
Efficient Evolutionary Algorithms for Optimal Control

Irineo Lorenzo Lopez Cruz

CENTRALE

• '"•"•"• • • II llllll I

0905 1307

Promotor: prof. dr. ir. G. van Straten
Hoogleraar in de Meet-, Regel- en Systeemtechniek

Co-promotor: dr. ir. G. van Willigenburg
Universitair docent, leerstoelgroep Meet-, Regel- en
Systeemtechniek

Samenstelling promotiecommissie:
prof. dr. ir. J. van Amerongen (Universiteit Twente)
prof. dr. ir. A.J.M. Beulens (Wageningen Universiteit)
prof. dr. P van Beek (Wageningen Universiteit)
dr. E.M.T Hendrix (Wageningen Universiteit)
dr. ir. E.J. van Henten (IMAG, Wageningen)

> »

Irineo Lorenzo Lopez Cruz

Efficient Evolutionary Algorithms for Optimal Control

PROEFSCHRIFT
ter verkrijging van de graad van doctor
op gezag van de rector magnificus
van Wageningen Universiteit,
prof. dr. ir. L. Speelman,
in het openbaar te verdedigen
op vrijdag 14 juni 2002
des namiddags te half twee in de Aula

IIL- <. t

CIP-Data Koninklijke Biblioteek. DEN HAAG
Lopez-Cruz, I.L.
Efficient Evolutionary Algorithms for Optimal Control/I. L. Lopez-Cruz
[S.I.:s.n.]
Thesis Wageningen University.-With ref.- With summary in Dutch and Spanish

ISBN 90-5808-649-6

V / ' J ;
 !

Propositions attached to the thesis:
"Efficient Evolutionary Algorithms for optimal control"

by Irineo L. Lopez Cruz

1. Optimal control problems with multiple local minima are challenging
problems, which makes them particularly suitable for testing the efficiency of
global optimization algorithms.

2. Differential Evolution algorithms are the most efficient evolutionary
algorithms designed so far.

3. "The goal of an efficient mutation scheme (in evolutionary algorithms) is to
generate increments or steps that move existing object variables in the right
direction by the right amount at the right time". K. V. Price, An introduction to
Differential Evolution, 1999.

4. Mathematical models are not only essential in control but in general they are
fundamental to enlarging knowledge and helping with practical applications.

5. The no-free-lunch (NFL) theorem implies that it is more important to
investigate which class of EAs is suitable to solve which class of optimization
problems instead of trying to design an algorithm able to solve all the classes
of optimization problems.

6. "Evolution provides the solution to the problem of how to solve problems".
David B. Fogel, Evolutionary Computation. Toward a new Philosophy of
Machine Intelligence, 1995.

7. That Mayan mathematicians invented independently the number Zero was a
remarkable achievement. Even more admirable is the evidence that suggests
they were familiar with the concept of Matrix as well.

8. Dehumanization of the humankind does not mean that human race is evil by
nature but only that mankind is not as advanced, civilized and developed as
many people believe.

Abstract
Lopez-Cruz I.L. (2002). Efficient Evolutionary Algorithms for Optimal Control. PhD
Thesis, Wageningen University, Wageningen, The Netherlands.

The purpose of this study was to investigate and search for efficient evolutionary
algorithms to solve optimal control problems that are expected to have local solutions.
These optimal control problems are called multi-modal. Evolutionary algorithms are
stochastic search methods that use a population of potential solutions and three
evolutionary operators: mutation, recombination and selection. The goal was achieved
by studying and analysing the performance of Differential Evolution (DE) algorithms
a class of evolutionary algorithms that not only do not share theoretical and practical
limitations that Genetic Algorithms have as global optimisers, but also they overcome
those drawbacks.

However, at the beginning of this research a genetic algorithm with real-valued
individuals and specialized genetic operators (GENOCOP) was studied by solving
some hard optimal control problems. Although results showed that the evolutionary
approach is feasible to solve high-dimensional, multivariable, multimodal and non-
differentiable control problems, some limitations regarding computational efficiency
were found.

Differential Evolution algorithms were chosen and used to solve two multi-modal
(benchmark) optimal control problems. Also some Breeder Genetic Algorithms
(BGA) and the Iterative Dynamic Programming (IDP) algorithm were applied for
comparison purposes. The comparison confirmed that DE algorithms stand out in
terms of efficiency as compared to the Breeder Genetic algorithms. Moreover, in
contrast to the majority of Evolutionary Algorithms, which have many algorithm
parameters that need to be selected or tuned, DE has only three algorithm parameters
that have to be selected or tuned. These are the population size {/x), the crossover
constant (CR) and the differential variation amplification (F). All the investigated
DE algorithms solved the multi-modal optimal control problems properly and
efficiently. The computational efficiency achieved by the DE algorithms in solving
the first low multi-modal problem, was comparable to that of IDP. When applied to
the second highly multi-modal problem, the computational efficiency of DE was
slightly inferior to the one required by IDP, after tuning of the algorithm parameters.
However, the selection or tuning of the algorithm parameters for IDP is more difficult
and more involved.

Some guidelines for the selection of the DE algorithm parameters were obtained. Take
the population size less than or equal to two times the number of variables to be
optimised that result from the control parameterisation of the original optimal control
problem (ju<2nu). Highly multi-modal optimal control problems require a large
value of the differential variation amplification (F > 0.9) and a very small or zero
value for the crossover constant (0<CR<0.2). Low multi-modal optimal control
problems need a medium value for the differential variation amplification
(0 .4<F<0.7) and a large or medium value for the crossover constant
(0.2 <CR< 0.5). To improve further the performance of DE algorithms a parameter
control strategy was proposed and evaluated on the algorithm DE/rand/1/bin. Results
show that computational efficiency can be significantly improved.

Finally, some possibilities of using DE algorithms to solve some practical optimal
control problems were investigated. The algorithm DE/best/2/bin was applied to solve
the optimal control of nitrate in lettuce and results were compared with local
optimisation algorithms of optimal control. A combination of a DE algorithm and a
first order gradient algorithm was proposed in order to exploit the advantages of both
approaches. The DE algorithm is used to approximate the global solution sufficiently
close after which the gradient algorithm can converge to it efficiently. The feasibility
of this approach, which is especially interesting for multi-modal optimal control
problems, was demonstrated.

To my parents Genaro and Imelda

To my beloved wife Nora

To my children Sacnite, Noel and Aaron

Acknowledgements

Many people have contributed either directly or indirectly to the end of this thesis.

First of all, I would like to express my deeply and sincere gratitude to my promoter
Prof. Dr. ir. Gerrit van Straten who gave me the opportunity to pursue my doctoral
studies at the Systems and Control Group and for his permanent support, continuous
advice and guidance during the whole work. It has been a great and wonderful
experience working with him.

My deep appreciations and sincere gratitude to Dr. Gerard van Willigenburg my co-
promoter and daily supervisor for his sharp criticism, wonderful guidance, and always
right suggestions to improve my work. It was a pleasure but also a real challenge to
me working with him.

I would like to express my gratitude to Dr. Hans Stigter who always openly and
kindly answered many questions I used to ask him, for his fruitful discussions and
always interesting talking.

I would like to thank all the participants of the European research project NICOLET,
in particular to Dr. Ido Seginer from Israel because I have learnt a lot working from
time to time for this project.

My deep appreciations to my former supervisor Dr. John Goddard from UAM-I
(Mexico) who introduced me to the Evolutionary Algorithms field and encouraged me
to come to Holland.

I am grateful also of my former supervisor Dr. Jose Negrete from UNAM (who now
is a lecturer and researcher of the MSc. Program in Artificial Intelligence of
Universidad Veracruzana, Mexico) for taught me his Philosophy of Science.

I would like to mention the support I received from all the staff members of the
Systems and Control Group. They provided a lot of warm support during my hard
adaptation period to the "Dutch life". I am obliged especially with Use Quirijns.
Thanks for all your support. But also I am indebted to Frank Tap (former PhD
student), Leo Lukasse (former PhD student) and Camile Hoi (now in Delft), Rachel
van Ooteghem and S. de Graaf for his help with the ACW algorithm. Thanks to the
technical staff the former computer system manager Henk Veen and the secretaries
Maria, Corrie and Miranda.

I would like to thank my former office-mate and friend A. Abusam (former PhD
student) for the time we spent discussing and for his friendship.

I would like to mention my appreciations to my best Mexican friend Armando
Ramirez who supported me (by e-mail) with his friendship and comradeship.

Last but not least, I would like to thank the support of my family. I am deeply
indebted to my wife Nora, my daughter Sacnite and my sons Noel and Aaron.
Without their support, encouragement, companionship, love, comprehension and

kindness I could not bring to an end this project. The time we have spent in Holland
has been a beneficial and wonderful experience for my family for two main reasons.
Nora was operated of her eyes successfully and now she can see almost normally. My
children have experienced the contact with another culture, which I hope will be very
important and positive for their future. I also like to thank my parents, brothers and
sisters in Mexico for their support and encouragement. Special mention deserves the
support and encouragement I always received from mother in law.

Institutional Acknowledgements

I would like to express my gratitude to the Universidad Autonoma Chapingo
(Mexico) who provided me part of the financial support for the development of this
research.

I also would like to express my gratitude to the National Council of Science and
Technology of Mexico who supported me with a fellowship (grant 116076) for the
development of this work.

Table of contents

1 General introduction 1
1.1 Motivation 1
1.2 Background 1

1.2.1 Brief description of mainstreams of Evolutionary Algorithms 1
1.2.1.1 Genetic Algorithms (binary and floating-point representation) 4
1.2.1.2 Evolution Strategies and Evolutionary Programming 6
1.2.1.3 Differential Evolution algorithms 7
1.2.2 On the theory of Evolutionary Algorithms 8

1.2.3 Direct optimisation methods in optimal control and Evolutionary
Algorithms 9
1.3 Research objectives 10
1.4 Contributions of the thesis 11
1.5 Focus and limitations of this research 11
1.6 Organization of the thesis 12
1.7 References 13

PART I. Evolutionary Algorithms in Optimal Control

2 Evolutionary Algorithms for optimal control 17

2.1 Evolutionary Algorithms for optimal control: a survey 17
2.1.1 Abstract 17
2.1.2 Introduction 17
2.1.3 Genetic Algorithms with binary representation in optimal control 18
2.1.4 Genetic Algorithms with floating-point individuals in optimal control 19
2.1.5 Evolution Strategies in optimal control problems 22
2.1.6 Differential Evolution in optimal control problems 23
2.1.7 Conclusions 2 5
2.1.8 References 25

2.2 Evolutionary algorithms for optimal control of chemical processes 29

2.2.1 Abstract 29
2.2.2 Introduction 29
2.2.3 The optimal control problem 30
2.2.4 Evolutionary Algorithms 31
2.2.5 Case studies and results 34

2.2.5.1 High-dimensional non-linear continuous stirred tank reactor 34
2.2.5.2 Multimodal continuous CSTR 36

2.2.5.3 A non-differentiable system 37
2.2.6 Conclusions 39
2.2.7 References 39

PART II. Efficient Differential Evolution algorithms in optimal control

3 Efficient Differential Evolution algorithms for multimodal optimal control
problems 42

3.1 Abstract 42
3.2 Introduction 42
3.3 The class of Optimal Control Problems 43
3.4 Two Evolutionary Algorithms: Breeder Genetic Algorithms and Differential
Evolution 45

3.4.1 Two Evolutionary Algorithms based on the Breeder Genetic algorithm 46
3.4.2 Differential Evolution Algorithms 47

3.5 The first order gradient algorithm and the Iterative Dynamic Programming
algorithm 50

3.5.1 The gradient algorithm 50
3.5.2 Iterative Dynamic Programming algorithm 51

3.6 Benchmark problems solved and results 52
3.6.1 The optimal control of a non-linear stirred tank reactor 52
3.6.2 The bifunctional catalyst blend optimal control problem 58

3.7 Conclusions 63
3.8 References 64

4 Parameter control strategy in differential evolution algorithm for optimal
control 66

4.1 Abstract 66
4.2 Introduction 66
4.3 The differential Evolution algorithm 67
4.4 Parameter tuning and control in DE algorithms 68
4.5 Results from two-benchmark multimodal optimal control problems 70

4.5.1 The optimal control of a multimodal CSTR 70
4.5.2 The optimal control of the bifunctional catalyst blend problem 72

4.6 Discussion 74
4.7 Conclusions 74
4.8 References 74

PART III. Applications of Evolutionary Algorithms to the optimal control of
greenhouse cultivation

5 Evolutionary Algorithms for the optimal control of greenhouse cultivation 77

5.1 Calibration of a dynamic lettuce model for greenhouse climate control using
genetic algorithms 77

5.1.1 Abstract 77
5.1.2 Introduction 77
5.1.3 Lettuce model description 77
5.1.4 Genetic Algorithms 79
5.1.5 Calibration results 80
5.1.6 Sensitivity analysis 81
5.1.7 Conclusions 82
5.1.8 References 83
5.1.9 Appendix. Basic lettuce model (NICOLET) equations 83

5.2 Optimal control of nitrate in lettuce by gradient and differential evolution
algorithm 85

5.2.1 Abstract 85
5.2.2 Introduction 85
5.2.3 Optimal control of nitrate in lettuce 85
5.2.4 Extended Differential Evolution Algorithm 87
5.2.5 Numerical Results 88

5.2.5.1 A Solution obtained by a gradient algorithm 88
5.2.5.2 A solution obtained by a Differential Evolution algorithm 90

5.2.6 Conclusions 92
5.2.7 References 92

5.3 Optimal control of nitrate in lettuce by a hybrid approach: Differential
Evolution and the ACW gradient method 94

5.3.1 Abstract 94
5.3.2 Introduction 94
5.3.3 A dynamic model to predict nitrate concentration in lettuce crop 95
5.3.4 Optimal control of levels of nitrates in lettuce crop 96
5.3.5 The Adjustable Control Weight gradient algorithm 97
5.3.6 Differential Evolution algorithms 98
5.3.7 Results 100

5.3.7.1 A solution obtained by a gradient algorithm 100
5.3.7.2 Generating an initial solution to the ACW method by means of Differential

Evolution algorithms 101
5.3.8 Discussion 104
5.3.9 Conclusions 105
5.3.10 References 105
Appendix A. NICOLET B3 model equations 107
Appendix B. The Hamiltonian function and its derivative 108
Appendix C. NICOLET model parameter values. 108

6 General discussion and conclusions 110

6.1 Discussion 110
6.2 Conclusions 113
6.3 References 116

Summary 117
Samenvatting 120
Resumen 123

Curriculum Vitae 126

1. General introduction

1.1 Motivation

Convergence to local solutions is likely, if optimal control problems are solved by
means of gradient-based local search methods. Recently there has been an increasing
interest in the use of global optimisation algorithms to solve optimal control problems
which are expected to have local solutions. These optimal control problems are called
multi-modal. Evolutionary Algorithms (EAs) are global optimisation algorithms that
have mainly been applied to solve static optimisation problems. Only rarely
Evolutionary Algorithms have been used to solve optimal control problems. This may
be due to the belief that their computational efficiency is insufficient to solve this type
of problem. In addition the application of Evolutionary Algorithms is a relatively
young area of research. Together with my personal interest in the application of EA's
this motivates the research in this thesis which concerns a search for the feasibility
and efficiency of evolutionary algorithms to solve multi-modal optimal control
problems.

The efficiency is a critical issue when applying EA's. Even more so when optimal
control problems are solved, since in this case, each function evaluation involves a
system simulation, which is computationally expensive. Therefore in this research we
tried to focus on EA's that are known or proved to be efficient. The application of
these algorithms to multi-modal optimal control problems, in most cases, presents a
new area of research.

Numerical methods for the solution of optimal control problems can be roughly
divided into two groups: indirect and direct methods [1]. The first group is based on
finding a solution that satisfies the Pontryagin's maximum principle or the related
necessary conditions through solving a two-point boundary-value problem [2]. Direct
methods are based on an approximation of the infinite dimensional optimal control
problem by a non-linear programming (NLP) problem. This can be done by either
control and state parameterisation or control vector parameterisation only [3], The
non-linear programming problem that results after the parameterisation is often multi­
modal. Gradient-based optimisation algorithms are known to converge to local
optima. To surmount this problem, global optimisation algorithms can be used. Since
it is well known that Dynamic Programming is hardly ever feasible due to the curse of
the dimensionality [2], Iterative Dynamic Programming (IDP) has been proposed [4].
Other global optimisation methods applied recently to solve multimodal optimal
control problems are Stochastic Algorithms [5, 6]. Our work is motivated by the
potential that Evolutionary Algorithms (EAs) have, as global optimisers, to solve
multimodal optimal control problems. Since the computation time is critical in solving
optimal control problems and EAs are known not to be very efficient the issue of
efficiency is addressed. Some of the state of the art evolutionary algorithms will be
the focus of our investigations.

1.2 Background

1.2.1 Brief description of mainstreams of evolutionary algorithms

In this section a generic description of the most prominent evolutionary algorithms is
provided. Basically our portrayal follows the work of Back [7] who has proposed, in
our view, a rather generic framework to describe global stochastic search algorithms
inspired by evolution. The next meta-algorithm gives a generic description for a wide
class of evolutionary algorithms:

Outline of an Evolutionary Algorithm

g .-= 0; generate P(0) := {a](0),...,^,(0)} e / " ;

evaluate P(0): {<D(^(0)),...,O(^,(0))};

while (i(P(g))^true) do
Recombine P'(g):=r&r(P(g));
Mutate P"(g):=m®m(P'(g));

Evaluate P\g): { ^ ^ . . . ^ (g)) } ;

Select P(g +1) := s0s(P"(g) u Q)\
g-=g+i;

end

An Evolutionary Algorithm (EA) is a stochastic search method, which maintains a

populationP(g) := {a,(#),...,«„ (g)} of individuals at e I, i = \,...,ft at generation g,
where / denotes a space of individuals, and ju e N is the parent population size.
Each individual represents a potential solution to the problem at hand and it is
implemented as some generic data structure (i.e. strings of bits in genetic algorithms,
real numbers in Evolution Strategies). By means of the manipulation of a family of
solutions, an Evolutionary Algorithm implements a survival of the fittest strategy in
order to try to find the best solution to the problem. Each individual is evaluated by a
fitness function O: / —> 91, such that a real value is assigned to each potential
solution, which represents a measure of how well individuals perform in the problem
domain. Next, an iterative process starts in which a set of evolutionary operators is
applied to the population in order to generate new individuals [8]. From a set
{w©,,..., w@z | w0, : I* -> Ix) u {w0o: I" -^ I1} of probabilistic evolutionary
w©, operators (for instance: crossover, mutation), each one specified by parameters
given in the sets 0, c 91, some operators are applied to the population and a new
evaluation of its fitness is calculated. The evolutionary operators: recombination
(crossover) r&r :I"-^IA, mutation w0m :IX -»I1 and selection

s®s : [I
1 u / '**)-> /"are used to transform the population P(g). X e N represents

the number of offspring or new solutions in the population. The set Q a P(g) denotes
an additional set of individuals, which can be the empty set, or a subset of the parent
population P(g). The function i: 1'M —» {true, false} specifies the termination
criterion. After a number of generations, it is expected that the best individual of the
population represent a near-optimum solution.

Evolutionary
Algorithms

Genetic

Algorithms

Evolution

Strategies

Evolotwnin

Programming

Gtoetic
Programming

H_
Differential

Evolution

(Storn,

Price)

Binary

Individuals

Floating-point

Individuals

meti-EP

IM)
Genetic

Programs

(Kozi)

Eipoieitial

crossover

Binomial
crossover

Simple

Geietk

Algorithm

(HoKaiid)

GENOCOP

(Micbalenki)

(1+D-ES

(Sehewefel,

Rechenbtrg)
(Schwefel,

Rechenberg)

(| U) * S
{SchewefeL
Rechenoerg)

DE/rand/1/eip

DE/best/2/eip

DE/best/l/eip

DE/cnrreit-to-raioVl

DE/rand/t/bin

DE/best/2/bii

DE/best/1/bii

DE/currenl-te-rand/1

Figure 1. Family tree showing the most relevant Evolutionary Algorithms

Traditionally, three main examples of this generic algorithm have been identified:
Genetic Algorithms [9, 10, 11], Evolution Strategies [1, 12] and Evolutionary
Programming [1, 13]. However, other algorithms inspired by evolution share
similarities with the three original EAs, for instance, Differential Evolution [14, 15],
Genetic Programming [16] and possibly others. The next subsections summarize main
properties of Genetic Algorithms, Evolutionary Programming, Evolution Strategies
and Differential Evolution since they are more important ones from an optimisation
viewpoint. Figure 1 presents a family tree with a classification of the most important
Evolutionary Algorithms.

1.2.1.1 Genetic Algorithms (binary and floating-point representation)

Binary representation

In canonical Genetic Algorithms (GAs) [9, 10] an individual is represented by strings
of binary numbers a e / , where / is the binary space {0,1}. An individual or
chromosome is just a binary string a = (au...,a,), and / is the length or the used
number of bits. As this approach is applied to solve continuous parameter
optimisation problems with n variables xi,i = l,2,...,n to be optimised

x = [x,,x2,...,xj e DcR", where D: xi e [«,, v ,] , / = 1,2,...,n here w, and v; denote
lower and upper limits of the variable interval xr Using a binary code [7,11] each
element xt of x can be coded by elements of a. This is represented by x = y (a) .
Regarding the calculation of the fitness function <X>(<5) = (£>'(y/(a)) :R"->R where
O' is a function that guarantees positive values, since the standard selection
mechanism of GAs requires positive fitness values.

Mutation

Consistent with the binary representation of the solutions a mutation operator
m{p (: / —> / modifies an individual a' = m{p){a) according to

a if x > P
a' = ' m, V.e[l,...,/] where ^£[0,1] is a uniform random variable,

1-a, if Xi^Pm

and pm is a probability of mutation and a, means the /' bit of the string.

Crossover

The simplest recombination operator is the so-called one-point crossover
r{p } : I

2 —> I2, which combines two strings J and v to generate two new individuals

s' = (su...,sk^,sk,vk+1,...,v,) and v' = (vl,...,vk_i,vk,sk+u...,s,), where k&{\,...,l-\)

and pc specifies the probability of selecting a pair of strings to be mated. It seems
that more commonly applied crossover operators are multi-point crossover and
uniform crossover. The multi-point crossover operator r i: I2 —> I generates a new

. , . . , , ,. t , <is,i,Vi(Xk<i^XM\k<m
individual according to: a, = , where

avi , otherwise

{Xl,—,%m)e.[\,.~,l-\] denote random crossover positions and m is the number of

crossover points. The uniform crossover operator r: I2 —> I generates a new
asnAi > l / 2

individual according to a'= ' ,V, e[l,...,/], where A,e[0,l] is a uniform
aVJ,Ai < l / 2

random variable. Other binary oriented recombination operators are found in the
literature [7, 9, 10].

Selection

The selection operator s:Ifl—>If' implements a probabilistic survival strategy. First

selection probabilities are computed Ps(aJ(g)) = Q>(dj(g))/2_,<b(ak(g)),

7 = 1,2,...,//, which reflect the relative fitness in the population of each individual.
Using these probabilities a population is chosen according to a sampling mechanism.
Generally, the Stochastic Universal Sampling scheme [7], which determines the
number of copies (samples) of each individual from the current to the next population,
is applied. An example is the Simple Genetic algorithm [9, 10] (see Figure 1).

Floating-point representation

In genetic algorithms with a floating-point representation, [11, 17] an individual is
given by a vector of real numbers such that a = x e 9?". The fitness function is just
<D(5): R" —> R. However, genetic operators are different in order to deal with this
representation.

Mutation

As far as mutation is concerned more known operators are: uniform, boundary and
non-uniform mutation as well as mutation of the Breeder Genetic algorithm. Uniform
mutation m:I —> I alters an individual a into a' according to

f r, if i = j
at = < where r e [ui,vi] is a uniform random value within the interval

[aj, otherwise

for the /""variable. The boundary mutation m.r): / -> / modifies slightly the previous

ut, if i = j,r< 0.5

operator in which the mutated variable is generated by a\ = < v,., if i = j,r >0.5,

at, otherwise

where r e [0,1] is a uniform random number. The non-uniform mutation
m{rbgG) '• I ~* I on the other hand, generates a new individual a' = (a1,...,ai,...,all)

a, + S(g,v, -a.) if rnb == 0 ,
where « ; = ') * ' ' l)J ,,S(g,y) = yr-(l-g/G)b and re[0,l] is

a uniform random number, r«6 is a random binary digit, G is the maximal
generation number and b is a parameter.

The breeder genetic algorithm mutation operator m{ } : / —> I creates a new

fa, +s-(v- -ut)-S if x,^<0.5 ^ ,
individual 5 according to a, =< , o = > 2 y a , ,

ai e [0,1], s = 0.1, where Xi e [0.1] is a uniform random value.

Crossover

Some floating-point crossover operators are: simple, arithmetic, and heuristic. The
simple crossover r,b) : I

2 —> I2 combines two individuals a1 and a2 to generate two

new feasible individuals a'1 =(a\,...,a),a2
+l • b + a'+1(l-b),...,a2

n -b + a\ (l-b)) and

a'2 =(a2,...,a2,a2
+1 -b + aj+l -(\-b),...,a2

n -b + a[(\-b)), where b e [1,0] is a

uniform random value and r'e[l,n] is a randomly chosen index. The arithmetic

crossover r{b} : I
2 -»I2 combines two parents 5, and a2 in order to generate two

new feasible solutions a[= b • al + (1 - b)a2 and a'2 = (1 - &)<Jj + &a2, where Z> e [0,1]

is a random number. Heuristic crossover r(rf) : I
2 -> / combines two parent solutions

5, and 52 so as to generate a new individual ai =at+d (al-a2) where d e [0,1] is

a random number, and a, and a2 are selected such that 0(5j) < 3>(a2).

The discrete recombination operator r,d): I
2 —> / combines two vectors a1 and a2 to

-3 „.,._„ _3 f«i» ' / ^ < 0 - 5

obtain only one new individual a where at =\ " ' , i = \,...,n and
\a I, otherwise

di e [0,1] is a uniform random number. Similarly the extended intermediate

recombination operator r{a} : I
2 -> / generates a new individual by

a] = a) + at(a
2 -a\), i = \,...,n and a, is a uniform random variable from the

interval [-0.25,1.25]. In case that only one coefficient a is applied to the whole

difference vector, the operator is called extended line recombination.

Selection

In addition to the same scheme of selection as in GAs with a binary representation, in
case of real-valued vectors several other selection operators have been reported in the

literature [11, 17]. Two important examples of genetic algorithms with floating-point
representation of the individuals are the GENOCOP (GEnetic algorithm for
Numerical Optimization for Constrained Problems) system [11] and the Breeder
Genetic algorithm (BGA) [17] as can be seen in Figure 1.

1.2.1.2 Evolution Strategies and Evolutionary Programming

A set of Evolution Strategies (ES) can be identified [7, 12]. Since more advanced
Evolutionary Programming (EP) algorithms share properties of ES here only the
differences between both approaches are mentioned. All ES use a complex
representation of the chromosomes in the population a = {x,a,a), where x denotes
the vector of to be optimised variables, a the strategy vector of standard deviations
associated to x and a rotation angles also associated to x. The fitness function
becomes ®(a): R" —» R. In ES and EP not only the object vector but also the
strategy vector and rotation angles vector are subjected to the evolutionary process. In
case of Evolutionary Programming [7, 13] generally an individual a = (x,v) is
represented as a vector of object variables and one vector of standard deviations.

Mutation

The mutation operator m{T r,^ : / —> / yields a new individual a' = (x',a',d')

according to: a\ = ai • exp(r2 • N (0,1) + r, • Nt (0,1)), a) =ctj+p- Nj (0,1),

x' = x + N(0, a', a'), V,. s {1,...,«}, Vy e {1,..., n • (n -1) / 2}, where #(0,1) stands for a

random variable having expectation zero and standard deviation one, N(0,d',d')
denotes a multivariate normal distribution with specified covariance matrix, and r,, T2

are algorithm parameters depending on n, and /? is a constant [1,7].

In case of Evolutionary Programming the mutation operator m{() : I —> I produces a

new individual a' = (x',v') as follows: x\ = x, + ̂ v~ • AT.(0,1), v,' = v,. + ̂ /̂ V~ • 7V,(0,1),

V, e {l,...,n}, where C, denotes an algorithm parameter.

Crossover

Modern ES may use several recombination operators [7, 12], and they may be
different for object variables, standard deviations and rotating angles. Yet, in general,
two recombination operators are commonly applied. First, the discrete recombination
operator defined above. And also the intermediate recombination operator (applied
here only o n i) r : / 2 - > / that combines two different randomly selected parents xv,
xs from the population, to generate a new individual x', in which,
x\ = xSi +(xVi -xSJ)/2. Recently, Schwefel [12] has proposed some generalizations

for recombination operators in which each element of the new vector is selected
probabilistically from all the individuals in the population. Then, the intermediate
recombination operator r:I/1->I is given by x\ =xSl+(xVj -xSJ)/2 where xv,.
denotes that a new parent xv is selected for each element of the vector. There are no

recombination operators in Evolutionary Programming.

Selection

The selection mechanism in Evolution Strategies is deterministic. There are two
general operators. An operator s{ A) : I^

k —» IH selects the best // individuals out

of the union of parents and offspring while the operator s{fl x) : I
x —> f selects the

best n individuals out of the offspring only. The selection mechanism is used to
denote multimembered evolution strategies (// + X) -ES and (//, X) -ES respectively.
In case // = 1, and X = 1 the two membered evolution strategy is obtained which was
the first designed ES and is denoted traditionally by (1,1) -ES (see diagram 1).

In Evolutionary Programming the selection operator s{) : I2" —»IM, on the other

hand, uses a tournament selection mechanism in order to generate a new population.
For each individual Oj,je {1,...,2//}, q individuals are chosen randomly from the

union of the parents n and the offspring A = / / . A score w. e {0,...,^} is obtained

from counting how many of those individuals perform worse than 5. . All the

individuals 3j, j e {1,...,2//} are ranked in descending order of their score and the best

// of them are selected to form the next population. An example of an Evolutionary

Program is the meta-EP algorithm proposed by Fogel (see Figure 1).

1.2.1.3 Differential Evolution algorithms

All Differential Evolution (DE) algorithms use vectors of floating-point numbers to
represent the individuals in the population [14, 15]. Using the previous notation we

have: a = x e 9T . The fitness function is <£>(a):/?"-»/?.

Mutation
There are several mutation operators in DE algorithms. A mutation mechanism
m{F) :I—>I yields a mutated individual a' = m{F}(a) by modifying the vector a

according to: a\ =ar +Fx(ar -ar), V, e{l,...,//}, where rx ^r2^r^^i denote

mutually different indices. The vector at is named the target vector, which clearly is a

parent individual. The vector ar is the to be mutated individual which is selected

randomly from the population. Vectors ar and ar form a difference vector. F is an

algorithm parameter that affects the differential variation. A second mutation operator
takes the to be mutated vector equal to the target vector as follows:
a'j =at+F x(ar -ar), V,. e {1,...,//} where r , ^ r 2 ^ i are mutually different

indices.

A third mutation operator is given by a'j = abesl + F x (5rj -a) , V,. e {1,...,//}

where r^r2 ^ i denote mutually different indices. In this case the to be mutated
vector is the best individual in the population (abesl (g)) at the current generation (g) ,

namely Q>(abesl) < 0 (5 ,) , V.,y = 1,...,//. Another mutation mechanism combines

two difference vectors 5- = abest+ F x(ari +ari - a r j - « r 4) , V,. e{l,...,jii} where

r ^ r j * ^ ^ i are mutually different indices. A more complicated mutation

operator uses the to be mutated vector to built the difference vectors:

a'j = ai + F x (3r - ar) + K x (a,. - a ,), V, e {1,..., //} where r, # r2 * r3 ^ i are

mutually different indices and K is another algorithm parameter.

Crossover

The recombination operator r{a) : I
2 —» / acts on two parents, the mutated vector

(a't) and the target vector (a,.), which can be considered as a parent individual, so as

to form a trial vector (a") whose elements are given

„ < if randb(j) < CR or j = rnbr(i)
b y : a / z = , i = 1,2,...,ft,j = 1,2,...,n, where CR ajt if randb(j) > CR and j * rnbr(i)
is the crossover constant, randb(j) e [0,1] denotes the jth evaluation of an uniform
random number generator, and rnbr(i)e[l,..,n] is a randomly selected index. This
operator is called binomial crossover.

A second recombination operator in DE is the so-called exponential crossover. In this
case each element of the trial vector is generated according to:

an while randb(j) > CR and j * rnbr(i)
aM= , V,e{l,...,//},fory = l,...,«}

ajt afterward

Selection

The selection operator s{/l+A} : l
h*^ —> IM picks the ju best individuals from the union

of parents and offspring (// + A) to form the next population, where // = X. This is
done by a simple comparison of the fitness of the target (5() and trial (a")
vectors; = 1,...,//, in such a way that only if the condition 0(5,") < 0(5,) is satisfied
then a" becomes a member of the new population otherwise a, (the parent
individual) is selected. An excellent discussion on Differential Evolution algorithms is
provided by Price [15]. Each Differential Evolution algorithm can be identified by the
notation DE/x/y/z [14], where x denotes the choice of the vector to be mutated, y is
the number of difference vectors used for mutation and z specifies the type of
crossover scheme. Some instances of DE algorithms are listed in Figure 1.

1.2.2 On the theory of Evolutionary Algorithms

Although several theories have been proposed to account mainly for the behaviour of
Genetic Algorithms and Evolution Strategies, it seems that there still is no definite
theory that explains thoroughly why and how evolutionary algorithms work [18, 19].
However, based on the concept of Random Heuristic Search [20] a set of definitions,
theorems and formal proofs has been developed that mathematically formalize

evolutionary algorithms. In contrast to other theories, Random Heuristic Search is a
paradigm that would explain the behaviour of the most important evolutionary
algorithms: Genetic Algorithms, Evolutionary Programming, Evolution Strategies and
Genetic Programming. Roughly, Random Heuristic Search is considered to be a
discrete dynamical system consisting of two parts: a collection of elements
(population) chosen from a search space, which can be any finite set, and also a
heuristic search or transition rule which from any population Pt will produce another

population PM, Since the transition rule is stochastic, a heuristic function is defined,
which given the current population, produces a vector whose 7-th component is the
probability that the y'-th element of the search space is chosen as a member of the next
population PM. A characterization of Random Heuristic Search can be given in terms
of Markov Chains. An important challenge is not only to show that a particular
evolutionary algorithm is an instance of Random Heuristic Search but also to find its
corresponding heuristic function. So far a detailed analysis of the behaviour of the
Simple Genetic Algorithm has been presented recently [21]. In addition, several
theoretical results have recently been discussed in the literature [8, 22, 23] based on
the application of Markov Chains theory to Evolution Strategies.

1.2.3 Direct optimisation methods in optimal control and Evolutionary
Algorithms

Numerical methods for optimal control can be classified into two generic groups:
indirect and direct methods [1, 25]. The first group is based on finding a solution that
satisfies the Pontryagin's Maximum Principle or the related necessary optimality
conditions, which constitute a two-point boundary-value problem. Generally, gradient
and shooting methods are applied [2, 24]. Direct methods attempt a direct
minimization of the objective functional of the optimal control problem by control
parameterisation or control and state parameterisation. Through parameterisation the
dynamic optimisation problem is transformed into a Non-Linear Programming
problem. Then both local and global optimisation algorithms to solve this type of
problems may be applied. In this work only control parameterisation will be
considered.

In this thesis we will consider general optimal control problems where the system may
be non-linear and the cost functional need not be quadratic. Consider the system

x = f(x,u,p,t) (1.1)

where x e R" is the state vector, ueRm is the control vector, p eR' the fixed
parameter vector and t represents time. The optimal control problem is to find the
control trajectory u(t), t0<t<tf which minimizes the cost functional

J = </>{x(tf)) + {'L(x,u,t)dt (1.2)

subject to the system dynamics (1.1), with known initial conditions x(t0) = x0. In

equation (1.2) ^ e R' represents costs associated to the final state x{tf) and Le R'

represents the running costs. The system description (1.1) is in state-space form. Any
causal system can be easily put into this form, which has many advantages both from
a theoretical and computational point of view.

The optimal control problem (1.1), (1.2) in general is infinite dimensional because the
control trajectory u(t) is continuous and infinite dimensional. To turn it into a finite
dimensional problem we will apply control parameterisation. This can be done e.g.
using piecewise polynomials or a piecewise constant or linear parameterisation. In the
case of computer control, the control is truly piecewise constant. Therefore, this type
of control parameterisation is used throughout the thesis. Furthermore a piecewise
constant control is easily implemented. It is described by,
u(t) = u(tk), ts[tk,tk+l),k = 0,l,...,N-l (1.3)

where tN =tf, and tk, k = 0,1,...,N are so called sampling instants which are usually
equidistant i.e. tk+l -tk=Ts, k = 0,1,2,...,N-l, where 7̂ is the so-called sampling
period. N is the number of time intervals. Introducing
uk=u(tk), k = 0,l,—,N-1 the control trajectory u(t), t0<t<tf is now fully

determined by uk, k = 0,1,..../V-1 and we may define u = [«f ,u\,...,M^,] the so-

called control parameter vector which fully determines the control trajectory u(t),

t0 <t <tf. Given u using the initial condition x0 and numerical integration from

(1.1) and (1.2) we may compute J. Therefore, the optimal control problem (1.1),
(1.2) constitutes the minimization of J w.r.t. u .

If terminal state constraints y/{x{tf)) = 0 have to be satisfied the problem becomes a

constrained function minimization problem. If the final time tf instead of a-priori

fixed is to be optimised as well, this is possible if we apply time scaling. In that case
the interval tk+l —tk=Ts=tf IN over which u(tk) = uk is applied, varies with tf. To

satisfy general state constraints, both the integral [3] and grid approximation
approaches [25, 26] can be applied. Again this results in a constraint function
minimization problem.

The resulting, possibly constraint function minimization problem often has a large
number of variables and local minima. Because of this, local optimisers often fail in
computing the true (global) minimum. Evolutionary Algorithms as investigated in this
work might be able to overcome this difficulty because they are global in nature.
Normally, only minor modifications of the previous description are necessary when
evolutionary algorithms are applied to solve optimal control problems.

1.3 Research objectives

The main goal of this research is to investigate the possible advantages of the
application of Evolutionary Algorithms as direct methods to solve optimal control
problems.

The feasibility of Evolutionary Algorithms will be investigated to solve high
dimensional, non-linear, multivariable and multimodal (with multiple local minima)
optimal control problems. The optimal control problems are benchmark problems and
an optimal control problem concerning greenhouse cultivation.

The expected advantage concerns mainly the ability to find the global optimal

10

solution for multimodal problems having multiple (local) solutions. The efficiency of
Evolutionary Algorithms in general compares unfavourably to the efficiency of other
optimisation methods. Therefore the research will focus on evolutionary algorithms
that are very efficient compared to other EA's. Application of such algorithms to
solve multi-modal optimal control problems is a rather new area of research. Since
algorithm parameter selection is an important practical issue when using any
Evolutionary Algorithm this topic will be addressed too.

Given the objective to locate the global solution of multimodal optimal control
problems and the lack of efficiency of Evolutionary Algorithms an approach where an
EA algorithm is combined with a more efficient algorithm will also be investigated.
Finally, Evolutionary Algorithms will be compared with other algorithms that have
the potential of locating the global solution such as Iterative Dynamic Programming.

1.4 Contributions of the thesis

In this thesis efficient Differential Evolution algorithms, which are global
optimisation methods, are proposed to solve multimodal optimal control problems.
Differential Evolution algorithms are considerably more efficient and effective to
solve optimal control problems than the majority of EAs. DE algorithms have
advantages over other global search methods such as an Iterative Dynamic
Programming or Controlled Random Search. They are very easy to implement and are
easily adapted to solve constrained optimal control problems.

Many researchers believe that Evolutionary Algorithms are all inefficient in solving
continuous optimisation problems. By showing some advantages of efficient
evolutionary algorithms in solving hard optimal control problems this research will
contribute to the acceptance of some state of the art evolutionary algorithms like
Differential Evolution to solve practical problems, especially in the area of optimal
control.

1.5 Focus and limitations of this research

Since numerical solutions for optimal control problems generally demand a high
number of function evaluations, which involve a simulation of the system, they are
computationally expensive. Theoretically and empirically it has been shown that GAs
solve separable functions that are 0(n) hard in 0(wln«)time [17, 27], where OQ
notation denotes the asymptotic order of growth of a function, e.g. the order of the
largest term in an2 +bn + c is 0(n2). In our case 0(n) refers to the number of
function evaluations and n specifies the dimension of the optimisation problem. In
case of functions with highly correlated variables traditional GAs tend to be even
more inefficient. The cause of this is the high recombination probabilities and small
mutations (pm = 1/w <1) that are common settings in GAs. Therefore, some of the

state of the art evolutionary algorithms that have been proposed recently as good
candidates to surmount these drawbacks are investigated. In contrast to Genetic
Algorithms, Differential Evolution algorithms are efficient since it seems they use

11

only 0(n) complexity. Also they are rotationally invariant [15] which means they do
not lose performance due to correlated variables. Evolution Strategies and
Evolutionary Programming are relatively efficient evolutionary algorithms but they
are not considered in this work since they demand a higher computational complexity
0(n2) than Differential Evolution as they include rotational angles. DE as well was
ES and EP use a mutation probability pm = 1 all the variables are mutated. This work

does not provide theoretical results but is rather based on the analysis of some
engineering applications of EAs, especially some classes of difficult optimal control
problems.

1.6 Organization of the thesis

The thesis is organized in several chapters which can be grouped into three parts. The
first part (chapter 2.1 and chapter 2.2) presents a general introduction to Evolutionary
Algorithms (chapter 2.1) and discusses the issue of their application to some hard
optimal control problems (chapter 2.2). The main purpose of chapter 2.1 is to
summarize the most relevant work reported in the literature up until now regarding the
application of the Evolutionary Algorithms (Genetic Algorithms, Evolution Strategies
and Differential Evolution) to solve optimal control problems (OCP). Different kinds
of representations of the individuals for some classes of OCP and the corresponding
evolutionary operators are described. In chapter 2.2 the possibility of using
Evolutionary Algorithms, with real-valued chromosomes representation and
specialized evolutionary operators is studied. Some optimal control problems from
chemical engineering characterized by being high-dimensional, non-linear,
multivariable, multi-modal and non-differentiable are solved and results are compared
with other direct methods commonly applied in optimal control.

The second part focuses on the study of Differential Evolution algorithms, which are
considered as the state of the art evolutionary algorithms, designed in the field of
continuous parameter optimisation. In contrast to genetic algorithms, DE algorithms
are considerably more efficient and therefore constitute good candidates for solving
hard dynamic optimisation problems. In chapter 3, DE's are studied by analysing how
they perform on two multimodal (benchmark) optimal control problems. The
performance of some evolutionary algorithms based on the Breeder Genetic
Algorithm (BGA) is also analysed and results are compared to those obtained by DE
algorithms. Finally, the results are also compared with Iterative Dynamic
Programming, a global optimisation approach specifically designed for optimal
control problems. Improvements of the DE algorithms are presented and tested in
chapter 4. DE algorithms are efficient and easy to use evolutionary algorithms but
require some tuning of the algorithm parameters: population size, mutation and
crossover constants. Generally these parameters are kept constant during the
optimisation process. A more effective algorithm may be obtained if they are
adaptively tuned [15]. A parameter control strategy that adjusts the crossover and
mutation constant in accordance with the diversity of the population is proposed and
evaluated by using the benchmark multimodal dynamic optimisation problem studied
in chapter 3.

The third part (chapters 5.1-5.3) of this work presents some applications concerning
optimal control of greenhouse cultivation. Chapter 5.1 presents the use of a genetic

12

algorithm with both binary and floating representations for the chromosomes, to
estimate some of the parameters of a dynamic model of a lettuce crop. A two-state
dynamic model of a lettuce crop (NICOLET) that predicts the nitrate concentration at
harvest time is described first. Then, evolutionary algorithms are used to optimally fit
the model parameters to measurements of dry weight of a lettuce crop. Results are
compared against those obtained by some local search methods. In chapter 5.2 an
optimal control problem of nitrate (NO3) in lettuce is presented and solved by a first
order gradient algorithm. First, A modified two-state dynamic model of a lettuce crop
(NICOLET B3) is described. Next, an optimal control problem with fixed final time
control constraints and terminal state constraints is put forward. Subsequently, a
Differential Evolution algorithm is applied to get an approximate global solution. The
DE algorithm is extended in order to deal with this. In chapter 5.3 a combination of a
DE and a first order gradient algorithm is proposed to solve the optimal control
problem of nitrates in lettuce. Finally, in chapter six the thesis ends with an overall
discussion, conclusions and some suggestions for future research.

1.7 References

[1] Von Stryk O. and Bulirsch R., Direct and indirect methods for trajectory
optimization, Annals of Operations Research 37(1992) 357-373.

[2] Bryson A.E, Jr., Dynamic Optimization, Addison-Wesley, 1999.

[3] Goh CJ. and Teo, K.L., Control Parametrization: a unified approach to optimal
control problems with general constraints, Automatica Vol. 24, No. 1, pp 3-18,
1988.

[4] R. Luus, Iterative Dynamic Programming (Boca Raton, FL: Chapman &
Hall/CRC, 2000).

[5] M.M. Ali, C. Storey, A. Torn, Application of stochastic global optimisation
algorithms to practical problems, Journal of optimization theory and applications
95, 1997, 545-563.

[6] Banga J.R. and Seider W.D., Global optimization of chemical processes using
stochastic algorithms, in State of the Art in Global Optimization, Floudas C.A. and
Pardalos PM (Eds.), 563-583, Kluwer Academic, 1996.

[7] Back T., Evolutionary Algorithms in Theory and Practice, Oxford University
Press, NY, 1996.

[8] Rudolph G., Convergence Properties of Evolutionary Algorithms, Verlag Dr.
Kovac, Hamburg 1997.

[9] Holland J., Adaptation in Natural and Artificial Systems, Univ. of Michigan Press,
Ann Arbor, MI, 1975.

[10] Goldberg D.E., Genetic Algorithms in Search, Optimisation and Machine
Learning, Addison-Wesley Publishing Company, Inc 1989.

13

[11] Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag, Berlin, 1996.

[12] Schwefel H.P., Evolution and optimum seeking, John Wiley, Chichester, UK,
1995.

[13] Fogel D., Evolutionary Computation: Toward a new philosophy in Machine
Learning, Los Alamitos CA, 1995.

[14] Storn R. and Price K., Differential Evolution -A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces, Journal of Global Optimization
11:341-359,1997.

[15] Price K. V. An Introduction to Differential Evolution, in Corne D, Dorigo M.,
and Glover F. (Editors), New Ideas in Optimization, Mc Graw Hill, 1999.

[16] Koza J. Genetic Programming: On the Programming of Computers by Means of
Natural Selection, The MIT Press 1992.

[17] Miihlenbein, H. Schlierkamp-Voosen, D., Predictive models for the Breeder
Genetic Algorithm: I Continuous Parameter Optimization, Evolutionary
Computation 1(1), 1993, 25-49.

[18] Eiben A.E., Rudolph G., Theory of evolutionary algorithms: a bird's eye view,
Theoretical Computer Science 229, 1999, pp. 3-9.

[19] Mitchell M. An introduction to genetic algorithms, The MIT Press, Cambridge
Massachusetts, 1996.

[20] Vose, M.D. Random Heuristic Search, Theoretical Computer Science 229, 1999,
103-142.

[21] Vose M. D. The simple genetic algorithm: foundations and theory, The MIT
Press, Cambridge Massachusetts, 1999.

[22] Rudolph G. Finite Markov Chain results in Evolutionary Computation: a tour
d'Horizon, Fundamenta Informaticae 35, 1998, 67-89.

[23] Beyer H.G., The theory of Evolution Strategies, Springer-Verlag, 2000.

[24] Bryson, A .E. Jr., Ho, Y. Ch. Applied optimal control. Optimization, Estimation
and Control, Hemisphere, 1975.

[25] Kraft D., TOMP- Fortran Modules for Optimal Control Calculations, ACM
Transactions on Mathematical Software, Vol. 20, No. 3, September 1994, 262-281.

[26] Fabien, B.C., Some tools for the direct solution of optimal control problems,
Advances in Engineering Software, 29, 45-61, 1998.

[27] Salomon R., Re-evaluating genetic algorithm performance under coordinate

14

rotation of benchmark functions. A survey of some theoretical and practical aspects
of genetic algorithms, BioSystems 39 (1996), 263-278.

15

PARTI

EVOLUTIONARY ALGORITHMS IN OPTIMAL CONTROL

16

2. Evolutionary algorithms for optimal control

2.1. Evolutionary Algorithms for optimal control: a survey

2.1.1 Abstract

The purpose of this survey is to present a summary of the most relevant research
reported in the literature regarding the application of Evolutionary Algorithms
(Genetic Algorithms, Evolution Strategies, and Differential Evolution) to solve
optimal control problems. Emphasis is put on benefits and drawbacks of the proposed
evolutionary algorithms. In addition, some general remarks concerning the main
properties of the designed and applied evolutionary operators are underlined.

2.1.2 Introduction

To solve finite-horizon optimal control problems in continuous-time, by means of
evolutionary algorithms, control parameterisation is applied to obtain a finite
dimensional approximate description of the continuous-time control. A finite-horizon
digital optimal control problem concerns the control of a continuous-time system by
means of a digital computer. Due to the use of a computer, the control is piecewise
constant (equation 1.3) and therefore finite dimensional. Within finite-horizon
discrete-time optimal control problems the system description and the control are
discrete in time. Again in this case, the control is finite dimensional. Therefore,
without making any approximations, both finite-horizon digital and discrete-time
optimal control problems can be solved by means of genetic algorithms. Finite
horizon discrete-time optimal control problems are usually equivalent to, or an
approximation of, digital optimal control problems [1,2].

A certain type of continuous-time optimal control problems, with bounded control, is
known a-priori to have an optimal control which is always at the bounds, except for
certain switching times where it switches from one bound to the other. This type of
control is called bang-bang control and is fully characterized by the switch times
which are therefore the only variables that need to be optimised. Assuming the
number of switches to be finite, again the control is finite-dimensional.

In the case of digital optimal control problems the sampling instants tk, k = 0,1,.. are
a-priori known. When applying direct methods for optimal we are also able to vary
these sampling instants during the optimisation, to try to find a so called optimal
sampling scheme, where the number of sampling instants is fixed but their values are
free. Although this is uncommon in the control literature, people who solved optimal
control problems by means of GA's, on several occasions, have done just this. Clearly
optimising both the sampling scheme and the control significantly complicates the
nature of the optimal control problem. In terms of control parameterisation,
optimising the sampling scheme may be viewed as a special case of optimising the
control parameterisation.

Table 1 presents an overview of different types of GA's that have been applied to
solve the different types of optimal control problems mentioned above. In this table
we distinguish CT referring to continuous-time optimal control problems, DT

17

referring to discrete-time optimal control problems. SGA stand for Simple Genetic
Algorithm, GENOCOP for GEnetic algorithm for Numerical Optimization for
Constrained Problems, BGA for Breeder Genetic Algorithm, DE for Differential
Evolution, ES for Evolution Strategy, GAs for Genetic Algorithms, and EP-SS for
Evolutionary Program, with state-space representation.

This survey follows the information summarized in table 1. In section 2.1.3
Evolutionary Algorithms with binary representation are considered while chapter
2.1.4 considers genetic algorithms with floating-point representation. In section 2.1.5
Evolution Strategies are considered and finally in section 2.1.6 Differential Evolution
algorithms. Instead of providing a detailed description of the evolutionary operators of
each algorithm a general description is given together with possible advantageous and
drawbacks.

Table 1. Evolutionary algorithms and types of optimal control problems
GAs

ES

DE

Binary

Floating­
point

Bang-Bang optimal control
SGA

Seywaldetal. 1995
DT
GENOCOP
Michalewicz
1994

DT
Modified ES
Hashemetal. 1998
CT
Optimal time location
DAE
DE/best/2/bin
Wang & Chiou, 1997

DT &
CT
BGA
Dakev
et al.
1995

CT singular optimal control
SGA

Yamashita & Shima, 1997
CT
EP-
SS
Smith
1995

CT with
changing
controls
EP
Bobbin
1997

CT
Multipopulation
BGAs
Polheim &
Heibner 1996

DT&CT
Modified ES
Pham, 1998
CT
Modified DE
Leeetal. 1999

CT optimal control
SGA

Leeetal. 1997
CT
singular
smoother
GENOCOP
Roubus et
al. 1999

CT
Initial

costates
SGA
Sim et
al.,
2000

CT
Multi-population ES
Polheim & Heibner, 1997
CT
Hybrid DE
Chiou etal. 1999

SGA : Simple Genetic Algorithm,GENOCOP : GEnetic algorithm for Numerical Optimization for

Constrained Problems, BGA: Breeder Genetic Algorithm, DE: Differential Evolution, ES: Evolution

Strategy, GAs: Genetic Algorithms, EP-SS: Evolutionary Program, with state-space representation.

2.1.3 Genetic Algorithms with binary representation in optimal control

A genetic algorithm with binary individuals (see chapter 1) was applied to solve
optimal control problems [3] in which the cost functional is given by:
j = Kx(tf\tf) (l)

The dynamic system is linear in the controls,

x(t) = a(x(t), t) + £ bs (x(t), t)ut (0

with initial condition

-H'o) ~ xo

Terminal state constraints are represented by,
yr(x(tf),tf) = 0

and the control constraints by
a,.(()e[0,l];i = l,..,m

(2)

(3a)

(3b)

(4)

The final time tf is free. According to optimal control theory the optimal control is

bang-bang. Therefore one bit (0 or 1) of each individual was used to represent each
control parameter. Additional bits were used to represent the unknown final time. The
genetic algorithm was only applied to generate a solution by which a subsequent
gradient method was initialised. Although knowing the bang-bang structure only
switching times need to be optimised, in this paper the authors chose to use a
piecewise constant approximation (equation 1.3.) of the control in conjunction with
time-scaling to accommodate for the free final time.

A binary genetic algorithm was applied to solve an optimal control problem with
singular arcs, terminal state constraints and free final time [4], The mathematical
description is given by equations (l)-(3). The control constraints are more
complicated in this case,

" y - W ' p K y W ^ u . W)) (5)

The time interval t e [0,tf] was scaled to t e [0,1] and the control inputs u(t) to the
interval [0,1]. Then, they were approximated by means of cubic Splines functions that
used a minimum number of bits. A long string of bits was used to represent multi-
input systems. Auxiliary cost functions and associated Lagrange multipliers were
added to the individuals. Although in this way singular optimal control problems can
be handled two important drawbacks remain: the inherent limitations of a string of
bits to accurately represent variables and the poor efficiency of a simple genetic
algorithm.

A binary genetic algorithm combined with heuristic constraints for the controls was
applied to solve a time-optimal control problem of a continuous co-polymerisation
reactor [5]. The continuous time optimal control problem is given by equations (1.1)
and (1.2) as specified in chapter 1. However, the controls are constrained
w <u(t)<u (6)

and the final time (tf)is free. A piecewise constant control parameterisation was used
in conjunction with time-scaling to accommodate for the free final time. The vector
u = [u\,...,u",...,u\,...,u"m] containing all the control parameters was represented by a
long binary string. In order to alleviate the computational load demanded by the GA, a
two level hierarchical time-optimal control was implemented. At the highest level, an
upper bound for the transition time (tf) and steady state control inputs (uiss) were

calculated. At the lower level, the optimal control inputs and the minimum transition
time were found using the steady state control from the highest level and a heuristic
rule that reduces the range of control inputs. Two types of computations were
performed. One in which the values of tk, k = 0,\,..,N, apart from time-scaling, are

fixed and one in which they are free to be able to exactly compute the switching
times. Regarding efficiency, the number of function evaluations required by the GA
without the heuristic rule turned out to be less efficient than Iterative Dynamic
Programming, but the GA using the heuristic rule clearly outperformed IDP. The
main drawback of this approach is the low efficiency associated with a binary GA.

2.1.4 Genetic Algorithms with floating-point individuals in optimal control

19

Michalewicz [6, 7] designed and applied genetic algorithms with a floating-point
representation of the individuals and specialized operators to solve the linear-
quadratic problem of the discrete-time scalar system,
xk+l = axk +buk, k = \,...,N-\ (7)
with the quadratic performance index,

N-l

J^qxl+Y.^xl+rul) (8)
t=o

A discrete-time optimal control problem for the same scalar system with a non-
quadratic performance index and an additional equality constraint was also solved.
Finally, also a discrete-time optimal control problem where the system is second order
and the performance index quadratic was solved.

The evolutionary algorithm termed GENOCOP in chapter 1 was evaluated against a
Simple Genetic Algorithm (SGA with binary individuals) in solving the above-
mentioned problems. GENOCOP was more efficient than SGA by several orders of
magnitude. This is due to a more appropriate representation of the problem and the
use of specialized evolutionary operators. Successive extensions of GENOCOP
(GENOCOP-II, GENOCOP-III) confirmed that GENOCOP is one of the most
efficient evolutionary algorithms. GENOCOP's main disadvantage is its large number
of operators and algorithm parameters that a user has to specify before solving a
particular optimal control problem.

An evolutionary program was proposed to solve continuous time optimal control
problems, with constraints for the control inputs and fixed or free final time [8]. This
approach uses a so-called state-space representation of the individuals (which is
something else then a state-space realization of a system). The optimisation performed
by this algorithm in addition to optimising the control approximated by splines and
the time nodes tk,k = 0,l,..,N also optimises the number of time nodes N. It is

argued that by optimising the time nodes and their number the algorithm is able to
concentrate on areas were the control changes rapidly. This would allow for instance
the exact solution of bang-bang optimal control problems. In this way, a better
performance can be obtained by optimising the time nodes and their number.
Accordingly the individual's representation several evolutionary operators were
proposed: random, perturbation, simple crossover and arithmetic crossover (blend).
In a subsequent paper [9] the approach was extended to solve constrained optimal
control problems using penalty functions with time-varying coefficients. Although
this evolutionary program worked well on the problems presented in the paper, its
main limitation is that the number of the time nodes TV may become very large or
very small. The associated solutions, in general, are undesired.

A general approach to solve optimal control problems with general constraints by
genetic algorithms with either binary or floating-point representation was proposed
recently [10, 11]. The performance index is given by:
J = <l>(x(tf)) (9)

subjected to the system dynamics:

x = f(x,u,p,t), x(to) = x0 (10)

20

and general equality and inequality constraints represented by,
g(x(t),u(t),p,t) = 0 (11)
h(x(t),u(t),p,t)<0 (12)

" , , m , „ ^ , (0^ , m a * (13)

In equation (9)-(12) p are the parameters of the dynamic system. The proposed
evolutionary operators are those contained in the Genetic Algorithm Toolbox for use
with Matlab [12]. Basically, this implementation follows the Breeder Genetic
algorithm [13]. However, an important characteristic is the use of sub-populations
with several topologies, which is argued, can improve the quality of the search and
alleviate the high computational load. The main disadvantage of this approach is the
lack of efficiency associated with the Breeder Genetic Algorithm, which is known
nowadays to be efficient only in solving decomposable optimisation problems [14].

A method for the optimisation of dynamic processes by means of genetic algorithms
with an integer-valued representation of the chromosomes was reported recently [15].
The controls were approximated by piecewise linear functions. Several optimal
control problems with fixed final time and control constraints from bioengineering
were solved. The genetic algorithm used a relatively small population of individuals.
A so called elitist selection strategy with the roulette-wheel method was applied to
select four individuals, which replace the worst individuals in the population.
Classical crossover and mutation operators were used with a small probability of
mutation and a high probability of crossover. The main drawback of this approach is
the extensive tuning of algorithm parameters that is required by the algorithm. Also
instead of an integer-valued representation a floating-point representation seems much
more appropriate for solving optimal control problems.

The application of Evolutionary Algorithms to solve an optimal control problem with
a control that can only take on certain discrete values and a cost associated to each
switching time was reported lately [16]. This is a mixed continuous and discrete-time
optimisation problem which is complex and non-convex. The dynamic system is
described by,
x(t) = /WO, "(0), x(t0) = x0 (14)
where x(t) eR", u{t) c U c T .

In the case of a piecewise constant control function u(t), the optimal control problem
is to find the sequences tt, u(tt), i - 0,1,...,n -1 where t, < tM, i = 0,1,...,n -1 which
minimise the cost function:

min ftx{tf)) + £>•£ max|w, (tM) - Uj (f,)| (15)

where D is a constant matrix.

An individual within the algorithm has a variable length determined by the number of
control changes (switching times). Given the cost on switching, an individual will not
continue growing. Based on the algorithm representation the following evolutionary
operators were proposed: uniform-based crossover, mutation, blend, and insertion
mutation.

21

The combination of a genetic algorithm using individuals with a floating-point
representation and a shooting method was proposed recently to solve optimal control
problems with terminal state constraints and fixed or free final time [17]. In the latter
case time-scaling is applied. Basically, the GA was applied to seek optimal initial
values of the co-states. The fitness function consisted of the Hamiltonian of the
optimal control problem. The genetic algorithm only computes a few generations to
obtain an estimate of the final time and the initial values of the co-states needed to
initialise the shooting method with. If the solution is not satisfactory the procedure is
repeated.

An evolutionary approach based on the Breeder Genetic Algorithm was applied to
solve a continuous time optimal control concerning greenhouse climate [18]. An
important property of the evolutionary algorithm was the use of several sub-
populations instead of just one population. In a subsequent paper, a comparison of the
performance of two Evolutionary Algorithms on this problem was presented [19].
Both algorithms were able to solve the problem. The best result was obtained by
combining them. The main limitation of this approach is the use of the Breeder
Genetic Algorithm, which is not very efficient, although the use of sub-populations
seems to improve the efficiency considerably.

Recently, the GENOCOP algorithm was extended with filter operators in order to
allow for the calculation of smoother optimal control trajectories [20]. With this
algorithm some optimal control problems having singular instead of bang-bang
solutions were solved. The following two operators realize the smoothing. Firstly
given an individual
^ ^ (X! , . . . , ^ , ^ , , . . . , ^) (16)

two neighbouring genes (xk and xM) are selected randomly and both are replaced by

the average value (xk +xk+1)/2 . Secondly a least squares estimation of a line through

five successive points (xk_2,...xk+2) is performed. Then, a new individual

x ~ Kxlf'yXk-\'Xk'Xk+l'-"'Xg) *')

is generated were xt_,, xk, and xk+1 are replaced by the corresponding estimates on
the line.

2.1.5 Evolution Strategies in optimal control problems

An Evolutionary Algorithm inspired by ES has been proposed recently [21]. It has
been applied to solve continuous and discrete-time optimal control problems with
fixed final time and control constraints. A piece-wise constant approximation for the
controls was applied. Floating-point numbers represent the individuals in the
population. Several specialised evolutionary operators were designed to improve the
local search capabilities of this algorithm. The recombination operators were
crossover, interpolation and extrapolation. The mutation operators were mutation and
creep, which used a Gaussian distribution, and also shift, smoothing and swap. The
algorithm uses small population sizes (2, 4 and 8 individuals), which account for the
observed high efficiency. Although the algorithm has been used successfully to solve
some practical problems from chemical engineering the number of evolutionary
operators and the associated algorithm parameters that need to be tuned present a
serious drawback.

22

nxxrtx

0

0"

0

Evolution Strategies (ju + X) -ES improved with an arithmetical crossover operator,
having sub-populations, and a time-variant mutation operator, were used to solve two
types of discrete-time optimal control problems [22]. These two types of problems are
the linear quadratic problem and the push-cart discrete-time control problem. On these
examples this algorithm outperformed a classical Evolution Strategy in terms of both
convergence and accuracy of the solution.

2.1.6 Differential Evolution in optimal control problems

To generate initial starting points for an SQP algorithm Wang and Chiou [23] have
applied the Differential Evolution algorithm DE/best/2/bin to solve an optimal control
concerning a differential-algebraic system. This dynamic system is described by

dx
E— = f(x(t),z(t),u(t),t)

at

for te[0,tf], where xeR"-, zeR"', ueRm, f = \f\ fl], and E =

The final time tf can be fixed or free. Here the vectors x and z contain the dynamic

states and steady-state variables respectively. A special feature of this optimal control
problem is that two of the initial state variables xx (o), x2 (o) of the initial state vector
x(0) = x0 are optimised as well. The optimal control problem then is to find a control
function u(t) e Rm and the two initial values x,(0),x2(0) which minimises
J = <t>(x(tf),p,tf) (19)

subjected to the dynamic equations (17) and the additional constraints:
h(x(t), z(t), u(t), p,t) = 0 (20)
g(x(t),z(t),u(t),P,t)<0 (21)
In addition the control variables and xl(0),x2(o) are bounded:
u < u(t) < u (22)

x, . <x,(0)<x. , JC, <xJ0)<x7 (23)
lmin IV / lmax ' 2mm 2 \ / 2max V '

A piecewise constant control parameterisation is used and the time nodes
tk, k = 0,1,..,N, which determine the parameterisation, are optimised as well but there
number N is fixed a-priori. Time-scaling is used to accommodate for a free final
time. In order to deal with the constraints (20) and (21) penalty functions were used.

Lee et al. [24], proposed a modified Differential Evolution algorithm to solve the
time-optimal control problem described in [5]. The DE applied is the one in which the
mutated vector combines each target vector with the difference between two randomly
selected vectors plus the difference between the best current solution in the population
and the target vector. So the mutation operator is described by:
a\ =ai+Fx (abesl + a,., - at - 5^); / = 1,..., // (24)

The modification introduced, basically adds to the main loop involved in DE
algorithm a secondary loop, in such a way that after a trial vector a" was created by
the mutation equation (24) and binomial crossover (see section 1.2.1.3 in chapter 1) if

23

the condition 0(5,") < 0(5,) is satisfied then a 'local search' is implemented as
follows:

do

a\ = a,. + F x (abesl + ar[- ai -ah);i = 1,..., ft

„ a^ if randb(j) < CR or j = rnbr(i) .
a . = , ! = 1,2,...,//}, j = 1,2,...,»}

ay, z/ randb(j) > CR and j * rnbr(i)

while <D(3,") < ®(a*)

where £ is a coefficient that allows to increase the value of the mutation parameter
(F) and the vectors an dbesl, 5r and ar are the same vectors used at the main loop.

Although improvements regarding function evaluations were reported this use of the
algorithm parameter (F) seems to contradict the role it is known to play in DE
algorithms since by increasing the value of F the global search capability of DE is
increased instead of local search potential.

A modified Differential Evolution algorithm was proposed lately [25] to resolve
optimal control problems with decision parameters and general constraints. The
dynamic system is described by:

x = f{x(t), u(t), p,t),te[0,tf] (25)

where x(t) e R" are the states, u(t) e Rm are the control inputs, and p eR9 is a
vector of decision parameters. The initial conditions x(0) = x0 are given or can be
considered as decision parameters. The constraints are:
hk(x(t),u(t),p,t) = 0, k = \,...,ne, ne<n (26)

gk{x{t),u{t\p,t)<0,k = \,...,nd (27)
Additionally control and decision parameter constraints may be included:
A m i „ ^ A ^ , „ , * ' = U,.,<? (28)

A piecewise constant control parameterisation is used in which the time nodes
tk, k = 0,l,..,N and their number N are a-priori fixed. Two new evolutionary

operators that supposedly make DE algorithms more efficient were proposed and
tested using the DE/best/2/bin algorithm. The acceleration operator was introduced to
increase the speed of convergence of the algorithm. It uses the best current solution in
the population to start a local search as follows:

-, () = | « te,(g) if J(abesl(g)<J(abesl(g-^) (2 9)

l<3'testis)~cc\U otherwise
where v / is the gradient of the objective function calculated by finite differences, and
g denotes the current generation. A migration operator is proposed to avoid
convergence to local minima caused by the previous operator, which is applied only if
the diversity of the population is less than a specified tolerance. In that situation
perturbing the best current solution present in the population generates new
individuals:

24

«, (g) = abest (g) + N(0, tr),i = \,...,fi,i* best (30)
where N(0,a) denotes a vector of independent random Gaussian numbers with mean
zero and standard deviation a.

Even though this approach worked well compared to a classical genetic algorithm a
detailed study of its performance compared to DE algorithms has not been made yet.
Furthermore this hybrid algorithm is considerably more complex, since it has more
algorithm parameters than a classical DE. Nonetheless the proposed operator to
accelerate the convergence of DE algorithms deserves additional investigation. This
investigation should also include the influence of the common algorithm parameters
in DE (population size, mutation parameter) on the convergence and premature
convergence.

2.1.7 Conclusions.

From the previous review it is clear that mainly binary-coded genetic algorithms and
real-valued evolutionary algorithms have been applied to calculate solutions of
optimal control problems while Evolution Strategies and Differential Evolution
algorithms only rarely have been applied. In several references using GA's the control
parameterisation was not fixed a-priori but was itself part of the optimisation. In terms
of digital control problems, where the control is piecewise constant, this can be
interpreted as optimising the sampling scheme. Optimising the control
parameterisation however highly complicates the optimal control problem, which
enlarges the probability of finding undesired or local solutions, despite the global
nature of GA's. Roughly speaking GA's allow optimising almost anything at the same
time. This possibility carries the danger of not carefully selecting, and judging
mathematically, the nature and meaningfulness of the problem.

To the best knowledge of the author, the issue of efficiency of Evolutionary
Algorithms in solving optimal control problems has been analysed only superficially
in the literature. The same holds for the potential advantages of Evolutionary
Algorithms to solve multi-modal optimal control problems.

The aim of this thesis therefore is to investigate and search for efficient GA's to solve
multi-modal optimal control problems. An important additional requirement for the
practical application of these algorithms is that they should require no algorithm
parameter tuning, or only a little. Algorithms with less algorithm parameters should
therefore be preferred and guidelines for the choice algorithm parameters and the
possible development of automatic algorithm parameter tuning strategies are
important issues.

2.1.8 References.

[1] Van Willigenburg L. G. and De Koning W.L., The digital optimal regulator and
tracker for stochastic time-varying systems, Int. J. Systems Sci. 1992, Vol. 23, No. 12,
2309-2322.

25

[2] Van Willigenburg L. G. and De Koning W.L., Derivation and computation of the
digital LQG regulator and tracker for time varying systems in the case of
asynchronous and aperiodic sampling, Control-Theory and Advanced Technology,
Vol. 10, No. 4, Part. 5, 1995, 2083-2098.

[3] Seywald H. and Kumar R.R. Genetic Algorithm Approach for Optimal Control
Problems with Linearly Appearing Controls, Journal of Guidance, Control and
DynamicsWol 18, No. 1, January-February 1995, 177-182.

[4] Yamashita Y. and Shima M., Numerical computational method using genetic
algorithm for the optimal control problem with terminal constraints and free
parameters, Nonlinear Analysis, Theory, Methods & Applications, Vol. 30 No. 4,
pp. 2285-2290, 1997

[5] Lee M.H., Han Ch., Chang, K.S., Hierarchical time-optimal control of a
continuous co-polymerization reactor during start-up or grade change operation
using genetic algorithms, Computers Chem. Engng. Vol 21, Suppl., pp SI 037-
S1042, 1997.

[6] Michalewicz Z., Janikov C.Z., Krawczyk J.B., A modified Genetic Algorithm for
optimal control problems, Computers, Math. Applic. Vol. 23, No. 12, pp. 83-94,
1992.

[7] Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs,
Springer-Verlag, Berlin, 1996.

[8] Smith S., An Evolutionary Program for a Class of Continuous Optimal Control
Problems, Proceedings of the IEEE Conference on Evolutionary Computation,
Vol. 1 1995, IEEE, Piscataway, NJ, USA, 418-422.

[9] Smith S. and Stonier R., Applying Evolution Program Techniques to Constrained
Continuous Optimal Control Problems, Proceedings of the IEEE Conference on
Evolutionary-Computation, 1996, IEEE, Piscataway, NJ, USA, 285-290.

[10] Dakev N.V., Chipperfield A.J., Fleming P.J., A General approach for solving
optimal control problems using optimization techniques, Proceedings of the 1995
IEEE International Conference on Systems, Man and Cybernetics, Part 5 (of 5),
Vancouver, BC, Can, 4503-4508.

[11] Dakev N.V., Chipperfield A.J., Whidborne J.F., Fleming P.J., An Evolutionary
Algorithm Approach for Solving Optimal Control Problems, Proceedings of the
IT Triennial IFAC World Congress, San Francisco, USA, 1996, pp 321-326.

[12]. Chipperfield A., Flemming P, Pohlheim H., Fonseca, C, Genetic Algorithm
Toolbox for use with MATLAB, Department of Automatic Control and Systems
Engineering, University of Sheffield, User's guide, version 1.2,1994.

[13] Muhlenbein, H. Schlierkamp-Voosen, D., Predictive models for the Breeder
Genetic Algorithm: I. Continuous Parameter Optimization, Evolutionary
Computation 7(1), 1993, 25-49.

26

[14] Salomon R., Re-evaluating genetic algorithm performance under coordinate
rotation of benchmark functions. A survey of some theoretical and practical aspects
of genetic algorithms, BioSystems 39 (1996), 263-278

[15] de Andres-Toro B. Giron-Sierra J.M., Lopez-Orozco J.A., A genetic
optimisation method for dynamic processes, Proceedings of the U
IF AC World Congress, Beijing P.R. China, 1999, 373-378.

[16] Bobbin J. and Yao X., Solving Optimal Control Problems with a cost on
Changing Control by Evolutionary Algorithms, Proceedings of the 1997 IEEE
International Conference on Evolutionary Computation, ICEC'97, Indianapolis,
IN, USA, 331-336.

[17] Sim Y.C., Leng S.B., Subramaniam V., A combined genetic algorithms-shooting
method approach to solving optimal control problems, International Journal of
Systems Science, volume 31, number 1, 2000, 83-89.

[18] Pohlheim H., HeiBner A., Optimal control of greenhouse climate using Genetic
Algorithms, MENDEL'96 -2nd International Conference on Genetic Algorithms,
Brno Czech Republik, 112-119, 1996.

[19] Pohlheim H., Heifiner A., Optimal Control of Greenhouse Climate Using a Short
Time Climate Model and Evolutionary Algorithms, Preprints Mathematical and
control applications in agriculture and horticulture, Edited by A Munack and H.J.
Tantau, IF AC Workshop, Hannover, Germany 28 September - 2 October, 1997,
113-118.

[20] Roubos J.A., Van Straten G., Van Boxtel A.J.B., An evolutionary strategy for
fed-batch bioreactor optimization: concepts and performance, Journal of
Biotechnology 67 (1999), 173-187.

[21] Pham Q. T., Dynamic optimization of chemical engineering processes by an
evolutionary method, Computers Chem. Engng. Vol. 22, No. 7-8, 1089-1097,
1998.

[22] Hashem M.M.A., Watanabe K., Izumi K., A new Evolution Strategy and Its
Application to Solving Optimal Control Problems, JSME International Journal,
Series C, Vol. 41, No. 3 1998, 406-412.

[23] Wang F.S., Chiou J.P., Optimal control and optimal time location problems of
differential-algebraic systems by differential evolution, Ind. Eng. Chem. Res. 1997,
36, 5348-5357.

[24] Lee, M.H., Han Ch., Chang, K S., Dynamic optimisation of continuous polymer
reactor using a modified differential evolution algorithm, Ind. Eng. Chem. Res.
1999,38,4825-4831.

[25] Chiou J.P., Wang F.S. Hybrid method of evolutionary algorithms for static and

27

dynamic optimization problems with application to a fed-batch fermentation
process, Computers and Chemical Engineering 23 (1999) 1277-1291.

28

2.2. Evolutionary algorithms for optimal control of chemical
processes+

2.2.1 Abstract

Because many approaches to Optimal Control problems may find local solutions,
global optimisation methods are of interest. In the past, global optimisation methods
such as Iterative Dynamic Programming, Stochastic Algorithms and Genetic
Algorithms have been used to solve dynamic optimisation problems in chemical
engineering. Recently, Evolutionary Algorithms have been proposed to solve global
optimisation problems and there is an increasing interest to use them in the solution of
high-dimensional, non-linear, multivariable and multi-modal dynamic optimisation
problems. In this work an Evolutionary Algorithm, which uses a real valued
chromosomes representation and specialised evolutionary operators is studied by
solving some dynamic optimisation problems taken from the chemical engineering
literature. Results show that this approach is suitable and can have some advantages
over other approaches used by researchers so far.

Keywords: Chemical processes, Evolutionary Algorithms, Optimal Control,
Optimization.

2.2.2 Introduction

Numerical methods for the solution of optimal control problems can be roughly
divided in two groups: indirect and direct methods [1,2]. The first group is based on
finding a solution that satisfies the Pontryagin's maximum principle or the related
first-order necessary optimality conditions through solving a two-point boundary-
value problem [3]. These methods may find local solutions. Direct methods are based
on an approximation of the infinite dimensional optimal control problem by a finite
dimensional optimisation problem, or non-linear programming (NLP) problem. This
transformation can be done by either control and state parameterisation, or only
control vector parameterisation [4]. The parameterisation may introduce additional
local minima [1]. Gradient-based optimisation techniques may converge to a local
optimum [5]. To surmount this problem, global optimisation algorithms can be used,
for instance Iterative Dynamic Programming [6], Stochastic Algorithms [7], and
Evolutionary Algorithms [5, 8].

In this research, the use of optimisation algorithms inspired by natural evolution is
investigated and their performance is compared with solutions obtained using well-
known approaches in chemical engineering. Firstly, a general description of a class of
optimal control problems we are interested in is given. Next, a general description of
an Evolutionary Algorithm is provided, and the properties of the approach proposed
here are outlined. Finally, some examples of optimal control of chemical processes
are solved to illustrate how this paradigm can be applied. The results are compared

+ Published by I.L. Lopez Cruz, L.G. Van Willigenburg and G. Van Straten in Proceedings of the
IASTED International Conference Control and Applications (CA'2000), May 24-27, Cancun, Mexico,
pp.155-161.

29

with Sequential Quadratic Programming (SQP) algorithms, Iterative Dynamic
Programming (IDP) and Stochastic Algorithms.

2.2.3 The optimal control problem

We consider the class of optimal control problems in which the plant is described by
the non-linear time-varying dynamic equation

x(t) = f(x(t)Mt),0 (1)
where x(t) e 9T is the state and u(t) e 5R"1 is the control. The control inputs are
constrained,
al(t)<u,(t)£fil(t),i = ia,..,m, (2)
where a,(r) and pt(t) are known time functions. Furthermore,
x(0) = x0, (3)
is the initial condition. The performance index associated with the system is,

'/
J (u(t)) = 0(x(tf),tf)+ JL(x(t), u(t), t)dt, (4)

0

where [0, tf] is the interval of interest. The final time tf is fixed. The optimal control
problem is to find the input u (t) on the time interval [0, tf] that drives the plant along
the trajectory x (t) such that the cost function J(u(t)), (equation (4)) is minimised [3,
9]. The previous so called Bolza formulation of an optimal control problem can be,
conveniently, rewritten as the Mayer formulation that yields a simpler expression that
makes it more suitable for a numerical solution. By introducing a new state variable,

x„+i(t) = L(x(t\u{t),t), *„+1(0) = 0, (5)

equation (1) is re-written as,

x'(t) = f(x'(t),u(t),t), (6)

where x'(t) e 5R"+1 and the performance index is converted to:

J(u(t)) = f (x'(tf \tf) = </>(x{tf),tf) + xn+l (tf), (7)

where,

^ ':9T+1->9?. (8)

In order to use direct methods to solve this class of optimal control problems, the
continuous problem has to be transformed into a non-linear programming problem or
parameter optimisation problem. Let the time interval 10 [to, tj\ be discretized using N
control time nodes tt such that: 0 = t0 <t, <,...,< tN =tf. In each of these time

intervals the control u{t) is approximated by a polynomial in t. The control time
nodes and the coefficients of the polynomials then uniquely define the control. For
instance, using a piecewise constant approximation the unknown control input u{t) is
determined by,

30

u(t) = u(tk)=uk,te [tk,tk+1),k = 0,1,..,./V-1
So the control is fully determined by the vector,
~ \ T T T Y
U = |W 0 W, . . M J V . J

(9)

(10)

Denote by ui the il element of u . Now, with a guess value for the control history u
and using the appropriate piecewise polynomial approximation it is possible to
integrate the dynamic equation (eqn 6). A state trajectory x\u,t)is obtained, from
which in turn, the parameterised performance index J(u) (eqn 7) can be calculated. In
this way, the Non-linear Programming problem approximation for the Optimal
Control Problem defined before can be written as follows,

min J{u) (11)

subject to,

«™w ^ "m*+, ̂ A t* . * = 0,1,..,N- \,i = 1,2,..,m
where
«m*+, = max(a,.(')), t e [tk,tM\ k = 0,1,..,N -1, i = 1,2,..,m

Pmk+i = mm(fi,(*)\ te[tk,tk+l),k = 0,1,..,N-l,i = 1,2,..,m

(12)

(13)

(14)

2.2.4 Evolutionary Algorithms

A generic description of an Evolutionary Algorithm is presented in figure 1 [10, 11].
An Evolutionary Algorithm is a stochastic search method, which maintains a

population/3^) := {a, (t),..., aM{t)} of individuals (chromosomes) aiel, at generation
t, where / is a space of individuals, and /i is the population size. Each individual
represents a potential solution and it is implemented as some generic data structure.
By means of the manipulation of a family of solutions, an Evolutionary Algorithm
implements a survival of the fittest strategy in order to try to find better solutions.

Each individual is evaluated by a
fitness function O : / —> 9?, and real
values are assigned to each potential
solution that is a measure of how
individuals perform in the problem
domain. Next, an iterative process
starts in which a set of evolutionary
operators [12] is applied to the
population in order to generate new
individuals. From a set

Procedure Evolutionary Algorithm
t:=0;

Generate P(0) := {^(0),. ,",,(0)} e / " ;

Evaluate P(0): {O(a1(0)),...,O(aA,(0))};

While (i(P(t))*true) do

Recombine P\t) := r@r(P(t));

Mutate P"(t):=m®m(P\t));

Evaluate P\t): {<D(<(/)),...,O(al(0)};

Select P(t + \):=s®s{P"(t)KjQ);

t-t+1;

End

Figure 1. Structure of an Evolutionary Algorithm.

31

{w&l,...,w&z \w®, :lx -+I*}v{w®0:I" ^>IX} of probabilistic evolutionary
wo, operators (for instance: crossover, mutation), each one specified by parameters
given in the sets @. c 5R, some operators are applied to the population and a new
evaluation of its fitness is calculated. A recombination (crossover) operator
r&r :I''^IX and a mutation operator m®m :Ix^>I:i are applied to the population.
A selection operator s 8 1 : (/ i u r , 1) - » r which may modify the number of
individuals from A to A+/i, is applied as well, where l , / / e N , and // denotes the
number of parent individuals and A the number of offspring. As before a set of
parameters ©s may be used by the selection operator, and Q c P(t) denotes an

additional set of individuals. r.I"-+ {true, false] is the termination criterion for the
evolutionary algorithm. After a number of generations, it is expected that the best
individual of the population represents a near-optimum solution.

Three main streams of evolutionary algorithms can be identified: Genetic Algorithms
[13], Evolution Strategies [14], and Evolutionary Programming [15]. They have some
differences but also they share a number of similarities. Moreover, it is clear that for
the last several years the boundaries between these approaches have broken down to
some extend [16]. Recently, researchers have started to apply this paradigm to solve
optimal control problems in chemical engineering and in bioprocessing. A genetic
algorithm was used to solve a hierarchical time-optimal control of a continuous co-
polymerisation reactor during start-up or grade change operation [17]. Pham [8]
investigated the performance of an evolutionary method for the dynamic optimisation
of several Continuous Stirred Tank Reactor (CSTRs) problems. The application of a
genetic dynamic optimisation method to solve several problems in bioprocessing is
given in [18]. The performance of an evolutionary strategy for fed-batch bioreactor
optimisation has been investigated in [19].

The evolutionary algorithms used during this research have the following specific
properties: the chromosome representation is a real-valued vector where each real
number represents the value of an unknown parameter («,) of the approximated
control input u(t). The starting values for the parameters are calculated randomly
inside the boundaries of the control-input (eqn 2). In order to represent a multi-input
control system, a long chromosome of real-values was created. This has several
advantages over the classical binary code of a canonical genetic algorithm [11]. The
evaluation of the population consists of the integration of the set of dynamic equations
(eqn 6) in the specified time interval, using the values of the parameterised control
inputs and the calculation of the performance index (eqn 7). Our solution uses a C-
MEX file s-function and the ODE45 integration routine available in MATLAB to
integrate the dynamic equations (eqn 6).

A brief description of the evolutionary operators used for this work is provided next.
Additional information is available elsewhere [11, 20]. Three recombination
(crossover) operators were used: arithmetic, heuristic and simple crossover. Let A(t)
and B(t) be two n-dimensional row vectors denoting parents from the population P(t).
The arithmetic crossover operator generates two linear combinations of the parent's
solutions:

32

A'(t) = rA(t) + (l-r)B(t) (15)

B'(t) = (l-r)A(t) + rB'(t) (16)
where r is a random number from a uniform distribution from 0 to 1.

The heuristic crossover operator uses the individual's fitness information to generate a
new solution:

A'(t) = A(t) + r(A(t) - B{t)) • if • 0(A(t)) < 0 (5(0) (17)
and A(t) is feasible according to:

feasibility A'(t) = \ ' ' ' ' \ (18)
[0, otherwise J

If after a number of attempts no new feasible solution is found, the operator produces
no offspring

A'(t) = A(t) (19)

with a,, |3, defining the lower and upper bounds respectively for each variable i.

The simple crossover operator generates a random number r from a uniform
distribution from 1 to m and creates two new individuals according to:

f a,,if -i< r]
A'(t) = a; = \ "J . (20)

[o,, otherwise J

BV)=b;=\b»if
th

i<r\ (2D
[an otherwise j

Four mutation operators also were used, namely: boundary, multi-non-uniform, non­
uniform and uniform mutation. Boundary mutation randomly selects one variable j
and sets it equal to either its lower or upper bound, where r is a random number from
a uniform distribution from 0 to 1.

A\t) = a[

ai,ifi = j,r<0.5

p„if-i = j,r> 0.5
a notherwise

(22)

Uniform mutation randomly selects one variable j and sets it equal to an uniform
random number U(a;, Pi):

At) = a,=< , \ (23)
[anotherwise J

33

Non-uniform mutation randomly select one variable j and sets it equal to an non­
uniform random number:

A(t) = a\ =

fl(+(fl-a,)s(0-»y-1<0.5
at - (a, + ai)g(t) • if-ri> 0.5,

anotherwise

where g(t) = r2(l- t
)

omax /

(24)

(25)

ri and r2 are uniform random numbers between (0,1), t is the current generation
number of the evolutionary algorithm and gmax is the maximum number of
generations, b is a shape parameter. The multi-non-uniform mutation operator applies
a non-uniform mutation operator to all the variables in the parent A(t).

The normalised geometric ranking operator proposed in [21] was used for the
selection of individuals for the next generation. It is a ranking selection method that
calculates the probability of an individual to be selected as:

p(i) = q'(l-qy-l,q' q

i - (i - ?) "
(26)

where q is the probability of selecting the best individual (generation gap), r is the
rank of the individual, // is the population size. The software implementation for the
MATLAB environment, Genetic Algorithms for Optimization Toolbox (GAOT) [20]
was used for all our investigations.

2.2.5 Case studies and results

2.2.5.1 High-dimensional non-linear continuous stirred tank reactor

In [6] Luus presents a high-dimensional and non-linear chemical process, which
includes five simultaneous chemical reactions in an isothermal continuous stirred tank
reactor. The system in Mayer form is described by eight differential equations: reactor. The system in Mayer

x\ =u4 -qxx -\1.6xxx2 -23JC1X6M3

xi =H[-qx2 -\1.6xlx1 -146x2x3

Xi = u2 - qxi - l'ix1xl

XA =-qx4 +35.2x,x2 -51.3x4x5

xs =-qx5 +219x2x3 -51.3x4x5

X6 = -qx6 + 102.6x4x5 - 23X,X6H3

X7 = -qx-j + 4 6 X , X 6 M 3

(27)

(28)

(29)

(30)

(31)

(32)

(33)

34

x» = 5.8(4*, - " 4) - 3 . 7 M , -4.1«2 + ?(23x4 +1 lx5 + 28x6 + 35x7) -5wJ -0.099 (34)

where the states denote concentrations,
q{t) = ul{t) + u1{t) + uA{t), (35)
is the total feed rate and 113(1) is the squared root of the light intensity. The time
interval is given: 0 < t < tf = O.2/1, and the initial conditions are:

X(0) = [0.1883,0.2507,0.0467,0.0899,0.1804,0.1394,0.1046,0]7'
With the constraints for the control inputs:

0<w,(0<20

0<w 2 (0<6

0 < K 3 (0 < 4

0 < K 4 (0 < 2 0

(36)

(37)
(38)
(39)
(40)

Thus, the optimal control problems consists in finding the control histories ui(t), U2(t),
U3(t), U4(t) in the specified time interval such that the performance index:

J = xs(tf)

related with the economic profit is maximised.

(41)

zzi :

—| L_ r

In order to solve this problem by means of a direct approach, the time interval was
divided in the same number of intervals used by Luus [6], N=10, when three control
values are taken into account (u4(i)=6.G) and N=l 1 in the case of four control values.
The value of the performance
index obtained by the e

evolutionary algorithm in 3

the first case was J=20.0893
with a population size of 40
individuals and 2000
generations. No >
considerable improvement
was obtained with more
individuals and an increasing
number of generations since •
with a population size of 60
chromosomes and 3000
generations a value of
J=20.0896 was obtained. The F iSu r e 2- Optimal control of a CSTR by EAs and SQP.
solution obtained by Luus [6], using Iterative Dynamic Programming, was J=20.0895.
The best value from several runs (ten) using a SQP-based algorithm (fmincon.m
function from MATLAB's optimisation Toolbox) was 19.6234. The optimal controls
are shown in figure 2. Shapes of the control functions obtained by the Evolutionary
Algorithm are almost equal to those obtained by Luus [6]. For N=40, which is
identical to Luus [6], J=20.0924 was obtained using a population size of 40
individuals and 2000 generations. However, with an increasing number of individuals
(100) and more generations (3000) this value was J=20.0935, against a value of
J=20.0953 obtained by Luus [6].

35

In the case of four controls a value of J=21.7574 was obtained using a population size
of 60 individuals and 3000 generations, against J=21.7572 reported using Iterative
Dynamic Programming. As
expected the SQP algorithm was
unable to approximate the IDP
solution reported previously by f.
Luus [6]. From ten optimisations
its best value was J=20.5105.
Shapes of the controls calculated
by Sequential Quadratic
Programming, the Evolutionary
Algorithm and those reported for
IDP are presented in figure 3. f
We can see that for control U3(t)
and U4(t) the plots of IDP and EAs
completely overlap and tiny

differences are shown in the
case of controls ui(t) and
U3(t). On the other hand the
pattern of the solutions found by the SQP algorithm is completely different.

2.2.5.2 Multimodal continuous stirred tank reactor (CSTR)

The optimal control of a non-linear CSTR with multiple solutions has been studied by
a number of researchers [22, 23]. The CSTR model in Mayer form is given by three
differential equations:

-

— IDP

• 'SCP

\ ^k

6

2

! 1

,..] !....

ft *

, r

?

*• '

— • •

" ' '0.05 "0.1" ' 5.15" 0

251 • 1

20

15

* 10

5

0

,..., j - t

1—zr-ff-*

• > > •

.....

Tine [h] Tine [h]

Figure 3. Optimal control of a CSTR with four controls by
EAs.

25*
xi = -(2 + u)(xl + 0.25) + (x2 + 0.5)exp(-)

xt+2
25*

xi =0 .5-x2 -(x2 +0.5)exp(-)
xl +2

Xi = xl +x2 + 0.1w

(42)

(43)

(44)

with the initial conditions x(0) = [0.09,0.09,0.0]r. The final time tf is 0.78. The
performance index to be minimised is defined as

J = xi(tf) (45)

Luus and Galli [22], and Luus [23] reported a local minimum of J=0.244425 and a
global minimum of J=0.133094 using the Pontryagin's maximum principle. Using
IDP Luus and Galli [22] found the values J=0.24452 and J=0.13336, respectively. To
solve this problem by Evolutionary Algorithms, the control time grid was divided in
the same number of control intervals as used by Luus and Galli [22], N=40 and a
piecewise constant approximation for the control was selected. The chromosomes of
the evolutionary algorithm were codified as real-valued vectors with values inside the
range -10 < u{t) < 10. The population size used was 60 individuals and the number
of generations was 3000, to obtain a value of the performance index J=0.13336.

36

Whatever the starting values for the parameterised control were, the Evolutionary
Algorithm never converged to the local minima. The Evolutionary Algorithm was run
seven times. The same value for the performance index was obtained using a
population of 100 individuals and 3000 generations. The best solution obtained by an
SQP-based algorithm with the same boundaries for the control input was J=0.144028
using a multistart strategy (ten optimisations).

The Nelder-Mead Simplex algorithm (fminsearch.m function of MATLAB's
Optimization Toolbox), which does not use derivatives got the solution J=0.133366 as
a multistart optimisation (ten optimisations) was done. However, both SQP and
Nelder-Mead's algorithms were very sensitive to the initial guesses since they often
converged to the solution around the value J=0.2444, the local minimum. The 30% of
the times the Nelder-Mead algorithm converged to the local minima and this
percentage was even greater '
in the case of the SQP
algorithm (80%). The
control functions obtained
by all three algorithms are
presented in figure 4. It is
almost impossible to
distinguish between the §
plots of the EA and Nelder-
Mead solutions because they
overlap. The control history
obtained when the SQP
algorithm converges to the
local minimum is shown as
well. As done by Luus and
Galli [22] this problem was
also solved with less time
intervals (N=20) by the
Evolutionary approach. In

this case the performance index value was J=0.134155 using 40, 60 and 100 number
of individuals and 3000 generations. The value obtained previously by Luus and Galli
wasJ=0.13416.

Time [sec:

Figure 4. Optimal control of multimodal CSTR using EAs.

2.2.5.3 A non-differentiable system

The optimal control of a non-differentiable system has previously been analysed by
several researchers [7, 23]. A system described by three differential equations is
considered which a rectangular pulse signal is applied.

xi = x2

x2 = —xl —x2+u + d

x3 =5*! +2.5*2+0.5w

(46)

(47)

(48)

37

where d= 100[U(t-0.5)-U(t-0.6)] (49)
The final time considered is tf=2.0 seconds and the initial conditions are:
x(0)=[0 0 Of (50)
The control trajectory minimising the performance index
J = x,(tf) (51)

has to be found.

To use the evolutionary approach for this problem, the time interval was divided in
the same number of subintervals used before by Luus [23], N=40, and a piecewise
constant control was used to approximate the control input. Because the control input
does not have constraints we have to specify some boundaries for the variables of
interest. The chromosomes were codified as real numbers inside the range
- 20 < u(t) < 20. The number of individuals for the evolutionary algorithm was 60,
and the number of generations 1000 to obtain a value of the performance index of
J=58.0927, which is less than
those values reported previously
(J=58.20) by Luus [23] using
Iterative Dynamic Programming
and Banga and Seider [7]
(J=58.13) using their stochastic
optimisation method.

Moreover, a performance f
value of J=58.1194 is
obtained with only 500
generations and a population
size of 60 individuals. As
expected, the SQP-based
algorithms failed completely to
solve this problem. The Nelder-
Mead's simplex algorithm

(function fminsearch.m of
MATLAB's Optimisation
Toolbox) which does not
calculate derivatives was used as well and the best value obtained from several
optimisations (four) was J=58.1057. The calculated control functions, which are very
similar in shape to the ones calculated by Luus and Banga, are presented in figure 5. It
is worthwhile to say that even in the case of a lower number of intervals (N=20) the
Evolutionary Algorithm is able to converge to a very good solution (J=58.1050) but
requiring in this case a population size of 60 individuals and 2000 generations.

Tme[secs]

Figure 5. Optimal control of a non-differentiable system.

2.2.6 Conclusions

The potential advantages of the use of Evolutionary approach to solve a class of
optimal control problems were investigated by solving a high dimensional non-linear,
a multi-modal non-linear and a non-differentiable, dynamic optimisation problem
from chemical engineering literature. The results let us conclude that this approach is
feasible to solve this class of optimal control problems. Moreover, Evolutionary

38

Algorithms seem to be able to always approximate the global optimum where other
methods have difficulties in doing so. Nevertheless, further research is needed in
order to investigate whether this approach is competitive computationally compared
to other global optimisation methods used to solve this kind of problems. Future
extensions of this work will be the solution of optimal control problems with final
state constraints, problems with free final time and optimal control problems with
general state constraints.

2.2.7 References

[I] O. von Stryk and R. Bulirsch, Direct and indirect methods for trajectory
optimization, Annals of Operations Research 37, 1992, 357-373.

[2] S.K. Agrawal and B.C. Fabien, Optimization of Dynamic Systems, Solid
Mechanics and its applications, (Dordrecht, The Netherlands, Kluwer Academic
Publishers, 1999).

[3] A.E. Bryson Jr., Dynamic Optimization, (Menlo Park California: Addison-Wesley
Longman Inc., 1999).

[4] C.J. Goh and K.L. Teo, Control Parametrization: a unified approach to optimal
control problems with general constraints, Automatica Vol. 24, No. 1, 1988, 3-18.

[5] N.V. Dakev, A.J. Chipperfield, J.F. Whidborne, P.J. Flemming, An evolutionary
algorithm approach for solving optimal control problems, 13th Triennial IFAC
World Congress, San Francisco, USA, 1996, 321-326.

[6] R. Luus, Application of dynamic programming to high-dimensional non-linear
optimal control problems, International Journal of Control, 1990, 52, No. 1, 239-
250.

[7] J.R. Banga and W.D. Seider, Global optimization of chemical processes using
stochastic algorithms, in State of the Art in Global Optimization, Floudas C.A. and
Pardalos PM (Eds), 563-583 (Dordrecht: Kluwer Academic Publishers, 1996).

[8] Q.T. Pham, Dynamic optimization of chemical engineering process by an
evolutionary method, Computers and Chemical Engineering, Vol. 22, No. 7-8, ,
1998, 1087-1097.

[9] F.L. Lewis and V.L. Syrmos, Optimal Control, (New York: John Wiley & Sons,
Inc., 1995).

[10] T. Back, Evolutionary Algorithms in Theory and Practice, Evolution Strategies,
Evolutionary Programming, Genetic Algorithms (New York: Oxford University
Press, 1996).

[II] Z. Michalewicz, Genetic Algorithms + Data Structures=Evolution Programs,
(New York: Springer-Verlag , 1996).

39

[12] G. Rudolph, Convergence Properties of Evolutionary Algorithms, (Hamburg:
Verlag Dr. Kovac, 1997).

[13] D.E. Goldberg, Genetic Algorithms in search, optimization, and machine
learning, (Menlo Park, California: Addison-Wesley Publishing, 1989).

[14] Schwefel H.P. Evolution and Optimum Seeking (New York: John Wiley & Sons
Inc, 1995).

[15] D.B. Fogel, Evolutionary Computation: toward a new philosophy of machine
learning (Piscataway NJ: IEEE Press, 1995).

[16] M. Mitchell, An introduction to genetic algorithms (Cambridge, Massachusetts:
The MIT Press, 1997).

[17] M.H. Lee, Ch. Han, K.S. Chang, Hierarchical time-optimal control of a
continuous co-polymerization reactor during start-up or grade change operation
using genetic algorithms, Computers & Chemical Engineering, Vol. 21, suppl.,
1997, S1037-S1042.

[18] B. Andres-Toro, J.M. Giron-Sierra, J.A. Lopez-Orozco, J. Alvarez-Ruiz, P.
Fernandez-Bianco, A genetic optimization method for dynamic processes, 14*
Triennial World Congress IFAC, Beijing P.R. China, 1999, 373-378.

[19] J.A. Roubos G. van Straten, A.J.B. van Boxtel, An evolutionary strategy for fed-
batch bioreactor optimization: concepts and performance, Journal of
Biotechnology 67', 1999, 173-187.

[20] C. Houck, J.A. Joines, M.G. Kay, A genetic algorithm to function optimization:
A MATLAB implementation, NCSU-IE TR 95-09, 1995.

[21] J. Joines and C.Houck, On the use of non-stationary penalty functions to solve
constrained optimization problems with genetic algorithms. 1994 IEEE
International Symposium Evolutionary Computation, Orlando, FL, 579-584.

[22] R. Luus and M. Galli, Multiplicity of solutions in using dynamic programming
for optimal control, Hungarian Journal of Industrial Chemistry 19, 1991, 55-61.

[23] R. Luus, Piecewise Linear Continuous Optimal Control by using Iterative
Dynamic Programming, Industrial and Engineering Chemistry Research 32, 1993,
859-865.

40

PART II

EFFICIENT DIFFERENTIAL EVOLUTION ALGORITHMS IN OPTIMAL
CONTROL

41

3 Efficient Differential Evolution algorithms for multimodal optimal
control problems+

3.1 Abstract

Many methods for solving optimal control problems, whether direct or indirect, rely
upon gradient information and therefore may converge to a local optimum. Global
optimisation methods like Evolutionary Algorithms, overcome this problem. In this
work it is investigated how well novel and easy to understand evolutionary
algorithms, referred to as Differential Evolution (DE) algorithms, and claimed to be
very efficient when they are applied to solve static optimisation problems, perform on
solving multimodal optimal control problems. The results show that within the class
of evolutionary methods, Differential Evolution algorithms are very robust, effective
and highly efficient in solving the studied class of optimal control problems. Thus,
they are able of mitigating the drawback of long computation times commonly
associated with evolutionary algorithms. Furthermore, in locating the global optimum
these Evolutionary Algorithms present some advantages over the Iterative Dynamic
Programming (IDP) algorithm, which is an alternative global optimisation approach
for solving optimal control problems. At present little knowledge is available on the
selection of the algorithm parameter values that steer the optimisation process when
DE as they are applied to solve optimal control problems. Our study provides
guidelines for this selection. In contrast to the IDP algorithm the DE algorithms have
only a few parameters that are easily determined such that multimodal optimal control
problems are solved effectively and efficiently

KEY WORDS: Evolutionary Algorithms, Differential Evolution, Optimal Control,
Optimization, Multimodal

3.2 Introduction

Indirect numerical methods for optimal control based on Pontryagin's Minimum
Principle use gradient information and local search methods. Therefore, if the optimal
control problem is multimodal, convergence to a local optimum is likely.
Deterministic direct methods for optimal control parameterise the controls and also
use gradient information and local search methods to solve the resulting Non-Linear
Programming (NLP) problem. Consequently they may also converge to a local
solution. The simplest way to increase the chances of finding the global solution by
these approaches is by repeating them several times with different control
initialisations. Doing so, there still are optimal control problems that require a very
close guess to the global optimum. To locate the global optimum or a sufficiently
close approximation, global optimal control approaches are needed. An approximate
global solution may be used to initialise a direct or indirect local optimisation method
to obtain the global solution accurately.

In this study, Evolutionary Algorithms (EAs) are used to solve two optimal control
problems that are known to have several local minima. Firstly, a First Order gradient

+ A slightly modified version was submitted to the Journal Applied Soft Computing by I.L. Lopez
Cruz, L. G. Van Willigenburg and G. Van Straten

42

algorithm from optimal control is used to solve both problems. The objective is to
illustrate some limitations of this approach in solving multimodal optimal control
problems. Next, the performance of several evolutionary algorithms is compared with
that of a direct global method known as Iterative Dynamic Programming, which in the
literature is reported as a very reliable method for the location of the global optimum
in optimal control problems. It is well known that many Evolutionary Algorithms tend
to be inefficient computationally when they are applied to continuous parameter
optimisation problems. Since the computation time is often critical in solving optimal
control problems, the design of more efficient evolutionary algorithms is an important
challenge. In this work it is investigated how well novel and easy to understand
evolutionary algorithms, referred to as Differential Evolution [1, 2] algorithms, and
claimed to be very efficient when they are applied to solve static optimisation
problems, perform on solving multimodal optimal control problems. Additionally,
almost no knowledge is available on how to choose the algorithm parameters that
steer the optimisation process, when Differential Evolution algorithms are applied to
solve multimodal dynamic optimisation problems. Hence in this work, it is
investigated how the DE algorithm parameters 'population size', 'crossover constant'
and 'differential variation coefficient' act upon its efficiency and effectiveness in
solving the selected benchmark problems. Previous work on the application of some
DE to solve optimal control problems can be found in references [3, 4, 5]. To our best
knowledge there are no previous studies on the performance of DE to solve
multimodal optimal control problems.

The paper is organised as follows: in section two a general description of the class of
optimal control problems we are interested in is given. In section three a general
description of an Evolutionary Algorithm, and the specific characteristics of both a
real-valued genetic algorithm with sub-populations and the Differential Evolution
algorithm are provided. In section four a brief description of a first order gradient
algorithm for the solution of optimal control problems is given and also the main
properties of the Iterative Dynamic Programming algorithm are described. Section
five presents results obtained when the studied evolutionary algorithms were applied
to two benchmark optimal control problems belonging to the class of interest. These
results are then compared to those obtained with the indirect and gradient method and
the direct Iterative Dynamic Programming algorithm.

3.3 The class of Optimal Control Problems

Consider the class of optimal control problems where the system is described by the
non-linear time-varying dynamic equation:

x = f(x(t),u(t),t) (1)
where x(t) e 9T is the state and u{t) e SR" is the control. The control inputs are
constrained,

al(t)<ui(t)</3i(t),i = l,2,..,m, (2)

where at{t) and Pt{t) are known time functions. Furthermore,

x(0) = x0, (3)
is the known initial condition. Then, the optimal control problem is to find the input
u * (?), t e [t0, tf] that drives the plant along the trajectory x * (t), te[t0,tf] such that

the cost function

43

J{u(t)) = </>{x{tf),tf)+ JL(x(t), u(t), t)dt, (4)
o

is minimised where the final time tf is fixed [6]. There are two general approaches to
solve these problems: indirect and direct methods [7]. The first group is based on the
solution of a calculus of variations problem through the use of the Pontryagin's
minimum principle (PMP) [8].

In using an indirect approach the necessary conditions for a stationary solution are
derived adding the dynamic equations (1) to the performance index (4) by using a
time-varying Lagrange multiplier vector A(t) e R"

J' = <j>{x(tf), tf) + j{L(x(t), i/(0,0 + % (0 / 0 (0 , i/(0,0 - £ (0 x}dt (5)
0

Integrating by parts the last term below the integral and defining the Hamiltonian
function as:
H(x(t), ii(0, A(0,0 = * WO, u(t), 0 + XT (0 / W O . " (0,0 (6)
the extended performance index is obtained:

'/
J' = (/>{x(tf ,tf))- AT (tf)x(tf) + AT (0)x(0) + \{H{x(t), i/(0, A(0,0 + % (t)x(t)}dt (7)

o
An infinitesimal variation du{i) will produce the variations dx{t) and &/' in the states
and the performance index respectively:

&r = [^(tf)-A
T(tf)&] + [AT(0)&]+ \[(8H{x'u'A't)+iT(t))Sx+^u(t)]dt (8)

dx * dx du
Hence, by choosing the multiplier functions A(t) in such a way that the coefficients of
the state's variations vanish from (8) we obtained the Euler-Lagrange equations in the
Calculus of variations [8].
'x dH(x,u,A,t)_ dL(x(t),u(t),t) f df(x(t),u(t),t) (Q)

dx dx dx

XT(tf) = -^-^- (10)
f dx{tf)

dH(x,u,A,t) _ 8L(x(t),u(t),Q | f df(x(t),u{t),t) = Q Q ̂ ^ f

du du du ' /

If the controls are bounded according to Pontryagin's minimum principle, equation
(8) becomes:
H(x * (0, u*(t),A*(t),t)<H(x* (0, t/(0, >* * (0 ,0 (12)
for all admissible u(t). Hence, to find a control vector function u(t) that minimises
the performance index (4) a two-point boundary value problem with split boundary
conditions has to be solved.

In a direct approach, on the other hand, the optimal control problem (l)-(4) is
approximated by a finite dimensional optimisation problem, which can be cast in a
non-linear programming (NLP) form and solved accordingly [9, 10]. This is achieved
through control parameterisation. In our case the control u(t) is assumed to be
piecewise constant

44

u(tt) = ut, te[tk,tk+1],k = 0,l,...,N-\,t0=0, tN =tf (13)

This is a realistic assumption in the case of digital control. As a result N x m

parameters determine the control over [0 ,^] . The NLP problem is to find the stacked

control vector u eRmxNdefined by u=[ul,.uf ,...,ul,_1] = [u-l,...,umxN], where u,,

i = 1,2,..., mxN are scalar parameters that minimise the cost function (4).

3.4 Two classes of Evolutionary Algorithms: Breeder Genetic Algorithms and
Differential Evolution

Following Back [11] a generic description of an Evolutionary Algorithm is presented
in figure 1. An Evolutionary Algorithm is
a stochastic
maintains

search method, which Figure 1.
Algorithm

Procedure Evolutionary

Generate P(0) := {^(O),...,^^)} e I?;

Evaluate P(0): {0(^(O)),...,O(o^(O))};

While (i(P(g))*true) do

Recombine P'(g) := r@r(P(g));

Mutate P\g):=m@m(P\g));

Evaluate

P\g):{<S>(al(g)\...Mal(gm
Select P(g +1) := s&s (P"(g) u Q);

g:=g+l;
End

populationP(g) := {a, (g),..., «„(#)} of

individuals (chromosomes)

a, e/;z = 1,...,//, at generation g, where
/ is a space of individuals, ju is the
parent population size. Each individual
represents a potential solution of the
problem and it is implemented as some
generic data structure (strings of bits in
genetic algorithms, real numbers in
Evolution Strategies). By means of the
manipulation of a family of solutions, an
Evolutionary Algorithm implements a
survival of the fittest strategy in order to try to find the best solution to the problem.

Each individual is evaluated by a fitness function O: / —» R, and a real value is
assigned to each potential solution, which is a measure of how individuals perform in
the problem domain. Next, an iterative process starts in which a set of evolutionary
operators [12] is applied to the population in order to generate new individuals. From
a set {w©!,..., w0z | w©, : lx ->• lx} u {w0o : f -> Ix} of probabilistic evolutionary
w©. operators (for instance: crossover, mutation), each one specified by parameters
given in the sets 0, c 9?, some operators are applied to the population and a new
evaluation of its fitness is calculated. The main evolutionary operators applied to the
population P{g) are: recombination (crossover) r&r :I

fl^>Ix and mutation
m0m : Ix -> Ix are. A selection operator s&s: [I* u I"+x)-»I*1 which may modify
the number of individuals from A or /t+// to n , is applied as well, where X, // e N,
and // denotes the number of parent individuals and X the number of offspring. As
before, the selection operator may be governed by a set of parameters defined in 0 s .
And Q a P(g) denotes an additional set of individuals. The function

45

/ : / ' ' - > {true, false} represents the termination criterion for the evolutionary
algorithm. After a number of generations it is expected that the best individual of the
population represent a near-optimum solution.

3.4.1 Two Evolutionary Algorithms based on the Breeder Genetic algorithm

The Breeder Genetic Algorithm (BGA) is one of the most efficient genetic algorithms
available in the domain of continuous parameter optimisation. In addition, an
extended theory has been proposed that verifies some practical results [13]. BGA
utilises a real number representation for a chromosome. That is, // real vectors of
dimension d make up the population P(g). According to the previous notation:
a = x = {xl,...,xd)&Rd . Each potential solution in the evolutionary framework
consists of the vector u =[ul,ii2,...,umxN] of parameters obtained from the

transformation of the continuous optimal control problem into a NLP problem. The
only necessary modification is a rearrangement of parameters, in order to ensure that
consecutive realizations of one single element of the control vector appear in adjacent
positions in a chromosome. That is, a chromosome is implemented specifically as the
vector of floating-point numbers: a = w , so d = mxN.

The genetic operators that have been chosen to make up the Evolutionary Algorithm
are (i) cross-over by Discrete Recombination, (ii) mutation by the operator of the
Breeder Genetic Algorithm [13], and (iii) selection by Stochastic Universal Sampling.
Also the option of sub-populations, to be described later, has been implemented in
order to increase the chances to find the global optimum. According to Muhlenbein
[13], the discrete recombination rd :I

2 —» / (crossover operator) is defined as follows:
let 5, = {a\,...,ad) and a2 = (a^,...,ad) be two parent chromosomes. Then each
element of the offspring a, = (af,...,aj) is computed by

, (a1 if rand{) < 0.5
af= ' . ,i = \,...,d (14)

la, otherwise

where randO is a uniform random number from [0,1]. This operator is applied //
times by picking up parents randomly in order to create an offspring population.

The mutation operator of the Breeder Genetic Algorithm m{p r):I ->I is defined as

follows: let a = (al,...,ad) be a parent solution. Then, for a given probability of

mutation pm 6 [0,1] and a specified 'shrinking mutation range' rs e[0,l], a gene

(variable) a\ is selected and modified to generate a new variable according to:

, \ai+mr-rangei -8 if rand{)< 0.5 .
at =< ,i = l,...,d (15)

[ai - mr • rangej • 8 otherwise

where ranget = -rs(Pt -at), mr=\ ,5= > y,2 ,
2 [0 otherwise ~J

randQ is a uniform random number from [0,1], y. e [0,1] with probability 0.05,

pm =\l d normally, and rs are algorithm parameters that have to be specified, at and

/?, denote the lower and upper boundaries of the variable at. With the given settings

46

for S the mutation operator is able to locate the optimum up to a precision of
ranget • rs • 2

The selection operator s: I,l+X —» IM consists of a combination of an elitist selection
mechanism and the stochastic universal sampling algorithm. Firstly, the objective
function /(a,.) = J(u,), i = 1,...,// is calculated, which is equal to the cost function of
the optimal control problem. The cost J(u) is evaluated through integration of the
dynamic equation (eq. 1) given parameterised control. Then, the fitness function
0(a) is calculated using a linear ranking scheme:

q»(a<) = 2 - 5 < , + 2 (^ - l) / ' (a ') " 1 ; i = l>...,/i (16)
ju-\

with the selection pressure coefficient s = 2.0 and / ' (a ,) the index position in the

descending ordered population of the objective function value of individual i. The
stochastic universal sampling algorithm picks the parent chromosomes for the new
population such that the probability for at being picked equals ps(^i)- PA^i) a r e

calculated according to:

Psiat) = ̂ l ,^=£o(2,) (17)

where 0(5,) is the fitness of individual a,. To implement an elitist selection scheme

new individuals are generated as a fraction of the population size A = ju*ggap where

ggap is termed the generation gap, a parameter determined by the user. Once offspring
are generated and their fitness functions calculated they are inserted into the new
population. An insertion function replaces old worst individuals allowing the best
previous solutions to belong to the new population in order to maintain the size of the
original population /u.

The sub-population methodology divides the whole population in multiple
subpopulations or demes. The evolutionary operators evolve during a number of
generations for each sub-population. From time to time some individuals migrate
from one sub-population to another. Three parameters have to be specified: the
migration rate, the manner of selection of individuals for migration and the topology
over which migration takes place. The migration rate is only a scalar number, which
specifies the number of individuals to be migrated. The individuals to be migrated can
be selected randomly or according to their fitness. There are three main migration
topologies: a ring in which only adjacent sub-populations can interchange individuals,
a neighbourhood migration, which is an extension of the previous one where
migration in each adjacent sub-population is allowed. Finally, unrestricted migration
topology, in which individuals may migrate from any sub-population to another.
There is some evidence that shows sub-populations help evolutionary algorithms to
locate the global optimum [14]. The computer implementation of these Evolutionary
Algorithms is given in the Genetic Algorithm Toolbox for use with MATLAB [15].
The integration of the dynamic equations was implemented by using a C-MEX file
routine in order to speed up the simulations.

3.4.2 Differential Evolution Algorithms

47

aji(g) = \ . , , , w J = l,2,...,d;i = \,2,-,M (25)
' [aj if aji{g)<aj

where a and /? represent the lower and upper boundaries of the control variables,
respectively. A remarkable advantage of differential evolution algorithms is its
simplicity, which means that it is relatively easy to understand how they work. Also
they are easy to program. Our computer implementation is based on the MATLAB
environment. The core of the algorithm is an m-file that computes a Simulink model
programmed as a C-MEX s-function, which contains the dynamic equation of the
system and the objective function.

3.5 The first order gradient algorithm and the Iterative Dynamic Programming
algorithm

3.5.1 The gradient algorithm

The numerical solution of the Optimal Control Problem described in section 2 can be
accomplished by means of a first order gradient algorithm properly modified with a
clipping technique to deal with constraints for the controls. The basis is the algorithm
described by Bryson [8]. However, a line search procedure was introduced in order to
calculate the value of the step size parameter (k), which in Bryson's algorithm [8] is
constant. The gradient algorithm is described next and applies to a Mayer formulation
of the optimal control problem [8].
i) Guess u{t) atN+1 points t-t0 =0,...,NAT,AT = (tf -t0)/N. N is an even

number,
ii) Integrate the state equations forward. Store x(t) at t-ta= AT,..., NAT.

dx
. . „ . , , , , dH{x,u,X,t)
IV) Compute and store A(t) and the function at

du

T 00

iii) Evaluate </>[x{tfy\ and A (tr) = —(tf).

T df(x(t),u(t),t)
dx

t-t0 = AT,...,NAT, by integrating backward in time A = -X

starting at A(t,), where — = A, (t) —\J—L
du du

v) Apply a line search algorithm to determine the step size parameter (k).
vi) Compute Su(t) and the new u(t) according to:

Su{t) = -k (t), u(t) := u(t) + Su(t)
du

vii) Clip the controls if necessary in accordance with:
\a{t) if u(t) < a(t) u(t) -• ,
[p{t) if «(0 > p{t)

viii) If \Suavg < e stop. Otherwise go to step ii).

where eg > 0 is a desired precision and duavg = I— V duT(t)5u{t)dt

50

The previous algorithm was implemented in an enhanced MATLAB-Simulink
program with a C-MEX file s-function so as to speed up the simulation of the
dynamic system.

3.5.2 Iterative Dynamic Programming algorithm

An iterative version of the Dynamic Programming Algorithm has been proposed by
Luus [21] as a highly reliable method for locating the global optimum in optimal
control problems. A brief description of this approach is given next. For more details
one is referred to [21].

Step 0. Initialisation. The time interval [0,^] is divided into N time intervals, each
of length L. The control is approximated by the piecewise constant control policy
u(t) = u(tk)e[tk,tM), k = 0,...,N-l, tt+1-tk=L, f0=0, tN=tf

Choose w0(0),...,w0(AT-l) and r0(0),...,/-0(JV-l) where r0(k), k = 0,1,...,N-1
specifies the range u0(k)±r0(k) of allowable values of control for the next iteration
M,(&) , k = 0,..., N -1. Select the number of allowable values for control R > 1 to be
tried at each stage k = 0,...,N -1. Choose the region contraction factor 0.5 <y < 1.0
and the number of grid points M for the states. Finally, specify the number of
iterations / . Set iteration number / = 1.

Step 1. Use the best control policy from the previous iteration (the guess solution at

iteration 1) M*_1(0),...,M*.1(^ - 1) , and generate M -1 other control policies within the

region H*_,(k)±rt_x(k), k = 0,...,N-\. Integrate the dynamic equation (eqn 1) from

t = 0 to tf for all M control policies. The M values of xm(k), k = 0,...,N -1,

m = 1,2,..., Mat the beginning of each time stage are stored.

Step 3. a) At stage N, for each of the M stored values for xm(N -I), integrate the

dynamic equation (eq. 1) from tf-L to tf, with each of the R allowable values for

the control, which are generated by:

ui(N-l) = ul1(N-l) + D-ri_1(N-\) (26)
where u'.^N -1) is the best control value obtained in the previous iteration and D is
a diagonal matrix of different uniform random numbers between -1 and 1. To deal
with constraints of the controls whenever an unfeasible solution is generated it is set
to the violated limit, according to:

uAN-\) = \ ' (27)
\P{t)ifui{N-\)>P(t)

b) From the R values of the control choose the one u ^ N - l) that gives the best
performance index and store these values.
Step 4. a) Step back to stage N -1 and repeat step 3a were Af is replaced by N -1.
b) The integration is continued from x(N -1) over the last time interval tf - L to t,

using the stored value for u*(N-l) corresponding to the state grid point closest to

the value of the calculated state vector at time tf -L. From the R values of the

control select u*(Ar-2) that gives the best performance over the time interval
[N-2,N].

51

Step 5. Continue the procedure until stage N = 1 is reached corresponding to the
initial time t = 0. Here there is only one state grid point that corresponds to the initial
conditions (eqn. 3). Store the trajectories u*(k), x*(k), k = 0,1,...,N - 1 .
Step 6. Reduce the region for allowable values of the control.
rM(k) = r-r,(k),k = 0X...,N-l (28)
Select the best control obtained from step 5 as the midpoint for the allowable values
for control. Set i = i + l and go to step 1.
The previous algorithm is continued for the specified number of iterations / and after
that the results are analysed. Sometimes, the allowable values for controls are selected
from a uniform distribution (evenly spaced grid) instead of randomly. Also for some
problems it is desirable to use a multi-pass method, which consists in to restore the
value of the region contraction factor y to a fraction of its size at the beginning of the
previous pass. This is implemented to prevent a premature collapse of the search
region [21]. In that case another parameter called region restoration factor
0.5 < rj < 1.0 is used. The number of passes (P) must be defined as well.

From the previous description is apparent that the IDP algorithm has numerous
algorithm parameters that can be varied. The region contraction factor (y), number of
allowable values for control (R), number of grid points (N), initial region size values
(r0(k)), and restoration factor (77) in case of multiple passes. Some insight has been
obtained about their values as one is applying IDP to a particular problem, but in
general a parameter tuning approach is required. Luus has reported [21] that with too
small values of the region contraction factor (y) premature collapse of the region
r(k), A: = 0,1,---, JV — 1 is very likely and too large values give rise to a very slow
convergence rate or no convergence at all. Also it is known that small values of y
work properly with sufficiently large values of the allowable values for control (R).
Conversely, when small values of R are used, high values of y are required to
increase the chances of finding the global optimum. The allowable number for
controls should be chosen as small as possible in order to reduce the computational
load. Regarding the number of grid points (M) is known that for some problems
M = 1 works fine, but in other problems M > 1 may be necessary. Our computer
program of the described Iterative Dynamic Programming algorithm for the
MATLAB-Simulink environment is an enhanced code, which uses a C-MEX file s-
function to speed up the simulation of the dynamic equations.

3.6 Benchmark problems solved and results

3.6.1 The optimal control of a non-linear stirred tank reactor

A multimodal optimal control problem has been used by Luus [21, 22] to evaluate his
Iterative Dynamic Programming algorithm. Ali et al. [24] solved this problem by
stochastic global optimisation algorithms. Also, this problem is a member of the list
of benchmark problems proposed in the Handbook of Test Problems in Local and
Global Optimization [25]. A first-order irreversible chemical reaction carried out in a
continuous stirred tank reactor (CSTR) has been modelled by two non-linear
differential equations that are the result of a heat and mass balance of the process.

52

x, = - (2 + I/)(JC, + 0.25) + (x2+ 0.5) exp(
25xi ^

x, +2

x2 = 0.5-
25x

t2-(x2+0.5)exp(L)
Xj + 2

(29)

(30)

where JCJ represents the deviation from dimensionless steady-state temperature and
x2 stands for the deviation from the dimensionless steady-state concentration. The
control u(t) represents the manipulation of the flow-rate of the cooling fluid, which is
inserted in the reactor through a coil. The optimal control problem is to determine the
unconstrained u*(t) that minimises the performance index:

J= ^(x2+x2
2+0.1u2)dt (31)

where tf = 0.78. The initial conditions are x(0) = [0.09 0.09f. It can be shown that

this problem has two solutions. In solving this problem numerically the integration of
the dynamic system was performed with the ode45 routine available in MATLAB,
with the relative tolerance error set to le-8. The initial guesses for the controls of the
different algorithms were selected from the interval 0 < u(t) < 5.0.

For the solution of this problem by the gradient method the step size parameter
(k=0.12) was kept constant. So the line search was not used. Since this is an optimal
control problem with fixed final time and without bounds for the controls, and
because the partial derivatives can be calculated analytically, Bryson's Matlab code
for Continuous Dynamic Optimization [8] without constraints was applicable. The
accuracy of the criterion of convergence was specified as e = 0.0001. The

convergence of the algorithm was straightforward. As can be seen from table 1, the
convergence of the first order gradient algorithm to the local or global optimum
depends on the initial values for the control. Actually, by using a constant pattern as
initial guess, u0(t) = c, 0<t<tf the gradient algorithm always converged to the

local optimum (J* = 0.2444) if «„(?)< 1.8; otherwise it converges to the global
optimum (J* = 0.1330). The associated control trajectories have completely different
shapes.

Table 1. Optimal Control of a multimodal CSTR

»°W
5.0
4.0
3.0
2.5
2.0
1.8
1.0
0.5
0.25
0.0

J*
0.1330984
0.1330977
0.1330979
0.1330976
0.1330980
0.2444349
0.2444351
0.2444347
0.2444346
0.2444346

>y a first order gradient alg

I terations

244
243
228
224
211
329
215
228
241
249

orithm (constant Uo (t))

C P U t ime

411.03
406.18
366.16
398.11
351.84
755.95
483.69
509.63
660.69
657.46

sees. Measured on a Pentium III 700 MHZ PC

In order to solve this problem by means of direct methods, the time interval [0, tf] was
discretized in N = \3 time intervals since it has been reported that a good
approximation to the continuous-time optimal control is obtained by doing so [18,

53

19]. A piecewise constant approximation for the control was used at each of those
time intervals. In the IDP algorithm the parameters values suggested by Luus [21]
were chosen: the number of state grid points M = 1, the number of allowable values
for control R = \S. The region reduction factor was y = 0.80, the number of
iterations I = 20, the number of passes P = 3 and the region restoration factor
T] = 0.5 after each pass. The allowable values for control were generated randomly
(see section 4.2). In order to achieve comparable conditions among all the direct
methods, firstly the initial control trajectory was chosen constant i.e. u0(tk) = c,
k = 0,1,—. N -1 with c a value randomly taken from the control interval 0 < u(t) < 5.
A similar procedure was followed for the selection of the initial region value rQ(tt),
k = 0,1,..., N -1 which was selected from the interval 0 < r0(ft) < 5. Since the control
has no constrains equation 16 was not used.

Table 2 shows the results obtained by the IDP algorithm. From the values presented in
the first four columns it is evident that IDP still can convergence to the local optimum
(J* = 0.2446), which in this case occurs, when both the initial value for the control
and the initial region size are too small. Otherwise IDP converges to the global
optimum (J* = 0.1356). However, Luus and Bojkov [23] have reported that when the
state grid is equal to M = 1, it is beneficial to use a greater region size. Therefore, by
selecting a sufficiently large initial region size value ra(tk) > 4, convergence to the
global optimum is always obtained regardless the initial value for control u0 (tk). This

is shown in table 2 columns five to seven. Repeated optimisation is necessary since
the IDP algorithm (see section 4.2.) generates randomly the allowable values for
control (eqn. 15). So it is very likely may converge to a different value each run.

Table 2. Optimal control of a multimodal CSTR by Iterative Dynamic Programming

«o(h)

3.4990
2.3744
0.9718
1.1568
3.8732
4.0504
0.7557
4.7105
4.6422
4.0494

r0(tk)

2.2999
3.1557
4.1646
1.2498
4.4433
3.4722
1.2997
3.7785
2.2919
0.8660

J*

0.1355869
0.1356138
0.1355876
0.2446122
0.1356089
0.1355970
0.2446122
0.1355856
0.1355816
0.1355828

CPU
time*

600.79
620.46
600.16
589.43
590.77
635.90
599.58
602.31
599.64
588.51

"o(h)Mh)=4

1.0000
4.2823
2.0389
3.9007
0.7900
0.0108
2.3551
2.7851
1.0293
2.9137

Mean

J*

0.1355852
0.1356766
0.1356422
0.1356262
0.1355806
0.1355933
0.1355905
0.1355866
0.1356085
0.1355811
0.1356070

CPU
time*

700.50
686.30
668.74
665.34
764.05
701.57
872.46
849.92
851.20
683.33
744.34

sees. Measured on a Pentium III 700 MHZ PC, Function Evaluations=2100.

In order to solve the CSTR optimal control problem by Evolutionary Algorithms,
firstly a convergence criterion for all of them was defined. A measure of the degree at
which solutions in the population are close together seems to be a good criterion [26].
This involves a way to measure in absolute or relative sense how similar solutions in
the population are. Sometimes, researchers use the value to reach (VTR) as a stopping
criterion, which evidently can be applied only when a solution is already known.
Since the states (x), control (u), and also J are dimensionless in this problem it is a
good option to select an absolute convergence criterion. This was defined as follows:

54

let Jb be the best objective function value in the population Jb = minJ(ut),
i-\,...,/j, and Jw the worst function valueJw = maxJ(ut), i = \,...,//, then an
absolute convergence criterion can be defined byJvl-Jb<ec. In the current
application sc was selected to be ec = 0.00001, which guarantees good accuracy of
the solution. Since this optimal control problem is unconstrained equation 14 was not
used.

Seven variants of evolutionary algorithms were implemented and evaluated. Two of
them are based on the Breeder Genetic Algorithm and five are Differential Evolution
algorithms. Tables 3 to 5 present the main results for various values of the population
size p. The results reported in the tables are averages from 10 runs. EAi means the
Breeder Genetic Algorithm with only one population, EA2 denotes the Breeder
Genetic Algorithm with sub-populations, EA3 denotes the DE algorithm
DE/rand/1/bin and EA4 stands for the DE algorithm DE/best/1/bin. EA5 denotes the
DE algorithm DE/best/2/bin. EA6 means the DE/rand/1/exp, and EA7 denotes the
DE/trial/2,best, trial/bin. These algorithms are evaluated on the basis of four criteria:
i) the number of function evaluations (F.E.), where each evaluation involves the
integration of the dynamic equations (eq. 1) from 0 to tf, ii) the CPU time (measured

on a Pentium III personal computer at 700 MHZ), iii) the performance index value
(J*), and iv) the convergence efficiency (C.E. %) to the global optimum which is
measured by the percentual number of times that the algorithm found the global
solution.

A parameter tuning approach was applied in order to determine what combination of
algorithm parameters gives the best performance index with the less number of
function evaluations. Storn and Price [1] have suggested values for the population size
from the interval 5d < ju<l0d for static optimisation problems, where d is the
dimension of the problem. Price [2] proposed selecting the population size from the
interval 2 • d < ju < 20 • d . Since it is apparent that for optimal control problems
greater population sizes may increase the computation time dramatically, in this work
the use of population sizes around the dimension of the optimisation problem
d = m-N was chosen. After a population size was fixed other parameters of the
algorithms were tuned in order to obtain the best performance index with the less
number of function evaluations. The values reported in the tables are the ultimate
values obtained this way.

Several remarks need to be made. Firstly, all EAs converged to the global optimum.
Even in the case that a population size of ten individuals was chosen an acceptable
value for the performance index in the neighbourhood of the global optimum was
calculated, in contrast to the expectation that with a smaller value of the population
size the algorithms might converge to the local optimum. Secondly, the Differential
Evolution algorithms turned out to be more efficient than those based on the Breeder
Genetic algorithm taking into account the accuracy of the solutions. Thirdly, within
the Differential Evolution algorithms the one that solved the problem with the lowest
number of function evaluations was DE/best/2/bin (EA5).

55

Table 3. Optimal Control of a multimodal CSTR by evolutionary algorithms (population size /z = 20)

Algorithm

FE

CPU time#

J*

CE (%)

Iterations

Parameters

EA,

7401.80

430.02

0.1358249

100

410.1

/>m=0.09

gg«P=0.9

EA2

7143.4

451.10

0.1355985

100

397.3

Pm=0.09

mr = 0.8

ggap=0.9,

subpop=2

EA3

3494

242.51

0.1355966

100

174.7

CR=0.5

F=0.4

EA4

2240

177.06

0.1356143

100

112

CR=0.5

F=0.5

EA5

2270

160.44

0.1355850

100

113.5

CR=0.5

F=0.4

EA6

3578

277.35

0.1355929

100

177.9

CR=0.15

F=0.5

EA7

2492

194.92

0.1355847

100

124.6

CR=0.5

F=0.6

F.E.=Function evaluations, C.E.=Convergence effectiveness. # On a Pentium III, 700 MHZ PC

Table 4. Optimal Control of a multimodal CSTR by evolutionary algorithms (population size ft = 15)

Algorithm

FE

CPU time#

J*

EC (%)

Iterations

Parameters

EA,

6985.60

406.85

0.1362200

100

497.9

Pm=0.09

gg,p=0.9

EA2

5272.6

314.93

0.1362479

100

438.8

Pm=0.09,

mr = 0.8

ggap=0.9,

subpop=2

EA3

3535.5

251.44

0.1355920

100

235.7

CR=0.5

F=0.5

EA4

2100

154.79

0.1356205

100

140

CR=0.35

F=0.5

EA5

1783.50

134.26

0.1355970

100

118.9

CR=0.5

F=0.4

EA6

3018

237.95

0.1357880

100

200.2

CR=0.1

F=0.5

EA7

2083.5

144.24

0.1355867

100

138.9

CR=0.6

F=0.7

F.E.=Function evaluations, C.E.=Convergence effectiveness. # On a Pentium III, 700 MHZ PC

Table 5. Optimal Control of a multimodal CSTR by evolutionary algorithms (population size fi = 10)

Algorithm

FE

CPU time#

J*

CE (%)

Iterations

Parameters

EA,

2225.8

135.57

0.1449189

100

246.20

/>m=0.09

gg,P=0.9

EA2

7925

449.50

0.1365219

100

792

/>m=0.09,

mr =0.8

ggap=0.9,

subpop=2

EA3

2097

200.89

0.1356905

100

290.7

CR=0.5

F=0.6

EA,

2294

157.14

0.1356040

100

229.40

CR=0.25

F=0.6

EA5

1719

134.80

0.1356052

100

171.9

CR=0.5

F=0.5

EAs

2843

206.74

0.1367922

100

283.3

CR=0.1

F=0.62

EA7

1918

130.23

0.1355913

100

191.8

CR=0.4

F=0.7

F.E.=Function evaluations, C.E.= Convergence effectiveness. # On a Pentium III, 700 MHZ PC

In general the parameter settings are different among DE algorithms due to the
different effect of the mutation operator. In both algorithms EA] and EA2 the mutation
rate (pm) was selected a bit greater than the default value frequently chosen
pm = l/(m • TV), in order to improve the probability of the algorithm to converge to the
global optimum. Clearly, this give rise to a higher number of function evaluations. In

56

case of EA2 it was not possible to obtain a better solution by increasing the number of
subpopulations by more than two. For EA2 the migration rate (mr) between
populations was allowed each 20 generations.

That actually, Differential Evolution algorithms are efficient in solving this problem
can clearly be demonstrated comparing our results against those reported previously
by using Controlled Random Search methods for global optimisation [27, 28] which
hinge, like Evolutionary Algorithms, on the manipulation of a population of potential
solutions. Ali et al. [24] have reported that from a total of four evaluated controlled
random search algorithms a modified controlled random search algorithm identified
as CRS4 [27] obtained the best solution. The number of function evaluations required
was 8997 to obtain a performance index value of J* = 0.136 using the same number
of number of time intervals (13) we have used. Clearly, this number of function
evaluations is greater than the values reported in tables 3 to 5. Moreover, the
Evolutionary Algorithm that performed worst on this problem (EA6) is more efficient
than CRS4. From our own MATLAB implementation of the controlled random
search algorithm (CRS2) [27] the average from ten runs was a performance index
value of J*=0.13 84931, with the corresponding function evaluations (10675) and
863.64 seconds of computation time. Again the number of function evaluations is
greater that those values reported on tables 3 to 5.

As far as parameter tuning of the Differential Evolution algorithms is concerned, the
heuristic rules applied to determine the values of the algorithm parameters
'amplification variation' (F) and 'crossover constant' (CR) were as follows. The
initial values were F = 0.5, CR = 0.1 according to Storn and Price [1], and then if a
good convergence was observed the value of the crossover constant was increased in
order to improve the efficiency of the algorithm. Also smaller values for F were
tried. It can be seen from the tables that values for F within the range 0.4 < F < 0.7
were sufficient to obtain a C.E. of 100%. Greater values of CR resulted in solutions
with worst (with less accuracy) performance but not necessarily to local minima. Also
it was noticed that the change of CR from 0.1 to 0.5 resulted in considerable faster
convergence. In contrast to the population size values suggested by Storn and Price
5*(m*N) < / /< 10*(m*iV) relatively small populations also allowed to find a
good solution. It seems that because the problem is not highly multimodal a relative
small value of the differential variation parameter F suffices to explore properly the
whole search space.

Compared to results obtained with the IDP algorithm of the evaluated algorithms the
DE/best/2/bin was able to solve this problem with a smaller number of function
evaluations*. This shows that DE algorithms are actually very efficient evolutionary
algorithms. To find the values of the three algorithm parameters that steer the
optimisation only a few experiments are required. In the IDP algorithm there are more
algorithm parameters to be tuned than in DE. In contrast to the IDP algorithm, the
algorithm parameters than guarantee CE=100% are easily obtained for DE algorithms
considered here. Therefore, taking into consideration the whole preliminary work that
the application of the IDP algorithm demands it turns out deceptively inefficient.

! cf. table 2

57

3.6.2 The bifunctional catalyst blend optimal control problem

A very challenging multimodal optimal control problem has been posed by Luus [21,
23]. This problem is also proposed as benchmark in the Handbook of Test Problems
in Local and Global Optimization [25]. A chemical process converting
methylcyclopentane to benzene in a tubular reactor is modelled by a set of seven
differential equations:

A t — IvnXy i **£,& V 4 S 8 9 / S 7 6 10 7

-*"6 — ^8-^5 ~ *-lX6

(32)

(33)

(34)

(35)

(36)

(37)

(38)

where x,.,/ = l,...,7 are the mole fractions of the chemical species, and the rate
constants (&,-) are cubic functions of the catalyst blend u(t):

kt = cn + ci2u + cnu
2 + cj4«

3, i = 1,...,10. (39)
The values of the coefficients ciyare given in [21]. The upper and lower bounds on the
mass fraction of the hydrogenation catalyst are: 0.6 < u(t) < 0.9, and the initial vector

of mole fraction is x[0] = [l 0 0 0 0 0 0] r . This is a continuous process
operated in steady state, so that 'time' in equations (32)-(39) is equivalent to travel
time and thus length along the reactor. The optimal control problem is to find the
catalyst blend along the length of the reactor, which in the control problem
formulation is considered at times 0<t<tf where the final effective residence time

tf = 2000g • h I mol such that the concentration in the reactor is maximised:

J = x7(tf) x 103. Luus [21] has shown that this problem has a lot of local optima (25).

Table 6. Optimal control of bifunctional catalyst blend by a first order
Constant uD(t)

uu(t)
0.80
0.70
0.85
0.65
0.90
0.79
0.60
0.72
0.78
0.82

J*
9.6419
8.1215
9.6419
8.1214
9.6419
9.7577
8.1214
8.1223
9.6574
9.6419

iterations
16
20
8

23
6

38
27
49
31
9

CPU time#
166.66

3689.00
97.86

4593.30
36.03

494.68
6928.60
9072.10
3355.40

131.05

gradient algorithm (N=10)
Random u°(t)

J*
8.7627
8.0054
8.4409
8.1691
8.5083
8.4300
9.3883
8.2718
9.1816
9.0628

iterations
22
37
24
46
30
21
17
22
38
89

CPU time#
2052.40
6811.80
5450.10
6076.10
6235.30
1931.10
1344.30
3860.80
3396.10

13156.00
On a Pentium III, 700 MHZ PC

In order to solve this problem by means of a first order gradient algorithm a clipping
technique was added to the basic gradient algorithm so as to deal with control
constraints. A line search method as described before was added to adjust the step size

58

parameter k efficiently. The convergence tolerance was set to eg = 0.000001. Despite

both enhancements the classical method failed to locate the global optimum as can be
seen in table 6 that shows the results of twenty optimisations. The best solutions
(emphasized in table 6) are clearly far from the global solution which equals
J* = 10.0942 for a piece-wise constant approximation for the controls.

However, when the gradient method was started using a solution generated with a
direct method (for example IDP or any evolutionary algorithm) it converged quickly
to the value J* = 10.1042. Clearly, due to the presence of many local minima in this
problem, a first order gradient algorithm is easily trapped by one of them. The
gradient algorithm is able to converge to the global optimum only if the initial control
trajectory is in the vicinity of the true solution. Therefore, the use of a global
optimisation method such as Evolutionary Algorithms to approximate the global
solution followed by a local optimisation method such as a first order gradient
algorithm to reach the global optimum exactly seems a good approach in solving
multi-modal optimal control problems.

In order to solve this problem by means of direct methods, the time interval was
divided in N - 10 time subintervals and the control was approximated by a piecewise
constant signal at each time interval. In solving it by Iterative Dynamic Programming,
the initial control trajectory u0(tk); k = 0,...,N-1 was chosen constant with a value
randomly chosen from the control interval 0.6 < u{t) < 0.9. A similar procedure was
followed to select the initial region value r0(tk), k = 0,...,N-1 which was chosen,
from the interval 0.6 < r0(tk) < 0.9.

Table 7. Optim

«oOJ
0.6658
0.8727
0.6353
0.8574
0.7537
0.6842
0.6357
0.8515
0.8035
0.7915
Mean

al control of bifunctional catalyst

rM
0.7814
0.6677
0.6330
0.8600
0.7033
0.7090
0.6099
0.7711
0.8417
0.6154

FE

1500
1350
1125
600

1125
1500
825

1425
1575
1050

1207.5

by Iterative Dyn
J*

10.0942
10.0942
10.0942
10.0942
10.0942
10.0942
10.0942
10.0942
10.0942
10.0942
10.0942

amic Programming
Iterations

20
18
15
8

15
20
11
19
21
14

16.1

CPU time#

174.36
165.58
126.59
72.41

121.19
137.52
92.58

152.20
169.65
138.23
135.03

FE= function evaluations. # On a Pentium III, 700 MHZ PC

The algorithm parameters of the IDP algorithm were: number of state grid points
M = 1, number of allowable values for the control R = 15. The allowable values for
control were generated randomly. The parameter region contraction factor was
X = 0.80, which was selected according to Luus' suggestions [21]. The maximum
number of iterations was (/ = 30), but the optimisation was stopped when it reached
the condition J*-J <0.00005. Table 7 shows the main results, which show indeed
the convergence to the global optimum all the time and the associated number of
function evaluations and iterations. It is clear from the table that if the initial region
size is large enough IDP always finds the global optimum.

59

However, the sensitivity of IDP to the choice of the initial region value r0(tk) can be
illustrated by choosing different values for this parameter. Table 8a shows that with a
value of r0(tk) = 0.27 the IDP algorithm converged to the global optimum only in

20% of the cases. By using r0(tk) = 0.30 this percentage is increased to 60%.

Table 8. a. Optimal control of bifunctional catalyst by Iterative Dynamic Programming

ra(tk) = 0.27

«o('*)

0.75
0.70
0.80
0.65
0.85
0.68
0.72
0.78
0.82
0.75

FE

2250
1125
2250
2250
2250
2250
1050
2250
2250
2250

J*

10.0395
10.0942
9.94429
10.0395
10.0395
10.0395
10.0942
10.0395
9.8978

10.0395

iterations

30
15
30
30
30
30
14
30
30
30

CPU
time*

293.78
370.76
295.76
299.92
286.77
297.81
145.40
300.68
321.38
293.78

r0(4) = 0.30

" o (^)

0.65
0.68
0.70
0.72
0.75
0.78
0.80
0.82
0.85
0.88

FE

2250
675
450
975

2250
450

2250
2250
900

1275

J*

10.0528
10.0942
10.0942
10.0942
10.0395
10.0942
10.0395
10.0395
10.0942
10.0942

iterations

30
9
6

13
30
6

30
30
12
17

CPU
time*

263.18
88.81
61.44

121.72
320.65
57.42

306.41
328.19
514.37
385.43

FE= function evaluations. # On a Pentium III, 700 MHZ PC
With greater values than r0(tk) > 0.40, k = 0,1,...,N - 1 for the initial region size the
IDP is capable to always converge to the global optimum as is shown in table 8b.
Table 8b shows the average of ten optimisations with different random allowable
values for control.

Table 8.b. optimal control of bifunctional catalyst by Iterative Dynamic Programming

r0(h)

Function evaluations

Iterations

CPU time (sees.)*

J*

0.40

938.70

13.70

132.33

10.0942

0.50

1177.5

15.70

150.64

10.0942

FE= function evaluations. # On a Pentium III, 700 MHZ PC

In order to solve this problem by the selected Evolutionary Algorithms, first a proper
and common convergence criterion based on a measure of the quality of the solutions
in the population was chosen. In contrast to example one, where an absolute criterion
was selected, here the following relative convergence criterion was applied:

•*-(./. - • / *) * £•/(»,) (40)

where Jwand Jbaie defined as before, ./(«,)is the performance index, and
ed =0.001 is a constant value selected according to the desired precision. The
initialisation for all the EAs was done randomly from the control input domain
0.6 < u0(tk) < 0.9. As before, a parameter tuning approach was applied and the best
results obtained with the selected parameter values are reported. Tables 9 to 11 show
the averages of 10 runs for 3 values of the population size (// = 15, 20, 25). Reported
values of the performance (J *) are averages over successful optimisations.

60

Table 9. Optimal control of the bifunctional catalyst blend problem by EAs (population size p

Algorithm

FE

CPU time"

J*

CE (%)

Iterations

Parameters

EA,

7007.10

1186.60

10.0942

70

278.28

ggap -1

/>m=0.18

EA2

4890

515.14

10.0929

80

202.50

ggap=l,»Ir = 0.2

Pm = 0.2, subpop=4

EA3

3172.50

549.75

10.0941

100

126.9

F=0.9

CR=0.0

EA4

2657.5

460.11

10.0942

100

106.3

F=0.9

CR=0.0

EA5

3607.5

632.84

10.0941

100

144.3

F=0.9

CR=0.0

EAe

2930

542.24

10.0941

100

116.2

F=0.9

CR=0.0

= 25)

EA7

2897.5

478.24

10.0941

100

115.9

F=1.0

CR=0.0

F.E.=Function evaluations, C.E.= Convergence effectiveness, # On a Pentium III, 700 MHZ PC

Table 10. Optimal control of the bifunctional catalyst blend problem (population size // = 20)

Algorithm

FE

CPU time*

J*

EC

Iterations

Parameters

EA,

11493

1896.90

10.0934

60

572.66

ggap -1

Pm = ° - 2 8

EA2

18227.5

3237.20

10.0916

80

910.12

ggap=l,mr =0.2

pm = 0.45 ,subpop=4

EA3

2496

453.92

10.0941

100

124.8

F=0.9

CR=0.0

EA4

1900

361.07

10.0941

100

95

F=0.9

CR=0.0

EA5

2736

537.62

10.0940

100

136.8

F=0.9

CR=0.0

EA«

2260

413.77

10.0940

100

112

F=0.9

CR=0.0

EA7

2104.4

387.72

10.0942

90

105.22

F=1.0

CR=0.0

F.E.=Function evaluations, E.C.=efficiency of convergence. # On a Pentium III, 700 MHZ PC

Table 11. Optimal control of the bifunctional catalyst blend problem (population size // = 15)

Algorithm

FE

CPU time"

J*

EC

Iterations

Parameters

EA,

6552.90

578.99

10.0937

70

434.85

ggap -1

Pm=0.29

EA2

12718

2433.40

10.0854

50

793.60

ggap=l,'"r =0.2

pm = 0.56 ,subpop=4

EA3

1752

341.28

10.0940

100

116.8

F=0.9

CR=0.0

EA4

1644

297.98

10.0941

100

109.6

F=0.9

CR=0.0

EA5

2268

385.44

10.0938

100

151.2

F=1.0

CR=0.0

EAe

1803

355.07

10.0922

100

119.2

F=0.9

CR=0.0

. EA,

1518.3

273.79

10.0928

90

101.22

F=1.0

CR=0.0

F.E.=Function evaluations, E.C.=efficiency of convergence. # On a Pentium III, 700 MHZ PC

The algorithms EA] and EA2 did not reach CE = 100% with small population sizes.
However, it was found that by increasing adequately the population size, EA2
improves remarkably. As a matter of fact, by using a population size of // = 60 with
four subpopulations and 15 individuals each one, a generation gap g =0.9, a
migration rate m r=0.2, mutation rate pm=Q.\ and an elapsed time of 10
generations between migrations, EA2 converged always to a value J*=10.0942. The
average required number of function evaluations was 7048.6. EAi converged only

61

80% of the times to the global optimum with population size // = 40 and n = 50.
These results illustrate the benefits of using sub-populations. Anyway, the best result
of EA2 regarding the number of function evaluations is considerably inferior to those
results obtained by DE algorithms. Except for EA7 all the Differential Evolution
algorithms always reached CE = 100% with the tested population sizes. Moreover,
Differential Evolution algorithms were considerably more efficient than BGAs.

By comparing tables 9 through 11 it can be seen that both EAi and EA2 require a
greater value of the mutation rate parameter (pm) to obtain reasonable solutions when
the population size is diminished. This sometimes leads to an increased number of
function evaluations. In contrast, the Differential Evolution algorithms require less
function evaluations, and usually have better convergence to the global optimum. As
for the number of function evaluations the best algorithm in this case is EA4. But, the
others are not significantly less efficient than EA4. EA7 required a greater value for F
in order to improved convergence to the global optimum. However, when the
population is too small it has some problems to avoid be trapped by local minima.

As before the DE algorithms were tuned by applying some heuristic rules to
determine the differential variation parameter (F) and crossover constant (CR) that
lead to the global optimum efficiently. For the chosen population sizes, starting with
initial values F = 0.5, and CR =0.1 premature convergence (convergence to a local
solution) was observed. Therefore, the value of the parameter F was increased. It
was discovered that increasing CR neither improves the speed of convergence nor
locating of the global optimum. On the contrary, it was observed that neglecting
completely the effect of the crossover operator, by setting CR = 0, the effectiveness
increases considerably. This value (CR = 0) gave the best convergence of the
algorithms at the expenses of more function evaluations. It seems that the large
multimodality of this problem demands an extensive exploration of the search space.
It is recommended to select a value close to one for the differential variation
parameter (F), and a crossover rate (CR) of zero in highly multimodal problems.

It must be said that in this problem DE algorithms required more function evaluations
than the IDP algorithm. However, by comparing the efficiency achieve by EA4 or EA3
against that of IDP (tables 7, 8b and 11) the difference is relatively small. Moreover,
one could argue that this difference is not significant taking into account that the IDP
algorithm requires more previous experiments to tune its critical algorithm parameters
than in the straightforward procedure associated to the DE algorithms.

3.7 Conclusions

Evolutionary Algorithms are robust search methods capable of locating the global
optimum of multimodal optimal control problems. These algorithms are not sensitive
to the initial control trajectory. They can be initialised randomly. Evolutionary
Algorithms based on the Breeder Genetic Algorithm are able to solve complex
multimodal optimal control problems but they demand a large population size or a
high mutation rate (probability of mutation). Both properties give rise to an increased
number of function evaluations (simulations) and hence a long computation time. The
use of sub-populations can improve their convergence to the global optimum as
problem 2 of this research has shown.

62

This research has shown that within the family of Evolutionary Algorithms
Differential Evolution algorithms stand out in terms of efficiency as compare the
Breeder Genetic algorithm. In contrast to the majority of Evolutionary Algorithms,
where many algorithm parameters have to be tuned, in DE only three parameter
values (the population size, the crossover constant and the differential variation
coefficient) are required to steer the search of the algorithm. The population size plays
a crucial role in solving optimal control problems. Selecting a too small population
size reduces the probability of finding the global solution. Increasing the population
size increases the chances that the algorithm finds the global optimum but the
computation time becomes higher. The two investigated differential evolution
algorithms solved the two benchmark multimodal optimal control problems properly
and efficiently. In solving the first problem the efficiency achieved by DE was clearly
comparable to that of the non Evolutionary Algorithm IDP algorithm. As for the
second problem the efficiency of DE was slightly inferior to the one required by the
IDP algorithm when the algorithm parameters have been tuned. On the other hand, the
determination of appropriate values of the algorithm parameters for IDP is more
difficult and more involved [24]. In summary, Differential Evolution algorithms are
reliable and relatively efficient to solve multimodal optimal control problems. Clearly,
improving the efficiency of the DE algorithms further remains an important issue for
future research.

The guidelines to select the algorithm parameter values crossover constant (CR) and
amplification of the differential variation (F) in the DE algorithms obtained from this
investigation can be summarized as follows. Adopt a smaller population size than in
static optimisation; a population size less than or equal to two times the dimension of
the optimisation problem (// < 2 * (Af x m)) is desirable for optimal control problems.
Highly multimodal optimal control problems may require greater values of the
amplification variation coefficient (F) and a very small or zero value for the
crossover constant (CR). Low multimodal optimal control problems may need
medium values of the mutation parameter (F) and greater or medium values for the
crossover constant (CR). Further research is needed if one is interested in finding
more generic rules for parameter tuning.

In order to solve multimodal optimal control problems more efficiently and
accurately, an efficient Evolutionary Algorithm like Differential Evolution may be
used to approximate the global minimum. Next, a classical local optimisation
algorithm can be applied to accurately compute the global optimum. The development
of such a combined method is the aim of our future work.

Acknowledgements

The first author wishes to mention the support of the National Council of Science and
Technology (CONACyT) of Mexico to this research.

3.8 References

[1] R. Storn, K. Price, Differential Evolution- a simple and efficient heuristic for
global optimization over continuous spaces, Journal of Global Optimization 11,
1997, 341-359.

63

2] Price K. V. An Introduction to Differential Evolution in Corne D., Dorigo, M. and
Glover F., New Ideas in Optimization, Mc GrawHill, 1999.

3] F.S. Wang & J.P Chiou, Optimal control and optimal time location problems of
differential-algebraic systems by differential evolution, Industrial & Engineering
Chemistry Research, 36(1997), 5348-5357.

4] J.P. Chiou, F.S. Wang, Hybrid method of evolutionary algorithms for static and
dynamic optimisation problems with applications to a fed-batch fermentation
process, Computers and Chemical Engineering 23 (1999), 1277-1291.

5] M.H. Lee, Ch. Han, K. S. Chang, Dynamic optimisation of continuous polymer
reactor using a modified differential evolution algorithm, Ind. Eng. Chem. Res. 38
(1999), 4825-4831.

6] F.L. Lewis, V.L. Syrmos, Optimal Control (John Wiley & Sons, INC, NY: 1995).

7] O. von Stryk, R. Bulirsch, Direct and indirect methods for trajectory optimization,
Annals of Operations Research 37, 1992, 357-373.

8] A.E. Bryson, Dynamic Optimization (Addison Wesley, Menlo Park NY: 1999).

9] S.K. Agrawal, B.C. Fabien, Optimization of Dynamic Systems, Solid Mechanics
and its applications, (Dordrecht, The Netherlands, Kluwer Academic Publishers,
1999).

10] C.J. Goh, K.L. Teo, Control Parametrization: a unified approach to optimal
control problems with general constraints, Automatica 24(1), 1988, 3-18.

11] T. Back, Evolutionary Algorithms in Theory and Practice, Evolution Strategies,
Evolutionary Programming, Genetic Algorithms (New York: Oxford University
Press, 1996).

12] G. Rudolph, Convergence Properties of Evolutionary Algorithms, (Hamburg:
VerlagDr. Kovac, 1997).

13] H. Muhlenbein, D. Schlierkamp-Voosen, Predictive models for the Breeder
Genetic Algorithm: I. Continuous Parameter Optimization, Evolutionary
Computation 7(1), 1993, 25-49.

14] E. Cantu-Paz, E. Designing Efficient and Accurate Parallel Genetic Algorithms,
PhD thesis. University of Illinois at Urbana-Champaign, 1999.

15] A. Chipperfield, P. Flemming, H. Pohlheim, C. Fonseca, Genetic Algorithm
Toolbox for use with MATLAB, Department of Automatic Control and Systems
Engineering, University of Sheffield, User's guide, version 1.2, 1994.

16] R. Storn, On the usage of differential evolution for function optimisation,
NAFIPS 1996, Berkeley, pp. 519 - 523.

64

[17] Storn, R. and Price, K., Minimizing the real functions of the ICEC'96 contest by
Differential Evolution, IEEE Conference on Evolutionary Computation, Nagoya,
1996, pp. 842-844.

[18] Storn R., System Design by Constraint Adaptation and Differential Evolution,
IEEE Transactions on Evolutionary Computation 3(1), 1999, 22-34.

[19] M.M. Fisher, K. Hlavackova-Schindler, M. Reismann, A global search procedure
for parameter estimation in neural spatial interaction modelling, Papers in
Regional Science 78, 1999, 119-134.

[20] R. Storn, Differential Evolution design of an IIR-filter with requirements for
magnitude and group delay, International Computer Science Institute, 1947 Center
Street, Berkeley, Technical Report TR-95-026, ICSI, May 1995.

[21] R. Luus, Iterative Dynamic Programming (Boca Raton, FL: Chapman &
Hall/CRC, 2000).

[22] R. Luus and M. Galli, Multiplicity of solutions in using dynamic programming
for optimal control, Hung. J. Ind. Chem 19 (1991), 55-62.

[23] R. Luus and B. Bojkov, Global optimization of the bifunctional catalyst problem,
Can. J. Chem. Eng. 72 (1994), 160-163.

[24] M.M. Ali, C. Storey, A. Torn, Application of stochastic global optimisation
algorithms to practical problems, Journal of optimization theory and applications
95, 1997, 545-563.

[25] Ch. A. Floudas, P.M. Pardalos, C. S. Adjiman, W. R. Esposito, Z. H. Gumus,
S.T. Harding, J.L. Klepeis, C. A. Meyer, C. A. Schweiger, Handbook of test
problems in local and global optimization (Dordrecht, The Netherlands: Kluwer
Academic Publishers, 1996).

[26] H. P. Schwefel, Evolution and Optimum Seeking (NY: John Wiley & Sons, INC,
1995).

[27]. M.M. Ali, C. Storey, Modified controlled random search algorithms,
International Journal of Computer Mathematics, 53, 1994, 229-235.

[28] W. L. Price, Global Optimization by Controlled Random Search, Journal of
Optimization Theory and Applications 40(3), 1983, 333-348.

65

4 Parameter control strategy in differential evolution algorithm for
optimal control+

4.1 Abstract

Most optimal control algorithms are not capable of finding the global solution among
local ones. Because of this we recently proposed the use of a Differential Evolution
algorithm to solve multimodal optimal control problems. The DE algorithm is
efficient compared to most other evolutionary algorithms. Still, when applied to
optimal control problems, the algorithm is significantly less efficient than other, non-
global, optimal control algorithms. In this paper the efficiency of the DE algorithm for
optimal control is improved significantly through parameter control. In the DE
algorithm three main parameters have to be set by the user. The parameter values all
constitute a compromise between the efficiency of the algorithm and the capability of
finding the global minimum. Instead of keeping these parameters constant, which is
common practice, these parameters are changed during the optimization. Roughly
speaking in the beginning of the optimization it is important to search the whole
space, while after some time, to improve the efficiency, the search must be more
local. Based on the diversity of intermediate computations, our algorithm makes this
transition, i.e. the change of the parameters, more quickly or slowly. The algorithm is
illustrated through numerical solutions of two multimodal optimal control problems.

KEY WORDS: Evolutionary Algorithms, Differential Evolution, Optimal Control,
Optimization.

4.2 Introduction

Evolutionary Algorithms are appealing because of their capability to locate the global
optimum of optimal control problems. However, it is well known that the majority of
those algorithms demand an excessive number of function evaluations. Instead of an
'ordinary' function evaluation in optimal control problems this evaluation constitutes
the numerical integration of a set of differential equations. The recently proposed
Differential Evolution (DE) [1,2] algorithm seems to be a good candidate to surpass
these drawbacks, since it was shown to converge efficiently to the global optimum in
some benchmark optimal control problems [3]. In spite of its simplicity, in all
differential evolution algorithms there are three parameters, namely, the population
size (//), the amplification of the differential variation (F) and the crossover constant
(CR) that have to be set by the user. Little is known on the choice of the values of
these parameters, when applying differential evolution to solve multimodal optimal
control problems. Following the guidance of Storn and Price [1], which applies to
static optimization problems, a reasonable set of parameters can be selected a-priori.
To further improve the performance of the algorithm parameter tuning is proposed.
This tuning however requires an excessive number of experiments. Several limitations

f Published by I.L. Lopez Cruz, L.G. Van Willigenburg and G. Van Straten in Proceedings of the
IASTED International Conference Artificial Intelligence and Soft Computing, May 21-24, 2001,
Cancun, Mexico, pp. 211-216.

66

of parameter tuning vis-a-vis the potential advantages of parameter control in
evolutionary algorithms have been discussed recently [4].

In this paper we propose a parameter control strategy for the DE algorithm. The
proposed algorithm is based on a heuristic rule that takes some feedback information
from the actual population, a measure of the diversity of the population, in order to
modify the values of the amplification parameter (F) and also the crossover constant
(CR). Broadly speaking the strategy modifies the effect of the parameters
amplification variation and crossover at different stages of the search trying to do a
search across the whole space at early stages and speeding up the search process when
it gets close to convergence. That this strategy improves the search of DE is
demonstrated by implementing it in the differential evolution algorithm in which the
vector to be mutated is selected randomly. Only one difference vector is used for the
mutation and the crossover is given by binomial experiments. To evaluate the
performance of this strategy against a classical parameter tuning approach two
difficult multimodal benchmark optimal control problems are solved. The paper is
organized as follows. We first briefly describe the differential evolution algorithm in
section two. In section three we summarize the parameter tuning approach and we
describe our parameter control strategy and, finally, in section four the results
obtained from the solution of two multimodal optimal control problems are discussed.

1) comprise a class of evolutionary

4.3 The differential evolution algorithm

Differential Evolution algorithms (figure
algorithms recently proposed in the
literature [1, 2]. Just like Evolution
Strategies they use chromosomes based on
floating-point numbers to represent
candidate solutions. Each individual is

defined as a (/-dimensional vector a e R
and the whole population of potential
solutions at generation g, is given by
P(g) = {ai,...,afJ}. Here the population

size /u does not change during the search.
The main evolutionary operator in DE is
completely different from other
evolutionary algorithms since mutation
neither is based on the alteration of genes
by using a mutation probability nor rest on
the use of a defined probability distribution
function. In DE the mutation operator mutates //vectors through the weighted
difference of two (or four) others vectors according to:

Figure 1. Differential Evolution
algorithm.

Generate random solutions that cover the
given space.
Evaluate each solution.
g=i;
while (convergence is not reached)

for i=l to Population size
Apply differential mutation.
Execute differential crossover.
Clip the solutions if necessary.
Evaluate the new solution.
Apply differential selection,

end
g=g+i;

v,- =a +Fx(a -a) (1)

where i = 1,2,...,//, and the random indexes r^^,^ e [1,2,...,//] are mutually different
and also distinct from the index /'. F e [0,2] is a real constant which affects the
differential variation between two vectors. As in other evolutionary algorithms, the
crossover operator is introduced in order to increase the diversity of the population.

67

The crossover operator combines the previously mutated vector
v, =[v,,,v2j,...,vrfl]with a so-called target vector a, =[ali,a2i,...,adi]to generate a
named trial vector a\ = [a'u,a'2i,...,a'di] according to:

, [v, if (randb(j) < CR) or j = rnbr(i) . , - , . , - ,-.
a « H J = h2,-,d;i = 1,2,..., ju (2)

[aji if (randb(j) > CR) and j * rnbr{i)

where randb(j) e [0,1] is the j-th evaluation of a uniform random number generator.
Ci?e[0,l]is the crossover parameter. rnbr(i)e [1,2,...,d]is a randomly chosen index.
Each member (i) of the population plays once the role of a target vector, thus, there
are fi competitions at each generation.

The population size (//), the differential variation parameter (F) and the crossover
constant (CR) are parameters in the algorithm that have to be set the user. The
selection operator only compares the cost function value of both competing vectors
(target and trial vectors) and the better individual becomes a member of the
population for the next generation. That means:

if0(a,'(g)) < <D(5, (g)) then a,(g +1) := 5,'(g)

else ai(g + l):=ai(g);i = l,2,...,fi (3)

where <D is the performance function that has to be minimized. According to the
notation proposed by Storn and Price [1] the previous algorithm can be shortly
described by: DE/rand/1/bin. This stands for a differential evolution algorithm in
which the vector to be mutated (ar in (1)) is selected randomly from the population.

Only the difference of two vectors is considered by the mutation operation in (1). The
crossover is due to the binomial scheme (eq. 2). It is apparent that there are more
differential evolution algorithms. We have studied the behavior of in total five
different DEs somewhere else [3].

When we want to use DE to solve optimal control problems an extension is required
in order to deal with constraints for the controls. A clipping technique has been
introduced to guarantee that only feasible trial vectors are generated after the
application of mutation and crossover operators, as follows:

«,,(#) = 1 ' , , . j = l,...,d;i = l,...,ju (4)

where a, and /?. are the lower and upper bounds on Uj.

4.4 Parameter tuning and control in differential evolution algorithm

The values of population size (//), the amplification variation (F) and crossover
constant (CR) greatly determine whether DE will find an optimum solution and
whether it will find an acceptable solution efficiently. Roughly speaking, by using
greater values of population size, DE has more chances to converge to the global
optimum at the expense of computation time. Greater values of the differential

68

variation coefficient make it possible to explore the whole search space and to prevent
premature convergence of DE. A value for the crossover constant close to one
increases the speed of convergence. The values of these parameters can be determined
either by parameter tuning (PT) or parameter control (PC).

Parameter tuning (PT) in evolutionary algorithms amounts to finding parameter's
values that do not change during the optimization. Therefore, a number of
experiments are needed in order to find out the best combination of those parameters
that give the solution of the problem accurately and efficiently. An experimental
design would require a huge amount of experiments. Therefore, in order to solve
optimal control problems by DE applying a parameter tuning approach, we have
proceed as follows. Since the rule of thumb of Storn and Price [1] does not give
enough information about the selection of the population size, we have followed three
heuristic rules in applying DE to solve dynamic optimization problems.

Heuristic one: Seeing that in solving optimal control problems a greater value of
population size entails an increased number of function evaluations and computation
time, some values for n near the dimension of the optimization problem are tried. If
premature convergence is observed the population size can be increased. Otherwise it
can be decreased.

Heuristic two: Following the rule of thumb suggested by Storn and Price [1] we have
chosen values of F=0.5 for the amplification variation parameter, and CR=0.1 for the
crossover constant as starting candidates for each selected population size. Our
examples show that, indeed, sometimes this value of F works very well (see problem
1 below), but also sometimes it is necessary to increase that value in order to avoid
premature convergence (see example 2 below).

Heuristic three: According to another suggestion of Storn and Price, since changing
the values of crossover constant CR from 0.1 to 0.9 or 1.0 speeds up convergence,
possibly at the expense of the quality of the solution, we have tried these higher
values for CR always. Sometimes increasing the value of the parameter CR is very
convenient (see example 1 below), but in other cases values different than zero might
deteriorate the quality of the solution (see example 2 below) due to convergence to a
local optimum.

Parameter control (PC) in evolutionary algorithms, on the other hand, means that the
values of the design parameters are changed during the optimization. There are two
general ways to do this. Either by using a heuristic rule, which takes feedback from
the current state of the search and modifies the parameter values accordingly or by
incorporating the parameters into the chromosomes [4]. Following the first approach
we have devised a parameter control strategy for the Differential Evolution algorithm.
We have tested its behaviour on the differential evolution algorithm DE/rand/1/bin.
Yet, it can be applied to other DE algorithms as well. Our proposed parameter control
strategy is based on the assumption that for multimodal problems we want to explore
the search space as much as possible at the beginning of the search. Assuming that the
population size does not change during a run, this means that the parameter F,
controlling the differential variation in DE, should take greater values at the beginning
of the optimization than at later stages as the algorithm is approaching a solution.
Conversely, the crossover parameter CR at early stages should be smaller than at

69

stages close to convergence. On the other hand, as soon as the algorithm is
approaching a solution we should reduce the effect of the mutation parameter and
because we are close to a solution it would be advisable to speed up the convergence
by enlarging the effect of the crossover parameter. The difficulty, however, is how to
determine the status of the current search. There are several possibilities to do this, for
instance, a measure of the population diversity, relative improvements or absolute
solution quality [4]. Here we have chosen a measure of population diversity [5]
around the current best solution, which is defined as follows. First a diversity index
jjji is required:

Ifi
1 if
0 otherwise

aji aj,best

lj,best
>E2 (5)

where aJbesl is the jth gene of the individual with the best performance

(i.e.:<t>(abest) < 0(5;),V(- *best) in the population, and e2 is an assigned tolerance

for the gene diversity. A value of rj = 1 means a diversified gene. Next the degree of

population diversity (0 < p < 1) is calculated as follows:

P= Z t,1jiKdx(ji-l)) (6)
i=l 7=1
i^best

Then, by using this measure of diversity in the population (p) a heuristic rule that
allows us to modify two parameters in DE can be written as follows:

if p > £•[then

F=0.9;CR=0.1

else

F=0.5;CR=0.5 (7)

where s^ is a desired tolerance.

4.5 Results from two-benchmark multimodal optimal control problems

4.5.1 The optimal control of a multimodal CSTR

We have solved by means of differential evolution a well-known multimodal optimal
control problem that consists in determining the optimal control u(t) in the time
interval 0<t<tf that minimizes the performance index:

'/
J= j(xf +xl+Q.\u2)dt (8)

o
subjected to the dynamic equations:

25x
x, = -(2 + M)0, + 0.25) + (x2 + 0.5) exp('-) (9)

x, +2

70

25x
x2=0.5-x2 -(x2 +0.5)exp(l-) (10)

x, +2 v i

from chemical reaction engineering [6]. Herein x, represents deviation from
dimensionless steady-state temperature and x2 stands for deviation from
dimensionless steady-state concentration. Both state variables model a first-order
irreversible chemical reaction carried out in a continuous stirred tank reactor (CSTR).
The control u(t) represents the manipulation of the flow-rate of the cooling fluid
through a coil inserted in the reactor. The final time tf = 0.78 is fixed. The initial

conditions are: x(0) = [0.09 0.09]r. It can be shown that according to classical
methods in optimal control this problem has two solutions. The global optimum is
associated with a performance index value of J*=0.13309 and the local optimum has a
cost J*=0.24443 [3].

In order to solve this optimal control problem by a direct optimization method like
Differential Evolution it is necessary to approximate the continuous-time optimal
control problem to a non-linear programming problem (NLP). This can be done by
control parameterization [7]. The time interval tt\0,tf\is discretized using N time

intervals 0 = t0 <?,<,...,<tN =tf. Next the control is assumed to be piecewise

constant at each time interval:

u(t) = u(tk) = uk,te [tk,tk+l),k = l,...,N (11)

This parameterization of the controls is used to solve the dynamic equations (eqns 9
and 10) and also to evaluate the performance index (J) given by equation (8).

When a piece-wise constant parameterization of the control with 13 intervals
(parameters) is adopted, the global optimum for the CSTR optimal control has a cost
function around J*=0.1356. The local optimum presents a performance index value of
J*=0.2446. So as to solve this dynamic optimization problem by differential evolution
it is assumed that the control is inside the bounds 0 < u(t) < 5. The initial population
of the DE algorithm was generated uniformly from that domain. To evaluate the
integral (J) accurately the Mayer formulation of this optimal control problem was
adopted and three differential equations were solved. A variable step size integration
routine (function ode45.m of MATLAB) was used to integrate the differential
equations and the relative tolerance for the integration was set to le-8. In order to
speed up the simulation a C-MEX file s-function containing the dynamic differential
equations was written.

An absolute convergence criterion for DE algorithm was chosen as Jw- Jb < sc

which is reasonable seeing that both the states (x) and the control (u) are normalized
in this problem. Where Jw and Jb are the worst and the best performance index values
from the population. Values of the tolerances in the parameter control strategy were
£•, =0.5and s2 =0.1. The tolerance ^constant was ec =0.00001. Table 1 shows

main the main results obtained with the two algorithms described before where the
averages from ten runs are reported. All the time the DE algorithm converged to the
global optimum solution.

71

Table 1.

DE strategy

M

F.E.

CPU

time"[secs]

J*

CE(%)

Generations

Parameters

Comparison of parameter tuning and parameter control
solving the optimal control of a CSTR

PT PC

20

4388

308.13

0.1355943

100

219.4

F=0.5,CR=0.5

4292

250.91

0.1355846

100

214.6

eq.(7)

PT PC

15

4402.50

313.08

0.1356408

100

293.5

F=0.5,CR=0.2

2913

198.41

0.1355878

100

194.2

eq.(7)

in DE/rand/1/bin from

PT PC

10

3116

222.94

0.1382629

100

311.6

F=0.5,CR=0.2

1884

138.33

0.1360762

100

188.4

eq.(7)

F.E.=function evaluations. CE=percentage of hitting the global optimum. #On a Pentium III at 700
MHZ PC. Averages often runs.

Values for parameters F and CR were, in the case of parameter tuning, obtained
through the heuristic rules described before (section 3). Clearly the number of
function evaluations is always less in case of the parameter control strategy and also
the quality of the solution is slightly better.

4.5.2 The optimal control of the bifunctional catalyst blend problem.

A highly multimodal optimal control problem has been posed by Luus [6]. A
chemical process involves converting methylcyclopentane to benzene in a tubular
reactor is modeled by a set of seven differential equations (12)-(18):

X I — ftl J\f\

X j — fti JC% v 2 "\) 1 ^A.Xc

•A"} ~~~ A o A o

4 — 6 4 5 5

(12)

(13)

(14)

(15)

Xe — K-> A 2 1 'tf.XA \ *^4 5 R ^ Q / *^5 "*" 7 6 10 7

X6 — ^X5 — K1X6

(16)

(17)

Xj /CgJ t j K^QX-J (18)

where the states x^J = l,...,7are the mole fractions of the chemical species and the rate

coefficients (£,) are cubic functions of the catalyst blend (control u(t)), according to:

kt = cn + cj2u + cnu
2 + ci4u

3;i = 1,...,10 (19)

72

where all the values of the constants c^are given in reference [6]. The upper and
lower bounds on the mass fraction of the hydrogenation catalyst are: 0.6 < u(t) < 0.9,
and the initial values for the states are:
x(0) = [l 0 0 0 0 0 Of

The optimal control problem consist in to find the catalyst blend along the length of
the reactor in the interval 0<t<tf, where tf = 2000g • h I mol such that the

concentration of benzene is maximized. Thus the performance index to be maximized
is given by:

J = x1(tf)xW (20)

where 103 is a scaling factor. This problem has been studied by Luus [6] who by using
Iterative Dynamic Programming has shown that there are a lot of local optima. The
global optimum is around the performance index value of J*= 10.0942 when a
piecewise constant control parameterization with ten intervals is adopted.

In order to solve this problem by differential evolution, the initial population was
generated randomly from the parameterized control space. As for the first example, a
variable step size integration routine (function ode45.m of MATLAB) was used to
integrate the dynamic equations (12-18). A relative tolerance of le-8 was set for the
integration. Also a C-MEX file s-function with the differential equations was written
so as to speed up the simulations. Again, a criterion of convergence based on the
population was selected. But, in contrast to the first example here a relative
convergence criterion was chosen as follows:

{Jw-Jb)± E J%)
1=1

(21)

where /„,and J6are defined as earlier and sd =0.001. The values of the tolerances

for the parameter control strategy were: s1 = 0.02 and s2 = 0.02.

Table 2. Comparison of parameter tuning and parameter control in DE/rand/1/bin from
solving the optimal control of the blend of a bifunctional catalyst

DE strategy

M

F.E.

CPU

time#[secs]

J*

CE(%)

Generations

Parameters

PT PC

25

3117.5

390.07

10.0942

100

124.7

F=0.9,CR=0.0

1635

224.18

10.0940

100

65.40

eq.(7)

PT PC

20

2604

339.58

10.0942

100

130.2

F=0.9,CR=0.0

1240

171.70

10.0906

100

62

eq.(7)

PT PC

15

1858.3

246.90

10.0942

90

123.88

F=0.9,CR=0.0

937.50

127.70

10.0919

80

62.50

eq.(7)

F.E.=ftmction evaluations. CE=percentage
MHZ PC

of hitting the global optimum. # On a Pentium III at 700
Averages often runs.

73

Table 2 shows main results when DE was used to solve this problem. It can be seen
from table 2 that the DE method mostly converges to the global optimum. However,
as the population size is smaller the algorithm is affected by premature convergence.
On the other hand, it is apparent that the number of function evaluations was
significantly smaller for the parameter control strategy than in the case of parameter
tuning. It seems possible to improve the quality of the solution obtained by means of
parameter control by increasing the population size without augmenting too much the
number of function evaluations.

4.6 Discussion

The parameter control strategy introduces two new parameters, namely, the tolerances
^and e2. However, in contrast to the original parameters these tolerances have a
clear meaning and, in addition, there are less reasons why they themselves should be
changed during the optimization. In any case, they have led to larger efficiency
without any tuning.

4.7 Conclusions

Through the solution of two multi-modal optimal control problems we have
demonstrated that implementation of a parameter control strategy in the Differential
Evolution algorithm has significant advantages over widely practiced parameter
tuning approach. The parameter control strategy, which takes into account the
diversity in the population in order to modify the values of the differential variation
(F) and crossover (CR) parameters during the optimization is able to significantly
improve the efficiency of the algorithm, and also the quality of the solution as
compared to those obtained by parameter tuning. In future work we plan to apply and
study the behavior of the proposed parameter control strategy in other Differential
Evolution algorithms. Within the parameter control strategy the design of measures to
determine the current convergence status of the search is an important issue that will
be addressed.

4.8 References

[1] R. Storn and K. Price, Differential Evolution-a simple and efficient heuristic for
global optimization over continuous spaces, Journal of Global Optimization, 11,
1997,341-359.

[2] R. Storn, System design by Constraint Adaptation and Differential Evolution,
IEEE Transactions on Evolutionary Computation, 3(1), 1999, 22-34.

[3] I.L. Lopez-Cruz, L.G. Van Willigenburg, G. Van Straten, Evolutionary
Algorithms for multimodal optimal control problems: a comparative study, In
preparation.

[4] A.E. Eiben, R. Hinterding, Z. Michalewicz, Parameter Control in Evolutionary
Algorithms, IEEE Transactions on Evolutionary Computation, 3(2), 1999, 124-
141.

74

[5] J.P. Chiou and F.S. Wang, Hybrid method of evolutionary algorithms for static
and dynamic optimization problems with application to a fed-batch fermentation
process, Computers and Chemical Engineering, 23, 1999, 1277-1291.

[6] R. Luus, Iterative Dynamic Programming (Chapman & Hall/CRC, Boca Raton,
Florida, 2000).

[7] C.J. Goh and K.L. Teo, Control parametrization: a Unified Approach to Optimal
Control Problems with General Constraints, Automatica, 24(1), 1988, 3-18.

75

For a complete description refer to the paper by Seginer et al. 1998 [5]. In Figure 1 a
relational diagram, the backbone of the model is presented. The nitrate balance is not
shown there. A summary of the main equations is presented in Appendix 1. A brief
description of the model is as follows. The model has two state variables: non­
structural carbon content (So) and structural carbon content (Scs) measured in moles
[C] per unit surface area. No distinction between shoot and root is made in the model.
Also long-term storage of assimilates is neglected. Some additional assumptions are
that the volume of the vacuoles is a fixed fraction of the total volume of the plant;
carbon-to-nitrogen ratio in the structure is also fixed, whereas the ratio in the vacuoles
is variable, but constrained by the need to maintain a constant turgor pressure. It is
assumed that there are no limitations in the flow of nitrate into the vacuoles to support
growth and to maintain turgor. The plant grows by building new cells with exactly the
same proportions as the already existing cells.

The model assumes that photosynthesis depends on light and CO2 only, whereas
respiration and growth are assumed to depend on temperature. Both photosynthesis
and growth depend on the size of the crop as well. In this way, the non-structural
carbon content is a result of the photosynthetic activity of the plant (Fcav, eqn. 3)
driven by light (I) and CO2 (Cca)- The maintenance (Fcm, eqn. 5) and growth (Fcg,
eqn. 6) of the plant draw upon the produced carbohydrates under the influence of
temperature (T). The photosynthetic process is described by a rectangular hyperbola
function (eqn. 8). Both photosynthesis and growth functions include an exponential
canopy closure function (eqn. 10) to relate these processes to light-intercepting leaf
area. And also both functions have an inhibition function as a mechanism to restrict
the growth of the plant and the carbohydrates production, as explained below.

photos ynthes is

F i g u r e 1 . D y n a m i c m o d e l o f l e t t u c e c r o p . I is g l o b a l s o l a r
r a d i a t i o n , C c a is the c a r b o n d i o x i d e c o n c e n t r a t i o n and T is the
a i r t e m p e r a t u r e i n s i d e the g r e e n h o u s e .

The growth inhibition function (hg{Ccv}, eqn. 12) and photosynthesis inhibition
function (hp{ Co}, eqn. 9) both depend on the non-structural carbon concentration
(Co) which is calculated from the state variables of the model (eqn. 7). If as a result
of the activity of light and CO2 the non-structural carbon concentration (the

78

assimilates stock) approaches zero then the growth of the plant is reduced. That means
that the growth switching function hg{C<>} decreases to zero. On the other hand,
when the carbon assimilates in the vacuoles is too high the photosynthesis inhibition
function hp{Ccv} approaches zero and brings the photosynthetic activity to a halt.
From the basic model it is possible to derive some observable variables or output
variables, for instance, plant dry weight matter (eqn. 19), which can be used to several
purposes as the calibration of the model. A simulation program of this model was
implemented in MATLAB-Simulink environment. The program uses a C-MEX file S-
function so as to increase the speed of simulations.

5.1.4 Genetic Algorithms

The use of optimisation algorithms to calibrate a dynamic model is nowadays a
common activity [8],[4]. We use a method inspired by the theory of evolution and
natural genetics to calibrate the model aforementioned. A genetic algorithm (GA) [2]
is an example of an Evolutionary Algorithm [1]. EAs are a relatively novel group of
probabilistic search methods with robust properties as global optimisation procedures.
A genetic algorithm has at least four properties: a population of chromosomes P(t)
which contains candidate solutions to the problem, selection according to the fitness
of each solution, crossover to produce new offspring, and random mutation [6]. Even
though a GA is conceptually simple it performs well on many different types of
problems. In figure 2 the general view of a GA is presented [5].

Figure 2. Pseudo-code of a Genetic Algorithm
Procedure Genetic Algorithm
begin

t=0;
initialise P(t);
evaluate P(t);

while (not termination-condition) do
t=t+l;
select P(t) from P(t-l);
alter P(t);
evaluate P(t);

end
end

A genetic algorithm starts with a randomly or knowledge-based generated population
P (t) of n candidate solutions to a problem. In a classic GA a binary representation is
commonly used. For more complex GAs other structures (like vectors of integer or
real numbers) can be used. Each chromosome of the population is evaluated to obtain
a measure of its fitness. Then, a new population is formed, by selecting the more fit
individuals. Some members of the new population are altered by means of crossover
and mutation operators. The role of crossover is to combine features of the two
solutions to form two offspring by swapping segments of the parents. We expect that
through the information exchange of both solutions it can be possible to generate
better solutions. The mutation operator stochastically modifies some genes of a
selected chromosome with a probability equal to the mutation rate. The mutation
operator introduces variability in the population.

79

Table 1. Genetic operators used in the calibration of the model.
Type of
chromosome
Binary

Real

Selection

Normalised
geometric
ranking.
pb =0.08
Normalised
geometric
ranking.
pb =0.08

Crossover

Simple
(Pc=0.6)

Arithmetic,
Heuristic,
simple

Mutation

Binary mutation
(pm=0.05)

Boundary, multi-
non-uniform, non­
uniform, uniform
mutation

In this research both a GA with binary chromosome representation as well as a GA
with real representation were investigated. Each chromosome of the initial population
was generated in a random way but they were within a range given by expert-
knowledge. That means that reasonable ranges were defined for all the parameters
under study. The fitness function was a simple sum of squares of the error between
observed values of the dry weight matter of the plant and the simulated value. The
number of generations was five hundred for all the simulations. And the number of
chromosomes in the population was fifty. Because the genetic operators depend on the
kind of chromosome representation used they are presented in table 1. The probability
of selecting the best individual (pb), probability of crossover (pc) and probability of
mutation (pm) used for the binary GA are presented there. The real GA used the same
selection operator. We applied the genetic operators proposed by Michalewicz [5] for
the case of real GA. The values for all their parameters were taken from Houck et al.
1995 [3]. The Genetic Algorithms Optimization Toolbox (GAOT) software available
for MATLAB [3] was used for all the simulations because it is easy to link with a
simulation model built in MATLAB-Simulink.

5.1.5 Calibration results

The calibration was done using
original parameterisation done by
Seginer et al. [7]. Only the
parameters that were known from
previous experience to have a
strong effect in the model were s
incorporated in the calibration, f
Thus, the growth (m), the t
apparent light efficiency I
parameter (£•) and the CO2
transport coefficient (o)
parameters were considered. Two
sets of environmental data
collected by Van Henten [10]
were used as inputs of the model.
The calibration results using
both GA implementations Fiffure 3. Model calibration results for exneriment 1.

CO
FbatGAs
Binary GAs

0 Observed

+

J* +

rs

* j *

°r
+ &**^ +

J* +

r +
+

Time (days)

80

and a local optimisation method are shown in Figure 3 and Figure 4 respectively. The
calculated values of the calibrated parameters for both experiments are presented in
table 2. The results of both GAs are compared with a classic optimisation algorithm
based on Sequential Quadratic Programming algorithm. Since in many cases the local
optimisation algorithm converged to a local minimum, a kind of global optimisation
for it was implemented. The best value reached after forty optimisations using random
guessed initial parameter values, are presented here. From this table we can conclude
that the GA implementations were always superior. For the case of experiment 1 the
solution found by both genetic algorithms was essentially the same. Figure 3 shows
minor differences between all implementations.

LO
BGA
FGA

Table 2. Results
m

exp. 1
8.0214
7.5532
7.5661

exp. 2
32.512
30.728
32.995

of parameters calibration.
s

exp. 1
0.0751
0.0670
0.0670

exp. 2
0.0717
0.0717
0.0708

a
exp. 1
0.0011
0.0020
0.0020

exp. 2
0.0011
0.0011
0.0011

Error
exp. 1
0.2955
0.2849
0.2849

exp. 2
0.1967
0.1968
0.1963

For experiment 2 the genetic algorithm with real number code chromosomes got the
lowest error value but the differences are very small. This result confirms some
advantages of the use of this
GA instead of the binary
version [5]. We could observe
that for several runs the
floating point GA converged
to an error of 0.1985 and
values for the parameters
m= 20.8843, 8=0.0733, and
a=0.0011. Even though the |
difference between both a-
error values is small we can
see the value of the parameter
m changes considerably. This
can be explained by the
difficulties to determine the

Figure 4. Model calibration results for experiment 2.

Trffe (days)

growth parameter (m)
using information of
growth experiments [9]. Figure 4 shows the simulation results using the parameters
calculated for all calibrations. Minor differences can be observed between both GAs.

5.1.6 Sensitivity analysis

In a previous work [9] the sensitivity of the states of this model to its parameters was
presented. In this study we show the results of the calculation of the sensitivity of
plant dry weight (YdW) model output to changes of the parameters in the model. The

81

dY^O") 9,
80, Yd„(t,0°)

- , and solving the relative sensitivity was calculated using St =

algebraic equation

SJ = 8YAt,n^+aYAt,e°}8^+8Ydw(t,0°) a l o n g w i t h t h e s o l u t i o n o f t h e

8x, 86: <?x, 80, 80,
sensitivity equations. The results are presented in table 3.

From this table we can conclude that the most important parameter in the model that
act upon the plant dry weight is the apparent light use efficiency (£•). The CO2
transport coefficient (o), closure parameter (a) and growth parameter (rri) have less
effect. The sensitivity results help to understand the large differences in parameter
values for m and a between the two experiments. They cannot be determined
accurately in cases where the sensitivity is low. The differences between the role of m
and a in both experiments, could be explained by the different environmental
conditions of both experiments as was discussed before in [9].

Table 3. Relative sensitivity of plant dry weight to changes in the parameters in decreasing
order of importance for both experiments.

e
a
m
K

0
k
0

bP

Y
bg

c
s„
sa

Experiment 1
0.84
0.49
0.34

-0.23
-0.17
0.14
0.13
0.10

-0.09
-0.04
-0.01
0.01
0.01

e
CT
a
0
k
K

C

be

m

Y
se

Sp

bD

Experiment 2
0.86
0.48
0.45

-0.25
-0.17
-0.14
0.08

-0.05
0.02
0.01

-0.01
0.00
0.00

5.1.7 Conclusions

This study showed that Genetic Algorithms are suitable to do the calibration of
dynamic models. However, a high computation time was required. This can be
attributed to the quantity of function evaluations, a complete simulation of the
dynamic model, in this case, executed by a GA to calculate the fitness of each
potential solution. Another explanation can be the inherent slow properties of the
current interpreted MATLAB GA implementation. Although the computation time
could not be a limitation to use this approach, additional work is needed to know the
performance of GAs with more complex dynamic models and also to improve the
efficiency of the present implementation.

82

5.1.8 References

[1] Back T. & Schwefel H-P. An overview of evolutionary algorithms for parameter
optimization. Evolutionary Computation 1(1), pp. 1-23, 1993

[2] Goldberg, D.E. Genetic algorithms in search, optimization and machine learning,
Addison-Wesley, Reading MA, 1989.

[3] Houck, Ch.,R., Joines, J., A., Kay, M.,G., A genetic algorithm to function
optimization: A Matlab implementation, NCSU-IE TR 95-09, 1995.

[4] Metselaar, K. Auditing predictive models: a case of study in crop growth. PhD
Thesis Wageningen Agricultural University. Wageningen, The Netherlands, 1999.

[5] Michalewicz, Z. Genetic Algorithms + data structures = evolution programs,
Springer-Verlag, Berlin, 1992.

[6] Mitchell, M. An introduction to genetic algorithms, MIT Press, Cambridge,
Massachusetts, 1996.

[7] Seginer, I., Buwalda , F. & Van Straten G. Nitrate concentration in greenhouse
lettuce: a modelling study, Acta Horticulturae 456 (1998) 189-197.

[8] Solomatine, D.P. The use of global random search methods for models calibration.
Proc. XXVIth Congress of the International Association for Hydraulic Research,
London September 1995.

[9] Van Straten, G., Lopez-Cruz I., Seginer, I., Buwalda, F. Dynamic model for
control of nitrate in lettuce. 3rd International workshop ISHS, Models for plant
growth and control of the shoot and root environments in greenhouses. The
Volcani Center, Bet Dagan, Israel, February 21-25, 1999.

[10] Van Henten, E.J. Greenhouse climate management: an optimal control approach,
PhD Thesis, Wageningen Agricultural University. Wageningen, The Netherlands,
1994.

Appendix 1. Basic lettuce model (NICOLET) equations

State equations

Carbon in vacuoles

Carbon in structure

C-fluxes
photosynthetic assimilation

growth

maintenance respiration

Cv - F F F F
j rCav rCm rCg r Cvs

dSa _ p
dt Cv*

Fca.=P{I,C.}hp{Sa,Sa)f{Sa}

Fc,s=g{T}hg{SCv,SCs}f{SCs}

FCm=e{T}SCs

[1]

[2]

[3]

[4]

[5]

83

growth respiration
Additional relations

carbon concentration in the
vacuoles

uninhibited photosynthesis rate

photosynthesis inhibition
function

canopy closure reduction
function
maximum growth rate

source depletion switching
(inhibition) function

specific maintenance
respiration
osmotic pressure in vacuoles
(Pa)
nitrate concentration in the
vacuoles

Outputs

dry matter (g m"2)

fresh matter (g m")

dry weight per head (g)

Fcs=0F Cvs [6]

C a = ^ [7]

P{i,cCa}=
£la{C^-c^ cca>cc, r o i

FX Cai d + cr(CCa-Cc,) [8]

A,{CJ = 1- ('—H^HE
-1

[9]

f{Sa) = l-™P{-'*Sa} [1 0]

g{T} = mkexp{c(T-T*)} [11]

,&>} = H--(^-'|
- i

[12]

e{T}=kcxV{c(T-T*)} [n]

nv=pv+nr [1 4]

C . = n ' ^ [15]

DM = rioulc{Sa+SCv)+t]uultlSm [16]

withSM,=CB,^- [1 ?]

FM-J^- [18]
'iDM I FM

yd„=DM/Np [19]

84

5.2 Optimal control of nitrate in lettuce by gradient and differential
evolution algorithms*

5.2.1 Abstract

Since high concentration levels of nitrate in lettuce are undesirable, its control is
currently an important problem in the context of European Union regulations. Using a
dynamic model that predicts the amount of nitrate at harvest time, an optimal control
problem is formulated and solved through an enhanced classical gradient method and
a Differential Evolution algorithm. This work shows that in order to avoid local
minima an efficient evolutionary algorithm may be applied to solve optimal control
problems or to provide a good initial guess for a classical method, which solves
smooth continuous-time optimal control problems more accurately and efficiently.

Keywords: Optimal control, Artificial Intelligence, Genetic Algorithms, Global
optimization, Gradient methods

5.2.2 Introduction

High concentration levels of nitrate in lettuce crop and other leafy vegetables are
undesirable because they have a negative effect on human health. Therefore, methods
are sought to control the nitrate levels of a greenhouse lettuce crop. As a first step a
model of lettuce growth, which predicts the amount of nitrate content at harvest time,
has been proposed (Seginer et al., 1998). An optimal control problem has been
formulated and some properties of its solution have been analyzed using a simplified
lettuce model (Ioslovich and Seginer, 2000). Also the full two-state nonlinear lettuce
model has been used to get a numerical solution to another optimal control problem
that uses light and temperature as control inputs by means of a first order gradient
algorithm (Stigter and Van Straten, 2000). The aim of this paper is to solve a new
optimal control problem that includes light, temperature and also carbon dioxide
concentration as control inputs, by an evolutionary algorithm and to compare the
results with those obtained by the Adjustable Control-variation Weight (ACW)
gradient algorithm (Bryson, 1999, Weinreb, 1985). The evolutionary algorithm
selected is the recently proposed Differential Evolution (DE) algorithm (Storn and
Price, 1997), since DE is an evolutionary algorithm that can approximate the global
optimum and is also very efficient computationally compared to other evolutionary
algorithms. The paper is organized as follows: first a brief description of the optimal
control problem is given; especially some properties of the dynamic lettuce model are
emphasized. Then, the main characteristics of the Differential Evolution algorithm are
outlined. Next, the results are described, compared and discussed.

5.2.3 Optimal control of nitrate in lettuce

+ Published by I.L. Lopez Cruz, L.G. Van Willigenburg and G. Van Straten in Artificial Intelligence in
Agriculture 2001, a proceedings volume from the 4,h IFAC workshop Budapest, Hungary, 6-8 June
2001, pp. 123-128.

85

The lettuce model is based on carbon balances of the vacuoles and the structure that
prevail in the plant cells. The so-called NICOLET model (Seginer et al., 1998) has
two state variables: carbon content in the vacuoles (MCv mol[C] m"2 [ground]) and

-2
' C v

carbon content in the structure (MCs mol[C] m'z [ground]) that represent a carbon
source-sink relation in the plant driven by sunlight, temperature and carbon dioxide
concentration. Photosynthesis and growth can proceed uninhibited as long as the non­
structural carbon concentration in the vacuoles remains within certain limits.
However, when affected by environmental conditions the non-structural carbon
concentration approaches zero, growth will be reduced. In the model, this transition is
implemented by introducing a smooth switching function which is one for non-
inhibiting levels, but falls off to zero rapidly when the assimilate stock becomes
empty. When carbon assimilates in the vacuoles are too high a similar switching
function brings photosynthesis to a halt.

The core of the model is given by two differential equations:

MCv = FCav - hgFCm - FCg - FCvs (1)

Mcs=FCvs-(l-hg)FCm (2)

which represent the main carbon balances. The F's in equation (1) denote the rates of
photosynthesis, maintenance, growth respiration and uninhibited growth, respectively,
which are functions of the states and the inputs light (I [mol PAR m'V1]), carbon
dioxide (Cca [mol m"3]) and temperature (T °C). hg denotes the inhibition function for
growth.

The description of all model equations and parameter values is given in Yarkoni and
McKenna, (2000). Here it is worthwhile to outline that in the version used here
(NICOLET B3) two important modifications were made as compared to the original
NICOLET model (Seginer et al., 1998). In NICOLET version B3 the inhibition
functions for photosynthesis and growth were changed in such a way that they take a
value of zero when vacuolar carbon concentrations reach the appropriate bound. And
also, as seen in Eqns (1) and (2), the new model incorporates the depletion of
structural matter to meet the requirements of maintenance respiration when the carbon
content in the vacuoles is low. This situation may occur when the model is exposed to
a long darkness period. It turned out that the original model predicts negative values
for the carbon content in the vacuoles when it was used in the solution of an optimal
control problem by the differential evolution algorithm with three control inputs.
From the states of the lettuce model several outputs such as dry and fresh matter,
sugars and nitrate concentration are calculated. The nitrate concentration follows from
MCv by a negative algebraic correlation, which expresses the plants policy to maintain
its turgor pressure.

One formulation of the optimal control of nitrate in lettuce is as follows. While
minimizing the integral of light

'/
J = jl(t)dt (3)

86

calculate the control trajectories of light, carbon dioxide and temperature such that a
desired fresh head weight of lettuce (jrf/m[gr]) and a specified amount of nitrate

(ydNo [pPml) a r e obtained at a specified harvest time (tf) i.e.,

yfm(tf) = ydfm

yNO}(
tf) = ydNOi

(4)

(5)

where yj-m(tf) and yN0 (?y)are the corresponding outputs of the model. The

control inputs are bounded because it is apparent that the light intensity cannot be
negative and the same is true for carbon dioxide. Also the temperature must lie within
a domain tolerated by the lettuce crop

Cmin < CCa (0 < Cmax, rmin < 7(0 * Tm ^ 0 < t< tf (6) Imm<I(t)<I,

5.2.4 Extended Differential evolution algorithms

Figure I. Differential Evolution algorithm

Generate random solutions that cover the
given space.
Evaluate each solution.

g=i;
while (convergence is not reached)

for i=l to Population Size
Apply differential mutation.
Execute differential crossover.
Clip the new solution if
necessary.
Evaluate the new solution.
Apply differential selection,

end
g=g+i;

end

A numerical solution to the specified optimal
control problem can be obtained by indirect
methods of optimal control like a first order
gradient method, but also by direct methods.
In this work a direct method based on
evolutionary algorithms is used to
approximate the global optimum solution. In
the direct method the control trajectory is
parameterised as a sequence of piece-wise
constant values, which have to be found by
the optimisation. The Differential Evolution
algorithm is a kind of evolutionary algorithm
that has recently been proposed for the
solution of static parameter optimisation
problems (Storn and Price, 1997). This
algorithm has several nice properties over
other evolutionary algorithms because it is easy to understand and very efficient
computationally. An outline of this algorithm is presented in figure 1. As in other
evolutionary algorithms main operators in DE are mutation, crossover and selection.
Yet, in contrast to archetype genetic algorithms, they use a floating-point
representation for the solutions. Also the main operator in DE is rather different than
in other evolutionary algorithms. Similarly to Evolution Strategies here each
chromosome is represented as a real parameter vector a = [ay,...,a„], and it is

required at generation g a population containing fi individuals a,-;i =1,. . . , / / . The
essential feature of differential evolution algorithm rests on the mutation operator. A
so-called mutant vector (v(-), is generated by adding the weighted difference between
two or four selected population vectors to another vector:

v,. = a r l + F - (a r 2 - a r 3) (7)

where (a,.) is either a randomly selected vector or it represents the best solution from

the current population. F e [0,2] is a factor that controls the amplification of the

87

differential variation. The mutation operator implemented in this work was:
v i = » 6 e S / + F - (a r l + a r 2 - » r 3 - a r 4) ; ' = 1->P (8)
The crossover operator increases the diversity of the mutated vector by means of the
combination of two solutions:

\va if randb<CR or i = randr
afl= 1 i M rv A - ,;i = \,...,M;j = \,...,q (9)

[aji y ranab > CR and j * randr
where v7, is the j-th element of the mutated vector v,, a, is a so-called target vector,

against which each new solution is compared to, and randb is a uniform random
number from [0,1]. randr e [1,2,...,q] is a randomly chosen index, and CR is a
parameter [0,1], which specifies the crossover constant. Selection is implemented only
on the basis of a comparison between the cost function value of the new solution a)

and that of the target vector a,. This means that if J(aJ) < / (a ,) the new solution
becomes a member of the population otherwise the old solution is retained. The inner
loop in figure 1 implies that there are // competitions at each generation since each
member of the population plays the role of a target vector once.

Two extensions have been introduced in the original differential evolution algorithm.
The first one is related to the fact that the controls are bounded so a clipping technique
is introduced to prevent inadmissible solutions.

[u, =a, if H, <a,
uj=\ ' ' ., \ ' ; j = U.-.,q (10)

where a and ft represent the lower and upper boundary of the control variables,
respectively. The second modification is due to the fact that the optimal control of
nitrate in lettuce presents constraints at harvest time (final time). The solution
computed is based on the use of penalty functions. The augmented performance index
is given by

J' = J + X(g)dist(x(tf)) (11)

where A(g) is either a penalty factor depending on the current generation or a
constant penalty factor, J is given by equation (3), and two options for dist are:

dist(x(tf)) = \ I yf'\ (12)

5.2. 5 Numerical results

5.2.5.1 A Solution obtained by a gradient algorithm

A solution of the optimal control of nitrate in lettuce was obtained by a classical first
order gradient method. However, in contrast to the solution reported previously
(Stigter and Van Straten, 2000) here the Adjustable Control Weight (ACW) gradient
algorithm from Weinreb (1985) was implemented in order to deal with the constraints

of the controls properly. This method uses an adjustable weighting matrix to modify
the variation of the controls in the neighbourhood of the hard control bounds. The
ACW gradient method
solves the I
continuous-time |
optimal control f
problem according to |
the Pontryagin's x

Minimum Principle. The
required gradients were
calculated analytically.
The final time was
specified at tf = 60 |

days. The °
constraints at the
final time were

days

ydfm = 400 grams of
fi. • A Figure 2. Optimal trajectories ofhead fresh weight and nitrate

head fresh weight, and concentration calculated by the ACW gradient algorithm.
ydNO, = 3 5 0 ° p p m o f

nitrate concentration. The bounds on the controls were as follows: 0 < / (/)< 17.5,
0.01 <CCa(t)<0.04, and 10 <T(t)< 30. From several optimizations which were
initialized with constant values for the controls a solution with a performance
J*=306.3420 mol PAR m"2 was obtained. For one of the optimizations figure 2 shows
the calculated optimal trajectories of fresh matter and nitrate content obtained after
3000 iterations of the ACW gradient method. The optimal solution satisfies almost
exactly the two constraints at harvest time. The error for fresh head weight was
0.0012 grams, and 0.1057 ppm in case of nitrate concentration.

4000

3000

2000

1000

r~

" " - - - - ^ •

*
-

Figure 3 presents the optimal control: light, carbon dioxide and temperature. Since
one goal of the optimal control problem formulation was the minimization of the
integral of light, the
calculated optimal solution
shows that it is possible to
control the nitrate level at
harvest time by increasing the
supply of carbon dioxide
and decreasing the i°™
temperature. This result 8~°02

confirms that with artificial
light it is possible to control
nitrate levels in lettuce 0

through the control of the °K

shoot environment (Seginer et
al., 1998). The optimal
trajectory of carbon dioxide
supply is at the upper specified
limit (0.04 mol m"3), which is
consistent with the fact that no

'

0 10

J *

20

=306.34 [mol

30

PAR m"2

40 50

•

61

•

0 10 20 30 40

,

50

•

6

'

Figure 3. Optimal control inputs of light, carbon
dioxide and temperature calculated by the ACW
gradient algorithm.

89

cost was associated to it in the formulation of the optimal control problem.

The optimal trajectory of temperature presents a trend that goes down across the
cultivation period. On the other hand, the optimal trajectory of light presents a sharp
increase at earliest days, which can be explained by the demand of photosynthetic
activity required to produce the desired fresh weight. Next, for the rest of the growing
period, the amount of light is increased but not too much in order to meet the
specification of the performance index and also to come up to the desired fresh head
weight and the nitrate content at harvest time.

5.2.5.2 A solution obtained by a Differential Evolution algorithm

In order to solve the previous optimal control problem by the differential evolution
algorithm, the first step is the selection of a reasonable parameterization for the
control inputs. For the sake of keeping the number of parameters to be optimized as
small as possible, only twenty time intervals (N=20) were selected. Then a piece-wise
constant approximation for the three controls (m=3) was chosen:

u(/) = u(tk) = u\ te[tk,tk+l) k = \,...,N,i = l,...,m (13)

Therefore the optimization problem has 60 parameters. It was observed that the DE
algorithm works much better solving the optimal control problem with state
constraints instead of working with the original outputs head fresh weight and nitrate
concentration. For that reason, using the desired values of both head fresh weight
(ydfm) and nitrate concentration (yd m), the desired values of the states at harvest

time (xrf) were calculated. The next step consists of the selection of the design
parameters (population size, mutation and crossover constant) in the differential
evolution algorithm. Roughly speaking, using a greater population size (//) the
algorithm has more chance to convergence to a global optimum at the expense of
more computation time. A population size around the dimension of the optimization
problem is a good starting point but, sometimes, smaller values are enough to get
good results. Greater values of the mutation constant (F) make it possible to explore
the whole search space and to prevent premature convergence. Crossover constant
(CR) values around one speed up the convergence of the algorithm. So, a compromise
has to be established among these three parameter values in the DE algorithm. With
respect to the penalty functions, several options were tested. However, better results
were obtained by using varying penalty coefficients (A(g)), which were changed
exponentially according to the generation number. They were used together with the
absolute difference between the desired and calculated state values for the function
dist{x{tf). This approach has been applied in a similar manner by Smith and Stonier

(1996) in other evolutionary algorithms.

After some experiments with several values of the population size it was observed that
even with a relatively small value for the population size (// = 20), F=0.5, and
CR=0.2 a good solution with a performance index of J*=317.0987 mol PAR m'V1

was obtained. The penalty coefficients changed exponentially from A(0) = 50 to
/l(gmax) = 100. The number of generations was 5000. The deviations from the desired

outputs values were 0.2130 grams for fresh weight, and 0.4272 ppm for nitrate
concentration. Thus, the final constraints are almost satisfied using relatively small

90

values for the penalty coefficients. Figure 4 presents the optimal trajectories of head
fresh weight and nitrate content calculated where J*=314.6248. The deviations from
the final desired outputs were 1.2418 grams and 9.9060 ppm. The number of
generations was 10000. "^r
Figure 5 presents the „
corresponding s
optimal controls. The s>
shape of the sub- |
optimal trajectories f
calculated by the DE
algorithm are different
from those obtained by
gradient method but ax,,
clearly they show a
trend that resembles _
the controls
presented in figure
3.

Tine [days]

8;

Near-optimal trajectories of head fresh weight and
nitrate concentration calculated by the DE algorithm.

Looking at the rapid
change during the first
days of the optimal
trajectory of light and Figure 4
temperature,
calculated by the
gradient method, it is clear that the piecewise constant control parameterization used
by the DE algorithm is not able to approximate the continuous-time solution
accurately. As a result the optimal performance found by the classical method is better
than that found by the DE algorithm, which is only, near optimal.

On the other hand, as
opposed to the classical
algorithm, the differential
evolution algorithm
potentially finds the global
solution. Therefore,
efficient evolutionary
algorithms as DE can be
used to come up with an
initial guess for classical
algorithms, to prevent them
from finding local minima.
By increasing the number 0

of time intervals or by H

specifying them as variable-
length the solution of the DE

algorithm will more closely
approximate the
continuous-time solution
obtained by the classical algorithm. Finally, the rapid speed of convergence of the

Time [days]

Figure 5. Near-optimal control inputs of light, carbon
dioxide and temperature calculated by the DE algorithm.

91

differential evolution algorithm near the optimal solution is illustrated in figure 6.
This appealing characteristic could be exploited to generate the initial guess for a local
optimization method.

optimal
nitrate
lettuce
and

5.2.6 Conclusions

Through the
control of
concentration in
the benefits
drawbacks of a i
Differential ,
Evolution algorithm <
(DE algorithm) and a .
classical ACW
(Adjustable Control-
variation Weight)
gradient algorithm for
optimal control were
demonstrated. The
Differential Evolution
algorithm potentially
finds the global solution
whereas the classical
algorithm does not. On
the other hand, the classical algorithm is able to find the continuous-time solution and
is more efficient, even though compared to many other evolutionary algorithms, the
DE algorithm is highly efficient. Therefore, taken together, i.e. using the DE
algorithm to compute an initial guess for the classical algorithm, an algorithm can be
obtained that combines the advantages of both approaches.

Generations

Figure 6.
algorithm.

Convergence of the Differential Evolution

5.2.7 References

Bryson A. E. Jr., Dynamic Optimization, Addison Wesley, Menlo Park, 1999.

Ioslovich I, Seginer I., Acceptable nitrate concentration of greenhouse lettuce and
optimal control policy for temperature plant spacing and nitrate supply, Preprints
Agricontrol 2000, International conference on Modelling and control in
agriculture, horticulture and post-harvested processing, July 10-12, 2000,
Wageningen, The Netherlands, 89-94.

Seginer, I., Buwalda, F., Van Straten G., Nitrate concentration in greenhouse lettuce:
A modeling study, Acta Horticulturae 456: 189-197, 1998.

Smith S., Stonier R., Applying Evolution Program Techniques to Constrained
Continuous Optimal Control Problems, Proceedings of the IEEE Conference on
Evolutionary-Computation, 1996, IEEE, Piscataway, NJ, USA, 285-290.

Stigter, J.D., Van Straten, G. Nitrate control of leafy vegetables: a classical dynamic

92

optimization approach, Preprints Agricontrol 2000, International conference on
Modelling and control in agriculture, horticulture and post-harvested processing,
July 10-12, 2000, Wageningen, The Netherlands, 95-99.

Storn R. and Price K., Differential Evolution-A Simple and Efficient Heuristic for
Global Optimization over Continuous Spaces, Journal of Global Optimization
11:341-359,1997.

Weinreb A., Optimal control with multiple bounded inputs, PhD Thesis, Stanford
University, 1985.

Yarkoni, N., McKenna, P. NICOLET Simulation model B3, Agricultural Engineering
Department, Technion-Israel Institute of Technology, July, 2000.

93

5.3 Optimal control of nitrate in lettuce by a hybrid approach:
differential evolution and ACW gradient algorithms1

5.3.1 Abstract

Since high concentration levels of nitrate in lettuce and other leafy vegetables are
undesirable, cultivation of lettuce according to specified governmental regulations is
currently an important issue. Therefore, methods are sought in order to produce a
lettuce crop that allow maximization of the profits of the grower while at the same
time insuring the quality of the crops. Using a two-state dynamic lettuce model that
predicts the amount of nitrate at harvest time, an optimal control problem with
terminal constraints is formulated. The situation considered may be relevant in a plant
factory where a fixed head weight should be reached in fixed time while minimizing
light input. First, optimal trajectories of light, CO2 and temperature are calculated
using the Adjustable Control Weight (ACW) gradient method. Subsequently, novel,
efficient and modified Differential Evolution (DE) algorithms are used to obtain an
approximate solution to the same optimal control problem. While the gradient method
yields a more accurate result, the optimum may be local. In order to exploit the salient
characteristics of a Differential Evolution algorithm as a global direct search method a
hybrid-combined approach is proposed. An approximate solution obtained with a
Differential Evolution algorithm is used to initialize the ACW gradient method.
Although local minima did not seem to occur in this particular case, the results show
the feasibility of this approach.

Keywords: Optimal control, Artificial Intelligence, Differential Evolution, Global
optimization, Gradient method, Lettuce growth, Nitrate content

5.3.2 Introduction

High concentration levels of nitrate in a lettuce crop and other leafy vegetables are
undesirable because they have a negative effect on human health. Therefore, methods
are needed to control nitrate levels of a greenhouse lettuce crop as long as a profitable
amount of head fresh weight is produced. In work associated to the European project
NICOLET (Nitrate Control in Lettuce and other leafy vegetables), a model of lettuce
growth, which predicts the amount of nitrate content at harvest time, has been
proposed (Seginer et al., 1998, 1999). Also, an optimal control problem that considers
temperature, nitrate supply and plant density as control variables, has been formulated
and some properties of its solution have been analyzed using a reduced (one state
variable) lettuce model (Ioslovich and Seginer, 2000). A two-state nonlinear lettuce
model (original NICOLET model) has been used to calculate a numerical solution to
another optimal control problem that uses light and temperature as control inputs by
means of a first order gradient algorithm (Stigter and Van Straten, 2000). In the
present study, a solution is presented for a new optimal control problem where the
purpose is to produce a fixed final head weight in fixed final time, with a fixed final

f Accepted as publication by the Journal Computers and Electronics in Agriculture, special issue on
Artificial Intelligence in Agriculture

94

nitrate level according to the standard, against minimal cost for artificial lighting.
Control inputs are light, temperature and carbon dioxide concentration. A two-state
lettuce model is used. Combinations of two different algorithms are applied in order
to calculate a numerical solution. The Adjustable Control Weight (ACW) gradient
algorithm (Weinreb 1985, Weinreb and Bryson 1985) is used first to obtain a solution.
The recently proposed Differential Evolution (DE) algorithms (Storn and Price, 1997,
Storn, 1999) are extended and applied to solve the optimal control problem of nitrates
in lettuce.

The reason to investigate the potential application of evolutionary algorithms to
dynamic optimization problems is that Differential Evolution algorithms constitute
global direct search methods which have shown appealing convergence characteristics
to solve multimodal optimal control problems (Lopez Cruz et al., 2002). Since
gradient methods (like ACW algorithm) are mainly local dynamic optimization
methods, in this work a hybrid method is proposed and applied in which a Differential
Evolution algorithm provides an approximate solution by which the ACW gradient
algorithm is initialized. A comparison of the solutions reached by the ACW algorithm
and the hybrid approach is presented. This paper is organized as follows. In section
5.3.3 the main properties of the NICOLET (Nitrate Concentration in Lettuce) model
are explained. Section 5.3.4 presents a description of the optimal control problem of
nitrates in lettuce. Sections 5.3.5 and 5.3.6 describe the ACW and DE algorithms.
Finally in section 5.3.7 the results are presented and discussed.

5.3.3 A dynamic model to predict nitrate concentration in lettuce crop

A dynamic model that accurately predicts, the nitrate content of a lettuce crop has
recently been developed (Seginer et al., 1998, 1999). The so-called NICOLET model
(Seginer et al., 1998) has two state variables: carbon content in the vacuoles (MCv

mol[C] m"2 [ground]) and carbon content in the structure (MCs mol[C] m"2 [ground]).
It represents a carbon source-sink relationship in the plant driven by sunlight,
temperature and carbon dioxide concentration. The core of the model is given by the
following two differential equations:

MCv = FCav - hgFCm - FCg - FCvs (1)

Mcs=FCvs-(\-hg)FCm (2)

which represent carbon balances of the vacuoles and structure that prevail in the plant
cells. The terms FCav, FCm, FCg and FCvs (eqns. A1-A4 in appendix A) denote the

rates of photosynthesis, maintenance respiration, growth respiration and growth,
respectively. They are functions of the states (M ^ M ^ and the driving variables
light (I [mol PAR m"2s-1]), carbon dioxide (Cca [mol m"3]) and temperature (T °C). It
is assumed that photosynthesis depends on light and carbon dioxide concentration but
not on temperature, whereas growth and respiration hinges on temperature only. All
the functions are given in appendix A. Appendix C shows all the values of the
parameters of NICOLET B3 model.

95

According to the model, both photosynthesis and growth can proceed uninhibited as
long as the non-structural carbon concentration in the vacuoles (CCv, eqn. Al l)
remains within certain limits. However, when due to environmental conditions the
non-structural carbon concentration approaches zero growth will be reduced. This is
described by a smooth switching function (h (CCv), eqn. A10) which is equal to one

for non-inhibiting levels, but falls off to zero rapidly when the assimilate stock in the
vacuoles becomes empty. When carbon assimilates in the vacuoles are too high a
similar switching function (hp(CCv), eqn. A9) brings photosynthesis to a halt.

The original NICOLET model has been modified slightly to deal more properly with
the inhibition of growth and photosynthesis (McKenna, 2000). The original growth
and photosynthesis inhibition functions did not completely avoid growth when the
level of carbon material in the vacuoles is very small, thus leading to negative values
of carbon content in the vacuoles when the lettuce is exposed to a long period of
darkness. The new growth inhibition function hg(CCv) (eqn. A10) complies with the

condition lim hg(CCv) = 0. Likewise, the new photosynthesis inhibition function

h (CCv) (eqn. A9) fulfills the condition lim h (CCv) = 0. As can be seen from the
CCv->Elv/^

term hg'm equations (1) and (2), the lettuce model used in this study includes the
depletion of structural matter in order to meet the requirements of maintenance
respiration when the carbon concentration in the vacuoles is low (hg(CCv) < 1).

An important characteristic of the NICOLET model is that there exists a negative
correlation between nitrate and sugar content in the crop. This means that when
carbohydrates are low the plant responds by accumulating more nitrates and vice
versa. By this mechanism the plant can maintain its turgor since both nitrates as well
as carbohydrates are osmotically active components. Accordingly, the nitrate
concentration in the vacuoles is calculated from an algebraic relationship with the
carbon concentration and osmotic pressure in the vacuoles (eqn. A12). The difference
between osmotic pressure in the vacuoles and rhizosphere is defined as the desired
turgor pressure (eqn. A13). Also it is assumed that there is no limitation of nutrients
supply, especially of nitrates to the crop. In a further modification of the original
model this condition has been relaxed (Seginer et al. 1999). Calculation of other
output variables such as dry and fresh matter and sugars is done by additional
algebraic relationships that involve the states and additional parameters (eqn. A14-
A19).

5.3.4 Optimal control of levels of nitrates in lettuce crop

An important consequence of the turgor maintenance hypothesis behind the
NICOLET model is that the control of nitrate concentration can be done by
manipulation of the shoot environment, namely, by increasing the carbon dioxide
concentration (Cca [mol m"3]) or the light and/or by lowering temperature (T °C). In
this paper a situation is studied where the market demands fixed desired head fresh
weight at a fixed harvest date. Consequently, one can formulate an optimal control
problem with fixed final time and terminal constraints (Bryson 1999, Stigter and Van

96

Straten, 2000). Details concerning this optimal control problem formulation are
presented in Appendix B.

Since the supply of artificial light to the greenhouse would be associated with an
increasing cost in supplied energy, it is reasonable to try to produce a desired lettuce
head with the lowest possible light. Therefore, a reasonable performance index would
be the integral of artificial light

'/
J = jl(t)dt (3)

0

which has to be minimized by a suitable control in such a way that a desired fresh
head weight of lettuce (ydfm [grams]) and a specified amount of nitrate (ydN0 [ppm])

are obtained at the given harvest time (tf [days]) i.e.,

yjm(t/) = y«m (4)

ymS'/^ydNo, (5)

where yfm(tf) and yNOj(tf) are the corresponding predicted fresh head weight and

the predicted amount of nitrate from the model. Equations (4) and (5) represent here
terminal state constraints. Furthermore, the control inputs are bounded because it is
apparent that the light intensity cannot take negative values and the same is true for
carbon dioxide. Also the temperature must lie within a domain in which no harm is
done to the lettuce crop. Therefore the optimal control problem has some hard bounds
according to:

Imm < 7(0 < 7max, Cmin < CCa (0 < Cmax, Tmm < T{t) < / _ for 0 < t < t, (6)

where min and max indicate the lower and upper limits for the control inputs. This
optimal control problem corresponds to a situation one may find in a plant factory
environment, which is based on artificial lighting (Nakayama, 1991). Also it is easy to
see that the previous optimal control problem can be changed in one in which we
would desire to minimize additional artificial light. That would correspond to a plant
factory situation in which sunlight is incorporated (Takatsuji, 1991). In contrast to the
formulation of the optimal control of nitrate in lettuce given by Ioslovich and Seginer
(2000), in our study neither nitrate supply nor plant density are considered as control
variables. Plant density was kept constant in our calculations.

5.3.5 The Adjustable Control Weight gradient algorithm

Basically, the Adjustable Control-variation Weight (Weinreb, 1985, Weinreb and
Bryson, 1985) gradient method modifies a classical first order gradient algorithm for
solving optimal control problems with fixed final time and terminal constraints, by
making Ku in the equation

Su{t) = -Ku-H'J(t) (7)
dependent on the control, in order to properly deal with the control bounds
- 1 < « , < 1 , i = l,...,m. Here Ku is a diagonal matrix with elements ku(ui)>0.

H*u(t) is the derivative of the Hamiltonian to the controls u{t) and Su(t) is the
adjustment of the control at each step of the iteration. In order to avoid loss of

97

controllability £„(«,) is decreased in the vicinity of both bounds independently of the

sign of H*u by means of,

*„(«,) = 1-|II,| (8)

during the backward integration of the co-state equations. To prevent that the
algorithm generates no optimal control at the bounds during the forward integration
the following function is used

*>,) = { \-"Y^\SSn(U'H>+l (9)
[i — |w,-1 otherwise

where ulh is a design value close to +1. Because of those modifications the ACW
gradient algorithm convergences generally slow to an optimal solution. For a more
extensive description of the ACW gradient algorithm the reader is referred to Weinreb
(1985).

5.3.6 Differential Evolution algorithms

A direct method based on evolutionary algorithms is used to approximate the global
optimal solution. In this direct method the control trajectory is parameterised as a
sequence of piece-wise constant values, which have to be found by the optimisation
algorithm. Differential Evolution algorithms are evolutionary algorithms that have
recently been proposed for the solution of static parameter optimisation problems
(Storn and Price, 1997, Storn, 1999). These algorithms have several advantages over
other evolutionary algorithms because they are easy to understand and very efficient
computationally. An outline of these algorithms is presented in figure 1. As in other
evolutionary algorithms the main operators in Differential Evolution are mutation,
crossover and selection. However, in contrast to archetype genetic algorithms, they
use a floating-point representation for the solutions. Also the main operator in DE is
rather different than in other evolutionary algorithms. Similar to Evolution Strategies
here each chromosome is represented as a real parameter vector a = [a{,...,aq], and it

is required that at generation g there is a population containing // individuals
at;i = l,...,fJ • The essential feature of differential evolution algorithms rests on the
mutation operator. A so-called mutant vector (v,-), is generated by adding the
weighted difference of two or four randomly selected vectors from the population, to
another (to be mutated, ar) vector:

v, =a n +Fx(a r 2 - a r j) ; ! = 1,...,// (10)

where (rx *• r2 * r3 ^ i) are mutually different indexes. F e[0,2] is a factor that
controls the amplification of the differential variation. Other schemes for mutation
found in literature (Fisher et al. 1999, Lee et al., 1999) are:
v< = Hest +Fx(an + a,2 - a r j - a r 4) (11)

Vi=abest+Fx(*ri - « r 2) (12)

v,. = a , . + f x (a r a r 2) (13)

v,- = a, + F x (abest + an - a,- - ^) (14)

98

where abest is the best individual in the current population and ar denotes a target
individual (see below).

The crossover operator increases the diversity of the mutated vector by means of the
combination of two solutions (mutant (v,) and target (aj) vectors):

fl« =
Vji if randb < CR or j = randr

ajt if randb > CR and j * randr'
i = \,...,H;j = l,...,q (15)

where vjt is the j-th element of
the mutated vector v,, a,- is a
so-called target vector, against
which each new solution is
compared to, and randb is a
uniform random number from
[0,1]. randr e [1,2,..., q] is a
randomly chosen index, and CR
is a parameter e[0,l], which
specifies the crossover constant.
Selection is implemented only
on the basis of a comparison
between the cost function value
of the new solution aj and that

of the target vector a,. This

means that if /(aj) <J(a,)is

true, the new solution (aj)

becomes a member of the population at generation g + 1 , otherwise the old solution

(a,) is retained. The inner loop in figure 1 implies that there are ju competitions at
each generation since each member of the population plays the role of a target vector
once.

As one wants to apply DE algorithms to optimal control problems with control
bounds, it is necessary to introduce a modification in the original algorithm in order to
avoid the generation of inadmissible solutions. So a clipping technique can be added
as follows:

Figure 1. Differential Evolution algorithm

Generate random solutions covering the given
space.
Evaluate each solution.
g=i;
while (convergence is not reached)

for i=l to Population Size
Apply differential mutation.
Execute differential crossover.
Clip the new solution if necessary.
Evaluate the new solution.
Apply differential selection,

end
g=g+i;

end

\uj=aifuj<aj .
(16)

where a and p represent the lower and upper boundary of the control variables,
respectively. Also in order to solve optimal control problems with terminal constraints
a second extension is required. A solution can be computed by using penalty functions
that enforce the desired values for the states. An augmented performance index is
given by

J' = J + A(g)dist(x(tf)) (17)

99

where A(g) is either a penalty factor depending on the current generation or a
constant penalty factor, J is given by equation (3), and two options for dist are:

\\d-\(tf)\
dist(x(tf)) = \ I „ V / ' I

1 \[xd-x{tf)f[xd-x{tf)}
(18)

5.3.7. Results

5.3.7.1 A solution obtained by a gradient algorithm

Our implementation of the ACW follows Bryson's algorithm for solving optimal
control problems with fixed final time and terminal constraints (Bryson, 1999). Thus,
a variable step-size solver was used (ode45.m in Matlab) to integrate the dynamic
equations and to solve a continuous-time optimal control problem. The co-state
equations were calculated from analytical expressions of df/dx and dfldu. The

final time was specified at tf = 60 days. The constraints at the harvest time were

ydfm = 400 grams of head fresh weight, and ydm = 3500 ppm of nitrate

concentration. The bounds on the controls were as follows: 0 < I(t) < 17.5 [mol PAR
m"2], 0.01 < CCa (t) < 0.04 [mol m"3], and 10 < T(t) < 30 [°C], respectively. The upper
limit for light is somewhat arbitrary but it is not relevant since we want to reduce the
use of artificial light as much
as possible. The upper limit
for CO2 is determined by
workability conditions in
the greenhouse. The bounds
for temperature reflect the
range for growth of lettuce
without any stress.

400

tn

SI 300

*
s aao

(V

•a 100

8
X

J*=305.58[nr>IPARm2I ^ ^ ^

_ / / ^

The ACW algorithm was run
using several different
constant initial values for the
controls. Every time a 1
similar cost function value ^.
was obtained which means z

probably that this problem is
not multimodal. For one of the

4000

3000

2000

1000

n 1 1 1

•

•

•

1 1 1

optimizations with a F i g u r e 2. Optimal trajectories of head fresh weight and
performance index value or nitrate concentration, showing the terminal constraints
J* = 305.58 [mol PAR m" are satisfied.
2] figure 2 shows the
calculated optimal trajectories of fresh head weight of lettuce as well as the optimal
trajectory of nitrate content obtained after 3000 iterations of the ACW gradient
algorithm. The optimal solution satisfies almost exactly the two constraints at harvest
time. The error for fresh head weight was 0.01 grams, and 0.11 ppm in case of nitrate
concentration.

100

Figure 3 presents the optimal controls: light, carbon dioxide and temperature. Since
one goal of the optimal control problem formulation was the minimization of the
integral of light, the calculated optimal solution shows that actually it is possible to
control the nitrate levels at
harvest time by increasing the
supply of carbon dioxide and
decreasing the temperature.
This result confirms that with
artificial light it is possible to
control nitrate levels in »
lettuce through the control of
the shoot environment
(Seginer et al., 1998). The
optimal trajectory of carbon
dioxide supply is at the upper
specified limit (0.04 mol m"
3), which is consistent with '
the fact that no cost was
associated to it in the "° « 2 ST

days

formulation of the optimal Figure 3. Optimal control inputs of light, carbon
control problem. dioxide, and temperature.

Even though starting with a
different initial constant temperature trajectory the algorithm calculates a slightly
different optimal trajectory, a trend is fairly clear that temperature goes down across
the cultivation period, as expected. This can be explained by the fact that a high
temperature during the early stages of lettuce stimulates growth, especially as long as
the ground is not completely covered. Directly at the start the optimal reaches fairly
high levels, because obviously enough light must be supplied to produce
photosynthetic activity. Next, for the rest of the growing period, the amount of light is
increased but not too much in order to meet the specification of the performance index
and also to come up to the desired fresh head weight and the nitrate content at harvest
time. It can be noticed that during the last 30 days the amount of light is increased a
bit in order to decrease the concentration of nitrate.

5.3.7.2 Generating an initial solution to the ACW method by means of Differential
Evolution algorithms

In order to solve the previous optimal control problem by differential evolution
algorithms, a reasonably accurate parameterization for the control inputs must be
selected that keeps the number of parameters to be optimized as small as possible. A
piece-wise constant approximation for the three controls (m=3) was chosen, over
twenty time intervals (N=20).

u(0 = u(tk) = [4 u\ ... u%]Tte[tk,tk+l);k = l,...,N, (19)

Therefore the optimization problem has 60 parameters. It was found that DE
algorithms worked much better with state constraints instead of constraints on the
original outputs head fresh weight and nitrate concentration. For that reason, using the

101

desired values of both head fresh weight (ydfm = 400 grams) and nitrate concentration

(ydNOj =3500 ppm), the desired values of the states at harvest time

x1(tf) = MCv(t/) = 2.4866 [mol C m"2 ground s"1] and x2(tf) = MCs(tf) = 8.1840

[mol C m"2 ground s"1] were calculated. This was done by solving numerically a
system of two simultaneous algebraic equations derived from equations A14 and A18
for MCv and MCs. The next step consists of the selection of the design parameters,
population size (//), mutation (F), and crossover (CR) constants in the differential
evolution algorithms. Roughly speaking, using a greater population size DE has more
chance to converge to a global optimum at the expense of more computation time. A
population size around the dimension of the optimization problem is a good starting
point but, sometimes, smaller values are enough to get good results. Greater values of
the mutation constant (F) make it possible to explore the whole search space and to
prevent premature convergence. Crossover constant (CR) values around one speed up
the convergence of the algorithm. Therefore, a compromise has to be established
among these three parameter values in the DE algorithms. With respect to the penalty
functions, several options were tested. However, better results were obtained by using
varying penalty coefficients (A(g)), which were changed exponentially according to
the generation number. They were used together with the absolute difference between
the desired and calculated state values for the function dist{x(tf) . Smith and Stonier

(1996) have applied this approach in a similar manner in other evolutionary
algorithms.

Although we have done experiments using in total five Differential Evolution
algorithms described in section 5.3.6, from now on we report results obtained with the
DE in which the mutation operator was given by equation (11). After some
experiments with several values of the population size it was observed that even with
a relatively small value for the population size (// = 20), and almost standard values
for mutation constant F=0.5, and crossover constant CR=0.2 (Storn and Price 1997) a
good solution with a performance index of J*=317.0987 mol PAR m"2 was obtained.
The penalty coefficients changed exponentially from A(0) = 50 to ^(gmax) = 100.

The number of generations was 5000. The deviations from the desired outputs values
were 0.2130 grams for fresh weight, and 0.4272 ppm for nitrate concentration.
Therefore, the final constraints are almost satisfied using relatively small values for
the penalty coefficients. Increasing the number of generations to 10000 a performance
index of J*=314.6248 mol PAR rn2 was obtained. The deviations from the final
desired outputs were 1.2418 grams and 9.9060 ppm.

Looking at the optimal trajectory of light and temperature, calculated by the ACW
gradient method (section 5.3.5.), it is clear that the piecewise constant control
parameterization used by the DE algorithm is unable to approximate the continuous-
time solution accurately. Consequently, the optimal performance found by the
classical method is better than that found by the DE algorithm, which is only near
optimal. Also the shapes of the optimal trajectories were different from those obtained
by a classical approach (Lopez Cruz et al, 2001).

The use of a hybrid approach that uses the solution found by the DE to initialize ACW
is motivated by its potential to locate the global optimum. First the DE algorithm is

102

%

applied in order to increase the chances to get a near global optimum solution. The
algorithm is stopped after a reasonable number of iterations, for instance when no
considerable improvement is observed. Then the ACW algorithm is used to refine the
solution provided by DE.
Since by using DE the
search space is reduced
we would expect that the
local method converges
faster than when it is {
applied alone. Initializing
ACW by the DE solution
possible since the *>
implemented ACW 40
gradient algorithm allows \w

a start with even a small Q»2000

number of controls,
because of the variable step
size integration and

interpolation (Bryson,
1999). The computation
time of the hybrid
DE/ACW approach
exceeds that of ACW algorithm alone. However, for a multimodal optimal control
problem the additional computational load would be justified by the increased chance
of finding the global optimum of the problem.

Figure 4. Optimal trajectories of head fresh weight and
nitrate concentration calculated by a hybrid algorithm.

Figure 4 shows the optimal trajectories calculated by a hybrid method. The
Differential Evolution algorithm was run 2000 iterations and then ACW was run 2000
more iterations. The trajectories obtained by the ACW algorithm alone with 3000
iterations are shown as well to make a comparison. Both terminal constraints were
satisfied accurately, since deviations from the target were 0.01 grams for head fresh
weight and 0.34 ppm in case
of nitrate concentration.
Only small differences can
be observed between both
optimal state trajectories.
Also the values of the
performance index were _
quite similar: J*=305.58 j=
mol PAR m-2 for ACW i
and J*=305.65 mol PAR 8
m"2 in case of the hybrid
algorithm (DE+ACW).

The optimal control
trajectories are shown in
figure 5. The optimal
trajectories of carbon dioxide
are exactly the same, apart
from some oscillations; the

ACW
DB-ACW

, 1 1 1 1

Figure 5. Optimal trajectories of light, carbon dioxide
and temperature calculated by a hybrid algorithm.

103

optimal trajectories of light are also similar. However, the trajectory for temperature
calculated by the hybrid approach shows considerable oscillations even though the
general decreasing trend is similar. These differences can be explained by a likely
lack of sensitivity of the cost criterion to changes of the temperature trajectory as long
as on average they are identical. Table 1 illustrates the idea that a global optimization
method as a first step is useful to reduce the number of steps for a gradient method.

Table 1. Results of ACW and a hybrid (DE+ACW)
method in solving OCP of nitrates in lettuce.

Method
ACW

DE (1000 iterations)
+

ACW

DE (2000 iterations)
+

ACW

DE (5000 iterations)
+

ACW

Values
J*

Iterations

yfm(tf)

ync(tf)
j *

Iterations

y fi.it f)

y~(*f)
J*

Iterations

y Mi*/)

Vncitf)
J*

Iterations

yfi.it/)

Vncitf)

307.86
1000.00
399.99

3500.18

308.54
1000.00
399.99

3500.42

307.85
272.00
399.99

3500.56

307.83
250.00
399.99

3499.96

The ACW method was run 1000 iterations only and the value of the associated cost
was used as reference for our comparisons. Next, the DE algorithm was run five times
for three different numbers of generations (1000, 2000, and 5000). Using the best of
the solutions (those that satisfied the terminal constraints best) to initialize the ACW
algorithm the optimization problem was solved combining both approaches. The
ACW algorithm was stopped when it reached the same goal function value. Table 1
shows, in fact, that by using 2000 and 5000 iterations of the DE and then ACW, there
is a considerable reduction in the number of iterations of the local optimization
method to calculate the same solution. These results clearly show that by using DE
algorithm to initialize ACW is not only possible to achieve similar solutions than
those attained by ACW alone but also that the initialization with DE significantly
reduces the time ACW takes to converge.

5.3.8 Discussion

According to our results it is likely that the selected optimal control problem is not
multimodal. Although the same costs were obtained when different initial values for
the controls were chosen, some differences were observed in the shape of the optimal
trajectory of temperature. These differences were greater when the ACW gradient
algorithm was initialized using a non-smooth trajectory generated by the DE
algorithm. Apparently, the gradient method 'sticks' to another smooth solution pattern

104

http://fi.it
http://yfi.it/

after initializing with DE than in the original full problem. However, the optimal
trajectories of light and CO2 were always similar. This means that, the optimal
trajectory of temperature and so the solution is not unique. Therefore, the optimal
control problem is redundant. The redundancy constitutes a difficult situation for any
search method. It would be preferable to obtain a problem formulation without
redundancy but this formulation seems difficult to achieve without making further
assumptions on the lettuce model, by simplifying the model (cf. Ioslovich and Seginer
2000) or by selecting a different cost function. In addition, the non-uniqueness feature
of the solution is arguable from a mathematical point of view, but it is quite
acceptable from an engineering viewpoint while the same minimal cost is found.

Most significant is the fact that for each of the patterns found, the optimal trajectory
of temperature showed a decreasing trend over the cultivation period. This result was
in accordance with one of the hypothesis of the lettuce model that states possibility of
control levels of nitrates by lowering temperature. In general, the optimal control
trajectories of light, carbon dioxide and temperature were in agreement with the
predictions of the lettuce model and have confirmed some possibilities for control of
nitrate concentration when the shoot environment and artificial lighting are
considered. Nevertheless, further insight in the model is required to account for the
behavior observed in case of optimal trajectories of temperature.

Generally, highly multimodal optimal control problems are very difficult to solve by
gradient-based optimization methods since they require an initial control rather close
to the global optimum otherwise are easily trapped by any local solution (Chalabi,
1994, Lopez Cruz et al, 2002). Although the advantages of using a Differential
Evolution algorithm most clearly stand out in multimodal problems, the current case
clearly demonstrates the feasibility of the application of DE algorithms in solving
optimal control problems in agriculture.

5.3.9 Conclusions

Through the optimal control of nitrate concentration in lettuce the feasibility of using
a Differential Evolution algorithm to provide an initial optimal control trajectory for a
classical ACW (Adjustable Control-variation Weight) gradient algorithm was
demonstrated. Although in the current case no local optima were found, the
Differential Evolution algorithm potentially finds the global optimal solution whereas
the classical algorithm alone does not. On the other hand, the classical algorithm is
able to find an accurate solution of a continuous-time optimal control problem.
Therefore, taken together, i.e. using the Differential Evolution algorithms to compute
an initial feasible estimate of the optimal controls for the classical algorithm, an
hybrid algorithm is obtained that combines the advantages of both approaches.

Acknowledgements

The first author wishes to mention the support of the National Council of Science and
Technology (CONACyT) of Mexico to this research.

5.3.10 References

Bryson A.E. Jr., Ho Y.Ch., 1975. Applied Optimal Control, Hemisphere Publishing

105

Corporation, NY.

Bryson A. E. Jr., Dynamic Optimization, Addison Wesley, Menlo Park, 1999.

Chalabi Z. S., 1994. Optimal control methods for agricultural systems. In Chalabi Z.
S. and DayW. (Eds.) Proceedings of the second IFAC/ISHS workshop on
mathematical and control applications in agriculture and horticulture, Silsoe UK,
12-15, September 1994, pp. 221-227.

Fisher, M.M., Hlavackova-Schindler K., Reismann M, A global search procedure for
parameter estimation in neural spatial interaction modelling, Papers in Regional
Science 78, 1999, 119-134.

Ioslovich I, Seginer I., Acceptable nitrate concentration of greenhouse lettuce and
optimal control policy for temperature plant spacing and nitrate supply, Preprints
Agricontrol 2000, International conference on Modelling and control in
agriculture, horticulture and post-harvested processing, July 10-12, 2000,
Wageningen, The Netherlands, 89-94.

Lee, M.H., Ch. Han, Ch., Chang, K.S., Dynamic Optimization of a Continuous
Polymer Reactor Using a Modified Differential Evolution Algorithm, Ind. Eng.
Chem. Res. 38, 1999, 4825-4831.

Lopez Cruz I.L., van Willigenburg L.G., van Straten G., Optimal control of nitrate in
lettuce by gradient and differential evolution algorithms, IFAC/CIGR 4
International Workshop on Artificial Intelligence in Agriculture, June 6-8, 2001,
Budapest, Hungary, 123-128.

Lopez Cruz I.L., van Willigenburg L.G., van Straten G., 2002. Efficient Differential
Evolution algorithms for multimodal optimal control problems, Internal Report.
Systems and Control Group, Wageningen University, The Netherlands.

Nakayama, S., Plant factory and its prospects, Mathematical and Control Applications
in Agriculture and Horticulture (FAC Workshop Series No.l), 1991, 85-92.

McKenna, P., Summary of minor additions to original NICOLET model B3,
Agricultural Engineering Department, Technion-Israel Institute of Technology,
2000.

Price, K., 1999, An Introduction to Differential Evolution. In Corne D., Dorigo, M.
and Glover F., New Ideas in Optimization, Mc GrawHill, NY.

Seginer, I., Buwalda, F., Van Straten G., Nitrate concentration in greenhouse lettuce:
A modeling study, Acta Horticulturae 456, 1998, 189-197.

Seginer, I., Van Straten, G., Buwalda F., Lettuce growth limited by nitrate supply,
Acta Horticulturae 507,1999, 141-148.

Smith S., Stonier R., Applying Evolution Program Techniques to Constrained
Continuous Optimal Control Problems, Proceedings of the IEEE Conference on
Evolutionary-Computation, IEEE, Piscataway, NJ, USA, 1996, 285-290.

106

Stigter, J.D., Van Straten, G., Nitrate control of leafy vegetables: a classical dynamic
optimization approach, Preprints Agricontrol 2000, International conference on
Modelling and control in agriculture, horticulture and post-harvested processing,
July 10-12, 2000, Wageningen, The Netherlands, 95-99.

Storn R., System design by Constraint Adaptation and Differential Evolution, IEEE
Transactions on Evolutionary Computation 3, (1), 1999, 22-34.

Storn R. and Price K., 1997. Differential Evolution-A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces, Journal of Global Optimization
11,341-359.

Takatsuji M. ,1991. Fundamental study of plant factories, Mathematical and Control
Applications in Agriculture and Horticulture (FAC Workshop Series No.l), 81-84.

Weinreb A., 1985. Optimal control with multiple bounded inputs, PhD Thesis,
Stanford University.

Weinreb A. Bryson A.E. 1985. Optimal control of systems with hard control bounds.
IEEE Trans. Autom. Control, AC-30, 1135-1138.

Yarkoni, N., McKenna, P. 2000. NICOLET Simulation model B3, Agricultural
Engineering Department, Technion-Israel Institute of Technology.

Appendix A. Nicolet B3 model equations.

Mc,=FCav-hgFCm-FCg-Fas (1)

Mcs=FCvs-{\-hg)FCm (2)

FCm=p{I,CCa}f{Ma)ht{Ca} (Al)

FCm=Mae{T) (A2)

Fcg=9FCvs (A3)
FCvs=g{T}f{Ma}hg{CcJ (A4)

/{A/ a} = l - e (- ^ > (A5)

£I + a(CCa-C:)

e{T} = k-ec{T-T") (A7)
g{T} = ve{T} (A8)

hv {CCv} =
 l- (A9)

i+((i-6,)nv /(nv-7ccv))*'

K{CCv} = (A10)

CCv=-^- (All)

peNv+yCCv=nv (A12)

107

n v - n r = pv (Ai3)

v 1 0 0 ° ** ,LIA^
Yfn,=-r7—Mfm (A14)

pldens
Mfm =1000-A-Ma+Mdm (A15)
Mdm=ri0M(kMCv +Ma) + fi„tJ^Ma -£Ma) (A16)

^ JV03 = ^ " 'tfNOJN '^N03N (A17)

C«o3 = C„v x(1 -£>Ffl)/1000 (A18)

DFR = MimIMM (A19)

Appendix B. The Hamiltonian function and its derivative

Using a state space representation the optimal control problem presented in section 3
can be generically described as follows:
Let equations (1) and (2) be defined as
•
x = f(x,u), x(t0) (Bl)
where x(t) and u(t) represent an n-dimensional state vector and m-dimensional
control vector respectively. The cost function (3) is given by

J = </>(x(tf)) + (
f L(x, u)dt (B2)

where L(x,u) = I(t) and <f>{x(tA) is not defined in our particular problem. Equations

(4) and (5) are denoted by
W(x(tf)) = 0 (B3)

Now, according to optimal control theory, the Hamiltonian function can be written as
follows:
H(t) = L(x,u) + ZT(t)f(x,u) (B4)

T dH
where A = are the co-states Au and Au associated to the states. The

8x a a

derivative of the Hamiltonian function (Bryson and Ho, 1975, page 49) is
• 8L ,Tdf dH' _ „

H = — + A — + u (B5)
dt 8t du

The dynamic equations (Bl) as well as the function L do not depend explicitly on
dH

time t. And at the stationary condition = 0 is obtained. Therefore H = 0, and
du

H(x',X,u') = c for 0 < t < t{, where c is a constant (Bryson and Ho, 1975, Bryson,

1999).
Appendix C. Nicolet's model parameter values used during the optimizations.

Parameter Value Unit
a 1.7 m2 [ground] mol"'[C]
s 0.04-0.07 mol[C]/mol [PAP]
a 1.4e-3 ms"

108

c
k
7
9
v
A
P
•p*

c;

VoMC

VMMN

pldens

0.0693
0.25e-6

0.61
0.3
13

1/1200
6

20
0.0011

0.8

0.2

10

10

0.03

0.148

18

UC
s"1

m3Pa/mol[C]
dimensionless

mol[C] m"2 [ground]
nrWtC]-1

m3Pa/mol [N]

°C
mol[C] m"3

dimensionless

dimensionless

dimensionless

dimensionless

Kg [dw]/mol[C]

Kg [dw]/mol [N]

Plants m"

109

6. General discussion and conclusions

6.1 General discussion

The aim of this work was to evaluate the performance of efficient Evolutionary
Algorithms on optimal control problems. Within the class of Evolutionary Algorithms
several approaches based on Genetic Algorithms, either with binary or floating-point
representation, have been applied in the past. However, fundamental limitations have
been found which show clearly that Genetic Algorithms are not good candidates to
solve optimal control problems efficiently [1, 2]. Nowadays, it is well known that
GAs can solve optimally only separable optimisation problems through applying the
strategy 'one-parameter-at-time' and small mutations (pm<l). In this case the
required computational complexity is 0(nln(«))[l, 2] where n is the dimension of
the optimisation. When this strategy is applied to non-separable functions this
complexity grows to 0(exp(nlnn)) which is higher than that required by random
search [2]. Crossover operators speed up the convergence without modifying this
complexity. Therefore, many Evolutionary Algorithms based on classical GAs, which
apply small mutations and high crossover probabilities, are not suitable to solve
optimal control problems efficiently. This is confirmed by the results of this thesis.

Price [3] has pointed out that should a mutation mechanism be efficient enough to be
capable of removing the drawbacks of GAs, it should have the following properties: i)
use a zero-mean distribution for the generation of mutation vectors, if) use dynamic
scaling of the distribution to suit each variable and Hi) use correlated mutations to
ensure rotational invariance. It appears that Evolution Strategies, Evolutionary
Programming and Differential Evolution algorithms fulfil these requirements.

Evolution Strategies and Evolutionary Programming explicitly use a Gaussian
distribution with zero mean and standard deviation one, thereby satisfying property i.
Also they implement self-adaptation for scaling and orienting a mutation vector. This
implements property ii. To implement property Hi ES use a strategy matrix that adds
rotation angles to the scale factors. This increases the computational complexity of ES
to 0(n2) [3]. In practice the use of rotation angles can be avoided. Then the
demanded computational complexity is only 0(n). But in this case, probably, ES are
dealing worse with functions having interacting variables.

Differential Evolution algorithms are a family of evolutionary algorithms having the
properties i-iii while having only 0(n) computational complexity. Firstly, DE
guarantees a distribution with zero mean because random sampling from the
population guarantees that a difference vector xr - xr occurs as often as its opposite

x - x . Secondly, DE scales mutation step sizes to suit each variable by sampling

difference vectors, which present a scale comparable to each variable's interval of
improvement, from a population of them. Thirdly, DE is rotational invariant since the
mutation distribution generated by difference vectors will always have the same
orientation as the contour lines of the objective function. In addition, it seems that DE
algorithms have a property that Price has called a 'universal global mutation
mechanism' or 'globally correlated mutation mechanism', which seems to be the main

110

property responsible for the appealing performance of DE as global optimisers.
Additional features of DE algorithms are described in Price [3].

The previous discussion justifies the focus of this thesis on Differential Evolution
algorithms. Nonetheless, chapter 2.2 studied the potential application of the GEnetic
algorithm for Numerical Optimization for Constrained Problems (GENOCOP) to
optimal control problems. This algorithm has been reported in the literature as being
relatively efficient. Basically, GENOCOP uses a floating-point representation of the
solutions and some specialized genetic operators. Several researchers have reported
advantages of this algorithm over classical GAs and also over the Simulated
Annealing algorithm [4, 5]. It is easy to see that, in addition to the benefits given by
the floating-point representation, the use of a combination of several mutation and
crossover operators considerably increases the performance of evolutionary
algorithms similar to GENOCOP. Typically, the same mutation operators are used
several times at each generation [5]. In chapter 2.2 the selected frequencies were:
uniform mutation 4, non-uniform mutation 4, multi-non-uniform mutation 6 and
boundary mutation 4. Given the way all GENOCOP's mutation operators work we
would expect a low mutation probability, and accordingly, a computational
complexity similar to that demanded by the Breeder Genetic algorithm. This issue
deserves further investigation. For several applications the use of more than one
mutation operator, like in GENOCOP, was reported to account for an improved
algorithm performance. It can be expected that the introduction of the multi-non
uniform mutation operator, which is applied to all the variables of a chromosome will
have an additional beneficial effect, since in that situation the probability of mutation
is pm « 1. The number of function evaluations required by GENOCOP to obtain the
solutions reported in chapter 2.2 was: 80,000-180,000 for the first problem, 180,000-
300,000 for the second and 120,000 for the third. Since the dimension of the
optimisation problem was low, serious limitations are expected when this dimension
increases. In addition, in contrast to Differential Evolution, GENOCOP is a more
complicated evolutionary algorithm with several parameters that need to be tuned.
Despite this, with the proposed improvements (use of multi-non uniform mutation), it
is worthwhile to investigate whether GENOCOP can compare with DE algorithms.

In chapter 3 Differential Evolutionary algorithms were investigated in more detail. A
number of optimal control problems that are difficult to solve, or are unsolvable by
using classical methods, were selected to illustrate several advantages of DE
algorithms. The results indicate a relationship between the multi-modality of the
problem and the proper choice of the algorithm parameters crossover constant (CR)
and the mutation factor (F). Additional work on other multi-modal optimal control
problems (especially those with a larger dimension) is needed to further confirm this.
The possibility, suggested by Price [3], to solve multi-modal optimal control problems
using small population sizes to achieve the highest possible speed of convergence,
was investigated. This is especially important, because for optimal control problems,
each objective function evaluation involves a system simulation. Our results
confirmed this possibility.

Several of the resolved optimal control problems have bounds on the controls.
Originally DE works only for unconstrained problems. Whenever unfeasible solutions
were generated by the DE algorithm they were set to the limit they exceeded. Price
has mentioned that this method probably has the effect of reducing the diversity of the

111

population [3]. However, our experience was that this strategy worked well. A
comparison of three possible techniques to deal with the control bounds is presented
in table 1 for the case of the DE/rand/1/bin algorithm. The first technique (I)
randomly selects a value from the interval a^t) < ut(t) < P£t); i = l,..,m each time
an unfeasible control value is generated [6]. The second technique (II) sets offending
control values to the limit they exceed (see equation 14 in chapter 3). The third
technique (III) is the one suggested by Price [3] which is described by the following
equation:

{a „ + a,) 12

(aj,+Pj)'2
if

if
a M < a j

> Pj, j = l,2,-,d, ;? = 1,2,...,// (1)
ajt otherwise

where aj{ represents a variable after the application of mutation and crossover
operators. The selected DE algorithm parameters were // = 20, CR = 0.5 and
F = 0.5. Using each technique the algorithm was executed ten times. Almost the
same solutions were obtained while our technique (II) required the least number of
function evaluations.

Table 1. Averaged results of comparison of three methods for constrained control inputs in
DE/rand/1/bin on CSTR multimodal optimal control problem
Strategy
Generations
J*
CE (%)
Function evaluations

I
244.5

0.135586
100

4890

II
220

0.135584
100

4400

III
221.3

0.135584
100

4426

Table 2 presents similar results which relate to the highly multi-modal optimal control
problem of the tubular reactor, described in chapter 3. The population size was
// = 25, the crossover constant CR = 0 and the mutation parameter F = 0.9. Again
the algorithm was executed ten times.

Table 2. Averaged results of comparison of three methods for constrained control inputs in
DE/rand/1/bin on the bifunctional catalyst blend optimal control problem
Strategy
Generations
J*
CE (%)
Function evaluations

I
235

10.09184
100

5875

11
126.9

10.09410
100

3172.50

III
194.75

10.09308
80

4868.75

Again our technique (II) required the least number of function evaluations and
therefore seems to be preferable.

The results of chapter 3 regarding Breeder Genetic algorithms (BGA's) confirm that
these algorithms are not good candidates to solve multi-modal optimal control
problems efficiently. However, the use of sub-populations improves the efficiency of
the BGA's. This option deserves further study.

The results regarding DE algorithms in chapter 3 confirm that these are more efficient
than other Evolutionary Algorithms in solving optimal control problems. The

112

efficiency of DE's turned out to be comparable with that of the Iterative Dynamic
Programming (IDP) algorithm, which is especially designed for optimal control
problems. Moreover, DE algorithms do not demand extensive preliminary
experimentation with algorithm parameter values as is required by IDP. In spite of the
efficiency already achieved with DE algorithms there still remains the challenge of
further improving their efficiency.

In chapter 4 the problem of improving the efficiency of DE algorithms through
automatic adjustment of the algorithm parameters was investigated. Price has
recognized the fact that keeping the algorithm parameters in DE constant is not likely
to be an optimal solution [3]. Undoubtedly, our strategy is only a first attempt and
could be improved in the future. For instance, it still does not modify the population
size. Its main idea is to incorporate information present in the population to select the
appropriate values of the algorithm parameters mutation and crossover. Although the
efficiency improved one would expect further improvement by designing new
heuristic rules based on additional information on the population to modify the
population size as well. This is an open field of research for the future.

To explore some potential practical applications of Differential Evolution algorithms
to optimal control problems that appear in agriculture two main issues were addressed
in chapters 5.2 and 5.3. Firstly, the DE/best/2/bin algorithm was applied to
approximate a solution of the continuous-time optimal control problem of nitrate
concentration in lettuce. A penalty function approach was applied to deal with
terminal state constraints. General characteristics of optimal control problems in
agriculture (i.e. greenhouse cultivation) are non-linearity and (in some cases) non-
convexity, which can induce a multiplicity of solutions [7]. Although the optimal
control problem described and solved in chapter 5.2 is highly non-linear, it seems that
it is not multi-modal. Therefore a classical method can solve it more efficiently and
accurately than a direct method like Differential Evolution. Nonetheless, there are two
options for improvement of the results obtained by DE that might be studied in greater
detail; a larger number of time intervals and variable-length time intervals. The latter
constitutes optimisation of the piecewise constant control parameterisation as well.
This will increase the dimension of the optimisation problem but as DEAs are
efficient this should not present a major problem. Another issue that has not yet been
investigated is the use of a more sophisticated parameterisation of the controls like
linear piece-wise or cubic B-splines polynomials.

In chapter 5.3 a DE algorithm is used to approximate the global solution of an optimal
control problem sufficiently close after which a local gradient-based search method is
used to obtain it accurately and efficiently. Unfortunately the particular optimal
control problem under consideration turned out not to be multimodal, while this
approach is specifically promising for multi-modal optimal control problems. Still the
results indicate clearly the further improvement of the efficiency of this global
optimal control algorithm. These types of algorithms are also an important area for
future research.

6.2 Conclusions

The feasibility and possible advantages of applying Evolutionary algorithms to solve
complex optimal control problems being high dimensional, multi-modal and non-

113

differentiable were investigated. This study revealed that DE algorithms are
significantly more efficient than other Genetic Algorithms, such as Breeder Genetic
Algorithms (BGA), when applied to multi-modal optimal control problems since they
do not share several theoretical and practical limitations that other Genetic Algorithms
have. The efficiency of DE is comparable to the efficiency of Iterative Dynamic
Programming (IDP), a global optimisation approach specifically designed for optimal
control. Moreover the DE algorithms turned out to be significantly less sensitive to
problems concerning the selection or tuning of algorithm parameters and the
initialisation of the algorithm.

Although it is not a DE algorithm, the GENOCOP algorithm is considered to be one
of the most efficient genetic algorithms with real-valued individuals and specialized
evolutionary operators. This algorithm was the starting point of our research. In
Chapter 2 it was applied to some optimal control problems from chemical
engineering. These problems were high dimensional, non-linear, multivariable, multi­
modal and non-differentiable. Basically with GENOCOP the same solutions were
obtained as with Iterative Dynamic Programming. Moreover GENOCOP is more
successful in locating the global solution in comparison with for instance IDP and
other local optimisation algorithms. GENOCOP'S efficiency however is rather poor
and the algorithm parameter tuning rather complicated. This motivated us to seek for
more efficient evolutionary algorithms.

Mathematical arguments found in the literature state that DE algorithms outperform
other Genetic algorithms in terms of computational efficiency. Therefore in chapter 3,
DE algorithms, generally used to solve continuous parameter optimisation problems,
were used to solve two multi-modal (benchmark) optimal control problems. Also
some Breeder Genetic Algorithms (BGA) were applied to solve these problems. The
results obtained with these algorithms were compared to one another, and to the
results obtained with IDP. The comparison confirmed that DE algorithms stand out in
terms of efficiency as compared to the Breeder Genetic algorithms. Moreover, in
contrast to the majority of Evolutionary Algorithms which have many algorithm
parameters that need to be selected or tuned, DE has only three algorithm parameters
that have to be selected or tuned. These are the population size (//), the crossover
constant (CR) and the differential variation amplification (F) . The population size
plays a crucial role in solving multi-modal optimal control problems. Selecting a
smaller population size enhances the computational efficiency but reduces the
probability of finding the global solution. During our investigations we tried to find
the best trade-off. One of the most efficient DE algorithms is denoted by
DE/best/2/bin. All the investigated DE algorithms solved the two benchmark multi­
modal optimal control problems properly and efficiently. The computational
efficiency achieved by the DE algorithms in solving the first low multi-modal
problem, was comparable to that of IDP. When applied to the second, highly multi­
modal problem, the computational efficiency of DE was slightly inferior to the one of
IDP, after tuning of the algorithm parameters. However, the selection or tuning of the
algorithm parameters for IDP is more difficult and more involved.

From our investigation the following guidelines were obtained for the selection of the
DE algorithm parameters. Take the population size less than or equal to two times the
number of variables to be optimised that result from the control parameterisation of
the original optimal control problem (//<2«u). Highly multi-modal optimal control

114

problems require a large value of the differential variation amplification (F>0 .9)
and a very small or zero value for the crossover constant (0 < CR < 0.2). Low multi­
modal optimal control problems need a medium value for the differential variation
amplification (0.4 < F < 0.6) and a large or medium value for the crossover constant
(0.2 <CR <0.5). In contrast to IDP, finding near-optimal values for the algorithm
parameters is very simple for DE algorithms.

Generally, the DE algorithm parameters are kept constant during the optimization
process. A more effective and efficient algorithm may be obtained if they are adjusted
on-line. In Chapter 4, a strategy that adjusts the differential variation amplification
(F) and the crossover constant (CR) on-line using a measure of the diversity of the
individuals in the population, was proposed. Roughly, the proposed strategy takes
large values for F and small values for CR at the beginning of the optimization in
order to promote a global search. When the population approaches the solution, F is
decreased in order to promote a local search, and the crossover parameter CR is
enlarged to increase the speed of convergence. When implemented on the DE
algorithm DE/rand/1/bin and applied to the two benchmark multi-modal optimal
control problems, the computational efficiency significantly improved and also the
probability of locating the global solution.

To judge the opportunities and advantages of using Genetic Algorithms to solve
problems related to optimal control, in chapter 5 several engineering applications
concerning optimal greenhouse cultivation control were considered. In Chapter 5.1
genetic algorithms with binary individuals (Simple Genetic algorithm) and floating­
point representations (GENOCOP) are used to estimate some of the parameters of a
two-state dynamic model of a lettuce crop, the so-called NICOLET model. This
model is intended to predict dry weight and nitrate content of lettuce at harvest time.
Parameter estimation problems usually suffer from local minima. This study showed
that Genetic Algorithms are suitable to calibrate the parameters of a dynamic model.
However the required computation time is significant. Partly this is due to the high
computational load of a single function evaluation which for parameter optimisation
problems involves a system simulation. Even though parameter optimisation is very
often performed off-line, thus making computation time perhaps less important, more
efficient evolutionary algorithms like DE are to be preferred.

In chapter 5.2 an optimal control problem of nitrate concentration in a lettuce crop
was solved by means of two different algorithms. The ACW (Adjustable Control-
variation Weight) gradient algorithm which searches for local solutions and the DE
algorithm DE/best/2/bin that searches for a global solution. The dynamic model is a
modified two-state dynamic model of a lettuce crop (NICOLET B3) and the control
problem has a fixed final time and control and terminal state constraints. The DE
algorithm was extended in order to deal with this. The results showed that this
problem probably does not have local solutions and that the control parameterisation
required by the DE algorithm causes some difficulties in accurately approximating the
continuous solution obtained by the ACW algorithm. On the other hand the
computational efficiency of the evolutionary algorithm turned out to be impressive.
An almost natural conclusion therefore is to combine a DE algorithm with a gradient
algorithm.

115

In chapter 5.3 the combination of a DE algorithm and a first order gradient algorithm
is used to solve an optimal control problem. The DE algorithm is used to approximate
the global solution sufficiently close after which the gradient algorithm can converge
to it efficiently. This approach was successfully tried on the optimal control of nitrate
in lettuce, which unfortunately in this case, seems to have no local solutions. Still the
feasibility of this approach, which is especially interesting for multi-modal optimal
control problems, was clearly demonstrated.

6.3 References

[1] Muhlenbein H., Schlierkamp-Voosen D., Predictive Models for the Breeder
Genetic Algorithm, I. Continuous Parameter Optimization, Evolutionary
Computation 1 (1), 1993, 25-50.

[2] Salomon R., Re-evaluating genetic algorithm performance under coordinate
rotation of benchmark functions. A survey of some theoretical and practical aspects
of genetic algorithms, BioSystems 39 (1996) 263-278.

[3] Price K. V. An Introduction to Differential Evolution in Corne D., Dorigo, M.
and Glover F., New Ideas in Optimization, Mc GrawHill, 1999.

[4] Michalewicz Z., Genetic Algorithms + Data Structures = Evolution Programs,
Third, revised and extended edition, Springer-Verlag, 1996.

[5] Houck, C , Joines, J.A., Kay, M.G ., A genetic algorithm to function optimization:
A MATLAB implementation, NCSU-IE TR 95-09, 1995.

[6] Lampinen J., Solving problems subject to multiple nonlinear constraints by
differential evolution, in Radek Matousek and Pavel Osmera (eds.) Proceedings of
MENDEL 2001, 7th International conference on Soft Computing, June 6-8, 2001,
Brno, Czech Republic.

[7] Chalabi Z. S., Optimal control methods for agricultural systems, in Chalabi Z. S.
and DayW. (editors) Proceedings of the second IFAC/ISHS workshop on
mathematical and control applications in agriculture and horticulture, Silsoe UK,
12-15 September 1994, pp. 221-227.

[8] Storn R. and Price K., Differential Evolution -A Simple and Efficient Heuristic
for Global Optimization over Continuous Spaces, Journal of Global Optimization
11:341-359,1997.

116

Summary

If optimal control problems are solved by means of gradient based local search
methods, convergence to local solutions is likely. Recently, there has been an
increasing interest in the use of global optimisation algorithms to solve optimal
control problems, which are expected to have local solutions. Evolutionary
Algorithms (EAs) are global optimisation algorithms that have mainly been applied to
solve static optimisation problems. Only rarely Evolutionary Algorithms have been
used to solve optimal control problems. This may be due to the belief that their
computational efficiency is insufficient to solve this type of problems. In addition, the
application of Evolutionary Algorithms is a relatively young area of research. As
demonstrated in this thesis, Evolutionary Algorithms exist which have significant
advantages over other global optimisation methods for optimal control, while their
efficiency is comparable.

The purpose of this study was to investigate and search for efficient evolutionary
algorithms to solve optimal control problems that are expected to have local solutions.
These optimal control problems are called multi-modal. An important additional
requirement for the practical application of these algorithms is that they preferably
should not require any algorithm parameter tuning. Therefore algorithms with less
algorithm parameters should be preferred. In addition guidelines for the choice of
algorithm parameter values, and the possible development of automatic algorithm
parameter adjustment strategies, are important issues.

This study revealed that Differential Evolution (DE) algorithms are a class of
evolutionary algorithms that do not share several theoretical and practical limitations
that other Genetic Algorithms have. As a result they are significantly more efficient
than other Genetic Algorithms, such as Breeder Genetic Algorithms (BGA), when
applied to multi-modal optimal control problems. Their efficiency is comparable to
the efficiency of Iterative Dynamic Programming (IDP), a global optimisation
approach specifically designed for optimal control. Moreover the DE algorithms
turned out to be significantly less sensitive to problems concerning the selection or
tuning of algorithm parameters and the initialisation of the algorithm.

Although it is not a DE algorithm, the GENOCOP algorithm is considered to be one
of the most efficient genetic algorithms with real-valued individuals and specialized
evolutionary operators. This algorithm was the starting point of our research. In
Chapter 2 it was applied to some optimal control problems from chemical
engineering. These problems were high dimensional, non-linear, multivariable, multi­
modal and non-differentiable. Basically with GENOCOP the same solutions were
obtained as with Iterative Dynamic Programming. Moreover GENOCOP is more
successful in locating the global solution in comparison with other local optimisation
algorithms. GENOCOP'S efficiency however is rather poor and the algorithm
parameter tuning rather complicated. This motivated us to seek for more efficient
evolutionary algorithms.

Mathematical arguments found in the literature state that DE algorithms outperform
other Evolutionary Algorithms in terms of computational efficiency. Therefore in
Chapter 3, DE algorithms, generally used to solve continuous parameter optimisation

117

problems, were used to solve two multi-modal (benchmark) optimal control problems.
Also some Breeder Genetic Algorithms (BGA) were applied to solve these problems.
The results obtained with these algorithms were compared to one another, and to the
results obtained with IDP. The comparison confirmed that DE algorithms stand out in
terms of efficiency as compared to the Breeder Genetic algorithms. Moreover, in
contrast to the majority of Evolutionary Algorithms, which have many algorithm
parameters that need to be selected or tuned, DE has only three algorithm parameters
that have to be selected or tuned. These are the population size (ju), the crossover
constant (CR) and the differential variation amplification (F) . The population size
plays a crucial role in solving multi-modal optimal control problems. Selecting a
smaller population size enhances the computational efficiency but reduces the
probability of finding the global solution. During our investigations we tried to find
the best trade-off. One of the most efficient DE algorithms is denoted by
DE/best/2/bin. All the investigated DE algorithms solved the two benchmark multi­
modal optimal control problems properly and efficiently. The computational
efficiency achieved by the DE algorithms in solving the first low multi-modal
problem, was comparable to that of IDP. When applied to the second highly multi­
modal problem, the computational efficiency of DE was slightly inferior to the one of
IDP, after tuning of the algorithm parameters. However, the selection or tuning of the
algorithm parameters for IDP is more difficult and more involved.

From our investigation the following guidelines were obtained for the selection of the
DE algorithm parameters. Take the population size less than or equal to two times the
number of variables to be optimised that result from the control parameterisation of
the original optimal control problem (//<2nu). Highly multi-modal optimal control

problems require a large value of the differential variation amplification (F>0 .9)
and a very small or zero value for the crossover constant (0 < CR < 0.2). Low multi­
modal optimal control problems need a medium value for the differential variation
amplification (0.4 < F < 0.6) and a large or medium value for the crossover constant
(0.2 <CR <0.5). In contrast to IDP, finding near-optimal values for the algorithm
parameters is very simple for DE algorithms.

Generally, the DE algorithm parameters are kept constant during the optimization
process. A more effective and efficient algorithm may be obtained if they are adjusted
on-line. In Chapter 4, a strategy that on-line adjusts the differential variation
amplification (F) and the crossover constant (CR) using a measure of the diversity
of the individuals in the population, was proposed. Roughly, the proposed strategy
takes large values for F and small values for CR at the beginning of the optimization
in order to promote a global search. When the population approaches the solution, F
is decreased in order to promote a local search, and the crossover parameter CR is
enlarged to increase the speed of convergence. When implemented on the DE
algorithm DE/rand/1/bin and applied to the two benchmark multi-modal optimal
control problems, the computational efficiency significantly improved and also the
probability of locating the global solution.

To judge the opportunities and advantages of using Evolutionary Algorithms to solve
problems related to optimal control, in Chapter 5 several engineering applications
concerning optimal greenhouse cultivation control are considered. In Chapter 5.1
genetic algorithms with binary individuals (Simple Genetic Algorithm) and floating-

118

point representation (GENOCOP) for the individuals are used to estimate some of the
parameters of a two-state dynamic model of a lettuce crop, the so-called NICOLET
model. This model is intended to predict dry weight and nitrate content of lettuce at
harvest time. Parameter estimation problems usually suffer from local minima. This
study showed that Evolutionary Algorithms are suitable to calibrate the parameters of
a dynamic model. However the required computation time is significant. Partly this is
due to the high computational load of a single objective function evaluation, which for
parameter optimisation problems involves a system simulation. Even though
parameter optimisation is very often performed off-line, thus making computation
time perhaps less important, more efficient evolutionary algorithms like DE are to be
preferred.

In Chapter 5.2 an optimal control problem of nitrate concentration in a lettuce crop
was solved by means of two different algorithms. The ACW (Adjustable Control-
variation Weight) gradient algorithm, which searches for local solutions, and the DE
algorithm DE/best/2/bin that searches for a global solution. The dynamic system is a
modified two-state dynamic model of a lettuce crop (NICOLET B3) and the control
problem has a fixed final time and control and terminal state constraints. The DE
algorithm was extended in order to deal with this. The results showed that this
problem probably does not have local solutions and that the control parameterisation
required by the DE algorithm causes some difficulties in accurately approximating the
continuous solution obtained by the ACW algorithm. On the other hand the
computational efficiency of the evolutionary algorithm turned out to be impressive.
An almost natural conclusion therefore is to combine a DE algorithm with a gradient
algorithm.

In Chapter 5.3 the combination of a DE algorithm and a first order gradient algorithm
is used to solve an optimal control problem. The DE algorithm is used to approximate
the global solution sufficiently close after which the gradient algorithm can converge
to it efficiently. This approach was successfully tried on the optimal control of nitrate
in lettuce, which unfortunately in this case, seems to have no local solutions. Still the
feasibility of this approach, which is important for all types of optimal control
problems of which it is unknown a-priori whether they have local solutions, was
clearly demonstrated.

Finally, in Chapter six this thesis ends with an overall discussion, conclusions and
suggestions for future research.

119

Samenvatting

Als optimale besturingsproblemen worden opgelost met locale gradient methodes is
convergentie naar lokale oplossingen waarschijnlijk. Recentelijk is er een toenemende
interesse voor globale optimalisatie algoritmen voor het oplossen van optimale
besturingsproblemen waarvan de verwachting is dat ze lokale oplossingen hebben.
Evolutionaire Algoritmen zijn globale optimalisatie algoritmen die tot nu toe
voornamelijk zijn gebruikt voor het oplossen van statische optimalisatie problemen. In
slechts enkele gevallen zijn dit soort algoritmen gebruikt voor het oplossen van
optimale besturingsproblemen. Dit zou kunnen worden veroorzaakt door het geloof
dat dit soort algoritmen niet efficient genoeg is voor het oplossen van deze categorie
problemen. Daar komt bij dat Evolutionaire Algoritmen een betrekkelijk nieuw
onderzoeksterrein vormen. In dit proefschrift is aangetoond dat er Evolutionaire
Algoritmen bestaan die belangrijke voordelen hebben ten opzichte van andere globale
optimalisatie methodes voor het oplossen van optimale besturingsproblemen, terwijl
hun efficiency vergelijkbaar is.

Het doel van deze studie was het zoeken naar en onderzoeken van efficiente
Evolutionaire Algoritmen voor het oplossen van optimale besturingsproblemen
waarvan verwacht wordt dat ze locale oplossingen bezitten. Dit soort optimale
besturingsproblemen wordt in het Engels aangeduid met de term multi-modal. Een
belangrijke additionele voorwaarde voor de praktische toepassing van dit soort
algoritmen is dat ze bij voorkeur geen parameter aanpassing behoeven. Daarom
verdienen algoritmen met weinig parameters de voorkeur. Bovendien zijn richtlijnen
voor de keuze van algoritme parameters, en de mogelijke ontwikkeling van
strategieen voor het automatisch aanpassen van algoritme parameters, van groot
belang.

Deze studie heeft laten zien dat Differential Evolution (DE) algoritmen een klasse van
Evolutionaire Algoritmen is zonder de praktische en theoretische bezwaren die andere
evolutionaire (genetische) algoritmen hebben. Daarom zijn ze belangrijk meer
efficient dan andere evolutionaire (genetische) algoritmen, zoals de Breeder Genetic
Algoritmen (BGA), wanneer ze worden gebruikt voor het oplossen van optimale
besturingsproblemen die locale minima bezitten. De efficiency is vergelijkbaar met de
efficiency van Iteratief Dynamisch Programmeren (IDP), een globale optimalisatie
methode speciaal ontworpen voor optimale besturingsproblemen. Bovendien blijken
de DE algoritmen belangrijk minder gevoelig voor problemen die verband houden
met het aanpassen van algoritme parameters en de initialisatie van de algoritmen.

Hoewel het geen DE algoritme is, wordt het zogenaamde GENOCOP algoritme
beschouwd als een van de meest efficiente Evolutionaire (genetische) Algoritmen met
individuen gerepresenteerd door reele getallen en met specialistische evolutionaire
operatoren. Dit algoritme vormde het startpunt voor dit onderzoek. In hoofdstuk 2
werd het toegepast op een aantal optimale besturingsproblemen uit de chemie. Deze
problemen zijn hoog dimensionaal, niet lineair, multivariabel, multi-modal, en niet
differentieerbaar. Met GENOCOP werden in essentie dezelfde oplossingen gevonden
als met Iteratief Dynamisch Programmeren. Bovendien is GENOCOP beter in het
vinden van het globale minimum in vergelijking met andere, locale optimalisatie
algoritmen. De efficiency van GENOCOP is echter vrij pover en het aanpassen van de

120

algoritme parameters vrij ingewikkeld. Daarom hebben we gezocht naar meer
efficiente Evolutionaire Algoritmen.

Wiskundige argumenten, gevonden in de literatuur, stellen dat DE algoritmen beter
zijn, voor wat betreft hun efficiency, dan andere Evolutionaire Algoritmen. DE
algoritmes die in het algemeen worden gebruikt voor continue parameter optimalisatie
problemen werden daarom in hoofdstuk 3 gebruikt voor het oplossen van optimale
besturingproblemen met locale minima (benchmarks). Daarnaast werden deze
problemen opgelost met een aantal BGA algoritmen. De resultaten werden met elkaar
vergeleken en met die verkregen door middel van Iteratief Dynamisch Programmeren.
Deze vergelijking bevestigde dat DE algoritmes efficienter zijn dan de BGA
algoritmen. Bovendien, in tegenstelling tot andere Evolutionaire Algoritmen welke
een groot aantal parameters hebben die moeten worden aangepast, behoeven er in DE
algoritmen slechts drie parameters te worden aangepast of gekozen. Dit zijn de
populatie grootte (/x) de crossover (CR) en de differential variation amplification
(F). De populatie grootte speelt een cruciale rol bij het oplossen van optimale
besturingsproblemen. Een kleine populatiegrootte bevordert de efficiency van het
algoritme maar vermindert de kans op het vinden van de globale oplossing. Tijdens
het onderzoek hebben we gezocht naar het beste compromis. Een van de meest
efficiente DE algoritmen wordt aangeduid met DE/best/2/bin. Alle onderzochte DE
losten de twee optimale besturingsproblemen (benchmarks) op. De efficiency van het
DE algoritme was vergelijkbaar met die van IDP voor het eerste probleem dat naast
het globale slechts een locale oplossing had. Toegepast op het tweede probleem,
welke een groot aantal locale minima bezat, was het DE algoritme iets minder
efficient na het aanpassen van de parameters van beide algoritmen. Echter het
aanpassen van de parameters in het IDP algoritme is moeilijker en vraagt meer tijd.

Ons onderzoek leverde de volgende richtlijnen op voor het selecteren van de drie DE
algoritme parameters. Neem de populatiegrootte kleiner of gelijk aan twee keer het
aantal te optimaliseren variabelen die voortvloeien uit de stuurparameterisatie van het
optimale besturingsprobleem. (ju < 2nu). Problemen met veel locale minima vereisen
een grote waarde van de differential variation amplification (F>0 .9) en een heel
kleine waarde of een waarde nul voor de crossover constante (0<Ci?<0.2).
Problemen met weinig locale minima vereisen een gemiddelde waarde van de
differential variation amplification (0.4 < F < 0.6) en een hoge of gemiddelde waarde
van de crossover constante (0.2 < CR <0.5). In tegenstelling tot IDP is het vinden
van goede waarden voor de algoritme parameters van een DE algoritme erg
eenvoudig.

In het algemeen worden de DE algoritme parameters constant gehouden tijdens de
optimalisatie. Een meer effectief en efficient algoritme kan worden verkregen als deze
tijdens de optimalisatie worden aangepast. In hoofdstuk 4 werd daartoe een strategie
ontwikkeld en toegepast die de differential variation amplification (F) en de
crossover constant (CR) tijdens de optimalisatie aanpast, op grand van een maat voor
de diversiteit van de populatie. Ruwweg worden in het begin grote waarden voor F
gekozen en kleine voor CR. Als de populatie neigt naar de oplossing wordt F
verlaagd om het locaal zoeken te bevorderen terwijl CR wordt verhoogd om de
convergentiesnelheid op te voeren. Als deze strategie wordt geimplementeerd neemt

121

de efficiency significant toe en ook neemt de kans toe op het vinden van het globale
minimum bij toepassing van het DE algoritme DE/rand/1/bin op de twee benchmarks.

Teneinde de mogelijkheden van het gebruik van Evolutionaire Algoritmen te
beoordelen, voor het oplossen van optimale besturingsproblemen, werden in
hoofdstuk 5 een aantal toepassingen die betrekking hebben op klimaat regeling in
kassen beschouwd. In hoofdstuk 5.1 werden genetische algoritmen met binair
gecodeerde individuen (Simple Genetic Algorithms) en algoritmen met een floating­
point representatie (GENOCOP) van individuen toegepast voor het schatten van een
aantal parameters van het dynamisch model met twee toestanden van een krop sla
(NICOLET model). Dit model beschrijft het drooggewicht en de nitraat concentratie
van de krop sla. Parameter optimalisatie problemen bezitten vaak locale minima. Het
onderzoek toonde aan dat Evolutionaire Algoritmen geschikt zijn voor het kalibreren
van de parameters van dit model. De rekentijd die dit vraagt is echter aanzienlijk. Dit
is gedeeltelijk te wijten aan de grote rekentijd die een functie evaluatie vergt, omdat
een functie evaluatie een simulatie vergt van het systeem. Hoewel parameter
optimalisatie (kalibratie) meestal off-line plaatsvindt, en de daarvoor benodigde
rekentijd derhalve niet kritisch is, zijn meer efficiente Evolutionaire Algoritmen, zoals
DE algoritmen, te prefereren.

In hoofdstuk 5.2 werd een optimaal besturingsprobleem aangaande de nitraat
concentratie in sla opgelost met behulp van twee verschillende algoritmen. Het ACW
(Adjustable Control Weight) gradient algoritme, welke locaal zoekt, en het DE
algoritme DE/best/2/bin welke zoekt naar een globale oplossing. Het dynamisch
model (NICOLET B3) heeft twee toestanden en is een gemodificeerde versie van het
eerder beschreven model. Het optimale besturingsprobleem heeft een vrije eindtijd,
een begrensde sharing en eindvoorwaarden. Het DE algoritme werd overeenkomstig
uitgebreid. De resultaten tonen dat dit probleem waarschijnlijk geen locale
oplossingen heeft. De stuurparameterisatie, nodig voor het toepassen van het DE
algoritme, veroorzaakt lichte problemen bij het nauwkeurig benaderen van de
continue oplossing die wordt gevonden door het ACW algoritme. Aan de andere kant
toont dit probleem de indrukwekkende efficiency van het DE algoritme. Een voor de
hand liggend idee is beide algoritmen te combineren.

Deze combinatie werd onderzocht in hoofdstuk 5.3. Een DE algoritme werd gebruikt
voor het voldoende nauwkeurig benaderen van de globale oplossing waarna een
gradient algoritme werd gebruikt voor efficiente convergentie naar dit globale
minimum. Deze aanpak is met succes toegepast op het optimale besturingsprobleem
betreffende regeling van de nitraat concentratie in sla, welke ongelukkigerwijs, slechts
een globaal minimum lijkt te bezitten. Niettemin is de toepasbaarheid van deze
aanpak, welke van belang is voor alle optimale besturingsproblemen waarvan niet a-
priori bekend is of ze locale minima bezitten, duidelijk aangetoond.

Tenslotte eindigde dit proefschrift in hoofdstuk 6 met een discussie, conclusies en
aanbevelingen voor toekomstig onderzoek.

122

Resumen

Si problemas de control optimo son resueltos mediante metodos locales de busqueda
basados en gradientes es muy probable su convergencia a soluciones locales.
Recientemente ha aumentado el interes en la aplicacion de algoritmos globales de
optimizacion para resolver problemas de control optimo que se espera posean
soluciones locales. Los Algoritmos Evolutivos (AEs) son algoritmos globales de
optimizacion que han sido usados principalmente para solucionar problemas de
optimizacion estatica. Raramente se han aplicado algoritmos evolutivos para resolver
problemas de control optimo debido a que se cree no son suficientemente eficientes
para esta clase de problemas. Ademas la aplicacion de algoritmos evolutivos es un
area de investigacion relativamente reciente. Como es demostrado en esta tesis, hay
algoritmos evolutivos que tienen ventajas significativas sobre otros metodos globales
de optimizacion mientras que su eficiencia es comparable.

El objetivo de este estudio fue investigar y buscar algoritmos evolutivos eficientes
para resolver problemas de control optimo que se espera tengan soluciones locales.
Estos problemas de control optimo son llamados multimodales. Un importante
requerimiento adicional para la aplicacion practica de estos algoritmos es que no
requieran algun ajuste de parametros. Por eso deberan preferirse algoritmos con el
menor numero de parametros. Aparte de eso, la obtencion de recomendaciones para la
election de los valores de los parametros del algoritmo y el desarrollo de estrategias
para un ajuste automdtico de los mismos, son cuestiones importantes.

Este estudio revelo que los algoritmos Evolucion Diferencial (DE) son una clase de
algoritmos evolutivos que no comparten las limitaciones teoricas y practicas que
poseen los Algoritmos Geneticos. Como resultado son significativamente mas
eficientes que otros Algoritmos Geneticos como los Algoritmos Geneticos Breeder
(BGA) cuando son aplicados a problemas de control optimo que tienen multiples
soluciones. Su eficiencia es comparable a aquella de Programacion Dinamica Iterativa
(IDP) que es un enfoque global de optimizacion especificamente disenado para
problemas de control optimo. Ademas los algoritmos DE resultaron ser menos
sensibles en lo que se refiere a problemas de selection y ajuste de sus parametros asi
como a su initialization.

Aunque GENOCOP no es un algoritmo basado en Evolucion Diferencial, es
considerado como uno de los algoritmos geneticos mas eficientes que usa una
representation de individuos como valores reales y operadores evolutivos
especializados. Este algoritmo fue el punto de partida de nuestra investigacion. En el
Capitulo 2 este algoritmo fue aplicado a algunos problemas de control optimo
encontrados frecuentemente en ingenieria quimica. Estos problemas se caracterizan
por ser altamente dimensionales, no lineales, multivariable, multimodal y no
diferenciables. GENOCOP obtuvo las mismas soluciones que el algoritmo IDP.
Aparte de eso GENOCOP es mas exitoso que otros algoritmos locales de
optimizacion en encontrar el optimo global. Sin embargo la eficiencia de GENOCOP
es muy pobre y la afinacion de sus parametros bastante complicada. Esta fue nuestra
motivation para investigar otros algoritmos evolutivos mas eficientes.

123

Argumentos matematicos encontrados en la literature establecen que los algoritmos
DE superan a otros algortimos evolutivos en cuanto a eficiencia computacional se
refiere. Por lo tanto en el Capitulo 3 los algoritmos DE que generalmente se usan para
resolver problemas de optimizacion de parametros continuos fueron usados para
solucionar dos problemas de control optimo multimodales (benchmark). Algunos
algoritmos BGA fueron aplicados tambien. Los resultados obtenidos fueron
comparados entre ellos y tambien con aquellos obtenidos con IDP. Esta comparacion
confirmo que los algoritmos DE destacan en terminos de eficiencia comparados con
los algoritmos BGA. Mas aun, a diferencia de la mayoria de algoritmos evolutivos,
los cuales tienen muchos parametros que es necesario seleccionar o ajustar, DE tiene
solamente tres parametros. Estos parametros son el tamano de la poblacion (ju), la
constante de cruzamiento (CR) y amplificacion de la variacion diferencial (F). El
tamano de la poblacion tiene un papel crucial en la solucion de problemas de control
optimo multimodales. Seleccionando una poblacion pequefla se mejora la eficiencia
computacional pero se reduce la probabilidad de encontrar la solucion global. Durante
nuestras investigaciones se intento la mejor compromiso. Uno de los algoritmos DE
mas eficientes es nombrado DE/best/2/bin. Todos los algoritmos DE solucionaron los
dos problemas de control optimo multimodales debida y eficientemente. Su eficiencia
computacional alcanzada en la solucion del primer problema fue comparable a aquella
de IDP. Cuando se aplicaron en el segundo problema la efficiencia resulto ser
ligeramente inferior a la de IDP. Sin embargo la seleccion o ajuste de los parametros
en el algoritmo IDP es mas dificil y complicada.

Como resultado de nuestra investigation algunas normas fueron obtenidas para la
seleccion de los parametros de los algoritmos DE. Seleccionar el tamano de la
poblacion menor o igual al doble del numero de variables a ser optimizadas que son el
resultado de la parametrizacion del problema de control optimo original (ju<2nu).

Problemas de control altamente multimodales parecen necesitar un valor grande del
parametro del operador de mutacion (F > 0.9) y un valor muy pequefto o cero para la
constante del operador de cruzamiento (0<C7?<0.2). Problemas no altamente
multimodales requieren un valor termino medio para el parametro en el operador de
mutacion (0.4 < F < 0.6) y un valor pequefto o grande para la constante del operador
de cruzamiento (0.2 <CR< 0.5). A diferencia de algoritmo IDP, encontrar valores
cercanos al optimo para estos parametros en DE es muy sencillo.

Generalmente, los parametros de los algoritmos DE son mantenidos constantes
durante una optimizacion. Podria obtenerse un algoritmo mas efectivo y eficiente si
estos parametros se ajustaran automaticamente. En el Capitulo 4, fue propuesta una
estrategia que on-line ajusta los valores de los parametros amplificacion de la
variacion diferencial (F) y la constante de cruzamiento (CR) usando una medida de
la diversidad de los individuos en la poblacion. A grandes rasgos, esta estrategia
utiliza valores grandes para F y pequefios para CR al inicio de la optimizacion, con
la idea de favorecer una busqueda global. Cuando la poblacion se aproxima a una
solucion, F es reducido con objeto de favorecer una busqueda local y el parametro
de cruzamiento CR es aumentado para incrementar la velocidad de convergencia del
algoritmo. Esta estrategia fue implementada en el algoritmo DE/rand/1/bin y aplicada
a los dos problemas de control optimo multimodales, la eficiencia computacional
mejoro significativamente y tambien la probabilidad de localizar el optimo global.

124

Con la finalidad de conocer las oportunidades y ventajas que los algoritmos
evolutivos tienen en la solution de problemas relacionados con control optimo en el
Capitulo 5 son consideradas varias aplicaciones de ingenieria acerca de control
optimo de cultivos en invernaderos. En el Capitulo 5.1 algoritmos geneticos con
representation binaria de los individuos (Algoritmo Genetico Simple) y con
representation de numeros reales (GENOCOP) son usados para estimar algunos de
los parametros de un modelo dinamico de un cultivo de lechuga con dos estados, el
llamado modelo NICOLET. Este modelo tiene el proposito de predecir material seca y
contenido de nitratos en lechuga al momento de la cosecha. Los problemas de
estimation de parametros generalmente presentan minimos locales. Este estudio
mostro que los algoritmos evolutivos son adecuados para calibrar los parametros de
un modelo dinamico. No obstante, el tiempo de computation requerido es
significativo. Parcialmente esto se debe a la alta carga computational que la
evaluation de la funcion objetivo requiere, lo cual en este caso implica la ejecucion
de una simulation completa. Si bien es verdad que la estimation de parametros se
lleva a cabo comunmente fuera de linea (off-line), lo cual hace que el tiempo de
computation sea menos importante, es preferible usar algoritmos evolutivos mas
eficientes como los algoritmos DE.

En el Capitulo 5.2 un problema de control optimo de concentration de nitratos en un
cultivo de lechuga fue solucionado mediante dos algoritmos. El algoritmo basado en
gradientes (ACW Adjustable Control-variation Weight), un metodo local de
optimization y el algoritmo DE/best/2/bin, un metodo global de optimization. El
sistema dinamico utilizado es un modelo de un cultivo de lechuga de dos estados
(NICOLET B3) y el problema de control optimo toma en cuenta tiempo final fijo y
restricciones terminales de los estados. El algoritmo DE fue ampliado para tener en
cuenta restricciones tanto en los estados como en los controles. Los resultados
mostraron que este problema no tiene soluciones locales y que la parametrizacion de
los controles requerida por DE, genera algunas dificultades para que el metodo directo
sea capaz de encontrar con exactitud la solution obtenida por el algoritmo ACW. Pero
por otro lado, la eficiencia computational del algoritmo evolutivo fue impresionante.
Por eso una conclusion evidente es la combination de un algoritmo DE con un
algoritmo basado en gradientes.

En el Capitulo 5.3 una combination de un algoritmo DE y un algoritmo de primer
orden basado en el calculo de gradientes es usada para resolver un problema de
control optimo. El algoritmo DE es primeramente usado para obtener una solution
aproximada en la vecindad del optimo global despues el algoritmo local es usado para
refinar la solution. Este enfoque fue exitosamente probado en la solution del
problema de control optimo de niveles de nitratos en lechuga, el cual
desafortunadamente parece no tener soluciones locales. Aun asi, la viabilidad de este
enfoque, que es interesante para problemas todo tipo de problemas de control optimo
de los cuales se desconoce a-priori si tienen soluciones locales, fue claramente
demostrada.

Finalmente, en el Capitulo seis esta tesis finaliza con una discusion general,
conclusiones y algunas sugerencias para investigation futura.

125

Curriculum Vitae

Irineo Lorenzo Lopez Cruz was born in July 1961 in Tamazulapan, Oaxaca, Mexico.
He obtained his Bachelor degree in Agricultural Engineering with honours in 1983
from the Universidad Autonoma Chapingo, Mexico. After he finished the credits of
the MSc. program he created in 1992 the Central Computer Lab of Universidad
Autonoma Chapingo. He received training in Relational Database Management
Systems in 1994 from Oracle Mexico. He also received training on UNIX computer
operating system and C programming language from UN AM in 1995. He obtained his
MSc. Degree in Artificial Intelligence with honours in 1996 from Fundacion Arturo
Rosenblueth, Mexico. In November 1997, he started his PhD studies at the Systems
and Control Group of the Wageningen University, The Netherlands. He has taught in
Universidad Autonoma Chapingo. From August 2002 he will be working (as lecturer
and researcher) at the Postgraduate program of Agricultural Engineering of
Universidad Autonoma Chapingo in Chapingo, Mexico.

126

