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Propositions attached to the thesis: 
"Efficient Evolutionary Algorithms for optimal control" 

by Irineo L. Lopez Cruz 

1. Optimal control problems with multiple local minima are challenging 
problems, which makes them particularly suitable for testing the efficiency of 
global optimization algorithms. 

2. Differential Evolution algorithms are the most efficient evolutionary 
algorithms designed so far. 

3. "The goal of an efficient mutation scheme (in evolutionary algorithms) is to 
generate increments or steps that move existing object variables in the right 
direction by the right amount at the right time". K. V. Price, An introduction to 
Differential Evolution, 1999. 

4. Mathematical models are not only essential in control but in general they are 
fundamental to enlarging knowledge and helping with practical applications. 

5. The no-free-lunch (NFL) theorem implies that it is more important to 
investigate which class of EAs is suitable to solve which class of optimization 
problems instead of trying to design an algorithm able to solve all the classes 
of optimization problems. 

6. "Evolution provides the solution to the problem of how to solve problems". 
David B. Fogel, Evolutionary Computation. Toward a new Philosophy of 
Machine Intelligence, 1995. 

7. That Mayan mathematicians invented independently the number Zero was a 
remarkable achievement. Even more admirable is the evidence that suggests 
they were familiar with the concept of Matrix as well. 

8. Dehumanization of the humankind does not mean that human race is evil by 
nature but only that mankind is not as advanced, civilized and developed as 
many people believe. 



Abstract 
Lopez-Cruz I.L. (2002). Efficient Evolutionary Algorithms for Optimal Control. PhD 
Thesis, Wageningen University, Wageningen, The Netherlands. 

The purpose of this study was to investigate and search for efficient evolutionary 
algorithms to solve optimal control problems that are expected to have local solutions. 
These optimal control problems are called multi-modal. Evolutionary algorithms are 
stochastic search methods that use a population of potential solutions and three 
evolutionary operators: mutation, recombination and selection. The goal was achieved 
by studying and analysing the performance of Differential Evolution (DE) algorithms 
a class of evolutionary algorithms that not only do not share theoretical and practical 
limitations that Genetic Algorithms have as global optimisers, but also they overcome 
those drawbacks. 

However, at the beginning of this research a genetic algorithm with real-valued 
individuals and specialized genetic operators (GENOCOP) was studied by solving 
some hard optimal control problems. Although results showed that the evolutionary 
approach is feasible to solve high-dimensional, multivariable, multimodal and non-
differentiable control problems, some limitations regarding computational efficiency 
were found. 

Differential Evolution algorithms were chosen and used to solve two multi-modal 
(benchmark) optimal control problems. Also some Breeder Genetic Algorithms 
(BGA) and the Iterative Dynamic Programming (IDP) algorithm were applied for 
comparison purposes. The comparison confirmed that DE algorithms stand out in 
terms of efficiency as compared to the Breeder Genetic algorithms. Moreover, in 
contrast to the majority of Evolutionary Algorithms, which have many algorithm 
parameters that need to be selected or tuned, DE has only three algorithm parameters 
that have to be selected or tuned. These are the population size {/x), the crossover 
constant (CR) and the differential variation amplification (F). All the investigated 
DE algorithms solved the multi-modal optimal control problems properly and 
efficiently. The computational efficiency achieved by the DE algorithms in solving 
the first low multi-modal problem, was comparable to that of IDP. When applied to 
the second highly multi-modal problem, the computational efficiency of DE was 
slightly inferior to the one required by IDP, after tuning of the algorithm parameters. 
However, the selection or tuning of the algorithm parameters for IDP is more difficult 
and more involved. 

Some guidelines for the selection of the DE algorithm parameters were obtained. Take 
the population size less than or equal to two times the number of variables to be 
optimised that result from the control parameterisation of the original optimal control 
problem (ju<2nu). Highly multi-modal optimal control problems require a large 
value of the differential variation amplification (F > 0.9) and a very small or zero 
value for the crossover constant (0<CR<0.2). Low multi-modal optimal control 
problems need a medium value for the differential variation amplification 
(0 .4<F<0.7) and a large or medium value for the crossover constant 
(0.2 <CR< 0.5). To improve further the performance of DE algorithms a parameter 
control strategy was proposed and evaluated on the algorithm DE/rand/1/bin. Results 
show that computational efficiency can be significantly improved. 



Finally, some possibilities of using DE algorithms to solve some practical optimal 
control problems were investigated. The algorithm DE/best/2/bin was applied to solve 
the optimal control of nitrate in lettuce and results were compared with local 
optimisation algorithms of optimal control. A combination of a DE algorithm and a 
first order gradient algorithm was proposed in order to exploit the advantages of both 
approaches. The DE algorithm is used to approximate the global solution sufficiently 
close after which the gradient algorithm can converge to it efficiently. The feasibility 
of this approach, which is especially interesting for multi-modal optimal control 
problems, was demonstrated. 
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1. General introduction 

1.1 Motivation 

Convergence to local solutions is likely, if optimal control problems are solved by 
means of gradient-based local search methods. Recently there has been an increasing 
interest in the use of global optimisation algorithms to solve optimal control problems 
which are expected to have local solutions. These optimal control problems are called 
multi-modal. Evolutionary Algorithms (EAs) are global optimisation algorithms that 
have mainly been applied to solve static optimisation problems. Only rarely 
Evolutionary Algorithms have been used to solve optimal control problems. This may 
be due to the belief that their computational efficiency is insufficient to solve this type 
of problem. In addition the application of Evolutionary Algorithms is a relatively 
young area of research. Together with my personal interest in the application of EA's 
this motivates the research in this thesis which concerns a search for the feasibility 
and efficiency of evolutionary algorithms to solve multi-modal optimal control 
problems. 

The efficiency is a critical issue when applying EA's. Even more so when optimal 
control problems are solved, since in this case, each function evaluation involves a 
system simulation, which is computationally expensive. Therefore in this research we 
tried to focus on EA's that are known or proved to be efficient. The application of 
these algorithms to multi-modal optimal control problems, in most cases, presents a 
new area of research. 

Numerical methods for the solution of optimal control problems can be roughly 
divided into two groups: indirect and direct methods [1]. The first group is based on 
finding a solution that satisfies the Pontryagin's maximum principle or the related 
necessary conditions through solving a two-point boundary-value problem [2]. Direct 
methods are based on an approximation of the infinite dimensional optimal control 
problem by a non-linear programming (NLP) problem. This can be done by either 
control and state parameterisation or control vector parameterisation only [3], The 
non-linear programming problem that results after the parameterisation is often multi­
modal. Gradient-based optimisation algorithms are known to converge to local 
optima. To surmount this problem, global optimisation algorithms can be used. Since 
it is well known that Dynamic Programming is hardly ever feasible due to the curse of 
the dimensionality [2], Iterative Dynamic Programming (IDP) has been proposed [4]. 
Other global optimisation methods applied recently to solve multimodal optimal 
control problems are Stochastic Algorithms [5, 6]. Our work is motivated by the 
potential that Evolutionary Algorithms (EAs) have, as global optimisers, to solve 
multimodal optimal control problems. Since the computation time is critical in solving 
optimal control problems and EAs are known not to be very efficient the issue of 
efficiency is addressed. Some of the state of the art evolutionary algorithms will be 
the focus of our investigations. 

1.2 Background 

1.2.1 Brief description of mainstreams of evolutionary algorithms 



In this section a generic description of the most prominent evolutionary algorithms is 
provided. Basically our portrayal follows the work of Back [7] who has proposed, in 
our view, a rather generic framework to describe global stochastic search algorithms 
inspired by evolution. The next meta-algorithm gives a generic description for a wide 
class of evolutionary algorithms: 

Outline of an Evolutionary Algorithm 

g .-= 0; generate P(0) := {a](0),...,^,(0)} e / " ; 

evaluate P(0): {<D(^(0)),...,O(^,(0))}; 

while (i(P(g))^true) do 
Recombine P'(g):=r&r(P(g)); 
Mutate P"(g):=m®m(P'(g)); 

Evaluate P\g): { ^ ^ . . . ^ ( g ) ) } ; 

Select P(g +1) := s0s(P"(g) u Q)\ 
g-=g+i; 

end 

An Evolutionary Algorithm (EA) is a stochastic search method, which maintains a 

populationP(g) := {a,(#),...,«„ (g)} of individuals at e I, i = \,...,ft at generation g, 
where / denotes a space of individuals, and ju e N is the parent population size. 
Each individual represents a potential solution to the problem at hand and it is 
implemented as some generic data structure (i.e. strings of bits in genetic algorithms, 
real numbers in Evolution Strategies). By means of the manipulation of a family of 
solutions, an Evolutionary Algorithm implements a survival of the fittest strategy in 
order to try to find the best solution to the problem. Each individual is evaluated by a 
fitness function O: / —> 91, such that a real value is assigned to each potential 
solution, which represents a measure of how well individuals perform in the problem 
domain. Next, an iterative process starts in which a set of evolutionary operators is 
applied to the population in order to generate new individuals [8]. From a set 
{w©,,..., w@z | w0, : I* -> Ix) u {w0o: I" -^ I1} of probabilistic evolutionary 
w©, operators (for instance: crossover, mutation), each one specified by parameters 
given in the sets 0, c 91, some operators are applied to the population and a new 
evaluation of its fitness is calculated. The evolutionary operators: recombination 
(crossover) r&r :I"-^IA, mutation w0m :IX -»I1 and selection 

s®s : [I
1 u / '**)-> /"are used to transform the population P(g). X e N represents 

the number of offspring or new solutions in the population. The set Q a P(g) denotes 
an additional set of individuals, which can be the empty set, or a subset of the parent 
population P(g). The function i: 1'M —» {true, false} specifies the termination 
criterion. After a number of generations, it is expected that the best individual of the 
population represent a near-optimum solution. 
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Figure 1. Family tree showing the most relevant Evolutionary Algorithms 

Traditionally, three main examples of this generic algorithm have been identified: 
Genetic Algorithms [9, 10, 11], Evolution Strategies [1, 12] and Evolutionary 
Programming [1, 13]. However, other algorithms inspired by evolution share 
similarities with the three original EAs, for instance, Differential Evolution [14, 15], 
Genetic Programming [16] and possibly others. The next subsections summarize main 
properties of Genetic Algorithms, Evolutionary Programming, Evolution Strategies 
and Differential Evolution since they are more important ones from an optimisation 
viewpoint. Figure 1 presents a family tree with a classification of the most important 
Evolutionary Algorithms. 

1.2.1.1 Genetic Algorithms (binary and floating-point representation) 

Binary representation 

In canonical Genetic Algorithms (GAs) [9, 10] an individual is represented by strings 
of binary numbers a e / , where / is the binary space {0,1}. An individual or 
chromosome is just a binary string a = (au...,a,), and / is the length or the used 
number of bits. As this approach is applied to solve continuous parameter 
optimisation problems with n variables xi,i = l,2,...,n to be optimised 

x = [x,,x2,...,xj e DcR", where D: xi e [«,, v , ] , / = 1,2,...,n here w, and v; denote 
lower and upper limits of the variable interval xr Using a binary code [7,11] each 
element xt of x can be coded by elements of a. This is represented by x = y (a ) . 
Regarding the calculation of the fitness function <X>(<5) = (£>'(y/(a)) :R"->R where 
O' is a function that guarantees positive values, since the standard selection 
mechanism of GAs requires positive fitness values. 

Mutation 

Consistent with the binary representation of the solutions a mutation operator 
m{p ( : / —> / modifies an individual a' = m{p){a) according to 

a if x > P 
a' = ' m, V.e[l,...,/] where ^£[0,1] is a uniform random variable, 

1-a, if Xi^Pm 

and pm is a probability of mutation and a, means the /' bit of the string. 



Crossover 

The simplest recombination operator is the so-called one-point crossover 
r{p } : I

2 —> I2, which combines two strings J and v to generate two new individuals 

s' = (su...,sk^,sk,vk+1,...,v,) and v' = (vl,...,vk_i,vk,sk+u...,s,), where k&{\,...,l-\) 

and pc specifies the probability of selecting a pair of strings to be mated. It seems 
that more commonly applied crossover operators are multi-point crossover and 
uniform crossover. The multi-point crossover operator r i: I2 —> I generates a new 

. , . . , , ,. t , <is,i,Vi(Xk<i^XM\k<m 
individual according to: a, = , where 

avi , otherwise 

{Xl,—,%m)e.[\,.~,l-\] denote random crossover positions and m is the number of 

crossover points. The uniform crossover operator r: I2 —> I generates a new 
asnAi > l / 2 

individual according to a'= ' ,V, e[l,...,/], where A,e[0,l] is a uniform 
aVJ,Ai < l / 2 

random variable. Other binary oriented recombination operators are found in the 
literature [7, 9, 10]. 

Selection 

The selection operator s:Ifl—>If' implements a probabilistic survival strategy. First 

selection probabilities are computed Ps(aJ(g)) = Q>(dj(g))/2_,<b(ak(g)), 

7 = 1,2,...,//, which reflect the relative fitness in the population of each individual. 
Using these probabilities a population is chosen according to a sampling mechanism. 
Generally, the Stochastic Universal Sampling scheme [7], which determines the 
number of copies (samples) of each individual from the current to the next population, 
is applied. An example is the Simple Genetic algorithm [9, 10] (see Figure 1). 

Floating-point representation 

In genetic algorithms with a floating-point representation, [11, 17] an individual is 
given by a vector of real numbers such that a = x e 9?". The fitness function is just 
<D(5): R" —> R. However, genetic operators are different in order to deal with this 
representation. 

Mutation 

As far as mutation is concerned more known operators are: uniform, boundary and 
non-uniform mutation as well as mutation of the Breeder Genetic algorithm. Uniform 
mutation m:I —> I alters an individual a into a' according to 

f r, if i = j 
at = < where r e [ui,vi] is a uniform random value within the interval 

[aj, otherwise 

for the /""variable. The boundary mutation m.r): / -> / modifies slightly the previous 



ut, if i = j,r< 0.5 

operator in which the mutated variable is generated by a\ = < v,., if i = j,r >0.5, 

at, otherwise 

where r e [0,1] is a uniform random number. The non-uniform mutation 
m{rbgG) '• I ~* I on the other hand, generates a new individual a' = (a1,...,ai,...,all) 

a, + S(g,v, -a.) if rnb == 0 , 
where « ; = ' ) * ' ' l)J ,,S(g,y) = yr-(l-g/G)b and re[0,l] is 

a uniform random number, r«6 is a random binary digit, G is the maximal 
generation number and b is a parameter. 

The breeder genetic algorithm mutation operator m{ } : / —> I creates a new 

fa, +s-(v- -ut)-S if x,^<0.5 ^ , 
individual 5 according to a, =< , o = > 2 y a , , 

ai e [0,1], s = 0.1, where Xi e [0.1] is a uniform random value. 

Crossover 

Some floating-point crossover operators are: simple, arithmetic, and heuristic. The 
simple crossover r,b) : I

2 —> I2 combines two individuals a1 and a2 to generate two 

new feasible individuals a'1 =(a\,...,a),a2
+l • b + a'+1(l-b),...,a2

n -b + a\ (l-b)) and 

a'2 =(a2,...,a2,a2
+1 -b + aj+l -(\-b),...,a2

n -b + a[ (\-b)), where b e [1,0] is a 

uniform random value and r'e[l,n] is a randomly chosen index. The arithmetic 

crossover r{b} : I
2 -»I2 combines two parents 5, and a2 in order to generate two 

new feasible solutions a[ = b • al + (1 - b)a2 and a'2 = (1 - &)<Jj + &a2, where Z> e [0,1] 

is a random number. Heuristic crossover r(rf) : I
2 -> / combines two parent solutions 

5, and 52 so as to generate a new individual ai =at+d (al-a2) where d e [0,1] is 

a random number, and a, and a2 are selected such that 0(5j) < 3>(a2). 

The discrete recombination operator r,d): I
2 —> / combines two vectors a1 and a2 to 

-3 „.,._„ _3 f«i» ' / ^ < 0 - 5 

obtain only one new individual a where at =\ " ' , i = \,...,n and 
\a I, otherwise 

di e [0,1] is a uniform random number. Similarly the extended intermediate 

recombination operator r{a} : I
2 -> / generates a new individual by 

a] = a) + at(a
2 -a\), i = \,...,n and a, is a uniform random variable from the 

interval [-0.25,1.25]. In case that only one coefficient a is applied to the whole 

difference vector, the operator is called extended line recombination. 

Selection 

In addition to the same scheme of selection as in GAs with a binary representation, in 
case of real-valued vectors several other selection operators have been reported in the 



literature [11, 17]. Two important examples of genetic algorithms with floating-point 
representation of the individuals are the GENOCOP (GEnetic algorithm for 
Numerical Optimization for Constrained Problems) system [11] and the Breeder 
Genetic algorithm (BGA) [17] as can be seen in Figure 1. 

1.2.1.2 Evolution Strategies and Evolutionary Programming 

A set of Evolution Strategies (ES) can be identified [7, 12]. Since more advanced 
Evolutionary Programming (EP) algorithms share properties of ES here only the 
differences between both approaches are mentioned. All ES use a complex 
representation of the chromosomes in the population a = {x,a,a), where x denotes 
the vector of to be optimised variables, a the strategy vector of standard deviations 
associated to x and a rotation angles also associated to x. The fitness function 
becomes ®(a): R" —» R. In ES and EP not only the object vector but also the 
strategy vector and rotation angles vector are subjected to the evolutionary process. In 
case of Evolutionary Programming [7, 13] generally an individual a = (x,v) is 
represented as a vector of object variables and one vector of standard deviations. 

Mutation 

The mutation operator m{T r,^ : / —> / yields a new individual a' = (x',a',d') 

according to: a\ = ai • exp(r2 • N (0,1) + r, • Nt (0,1)), a) =ctj+p- Nj (0,1), 

x' = x + N(0, a', a'), V,. s {1,...,«}, Vy e {1,..., n • (n -1) / 2}, where #(0,1) stands for a 

random variable having expectation zero and standard deviation one, N(0,d',d') 
denotes a multivariate normal distribution with specified covariance matrix, and r,, T2 

are algorithm parameters depending on n, and /? is a constant [1,7]. 

In case of Evolutionary Programming the mutation operator m{() : I —> I produces a 

new individual a' = (x',v') as follows: x\ = x, + ̂ v~ • AT.(0,1), v,' = v,. + ̂ /̂ V~ • 7V,(0,1), 

V, e {l,...,n}, where C, denotes an algorithm parameter. 

Crossover 

Modern ES may use several recombination operators [7, 12], and they may be 
different for object variables, standard deviations and rotating angles. Yet, in general, 
two recombination operators are commonly applied. First, the discrete recombination 
operator defined above. And also the intermediate recombination operator (applied 
here only o n i ) r : / 2 - > / that combines two different randomly selected parents xv, 
xs from the population, to generate a new individual x', in which, 
x\ = xSi +(xVi -xSJ)/2. Recently, Schwefel [12] has proposed some generalizations 

for recombination operators in which each element of the new vector is selected 
probabilistically from all the individuals in the population. Then, the intermediate 
recombination operator r:I/1->I is given by x\ =xSl+(xVj -xSJ)/2 where xv,. 
denotes that a new parent xv is selected for each element of the vector. There are no 



recombination operators in Evolutionary Programming. 

Selection 

The selection mechanism in Evolution Strategies is deterministic. There are two 
general operators. An operator s{ A) : I^

k —» IH selects the best // individuals out 

of the union of parents and offspring while the operator s{fl x) : I
x —> f selects the 

best n individuals out of the offspring only. The selection mechanism is used to 
denote multimembered evolution strategies (// + X) -ES and (//, X) -ES respectively. 
In case // = 1, and X = 1 the two membered evolution strategy is obtained which was 
the first designed ES and is denoted traditionally by (1,1) -ES (see diagram 1). 

In Evolutionary Programming the selection operator s{) : I2" —»IM, on the other 

hand, uses a tournament selection mechanism in order to generate a new population. 
For each individual Oj,je {1,...,2//}, q individuals are chosen randomly from the 

union of the parents n and the offspring A = / / . A score w. e {0,...,^} is obtained 

from counting how many of those individuals perform worse than 5. . All the 

individuals 3j, j e {1,...,2//} are ranked in descending order of their score and the best 

// of them are selected to form the next population. An example of an Evolutionary 

Program is the meta-EP algorithm proposed by Fogel (see Figure 1). 

1.2.1.3 Differential Evolution algorithms 

All Differential Evolution (DE) algorithms use vectors of floating-point numbers to 
represent the individuals in the population [14, 15]. Using the previous notation we 

have: a = x e 9T . The fitness function is <£>(a):/?"-»/?. 

Mutation 
There are several mutation operators in DE algorithms. A mutation mechanism 
m{F) :I—>I yields a mutated individual a' = m{F}(a) by modifying the vector a 

according to: a\ =ar +Fx(ar -ar), V, e{l,...,//}, where rx ^r2^r^^i denote 

mutually different indices. The vector at is named the target vector, which clearly is a 

parent individual. The vector ar is the to be mutated individual which is selected 

randomly from the population. Vectors ar and ar form a difference vector. F is an 

algorithm parameter that affects the differential variation. A second mutation operator 
takes the to be mutated vector equal to the target vector as follows: 
a'j =at+F x(ar -ar), V,. e {1,...,//} where r , ^ r 2 ^ i are mutually different 

indices. 

A third mutation operator is given by a'j = abesl + F x (5rj -a ) , V,. e {1,...,//} 

where r^r2 ^ i denote mutually different indices. In this case the to be mutated 
vector is the best individual in the population (abesl (g)) at the current generation (g) , 



namely Q>(abesl) < 0 (5 , ) , V.,y = 1,...,//. Another mutation mechanism combines 

two difference vectors 5- = abest+ F x(ari +ari - a r j - « r 4 ) , V,. e{l,...,jii} where 

r ^ r j * ^ ^ i are mutually different indices. A more complicated mutation 

operator uses the to be mutated vector to built the difference vectors: 

a'j = ai + F x (3r - ar ) + K x (a,. - a ,), V, e {1,..., //} where r, # r2 * r3 ^ i are 

mutually different indices and K is another algorithm parameter. 

Crossover 

The recombination operator r{a) : I
2 —» / acts on two parents, the mutated vector 

(a't) and the target vector (a,.), which can be considered as a parent individual, so as 

to form a trial vector (a") whose elements are given 

„ < if randb(j) < CR or j = rnbr(i) 
b y : a / z = , i = 1,2,...,ft,j = 1,2,...,n, where CR ajt if randb(j) > CR and j * rnbr(i) 
is the crossover constant, randb(j) e [0,1] denotes the jth evaluation of an uniform 
random number generator, and rnbr(i)e[l,..,n] is a randomly selected index. This 
operator is called binomial crossover. 

A second recombination operator in DE is the so-called exponential crossover. In this 
case each element of the trial vector is generated according to: 

an while randb(j) > CR and j * rnbr(i) 
aM= , V,e{l,...,//},fory = l,...,«} 

ajt afterward 

Selection 

The selection operator s{/l+A} : l
h*^ —> IM picks the ju best individuals from the union 

of parents and offspring (// + A) to form the next population, where // = X. This is 
done by a simple comparison of the fitness of the target (5() and trial (a") 
vectors; = 1,...,//, in such a way that only if the condition 0(5,") < 0(5,) is satisfied 
then a" becomes a member of the new population otherwise a, (the parent 
individual) is selected. An excellent discussion on Differential Evolution algorithms is 
provided by Price [15]. Each Differential Evolution algorithm can be identified by the 
notation DE/x/y/z [14], where x denotes the choice of the vector to be mutated, y is 
the number of difference vectors used for mutation and z specifies the type of 
crossover scheme. Some instances of DE algorithms are listed in Figure 1. 

1.2.2 On the theory of Evolutionary Algorithms 

Although several theories have been proposed to account mainly for the behaviour of 
Genetic Algorithms and Evolution Strategies, it seems that there still is no definite 
theory that explains thoroughly why and how evolutionary algorithms work [18, 19]. 
However, based on the concept of Random Heuristic Search [20] a set of definitions, 
theorems and formal proofs has been developed that mathematically formalize 



evolutionary algorithms. In contrast to other theories, Random Heuristic Search is a 
paradigm that would explain the behaviour of the most important evolutionary 
algorithms: Genetic Algorithms, Evolutionary Programming, Evolution Strategies and 
Genetic Programming. Roughly, Random Heuristic Search is considered to be a 
discrete dynamical system consisting of two parts: a collection of elements 
(population) chosen from a search space, which can be any finite set, and also a 
heuristic search or transition rule which from any population Pt will produce another 

population PM, Since the transition rule is stochastic, a heuristic function is defined, 
which given the current population, produces a vector whose 7-th component is the 
probability that the y'-th element of the search space is chosen as a member of the next 
population PM. A characterization of Random Heuristic Search can be given in terms 
of Markov Chains. An important challenge is not only to show that a particular 
evolutionary algorithm is an instance of Random Heuristic Search but also to find its 
corresponding heuristic function. So far a detailed analysis of the behaviour of the 
Simple Genetic Algorithm has been presented recently [21]. In addition, several 
theoretical results have recently been discussed in the literature [8, 22, 23] based on 
the application of Markov Chains theory to Evolution Strategies. 

1.2.3 Direct optimisation methods in optimal control and Evolutionary 
Algorithms 

Numerical methods for optimal control can be classified into two generic groups: 
indirect and direct methods [1, 25]. The first group is based on finding a solution that 
satisfies the Pontryagin's Maximum Principle or the related necessary optimality 
conditions, which constitute a two-point boundary-value problem. Generally, gradient 
and shooting methods are applied [2, 24]. Direct methods attempt a direct 
minimization of the objective functional of the optimal control problem by control 
parameterisation or control and state parameterisation. Through parameterisation the 
dynamic optimisation problem is transformed into a Non-Linear Programming 
problem. Then both local and global optimisation algorithms to solve this type of 
problems may be applied. In this work only control parameterisation will be 
considered. 

In this thesis we will consider general optimal control problems where the system may 
be non-linear and the cost functional need not be quadratic. Consider the system 

x = f(x,u,p,t) (1.1) 

where x e R" is the state vector, ueRm is the control vector, p eR' the fixed 
parameter vector and t represents time. The optimal control problem is to find the 
control trajectory u(t), t0<t<tf which minimizes the cost functional 

J = </>{x(tf)) + {'L(x,u,t)dt (1.2) 

subject to the system dynamics (1.1), with known initial conditions x(t0) = x0. In 

equation (1.2) ^ e R' represents costs associated to the final state x{tf) and Le R' 

represents the running costs. The system description (1.1) is in state-space form. Any 
causal system can be easily put into this form, which has many advantages both from 
a theoretical and computational point of view. 



The optimal control problem (1.1), (1.2) in general is infinite dimensional because the 
control trajectory u(t) is continuous and infinite dimensional. To turn it into a finite 
dimensional problem we will apply control parameterisation. This can be done e.g. 
using piecewise polynomials or a piecewise constant or linear parameterisation. In the 
case of computer control, the control is truly piecewise constant. Therefore, this type 
of control parameterisation is used throughout the thesis. Furthermore a piecewise 
constant control is easily implemented. It is described by, 
u(t) = u(tk), ts[tk,tk+l),k = 0,l,...,N-l (1.3) 

where tN =tf, and tk, k = 0,1,...,N are so called sampling instants which are usually 
equidistant i.e. tk+l -tk=Ts, k = 0,1,2,...,N-l, where 7̂  is the so-called sampling 
period. N is the number of time intervals. Introducing 
uk=u(tk), k = 0,l,—,N-1 the control trajectory u(t), t0<t<tf is now fully 

determined by uk, k = 0,1,..../V-1 and we may define u = [«f ,u\,...,M^,] the so-

called control parameter vector which fully determines the control trajectory u(t), 

t0 <t <tf. Given u using the initial condition x0 and numerical integration from 

(1.1) and (1.2) we may compute J. Therefore, the optimal control problem (1.1), 
(1.2) constitutes the minimization of J w.r.t. u . 

If terminal state constraints y/{x{tf)) = 0 have to be satisfied the problem becomes a 

constrained function minimization problem. If the final time tf instead of a-priori 

fixed is to be optimised as well, this is possible if we apply time scaling. In that case 
the interval tk+l —tk=Ts=tf IN over which u(tk) = uk is applied, varies with tf. To 

satisfy general state constraints, both the integral [3] and grid approximation 
approaches [25, 26] can be applied. Again this results in a constraint function 
minimization problem. 

The resulting, possibly constraint function minimization problem often has a large 
number of variables and local minima. Because of this, local optimisers often fail in 
computing the true (global) minimum. Evolutionary Algorithms as investigated in this 
work might be able to overcome this difficulty because they are global in nature. 
Normally, only minor modifications of the previous description are necessary when 
evolutionary algorithms are applied to solve optimal control problems. 

1.3 Research objectives 

The main goal of this research is to investigate the possible advantages of the 
application of Evolutionary Algorithms as direct methods to solve optimal control 
problems. 

The feasibility of Evolutionary Algorithms will be investigated to solve high 
dimensional, non-linear, multivariable and multimodal (with multiple local minima) 
optimal control problems. The optimal control problems are benchmark problems and 
an optimal control problem concerning greenhouse cultivation. 

The expected advantage concerns mainly the ability to find the global optimal 
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solution for multimodal problems having multiple (local) solutions. The efficiency of 
Evolutionary Algorithms in general compares unfavourably to the efficiency of other 
optimisation methods. Therefore the research will focus on evolutionary algorithms 
that are very efficient compared to other EA's. Application of such algorithms to 
solve multi-modal optimal control problems is a rather new area of research. Since 
algorithm parameter selection is an important practical issue when using any 
Evolutionary Algorithm this topic will be addressed too. 

Given the objective to locate the global solution of multimodal optimal control 
problems and the lack of efficiency of Evolutionary Algorithms an approach where an 
EA algorithm is combined with a more efficient algorithm will also be investigated. 
Finally, Evolutionary Algorithms will be compared with other algorithms that have 
the potential of locating the global solution such as Iterative Dynamic Programming. 

1.4 Contributions of the thesis 

In this thesis efficient Differential Evolution algorithms, which are global 
optimisation methods, are proposed to solve multimodal optimal control problems. 
Differential Evolution algorithms are considerably more efficient and effective to 
solve optimal control problems than the majority of EAs. DE algorithms have 
advantages over other global search methods such as an Iterative Dynamic 
Programming or Controlled Random Search. They are very easy to implement and are 
easily adapted to solve constrained optimal control problems. 

Many researchers believe that Evolutionary Algorithms are all inefficient in solving 
continuous optimisation problems. By showing some advantages of efficient 
evolutionary algorithms in solving hard optimal control problems this research will 
contribute to the acceptance of some state of the art evolutionary algorithms like 
Differential Evolution to solve practical problems, especially in the area of optimal 
control. 

1.5 Focus and limitations of this research 

Since numerical solutions for optimal control problems generally demand a high 
number of function evaluations, which involve a simulation of the system, they are 
computationally expensive. Theoretically and empirically it has been shown that GAs 
solve separable functions that are 0(n) hard in 0(wln«)time [17, 27], where OQ 
notation denotes the asymptotic order of growth of a function, e.g. the order of the 
largest term in an2 +bn + c is 0(n2). In our case 0(n) refers to the number of 
function evaluations and n specifies the dimension of the optimisation problem. In 
case of functions with highly correlated variables traditional GAs tend to be even 
more inefficient. The cause of this is the high recombination probabilities and small 
mutations (pm = 1/w <1) that are common settings in GAs. Therefore, some of the 

state of the art evolutionary algorithms that have been proposed recently as good 
candidates to surmount these drawbacks are investigated. In contrast to Genetic 
Algorithms, Differential Evolution algorithms are efficient since it seems they use 
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only 0(n) complexity. Also they are rotationally invariant [15] which means they do 
not lose performance due to correlated variables. Evolution Strategies and 
Evolutionary Programming are relatively efficient evolutionary algorithms but they 
are not considered in this work since they demand a higher computational complexity 
0(n2) than Differential Evolution as they include rotational angles. DE as well was 
ES and EP use a mutation probability pm = 1 all the variables are mutated. This work 

does not provide theoretical results but is rather based on the analysis of some 
engineering applications of EAs, especially some classes of difficult optimal control 
problems. 

1.6 Organization of the thesis 

The thesis is organized in several chapters which can be grouped into three parts. The 
first part (chapter 2.1 and chapter 2.2) presents a general introduction to Evolutionary 
Algorithms (chapter 2.1) and discusses the issue of their application to some hard 
optimal control problems (chapter 2.2). The main purpose of chapter 2.1 is to 
summarize the most relevant work reported in the literature up until now regarding the 
application of the Evolutionary Algorithms (Genetic Algorithms, Evolution Strategies 
and Differential Evolution) to solve optimal control problems (OCP). Different kinds 
of representations of the individuals for some classes of OCP and the corresponding 
evolutionary operators are described. In chapter 2.2 the possibility of using 
Evolutionary Algorithms, with real-valued chromosomes representation and 
specialized evolutionary operators is studied. Some optimal control problems from 
chemical engineering characterized by being high-dimensional, non-linear, 
multivariable, multi-modal and non-differentiable are solved and results are compared 
with other direct methods commonly applied in optimal control. 

The second part focuses on the study of Differential Evolution algorithms, which are 
considered as the state of the art evolutionary algorithms, designed in the field of 
continuous parameter optimisation. In contrast to genetic algorithms, DE algorithms 
are considerably more efficient and therefore constitute good candidates for solving 
hard dynamic optimisation problems. In chapter 3, DE's are studied by analysing how 
they perform on two multimodal (benchmark) optimal control problems. The 
performance of some evolutionary algorithms based on the Breeder Genetic 
Algorithm (BGA) is also analysed and results are compared to those obtained by DE 
algorithms. Finally, the results are also compared with Iterative Dynamic 
Programming, a global optimisation approach specifically designed for optimal 
control problems. Improvements of the DE algorithms are presented and tested in 
chapter 4. DE algorithms are efficient and easy to use evolutionary algorithms but 
require some tuning of the algorithm parameters: population size, mutation and 
crossover constants. Generally these parameters are kept constant during the 
optimisation process. A more effective algorithm may be obtained if they are 
adaptively tuned [15]. A parameter control strategy that adjusts the crossover and 
mutation constant in accordance with the diversity of the population is proposed and 
evaluated by using the benchmark multimodal dynamic optimisation problem studied 
in chapter 3. 

The third part (chapters 5.1-5.3) of this work presents some applications concerning 
optimal control of greenhouse cultivation. Chapter 5.1 presents the use of a genetic 
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algorithm with both binary and floating representations for the chromosomes, to 
estimate some of the parameters of a dynamic model of a lettuce crop. A two-state 
dynamic model of a lettuce crop (NICOLET) that predicts the nitrate concentration at 
harvest time is described first. Then, evolutionary algorithms are used to optimally fit 
the model parameters to measurements of dry weight of a lettuce crop. Results are 
compared against those obtained by some local search methods. In chapter 5.2 an 
optimal control problem of nitrate (NO3) in lettuce is presented and solved by a first 
order gradient algorithm. First, A modified two-state dynamic model of a lettuce crop 
(NICOLET B3) is described. Next, an optimal control problem with fixed final time 
control constraints and terminal state constraints is put forward. Subsequently, a 
Differential Evolution algorithm is applied to get an approximate global solution. The 
DE algorithm is extended in order to deal with this. In chapter 5.3 a combination of a 
DE and a first order gradient algorithm is proposed to solve the optimal control 
problem of nitrates in lettuce. Finally, in chapter six the thesis ends with an overall 
discussion, conclusions and some suggestions for future research. 
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2. Evolutionary algorithms for optimal control 

2.1. Evolutionary Algorithms for optimal control: a survey 

2.1.1 Abstract 

The purpose of this survey is to present a summary of the most relevant research 
reported in the literature regarding the application of Evolutionary Algorithms 
(Genetic Algorithms, Evolution Strategies, and Differential Evolution) to solve 
optimal control problems. Emphasis is put on benefits and drawbacks of the proposed 
evolutionary algorithms. In addition, some general remarks concerning the main 
properties of the designed and applied evolutionary operators are underlined. 

2.1.2 Introduction 

To solve finite-horizon optimal control problems in continuous-time, by means of 
evolutionary algorithms, control parameterisation is applied to obtain a finite 
dimensional approximate description of the continuous-time control. A finite-horizon 
digital optimal control problem concerns the control of a continuous-time system by 
means of a digital computer. Due to the use of a computer, the control is piecewise 
constant (equation 1.3) and therefore finite dimensional. Within finite-horizon 
discrete-time optimal control problems the system description and the control are 
discrete in time. Again in this case, the control is finite dimensional. Therefore, 
without making any approximations, both finite-horizon digital and discrete-time 
optimal control problems can be solved by means of genetic algorithms. Finite 
horizon discrete-time optimal control problems are usually equivalent to, or an 
approximation of, digital optimal control problems [1,2]. 

A certain type of continuous-time optimal control problems, with bounded control, is 
known a-priori to have an optimal control which is always at the bounds, except for 
certain switching times where it switches from one bound to the other. This type of 
control is called bang-bang control and is fully characterized by the switch times 
which are therefore the only variables that need to be optimised. Assuming the 
number of switches to be finite, again the control is finite-dimensional. 

In the case of digital optimal control problems the sampling instants tk, k = 0,1,.. are 
a-priori known. When applying direct methods for optimal we are also able to vary 
these sampling instants during the optimisation, to try to find a so called optimal 
sampling scheme, where the number of sampling instants is fixed but their values are 
free. Although this is uncommon in the control literature, people who solved optimal 
control problems by means of GA's, on several occasions, have done just this. Clearly 
optimising both the sampling scheme and the control significantly complicates the 
nature of the optimal control problem. In terms of control parameterisation, 
optimising the sampling scheme may be viewed as a special case of optimising the 
control parameterisation. 

Table 1 presents an overview of different types of GA's that have been applied to 
solve the different types of optimal control problems mentioned above. In this table 
we distinguish CT referring to continuous-time optimal control problems, DT 
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referring to discrete-time optimal control problems. SGA stand for Simple Genetic 
Algorithm, GENOCOP for GEnetic algorithm for Numerical Optimization for 
Constrained Problems, BGA for Breeder Genetic Algorithm, DE for Differential 
Evolution, ES for Evolution Strategy, GAs for Genetic Algorithms, and EP-SS for 
Evolutionary Program, with state-space representation. 

This survey follows the information summarized in table 1. In section 2.1.3 
Evolutionary Algorithms with binary representation are considered while chapter 
2.1.4 considers genetic algorithms with floating-point representation. In section 2.1.5 
Evolution Strategies are considered and finally in section 2.1.6 Differential Evolution 
algorithms. Instead of providing a detailed description of the evolutionary operators of 
each algorithm a general description is given together with possible advantageous and 
drawbacks. 

Table 1. Evolutionary algorithms and types of optimal control problems 
GAs 

ES 

DE 

Binary 

Floating­
point 

Bang-Bang optimal control 
SGA 

Seywaldetal. 1995 
DT 
GENOCOP 
Michalewicz 
1994 

DT 
Modified ES 
Hashemetal. 1998 
CT 
Optimal time location 
DAE 
DE/best/2/bin 
Wang & Chiou, 1997 

DT & 
CT 
BGA 
Dakev 
et al. 
1995 

CT singular optimal control 
SGA 

Yamashita & Shima, 1997 
CT 
EP-
SS 
Smith 
1995 

CT with 
changing 
controls 
EP 
Bobbin 
1997 

CT 
Multipopulation 
BGAs 
Polheim & 
Heibner 1996 

DT&CT 
Modified ES 
Pham, 1998 
CT 
Modified DE 
Leeetal. 1999 

CT optimal control 
SGA 

Leeetal. 1997 
CT 
singular 
smoother 
GENOCOP 
Roubus et 
al. 1999 

CT 
Initial 

costates 
SGA 
Sim et 
al., 
2000 

CT 
Multi-population ES 
Polheim & Heibner, 1997 
CT 
Hybrid DE 
Chiou etal. 1999 

SGA : Simple Genetic Algorithm,GENOCOP : GEnetic algorithm for Numerical Optimization for 

Constrained Problems, BGA: Breeder Genetic Algorithm, DE: Differential Evolution, ES: Evolution 

Strategy, GAs: Genetic Algorithms, EP-SS: Evolutionary Program, with state-space representation. 

2.1.3 Genetic Algorithms with binary representation in optimal control 

A genetic algorithm with binary individuals (see chapter 1) was applied to solve 
optimal control problems [3] in which the cost functional is given by: 
j = Kx(tf\tf) (l) 

The dynamic system is linear in the controls, 

x(t) = a(x(t), t) + £ bs (x(t), t)ut (0 

with initial condition 

-H'o ) ~ xo 

Terminal state constraints are represented by, 
yr(x(tf),tf) = 0 

and the control constraints by 
a,.(()e[0,l];i = l,..,m 

(2) 

(3a) 

(3b) 

(4) 



The final time tf is free. According to optimal control theory the optimal control is 

bang-bang. Therefore one bit (0 or 1) of each individual was used to represent each 
control parameter. Additional bits were used to represent the unknown final time. The 
genetic algorithm was only applied to generate a solution by which a subsequent 
gradient method was initialised. Although knowing the bang-bang structure only 
switching times need to be optimised, in this paper the authors chose to use a 
piecewise constant approximation (equation 1.3.) of the control in conjunction with 
time-scaling to accommodate for the free final time. 

A binary genetic algorithm was applied to solve an optimal control problem with 
singular arcs, terminal state constraints and free final time [4], The mathematical 
description is given by equations (l)-(3). The control constraints are more 
complicated in this case, 

" y - W ' p K y W ^ u . W ) ) (5) 

The time interval t e [0,tf] was scaled to t e [0,1] and the control inputs u(t) to the 
interval [0,1]. Then, they were approximated by means of cubic Splines functions that 
used a minimum number of bits. A long string of bits was used to represent multi-
input systems. Auxiliary cost functions and associated Lagrange multipliers were 
added to the individuals. Although in this way singular optimal control problems can 
be handled two important drawbacks remain: the inherent limitations of a string of 
bits to accurately represent variables and the poor efficiency of a simple genetic 
algorithm. 

A binary genetic algorithm combined with heuristic constraints for the controls was 
applied to solve a time-optimal control problem of a continuous co-polymerisation 
reactor [5]. The continuous time optimal control problem is given by equations (1.1) 
and (1.2) as specified in chapter 1. However, the controls are constrained 
w <u(t)<u (6) 

and the final time (tf)is free. A piecewise constant control parameterisation was used 
in conjunction with time-scaling to accommodate for the free final time. The vector 
u = [u\,...,u",...,u\,...,u"m] containing all the control parameters was represented by a 
long binary string. In order to alleviate the computational load demanded by the GA, a 
two level hierarchical time-optimal control was implemented. At the highest level, an 
upper bound for the transition time (tf) and steady state control inputs (uiss) were 

calculated. At the lower level, the optimal control inputs and the minimum transition 
time were found using the steady state control from the highest level and a heuristic 
rule that reduces the range of control inputs. Two types of computations were 
performed. One in which the values of tk, k = 0,\,..,N, apart from time-scaling, are 

fixed and one in which they are free to be able to exactly compute the switching 
times. Regarding efficiency, the number of function evaluations required by the GA 
without the heuristic rule turned out to be less efficient than Iterative Dynamic 
Programming, but the GA using the heuristic rule clearly outperformed IDP. The 
main drawback of this approach is the low efficiency associated with a binary GA. 

2.1.4 Genetic Algorithms with floating-point individuals in optimal control 
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Michalewicz [6, 7] designed and applied genetic algorithms with a floating-point 
representation of the individuals and specialized operators to solve the linear-
quadratic problem of the discrete-time scalar system, 
xk+l = axk +buk, k = \,...,N-\ (7) 
with the quadratic performance index, 

N-l 

J^qxl+Y.^xl+rul) (8) 
t=o 

A discrete-time optimal control problem for the same scalar system with a non-
quadratic performance index and an additional equality constraint was also solved. 
Finally, also a discrete-time optimal control problem where the system is second order 
and the performance index quadratic was solved. 

The evolutionary algorithm termed GENOCOP in chapter 1 was evaluated against a 
Simple Genetic Algorithm (SGA with binary individuals) in solving the above-
mentioned problems. GENOCOP was more efficient than SGA by several orders of 
magnitude. This is due to a more appropriate representation of the problem and the 
use of specialized evolutionary operators. Successive extensions of GENOCOP 
(GENOCOP-II, GENOCOP-III) confirmed that GENOCOP is one of the most 
efficient evolutionary algorithms. GENOCOP's main disadvantage is its large number 
of operators and algorithm parameters that a user has to specify before solving a 
particular optimal control problem. 

An evolutionary program was proposed to solve continuous time optimal control 
problems, with constraints for the control inputs and fixed or free final time [8]. This 
approach uses a so-called state-space representation of the individuals (which is 
something else then a state-space realization of a system). The optimisation performed 
by this algorithm in addition to optimising the control approximated by splines and 
the time nodes tk,k = 0,l,..,N also optimises the number of time nodes N. It is 

argued that by optimising the time nodes and their number the algorithm is able to 
concentrate on areas were the control changes rapidly. This would allow for instance 
the exact solution of bang-bang optimal control problems. In this way, a better 
performance can be obtained by optimising the time nodes and their number. 
Accordingly the individual's representation several evolutionary operators were 
proposed: random, perturbation, simple crossover and arithmetic crossover (blend). 
In a subsequent paper [9] the approach was extended to solve constrained optimal 
control problems using penalty functions with time-varying coefficients. Although 
this evolutionary program worked well on the problems presented in the paper, its 
main limitation is that the number of the time nodes TV may become very large or 
very small. The associated solutions, in general, are undesired. 

A general approach to solve optimal control problems with general constraints by 
genetic algorithms with either binary or floating-point representation was proposed 
recently [10, 11]. The performance index is given by: 
J = <l>(x(tf)) (9) 

subjected to the system dynamics: 

x = f(x,u,p,t), x(to) = x0 (10) 
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and general equality and inequality constraints represented by, 
g(x(t),u(t),p,t) = 0 (11) 
h(x(t),u(t),p,t)<0 (12) 

" , , m , „ ^ , ( 0^ , m a * (13) 

In equation (9)-(12) p are the parameters of the dynamic system. The proposed 
evolutionary operators are those contained in the Genetic Algorithm Toolbox for use 
with Matlab [12]. Basically, this implementation follows the Breeder Genetic 
algorithm [13]. However, an important characteristic is the use of sub-populations 
with several topologies, which is argued, can improve the quality of the search and 
alleviate the high computational load. The main disadvantage of this approach is the 
lack of efficiency associated with the Breeder Genetic Algorithm, which is known 
nowadays to be efficient only in solving decomposable optimisation problems [14]. 

A method for the optimisation of dynamic processes by means of genetic algorithms 
with an integer-valued representation of the chromosomes was reported recently [15]. 
The controls were approximated by piecewise linear functions. Several optimal 
control problems with fixed final time and control constraints from bioengineering 
were solved. The genetic algorithm used a relatively small population of individuals. 
A so called elitist selection strategy with the roulette-wheel method was applied to 
select four individuals, which replace the worst individuals in the population. 
Classical crossover and mutation operators were used with a small probability of 
mutation and a high probability of crossover. The main drawback of this approach is 
the extensive tuning of algorithm parameters that is required by the algorithm. Also 
instead of an integer-valued representation a floating-point representation seems much 
more appropriate for solving optimal control problems. 

The application of Evolutionary Algorithms to solve an optimal control problem with 
a control that can only take on certain discrete values and a cost associated to each 
switching time was reported lately [16]. This is a mixed continuous and discrete-time 
optimisation problem which is complex and non-convex. The dynamic system is 
described by, 
x(t) = /WO, "(0), x(t0) = x0 (14) 
where x(t) eR", u{t) c U c T . 

In the case of a piecewise constant control function u(t), the optimal control problem 
is to find the sequences tt, u(tt), i - 0,1,...,n -1 where t, < tM, i = 0,1,...,n -1 which 
minimise the cost function: 

min ftx{tf )) + £>•£ max|w, (tM) - Uj (f, )| (15) 

where D is a constant matrix. 

An individual within the algorithm has a variable length determined by the number of 
control changes (switching times). Given the cost on switching, an individual will not 
continue growing. Based on the algorithm representation the following evolutionary 
operators were proposed: uniform-based crossover, mutation, blend, and insertion 
mutation. 
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The combination of a genetic algorithm using individuals with a floating-point 
representation and a shooting method was proposed recently to solve optimal control 
problems with terminal state constraints and fixed or free final time [17]. In the latter 
case time-scaling is applied. Basically, the GA was applied to seek optimal initial 
values of the co-states. The fitness function consisted of the Hamiltonian of the 
optimal control problem. The genetic algorithm only computes a few generations to 
obtain an estimate of the final time and the initial values of the co-states needed to 
initialise the shooting method with. If the solution is not satisfactory the procedure is 
repeated. 

An evolutionary approach based on the Breeder Genetic Algorithm was applied to 
solve a continuous time optimal control concerning greenhouse climate [18]. An 
important property of the evolutionary algorithm was the use of several sub-
populations instead of just one population. In a subsequent paper, a comparison of the 
performance of two Evolutionary Algorithms on this problem was presented [19]. 
Both algorithms were able to solve the problem. The best result was obtained by 
combining them. The main limitation of this approach is the use of the Breeder 
Genetic Algorithm, which is not very efficient, although the use of sub-populations 
seems to improve the efficiency considerably. 

Recently, the GENOCOP algorithm was extended with filter operators in order to 
allow for the calculation of smoother optimal control trajectories [20]. With this 
algorithm some optimal control problems having singular instead of bang-bang 
solutions were solved. The following two operators realize the smoothing. Firstly 
given an individual 
^ ^ (X! , . . . , ^ , ^ , , . . . , ^ ) (16) 

two neighbouring genes (xk and xM) are selected randomly and both are replaced by 

the average value (xk +xk+1)/2 . Secondly a least squares estimation of a line through 

five successive points (xk_2,...xk+2) is performed. Then, a new individual 

x ~ Kxlf'yXk-\'Xk'Xk+l'-"'Xg) \*') 

is generated were xt_,, xk, and xk+1 are replaced by the corresponding estimates on 
the line. 

2.1.5 Evolution Strategies in optimal control problems 

An Evolutionary Algorithm inspired by ES has been proposed recently [21]. It has 
been applied to solve continuous and discrete-time optimal control problems with 
fixed final time and control constraints. A piece-wise constant approximation for the 
controls was applied. Floating-point numbers represent the individuals in the 
population. Several specialised evolutionary operators were designed to improve the 
local search capabilities of this algorithm. The recombination operators were 
crossover, interpolation and extrapolation. The mutation operators were mutation and 
creep, which used a Gaussian distribution, and also shift, smoothing and swap. The 
algorithm uses small population sizes (2, 4 and 8 individuals), which account for the 
observed high efficiency. Although the algorithm has been used successfully to solve 
some practical problems from chemical engineering the number of evolutionary 
operators and the associated algorithm parameters that need to be tuned present a 
serious drawback. 
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