 
0.67 

1.00 

Baseline 
a ,= l 
1.791 

1.568 
1.419 
1.356 

1.312 
1.455 

1.520 
1.154 

1.110 
1.124 
0.945 

0.633 

o, = 0.8 
1.629 

1.429 
1.312 
1.258 

1.217 
1.338 

1.383 
1.084 

1.041 
1.051 
0.900 

0.621 

No-till A 
o,= l 
1.791 

1.185 
1.263 
1.282 

1.164 
1.106 

0.949 
1.112 

0.820 
0.858 
0.988 

0.784 

a, = 0.5 
1.791 

1.108 
1.239 
1.267 

1.135 
1.037 

0.844 
1.100 

0.756 
0.794 
0.982 

0.784 

No-till B 
a ,= l 
8.521 

1.674 
1.242 
2.480 

1.940 
1.227 

0.912 
1.358 

0.863 
0.823 
1.041 

0.633 

a, = 0.5 
4.261 

1.209 
1.014 
1.586 

1.310 
0.981 

0.831 
1.017 

0.779 
0.765 
0.862 

0.633 

No-till A, B 

O i = l 
8.521 

2.345 
2.342 
2.342 

1.812 
1.809 

1.228 
1.231 

0.788 
0.790 
0.799 

0.784 

a, = 0.5 
4.2610 

1.1820 
1.1730 
1.1821 

0.9217 
0.9106 

0.7868 
0.7903 

0.7848 
0.7850 
0.7867 

0.7840 

Effects of crop order. For all scenarios except where ploughing is not carried out 

in both crops, the A for a given fraction of crop A can differ substantially depending 

on crop order (Table 3). For example, in the baseline (cii=l) scenario, rotation ABAB 

has a A of 1.52, while rotation AABB has a A of 1.15. For certain scenarios and 

fractions of crop A, crop order can mean the difference between an increasing or a 

decreasing population. For example in the no-till B (cji=0.5) scenario, rotation 

ABABB has a i of 0.98 while rotation AABBB has a A of 1.31. In the baseline 

scenarios, patterns in which each crop is in a consecutive block have a lower A than 

patterns that have alternating years of crops A and B. In the other scenarios, patterns 

with each crop in a consecutive block have the highest growth rate for a given 

rotation length and fraction of each crop. 

Effects of rotation length. When rotations increase in length following the 

pattern AB, AABB, AAABBB, and so on, the trend in A tends to decrease in the 

baseline scenarios (Fig. 4a). In the no-till A scenarios, A appears to level off at 1.82, 

which is close to the A for a monoculture of B in the baseline scenario (Fig. 4b). In 

scenarios where tillage does not occur in the B years, the A increase and there is a 

large effect of decreased survival over winter (Fig. 4c-d). 

Effects of crop rotation on elasticity of growth rate 

We first examine elasticities of A to transitions and underlying parameters 

for the baseline (Ci=l) monocultures and rotations ABAB and AABB. We then 
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examine patterns in the highest elasticities found for each rotation of all eight 

scenarios. 

Elasticities to baseline transitions per phase. In the A monoculture, the highest 

elasticity value is to transition a22, which is the transition related to remaining in the 

bottom layer (Fig. 5a). With a value of ~0.8, it is much higher than the elasticities to 

the other transitions. The elasticity values found for the B monoculture (Fig. 5b) are 

more evenly spread, with transitions bn and 621 having the highest value. Rotation 

ABAB (Fig. 5c) has a regular pattern of elasticities, with the highest elasticity 

alternating between the transitions o^ ' ' 3 ' and b£Ui), governing movement between 

layers. (See section Methods: Model analysis: Elasticity analysis for explanation of symbols.) 

The pattern of elasticities for rotation AABB is more complicated (Fig. 5d). Overall 

the highest elasticity is for transition a^ , that of remaining in the bottom layer 

during the first A crop. In the other phases, the transitions governing movement of 

seeds between layers and of remaining in the bottom layer tend to have the highest 

elasticity values. 

Elasticities of underlying parameters. As with the elasticities for the transitions, the 

crop rotation influences the impact of changes in a particular parameter on the growth 

rate (Table 4). We again focus on the baseline (Oi=l) rotations ABAB and AABB, and 

also compare them with the monocultures of A and B. In the next section we will 

investigate the reasons for differences in elasticities. 

Table 4. Elasticity of weed-population growth rate to baseline (Oi=l) parameter values. For 
rotation ABAB values for only years 1 and 2 are given, as years 3 and 4 are the same as years 
1 and 2, respectively. See Table 1 for explanation of parameters. 

Monoculture ABAB AABB 
Parameter 

a. 
0.2 

Hi 
Hi 
V 

Y 
5„ 
8,2 
82, 

522 
o-l 
a2 

A 
0.0936 
0.0000 

-0.2861 
-0.2266 
0.0936 
0.0936 
0.0005 
0.0931 
0.0931 
0.8133 
0.0936 
0.9064 

B 
0.3959 
0.0000 

-0.0126 
-0.1423 
0.4011 
0.4011 
0.0418 
0.3888 
0.3888 
0.1806 
0.4306 
0.5694 

A(DjA(3) 

0.0044 
0.0000 

-0.0133 
-0.2489 
0.0044 
0.0044 
0.0010 
0.8533 
0.0034 
0.1424 
0.8543 
0.1457 

B<2», B<4> 

0.7855 
0.0000 

-0.0251 
-0.0364 
0.7958 
0.7958 
0.0010 
0.0034 
0.8533 
0.1424 
0.0044 
0.9956 

A(i) 

0.0546 
0.0000 

-0.1668 
-0.2364 
0.0546 
0.0546 
0.0002 
0.0544 
0.0544 
0.8910 
0.0546 
0.9454 

A<2> 

0.0546 
0.0000 

-0.1668 
-0.2364 
0.0546 
0.0546 
0.0031 
0.5159 
0.0515 
0.4295 
0.5190 
0.4810 

B(3) 

0.4772 
0.0000 

-0.0152 
-0.1203 
0.4835 
0.4835 
0.1119 
0.4071 
0.4071 
0.0740 
0.5190 
0.4810 

B<4) 

0.4772 
0.0000 

-0.0152 
-0.1203 
0.4835 
0.4835 
0.0031 
0.0515 
0.5159 
0.4295 
0.0546 
0.9454 
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Fig. 5. Elasticities of transition elements in the baseline (Oi=l) scenario, (a) Monoculture A. 
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The highest elasticity values tend to be to the parameters for survival over 

winter (<Tj), in either or both of the soil layers. In monocultures of A and B, winter 

survival in the bottom layer is most important, but in crop A it has a much larger 

elasticity than in crop B. In phase A of rotation ABAB, survival over winter in the 

top layer is most important, while in phase B winter survival in the bottom layer is 

most important, and has a much larger elasticity than a B monoculture. For rotation 

AABB, winter survival in the bottom layer has a higher elasticity in the first and the 

last phases than in the middle two phases. 

The value of the parameter for seedling survival (v) is likely to depend heavily 

on weed-control methods and is therefore the process over which a farmer usually has 

the most influence. I t also has the same elasticity as the parameter for seed production 

(y) because in this model y is density-independent and multiplication with v yields a 

single parameter —seeds produced per emerged seedling. The elasticity of V differs 

between rotations and between phases in a rotation. In a monoculture of A the 

elasticity of V is low compared to the elasticities of the other parameters, while in a 

monoculture of B, v has an elasticity similar to many of the other parameters. In 

rotation ABAB the elasticity of V is lower in the A phases compared to an A 

monoculture. In the B phases the elasticity of V is larger relative to a B monoculture. 

In rotation AABB the elasticities of V during the A phases are also very low, while 

during the B phase they are somewhat larger than in a B monoculture but not nearly 

as large as during the B phase of rotation ABAB. The elasticities for V do not 

necessarily remain the same for the same crop in different phases within a rotation. 

For example in the baseline (CTi=l) rotation AABABB, the elasticity of V is much 

greater during phase BP) than during any other phase (Fig. 6). 
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Fig. 6. Elasticities of the parameter for seedling survival (v) in rotation AABABB (baseline 
(Oi=l) scenario). 
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Elasticity patterns in all scenarios. An overview of the effect of changing 

parameter values can be seen in graphs of the highest elasticity to a transition per 

rotation against the fraction of crop A (Fig. 7a-d). As it is not possible to include the 

rotation or phase in the graphs, we give these results in the Appendix. In the baseline 

scenarios the values of the highest elasticities appear to increase with the fraction of 

crop A (Fig. 7a). Crop order, however, can cause differences in the values as well as 

the transition and phase in which they occur. For the baseline rotations where 

consecutive A crops occur, then the highest elasticities are to a22- When A and B 

crops alternate, then the highest elasticities are to transitions a^ and \>2\- In the no-till 

A scenarios, the highest elasticity values are to transition a22 for all rotations (Fig. 7b). 

As the fraction of crop A increases, then the elasticity values approach 1. In the no-till 

B scenarios the relation is more complicated (Fig. 7c). There is some pattern: 

Rotations with a majority of crop B tend to have the highest elasticity to transition b\\, 

while those with a majority of crop A have the highest elasticity to transition a22. In 

between, the dominant elasticity is to transition i22 , but other transitions may also 

carry the highest elasticity. In both the no-till A and B scenarios, the pattern of 

transitions carrying the highest elasticity is similar to that for the no-till B scenarios 

but the values tend to be close to 1 (Fig. 7d). 

Causes of differences in growth rates and elasticities 

Using the baseline (Oi=l) monocultures and rotations ABAB and AABB, we 

elucidate the causes of some of the differences described in the preceding subsections. 

Because we have examined a small set of the infinite number of theoretically possible 

rotations, some points may appear as outliers in the figures of the population growth 

rates and elasticities (Figs. 3 and 7). Such points are not outliers in a statistical sense 

because values are due to the same deterministic processes at work for any other 

point. Therefore the reasoning applied below to differences between rotations ABAB 

and AABB can be used to explain differences between other rotations, as well as to 

differences between scenarios. 

Depth distributions and baseline (o~i=l) growth rates. In both monocultures, the 

bottom layer has a higher proportion of seeds than the top layer (Table 5), reflecting 

how ploughing moves almost all seeds from the top layer to the bottom layer and 

moves only about a third of the seeds in the bottom layer to the top layer. The 

fraction of seeds in the top layer of A is, however, about twice that found in the top 

layer of crop B. In crop B, due to high seedling survival and reproduction by seeds in 

the top layer, a greater proportion of the total population ends up in the bottom layer 

compared to crop A. 

In the modelled crop rotations, the depth distribution of seeds achieved after 
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Table 5. Baseline (oi=l) depth distribution of seeds (fraction in each layer), seed reproductive 
values (relative to value in layer 1) at the end of the indicated phase, and growth rates per phase 
in both layers and for the total population. 

Crop rotation 
Monoculture 

ABAB 

AABB 

Phase 

A 
B 

A ( IU< 3 ) 

B < 2 ) , B ( 4 ) 

A<" 
A<2) 

B(3) 

B(4) 

Seed depth distribution 

Layer 1 

0.269 
0.125 

0.285 
0.071 

0.279 
0.268 
0.074 
0.164 

Layer 2 

0.731 
0.875 

0.715 
0.929 

0.721 
0.732 
0.926 
0.836 

Reproductive 
value, 
layer 2 

3.568 
0.190 

0.068 
17.330 

6.686 
0.340 
0.074 
3.406 

Annual 

Layer 1 

0.633 
1.791 

3.060 
0.755 

1.183 
0.604 
0.806 
3.071 

population 

Layer 2 

0.633 
1.791 

0.581 
3.972 

0.603 
0.636 
3.694 
1.250 

growth rate 

Total 

0.633 
1.791 

0.756 
3.054 

0.698 
0.627 
2.919 
1.385 

each phase only approaches that of the corresponding monoculture crop. This occurs 

because the distribution resulting after each phase depends on the preceding 

distribution as well as on the transition values of the current phase (Table 5). 

For example, when a baseline A crop precedes a baseline B crop, there will 

be a greater proportion of seeds in the top layer before the B phase compared to a B 

monoculture (Table 5). Therefore more seeds will be produced during the B phase 

compared with a B monoculture and they will be on the top layer before ploughing. 

After ploughing the proportion of seeds on the bottom layer is greater than in a B 

monoculture. This is because before ploughing there was a greater proportion and 

number of seeds in the top layer than in a B monoculture. Ploughing moved more 

seeds to the bottom layer and fewer seeds to the top layer, leading to a decline in the 

number of seeds in the top layer and a very large increase in the bottom layer. The 

overall growth rate for a B phase following an A phase is thus larger than the yearly 

growth rate in a B monoculture (Table 5). Similar reasoning can be used to show that, 

after an A phase, if the initial distribution of seeds is higher in the bottom layer 

compared with an A monoculture, then the proportion and absolute number of seeds 

in the top layer will increase, as will the total number of seeds over both layers. Such a 

situation occurs when the preceding phase is crop B. The stable depth distribution for 

a given phase in a rotation can be thought of as a transient distribution when 

compared to a monoculture situation. 

For the baseline rotations ABAB and AABB, the different values of X can 

be explained as follows. Compared with the A phases of rotation AABB, the A phases 
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10000 
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Fig. 8. Simulated population dynamics of baseline (Oi=l) scenario, (a) Rotation ABAB. (b) 
Rotation AABB. Broken lines and open circles indicate the population in the top layer and 
thick lines and solid circles indicate the population in the bottom layer. 

of ABAB result in a higher proportion of seeds in the top layer and thus also a greater 

population in the top layer (Table 5). These seeds can then produce many more seeds 

during the following B phase. Similarly, the B phases of ABAB result in a higher 

proportion and number of seeds in the bottom layer than the B phases of AABB. 

Therefore, before ploughing in the following A year, fewer seeds are lost from the 

bottom layer than from the top layer. Consequently during each phase of ABAB, the 

population will grow faster than in the same crop in rotation AABB, leading to a 

higher growth rate over the entire rotation cycle. The alternating pattern of crops thus 

increases the population of the top layer by the end of an A year, and sets the 

population up for another round of high reproduction in the next B year (Fig. 8a). In 

contrast, at the end of phase AC1) in rotation AABB, while the proportion of seeds in 

the top layer is similar to that of the A phases of ABAB, during the second phase very 

few seeds will be produced because it is an A phase. In fact, the population declines 

more than in an A monoculture (Table 5). Phase AP) acts as a brake, slowing the 

yearly growth rate in each of the following phases compared to the corresponding 

crop growth rates in rotation ABAB (Fig. 8b). 

Reproductive values, depth distributions, and baseline elasticities. Unlike the growth 

rates, the elasticity of the growth rate to changes in transitions depends on what will 

happen to a seed in the future as well as the probability of which layer it will end up in 

at the end of the previous crop. Elasticity values therefore depend both on the 

reproductive value and the depth distribution of seeds. While reasons for differences 

in the stable depth distributions depend on previous distributions and transitions, 

differences in the reproductive values are due to differences in future environments. 

In an A monoculture the reproductive value of the lower layer is more than 

3.5 times that of an individual in the top layer, i.e., most contributions to future 
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generations come from seeds in the bottom layer (Table 5). This is because prior to 

ploughing in crop A, the seed population decreases less in the bottom layer. On the 

other hand, in a B monoculture, because of high seed survival and reproduction in the 

top layer before ploughing, the reproductive value of a seed in the top layer is ~5 

times that of seed in the bottom layer. In a rotation, the different sequences of 

following crops will alter the reproductive values of each phase. 

For example, after phase A of rotation ABAB, the reproductive value of the 

top layer is almost 15 times that of the bottom layer, which contrasts sharply with that 

found in a monoculture of A (Table 5). In the ABAB rotation, the seeds in the top 

layer at the end of an A phase can produce many new offspring during the following 

B year. Furthermore the newly produced seeds will be moved to the bottom layer 

prior to the next A phase where their chances of survival are higher than in the top 

layer. Such reasoning can be used to explain the different reproductive values in the B 

phase and in other rotations. 

Understanding the causes of differences in reproductive values, we can now 

explain the differences in the elasticities. The high elasticity found in transition an of 

rotation ABAB, for example, can be accounted for by the high reproductive value of 

seeds in the top layer and because most of the seeds that are in the top layer came 

from the bottom layer. Likewise, the transition &21 has a high elasticity because most 

of the seeds in the bottom layer were in the top layer before ploughing, and once in 

the bottom layer they have a high reproductive value. Therefore management 

practices that decrease the proportion of seeds in the top layer at the end of an A 

phase or the amount of reproduction during the B phase are likely to have the largest 

impact on the growth rate. This result concurs with that of the elasticities of the 

parameters, where, for example, winter survival in the top layer of A and in the 

bottom layer of B both have high elasticities. Through considering the stable depth 

distribution, and reproductive and parameter values, the transition and parameter 

elasticities for other rotations can similarly be explained. 

Explaining differences between scenarios. The different patterns found between 

scenarios in the growth rates and elasticities can broadly be understood by considering 

the analysis of the baseline monocultures and simple rotations presented in the last 

section. As examples we consider why rotations with alternating years of A and B 

have lower growth rates in the no-till scenarios than in the baseline scenarios, why not 

ploughing in both crops leads to little effect of crop order and why growth rates of 

certain rotations in the no-till A (Oi= 0.5) scenarios can be lower than that of the crop 

A monoculture. Finally we examine reasons for the effects of increasing rotation 

length on A • Differences in elasticity patterns between and within scenarios can be 

explained by considering how seeds are distributed over the soil layers and their 

capacity for future reproduction. Such an exercise follows the reasoning used earlier 
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for the baseline (Oi=l) ABAB and AABB rotations and therefore we do not devote 

space to it here. 

In rotations in which tillage is not carried out for either crops A or B, the A 

are lower for those rotations in which crops A and B alternate. In the no-till B 

scenarios, this is because, for an alternating pattern of crops A and B, seeds produced 

in a B crop remain in the top layer and then are mosdy removed during the following 

A phase. In the no-till A scenarios, seeds that were buried at the end of the B year are 

not brought back to the surface before the next B year and so cannot reproduce. The 

effect of consecutive blocks of crops in the no-till scenarios is to either store seeds 

until they can be brought back to the surface after the first B phase (no-till A 

scenarios) or to cause a large build up in the population during the B years that is not 

offset by decreases during the A phases (no-till B scenarios). Considering the elasticity 

patterns found in the analysis of the baseline (CTi=l) ABAB rotation (Fig. 5a), this is 

not a surprising result. 

When ploughing is not carried out in both crops, the lack of difference 

between A for rotations that differ only in crop sequence is because not ploughing 

effectively decouples the dynamics of the two layers. Thus two, nearly separate 

populations are created and therefore order of multiplication of matrices and crop 

order does not have a large effect. Structure, however, still does play a role as A for 

each rotation is not a simple (geometric) average of the monoculture growth rates. 

The decoupling of the layers also causes the highest elasticity of each phase to be close 

to 1 because the annual growth rates are dominated by a single transition. 

Rotations with A lower than that of the lowest monoculture may occur when 

introduction of another crop with a higher monoculture A moves seeds to a layer 

where they will be removed faster than they will be replaced by the increase caused by 

the crop with a higher monoculture A. For the no-till A, (<Ji=0.5) scenarios, the 

majority of seeds in a monoculture of crop A will be in the bottom layer. The 

inclusion of a single B crop in rotations of 3 to 5 A crops, permits ploughing so that 

many seeds are moved to the top layer where they are removed from the population. 

The low survival over winter compensates for the slight increase in population during 

the B year. 

The patterns observed in Fig. 4, for the effects of increasing rotation length, 

can also be explained by the same reasons for the differences in crop order. When 

rotations are extended to a common rotation length, the shorter rotations just have 

more repeating units. Conversely, longer rotations have longer spans of each crop in a 

consecutive block. In the baseline scenarios, rotations with each crop in a block had 

the lowest A for a given number and fraction of each crop. For the other scenarios 

the opposite was the case. It is not clear, however, whether the A will reach a limit if 
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rotation length were further extended. In the no-till A scenarios, X appears to level 
off, but it may also be increasing very slowly. 

DISCUSSION 

Our goal has been to show how different types of crop rotations affect weed 
population dynamics. We have used a periodic matrix model and examined a variety 
of crop rotations, and the effects of crop order, rotation length, and proportion of 
each crop. Of prime importance is the conclusion that the order of crops will affect 
the population growth rate. Our conclusion rests on the form of the model, i.e. that 
the population is structured, and that life cycle parameters change with the crop being 
grown. Only when life-history parameter values lead to a non-structured population, 
does the order have little effect on the population growth rate. 

The sequence of crops in rotation also affects the sensitivity of the growth 
rate to changes, at both the levels of the transition elements and the underlying 
parameters. The differences in growth rates and elasticities between rotations, and 
between phases within rotations are in general due to how mixtures of crops, in 
comparison to monocultures of each crop, alter both the distribution of seeds over 
soil layers and the contribution of a seed in a particular layer to future generations. 
Below we consider extensions of our approach, and the implications for weed 
management and understanding of crop rotations. 

Extension of the method 

The approach taken in this chapter can be extended to include aspects such 
as density dependence, effects of environmental variation on vital rates, and increasing 
the number of soil layers. Doing so is not likely to change our qualitative conclusion 
and comes at the expense of analytical tractability, therefore complicating the 
interpretation of results. For example, aperiodically fluctuating populations due to 
density-dependent vital rates may obscure the effects of the crop rotation cycle. Our 
interest is not in forecasting what the population will be, rather it is in projecting what 
the population would be should the given conditions (parameter values) remain 
constant (Caswell 1989). Understanding population projections provides a sound basis 
for developing more complex models, while in the empirical arena it results in more 
precise hypotheses and thus in better experimental designs. 

Division of the soil column into more layers is likely to lower weed 
population growth rates over a rotation cycle because seeds will reside much longer in 
layers from where they cannot emerge and thus have a greater chance of losing 
viability. In situations where accurate quantitative prediction of the future population 
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is of interest, division of the soil into more layers or use of an integral projection 

model would most likely be necessary (Easterling et al. 2000). 

Because weed populations can be structured in many other ways, such as by 

seed age, si2e of rhizomes, or seed position relative to a ridge, our approach can be 

applied to other situations besides those where the seed population is structured by 

depth in the soil and the seeds are moved by ploughing. 

Implications for management 

The outcomes of decisions concerning crop rotation sequences have 

implications for weed management, in both the long and short term. As different 

rotations can have different growth rates, the amount of time to reach a target weed 

population will be different for each rotation. If other, non-weed management aspects 

are equal, then the rotation with the lowest weed population growth rate would be the 

most sensible. One way of thinking about the difference in growth rates between 

rotations is, e.g., to imagine how much seedling survival (v), needs to be changed in 

order to achieve the same growth rate of another rotation. In crop B of the baseline 

(CTi [weed survival over winter]=l) rotation ABAB, seedling survival would have to be 

decreased from 0.6 to 0.28 in order to achieve the same growth rate found for the 

population in rotation AABB. This would require an 80% increase in effectiveness of 

weed control. Thus rotation AABB provides the equivalent of an extra, efficient weed 

control operation without the effort. 

Short-term management decisions will also be affected by the choice of a 

particular rotation because of different elasticity patterns resulting from different 

rotations. As a rule of thumb the largest impact on the population growth rate is 

achieved by changing the values of the parameters with the largest elasticities. 

Decreasing seedling survival in a given crop may be more effective in one rotation 

than in another rotation. Furthermore, within a rotation, the strategy may be more 

effective in one phase than in another phase (each year of a rotation is called a 

'phase"). This not to say that the process with the highest elasticity is necessarily the 

best or most convenient one to manipulate. As de Kroon et al. (2000) point out, there 

may be limits to the degree of change that can be induced in a particular process. 

Our model, as with any periodic linear model, shows that the population 

growth rate, given by the dominant eigenvalue, will not be affected by the starting 

phase of the rotation. The size of a future population will, however, be affected by the 

starting crop and the initial distribution of seeds over the soil column. Taking the 

baseline (<Ti=l) rotation AB as an example, if most of the seeds are in the top layer, 

then it may be beneficial to start with the A phase of the rotation. Few seeds will be 

produced and then most of them will be moved to the bottom layer, where their 

reproductive value will be low. Therefore the amount of new seeds produced in the 
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following B phase will be less than if the B phase occurred first. As the size of the 

weed population can affect the costs of control and can reduce crop yield, it may be 

important to consider the initial seed distribution and starting crop when a change to 

another rotation is contemplated. The starting distribution of seeds also has practical 

consequences for empirical studies of long-term weed growth rates in crop rotations. 

Experiments should be carried out long enough to overcome any transient effects and 

the starting distribution of seeds over the soil column should be measured, an 

observation also made by Mohler (1993). 

From a management perspective, it is tempting to ask whether there are 

critical values of the monoculture growth rates for which order would not affect the 

population growth rate over a rotation cycle. Such reasoning, though, ignores the 

crucial role of population structure. For a structured periodic system the population 

growth rate is not the product of the monoculture growth rates because the order of 

crops changes the population structure, which in turn affects the growth rate the 

following year. Consequently rotation population growth rates may show little relation 

to the product of the monoculture population growth rates. In a structured periodic 

system, order will not matter only when there is no difference in right eigenvectors 

between the yearly transition matrices (Caswell 2001) or when processes in one crop 

yield a matrix that is the inverse of the other crop or the inverse of the product of the 

other matrices. Such situations are unlikely to occur. The only other possibility is if the 

life history for the weed species in each of the crops leads to transition matrices that 

are similar. The elasticity of the population growth rates to the underlying parameters 

may differ though, because the sums and products of parameter values determining 

the value of a particular transition may be the same for each crop, but the values of 

corresponding parameters in each crop may be different. 

Toward an improved understanding of crop rotations 

As stated at the outset, impacts of crop rotations on weed populations are 

typically attributed to the diversity of environments, which are thought to prevent a 

weed population from becoming unmanageably large. While there is undoubtedly 

much truth in this explanation, it is now possible to specify underlying processes more 

precisely as well as to provide some qualifications. Critically, not just the diversity of 

environments matters, but also the sequence of environments interacting with the 

population structure. Two rotations can be equally diverse, i.e., having the same 

number and proportion of crops, but still can have different weed population growth 

rates depending on their order. Furthermore, one can now begin to imagine rotations 

that could increase a weed problem compared to a monoculture of any of the 

component crops. This could perhaps happen when germination and emergence 

depend on seed age and the population is structured by position in the soil. Particular 
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sequences could enhance the fraction of seeds emerging beyond that found in a 

monoculture. The observation of how growth rates change as rotation length 

increases is perhaps interesting from a mathematical perspective but has less practical 

relevance for weed populations. 

Use of simple, analytically tractable models to examine crop rotations goes 

far in giving the ability to explain how biological processes and effects of management 

interact differendy under different rotations. Jordan et al. (1995) observed, in 

simulations of a structured weed population with a four-year rotation (oats/clover, 

corn, soybean, corn), that different sensitivities resulted between the first and second 

corn years. While these could have been due to differences in the ploughing regimes 

between the two corn crops, some of the differences could be due to the rotation 

itself. They were not able, however to explain the processes underlying the differences 

in sensitivities and concluded that 'crop rotations are complicated historical sequences, 

and effects of an event or process on weed population dynamics may be very different 

depending on timing within the rotation' (Jordan et al. 1995, p. 395). In this chapter 

we have been able to explain such effects. 

The present analysis raises the question of why a particular crop rotation is 

being used and whether the arguments given for this choice actually hold. In the 

Netherlands, for example, crop rotations tend to follow an ABAB pattern, alternating 

competitive crops (grains, potatoes) with non-competitive crops (sugar beets, onions), 

and where is done after each crop. Typical reasons for the alternating pattern relate to 

soil, weed, and disease management. Given our findings we wonder whether the 

ABAB pattern, with tillage occurring after each crop, is the ideal one, at least as far as 

weed management is concerned. With regard to soil and disease management there 

has been no systematic investigation of the effects of crop order, number, and 

proportion on these aspects of crop production. It is possible that they may show 

dynamics qualitatively similar to the results presented here for weed populations. 

Taking a theoretical approach frees one to ask apparently absurd questions, 

such as what would happen if ploughing did not occur prior to a carrot crop. From a 

standard agronomic perspective there may be little sense in not tilling before a carrot 

crop. From a weed-management perspective, such a practice may be beneficial and 

should, for example, stimulate investigation of new crop husbandry methods or 

development of varieties that grow well without tillage. An improved theoretical 

approach to crop rotations we hope will contribute to more creativity in finding 

solutions for managing weed populations. 
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CHAPTER 6 

Perspectives 

This thesis has sought to understand aspects of weed-crop competition and 
population dynamics with the immediate aim of decreasing the amount of mechanical 
and hand weed control needed by organic (non-herbicide using) farmers in Western 
Europe. The questions studied ranged from the practical —is it better to use a wider or 
narrower row spacing in cereal crops to rninimise weed seed production?, to the more 
theoretical —how does the order of crops in a rotation affect weed population 
dynamics? 

The results stemming from the studies presented in Chapters 2 to 5 and the 
experience of carrying out this research have lead to many more questions and also to 
views on directions for research on weed ecology and management. The objective of 
presenting these perspectives is to provoke thought and discussion, and along the 
way, point out some potentially interesting research questions. The objectives are 
neither to give a comprehensive research strategy nor to directly discuss extensions of 
the results of Chapters 2 to 5. With regard to the latter point, the reader is referred to 
the discussion contained in the chapters themselves. With regard to the former point, 
it is felt that it is generally unproductive to claim that there can be a best method for 
carrying research on weed ecology —a diversity of research angles is critical for 
progress in any field. Therefore some important aspects, for example spatial dynamics 
of weed populations or specific biological processes such as effects of cover crops, are 
not considered, or at least not in detail. 

HUMAN DIMENSIONS OF W E E D ECOLOGY AND MANAGEMENT 

If one were to ask a weed what it was, it would probably answer that it 
considered itself a plant, and that it was people that had classified it as a weed. Most 
weed ecologists and farmers would agree that agricultural weeds are a subjective issue. 
A plant growing in a mountain meadow or along a roadside might elicit comments on 
its pretty flowers or on how butterflies gather nectar from it. The same plant in a crop 
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field may raise groans of annoyance that the population still has not disappeared. As 

long as agricultural fields have been present, there have been unwanted plants able to 

live in the same environment, and often at the expense of the crop plants. 

The human dimension of weed ecology and management plays a role at many 

different levels, ranging from the daily decisions that a farmer may take concerning 

weed control, to policies that are set in place in response to societal or other concerns. 

In most work on weed ecology it is assumed that a farmer's goal is to reduce weed 

densities. Consequendy most studies are oriented towards reducing weed numbers, 

usually in the short term. Recendy, however, awareness has been growing of the need 

to consider longer-term aspects. With the interest in reducing herbicide use, more 

emphasis has been put on economic aspects, and specifically examining what 

strategies and factors are important if the goal is to maximise (future) profits rather 

than to minimise weed densities (Pandey and Medd 1991, Wallinga 1998). At the policy 

level, the human dimension of weed management comes into play when laws are 

passed which restrict or remove access to certain herbicides, or incentives are created 

to increase biodiversity in agro-ecosystems. 

At all levels, and particularly with regard to organic farming, there may be a 

greater diversity of objectives than is realised and some of them may be in conflict 

with each other. Furthermore very litde is known about the long-term consequences 

of human decisions, whether they are at the farm or policy level. For example, a 

potential conflict between objectives may be the desire to increase weed diversity on 

the one hand and to minimise hours of hand-weeding on the other hand. The results 

from Chapter 2 and other studies suggest that there may be a trade-off between weed 

diversity and density. At the farm level, some farmers have a very clear strategy to 

reduce weed population densities over the long term, while others appear to be 

reacting in order to prevent excessive crop yield losses. Is the latter a deliberate 

strategy? A lack of understanding of long-term dynamics? A lack of resources to make 

the investment in reducing weed population densities in the long term? Other aspects 

of the farm which take priority? Is it something about the soils on the farm? Such 

questions need to be addressed in order to focus research on relevant aspects of weed 

management, but also so that farmers understand the wider consequences of their 

decisions. 

Farmers and scientists may also differ in their perception of what the 

problem is. For example, results from the 1995 survey of ecological farms (Schotveld 

and Kloen 1996) indicated that while Stellaria media (chickweed) was deemed to account 

for most of the time of hand-weeding, it was not the species that the farmers were 

most worried about. Instead, with regard to annual weeds, they were more concerned 

about Chenopodium spp. and Solatium nigrum (black nightshade). Nevertheless much 

recent work in Wageningen (Franke 1998, van Orsel 1998, Pannebakker 1999, van 
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Delden 2001) has concentrated on S. media as result of the finding that S. media was the 

dominant species on ecological farms. It would be useful to know why the farmers 

were more worried about the other species. Could it be that these species present a 

larger threat to crop yields than S. media or are more difficult to control? Some farmers 

may even consider S. media as a useful cover crop in cereal crops, provided they have 

an effective short-term management tactic for less competitive crops like onions. 

L O N G - T E R M M O N I T O R I N G A N D E X P E R I M E N T S 

Over the last 20 years, recognition of the importance of long-term ecological 

data has been growing. The reasons for the importance of long-term experiments and 

monitoring studies include the ability to observe the effects of slow ecological 

processes, the effects of rare events, cyclic behaviour that may recur at intervals longer 

than most studies, and to have better estimates of variability in the data (Woiwood 

1991). For example some processes such as complex interactions between plant or 

animal populations, resources, and environmental perturbations may not be 

discernible through short-term experiments and monitoring studies (Brown et al. 

2001). Studies of long-term fisheries data have helped to clarify causes and rates of 

ecological change, but have also provided ideas for management that would not have 

occurred based on recent observations alone (Jackson et al. 2001). Long-term data sets 

also allow testing of ecological theory (in the form of results from mathematical 

models) and discrimination of environmental noise from various ecological processes 

(Woiwood 1991, Bjernstad and Grenfell 2001). Testing of theory and separating noise 

from signal are crucial aspects of being able to forecast system dynamics, which is an 

important goal of research on weed ecology. 

While agricultural experiments have provided ecologists with some the 

longest data sets, such as the Broadbalk and Park Grass experiments at Rothamsted 

(Woiwood 1991, Johnston 1994), there have been very few long-term experiments or 

monitoring studies of weed population dynamics. Numerous studies have been carried 

out to quantify various weed life-history processes, and many models have been 

constructed to simulate weed population dynamics. However, very little is known 

about the actual dynamics of weed populations and the relative importance of factors 

influencing weed population dynamics and their interactions. The few existing long-

term studies (>10 years) of weed populations have tended to either focus on before 

and after snapshots of weed communities (e.g., Hume 1982), or have looked just at 

indices of total weed population magnitudes rather than the densities of specific 

species (e.g., Aebischer 1991). While these studies have provided useful information, 

the most relevant information may come from the analysis of permanent plots in 

'commercial' fields or long-term experiments. This is because of the sedentary nature 
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of most plants, the presence of a seedbank, and the desire of farmers to know the 

consequences of different factors. Aggregating data across fields would obscure such 

relations. 

For non-herbicide weed management, a long-term perspective towards 

management is essential and therefore knowledge and understanding of weed 

population dynamics in the long term needs to be built up. For example crop 

rotations are considered to have an important effect on weed population dynamics 

but few studies continue beyond one or two rotation cycles, which is not likely to be 

enough to get beyond transient dynamics. Particular questions of interest to weed 

management include whether weed populations appear to reach a stable equilibrium? 

How long does it take for populations to return to equilibrium after a perturbation? 

What is the effect of environmental stochasticity? Does it overshadow effects of 

control? Are there cycles in herbivores or seed predators that influence weed 

population dynamics. For farmers that rely on hand-weeding, a stable equilibrium in 

weed control may be more important than a stable weed population. Firbank (1991) 

has pointed out that long-term studies of weed population dynamics would help to 

resolve questions of whether the dynamics of some species are more predictable than 

other species or whether a seedbank dampens population changes. 

Establishing long-term experiments and monitoring studies requires much 

thought, and studies of weed population dynamics have particular requirements. More 

general considerations for long-term experiments have been outlined by Leigh et al. 

(1994), and include keeping a simple design, using large plots, having a uniform site, 

and preventing soil movement across soil boundaries. Particular considerations for 

weed studies include how large an area is needed to have meaningful estimates of the 

weed plant population or the number of cores needed for seedbank estimates, and 

when to make counts of weed plant densities — at the start or end of the cropping 

season. The amount of control may be related to the population size at the start of the 

season, whereas the population size at the end of the season will determine the 

population size in the following season. Some of these aspects may have to be 

adjusted according to the species being considered. For example a species which has a 

low density may require a larger monitoring area in order to avoid spurious variability 

such that one year there is a plant in the plot and the next year there is one just 

outside the plot. For species with several generations per year, it may be of interest to 

monitor the population during each generation. 

To make sense of observations of weed population dynamics, it is useful to 

have information on management practices and certain environmental parameters. 

How much information, though, is enough but not too much? On the one hand 

detailed information, for example on precise amounts and composition of fertilisers, 

may appear desirable, but may result in data overload and too much work, particularly 
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if it is farmers that must provide the information. On the other hand, without enough 

management or environmental information, it may be difficult to explain patterns that 

are observed in the data. As one might expect, the data collected will depend on the 

question and the resources available. 

Finally, there are the questions of how long a study should be continued and 

how to analyse the data. Again, the answers will depend in part on the hypothesis that 

is being tested. With regard to the length of the study, if parameters are being 

estimated from the data, then it is critical that the number of observations exceeds the 

number of parameter values that need to be estimated. Furthermore, while it is useful 

if there is a clear question at the outset of the study, the value of the data may only 

become evident as time passes and new theories and methods of analysis are 

developed. 

T H E O R I E S A N D M O D E L S F O R W E E D P O P U L A T I O N D Y N A M I C S 

In developing meaningful long-term experiments or monitoring studies, 

theories or hypotheses that can be expressed in a mathematical model are useful for 

focussing attention on the question at hand and the required data. Frequendy, 

however, models of weed population dynamics have been developed with the aim of 

predicting weed population size in order to ultimately assist farmers with decisions on 

what strategies and control methods to apply. However, the record of predictions 

from models of weed population dynamics has been poor (Firbank 1989, Cousens and 

Mortimer 1995), and has to do with inherent variability in estimates of parameter 

values, measurement error, effects of magnification of errors through time, and 

unknown biological processes. However, for certain management strategies (e.g., 

threshold weed control), even a large error in predicted weed densities may not affect 

the decision (e.g., to control or not to control, Wallinga et al. 1999) 

Some types of weed population models, however, rather than trying to make 

quantitative predictions of weed population dynamics, have instead aimed to examine 

the qualitative behaviour and to identify the key processes shaping such behaviour. 

For example Wallinga and van Oijen (1997) demonstrated how the discontinuity due 

to control decisions based on threshold weed densities leads to unpredictable weed 

population dynamics. While the exact quantitative dynamics observed in this model 

are not expected to be mirrored in reality, it provides another perspective for viewing 

changes in weed population size and the consequences of control. Furthermore, the 

clarity and simplicity of the conclusions allow well-defined experiments to be set-up in 

order to determine whether actual weed populations show some of the same 

qualitative behaviour as shown by the models. The model of weed population 
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dynamics and crop rotations presented in Chapter 5 follows this spirit of developing 

theory rather than predicting population size. 

If data sets of weed population dynamics were available and if these were 

long and large enough, it would be possible to apply other methods of analysis. In 

doing so both goals of quantitative prediction of weed population dynamics and 

improved understanding of the processes governing weed population dynamics might 

become within the grasp of weed ecologists. These methods can range from linear and 

non-linear time series analysis where predictions are based on purely statistical analysis 

of past patterns, to more involved fitting of models based on biological processes. For 

example, Kendall et al. (1999) demonstrated how competing hypotheses which might 

explain the cyclic dynamics observed in a laboratory population of blowflies can be 

evaluated. After constructing models based on biological processes (birth, death, and 

transition between life history stages) and different assumptions concerning 

competition, they estimated parameters from the data using several methods and then 

simulated the population dynamics (including measurement noise) resulting from the 

different models and parameter fits. A general difficulty with comparing biologically-

based models with data is the absence of a well-defined measure of goodness-of-fit. 

Kendall et al. (1999) tackled this problem by calculating a variety of 'probes.'(mean, 

median, period and amplitude, to mention a few), which described the observed and 

simulated time series. As the probes may not be independent, they used principle 

component analysis to account for correlation and then compared the data and 

simulations graphically in principle component space. Using this method, they were 

able to conclude that one hypothesis concerning competition was more plausible than 

the other and that the level of discrimination between hypotheses was greater than if 

they had used the goodness-of-fit criterion (t2) that was maximised when estimating 

the parameter values from the data. Methods of discriminating between competing 

hypotheses based on single goodness-of-fit criteria (comparison of likelihood values, 

or information theoretic criteria) are, however, much more common (e.g., Dennis et al. 

1995, Hilborn and Mangel 1997, Burnham and Anderson 1998). 

Another avenue for combining theory and data is to use what are called 

'partially specified' (Wood 2001) or 'semi-mechanistic' (Ellner et al. 1998) models of 

population dynamics. In such models known biological aspects are included, while 

unknown aspects are derived from the data. For example Ellner et al. (1998) do not 

specify the rate of transmission of measles from infected to susceptible individuals, 

but rather examine the fit of the model when different general functions are used. 

Compared with a mechanistic and a statistical time series model, the partially specified 

model gave the best fit and also provided additional insights, through suggesting 

underlying mechanisms and the relative importance of unpredictable noise. Allowing 

functions to be derived from the data can also help to avoid super-sensitivity of 
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population dynamics to model structure (Wood and Thomas 1999). In such cases 
several functional forms may give equally good fits to the data for the process of 
interest, but may result in very different population dynamics. Currendy most weed 
population dynamic models to not include functional responses. However, in the 
effort to create more 'realistic' models or models that fit observed time series, 
incorporation of functional responses may become more common, whether it is 
dependence of control decisions on density, response of germination to temperature, 
or effectiveness of weed control in relation to soil moisture. 

EXPERIMENTS AND THE INDIVIDUAL IN THE POPULATION 

The above emphasis on long-term studies and analysis of weed population 
dynamics is not to suggest that there is no role for short-term experiments in weed 
ecology. Such experiments will always have a place, for example, to investigate the 
effects of weed-crop competition, the effectiveness of different control methods, or 
the forms of density dependence that may be present. Resources might be better 
allocated and experimental designs improved, however, if more thought is given to the 
role of individual weed plants in the population and by not loosing sight of long-term 
aspects. With regard to the latter point, taking a long-term approach requires a focus 
on how all aspects of a weed's life cycle influence future populations. Such a 
perspective can lead to considerations of whether there are trade-offs between 
different management strategies. As shown in Chapter 3, one strategy leads to a lower 
weed density, but not to a lower level of seed production, while the other strategy 
leads to a higher weed density but lower seed production. 

With regard to the former point, because plants are sessile and therefore 
influenced by their local environment (biotic and abiotic), taking an individual 
approach allows investigation of how local factors affect various life-cycle processes 
such as survival or seed production. An understanding of such relations can provide 
insights leading to refinement in or new forms of weed control and management. 
Measurements on an individual basis also provide a better description of the 
distribution of responses. Such data is useful in developing stochastic models of weed 
population dynamics. Furthermore, adoption of an individual approach helps to avoid 
measurement errors due to the spatial heterogeneity of weed plants and seeds. For 
example, as shown in Chapter 4, weed survival due to mechanical hoeing may depend 
on the distance a weed plant is from the crop row. If survival is measured just by 
calculating the ratio of densities before and after weed control, then misleading 
survival rates may result, as the weeds are not likely to have a random spatial 
distribution. It may not always be necessary or possible to take an individual approach, 
but just by trying to think more from the perspective of a weed plant or seed may help 
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to focus hypotheses and to avoid shortcomings in experimental design resulting from 

taking a density or population based approach. 

ADAPTIVE MANAGEMENT 

The need to manage exploited populations, particularly fisheries, without 

driving the population to collapse and in the face of incomplete and uncertain 

knowledge has lead to the concept of 'adaptive management' (Shea 1998). The idea, as 

espoused by Walters (1986) was that management should be an adaptive process, 

whereby 'we learn about the potentials of natural populations to sustain harvesting 

mainly though experience with management itself, rather than through basic research 

or the development of general ecological theory'. With weeds there are parallels — 

there is much uncertainty and there is usually a clear goal, though usually related to 

keep the population below rather than above a certain level. In a sense agriculture has 

its roots in adaptive management, however until recendy the link with rigorous 

observations and analysis of cause and consequence has been lacking. Adaptive 

management, in its more formal definition and application can be a useful starting 

point for linking long-term studies, experiments, and ecological and economic theory 

in order to achieve specific goals regarding weed management. 

Walters (1986) gave three ingredients for adaptive management: mathematical 

modelling, statistical analysis, and formal optimisation. Together these three aspects 

were expected to focus attention on uncertainties and how the propagate over time, 

generate, alternative hypotheses, and provide a range of management options. Implicit 

in these ingredients is the importance of monitoring and defining a clear objective. 

Some of the limitations of taking an adaptive management approach relate to potential 

irreversibility of decisions, and costs of monitoring (Shea et al. 2002). 

In a weed management context, the simplest form of adaptive management 

would be to consider the weed populations observed over the last few years and then 

to choose the management strategy in response to past trends and future goals. An 

aspect that is particularly important in a weed management context is that a farmer is 

dealing with a community of weed species and strategies that may reduce the 

population of one species may result in population increases of another species. 

An example of how adaptive management could be applied in a weed 

context, might start with the observation that the population of early germinating 

weeds had been increasing over the last few years and was getting to levels that 

prevented economic goals from being achieved. Possible responses for an organic 

farmer might include planting fall crop, delaying planting of the current crop species, 

or using a different form of direct weed control such as flame weeding instead of 

hoeing. Each of these choices carries its own costs and risks. Delaying sowing could 
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result in lower yields, planting a fall-sown crop might result in undesirable increases in 

a different weed species, while a different control method might be more effective, 

but only in a narrow window of opportunity. An additional question is for how long a 

particular strategy be should implemented. For example should a fall-sown crop be 

planted for more than one year? Past knowledge in combination with dynamic models 

(preferably including an economic component and environmental stochasticity) could 

provide some guidance through evaluating future consequences. Once a decision has 

been implemented, then regular monitoring must continue in order to evaluate the 

consequences of the decisions and thereby to provide feedback for improving future 

decision-making. For example, how similar were the predicted results (long and short 

term) to the observed outcome. If they were very different, was it due to an 

unexpected event (rain at a crucial time), lack biological knowledge, or inclusion of 

too many details in the model, leading to magnification of error? Even if outcomes 

were close to predictions, could there have been another explanation for the 

observations? 

A limitation of adaptive management in a weed context may be the variety of 

decisions that can be made and the interactions between different decisions. 

Therefore it may be difficult or even impossible to discern a final answer for a 

particular decision — the outcome may be due to past decisions or to the particular 

combination of decisions made. Furthermore, the impact of a decision may be very 

different whether it is viewed in the long or the short term and therefore a variety of 

time-horizons should be considered. 

Current decision support systems and farm consultants do already attempt to 

bring together available knowledge, and possible outcomes. They are, however, more 

oriented towards herbicide-using farmers and often do not consider effects beyond 

one season or effects of environmental stochasticity (e.g., Wiles et al. 1996). 

Furthermore there is usually no framework for monitoring the impacts of a practice 

once it has been carried out. Decision support systems that have included long-term 

weed population dynamics do seem to raise farmer awareness of the long-term 

implications of using certain control methods (Pannell 2001). Incorporating game 

playing into evaluation of different management strategies would be useful from both 

an educational perspective but also for learning how decision making takes place and 

to develop a wider range of strategies (e.g., Milner-Gulland et al. 2001). 

CONCLUSION 

The perspectives discussed in this chapter should not be considered as 

prescriptions, but rather as a limited number of aspects that could warrant more 

thought in research on weed ecology and in the development of weed management 
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strategies. In particular, the human dimensions of weed management should not be 
ignored, both in terms of a better understanding of the aims of weed management and 
in terms of how management decisions affect weed population dynamics. However, 
few theories concerning weed population dynamics can be tested or management 
strategies evaluated without access to long-term data sets. To see the benefits, one has 
only to consider the use to which long-term data sets of communicable diseases have 
been put, from evaluating vaccination strategies to inferring contact patterns, which 
have analogies with weed control and dispersal, respectively. Considering the costs of 
controlling weeds — both financial and environmental, and the risks posed by 
herbicide resistant crops, it would be worthwhile for weed ecologists, farmers, and 
funding bodies to initiate some simple long-term studies on weed population 
dynamics. 
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Samenvatting 

ACHTERGRONDINFORMATIE 

In Europa wordt de kans steeds groter dat men mensen zal zien die 

handmatig onkruid wieden. De bezorgdheid over het milieu, het belang van gezond 

voedsel en het schrappen van certificering van een reeks herbiciden zijn enkele 

redenen voor de toename van handwieden. Hoewel de omstandigheden sinds de tijd 

van het schilderij op de omslag van dit proefschrift verbeterd zijn, is dit nog steeds erg 

zwaar werk en is het moeilijk om mensen te vinden die zulk werk willen doen. In 

andere delen van de wereld, waar de belangrijkste vorm van onkruidbestrijding nog 

steeds handmatig is, bestaat een tekort aan arbeid vanwege de migratie naar stedelijke 

gebieden en de HIV/AIDS-epidemie. Hier lijdt de voedselproductie onder. 

Bij mechanische en handmatige onkruidbestrijding worden onkruidplanten 

uitgeroeid, zodat de onkruidpopulatie niet te omvangrijk wordt. Net als ieder ander 

levend organisme worden onkruidplanten beinvloed door hun omgeving. Als we 

weten hoe de omgeving rond een onkruidplant haar overlevingskans, reproductie en 

verspreiding be'invloedt, ofwel als we de ecologie van onkruid kennen, zouden we 

andere methoden kunnen vinden om de onkruidpopulatie te reguleren in plaats van 

deze planten alleen proberen uit te roeien. Ecologische kennis van onkruid heeft zich 

door de eeuwen heen ontwikkeld met behulp van observaties van telers en meer 

recent door wetenschappelijk onderzoek. 

Een voorbeeld van een manier waarop de kennis over onkruidecologie wordt 

gebruikt, is uitgesteld zaaien. Veel onkruidsoorten hebben een bepaalde periode 

waarin ze ontkiemen en opkomen. Als het zaaien van het gewas een paar dagen kan 

worden uitgesteld en het opkomen van onkruid kan worden aangemoedigd door valse 

zaaibedden te creeren, dan kan de onkruidpopulatie met een substantieel deel worden 

teruggebracht in het werkelijke zaaibed dat later wordt gecreeerd. 

Hoewel er veel bekend is over onkruidecologie, valt er nog veel te leren. De 

kennis van onkruidecologie kan worden ontwikkeld op het gedetailleerde niveau van 

specifieke soorten of op het algemene niveau van de manier waarop onkruidplanten 

en populaties met de omgeving en met de beslissingen van de telers interacteren. 

Gedetailleerde kennis zal waarschijnlijk eerder leiden tot directe toepassingen, maar is 
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erg tijdrovend. Algemene principes kunnen echter inzicht verschaffen dat tot nieuwe 

en ongebruikelijke ideeen kan leiden om onkruidpopulaties te beheren. 

Dit proefschrift heeft tot doel de gedetailleerde en algemene kennis over 

verschillende aspecten van onkruidecologie te ontwikkelen. Op gedetailleerd niveau 

ligt de nadruk op hoe gewasrij-afstand in combinatie met verschillende soorten 

mechanische bestrijding de onkruidzaadproductie beinvloedt. Op een algemener 

niveau ligt de nadruk op hoe gewasrotatie, vooral de gewas-volgorde, de wisselende 

grootte van onkruidpopulaties beinvloedt. Tussen het algemene en gedetailleerde 

niveau in ligt de nadruk op de factoren die de onkruidpopulaties beinvloeden op 

biologische boerderijen. 

Hoewel de vragen die in dit proefschrift aan de orde komen een breed gebied 

beslaan, is het centrale thema de noodzaak van een lange-termijn visie voor 

onkruidbeheer. Dit komt omdat de onkruidzaden die het ene jaar worden 

geproduceerd, bijdragen aan de toekomstige onkruidpopulaties. Een betrouwbare 

evaluatie over onkruidbeheersystemens kan alleen gemaakt worden als er wordt 

gekeken naar de effecten op langere termijn. Op z'n minst moet er worden gedacht 

aan de gevolgen voor het volgende groeiseizoen. Een lange-termijn visie betekent 

echter niet dat de populatiedynamica van onkruiden in ieder hoofdstuk wordt 

geobserveerd of gesimuleerd met computermodellen. In Hoofdstuk 3 was 

bijvoorbeeld het doel van het experiment de onkruidzaadproductie te minimaliseren, 

maar de motivatie voor het experiment was de vermindering van de onkruidpopulaties 

op de lange termijn. 

KORTE SAMENVATTING VAN DE HOOFDSTUKKEN 

Formulering van het probleem 

In Hoofdstuk 2 worden de resultaten besproken van de regelmatige 

observatie van onkruid op biologische boerderijen. Door onkruid op bepaalde 

boerderijen te observeren, is het mogelijk om beter te begrijpen wat het probleem is, 

als er al een probleem is, en is het ook mogelijk om de waarschijnlijke oorzaken van 

het probleem te vinden. Alleen wanneer het probleem bekend is, kunnen oplossingen 

worden gevonden. Een statistische analyse kan worden gebruikt om te onderzoeken 

of er een verband bestaat tussen de waargenomen onkruidpopulatie en verschillende 

controleerbare en oncontroleerbare factoren. Informatie van en discussie met telers 

over hun aanpak kan helpen bij de verklaring van de verspreidingspatronen van de 

onkruidpopulaties. 

De analyse uit Hoofdstuk 2 richt zich op de factoren die de variabiliteit van 

onkruiddiversiteit en -overvloed bepalen. Het onkruid werd in totaal zes jaar (1995 en 
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1997 tot 2001) geobserveerd op vijf biologische boerderijen en van ieder veld legden 

de telers informatie vast over het beheer van onkruid en gewassen. Het was 

overduidelijk dat de onkruiddichtheid op bepaalde boerderijen consequent laag was en 

op andere juist hoog. De boerderijen met veel uren handmatig onkruid wieden waren 

ook de boerderijen met een hogere onkruiddichtheid. Het lijkt erop dat de telers met 

lage onkruiddichtheid en weinig uren handwieden opzettelijk een lange-termijn aanpak 

hanteren voor onkruidbestrijding door bijvoorbeeld de bloeiende plan ten van een 

bepaalde onkruidsoort te verwijderen van de graanvelden. Boerderijen met een hoge 

onkruiddichtheid kenden ook meer onkruidsoorten dan boerderijen met een lage 

onkruiddichtheid. Het klaarblijkelijke verband tussen onkruiddichtheid en het aantal 

onkruidsoorten roept belangrijke vragen op voor beleidsmakers, als zij van mening 

zijn dat een van de doelen van biologische landbouw het verhogen van de 

biodiversiteit is. 

Gewasplantpatronen om de onkruidzaadproductie te minimaliseren 

In Hoofdstuk 3 worden de resultaten besproken van een experiment over het 

effect van gewasrij-afstand en mechanische bestrijding op onkruidproductie. 

Biologische telers maken normaal gesproken gebruik van een mime rij-afstand (22-30 

cm) voor graangewassen (gerst, haver, tarwe) om een mechanische schoffel te kunnen 

gebruiken, die als een van de betere onkruidbestrijdingsmiddelen wordt beschouwd. 

Maar door de ruime rij-afstand zullen de onkruidplanten waarschijnlijk groter worden 

en meer zaden produceren dan bij een nauwere rij-afstand. Bij een nauwere rij-afstand 

kunnen echter meer onkruidplanten de onkruidbestrijding overleven. Als we het aantal 

geproduceerde zaden gebruiken om de verschillende opties te evalueren, willen we 

graag weten welke combinatie van gewasrij-afstand en mechanische bestrijding de 

minste zaadproductie oplevert. 

De opzet van het experiment bestond uit drie rij-afstanden (10, 20 en 30 cm) 

en twee zaaidichtheden (140 en 180 kg ha -1). Bij de opzet van 30 cm werd er gebruik 

gemaakt van mechanisch schoffelen en eggen om het onkruid te bestrijden. Bij de 

opzet van 10 en 20 cm gebruikte men alleen een eg om het onkruid te bestrijden. Er 

werden drie onkruidsoorten onderzocht: perzikkruid (Polygonum persicarid), zwaluwtong 

(Polygonum convolvulus) en vogelmuur (Stellaria media). Om de zaadproductie te 

berekenen was het noodzakelijk om te weten hoeveel planten de onkruidbestrijding 

overleefden en hoeveel zaden er door de overlevende planten werden geproduceerd. 

Hiervoor werden de planten allemaal gemarkeerd voordat de onkruidbestrijding 

plaatsvond. 

Uit de resultaten bleek dat, rekening houdend met de verschillen in 

effectiviteit van de verschillende onkruidbestrijdingsmethoden, de zaadproductie het 

laagst was bij de nauwere gewasrij-afstand. De onkruidmortaliteit bij de ruime rij-

afstand zou moeten toenemen om het niveau van de zaadproductie bij de nauwere rij-
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afstand te evenaren. Het lijkt er daarom op dat biologische telers beter een nauwere 

rij-afstand kunnen gebruiken en minder intensieve onkruidbestrijdingsmaatregelen 

moeten nemen. Proeven op boerderijen met meer varieteit in bodem, met andere 

onkruidsoorten en hogere zaaidichtheden van gewassen, zouden nuttig zijn om de 

bredere geldigheid en toepasbaarheid van de resultaten te onderzoeken en zo de telers 

te overtuigen. 

Het voorspellen van de individuele massa en overlevingskans van onkruid 

In Hoofdstuk 4 werden extra gegevens van het experiment uit Hoofdstuk 3 

gebruikt om te onderzoeken of de massa en de overlevingskans van individuele 

onkruidplanten voorspeld kan worden met de informatie van hun lokale omgeving. 

Als we begrijpen welke onkruidplanten het meeste bijdragen aan toekomstige 

generaties en hoe overleving en reproductie verbonden zijn met hun lokale omgeving, 

kunnen we bijvoorbeeld optimale combinaties van gewasrij-afstand en mechanische 

bestrijding vinden. Of we kunnen de vraag beantwoorden of verschillende gewas 

plantpatronen leiden tot verschillende ruimtelijke patronen van onkruid. 

Het lokale milieu rond een onkruidplant kan op vele manieren worden 

omschreven. Voorbeelden hiervan zijn de lokale dichtheid van gewasplanten rond een 

doel-onkruidplant, de afstand tussen de doel-onkruidplant en de dichtstbijzijnde 

gewasplant of directe metingen van groeivoorwaarden, zoals de hoeveelheid 

beschikbaar licht of water voor een doel-onkruidplant. Bij het experiment over rij-

afstand, dat beschreven wordt in Hoofdstuk 3, werden er metingen verricht van de 

afstand tussen iedere onkruidplant en de dichtstbijzijnde gewasplant. In Hoofdstuk 4 

werden deze metingen van de lokale omgeving gebruikt om statistische vergelijkingen 

op te stellen die gebruikt kunnen worden om de massa en de overlevingskans van 

individuele onkruidplanten te voorspellen. 

Met betrekking tot de plantmassa werden er met de gegevens 32 

verschillende vergelijkingen getest, waarbij verschillende combinaties werden gebruikt 

van de twee metingen van de lokale omgeving. Het is verrassend dat eenzelfde 

vergelijking de best passende relatie gaf voor alle drie de onderzochte soorten. De 

vorm van de vergelijking was u> — bo + b\u2 + bzv2-, waar de w de voorspelde massa van 

een plant is, u de afstand tot de dichtstbijzijnde gewasplant is en v de rij-afstand is 

waartussen de onkruidplant zich bevindt. De h zijn geschatte parameters uit de 

gegevens die per soort verschilden. Deze lineaire vorm is alleen toepasbaar voor een 

beperkte reeks afstanden, omdat de planten niet tot een oneindige hoogte groeien als 

de afstand groter wordt. Het is echter niet waarschijnlijk dat de afstanden bij een 

graangewas veel groter zullen zijn dan de afstanden die in het experiment gemeten 

zijn. Het model is voldoet intuitief, omdat men zou verwachten dat de hoeveelheid 

beschikbare groeivoorwaarden (vooral licht) in relatie zouden staan met het 

beschikbare gebied, i.e. het kwadraat van de afstand. Met betrekking tot de 
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onkruidmortaliteit werd gevonden dat alleen de afstand van de gewasrij nodig was om 

de overlevingskans van het onkruid te voorspellen en dan alleen bij de ruime rij-

afstand waar mechanisch schoffelen werd gebruikt. Bij de andere opzetten hadden de 

onkruidplanten dezelfde overlevingskans ondanks hun lokale omgeving (zoals is 

beschreven aan de hand van de afstanden tot de dichtstbijzijnde gewasplant en 

gewasrij). 

Gewasrotatie en populatiedynamica van onkruiden 

In Hoofdstuk 5 komt de vraag aan de orde of de gewasvolgorde in een 

rotatie de populatiedynamica van onkruiden beinvloedt. Als men bijvoorbeeld twee 

gewassen heeft — peen en tarwe — en een eis van twee jaar voor ieder gewas, dan zijn 

er twee mogelijkheden voor een vierjarige rotatie: peen-tarwe-peen-tarwe of peen-

peen-tarwe-tarwe. De vraag is nu in welke van deze rotaties de onkruidpopulatie het 

langzaamst groeit en waarom? De meeste experimentele en gesimuleerde onderzoeken 

van onkruidpopulatie waren geneigd de nadruk te leggen op de vergelijking tussen 

monoculturen en een gewasrotatie en mogelijk ook op de interactie met verschillende 

ploegmethoden. Uit deze onderzoeken bleek dat gewasrotaties met een hogere 

diversiteit aan gewassen minder onkruidproblemen leken te hebben dan 

monoculturen. De manier waarop de gewasvolgorde de populatiedynamica van 

onkruiden beinvloedt, is echter nooit onderzocht. 

Aangezien experimenten met gewasrotatie een noodzakelijk lange tijdspanne 

vereisen, is het gebruik van een wiskundig model een manier om de bovengenoemde 

vraag te beantwoorden. Een wiskundig model houdt noodzakelijkerwijs vele 

vereenvoudigingen in. Maar omdat de veronderstellingen en de structuur van het 

model bekend zijn, is het met voldoende inspanning mogelijk om de resultaten 

volledig te verklaren. Dit betekent niet dat de resultaten de werkelijkheid 

weerspiegelen, maar de verkregen inzichten kunnen leiden tot nieuwe ideeen voor 

beheerstrategien en tot meer gerichte experimenten. 

Met het model zou het aantal onkruidzaden in twee bodemlagen kunnen 

worden berekend voor verschillende gewasrotaties, bestaande uit twee gewassen. Er 

werden twee bodemlagen gebruikt, omdat de ontkiem- en overlevingskansen van een 

zaadje afhankelijk zijn van de diepte waarin het zich in de bodem bevindt en omdat 

zaden in verschillende bodemlagen ook verschillende kansen hebben om naar andere 

lagen te worden bewogen door middel van ploegen. 

Uit berekeningen bleek dat het populatiegroeicijfer tussen rotaties met 

verschillende gewasvolgordes verschilde. Bij de peen-tarwe-peen-tarwe rotatie groeide 

de onkruidpopulatie bijvoorbeeld veel sneller dan bij de peen-peen-tarwe-tarwe 

rotatie. Als er niet geploegd werd na het tarwegewas groeide de populatie bij de peen-

peen-tarwe-tarwe rotatie sneller. Er werd ook ontdekt dat als het onkruidbeheer 

veranderd werd, door bijvoorbeeld meer of minder onkruid te bestrijden, het resultaat 
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anders zou zijn afhankelijk van het gewas waar de verandering was aangebracht en van 

de positie die het gewas had in de rotatie. De onkruidbestrijding bij tarwe met 20% 

verhogen zou bijvoorbeeld een beter resultaat opleveren dan ditzelfde te doen bij 

peen, en bij de peen-peen-tarwe-tarwe rotatie zou het uitmaken of de verandering in 

het eerste of tweede tarwejaar was aangebracht. 

Het gevolg hiervan voor onkruidbeheer is, dat het belangrijk is om aandacht 

te schenken aan de gewasvolgorde wanneer men een gewasrotatie ontwerpt en 

wanneer men veranderingen aanbrengt aan de onkruidbeheersstrategie binnen een 

gewas. Het is ook waarschijnlijk dat de grootte van de onkruidpopulatie en de korte-

termijn dynamica zullen worden beinvloed door de interactie van begincondities (de 

verdeling van zaden over de bodem) en door het gewassoort waarmee een nieuwe 

rotatie wordt begonnen. Daarom kan het voor de telers belangrijk zijn, wanneer zij 

overgaan op een nieuwe gewasrotatie, om te onderzoeken hoe groot de 

onkruidzaadpopulatie is en hoe de zaden over de bodem verspreid zijn. Het zou nuttig 

zijn om enkele lange-termijn veldexperimenten op te zetten om een aantal ideeen te 

testen die zijn voortgekomen uit het werk met modellen. 

PERSPECTIEVEN 

In de loop van het onderzoek, dat in dit proefschrift beschreven wordt, 

werden er enkele ideeen ontwikkeld die tot algemenere benaderingen van het 

onderzoek in onkruidecologie hebben geleid. Ten eerste is het van belang dat de 

menselijke factor niet wordt vergeten — waarom bijvoorbeeld sommige telers een 

lange-termijn visie voor het beheer van onkruidpopulaties hebben en anderen niet. 

Ten tweede zou het, aangezien onkruidbeheer bij biologische landbouw een lange-

termijn probleem is, nuttig zijn om meer informatie te krijgen over de lange-termijn 

dynamica van onkruidpopulaties op boerderijen en in goed ontworpen experimenten. 

Zulke gegevens kunnen helpen bij het bepalen of menselijke factoren meer invloed 

hebben dan factoren zoals het weer. Ten derde, met toegang tot lange-termijn 

gegevens, is het mogelijk om hypothesen te toetsen zoals die betreffende de resultaten 

van gewasvolgorde (Hoofdstuk 5), of om recentelijk ontwikkelde methoden te 

gebruiken van tijdreeksanalyse en van het aanpassen van populatiedynamische 

modellen aan meetgegevens. Zulke modellen zouden een beter voorspellend 

vermogen hebben dan de meer gebruikelijke deterministische modellen die geen 

'random' variatie opnemen. Verder client er bij het ontwikkelen van modellen voor 

populatiedynamica van onkruiden meer aandacht te worden geschonken aan de wijze 

waarop de onkruidbestrijding is gesimuleerd. Letten biologische telers bijvoorbeeld op 

de omvang van de onkruidpopulatie of roeien ze altijd een vast gedeelte van de 

populatie uit? Ten vierde is het belangrijk, bij het ontwerpen en uitvoeren van 
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experimenten, om niet de plaats van de individuele plant in de populatie uit het oog te 

verlie2en. Individuele planten dragen namelijk bij aan de toekomsrige generaties. Hoe 

beter we de variabiliteit begrijpen tussen individuele planten en de factoren die 

verantwoordelijk zijn voor deze variabiliteit, des te waarschijnlijker het zal zijn dat de 

beheersstrategie aangepast kan worden, opdat de strategic de grootste impact heeft. 

Ten vijfde en tenslotte zouden onkruidecologen, bij het ontwikkelen van een 

onkruidbeheersstrategie, een flexibel beheer moeten overwegen, die met name voor de 

visserij is ontwikkeld. Bij de visserij bestaat er namelijk veel onzekerheid over 

informatie vanwege onvolledige kennis en vanwege de random variatie. Een flexibel 

beheer houdt in dat er veranderingen aan een systeem, bijvoorbeeld een 

gewassysteem, worden aangebracht en dat vervolgens de manier waarop de populatie 

verandert wordt geobserveerd, nadat de verandering in het beheer is aangebracht. Dit 

beheer houdt in dat de observatie, de modellen en kleine experimenten gecombineerd 

worden in een continue poging om een of meer doelen te bereiken. Bij een 

visserijsysteem zou er bijvoorbeeld ieder jaar een evaluatie kunnen worden gemaakt 

van de populatiegrootte en vervolgens wordt dan de kennis van het resultaat van 

veranderingen gebruikt voor de methoden voor het volgende visjaar. Een teler die 

onkruid beheert, zou rekening kunnen houden met speciale problemen die in het 

laatste jaar zijn voorgekomen en het beheer in het huidige jaar aanpassen om de lange-

termijn impact op gewasopbrengst en andere kosten te kunnen minimaliseren. 
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