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STELLINGEN 

Het gebruik van absolute parameterwaarden voor het fitten van relaxatiecurves leidt bij lage 

signaal-ruis verhoudingen tot een te hoge waarde van de relaxatietijden en een verminderde 

contrastverhouding van de MRI-beelden. 

Dit proefschrift, Hfdst 2. 

De aanname dat de z.g.n. diffusion attenuation plot voor lange diffusietijden naar een basislijn 

nadert als gevolg van restrictie is in strijd met de gangbare diffusietheorieen. 

W. Wycoff et al. (2000) The determination of the cell size in wood by nuclear magnetic resonance diffusion 

techniques. Wood and Fiber Science 32, 72-80. Dit proefschrift, Hfdst 4. 

Het belangrijkste voordeel van niet-invasieve technieken, het verkrijgen van lineaire data voor 

hetzelfde object of individu, wordt grotendeels teniet gedaan als vervolgens alleen de 

gemiddelde waarden voor alle individuen worden gepresenteerd. 

F.J. van Spronsen et al. (1993) Plasma phenylalanine and tyrosine responses to different nutritional conditions 

(fasting/prostprandial) in patients with phenylketonuria: effect of sample timing. Pediatrics 4, 570-573. 

De hypofhese dat cytoplasmatische stroming een belangrijke bijdrage levert aan de 

diffusiecoefficient van water is op grond van de huidige kennis van de eigenschappen water in 

biologische systemen niet gerechtvaardigd. 

D. Thomas et al. (2000) The measurement of diffusion and perfusion in biological systems using magnetic 

resonance imaging. Physics in Medicine and Biology 45, R97-R138. 

Het goedkeuren van therapeutisch gebruik van foetale stamcellen op grond van de baten voor 

de patient is een typisch voorbeeld van 'het doel heiligt de middelen'. 

R.M. Green. (2001) Four moral questions for human embryonic cell research. Wound Repair and Regeneration 

9, 425-428. 

Het bepalen van een arbeidsongeschiktheidspercentage van een persoon aan de hand van het 

verlies aan inkomen in een nieuwe passende functie betekent dat personen in een 

goedbetaalde functie vaker ziek geacht worden dan mensen met een laag salaris. 

Stellingen behorend bij het proefschrift 
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VOORWOORD 

Alleen mijn naam staat op de voorkant van dit proefschrift, maar zonder de hulp van 

collega's, vrienden en familie was dit boekje er nooit gekomen. Daarom wil ik graag een 
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voor persoonlijke aangelegenheden. Frank Vergeldt, jouw nuchtere kijk heeft me meer dan 

eens met beide benen op de grond gezet, het samenwerken met jou hoort zeker bij de 

hoogtepunten van de afgelopen jaren. De technische oplossingen van Adrie de Jager waren 

altijd innovatief, en daarnaast hebben we en passant over de jaren de hele wereld en 

omstreken onder de loep genomen. Tjeerd Schaafsma, bedankt voor alle vrijheid die je me 

gunde om te doen wat ik leuk vond en voor het optreden als mijn promotor. 

Een van de leukste aspecten was het samenwerken met studenten. Tom Ruttink, Mireille 

Claessens, Lucas Herfst en Christie Efde, jullie hebben allemaal je steentje bijgedragen. Tom 

S., Carel en Sander, jullie brachten het nodige leven in de brouwerij. Alle andere collega's, 

bedankt voor jullie hulp en de gezelligheid. 

Een aantal mensen hebben letterlijk als mijn handen gefungeerd. Papa en mama, Martine, 

Gerda, Henrieke, Shirley, Ruth en tante Adrie, zonder jullie had dit nog veel langer geduurd. 

Ik hoop dat het niet al te saai was, maar jullie snappen nu tenminste wel waar dit proefschrift 

over gaat. Ton, jij moet speciaal vermeld worden. Alle doorwaakte nachten hebben hun 

vrucht afgeworpen: de opmaak van dit boekje ziet er prachtig uit. 

Papa en mama, jullie hebben een veel grotere rol gespeeld in dit geheel dat jullie misschien 

zelf beseffen. Bedankt voor alle steun, en pap, ik ben blij dat je me meegesleept hebt naar de 

open dag. Lieve Jaap, jij hebt zoveel gedaan, dat valt niet in woorden te vatten. Leven met jou 

is een heel bijzonder voorrecht. 





1 INTRODUCTION 

GENERAL INTRODUCTION 

Water is of major importance to plant life. Herbaceous plants consist of water for up to 95% 

of their total weight. The distinct properties of water make it very suitable for numerous roles, 

ranging from being the most important solvent and a component in many reactions to 

maintaining the form in non-woody plants.1'2 The extremely strong cohesion forces permit 

high negative pressures along the water column without breaking it, thereby enabling the flow 

of water through the transport vessels. Thus, clearly water shortage affects almost any 

parameter one cares to look at.1 

Lack of water affects large parts of the world, and water shortage becomes a larger problem 

for food production every year.3'4 Of the water that is available for use, about 70% is already 

used for agriculture. Water systems are under severe strain in many parts of the world. Many 

rivers no longer flow all the way to the sea and 50% of the world's wetlands have disappeared. 

Many major groundwater aquifers are being mined unsustainably, with water tables in parts of 

Mexico, India, China, and North Africa declining by as much as one meter per year.5 In 

addition, increasing soil salinity poses similar problems to agriculture, e.g. in Israel and 

Australia, but even in the nearby Westland (The Netherlands). Long-term growth and crop 

yield are considerably reduced compared to the maximum attainable yield due to water stress, 

which is turning into an enormous social and environmental problem. Therefore, insight into 

plant responses and tolerance to drought stress is an extremely important issue. 

This Thesis focuses on the effects of water stress on water relations in whole plants, such as 

uptake rates and growth rates, in combination with the water balance in the plant stem. To 

trace the cell water balance and the movement of water within the cells and over membranes, 

we used Nuclear Magnetic Resonance, in an attempt to unravel differences in (cell) water 

balance in drought susceptible and drought tolerant plants. 

Nuclear Magnetic Resonance Imaging (NMR imaging or MRI) is a non-invasive technique 

and therefore particularly useful for in vivo studies of plants. In addition to anatomical 

information, NMR images contain information about the physical status and the spatial 

distribution of water in tissues. Since the discovery of NMR, several experiments and theories 

have been developed to extract important physiological information, such as cell size and the 

exchange velocity of water over membranes. Most commonly, this information is obtained 

from relaxation and diffusion measurements, which are discussed later in this Chapter. 
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PLANTS 

PLANT WATER STATUS 

Plant water relations are commonly described using a thermodynamical approach.6"8 This 

approach is based upon the description of water in terms of energy, with the water potential as 

the measuring unit. The water potential of the liquid phase Q¥w) consists of three different 

components: the osmotic pressure (¥„), the hydrostatic pressure Q¥p) and the gravitational 

pressure QVg): 

^ = 4 ^ + ^ + 4 ^ [1.1] 

The unit for all pressures is the Pascal (Pa). 

The first term in Eqn. 1.1, the osmotic potential, represents the effect of solutes in an 

aqueous solution on the water potential. Assuming ideal conditions, the Van 't Hoff relation 

can be used to describe the relation between the solute concentration and the osmotic 

pressure: 

V^-RTZC, [1.2] 

in which EC, is the total solute concentration (mol m~3), R is the gas constant (8.3143 J mol-1 

K_1) and Tis the absolute temperature (K). 

The hydrostatic pressure is the effect of pulling or compression forces on the water 

molecules, and can be both positive (cell turgor) and negative (xylem tension). Gravitation 

also influences the water potential, but for small plants this component is negligible. 

According to this thermodynamical approach, the flow is driven by a potential difference. 

Equivalent to current in electrical circuits, water always flows from high to low water 

potential and the flow rate is determined by the resistance of the system, analogous to Ohm's 

Law: 

JV=(AVJ/Rhydr [1.3] 

in which Jv is the net flow of water (m3 s"1), A4V is the water potential gradient, and R^dr is 

the hydraulic resistance (m"3 s Pa). 

The potential difference over an entire plant is determined by the water potential differences 

between soil and air. The latter depends primarily on the relative humidity (rh) of the air: 
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Xap=(RT/VJ\n(rh) [1.4] 

in which *¥™p is the water potential in the vapour phase, and Vw is the partial molal volume of 

water (Fig. 1.1). 

The hydraulic resistance varies enormously between plant tissues. It is smallest within the 

conducting system, i.e. the xylem and phloem vessels, due to the absence of cellular barriers. 

Outside the conducting tissues, the hydraulic resistance is much higher because water has to 

move either via the apoplast pathway (extracellular) or via the symplastic pathway, which is 

subdivided in the transmembrane route and the plasmodesmatal route (Fig. 1.2). Although the 

relative importance of both pathways is not yet clearly established, water transport via the 

symplastic route seems to account for a significant part of the transcellular transport. The 

main transitions occur at the soil-root interface and at the leaf-air interface. 
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Figure 1.1. A negative water potential gradient in the plant body. When the water potential of the roots is less 
than that of the soil, water flows into the epidermal cells of the root and passes into the xylem tissue. Via the 
xylem vessels water flows through the stem and leaves and exits from the leaves as water vapor. 
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According to the Lockhart theory, the rate of cell expansion is determined by both the above 

mentioned potential difference and the tissue resistance. "n Furthermore, the Lockhart 

equation suggests that the rate of cell expansion is limited by the extension properties of the 

expanding cell walls, the so-called cell wall extensibility: 

dV/dt = mC¥p-F) [1.5] 

in which dV/dt is the cell volume change in time, and m is the cell wall extensibility. P' is 

the threshold pressure potential, or yield turgor, which is the minimum pressure required to 

initiate cell growth.9'12 

The most important cause for water transport in a plant is transpiration. More than 90% of 

the water uptake passes through the plant directly into the atmosphere. The rest of the water is 

used for expansion growth. Furthermore, changes in the relative water content of tissues, i.e. 

de- or rehydration, also contribute to the total water transport. All these contributions can be 

combined into the water balance equation: 

U=E+G+H [1.6] 

Here t/is the water uptake rate, E is the transpiration rate, G is the water use for growth, and 

His the water flow due to de- or rehydration, all in m3 s"1.10 

-epidermis 

root hair 

parenchyma 

xylem 
Figure 1.2. Principal pathways for the movement of water from the soil, across the epidermis and parenchyma, 
into the conducting root vessels. Water can follow several routes, either via the extracellular space (apoplastic 
pathway) or through the cells via the plasmodesmata and tonoplast andplasmalemma (symplastic pathway). 



Introduction 

Sensitivity to stress 

very sensitive insensitive 

OMPa 1 MPa 2MPa 

Cell Growth 

Wall synthesis 

ABA Accumulation 

Stomatal Opening 

C0 2 -assimilation 

Respiration 

Proline Accumulation 

Sugar Accumulation 

Table 1.1. Generalised sensitivity to water stress of plant processes. 

WATER STRESS IN PLANTS 

In nature short-term water deficits occur during midday, due to the high temperature and 

light level. Mostly, the water losses can be compensated at night, and over an entire day no 

net water losses occur. If however the uptake at night is not high enough to compensate for 

the water losses during the day, long-term water deficits develop, firstly resulting in 

decreasing growth rate and eventually in dehydration of all tissues. Apart from the changes in 

water status, the physiological functioning of the plants is affected at all organisational levels 

(Table l.l).2'6'1 ' Here we concentrate only on the changes in water potential, though of 

course a range of biochemical and hormonal changes occur as well.1516 

The uptake rate of water by the roots is closely coupled to transpiration. Usually, evapora­

tion from the leaves is the main factor causing low pressure potentials in the root xylem. 

Closing the stomata and reducing the leaf area, e.g. by wilting or leaf rolling can reduce water 

loss due to evaporation. Stomatal closure is one of the first responses to water stress and 

occurs as a result of turgor loss in the guard cells surrounding the stomata. The resulting 

increase in stomatal resistance leads to an efficient decrease of the transpiration, which in turn 

results in a lower water uptake rate. 17 

Another effect of drought is an almost immediate reduction of cell expansion. In many 

species cell expansion is the most sensitive to drought of all processes in the plant. The first 

response to stress is caused by a decrease in the cell turgor so that the yield turgor can not be 

overcome. Later on also metabolic changes and cell wall hardening can play a role in the 
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growth reduction. Some plants can maintain growth by increasing the osmotic potential or cell 

wall extensibility.18"20 

In some experiments, when water becomes available after a short period of stress, 

compensatory growth occurs so that the net crop yield is not reduced.21 When the water stress 

is prolonged, cell division can also be inhibited, thereby even further reducing the total 

growth and eventually also the crop yield.' 

When water stress causes a decrease in cell turgor, often compensatory mechanisms like 

osmotic adjustment occur. Usually a decrease in starch content and an increase in sugar and 

ion concentrations are found. Also the distribution of the assimilation products of 

photosynthesis over the various organs of the plant may change, which determines the 

survival chance of specific parts of the plant.615'21 

Changes in the hydraulic tissue conductance may occur during stress to regulate the water 

flow between different tissues. Membrane permeability for water regulates the water transport 

via the symplastic pathway (Fig. 1.2). Currently, there are two opposite views on the role of 

membrane permeability during stress. The first is that the membranes become less permeable 

for water to preserve as much water as possible within the cells.22'23 The second is exactly the 

opposite, i.e. the membrane permeability is increased to facilitate water movement towards 

growing cells or critical tissues.24'25 

Currently, much attention is focussed on the role of aquaporins, or membrane water 

channels, in the regulation of membrane permeability.26 Recent reports show that aquaporin 

gene expression can be either upregulated or downregulated during stress, in agreement with 

the two above-mentioned views, depending on the plant tissue or stress involved. These 

findings indeed suggest that the membrane permeability could play a role in the hydraulic 

conductance, thereby influencing all above mentioned processes; however, very little is 

known about the actual functioning of these proteins in vivo during stress. One of the goals of 

our research was therefore to find a relation between the membrane permeability and NMR 

parameters such as T2 and Dapp, in order to observe tissue hydraulics in vivo during stress. 
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NUCLEAR MAGNETIC RESONANCE IMAGING 

Some important principles are discussed here to provide a background for the rest of this 

Thesis. For a more detailed introduction to NMR imaging we refer to various excellent 

textbooks.2829 

RELAXATION 

Protons have a nuclear magnetic moment denoted "spin", which is characterised by the spin 

quantum number / (V2 for protons). In the absence of an external magnetic field these 

magnetic moments are randomly distributed in every direction. In the presence of such a 

magnetic field, a new thermal equilibrium is achieved between the spins oriented parallel and 

antiparallel to the magnetic field. This results in a net macroscopic magnetic moment, the 

magnetisation (Mo), in the direction of the external field (z-axis). The individual spins are 

precessing around the z-axis with the so-called Larmor frequency (co, rad s'1), which is 

proportional to the external magnetic field (Bo, T): 

co = yB0 [1.7] 

where ^is the gyromagnetic ratio (4.2576 x 10 rad T"1 s" for protons). 

For NMR imaging, magnetic field gradients are applied in addition to the static magnetic 

field BQ. Thus the actual magnetic field strength at the proton under observation depends on 

its position (r), and the Larmor frequency varies with the location of the spins in the sample: 

G>(r) = rB(r) = r(B0+Gr) [1.8] 

This results in a time dependent NMR signal S(t): 

S(t) ~ JM0 (r) exp(io)(r)t)dr [1.9] 

Fourier transformation of S(t) yields the different frequencies present, and thereby the spatial 

localisation of local magnetisation M$(r) in the sample. By applying three different gradients 

in all three directions, each position in the sample is uniquely encoded. 

Mo is proportional to the total amount of protons present in the sample. To be able to detect 

the magnetisation Mo, the magnetisation is rotated by 90° into the transverse plane (xy). 

Immediately following this 90° pulse, the initial magnetisation level can be detected. In time, 

the thermal equilibrium is restored, and the magnetisation vector returns to the z-axis. The 
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characteristic time involved in this process is called the spin relaxation time. It can be 

separated into two different components, the longitudinal relaxation time 7/ for the restoration 

of the Mo vector along the z-axis, and the transverse relaxation time T2 for the decay of this 

vector in the xy-plane (Fig. 1.3). 

The protons in water molecules experience an intramolecular dipolar interaction between 

both protons within the one and the same molecule, as well as an intermolecular interaction 

with protons of neighbouring water molecules. Both interactions fluctuate when the molecules 

rotate or translate. When the rotation correlation time of the molecules is short, as is the case 

for free water molecules (re ~ 10"12 s), 7/ and T2 are approximately equal and relatively long 

(~ 2 sec). Water close to macromolecules or to solid surfaces generally has slower tumbling 

rates (rc ~ 10"12 - 10"10 s), which leads to a reduction in both relaxation times. For very slow 

motion (TC >10_1 S), the transverse relaxation time T2 continues to decrease while the 

longitudinal relaxation time T\ increases again. Exchange of protons between water and other 

molecules such as sugars and proteins also influences the relaxation times. In biological tissue 

these principles determine the bulk relaxation times within compartments with different 

properties, such as the vacuole, the protoplasm and the cell wall. At low magnetic field 

strengths, the influence of chemical exchange is usually small as compared to the effect of 

rotational correlation times. 

In addition to these bulk processes, the transverse magnetisation is perturbed by small local 

magnetic field differences, due to inhomogeneities in the main magnetic field, or due to the 

presence of (paramagnetic) molecules that cause a local disturbance of the magnetic field. 

This results in a different (local) Larmor precession frequency of the spins under observation 

and thus in a loss of phase coherence of the individual spins. In turn, this results in a faster 

decay of the Mo vector in the xy-plane. The corresponding apparent relaxation time is called 

T2* to distinguish it from the real relaxation time 7y The loss of phase coherence can be 

reversed by the application of a 180° pulse following the initial 90° radiofrequency pulse. The 

restoration of the sample magnetisation is called an echo. The amplitude of this echo is only 

attenuated by the intrinsic transverse relaxation process. 
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Figure 1.3. Schematic representation of the nuclear resonance principle. The sample magnetisation M0 arises 
from the uneven distribution of the spins (the smal arrows) between two different states, either parallel or anti-
parallel to the main magnetic field B0- The spins precess around the main magnetic field direction with the 
Larmor frequency ox After the application of a 90°pulse, the original distribution is shifted into the horizontal 
plane and phase coherence is established (the spins are all aligned along the same axis). The result is a sample 
magnetisation M±_. The spins return to the original distribution through Ti relaxation. The loss of phase 
coherence is called T2 relaxation. Both processes occur simultaneously but are depicted separately in the 
picture. 

DIFFUSION 

Up to now, the individual molecules were considered as stationary molecules. However, all 

molecules in a fluid are subject to Brownian motion. The extent of this motion depends on the 

temperature and the viscosity of the fluid. When an ensemble of molecules is followed in 

time, the mean displacement (x, m) shows a 4t dependence: 

= V2 dDt [1.10] 

where D is the bulk diffusion coefficient of the fluid (m2 s"1), t is the displacement time (s) 

and d (= 1, 2, or 3) is the dimensionality of the diffusion displacement. The displacement 

distribution of all spins shows a Gaussian behaviour. The mean displacement distance 

increases with increasing displacement times as long as no boundaries are encountered. If 

water experiences a barrier to diffusion, for example a cell membrane, the cell dimensions 

determine the maximum displacement. 
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These boundary restrictions imply that the displacement distribution may no longer be 

Gaussian and is going to depend on the diffusion time. Consequently the experiments result in 

an apparent diffusion coefficient (Dapp), which is smaller than the intrinsic D. 

Dapp can be measured using a so-called pulsed field gradient (PFG) experiment. In this 

experiment a sequence of two pulsed magnetic field gradients of equal magnitude but 

opposite sign, separated by an interval A temporarily change the resonance frequency of the 

observed spins as a function of the position of the spins (Eqn. 1.8). If the spins remain at 

exactly the same position during this interval A, the effects of the gradient pulses compensate 

each other. However, as soon as translational motion occurs, the gradients do not exactly 

compensate each other anymore and a phase shift occurs. Because diffusion is random in all 

directions, no net phase shift results but the phase coherence is partially lost, resulting in 

attenuation of the echo amplitude. The amount of this attenuation is determined by the length 

and amplitude of the gradient pulses, and by the mean translational distance travelled during 

the interval A. The distance travelled depends on the bulk diffusion coefficient of the fluid in 

the compartment and its dimensions. 

NMR IMAGING OF HETEROGENEOUS SYSTEMS 

In addition to the bulk properties mentioned in the previous paragraphs, exchange of 

molecules between different compartments may take place, which affects all relaxation rates 

and apparent diffusion coefficients. The mean time it takes for a proton to diffuse to the next 

compartment is determined by the molecular diffusion rate and by the size of the 

compartment. Exchange can be labelled as slow when this diffusion time is slow compared to 

the relaxation rate in that compartment and fast if the opposite is true. In the first case, the 

total magnetisation decay is multi-exponential and consists of the sum of the decay curves for 

the individual compartments. In the latter case, a common single relaxation curve is observed 

for the whole system. In the intermediate case, some form of multi-exponential behaviour is 

found, but the different components reflect both the properties of the original compartments 

and the exchange between them.28'30"34 The water exchange rate is determined by the 

permeability of the membranes separating the compartments. This Thesis treats the relation 

between the properties of the individual compartments and the resulting NMR parameters. 
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MAIN RESEARCH QUESTIONS 

1. How can we obtain correct parameters from the NMR data? 

Chapter 2 of this Thesis describes several fitting procedures for relaxation decays. 

Subsequently, in Chapters 5-7, the transverse relaxation times (72) are used to extract 

quantitative information about cell dimensions and membrane permeabilities. Therefore, 

correct data fitting is crucial. The effect of absolute data fitting is discussed and systematic 

errors are evaluated for different S/N ratios. In addition, some more elaborate routines such as 

the use of squared data and phase correction schemes are discussed and recommendations are 

made for optimal processing of the imaging data. 

2. What is the theoretical relation between the properties of the individual compartments in a 

multi-compartment system and the NMR results for the system as a whole? 

In Chapter 3 a numerical model is introduced with which both relaxation and diffusion can 

be modelled for cylindrical geometries. Several cases are presented, using this model, 

demonstrating how the combination of relaxation and diffusion enhances the separation of 

different fractions and enables a better understanding of the simulated system. 

Chapter 4 is an extension of Chapter 3. Here the same cylindrical model is used to evaluate 

the effect of exchange between compartments in a model plant cell with several cell 

compartments on the observed T2 and Dapp. Different systems with increasing complexity are 

investigated to verify whether the original properties of the system, such as radius, bulk 

diffusivity and membrane permeability, can be retrieved. Finally, this Chapter discusses the 

optimal strategy to obtain useful physiological information from real heterogeneous systems. 

3. Is it possible to interpret NMR studies of drought stress in plants in terms of the properties 

of (sub-) cellular compartments, in particular the membrane permeability and cell size? 

In Chapter 5 the effect of moderate drought stress on the stem growth and on the water 

uptake is discussed. Furthermore, a linear relation between the relaxation rate and cell 

dimensions is presented and verified experimentally. The proportionality coefficient is related 

to the membrane permeability. 

Chapter 6 further elaborates on the causes of the changes in relaxation rates during drought 

stress in pearl millet. Additional techniques, such as Scanning Electron Microscopy, are used 

to conclude that changes in relaxation rates are caused by an increase of the membrane 

permeability during stress. 

Chapter 7 reports the results of MRI experiments of maize and pearl millet plants during 

severe drought stress. T2 measurements are used to interpret the stress response in terms of 

cell size and water re-allocation between tissues. 
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Finally, in Chapter 8 the results from the previous Chapters are combined and general 

discussion points and conclusions are given. 
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2 EVALUATION OF ALGORITHMS 
FOR THE ANALYSIS OF 
NMR RELAXATION DECAY CURVES 

Quantitative processing of NMR relaxation images depends on the characteristics of the 

used fitting algorithm. Therefore several common fitting algorithms are compared for decay 

curves with low signal-to-noise ratios. The use of magnitude data yields a non-zero base line, 

and is shown to result in an overestimation of the decay time. A simple base line correction is 

no solution since this yields an equally large underestimation due to overcorrection of the 

first part of the curve. The use of squared data does yield reliable results, but only in the case 

of monoexponential decays. The best fitting algorithm under all experimentally occurring 

conditions turns out to be using real data after phase correction. A phase correction scheme 

is proposed, which applies to all imaging experiments for which the phase of the pixels is 

constant over the echo train. This scheme is validated for a phantom and for a tulip bulb. 

INTRODUCTION 

Most biological tissues exhibit multiple T2 components in the range from 1 to over 1000 

milliseconds, which can be measured in a single T2 imaging experiment.1'2 Depending on the 

relaxation time within a pixel, the sampling of the decay curve will vary considerably, and 

will not be optimal in all cases. The actual contrast in the image can be severely reduced due 

to the data processing routine, especially in the case of low signal-to-noise (S/N) ratios, which 

occur often in NMR imaging experiments. Moreover, the need for quantitative T2 values 

increases now that quantitative relaxation times have been used in plant science3'4 as well as 

in medical applications, e.g. to measure the degree of myelination in nerves, to calculate the 

effective dose in radiotherapy6 or to monitor the progression of muscular dystrophy.7 

Raw NMR relaxation data, obtained by quadrature detection, consist of a real and an 

imaginary part, which are corrupted by uncorrelated Gaussian distributed noise. After Fourier 

transformation, the complex data still have a Gaussian noise component because of the 

orthogonality of the Fourier transform. However, in MRI commonly the magnitude image is 

calculated from the real and imaginary part, resulting in a noise distribution that is no longer 

Gaussian, but Rician.8 As a result, the type of data processing routine influences the results of 

decay curve fits from the echo intensities obtained in a T2 measurement. 

This paper compares a number of published data processing routines using the magnitude of 

the echoes, only the real part of the data, or methods to reduce the bias caused by Rician 
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noise, e.g. baseline correction,9 or power analysis. ' Maximum likelihood methods are not 

taken into account in this paper, but similar problems with low signal-to-noise echoes have 

been reported for these algorithms.12'13 

Using real data for the analysis, the image has to be phase-corrected first to transfer the 

signal to the real channel. A simple linear phase correction is not always satisfying; therefore 

we introduce a new approach, i.e. pixel-by-pixel phase correction of the echoes. 

The various methods are used to fit artificially generated decay curves as well as 

experimental NMR imaging data. A comparison is made between the methods for various 

decay times and S/N ratios, both for single exponential and multiexponential behaviour. The 

importance of using a correct algorithm is demonstrated for T2 images of a phantom and for a 

tulip bulb. 

THEORY 

For NMR imaging relaxation time measurements, a data set is acquired which consists of a 

complex, decaying signal for every pixel in the image. The number of echoes that can be 

acquired determines the number of data points in the decay curve. The true signal is corrupted 

by noise, causing a variation around both the real and the imaginary parts of the decay curves. 

According to Henkelman1 and Miller and Joseph, in the ideal case of Gaussian noise in 

both the real and imaginary channel, the complex signal after Fourier transformation can be 

described by 

S = [(Ar + £-,(0,o)) + i(4, + £)(0,<T))], [2.1] 

where S is the total signal, Ar and At are the real and imaginary components of the true signal 

respectively, and £ri(0,a) is the Gaussian distributed noise with zero mean and standard 

deviation o.1 

In the case of phase-coherent measurements of the echo train,2 it is possible to adjust the 

phase variation over the image mathematically by applying zero- and first-order phase 

corrections over the image for even and odd echoes separately, thus storing the true signal 

intensity and noise in the real channel, leaving only noise in the imaginary channel. Then the 

signal in the real and imaginary channel, respectively, can be written as 

Sr=A + s(0,a) and S> = <0,a). [2.2] 
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In this case, the average signal over a region of interest is given by 

<Sr> =A and <S,-> = 0, [2.3] 

implying that the imaginary component can be discarded in the decay analysis. 

However, it is common practice to use the magnitude signal to analyse the decay curves, 

because of severe phase distortions, or non-coherent phase variation in the echo train, or 

simply out of convenience. By doing so, the phase information is discarded and a Rician noise 

level is introduced with a non-zero average. 

The magnitude signal \S\ can be described as 

\S\ = [(Ar + eA.0,o)f + {At + s,(0,G)f]m 

= [A2 + 24,£.(0,a) + 2A,Ei(0,a) + 2£-r,,(0,a)2]1/2 [2.4] 

and the corresponding average magnitude signal is 

<|S|> = [^2 + 2<£(0,a)2>]1/2 [2.5] 

When no true signal is present (A is zero), the noise distribution tends to a Rayleigh 

distribution with an average value of [2<s(0,a) >]' that is linearly related to the noise 

standard deviation by G^IZ/2 » 1.253a,10 resulting in a non-zero base line in the decay 

curve. Though the noise is Rician distributed, Gudbjartsson and Patz6 showed that the 

distribution of noise is nearly Gaussian for S/N ratios larger than 2. 

Sometimes a simple baseline subtraction of 1.253c is used to compensate for this bias. 

Because of the non-linear magnitude calculation, however, (see Eqn. 2.5), this subtraction 

causes an overcompensation of the noise for high S/N levels. 

Another method to overcome biases due to a non-zero base line, i.e. the use of power data, 

was suggested by Miller and Joseph10 and McGibney and Smith11 independently. According 

to Eqn. 2.5, the average power signal is 

<|S|2> = A2 + 2<£(0,cr)2> [2.6] 

Now the noise is simply additive to the power signal and can be corrected by a subtraction 

of the average noise level. 

The signal for every echo point in the T2 decay can be described as a function of the echo 

time by 



U[ Chapter 2 

S(t)=S0exp(-t/T2), [2.7] 

where / is «*TE, n is the echo number and TE is the inter-echo time. When using power data 

the signal becomes 

S2 (0 = So2 exp(-2t/T2), [2.8] 

implying that the fitted T2 value for power data is half the input T2 value and the fitted 

amplitude is the power of the true value. 

However, this power routine is only valid for monoexponential relaxation. Most biological 

samples are heterogeneous even within a single pixel, implying multi-exponential or non-

exponential behaviour of the decay. In this case the resulting decay can be considered to 

consist of a number of decays with different relaxation times T2i„: 

S,o,(0=2X„exp(-//r2,„). P-9] 
0 

The results for real data and magnitude data (Eqn. 2.3 and 2.5) apply to multiexponential 

decays as well. When using squared data however, the fitted T2 values can deviate 

considerably due to the non-linear power operation, yielding an Sl0,(t) that consists not only of 

the n squared input exponentials but also of a number of cross terms, thus introducing n\l2 

new exponentials. 

The theory above already showed that using only the real part of the signal yields the most 

correct input data for fitting in the case of heterogeneous samples. However, in practice a 

simple linear phase correction of the echo images is not always possible. Therefore, we 

developed a new processing algorithm for experiments where the phase over the echoes is 

severely distorted. In this case, zero and first order phase corrections do not suffice to correct 

the phase deviations over the image plane. Because these phase problems are often caused by 

systematic errors as susceptibility artefacts or gradient and/or RF inhomogeneities, the phase 

deviations are constant over the entire echo train, although they may be different for odd and 

even echoes. Therefore, our algorithm is based on calculation of the phase of every pixel for 

the first and second echo images. These phase surfaces are used to correct all the following 

odd and even echoes in the echo train as follows: 

acorr(2n) = atan[(^(2») + £-,(0,CT)) / (Ar(2n) + £r(0,a))] 

- atan[(A(0) + £>(0,cr)) / (Ar(0) + sr(0,a))] 

= («(2«) + ^0,cT))-(a(0) + aO,a)), [2.10a] 
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and 

cw(2«+l) = atan[(^,{2«+l) + £;(0,o)) / (AJ2n+l) + £AQ,o))] 

- atan[(4(l) + s(0,ti)) / (Atf) + s(0,o))] 

= (a(2»+l) + £a(0,(T)) - (a(l) + eb(0,a)), [2.10b] 

where acorr(ri) is the corrected phase of a pixel in the «' echo image and a(0) that of the same 

pixel in the first echo image. £a(0,a) is the Gaussian distributed noise over the phase angle. 

The complex signal for every echo in the echo train can then be calculated per pixel by 

SCorr(n) = [(cOSiOcorrin)) • \S\) + i(sin(OCcorrin)) . |S|)] [2.11] 

By using this pixel-by-pixel phase correction, the first and second echo are in fact magnitude 

images, but the rest of the echoes show a normal Gaussian noise distribution, with zero mean. 

To improve the phase correction for low S/N pixels in the image, a Gaussian smoothing can 

be applied to the calculated phase image to eliminate phase variance due to noise. 

METHODS 

To evaluate the performance of the processing algorithms, complex data sets were generated 

consisting of decay curves of 128 points with 1 ms echo spacing in the real channel, with 16 

different decay times varying from 3.3 ms to 1 s, resulting in a series of decays with varying 

amounts of baseline sampled (Fig. 2.1). 

0.2 

Figure 2.1. The simulated decay curves that were used for fitting. 
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To both the real and the imaginary components of each decay curve random Gaussian noise 

with 16 different amplitudes was added, resulting in a series of complex decay curves with a 

root mean square (RMS) noise level of 0 to 7.5% of So, the signal intensity at / = 0, in both 

channels. For all conditions a Monte Carlo simulation was performed with 64 trials, from 

which the average and the standard deviation of the fit results for So and T^ were determined. 

For the T2 fit a least square fit routine without weighting factors was performed using 

Interactive Data Language (RSI, Boulder, Colorado, USA), based on the Marquardt-

Levenberg algorithm.15 The magnitude and power data were computed in accordance with the 

theory described above. The baseline correction was done by calculating the standard 

deviation a for the last part of the shortest decay for every noise level and using this value for 

all decay curves of the corresponding noise level. For our pixel-by-pixel phase correction 

scheme first a linear phase correction was done in the frequency domain in order to get most 

of the signal in the real channel. Next a broad (10 x signal width) Gaussian convolution was 

done in the time domain to smooth the phase data to obtain a correct phase adjustment for low 

S/N pixels as well. After Fourier transformation back into the frequency domain, the phase 

per pixel was calculated for phase correction of the entire echo train. 

The chi-square for each individual curve was determined from 

«=128 

Xfc-S.O/aJ 
y2=— [2.12] 
1 128 

where S/j is the fit result for point i, Si is the input data point and o"i is the standard deviation 

for that point. 

To simulate a biological system, curves were generated which consisted of the sum of three 

exponential components. The values for the exponentials were chosen in accordance with 

earlier results for multi-exponential relaxation in apple tissue that yielded 3 relaxation times 

of 330, 100 and 20 ms, which could be assigned to water in the vacuole, the cytoplasm and 

the cell wall / extra cellular space respectively.4 The relative amplitudes of these three 

fractions were 0.75, 0.18 and 0.07. 

A phantom and a tulip bulb were used to demonstrate the effect of the procedures on a real 

experiment. For all measurements a 0.5 T S.M.I.S. imaging system (S.M.I.S., Guildford, UK) 

was used with a Doty probe (Doty Scientific Inc., Columbia, South Carolina, USA). A 

modified CPMG experiment was used to obtain the data.2 The phantom consisted of six tubes 

filled with different MnCl2 solutions, which varied in IIT2 values from 185 s" to less than 

0.62 s"1. The data were acquired with TR = 1500 ms and TE = 4.6 ms. A 128 x 128 image 

matrix was obtained with a 55 mm field of view and a slice thickness of 3 mm. For every 
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pixel 46 echoes were acquired. To compare images with different S/N ratios, a noisy image of 

the phantom was obtained by decreasing the slice thickness to 0.75 mm, yielding an average 

noise level over the image of approximately 20%, compared to about 5% noise for the S/N 

image of a 3 mm slice. For the tulip bulb the average noise level was 10% noise for the first 

echo. 

RESULTS AND DISCUSSION 

First the monoexponential decay curves were analysed using the four algorithms described 

previously. To visualise the accuracy of the algorithms, the results are presented as the fitted 

values for the amplitude and IIT2 divided by the input values Ain and IITIM-

As can be seen in Figs. 2.2A and 2.3A, using the real data yields no bias for either the 

amplitude or the IIT2 of the decay curves. As an additional treat, the signal in the imaginary 

channel can be discarded. Thus, the S/N ratio of the data points near the noise level is 

significantly improved compared to the magnitude data, resulting in more accurate fits. 

For the magnitude data a consistent error is made for input decay curves that are sampled 

until the base line (Figs. 2.2B and 2.3B). The lower the S/N ratio and the more base line is 

sampled, the larger the bias is. For the two longest IIT2 decay curves, which have only a few 

data points containing signal, the fit results show very large deviations because the base line is 

fitted for the lower S/N ratios. For completely sampled decay curves with a reasonable 

amount of signal-containing data points, a rule of the thumb is that the negative bias of the 

fitted IIT2 value is about 3% per percent noise for the first echo (Fig. 2.3B, curves 7-14). 

Using a simple base line correction does not solve the problem. As can be seen in Fig. 2.2C, 

the underestimation of the amplitude is almost linear with the noise level and independent of 

the relaxation time, a deviation that is caused by the subtraction of the base line of the initial 

part of the decay curve. In this case the fitted I/T2 is too high (Fig. 2.3C), and the curves 

without base line also deviate from the true values. The maximum error in 7/72 for completely 

relaxed decays with 7.5% noise is 25%. In general, the bias made using this algorithm is just 

as large as for the magnitude data, only in this case the IIT2 values are overestimated. 

In contrast to the previous two algorithms, the power algorithm yields unbiased results for 

both the IIT2 and the amplitude (Figs. 2.2D and 2.3D). 

The average chi-square values for both the real and the power fit were 1.0 for all curves and 

all noise levels (Fig. 2.4), indicating a perfect fit. Both the magnitude fit and the base-line 

corrected magnitude fit show an increased chi-square value, though the deviations for the first 

are far worse because in this case the curve is no longer mono-exponential due to the base 

line. For all fit procedures, the standard deviation over the 64 curves per noise level increased 

with increasing noise level. 
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Figure 2.2. Amplitude fits for different algorithms. Figure 2.3. 1/T2 fits for different algorithms. 
The numbers along the horizontal axis indicate the 16 decay curves that were used, with increasing 1/T2 values 
from left to right. The 16 data points shown for each decay curve are the different noise levels, increasing from 
left to right from 0 to 7.5% RMS noise for the first echo of the decay. Every data point is the mean of 64 fits. A. 
real data; B. magnitude data; C. magnitude data with base line correction; D. power data. 
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Figure 2.4. The average chi-square values for the 1/T2fits in Fig. 2.3. The numbers along the horizontal axis 
indicate the 16 decay curves that were used, with increasing 1/T2 values from left to right. The 16 data points 
shown for each decay curve are the different noise levels, increasing from left to right from 0 to 7.5% RMS noise 
for the first echo of the decay. Every data point is the mean of 64 curves. A. real data; B. magnitude data; C. 
magnitude data with base line correction; D. power data. 

Between the fit procedures, however, the standard deviation for the same dataset did not differ 

more than 10%, again indicating that the biases are systematic. In general, the standard 

deviation for the real fits of completely sampled curves was slightly (< 10%) lower, due to the 

improved S/N ratio for data point close to the noise level. 

Of course the use of monoexponential decays is a rather academic approach. In the case of 

multiexponential behaviour additional problems arise with respect to fitting the decay curve. 

This paper deals with the case of T2 decays with a S/N ratio too poor to get meaningful results 

from a multiexponential fit. This implies that a monoexponential non-linear least square fit 

yields a T2 value which has no physical meaning and which is dependent on the part of the 

decay curve used for the analysis. It is obvious that the calculated decay time becomes smaller 

when only the first part of the curve is used for analysis. When the signal used is completely 

relaxed at the end of the curve, the fit results remain constant. This indicates that a 

comparison of fit results is only valid when all decay curves used are measured completely, 

i.e. until the signal intensity becomes comparable to the noise level. The question whether a 

monoexponential analysis is the best procedure to evaluate these signals is beyond the scope 

of this paper. 
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Fig. 2.5 shows that the real, the magnitude and the base line corrected magnitude data 

analysis yield similar results as for monoexponential decays. The power algorithm, however, 

yields much higher IIT2 values, even in the ideal case when no noise is present. As mentioned 

in the theory, this deviation is due to the cross-terms that are generated by squaring multiple 

exponents, resulting in extra decay terms with a much shorter T2 value that cause a decrease 

of the calculated relaxation time. This bias increases when the different exponentials of which 

the decay is composed contribute more equally to the signal. 

0 2 4 6 

noise level (%) 

Figure 2.5. The 1/T2fit of a multi-exponential decay as a Junction of the RMS noise level. Every data point is the 
mean of 64 fits. • real data; m magnitude data; A magnitude data with base line correction; « power data. 

Tubel 

Tube 2 

Tube 3 

Tube 4 

Tube 5 

Tube 6 

magnitude 

5% RMS 

174.9 

99.77 

33.17 

16.41 

8.169 

0.6154 

20% RMS 

3.041 

14.47 

26.19 

15.30 

8.042 

0.6416 

phased 

5% RMS 

185.5 

124.0 

34.12 

16.68 

8.411 

0.6270 

20% RMS 

194.1 

107.3 

33.85 

16.74 

8.398 

0.6960 

Table 2.1. The I/T2 results for magnitude and pixel-by-pixel phase corrected data of a phantom, for two different 
S/N ratios. 
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As a demonstration of the errors that can occur, images of six phantom tubes containing 

different MnCb solutions were obtained with both high and low S/N ratios. The data were 

analysed using either the magnitude data or the pixel-by-pixel phase-corrected data. As 

expected, for the long IIT2 values the magnitude fit was systematically lower for the 5% noise 

data, and yielded completely erroneous results when the noise level increased to 20% (Table 

2.1). The decays of the tubes 5 and 6 were not sampled into the baseline, which explains the 

correct values for the magnitude fit in these cases. 

As a final test the echo images of a tulip bulb were used. As can be seen in Fig. 2.6, the phase 

of the first echo image varies strongly over the image, showing the largest deviations in the 

pit and at the outer skirt of the bulb. For the data analysis three algorithms were used: the 

magnitude images, the real data after a linear phase correction and the real images obtained by 

our pixel-by-pixel phase correction scheme. Using the magnitude data yield pit IIT2 values 

that are 23% smaller than those obtained for the pixel-by-pixel phase-corrected data (Fig. 

2.7A). The outer skirts show a less severe deviation (12%) due to the smaller IIT2 values in 

the skirts. Using a linear phase correction does not cause significant 7/72 errors, because a 

consistent phase deviation over the echo train does not alter the decay shape. The signal 

amplitude, however, is decreased, because part of the signal intensity remains in the 

imaginary channel. In this example, this effect can be observed most clearly in the top left 

corner of the amplitude image (see arrow in Fig. 2.7B). 

Figure 2.6. Phase image of a tulip 
bulb. The image is the first echo out 
of a CPMG echo train of 46 echoes. 

Figure 2.7. Fitted signal amplitudes and I/T2 values for a tulip 
bulb. A. magnitude data; B. linear phase correction; C. pixel-
by-pixel phase correction. 
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CONCLUSIONS 

The use of magnitude data yields an overestimation of decay times, especially for low S/N 

ratios, because of the non-zero noise level. The bias increases with decreasing S/N ratio and 

can be as large as three times the relative noise level. A simple linear base line correction is 

no solution, for this algorithm results in too low T2 values and amplitudes with comparable 

errors as the magnitude algorithm. To avoid biases for magnitude data, it is suggested to chop 

off the decay curve when the S/N ratio becomes less than 2. However, by doing this the 

accuracy of the fit is decreased as well, as less data points are used for fitting. Moreover, for 

multiexponential decays other errors are introduced because the decay curve is not completely 

sampled. The use of power data can be a solution to the noise problem, but this method is 

only valid for monoexponential relaxation curves. 

Since the magnitude and base line corrected magnitude algorithms are S/N ratio dependent, 

these algorithms should be interpreted with special care. A theoretical illustration of the 

implications of this fact is a biological sample where a calculated change in decay times can 

be caused either by physiological changes or by changes in the S/N ratio, e.g. due to a probe 

tuning drift in time. Another example is the use of amplitude and T2 images to select 

homogeneous regions for further analysis. In the case of varying S/N ratios between regions, 

the amplitudes and T2 values per pixel will show a different bias when magnitude data are 

used, resulting in imperfect selections. 

Whenever possible it is recommended to use real data for decay analysis, for this method 

yields the best T2 values independent of the noise level and the number of exponentials of 

which the decay is composed. Even when the phase correction is not perfect, the fitted 

relaxation times will be correct, although in this case the signal amplitudes are 

underestimated. When comparing data from literature one should be aware of the algorithm 

used. Therefore, it is necessary to mention the analysis algorithm and the S/N ratio in every 

paper. Once the analysis algorithm, the S/N ratio and the curve sampling are known, at least 

an estimation of the bias can be made from the simulations presented here. 
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3 MODELLING OF SELF-DIFFUSION AND RELAXATION 
TIME NMR IN MULTI-COMPARTMENT SYSTEMS 
WITH CYLINDRICAL GEOMETRY 

A numerical model of restricted diffusion and magnetisation relaxation behaviour in PFG-

CPMG NMR experiments, based on Fick's second law of diffusion, has been extended for 

two-dimensional diffusion in systems with concentric cylindrical compartments separated by 

permeable -walls. This model is applicable to a wide range of (cellular) systems and allows 

the exploration of temporal and spatial behaviour of the magnetisation with and without the 

influence of gradient pulses. Numerical experiments have been performed to show the 

correspondence between the obtained results and previously reported studies and to 

investigate the behaviour of the apparent diffusion coefficients for the multi-compartment 

systems with planar and cylindrical geometry. The results clearly demonstrate the importance 

of modelling two-dimensional diffusion in relation to the effect of restrictions, permeability of 

the membranes and the bulk relaxation within the compartments. 

INTRODUCTION 

Both pulsed field gradient NMR and relaxation time measurements are widely used to probe 

the molecular displacements of liquid molecules and the geometry of the microstructures 

containing them in porous and biological media.1"4 In such systems the measured 

displacements and observed relaxation times contain information about the diffusivity within 

the compartments, the dimensions of the compartments, and the exchange between these 

compartments through semi-permeable membranes.5"14 If diffusion takes place in 

compartments separated by permeable membranes, as is the situation for most biological 

cells, the membrane permeability and differences in (bulk) relaxation times within the 

compartments strongly affect the shape of the signal attenuation plot (SAP) or the q-space 

spectrum and thus the apparent diffusion coefficient D*. Especially the effect of differences in 

bulk relaxation on D* has hardly been taken into consideration in literature, but clearly cannot 

be ignored.2'9'1114 

Combining diffusion and relaxation time measurements and analysis, also called Diffusion 

Analysis by Relaxation Time Separation (DARTS),5'13 yields more detailed insight in the 

behaviour of the different liquid ensembles and the microstructure.101215"18 However, for 

further improvement of the experimental set-up and analysis, and for a better understanding of 
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the complex molecular behaviour, we require adequate mathematical models to evaluate the 

effect of diffusion and relaxation on the observed NMR signal. 

Among the broad spectrum of the reported modelling approaches, three ways are clearly 

distinguishable. The first approach is an analytical solution of the given partial differential 

equation for a certain combination of the initial and boundary conditions.11'19 Despite the fact 

that in this way solutions in a closed form are obtained, the number of analytically treated 

configurations is limited. Another approach consists of the detailed reproduction of every 

molecular movement and transformation using simulation methods.20'21 The position and 

orientation of every spin should be calculated for every time step, thus allowing the most 

extraordinary system configurations, but software implementation of such procedures may be 

very time-consuming even for simple configurations on powerful workstations. The 

compromise way of action is based on the numerical solution of the partial differential 

equation with respect to spin magnetisation.6'914 This approach ensures, on the one hand, 

reasonable speed of calculations and, on the other hand, the possibility to investigate rather 

complicated configurations. These models are generally based on the different evaluations of 

Fick's second law of diffusion.22 In this way, a variety of systems with complicated 

configurations can be modelled by simply defining appropriate initial and boundary 

conditions, combined with a proper description of the shape of the pulsed magnetic field 

gradients.11'19 

Previously, we reported a numerical model to simulate the combined diffusion and 

magnetisation relaxation behaviour in NMR experiments for planar geometries.9 However, 

more realistic models should, of course, take into account the (concentric) cylindrical 

symmetry of many biological objects. In this paper, an attempt to expand that model to 

incorporate two-dimensional diffusion is undertaken. Doing so, the effect of restricted 

diffusion and the possibility to circumvent a diffusion barrier by two-dimensional diffusion 

can be investigated. The approach is based on the numerical solution of Fick's diffusion 

equation in cylindrical coordinates. We also demonstrate the agreement of the obtained results 

with results that were reported previously for cylindrical geometries. 

THEORY 

A two-dimensional system is considered that consists of a set of concentric cylindrical 

compartments, each surrounded by a membrane (Fig. 3.1). The z'-th compartment is 

characterised by an intrinsic relaxation time Tt and diffusion constant Z), as well as by a radius 

Ri and permeabilities /?,./ and pt for the inner and outer membrane, except for the innermost 

compartment where only an outer membrane is present. 


