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ABSTRACT 

Van Erp, P.J. 2002. The potentials of multi-nutrient soil extraction with 0.01 M CaCl2 

in nutrient management. Doctoral Thesis, Wageningen Agricultural University, The 

Netherlands, 237 pages. ISBN 90-5808-664-x. 

Aim of this thesis is to improve the understanding of nutrient dynamics in soil and 

thereby to improve decision-making in nutrient management. There is a need for a 

more mechanistic approach of decision-making because the classical approaches 

cannot comply with the tightening up of legislation and boundary conditions for 

sustainable agricultural production. 

The thesis encompasses eight separate papers in which the mechanistic backgrounds of 

the 0.01 M CaCl2 soil extraction procedure has been studied as well as the perspectives 

of the design of a multi-nutrient CaCl2 soil testing program. The studies have been 

focussed on the cations Ca, Mg and K. Although the use of CaCl2 as a soil extractant is 

promising, it is concluded that the design of a multi-nutrient CaCl2 soil testing 

program is time-consuming and costly. A framework for decision-making in nutrient 

management has been worked out. In this framework the multi-nutrient 0.01 M CaCl2 

soil extraction procedure is used as a standardized procedure to give a chemical 

characterization of soils at a pH and ionic strength comparable to field conditions. This 

characterization is used as input in a soil chemical model to calculate nutrient 

speciation and nutrient distribution under varying conditions. This nutrient speciation 

and distribution is used to characterize the pool of plant available soil nutrient. It is 

proposed to integrate the CaCl2 soil extraction procedure with a soil chemical model, a 

crop growth model, a soil microbiological, a soil hydraulic model and an optimization 

procedure into a practical tool for nutrient management decision-making. This tool can 

then be used i) to tune plant nutrient requirements for maximal crop production and 

crop quality to the magnitude of the pool of plant available soil nutrient in time and 

space, and ii) to optimize farm activities in order to comply with more and stricter 

legislation and boundary conditions related to nutrient management. It is concluded 



that the perspectives of the multi-nutrient CaCb soil extraction procedure in 

mechanistic soil nutrient models and in nutrient management are promising. 

Key words: 0.01 M CaC^, soil testing, nutrient management, decision-making, multi-

nutrient 



VOORWOORD 

Dit proefschrift is voor mij een afsluiting van een periode van 5 jaar waarin ik, veelal in 

mijn vrije tijd, de (on)mogelijkheden van 0.01 M CaCl2 als grondextractiemiddel heb 

onderzocht. Dat ik daaraan begonnen ben, had de volgende redenen: 

• de managementtaken bij mijn toenmalige werkgever Nutrienten Management 

Instituut NMI namen in omvang toe waardoor ik 'minder aan onderzoek en het 

spelen met data' toekwam wat ik ongewenst vond; 

• de CaCh extractiemethode bood mijns inziens de mogelijkheid om te komen tot 

een integratie van de kennisgebieden bodemchemie, bodemvruchtbaarheid, 

plantenvoeding & bemestingsleer, plantenfysiologie, en de modellering daarvan, 

waardoor de ontwikkeling van meer mechanistische bemestingsadviezen tot de 

mogelijkheden zou kunnen gaan behoren; 

• voor het schrijven van het proefschrift zou (bijna) geen verzameling van primaire 

data noodzakelijk zijn: Dr. V.J.G. Houba van Wageningen Universiteit had veel 

analyseresultaten van relevant CaCl2-onderzoek beschikbaar; 

• ik had altijd al het idee om ooit een proefschrift te schrijven; en, 

• door omstandigheden deed zich bij NMI de mogelijkheid voor om gedurende een 

beperkte periode een dag per week aan dit proefschrift te werken. 

Nu het proefschrift klaar is, is het tijd om terug te kijken. Het langdurig combineren van 

een gezin, een verbouwing/renovatie van je huis, een fulltime baan bij NMI en het 

schrijven van een proefschrift, zou ik niet veel mensen willen aanraden: er zijn altijd 

zaken die er (on)bewust bij in schieten. 

Het gedurende een dag per week aan een proefschrift werken is niet efficient: het is beter 

om er een korte tijd intensief aan te werken dan regelmatig enkele uurtjes. 

Het is net niet mogelijk gebleken om het proefschrift te schrijven op basis van een 

bewerking van bestaande onderzoeksgegevens: voor het schrijven van het laatste 

manuscript moest van een aantal gronden de actuele CEC opnieuw worden bepaald. Dit 



bleek een uiterst nuttige oefening omdat daarmee kon worden aangetoond dat ISO-

richtlijn 11260 de actuele CEC onderschat. 

Het proefschrift integreert enkele kennisgebieden. Daarmee is naar mijn mening dan 

ook een stap gezet op weg naar een mechanistische benadering van bodem-plant-nutrient 

relaties in bemestingsadviezen. De eerlijkheid biedt te zeggen dat voordat dit werkelijk 

gerealiseerd kan gaan worden, nog veel onderzoek nodig zal zijn. 

Het schrijven van dit proefschrift heeft er niet toe geleid dat ik mij minder met 

managementtaken en meer met onderzoek ben gaan bezighouden. Integendeel, sinds ik 

werkzaam ben als teamleider van het PPO team Paddestoelen is het 'managen' mijn 

hoofdtaak. 

Een proefschrift schrijven doe je niet alleen: er zijn meerdere mensen die direct of 

indirect een bijdrage leveren aan de totstandkoming. Enkele personen wil ik hier met 

name noemen. 

Als eerste wil ik mijn promotor Prof. Dr. Ir. O. Oenema bedanken. Oene, eigenlijk 

hebben we in de periode van het schrijven van het proefschrift maar weinig overleg 

gehad. Echter, de manuscripten van het proefschrift die ik je toestuurde, beoordeelde je 

snel en kritisch maar altijd opbouwend. Het is vooral in de fase van het afronden van het 

proefschrift geweest dat je een duidelijke stempel op het geheel hebt gezet. Je voorstel 

om mijn ideeen omtrent nutrientenmanagement in een samenhangend en afsluitend 

hoofdstuk te formuleren heeft de afronding wel iets vertraagd maar het proefschrift mijn 

inziens wel verbeterd. 

Dr. Ir. M.L. van Beusichem, mijn co-promotor, bedank ik voor zijn kritisch en deskundig 

commentaar op de verschillende manuscripten. De manuscripten met een duidelijke 

bodemchemische inslag ploos je helemaal uit totdat je elk symbool, formule, punt en 

komma begreep. In enkele conceptverhalen haalde je op deze wijze (tik)fouten uit 

formules of vergelijkingen. Daarnaast wil ik je bedanken voor het corrigeren van het 

Engels in al mijn manuscripten. Graag zou ik de samenwerking tussen ons, die begon 

toen NMI op de vakgroep kwam, voortzetten. Dit zal waarschijnlijk niet gaan omdat we 

beiden een 'andere' weg zijn ingeslagen. 



Dr. Ir. V.J.G. Houba wil ik bedanken voor zijn steun. Victor, zonder jou was het 

schrijven van dit proefschrift niet mogelijk geweest. Jij had in je kast de 

onderzoeksgegevens liggen die ik heb bewerkt. Je was iemand waar ik tegenaan kon 

praten als na een bewerking van oude onderzoeksresultaten mijn hypothese niet werd 

bevestigd. Regelmatig toverde je dan weer een oud studentenverslag tevoorschijn waar 

ik "mogelijk wat mee kon". Ik zal ook niet vergeten hoe we samen in het kader van het 

Copernicus-project samenwerkten met onderzoeksinstellingen in Oost-Europa. De reizen 

daartoe en het verblijf aldaar verliepen altijd prettig. Victor, bedankt voor dit alles. 

Ir. R. Pothoven, directeur van NMI, wil ik bedanken voor de mogelijkheid die hij heeft 

geboden om in NMI-tijd aan het proefschrift te werken. Het aanbod Week in 

werkelijkheid niet altijd uitvoerbaar: regelmatig vond ik dat NMI-werkzaamheden 

prioriteit hadden boven het schrijven van het proefschrift. Gerard Velthof en Romke 

Postma wil ik bedanken voor het opvangen van bezoekers en het beantwoorden van de 

vele telefoontjes als ik weer eens een dag rustig aan het proefschrift wilde werken. De 

andere (oud) NMI-collega's wil ik bedanken voor de interesse die ze altijd hadden wat 

betreft de voortgang van mijn proefschrift. 

Tjisse Hiemstra bedank ik voor de tijd die hij vrijmaakte als de meetdata mijn 

bodemchemische hypotheses niet konden bevestigen. Tjisse bedankt daarvoor. 

Chris van Uffelen bedank ik voor zijn spontaan aanbod om ondanks zijn drukke 

werkzaamheden een groot aantal bodemchemische berekeningen voor mij uit te voeren. 

Jouw berekeningen hadden een grote waarde: nagenoeg alle resultaten zijn in de vorm 

van voorbeeldberekeningen in mijn proefschrift gekomen. 

Tenslotte wil ik Pieternel, Teun en Anke bedanken voor de steun en het geduld bij de 

vele uren die ik thuis aan het proefschrift heb gewerkt. Ik beloof dat ik de komende tijd 

meer tijd voor jullie heb. 

Peter van Erp 

Andelst, mei 2002 
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CHAPTER 1 

GENERAL INTRODUCTION 



GENERAL INTRODUCTION 

1.1 Background description 

Current farm management in many developed countries is confronted with increasing 

demands of society and industry with respect to sustainable food production, food 

quality, environmental protection, nature conservation and animal welfare (FAO, 1999; 

European Community, 2000; FAO, 2001). These demands have resulted in legislation 

and boundary conditions for, among other things, the production, handling and quality of 

agricultural (edible) products, nutrient and pest management, use of non-renewable raw 

materials (e.g. De Walle and Sevenster, 1998; Sharply et al., 2000). These demands have 

(negative) effects on farm profitability. It is foreseen that more and stricter legislation 

and boundary conditions will affect farm management. 

Proper nutrient management is one of the major topics in sustainable farm management, 

for various reasons (Van Erp and Oenema, 1993; Oenema and Pietrzak, 2002): 

• it determines the crop yield and crop quality (i.e. financial crop yield); 

• surplus nutrients may have negative side effects on the environment; 

• non renewable raw materials are used for fertilizer production; and, 

• fertilizer costs are a substantial part of total production costs. 

The basic question is than 'how can nutrient management in farming systems comply 

with the demands of society and industry?' 

It is foreseen that nutrient management has to adjust to the changing needs of market, 

society and industry at strategic, tactical and operational management levels. In the 

process of decision-making economical, environmental, legislative, agricultural and farm 

specific boundary conditions are integrated and profit optimized (Oenema and Pietrzak, 

2002). Proper decision-making is only possible when data of the actual status of farm 

economics, soil, crop, labour, etc. are readily available, and when practical tools can be 

used that evaluate the present status and that can predict the most likelihood status after 

e.g. execution of farm activities, changing growing conditions, etc. This requires a good 

understanding of the dynamics of soil-plant-nutrient relationships. 



1.2 Soil-plant-nutrient relationships 

1.2.1 Four-quadrant scheme 

Crop yield, crop quality and overall nutrient use efficiency, etc. are, among others, the 

resultant of soil and plant processes that determine nutrient availability, nutrient 

transport and nutrient root uptake. Detailed knowledge of (the dynamics) of these 

processes should be the basis for nutrient management. 

The relationship between nutrient application rate and crop yield is being used for the set 

up of fertilizer recommendations schemes in current soil testing programs. In these 

schemes the optimal nutrient application rate equals the rate where the expected benefits 

due to yield increase equal the expected extra fertilizer costs (Cook, 1972). Since 

fertilizer costs are relatively low in most industrialized countries, the optimal nutrient 

application rate is often equal to the application rate for maximal yield. At this 

application rate the risk on nutrient losses to the environment is often high. Evidently, 

nutrient recommendation schemes should take possible nutrient losses into serious 

consideration. 

Figure 1 depicts the four-quadrant scheme, presenting the relevant soil-plant-nutrient 

relationships in a soil-plant system. De Willigen and Van Noordwijk (1987) suggested to 

analyze fertilization experiments via this scheme and to use this scheme for the set up of 

more efficient fertilization strategies. Quadrant II in Figure 1 represents the relationship 

between the application rate of a particular nutrient and dry matter production as found 

in traditional fertilizer application experiments. According to the concept of the four-

quadrant scheme the curve in quadrant II is the final result of the respective (basic) 

curves in the quadrants I, III and IV. Quadrant I describes the relationship between 

nutrient uptake and dry matter production. In the linear part of the curve, the nutrient is 

limiting dry matter production. The slope of this linear part equals the critical nutrient 

concentration for optimal dry matter production. This critical nutrient concentration is a 

plant characteristic and differs between crops and cultivars. When the curve in quadrant I 

levels off, other growth factors (including other nutrients) become yield limiting. This 

region is called the region of luxury consumption of that particular nutrient. When crop 



quality is related to nutrient content, this relationship could be used to optimize crop 

quality. Quadrant III describes the relationship between nutrient application rate and the 

size of the soil pool of plant available nutrient. The pool of available nutrient consists of 

the amount already present and available in the soil (the intercept with the vertical axis) 

and the amount added by fertilization. The slope of the curve in quadrant III is not equal 

to 1 because not all applied nutrients are available for uptake. Part of the amount applied 

may get lost to the environment just after application (e.g. NH3 volatilisation) or may not 

enter the available pool in the first growing season (e.g. nutrients in organic matter or P-

fertilizers). 

300 
RATE 

200 100 

IOC 

100 200 

IV 

300 
UPT 

FIGURE 1. Typical example of the four-quadrant scheme. DM= dry matter yield in ton 

ha"1, UPT= nutrient uptake in kg ha'1, PAN = pool of available nutrient, in kg ha"1 and 

RATE = application rate in kg ha*1 



The slope of the curve in quadrant III represents the relative availability of an added 

nutrient source and depends on the chemical composition of the nutrient source, soil 

type, climatic conditions, time and method of application. The relationship in quadrant 

III can be used to maximize nutrient availability and overall nutrient use efficiency. 

Quadrant IV describes the relationship between the size of the soil pool of available 

nutrient and nutrient uptake. The processes in quadrant IV primarily depend on the size 

of the pool of the available nutrients and not on the origin of the nutrients. The curve in 

quadrant IV is not a 1:1 curve. Nutrient uptake from the available pool competes with 

processes leading to nutrient losses to the environment, for instance leaching, 

volatilization, denitrification. The difference between the 1:1 curve and the actual curve 

reflects the potential nutrient losses to the environment before, during or after the 

growing season. It is clear that the processes leading to the relationship in quadrant IV 

should be manipulated to minimize losses to the environment. The slope of the curve in 

quadrant IV can be interpreted as a measure for the relative depletion of the pool of 

available nutrients by the crop. The slope depends on e.g. the root system of the crop, the 

uptake capacity of the crop, and water status of the soil. Plant roots growing in soils 

having a low soil moisture availability, can deplete only part of the pool of available 

nutrient. As a result nutrient uptake is not maximal. 

An increase of the overall nutrient use efficiency of agricultural systems and the 

concurrent decrease of nutrient losses to the environment, has to be based on improved 

'sub-efficiencies' in quadrants I, III and IV. Processes in quadrants III and IV offer as 

much opportunity for improvement as those in quadrant I. Plant breeding may decrease 

critical nutrient concentrations in dry matter. However, such change may affect the 

nutritive value of crops and agronomic functions of the non-harvested plant residues. 

Efficiency in quadrant IV can be improved via a higher relative depletion by better root 

systems in relation to temporal and spatial aspects of nutrient availability. In quadrant III 

fertilizer choice and adjusting fertilization techniques to soil and climate conditions can 

improve nutrient use efficiency. 

Summarizing, the four-quadrant scheme provides a subdivision of the basic processes 

involved in soil-plant-nutrient relationships. The scheme is therefore a good starting 



point for integration of plant nutrient requirement for optimal crop yield and crop quality 

(quadrant I) and the size of the pool of (bio or) plant available nutrient (quadrants IV and 

III) towards a high total nutrient use efficiency and minimal nutrient losses to the 

environment. The (slopes of) the curves in the scheme are related to general soil 

characteristics like e.g. organic matter, clay content and water holding capacity and plant 

characteristics like critical nutrient concentrations. The soil-plant-nutrient relationships 

and their characteristics can be mathematically described. Therefore, the scheme has the 

opportunity to include general soil (and plant) characteristics in nutrient management. 

Basically, the relationships in the four-quadrant scheme should form the basis for 

nutrient management decision-making. 

The definition of the pool of available nutrients is not as clear-cut as presented in Figure 

1: several pools with variation in plant availability have to be distinguished. The 

relationships between the pool of available nutrient and nutrient availability indices as 

determined by current soil testing programs has been the subject of soil fertility research 

for decades. Currently, there is a switch from the rather empirical approach of the past, 

to more mechanistic approaches, as discussed further below. 

1.3 Current soil testing programs 

Current programs have proven their value for optimization of nutrient management in 

present day farming systems (Soil and Plant Analysis Council Inc., 2000). The question 

is whether the programs are valuable for nutrient management decision-making when the 

increasing demand of society and industry are taken into account. Hereafter, a 

comparison has been made between the desired properties of programs and the actual 

properties of current programs (Hergert, 1998; Benton Jones, 1998). 

'Average' versus 'individual' 

Farming systems will strive for maximal (financial) crop yield, optimal crop quality and 

maximal overall nutrient use efficiency by tuning soil nutrient availability to plant 

nutrient requirements in time and space. Tuning requires a precise understanding of (the 

dynamics of the processes underlying) soil-plant-nutrient relationships. The soil (and 

plant) nutrient status as determined via soil (or plant) testing programs play an important 



role in these relationships. Most of the current soil testing programs treat the soil-plant-

nutrient relationships rather as a black box and use a 'trial and error' method for the 

interpretation of soil testing data. Such approaches may be valid for determining average 

growing conditions, but is not applicable in site-specific and sustainable agricultural 

systems. 

TABLE 1. Soil testing programs currently operative in The Netherlands, type of 

extractant and soil/solution ratio used, and the parameters needed for agricultural 

interpretation of the amount of nutrients extracted. 

Soil testing program 

pH 

K,Na 

Mg 
N-mineral (N03 + 
NH4) 
P (arable land) 
P (grassland) 

B 
Co 
Cu 
Mn-reducible 

Zn 

Extractant 

1MKC1 

0.1 MHC1+0.2M 
oxalic acid 
0.5MNaCl 
1MKC1 

Water, 20°C 
0.1 M ammonium 
lactate+0.4 M acetic 
acid (pH 3.75) 
Water, boiling 
0.4 M acetic acid 
0.43 M HN03 

1 M ammonium 
acetate+0.002 M 
hydroquinone 
0.4 M acetic acid 

Soil/Solution 
ratio 
1:5 (w/v) 

1:10 (m/v) 

1:5 (m/v) 
1:2 (v/v) 

1:60 (v/v) 
1:20 (m/v) 

1.TO (m/v) 
1:40 (m/v) 
1:10 (m/v) 
1:20 (m/v) 

1:40 (m/v) 

Parameters needed for 
interpretation 
Soil type, organic matter, 
<16 um content, crop 
rotation 
Soil type, organic matter, 
< 16 um content, pH-KCl 
Soil type, organic matter 
Soil type, crop 

Soil type, crop 

Crop rotation 

Crop 
Organic matter, C/N ratio 

'Single nutrient' versus 'all essential nutrients' 

Nutrient management should take into account all nutrients essential for plant growth 

and their mutual interactions on fertilizer requirement. This more integrated approach is 

necessary to attain a combination of minimal risks on deficiencies, high overall 

efficiency, good crop growth, maximal crop yield and optimal crop (feeding) quality. 

Most of the current soil testing programs are single nutrient programs (Table 1) and the 

corresponding recommendation schemes seldom take into account nutrient interactions. 



To analyse the soil status for all essential nutrients via common soil testing programs, 

numerous distinct programs will have to be executed. This is time consuming and 

expensive. Moreover, the results of the different programs cannot easily be linked 

together, mainly because of the different nature of the primary index. 

'One sampling' versus 'regular monitoring' 

Most of the current soil testing programs are based on the nutrient status of one 'bulked' 

soil sample taken just before planting or sowing. One or two nutrient applications are 

then recommended which aim at an'average' maximum crop yield. Nutrient 

management decision-making is a continuous process based on regular monitoring of the 

actual nutrient status of both soil and crop, on evaluation of this status, and on 

interpretation of this status taking well-defined boundary conditions into account. 

Current soil testing programs do not fit in these monitoring strategies. 

Rapidity, reliability and costs 

In farming systems, decision-making should be based on data of the actual soil nutrient 

status. Therefore, testing data should be reliable and become available rapidly after 

sampling. It has been shown for some of the current soil testing programs that the 

accuracy and repeatability is moderate. Besides, current programs have laborious 

procedures for sampling, sample preparation, extraction and nutrient analysis, making 

the execution of the programs time consuming and expensive. Therefore, current 

programs are not adequate to support farming systems (Houba et al., 1986). 

The execution of the total package of single nutrient soil testing methods as mentioned in 

Table 1 cost more than 400 Euro per field. When soil testing for all nutrients is part of 

monitoring strategies, then the costs for soil testing will increase enormously. The costs 

for soil testing in monitoring strategies seem acceptable when costs are not more than 

20-50 Euro per field per year. This means that costs for current programs should 

decrease considerably. The use of multi-nutrient extractants, e.g. 0.01 M CaC^, in 

combination with high tech and computerized analytical techniques are promising in 

decreasing soil testing costs. 



1.4 Aim of the study 
The (bio) availability of nutrients in soil to agricultural crops is an important growth and 

yield-determining factor. Currently, there is still a lack of understanding how the (bio) 

availability of nutrients is affected by the dynamics and interactions of processes 

underlying the soil-plant-nutrient relationships in agricultural soils. Mechanistic and 

quantitative data on the actual soil and plant nutrient status are often not readily available 

and there are few practical tools available that evaluate the actual status or predict future 

nutrient status of soil and plants. A new approach in nutrient management is therefore 

desirable. 

The overall aim of this thesis is to improve the understanding of the availability of 

nutrients in soil to agricultural crops and, thereby, to improve the decision-making 

process in nutrient management of crop production systems. The specific objectives are 

as follows. 

• To test and improve 0.01 M CaCl2 as multi-nutrient soil extractant in soil testing 

programs 

• To provide a sound mechanistic interpretation of the results of the multi-nutrient 

soil extractant 0.01 M CaCl2 

• To develop a conceptual framework that links results of the multi-nutrient soil 

extractant mechanistically to nutrient requirements of crops. 

It is realized that plant testing programs as well as a good understanding of the soil 

physical and microbial processes in the soil-plant-nutrient relationships also contribute to 

a proper nutrient management. Because of a lack of time these subjects are not treated 

into detail in this thesis. However, integration and incorporation of these subjects in 

nutrient management is possible in the described conceptual framework of nutrient 

management decision-making. 

1.5 Outline of the thesis 

This thesis is a compilation of studies related to the 0.01 M CaCl2 soil extraction 

procedure. These studies have been published in or have been submitted to scientific 

journals. 

10 



Chapter 2 presents the results of a study on the perspectives of using (current) soil and 

plant testing programs for the optimization of nutrient management. 

The use of CaCl2 solutions as a soil extractant is reviewed in Chapter 3. In this Chapter 

the perspectives of 0.01 M CaCl2 as a multi-nutrient soil extractant are judged from a 

soil chemical, analytical and plant nutritional point of view. 

The effects of soil drying temperature and the use of forced air ventilation in the drying 

protocol of the 0.01 M CaCl2 soil extraction procedure on the amount of nutrient 

extracted are evaluated in Chapter 4. 

In Chapter 5 a fundamental relationship is presented which relates the amount of Mg 

extracted by the 0.01 M CaCl2 procedure to Mg extracted by conventional Mg extraction 

procedures. In this relationship the actual CEC is an important variable. 

In Chapter 6 it is tested if the actual CEC of a soil can be estimated using pH and content 

of organic carbon and clay. 

A study on the relationship between the pool of plant available potassium in soils and the 

amount of potassium extracted by the 0.01 M BaCl2 method is presented in Chapter 7. 

In Chapter 8 the selectivity coefficients of Ca, Mg and K exchange reactions in soils 

during the 0.01 M CaCl2 extraction procedure are deduced. Moreover, it is tested if these 

coefficients can be used to obtain a reliable estimate of the amount of BaCl2 extractable 

cations using the cationic composition of the CaCl2 extract and actual CEC. 

Chapter 9 evaluates the 0.01 M BaCl2 soil extraction procedure (ISO 11260) as a method 

for the determination of the size of the cation exchange capacity and base saturation. 

Finally, in Chapter 10 the main findings of this thesis are discussed and integrated into a 

conceptual framework for nutrient management decision-making. 
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CHAPTER 2 

SOIL AND PLANT TESTING PROGRAMS AS A TOOL FOR 
OPTIMIZING FERTILIZER STRATEGIES 

P.J. Van Erp and ML. Van Beusichem (1998) 
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GENERAL INTRODUCTION 

In order to feed the growing world population, agricultural crop 
production has to increase considerably. To attain this, efforts should 
be focussed on increasing crop yields per hectare rather than increas­
ing the area for agricultural production (World Bank, 1992; IFA, 
1995). Improvement of the fertility status of agricultural land and an 
economic, efficient (re-)use of mineral and organic fertilizers, organic 
wastes and crop residues should be promoted to achieve increases in 
crop yields (Smaling, 1993; Van Reuler, 1996). 

Agriculture in European and North-American regions is character­
ized by a high crop production, a (more than) sufficient soil fertility 
status and a high input of nutrients via mineral and organic fertilizers 
(IFA, IFDC, and FAO, 1994; FAO, 1995). In these regions, agriculture 
is confronted with the (in)direct side effects of current management 
leading to nutrient losses to the environment (Isermann, 1990; Bus-
sink, 1992; 1994), adverse effects on product quality (Breimer, 1982), 
high energy inputs (Fluck, 1992), production of greenhouse gases 
(Granli and B0ckman, 1994; Koops, Oenema, and Van Beusichem, 
1996; Velthof, Brader, and Oenema, 1996), acidification (Oenema, 
1990), etc. 

Faced with these side effects, The Netherlands (Anonymous, 1987) 
and the EC (EC, 1991) proposed legislation that restricts rate, time and 
method of nutrient applications and the nitrogen (N) and phosphorus (P) 
surplus on the N and P balance sheet of farms (VROM and LNV, 
1995). Its aim is to optimize nutrient-use efficiency and minimize nega­
tive side effects. To achieve compliance with an increasing amount of 
agricultural, environmental, legislative and economic constraints, there 
is a need for well-defined fertilizer strategies (Van Erp and Oenema, 
1993). These strategies should lead to optimization of nutrient use, 
crop production and quality and at the same time satisfy the above-
mentioned boundary conditions. Fertilizer strategies can be based on: 
(1) soil testing programs that relate nutrient availability in the rooting 
zone, in space and time, to crop demand (De Willigen and Van Noord-
wijk, 1987; Slangen, Titulaer, and Rijkers, 1989); and (2) plant testing 
programs that monitor crop nutrient content during growth, allowing 
corrective fertilizer application (Munson and Nelson, 1990). 

In this chapter, the design and scientific underpinning of current soil 
and plant testing programs will be discussed for macronutrients and 
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annual field crops. The perspectives in using such programs as practi­
cal tools for optimizing fertilizer strategies will then be evaluated. 

COMPONENTS OF SOIL AND PLANT TESTING PROGRAMS 

There is a common agreement that 17 chemical elements are essen­
tial for metabolism, growth, development and successful reproduction 
of higher plants (Epstein, 1965, 1972; Brown et al., 1987; Marschner, 
1995). Insight into the dynamics of nutrient availability in soil and 
crop nutrient requirement is necessary to optimize soil fertility status, 
to synchronize supply and demand and thus to maximize crop yield. 
Soil and plant testing programs can be useful practical tools in reach­
ing these goals. 

Soil and plant testing programs include: (1) collection and prepara­
tion of soil and plant samples; (2) chemical extraction (or pressing) of 
the samples; (3) determination of the nutrient concentration in the 
extract; (4) interpretation of the obtained nutrient concentrations in 
order to assess soil fertility categories or plant status categories; and 
(5) derivation of (corrective) fertilizer applications (Dahnke and Ol­
son, 1990; Munson and Nelson, 1990; Peck and Soltanpour, 1990). 

We define soil and plant analysis as the chemical/physical treatment 
of the soil or plant sample and subsequent determination of the nutri­
ent concentration. Soil and plant analysis data provide the basis for the 
fertilizer recommendations, and thus form an essential part of soil and 
plant testing programs. 

Background to Soil and Plant Analysis 

Soil Analysis 

Schofield (1955) distinguished two nutrient fractions in the soil: the 
'quantity,' indicating the amount of potentially available nutrients, and 
the 'intensity,' indicating the strength of nutrient retention. The 'quan­
tity' reflects all the nutrients within or adsorbed at the soil constitu­
ents, whilst the 'intensity' reflects the nutrient concentration in the soil 
solution. The 'intensity' and 'quantity' are interrelated by the buffer­
ing capacity of the soil, which is an indicator of the capability to 
maintain a certain nutrient concentration in solution. The 'quanti-
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ty'/'intensity' approach is valuable for nutrients like P and K (Holford, 
1991; Holford and Doyle, 1992; Evangelou, Wang, and Phillips, 1994; 
Raven and Hossner, 1994), but cannot easily be applied to nutrients 
predominantly in organic forms and/or to nutrients that are hardly 
buffered by soil constituents. The concentration of (non-buffered) 
nutrients in the soil solution may vary enormously because of fertiliza­
tion, nutrient uptake by crops and mineralization (Figure 1; see also 
Yanai et al., 1996). 

Nutrient uptake rate by plant roots is considered to be positively 
correlated with the nutrient concentration in the soil solution (Nye and 
Tinker, 1977; Barber, 1984), i.e., with the 'intensity.' The nutrient 

FIGURE 1. Dynamics of the concentration of Ca, N03, Mg, K and P as well 
as pH in the soil solution (Yanai et al., 1996, with kind permission from Kluwer 
Academic Publishers, Dordrechet, The Netherlands). O: without N without 
plant, • : without N with plant, A: with N without plant, A: with N with plant. 
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concentration in soil solution may thus be a good indicator of the 
actual nutrient availability in the soil. The methods available to sepa­
rate the soil solution from soil constituents (Dahlgren, 1993; Jones and 
Edwards, 1993; Lorenz, Hamon, and McGrath, 1994; Lawrence and 
David, 1996) do not always provide actual concentrations because the 
soil solution may be altered substantially during the separation process. 
Nevertheless, soil extraction with water or dilute salts (Houba et al., 
1990; Dahlgren, 1993) is widely used to assess the nutrient concentra­
tion in soil solution. When using these weak extractants, the amounts 
of extracted nutrients heavily depend on e.g., sample drying tempera­
ture (Figure 2) and sample storage (Barlett and James, 1980; Houba, 
Novozamsky, and Van der Lee, 1989, 1995; Rechcigl, Payne, and 
Sanchez, 1992), soil:solution ratio and shaking time (Rezaian et al., 
1992), and extraction temperature (Houba, Novozamsky, and Van der 
Lee, 1989). Results of soil extraction with water or dilute salt solutions 
are probably related, but certainly not equal to the actual nutrient 
concentration in the soil solution. Interpretation/quality of soil testing 
programs may improve if the soil chemical processes that determine 
the nutrient release during the extraction process are taken into ac­
count. 

Determination of the 'quantity' can be done by means of total 
elemental analysis. From a crop nutritional point of view, the signifi­
cance of these total analyses is limited because only a very small 
fraction of the total reserve can be taken up by the crop during one 
growing period. From an agricultural point of view, estimation of the 
size of the 'labile' (Marschner, 1995) pool may be a better indicator of 
the nutrient availability. Extractants commonly used to determine this 
'labile' pool are (combinations) of acids, hydroxides, complexing 
agents or salt solutions (Fixen and Grove, 1990; Haby, Russelle, and 
Skogley, 1990). Also ion-exchange resins (Rubaek and Sibbesen, 
1993) or ion-exchange membranes (Qian, Schoenau, and Huang, 
1992) are sometimes used to determine the size of the 'labile' nutrient 
pool. The theoretical foundation of the functioning of most extractants 
is well known, but it is difficult to use this knowledge for selecting an 
extractant because the chemical binding forms of nutrients in the soil 
are mostly unknown. Generally, nutrients associated with the cation 
exchange complex are extracted with high molar salt solutions (Haby, 
Russell, and Skogley, 1990; Meyer and Arp, 1994). Nutrients that are 
present in minerals with a low solubility product, or in minerals from 
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FIGURE 2. Effect of drying temperature on the amount of N03-N, NH4-N and 
soluble organic N extracted with 0.01 M CaCI2 (Houba, Novozamsky, and Van 
der Lee, 1989, with kind permission from VDLUFA, Darmstadt, Germany). 
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which the release is kinetically restricted, are extracted using acids or 
hydroxides, resins or other nutrient-specific methods (Fixen and Grove, 
1990; Menon, Chien, and Chardon, 1997). 

Plant Analysis 

Plant nutrients are mostly taken up from the soil in an ionic form 
(Mengel and Kirkby, 1987). After uptake, the nutrients are distributed 
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throughout the plant but the major part is transported towards growing 
cells with an active metabolism (Marschner, 1995). Determination of 
the nutrient content of the whole plant is generally not a good indicator 
of its nutritional status because a substantial proportion of the nutrient 
is not metabolically active and/or incorporated in cell structures. An 
expanded but not fully mature leaf is metabolically very active and, 
therefore, it is considered that its nutritional composition may be 
used in the diagnosis of the nutritional state of most crops (Martin-
Prevel, Gagnard, and Gautier, 1987; Jones and Case, 1990; Marschner, 
1995). 

Advances in analytical techniques, procedures and equipment, and 
the increased knowledge of physiological plant nutrition have ex­
tended the development of foliar analysis as a basis of plant testing 
programs. In most cases, the total elemental content of the leaves is 
analyzed in oven-dried, ground plant material. However, extraction of 
plant samples with water, solutions of acetic acids, dilute HC1 or a 
mixture of HF and HO are also in use (Jones and Case, 1990). 

Tissue testing may involve determination of the nutrient concentra­
tion in plant sap squeezed from fresh plant samples. In this way semi­
quantitative information can be obtained about plant nutrients such as 
N03 , HPO4/H2PO4, and K (Jones and Case, 1990). 

The presence or activity of enzymes or nutrient-containing metabo­
lites may be related to the plant nutritional status (Bar-Akiva, 1971; 
1984; Bouma, 1983; Hernandez et al., 1995). However, enzyme activ­
ity is not always nutrient-specific and may also be affected by plant 
age and external factors (Bar-Akiva, 1971, 1984; McLachlan, 1982). 
In addition, these techniques are labour intensive and, therefore, their 
usefulness in plant testing programs is limited in the short term. 

Development of Soil and Plant Testing Programs 

The development of soil and plant testing programs can be divided 
into five phases (Dahnke and Olson, 1990; Munson and Nelson, 
1990): (1) formulation of soil and plant sampling strategies; (2) as­
sessment of the correlation between the amount of nutrient extracted 
and crop yield or nutrient uptake; (3) ranking into soil fertility or plant 
status categories (= calibration); (4) interpretation of results of pot and 
field trials and recommendations of fertilizer rates, and (5) adjustment 
of the fertilizer recommendations to economic boundary conditions. 
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Phase 5 is an integration of phase 4 with financial boundary conditions 
and is beyond the scope of this work. 

Sampling Strategy 

A bulked soil sample needs to reflect/represent the spatial heteroge­
neity of the soil in an agricultural field in both horizontal and vertical 
directions. Numerous soil sampling procedures have been proposed 
for obtaining a representative soil sample from spatially heteroge­
neous fields (James and Wells, 1990). Similary, a plant sample needs 
to reflect the heterogeneity of the performance of the crop in the field 
and the nutritional status of a crop. Crop-specific sampling procedures 
have been proposed (Jones and Case, 1990). Most plant sampling 
procedures have an empirical basis. 

Correlation Studies 

Determining the best soil or plant extractant, traditionally, relies on 
the determination of the relationship between the concentration of the 
nutrient extracted and crop yield or nutrient uptake (Corey, 1987). 
Extractants fail when the nutrient concentration is not, or is only 
weakly, related to crop yield or nutrient uptake. Correlation research is 
usually conducted in two steps: exploratory (fertilizer) trials in the 
greenhouse followed by trials in the field. The advantage of pot exper­
iments in the greenhouse is that the possible effects of the conditions 
in the subsoil, weather conditions and soil heterogeneity on crop yield 
or nutrient uptake can largely be eliminated. When an extractant is 
successful in greenhouse experiments, the relationship needs to be 
tested further in field trials because crop response is a function of 
many variables (Dahnke and Olson, 1990). Data of field experiments 
may vary because of the many factors that determine yield, e.g., soil, 
crop, weather, management, etc. Therefore, results of correlation anal­
ysis are often improved when relative, rather than absolute, crop yield 
or nutrient uptake is plotted (Dahnke and Olson, 1990; Holford and 
Doyle, 1992). 

The perspectives of a newly proposed soil or plant extractant can be 
assessed by correlating the extraction results obtained with the new 
extractant to those obtained using the standard extractant (Houba et al., 
1990; Matejovic and Durackova, 1994). Although this is a very useful 
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first-step technique in evaluating a new extractant, results need to be 
interpreted cautiously. 

Soil Fertility Categories and Plant Status Categories 

To simplify the process of making fertilizer recommendations, the 
results of soil and plant analysis are ranked in categories (Dahnke and 
Olson, 1990). A common procedure is to plot results of soil or plant 
analysis vs. (relative) crop response and to fit a continuous curve 
through the points. The curve can then be divided into soil fertility 
categories such as very low, low, medium, high and very high (Hauser, 
1973), and plant status categories such as severe deficiency, mild 
deficiency, luxury range and toxic range (Figure 3; see also Smith, 
1962). The basis for the division is mostly subjective and arbitrary. A 
more objective alternative to establish soil fertility categories is the 
probability approach (Fitts, 1955). This approach builds on the as­
sumption that the results of soil analysis are not more than an indica­
tion of the crop response probability. The graphical Cate-Nelson meth­
od (Cate and Nelson, 1965) separates soils that respond from those 
that do not respond to added nutrients. This method has been present­
ed as a statistical procedure that can be used to establish two or more 
categories (Cate and Nelson, 1971; Nelson and Anderson, 1977). 

FIGURE 3. Relationship between nutrient concentration in the leaves and the 
growth or yield of the crop, and the division of nutrient concentrations into 
plant status categories (Adapted from Smith, 1962). 
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Interpretation of Analyses and Development 
of Fertilizer Recommendations 

Soil Testing 

In interpreting soil analytical results obtained from pot and field 
experiments, the relationship between the amount of nutrient ex­
tracted, the nutrient application rate and crop yield should be estab­
lished. Such relationships are normally described by response models 
such as the linear model concept of Liebig (Waggoner and Norvell, 
1979) and the curvilinear model of Mitscherlich (1928). Generally, 
curvilinear models are more suitable for the interpretation of field data 
and development of fertilization recommendations. These models, 
based on the 'Law of Diminishing Returns,' imply that when equal 
increments of a nutrient are applied to a crop, the yield response 
becomes smaller for each increment. This type of crop response is 
found in many field and pot trials. The relationship between fertilizer 
application and crop yield will normally be improved when soils are 
grouped in soil fertility categories as established by soil test calibra­
tion (Hauser, 1973). In this way, each soil fertility category has its own 
curve that relates nutrient application rates to crop responses. 

A general criticism of curvilinear models for interpretation of field 
data and development of fertilizer recommendations is that in the 
region of near maximum yield they recommend too much fertilizer in 
relation to the possible increase in crop yield. In the 'Plateau yield' 
method (Dahnke and Olson, 1990), the relationship between fertilizer 
application rate and crop yield is assessed according to the linear-mod­
el concept (Waggoner and Norvell, 1979). The linear-model concept 
shows more clearly the application rate at which maximum yield (the 
plateau) is reached. From an agricultural point of view, it is logical to 
apply nutrients corresponding to this yield plateau. 

During the 1940s and 1950s, the cation saturation ratio concept was 
proposed (Bear and Toth, 1948; Chu and Turk, 1949). The cation satu­
ration ratio concept proposes ideal proportions of the major exchange­
able cations in the soil. However, McLean et al. (1983) have shown 
that the cation saturation ratio had essentially no impact on yield. 

Development of Diagnostic and Prognostic Criteria 

Plant analysis may be used for either diagnosis or prognosis. For 
each purpose results of plant analysis need to be calibrated. Although 
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some promising results were obtained in developing prognostic crite­
ria (Spencer, Jones, and Freney, 1977; M0ller Nielsen, 1979a, b), the 
practical use in routine plant testing programs is limited. Therefore, 
we focus on the development of diagnostic criteria. 

In most plant testing programs the elemental content of plant parts, 
e.g., fully expanded leaves, is determined to establish the nutritional 
status of the crop. For evaluation of that nutritional status, diagnostic 
criteria have been established. 

Critical value. When the nutrient concentration in a plant (part) 
increases, the plant growth rate also increases until the so-called criti­
cal level is reached (Figure 3). Concentrations beyond the critical level 
do not lead to an increase in the. growth rate (luxury range), and 
extremely high indices may even impair growth (toxic range). From 
an agricultural point of view, the critical level may be a valuable 
standard for diagnosis of the nutritional plant status (Ulrich and Hills, 
1967). For many crops, critical levels have been proposed as a stan­
dard for diagnosing the nutritional plant status. 

However, the critical level is not a constant; it may differ among 
crop varieties and is affected by e.g., nutrient interactions, water sup­
ply, temperature, dry matter yield level and physiological maturity of 
the leaf or plant part sampled (Bates, 1971). Moreover, determination 
of critical levels may lead to inaccurate values. Attempts have been 
made to overcome these problems by: (1) dividing plant nutrient con­
centrations into plant status categories (Jones, 1967); (2) defining 
critical nutrient ranges with the upper limit set at the critical level 
(Dow and Roberts, 1982); (3) using sufficiency ranges with the 
lower limit of the sufficient range set at about the critical level 
(Jones, 1967); and (4) establishing critical levels for different growth 
stages (Figure 4; see also Tyler and Lorenz, 1962; Pritchard, Doerge, 
and Thompson, 1995). Despite all these attempts, the critical level has 
still considerable limitations for its wide use as a diagnostic tool. 

An exciting extension has been given by Webb (1972). When suffi­
cient nutrient concentrations of a crop are plotted against crop yield, a 
skewed spread of points will result. The border of this spread is the 
maximum crop response to this concentration and is often referred to 
as the boundary line. For points lower than the boundary line, crop 
yield is considered to be restricted. The boundary line approach seems 
a valid way to determine the relationship between the critical level of a 
nutrient and crop yield. The disadvantages of this approach are: (1) the 
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FIGURE 4. Interpretation of leaf lettuce midrib tissue NO3-N concentrations 
throughout the growth period (Pritchard, Doerge, and Thompson, 1995, with 
kind permission from Marcel Dekker, Inc., New York, USA). 
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large number of observations required, and (2) the construction of the 
accurate boundary line. 

Nutrient ratio. Nutrient uptake and dry matter accumulation rarely 
proceed at equal rates in crops. Therefore, concentrations of nutrients 
expressed on a dry matter basis are generally not constant over time 
(Lorenz, Tyler, and Fullmer, 1964; Walworth and Sumner, 1988). The 
concentration of nutrients such as N, P, K, and S in whole plants or 
plant tissues tends to decrease as dry matter accumulates, while the 
concentration of Ca and Mg tends to increase or to remain constant 
(Smith, 1962; Rominger, Smith, and Peterson, 1975; Jimenez et al., 
1996). Beaufils (1973) proposed using the nutrient-to-dry matter ratio 
to eliminate effects of dry matter accumulation. 

The nutrient ratio approach has been applied to routine foliar diag­
nosis and forms part of the Diagnosis and Recommendation Integrated 
System (DRIS) (Beaufils, 1973). In DRIS, optimal nutrient ratios and 
the acceptable deviation from these ratios are obtained by collecting 
nutrient indices from healthy, high-yielding crops. Subsequently, DRIS 
indices are calculated for each nutrient, giving information about 
which nutrient is most yield-limiting and also about the order of nutri­
ent requirement (Walworth and Sumner, 1988; Munson and Nelson, 
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1990). The DRIS was introduced as a universal approach for deter­
mining nutrient requirements. Nowadays, its value is debated since it 
appears a relatively site-specific approach (Beverly, 1993; Baldock 
and Schulte, 1996). Baldock and Schulte (1996) proposed PASS 
(Plant Analysis with Standarized Scores) for interpretation of plant 
analysis. PASS is a combination of the sufficiency range approach and 
DRIS. 

Alternatives. Prevot and Ollagnier (1961a, b) estimated the relative 
proportions of (interacting) nutrients in plants, which should result in 
balanced plant growth. Kenworthy (1967, 1973) proposed generating 
nutrient optima by averaging tissue values of healthy crops rather than 
by determination of critical values from crop response studies. M0ller 
Nielsen (1971) proposed a system which addresses problems associat­
ed with plant physiological age and nutrient interactions. Although the 
approach is innovative, the amount of data necessary to work out this 
concept is extremely large and therefore not very promising for wide 
application in agriculture. 

CRITICAL EVALUATION OF SOIL 
AND PLANT TESTING PROGRAMS 

Collection of Soil Samples 

Agricultural fields are variable in the horizontal and vertical direc­
tion because of natural variation, e.g., soil forming processes (Finke, 
Bouma, and Stein, 1992), and human influences, e.g., row application 
of fertilizers (Hofman et al., 1993). Soil sampling schemes should take 
into account this variability in order to obtain representative analytical 
data and to develop adequate soil testing programs (Peck and Soltan-
pour, 1990). Different soil sampling strategies have been proposed to 
obtain samples which accurately reflect the whole field's nutrient status 
or parts of it (Kitchen, Havlin, and Westfall, 1990; Mahler, 1990; Entz 
and Chang, 1991; Blair and Lefroy, 1993; James and Hurst, 1995). 

Most current soil testing programs, fertilizer recommendations and 
fertilizer application techniques aim at one homogeneous application 
per field. This approach seems inadequate for non-homogeneous 
fields because it may lead to underdosage or overdosage of fertilizers, 
resulting in reductions of crop yield and crop quality or in nutrient 
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losses to the environment. When variability is large, knowledge of the 
spatial variability in combination with site-specific fertilizer applica­
tion techniques are promising tools to adjust nutrient availability to 
plant demand and to reduce the risk of losses to the environment 
(Robert, Rust, and Larson, 1996). 

Traditionally, soil samples are taken from the 5 to 30 cm top layer of 
agricultural soils, mainly because the major portion of the root system 
is in this layer (De Willigen and Van Noordwijk, 1987). However, 
crops can take up considerable amounts of nutrients from the subsoil 
(Kuhlmann and Baumgartel, 1991). This holds true especially for 
nutrients like K, NO3 and SO4 under conditions where the precipita­
tion surplus is small and drainage rarely occurs. Soil testing programs 
can be improved by estimating the soil's nutrient reserves to a depth 
related to the rooting zone (Neeteson, 1989). 

Most present day soil testing programs aim at collecting one soil 
sample per year for 'mobile' nutrients and one soil sample per crop 
rotation (3-6 years) for 'immobile' nutrients. This seems tricky be­
cause soil fertility status may show considerable seasonal variation 
(Espinoza et al., 1991; Carr and Ritchie, 1993). We think that the 
sampling frequency of present day soil programs is far from sufficient 
for strategies that aim at fine-tuning of soil nutrient availability to 
plant demand. Regular soil analysis during the growing season should 
become an essential part of these strategies, especially for nutrients 
which are not well buffered in soils. 

Collection of Plant Samples 

The nutrient content of a plant is not a fixed entity, but varies from 
month to month, day to day and even from hour to hour as well as 
between plant organs. Plant sampling schemes should be adapted to 
this variability in order to be a true and accurate tool for monitoring 
the crop nutrient concentration (Bolland, 1995). In general, organs that 
are physiologically young and are subject to rapid changes in nutri­
tional concentration, and organs that have passed full maturity should 
not be sampled (Bouma, 1983; Jones and Case, 1990; Ernst, 1995). 
After a period of stress due to possible nutritional deficiency or imbal­
ance, crops develop unusual nutrient concentrations which can lead to 
serious misinterpretation of the nutritional status. The necessity for 
standardization of sampling techniques and protocols cannot be over­
emphasized (Farina, 1994), since current criteria for the interpretation 
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of plant analysis data have been established for well-defined condi­
tions only. 

Extraction Procedures 

The chemical extraction of a soil or plant sample and subsequent 
determination of the nutrient concentration in the extract is the basis of 
soil and plant testing programs. If analytical procedures are carried out 
under well-defined conditions, reproducibility and accuracy is gener­
ally very high. The protocols should at least contain information on 
sample preparation (drying temperature, duration of drying, mixing), 
extraction conditions (temperature, soil-to-solution ratio, shaking time, 
method of separation of soil or plant material from extractant, etc.), 
and the use of reference or certified soil samples. 

Interpretation of Plant Nutrient Concentrations 

It is routine in most laboratories to express nutrient concentrations 
in plant material on a dry matter basis. This has some advantages 
because dry matter is a measure of crop biomass that will not change 
much with post harvest treatments. However, it is found that nutrient 
concentrations expressed on a dry matter basis vary with time; con­
centrations are mostly high in young plants and decline during ageing 
(Smith, 1962). It is, therefore, not very useful to define a 'critical' 
concentration that is required for maximum growth without making a 
clear reference to the developmental stage at sampling. When nutrient 
concentrations are expressed on a dry matter basis, the fact that the 
physiological activity of a nutrient is related to its concentration in the 
aqueous phase is ignored. More accurate insight into the plant nutri­
tional status may therefore be obtained by expressing concentrations 
relative to water content. Leigh and Johnston (1983a, b) have shown 
that leaves of barley adequately supplied with K had more or less 
constant K concentrations relative to water content throughout vegeta­
tive and early reproductive growth, while the concentration based on 
dry matter declined during growth (Figure 5). This concept is also 
useful for nitrogen (Leigh and Johnston, 1985). 

The total nutrient concentration of a plant part does not always give 
an indication of the physiological nutrient activity. Analysis of plant 
sap, as is the case with organ testing, may improve the diagnostic 
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FIGURE 5. Time-dependent changes in the concentration of K in shoots of 
barley, expressed on the basis of (A) dry matter and (B) tissue water. Ex­
changeable K concentrations of the soils were 382 (•) or 55 (A) mg kg ~1 dry 
soil, respectively (Leigh and Storey, 1991, with kind permission from Cam­
bridge University Press, Cambridge, UK). 
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value of the nutrient concentrations obtained. Nutrients in plant organs 
can be heterogeneously distributed between cell types. This distribu­
tion may have implications for the interpretation of nutrient concentra­
tions in plant organs. The nutrient concentration of whole organs has 
little validity concerning physiological status of the composing cell 
types. On the intracellular level, nutrients are distributed between the 
cytoplasm and the vacuole. The cytoplasm and its organelles represent 
the site of most metabolic processes, and the nutrient composition and 
the nutrient concentrations should remain more or less constant in a 
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certain developmental stage. Physiological nutrient shortages of N, P 
and K appear to be largely influenced by cytoplasmic nutrient con­
centrations (Mengel and Kirkby, 1987; Marschner, 1995). Nutrients 
present in the vacuole, such as K, contribute to the osmotic potential 
(Leigh and Wyn Jones, 1984) but have no unique or essential role in 
the vacuole. Providing that other solutes are available to maintain 
turgescence (Pitman, Mowat, and Nair, 1971), the concentration of 
any nutrient in the vacuole, and thus in the cells or plant organs as a 
whole, may vary with supply. This explains why the critical concentra­
tion of K in plant tissue is affected by the availability of cations like 
Na, Mg and Ca (Leigh and Storey, 1991). 

From the above considerations it is clear that total nutrient con­
centrations in plant organs have little, if any, plant physiological 
meaning. Despite this, total nutrient concentrations in plant testing 
programs that are properly calibrated may be correlated to the plant 
nutritional status. 

Interpretation of Soil Extractable Nutrients 

In the soil, nutrients are retained in many chemical forms. The 
absolute or relative amount of a nutrient that is released during extrac­
tion depends on the total amount present, on the distribution over the 
different chemical binding forms, and on the extracting power of the 
extractant. There is generally an enormous discrepancy between the 
amount of nutrient extracted and actual nutrient uptake by crops. 
Furthermore, nutrient uptake by the same crop may vary between 
years and different crops may take up different amounts of nutrients 
from the same soil (Yerokun and Christenson, 1990; Schoenau and 
Huang, 1991; Smith and Li, 1993). The mode of action of many soil 
extractants when brought into contact with the soil sample is still 
largely unknown. At present, many extractants are in use for the as­
sessment of a single-element fertility status of the soils. When differ­
ent extractants are applied to the same soil, the amount of extractable 
nutrients may differ enormously (Matejovic and Durackova, 1994). 

Crop Yield 

Soil and plant testing programs are correlated, calibrated and inter­
preted with crop yield as the determinant (Dahnke and Olson, 1990; 



Munson and Nelson, 1990; Blair and Lefroy, 1993). When crop yields 
of many field trials are plotted against a single independent variable, 
e.g., soil fertility or plant nutrient content, a spread of points will result 
because under field conditions other independent variables may also 
change (Webb, 1972; Walworth, Letzsch, and Sumner, 1986). The 
maximum response to an independent variable is the border of the 
spread of points, but the majority of the fields have crop yields below 
this border. In all these cases, factors other than nutrient availability 
have determined actual crop yield. The dependence of crop yield on 
other factors indicates that soil and plant testing programs need more 
background research on the contribution of these factors to crop yield 
before fertilization can be optimized on a field scale. 

Fertilizer Application and Crop Response 

There is a relationship between soil fertility status, fertilizer ap­
plication rate and crop response. To achieve the desired crop yield, the 
fertilizer application rate on soils with a low fertility status should be 
higher than on soils with a higher fertility status. There is, however, no 
single relationship which can be used to describe changes in plant 
nutrient concentration upon addition of fertilizer. Thus, foliar diagno­
sis alone cannot be used to determine how much fertilizer to add, or to 
predict accurately crop response to added fertilizer in any given situa­
tion. These relationships are largely affected by non-nutritional fac­
tors, and further in-depth research is necessary before they can be 
incorporated successfully in future fertilizer recommendations (Wal­
worth and Sumner, 1988; Beverly, 1993; Marschner, 1995). 

Environmental Side-Effects Related to Soil Testing Programs 

Most soil testing programs have been calibrated under a wide diver­
sity of field conditions. These programs are currently a useful practical 
tool to match the fertilizer application rate with the soil fertility status, 
the crop yield target, and crop quality, and at the same time to achieve 
the sufficient soil fertility status. The recommended application rates 
will generally lead to relatively high nutrient-use efficiencies. When 
fertilizer application exceeds the recommended rates, nutrients will 
certainly be left in the soil profile at harvest. The 'mobile' nutrients are 
then subject to leaching during a period of precipitation surplus, while 
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the 'immobile' nutrients may remain in the rooting zone of the soil 
profile and increase the soil fertility status. When subsequent fertilizer 
application rates are not adjusted to the enhanced soil fertility status, 
the risk of nutrient losses through leaching, denitrification or surface 
run-off may increase accordingly. 

Most fertilizer recommendation schemes have been developed from 
fertilizer field trials on well-defined fields where water-soluble single 
nutrient fertilizers with a well-known composition had been broadcast 
and further incorporated in the soil just before sowing or planting. If 
these experimental boundary conditions are not taken into account 
during the practical application of fertilizers, fertilization according to 
the recommendation schemes may lead to considerable environmental 
side-effects or decreased nutrient availability. Use of multi-nutrient 
fertilizer generally leads to under or overdosage of more than one 
nutrient. 

To increase nutrient use efficiency and to alleviate side-effects of 
fertilization, soil testing programs should also provide information on 
the impact of choice of fertilizer (e.g., inorganic versus organic forms) 
and on timing and methods of application. Application of fertilizers 
long before planting or sowing may result in leaching and/or denitri­
fication losses (Addiscott, Whitmore, and Powlson, 1991). Surface 
application of ammonium-containing fertilizers on carbonate-contain­
ing soils and of urea-containing fertilizers on all soil types may lead to 
ammonia volatilization. Injection or direct incorporation of these fer­
tilizers in the top layer of soil decreases ammonia volatilization (Har­
grove, 1988). Broadcast application of water-soluble P and K fertiliz­
ers on P- or K-fixing soils, respectively, may result in decreased P or K 
availability to crops (Tingre et al., 1992). Banding just before sowing 
or planting may then improve the plant availability of applied P and K 
(Knittel, 1988). 

EVALUATION 

Thus far, the basis of most soil and plant testing programs is the 
statistical relationship between the concentration of one or more ex­
tracted plant nutrients and crop response. Since many factors deter­
mine crop response, the relationships are frequently not very strong 
and, moreover, site and crop specific. Despite the empirical and site-
specific approach of most plant and soil testing programs, they are still 
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the best tools available to optimize fertilizer strategies under these 
specific conditions. The testing programs are effective, especially when 
(soil) nutrient availability is the major factor restricting crop response. 

In European and North-American regions, agriculture is confronted 
with an increasing number of agricultural, environmental, economic 
and legislative boundary conditions that restrict fertilizer use. To satis­
fy these demands and constraints, fertilizer strategies like Integrated 
Nutrient Management (Van Erp and Oenema, 1993) and Balanced 
Fertilization (Steen, 1996) have been proposed. Integrated Nutrient 
Management (INM) seems most realistic from an agricultural point of 
view and aims at monitoring and steering of nutrient flows in the 
soil-plant system. Computorized crop growing models and quantita­
tive risk analysis techniques may be helpful tools to estimate fertilizer 
requirements and the probability of responses. The use of multi-nutri­
ent extractants should be promoted to reduce the number of soil 
analyses. 

For INM, a more scientific approach of soil and plant testing pro­
grams will be unavoidable. Therefore, future soil and plant testing 
programs should focus on the extraction and determination of nutrient 
(fractions) that are related to relevant soil and plant processes and can 
be used in crop growing models. 
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ABSTRACT 

The economical and operational aspects of multi-nutrient extractants make them 

attractive for soil testing programs. However, the value of a multi-nutrient extractant is 

primarily determined by the relationship between the amount of nutrient extracted and 

crop response. To determine the perspectives of the 0.01 M CaCb extraction procedure 

as a multi-nutrient extractant, this paper reviews literature on the soil chemical, 

analytical and plant nutritional aspects of CaCb solutions as a soil extractant. Recent 

decades, CaCb solutions were common single nutrient extractants in plant nutritional 

and soil chemical research but the amount of nutrient extracted was sensitive for 

differences in sample treatment and extraction procedure. Therefore, a 0.01 M CaCb 

procedure should be standardized to obtain a robust procedure. Calibration studies 

between conventional soil extraction procedure and the 0.01 M CaCb procedure show 

fairly good relationships. A first step to develop a multi-nutrient 0.01 M CaCb soil 

testing program is to convert conventional soil testing programs into 0.01 M CaCb 

programs based on these relationships. Validation of these programs with pot and field 

experiments remains necessary. Further research is suggested to test if the 'labile' pool 

of plant nutrients in a soil can be estimated based on the pH, the composition of the 

supernatant and soil characteristics. It is concluded that the 0.01 M CaCb procedure is 

a promising tool in near future farm nutrient management. 
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INTRODUCTION 

Plant roots take up plant nutrients from the soil. To obtain a good crop growth, crop 

yield and crop quality, soil nutrient availability should at least equal crop demand. In 

soil testing programs the soil nutrient status and recommended nutrient application rate 

are defined after soil extraction with chemicals. Most of these soil testing programs are 

single nutrient programs which are laborious, expensive and have a high use of 

chemicals. Multi-nutrient soil testing programs are attractive from a laboratory point of 

view because of the economical and operational advantages. In 1986, Houba et al. [32] 

proposed the 0.01 M CaCh procedure as a multi-nutrient soil extractant. In the 0.01 M 

CaCb procedure, fresh soil is dried in the air or at 40°C in a drying oven with forced 

air ventilation. After crushing and sieving, the fraction < 2 mm is shaken (end-over-

end or horizontally) during two hours at 20°C with 0.01 M CaCh of 20°C in an 

extraction ratio of 1:10 (weight to volume). After measurement of the pH in the settling 

suspension, the suspension is centrifuged at about 2,000 g. Analytical techniques for 

the determination (simultaneously) of organic carbon (Corg), nitrate (NO3), ammonium 

(NH4), nitrogen (N), ortho-phosphate (P0rtho), phosphorus (P), sulphate (SO4), sulphur 

(S), aluminium (Al), iron (Fe), boron (B), sodium (Na), potassium (K), magnesium 

(Mg), cadmium (Cd), copper (Cu), lead (Pb), manganese (Mn), nickel (Ni), zinc (Zn) 

and polyphenols are worked out [39]. The extracted nutrients are expressed in mg kg" 

dry soil. Analytical techniques for other elements or element fractions will become 

available in the near future. 

In recent years, the 0.01 M CaCb procedure has received a lot of attention because of 

the good relationship among nutrients extracted with the 0.01 M CaCh procedure and 

conventional soil extraction procedures [32] and the economical and operational 

aspects which are attractive from a laboratory point of view. The aim of this paper is to 

determine the perspectives of the multi-nutrient 0.01 M CaCb procedure based on a 

literature review of soil chemical, analytical and plant nutritional aspects of CaCh 

solutions as a soil extractant. 
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REVIEW 

Effects of soil drying and drying temperature 

Dried soil samples simplify optimization and automation of activities in the laboratory. 

However, soil drying may have a drastic effect on the extractability of many nutrients 

[4,12,13,65,67,79]. Houba et al. [33] found that, on average, soil drying and drying 

temperature increased the amount of 0.01 M CaCl2-extractable NO3, NH4 and Norg 

(Table 1), and Hylander et al. [44] found an effect of soil drying on the amount of 0.01 

M CaCh extractable P and Portho-

TABLE 1. Effect of drying and drying temperature (°C) on the amount of 0.01 M 

CaCb extractable nitrate (NO3-N), ammonium (NH4-N) and soluble organic N (Norg) in 

six different soils, in mg kg" [33] 

soil 

number 

1 

2 

3 

4 

5 

6 

NO3-N 

fresh 

20.8 

4.6 

5.8 

8.6 

9.6 

0.6 

40°C 

24.6 

3.6 

6.7 

9.5 

10.9 

0.3 

105°C 

22.1 

1.8 

6.2 

5.6 

8.8 

0.5 

NH4-N 

fresh 

1.9 

1.8 

0.0 

0.2 

1.2 

2.0 

40°C 

3.9 

2.4 

1.7 

3.7 

1.8 

3.7 

105°C 

12.4 

7.4 

5.9 

23.2 

9.1 

8.6 

Norg 

fresh 

3.1 

2.2 

1.8 

5.6 

5.2 

2.1 

40°C 

6.9 

8.8 

2.2 

18.5 

16.4 

10.4 

105°C 

26.5 

38.2 

13.3 

108.9 

90.4 

19.2 

The effect of drying and drying temperature on the amount of 0.01 M CaCk 

extractable nutrients may lead to a misinterpretation of the soil nutrient status under 

field conditions. Therefore, further research is necessary to compare and quantify the 

effect of soil drying and drying temperature on the amount of 0.01 M CaCb extract-

able nutrients. 
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Effect of grinding 

In most soil extraction procedures a small subsample is taken from a dried, crushed and 

ground soil sample. A soil sample is crushed and ground to ensure that a representative 

subsample is taken. Houba et al. [34] have found that pH and extractable K, Mn, Na 

and NH4 determined by a 0.01 M CaCb extraction are significantly influenced by the 

degree of grinding. The study suggests that the effect of grinding on the amount of 

extractable nutrients is larger for weak extractants. This effect of grinding underlines 

the need for standardization of the grinding procedure in a 0.01 M CaCb procedure. 

Effect of soil-solution ratio 

The effect of the soil-solution ratio on the amount of extractable NO3-N, Portho and K is 

shown for an agricultural soil in Figure 1. 

§ 0)120-, 
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soil-solution ratio 

1 

0.15 

—1 

0.2 

0.05 0.1 

soil-solution ratio 

FIGURE 1. Effect of soil-solution ratio on the total amount of extractable ortho-

phosphate (Portho), potassium (K) and nitrate (NO3-N) (A) and the concentration of 

Portho, K and NO3-N in the solution (B). Unpublished results of a sand soil. 
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The soil-solution ratio has no effect on the total amount of extractable NO3-N but the 

NO3-N concentration in the soil suspension is proportional to the soil-solution ratio. 

This effect is found in most soils and shows that NO3-N is not or almost not buffered 

by soil particles. The total amount of extractable Ponho and K increases and the Portho 

and K concentration in the soil suspension decreased when the soil-solution ratio 

decreases. The decrease in Portho and K concentration is not proportional to soil-

solution ratio. This means that the Ponho and K concentrations are buffered by the soil 

particles. Similar effects have been found for Portho by Wild [90] and Bendi and Gilkes 

[14], for K by Bijay Singh et al. [15] and for Mg by Schachtschabel [70]. The indicated 

effects of soil-solution ratio on extractable nutrients are also found for other soil 

extractants [83]. The effect of soil-solution ratio on pH measurement in 0.01 M CaCh 

is limited [11] because buffering capacity for hydrogen of most soils is large. The 

effect of soil-solution ratio on the amount of extractable nutrients necessitates 

standardization of the soil-solution ratio in the 0.01 M CaCh procedure. 

Effect of extraction period 

The within laboratory variation (repeatability) and between laboratory variation (re­

producibility) of an extraction procedure will improve when deviations in e.g. 

extraction period have no significant effect on the total amount of extractable nutrients. 

Extraction of the nutrients Mg, Na, K, NO3, NH4, N and Portho during a 0.01 M CaCb 

extraction is a kinetically fast process (Figure 2). When the amount of nutrients 

extracted after 2 hours is expressed as a percentage of the amount extracted after 4 

hours, than more than 96 percent has been extracted, on average. Between soils, 

differences may exist. The amount of extractable nutrients is more or less constant after 

a 2 hours extraction period, except for Ponho- Wild [90] also found that P0nho 

concentrations decreased when extraction period increased. From this it can be 

concluded that in a 0.01 M CaCb procedure an extraction period of two hours seems 

sufficient for an almost complete extraction of nutrients. 
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FIGURE 2. Effects of extraction period on the amounts of extractable nitrate (NO3-N), 

ortho-phosphate (P0rtho), potassium (K) and magnesium (Mg). Unpublished results of a 

sand soil. 

Effect of extraction temperature 

Extraction temperature has a clear effect on the amount of extractable Portho and K [83] 

and quantity-intensity relationships [13]. Increasing the temperature during extraction 

increases the amount of nutrient extracted. This effect is the result of the effect of 

temperature on the rate constant of kinetic processes and on the equilibrium constant of 

soil chemical processes. Houba [33] found that increasing the extraction temperature 

from 20°C to 80° C in the 0.01 M CaCb procedure has almost no effect on extractable 

NO3 but increased the NH4 and total N by a factor 2 to 3, on average. To diminish 

temperature effects on nutrient extraction and to compare extraction results, extraction 

temperature should be standardized. In the 0.01 M CaCU procedure the extraction 

temperature is set at 20°C 

Effect of repeated extractions. 

In most soil testing programs a soil sample is extracted only one time. However, 

repeated extractions with CaCk solutions show that Portho [17,49], K [69,85] and Mg 

[27] are extracted from the soil every cycle. The course of the relation between the 

total amount of extractable nutrient and number of extractions differ between the 

nutrients but also for the same nutrient. We found that the 0.01 M CaCU procedure 
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extracts 20 - 50 percent of the total amount of exchangeable K on clay soils and 50-80 

percent of the total amount of exchangeable K. on sand soils (data not presented). 

Schachtschabel [70] and Grimme [30] found that 0.0125 M CaCb extracted on average 

85 percent of exchangeable Mg and 10-60 percent of exchangeable K, respectively. 

Chemical conditions during extraction 

The ionic composition, ionic strength and pH of the soil solution under field conditions 

depends on or varies with many factors [3,16,26,29,48,56,61,64,80,94,96]. Mostly, the 

Ca concentration in the bulk soil solution is between 1 and 10 mM [56], but may vary 

from less than 0.1 mM Ca in slightly acid soils [64] to almost 100 mM in the 

rhizosphere [26,96]. Calcium, along with Mg, is the major cation counteracting the 

anions chloride (CI), NO3, SO4, bicarbonate (HCO3) and organic anions [64] in the soil 

solution. The concentrations of these anions range from less than 0.1 mM to more than 

200 mM in sodic soils [26], In general, the CI concentration is less than 20 mM [26]. 

The ionic strength of the soil solution may vary from 0.1 to more than 10 mM in the 

bulk soil solution [16,48]. In the rhizosphere, the ionic strength can be higher than 50 

mM [29,94]. The soil solution pH is buffered by many soil chemical processes and may 

vary from less than 4 to more than 8. 

When soils are extracted according to the 0.01 M CaCb procedure, the ionic strength 

and the concentrations of Ca and CI in the soil suspensions of non-sodic agricultural 

soils are almost equal to those of the 0.01 M CaCb extractant (Figure 3). This can be 

explained by the wide soil-solution ratio during the 0.01 M CaCh procedure. The Ca 

concentration may deviate from 0.01 M because of precipitation/dissolution of Ca-salts 

in the soil, cation exchange reactions or changes in the variable charge properties of 

soil particles [43]. 

The pH of 0.01 M CaCh solution is about 5.7 and 'unbuffered'. During the extraction 

procedure the pH of the soil suspension changes to the actual soil pH. Schofield [73] 

advised a 0.01 M CaCb soil extraction (1:5 w/v) for the determination of the actual soil 

pH. Deviations from the advised 1:5 soil-solution ratio have a small, neglible effect on 

the actual soil pH [11], From this all it can be concluded that during the 0.01 M CaCb 

procedure the pH of the soil suspension is almost equal to the actual soil pH and the 
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ionic strength and the concentration of Ca are comparable to the average ionic strength 

and Ca concentration of the soil solution under field conditions. This may facilitate 

interpretation and translation of soil testing results to field conditions. 

• [Ca] 
• pH CaCI2 
• ionic strength (I) 

FIGURE 3. The calcium concentration ([Ca]) and ionic strength (I), both in mM 1", 

and pH-CaCb of the soil suspension of 41 agricultural soils extracted according the 

0.01 M CaCb procedure. The Ca concentration, ionic strength and pH of the 0.01 M 

CaCb extractant were on average 10 mM, 30 mM and 6, respectively. Unpublished 

results. 

Nutrient intensity and the 'labile' pool of soil nutrients 

An extraction procedure is valuable for a soil testing program if the amount of nutrients 

extracted is related to or equal to the nutrient concentration in the soil solution or the 

pool of'labile' plant nutrients in the soil. In literature, the amount of nutrients extracted 

with 0.01 M CaCb is often called 'nutrient intensity' according to the Schofield concept 

[74]. However, the 'nutrient intensity' reflects the 'strength of retention' by which a 

nutrient is held in the soil; with other words, the nutrient concentration. However, the 

nutrient concentration in the soil suspension or the amount of nutrient extracted by 

0.01 M CaCb is not equal to the 'nutrient intensity': the nutrient concentration in the 

soil suspension depends on the soil-solution ratio. Only, the pH of the soil suspension 

is independent of soil-solution ratio and is related to the H+ intensity. This means that 
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the suggested equalness between nutrient intensity and the nutrient concentration after 

a 0.01 M CaCh extraction is misleading, except for pH. 

Houba [32] found a good relationship between Na, K, Mg and P0nho extracted with 

conventional extraction methods and the 0.01 M CaCh procedure suggesting that the 

0.01 M CaCh procedure extracts nutrients related to the 'labile' pool of soil nutrients. In 

literature it is well known that the major part of the 'labile' pool of cations is made up 

by the cations bound at the exchange complex. Moreover, the cations at the exchange 

complex determine the nutrient concentration in the soil solution. Our results showed 

that 0.01 M CaCl2 extracts only part of the exchangeable cations. Repeated extractions 

increased the amount of CaCh extractable nutrients. This shows that during every 0.01 

M CaCh extraction a 'new' chemical 'equilibrium' is established in the suspension. 

Kinetically fast reactions, like cation exchange and some precipitation/dissolution 

processes, determine the equilibrium concentration. These fast processes also 

determine the nutrient intensity and the size of 'labile' pool of plant available nutrients 

under field conditions. Further research is necessary to relate the composition, pH and 

ionic strength of the supernatant to the amount of plant available soil nutrients. 

Specific knowledge of exchange and dissolution/precipitation processes [10,13,72,73,-

74,91] in the soil is necessary for this. Computer models [54] which calculate the 

distribution of nutrients over the soil-solution system may be a helpful tool. 

Laboratory aspects 

Multi-nutrient extractants reduce the number of single nutrient soil extractions, the use 

of various chemicals, and will facilitate optimization and automation of laboratory 

activities. The 0.01 M CaCh procedure is easy to execute, not labour intensive and the 

use of chemicals is minimized. Moreover, the demands on laboratory equipment and 

laboratory conditions are restricted. 

The ionic strength of the soil suspension and the presence of Ca + during the 0.01 M 

CaCh extraction procedure promote coagulation of the soil particles and simplify the 

separation of soil particles and solution during centrifugation. The supernatant is 

generally perfectly clear, which facilitates the measurement of very faint colours [74] 

The use of the 0.01 M CaCh procedure for soil testing programs will give more 
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information on the soil nutrient status compared to conventional single nutrient 

procedure. Therefore, the costs of soil analyses according a 0.01 M CaCh soil testing 

program will be relatively low compared single nutrient soil testing programs. 

Application ofCaCh solutions as a soil extractant in practice 

Thus far, CaCb solutions have been used as a soil extractant in many soil extraction 

procedures [Table 2]. Generally, these procedures focus on the determination of one 

nutrient and may differ in CaC^ concentration, soil-solution ratio, shaking time, 

extraction temperature, etc. These differences obstruct comparison of results. 

In plant nutritional and soil chemical research 0.01 M CaCb solutions have been used 

for the determination of the relationship between the soil status of many nutrients and 

crop response (e.g. Table 2), the assessment of the nitrogen (N) mineralisation capacity 

of soils [25], the amount of water soluble phosphate [60], the phosphate potential [74] 

and soilpH [73]. 

Extraction with 0.01 M CaCb has also been used to extract biomass S [19]. Moreover, 

it has been used as a 'background' electrolyte studying phosphate adsorption/desorption 

processes [17,24] and nutrient quantity/intensity relationships [15,50,92].This 

enumeration shows the practicability of 0.01 M CaCb soil extraction in soil testing. 

Perspectives of a 0.01 MCaCh soil testing program 

In a soil testing program the amount of nutrient extracted with a soil extractant is 

grouped in a nutrient status class. For each class a fertilizer application rate is recom­

mended at which an optimal crop yield and/or crop quality can be obtained. These 

fertilizer application schemes are most times specific for regions, crops or soils. Many 

long-term pot and field experiments are necessary to develop fertilizer application 

schemes in soil testing programs. Prerequisite, for a 0.01 M CaCb soil testing program 

is a robust 0.01 M CaCb procedure. 

Taking into account the effect of soil drying, drying temperature, extraction tempera­

ture, soil-solution ratio, extraction time and duration and temperature during storage 

period [38], standardization of the 0.01 M CaCb extraction procedure is necessary 
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TABLE 2 continued 

Element under study. i) 
} Field-/pot experiments: field (F) or pot (P) experiment or both (F/P), 

3) Crop: A=alfalfa; Ap=apple; B=barley; Ba=blackgram; Be=bean; Br=brassica; 
Bu=buckwheat; Ca=Canola; Cl=clover; Co=cowpea; Cot=cotton; En=endive; G=grass; 
He=helianthus; L=lotus; Le=lettuce; M=maize; Mu=mustard; Oa=oats; Pe=pearl millet; 
Pea=peanut; Ph=Phaseolus; Po=Poa; R=rape(seed); Ri=rice; Ru=rutabago; So=sorghum; 
Soy=soybean; Sp=spinach; Sb=Sugar beet; T=Trifolium; W=wheat 
4) Crop respons 
UT,UA,UP = uptake total plant (UT), uptake aboveground part (UA), uptake in plant part 
(UP) or combinations (UT/UA/UP) 
CT,CA,CP = concentration total plant (CT), concentration aboveground part (CA), 
concentration plant part (CP) or combinations (CT/CA/CP) 
DMT,DMA,DMP= dry matter total plant (DMT), dry matter aboveground part (DMA), 
dry matter plant part (DMP) or combinations (DMT/DMA/DMP) 
FYT,FYA,FYP= fresh yield total plant (FYT), fresh yield aboveground part (FYA), fresh 
yield plant part (FYP) or combinations (FYT/FYA/FYP) 
} Explained variance of the relationship of the amount of nutrient extracted by 0.01 M 

CaCU and crop response. 
Remarks: 

(?) = not mentioned or described in article 
D,M = dry (D) or moist (M) soil sample or both (D/M) 
R,R1 = room (R) temperature, others (Rl) or both (R/Rl) 
S,S1 = shaking ratio 1:10 (w/v) (S) or others (SI) or both (S/Sl) 
T,T1 = shaking time 2 hours (T), others (Tl) or both (T/Tl) 
C,C 1 = 0.01 M CaCl2 (C), others (C1) or both (C/C1) 
^ Comparison = comparison with other soil extractant (Y=yes; N=no) 

Literature references 
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At this moment the pretreatment of soil samples [46] and determination of nitrogen 

fractions [47] are standardized internationally. The 0.01 M CaCl2 extraction procedure 

is already part of soil exchanges programs like WEPAL [37] and certified soil 

reference material is available [40]. The coefficient of variation of the repeatability for 

pH, N03, NH4, N, Ponho, Na, K and Mg varied from 0.47 percent for pH to 5.8 percent 

for N. The coefficient of variation for the reproducibility varied from 1.26 percent for 

pH to 18.72 percent for NH4-N [40]. 

The setup of a multi-nutrient 0.01 M CaCl2 soil testing program, including definition 

of nutrient status classes and fertilization schemes, is time consuming and expensive. 

The applicability of the literature data (Table 2) is restricted because the procedures 

differ widely. Moreover, the test crops and the crop responses determined differ 

widely. Despite this, Table 2 shows that the amount of nutrients extracted by 0.01 M 

CaCl2 may explain a considerable part of the variance in crop response. Houba [32] 

found a good relationship between Na, K, Mg and Porth0 extracted with conventional 

extraction procedures and the 0.01 M CaCl2 procedure. Houba proposed to carry out 

calibration studies between conventional procedures and 0.01 M CaCl2 procedure and 

to convert the nutrient status classes and fertilizer recommendation schemes of 

conventional soil testing programs into 0.01 M CaCl2 nutrient status classes and 

fertilizer recommendation schemes. Subsequently, these 0.01 M CaCl2 soil testing 

programs should be tested in pot and field trials. A detailed calibration of conventional 

procedures and the 0.01 M CaCl2 extraction procedure for pH, Mg and K has been 

carried out by Fotyma et al. [23], Loch et al. [53] and Baier et al. [9], respectively. 

Nowadays, agricultural farms are confronted with an increasing amount of 

agricultural, environmental and legislative constraints and boundary conditions. This 

will necessitate farmers to manage the nutrient flows on their farms more and more. 

Helpful tools are soil and plant analyses to control or diagnose soil nutrient status, and 

computer models to calculate the need for additional nutrient application. The 0.01 M 

CaCl2 procedure as a part of a multi-nutrient 0.01 M CaCl2 soil testing program and 

the expected relationship between the amount of nutrients extracted and the size of the 
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'labile' pool of soil nutrients, makes the 0.01 M CaCl2 procedure a valuable tool in 

future farm nutrient management. 
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ABSTRACT 

In the current soil drying protocol of the 0.01 M calcium chloride 
(CaCl2) procedure, soils are oven dried at 40° C for 24 h. At this 
drying temperature, as well as at lower drying temperatures, a 
change of the actual soil nutrient element status cannot be excluded 
because microbes will be active during part of the drying period. 
However, a higher drying temperature may affect soil characteris­
tics and soil processes and also lead to a misinterpretation of the 
soil nutrient element status. An explanatory study was conducted 
to get more insight into the effect of i) oven drying temperature and 
ii) the use of forced-air ventilation at low drying temperatures on 
nutrient elements extracted with the 0.01 M CaCl2 procedure. The 
goal of the study was to investigate the perspectives of optimiza-
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tion of the soil drying protocol of the 0.01 M CaCl2 procedure. 
Three moist test soils with different soil characteristics were oven 
dried at 20 and 40° C with and without forced air ventilation and at 
70 and 105°C without forced-air ventilation. The moist test soils 
and the dried soils were extracted with a 0.01 M CaCl2 solution 
and pH and total N (N), ammonium-nitrogen (NH4-N), nitrate-
nitrogen (N03-N), orf/to-phosphate (ortho-P), potassium (K), mag­
nesium (Mg), sodium (Na), and manganese (Mn) determined in 
the supernatant after centrifugation. Soluble organic N (org-N) 
was calculated as the difference between N and the summation of 
NH4-N and NO3-N. In the temperature range from 40 to 105°C, 
ortho-P, NH4-N, org-N, and Mn extracted tended to increase two 
or threefold for each 30-35°C increase in drying temperature. Dif­
ferences in ortho-P, NH4-N, org-N, and Mn extracted at 20 and 
40° C were relatively small. The pH, K, Na, and N03-N extracted 
were affected by drying temperature but the effect was variable. 
Magnesium extracted was not affected by drying temperature. The 
use of forced air ventilation at 20 and 40° C had no significant ef­
fect on the amount of org-N, NH4-N, ortho-P, K, and Mg extracted. 
There were significant effects of forced-air ventilation on pH and 
NO3-N, Na, and Mn extracted but the effects were variable. Test 
values (60-70%) of the moist test soils were significantly different 
from the respective test values of the test soils dried at 20 and 40° C 
with and without forced-air ventilation. Based on the differences 
between moist and dried soils, it is questionable if soil drying 
should be recommended in the 0.01 M CaCl2 procedure. There­
fore, further research should focus on the relationship between soil 
test values of moist and dried soils with crop response. If soil dry­
ing is preferable drying temperature should not exceed 40° C. 

INTRODUCTION 

Soil testing programs are a practical tool for farmers to optimize their fertil­
izer application rates. In soil testing programs, fertilizer recommendations are 
based on the actual soil nutrient element status and crop demand. The power of a 
soil testing program is, therefore, mainly determined by its ability to determine 
the field nutrient element status adequately. To achieve this i) soil sampling tech­
niques in soil testing programs have been improved to cope with soil variability, 
ii) soil samples are dried as soon as possible after sampling to stop microbial 
processes, which may alter the soil nutrient element status, during transportation 
and storage, and iii) laboratory protocols have been developed and improved to 
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ensure precise, accurate, and reproducible soil test values. To optimize laboratory 
activities and to minimize costs, laboratories strive for a reduction in the drying 
period. Oven drying at high temperatures, if necessary combined with forced air 
ventilation, are common methods to achieve this. During the oven drying process, 
the water content of the soil sample decreases, the air content increases, and the 
soil temperature will reach the oven temperature. 

At low soil water content, soil microbial activity may be reduced (1). Mi­
crobes differ in their tolerance level for low soil water potentials. Nitrifiers like 
Nitrosomonas spp. have a tolerance level of —1.5 MPa whereas ammonifiers like 
Clostridium spp. and Penicillium spp. have a tolerance level of -10-—25 MPa, 
respectively (1). This may explain the commonly observed NH4-N accumulation 
during soil drying (2,3). When the water potential becomes very low, microbes 
will succumb because of desiccation (2). The soil extraction solution may then 
contain hydrolyzable compounds originating from soil microbial biomass, such 
as proteins and aminosugars (4). 

Lowering the soil water content also leads to an increase of the concentra­
tion of solutes and thus the ionic strength of the remaining solution. This may lead 
to precipitation and (specific) adsorption/desorption processes in the soil and to 
changes in the magnitude of the charge of variable charge sites (5). The increase 
in air content affects oxidation-reduction processes related to, e.g., organic mat­
ter, iron (Fe), and Mn (5). All these soil chemical processes occur simultaneously 
during soil drying and will affect the partitioning of chemical species between the 
liquid and solid phase. After rewetting a dried soil, the composition of the newly 
established soil solution differs from that of the original moist soil (6,7). The ir­
reversibility of many of the above soil processes are probably responsible for this 
phenomenon (5). During the drying process, water is also extracted from soil or­
ganic matter causing disconnection of hydrogen bonds and contraction of organic 
matter structures (8). Guggenberger et al. (9) theorized that soil organic matter has 
other disaggregation and/or stretching characteristics after contraction compared 
with the original soil organic matter. Therefore, rewetting a dry soil will result in 
fragmentation of the contracted organic matter with consequent increase of solu­
ble organic carbon (10). Oven temperatures between 25 and 35°C coincide with 
the temperature range of maximal microbial activity (1). Therefore, microbial ac­
tivity cannot be excluded during (part of) the drying process when the drying 
temperature is in this range. At drying temperatures higher than 40° C soil micro­
bial activity decreases drastically and most soil microbes die off because of the 
thermal denaturation of proteins and alterations in the permeability of membranes 
(2). Raised temperatures also increase reaction rates of soil chemical reactions (5). 
From the above considerations it will be clear that soil drying may seriously affect 
soil characteristics and processes and therefore could change the actual soil nutri­
ent status. Several studies confirm this (11-14). Houba et al. (15) have proposed 
0.01 M CaCl2 as a multinutrient soil extractant. The perspectives of the 0.01 M 
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CaCl2 extraction procedure for the development of a multinutrient soil testing 
program are promising (16). However, the standardized CaCl2 extraction proce­
dure extracts a soil sample that is dried at 40°C for 24 h (17). This drying tem­
perature may result in a relatively long drying period and changes of the soil status 
because of microbial activity. On the other hand at this drying temperature, soil 
characteristics and processes may already be affected and change soil test values. 
Optimization of the drying protocol is, therefore, desirable. An explanatory study 
has been carried out to get more insight into the effect of i) oven drying tempera­
ture and ii) forced-air ventilation at low drying temperatures on pH and N, soluble 
organic N (org-N), NH4-N, N03-N, ortho-P, K, Mg, Na, and Mn determined via 
the 0.01 M CaCl2 extraction procedure. Goal is to study the perspectives of optim­
ization of the drying protocol of the CaCl2 procedure. 

MATERIALS AND METHODS 

The impact of the soil drying protocol in the 0.01 M CaCl2 procedure on 
soil test values may depend on soil characteristics. Therefore, three test soils were 
selected differing in their content of organic matter, clay, and carbonate as well as 
in their cation exchange capacity (CEC) (Table 1). The samples were taken from 
the top layer (0-30 cm) of arable soils. After collection in the field, each of the 
test soils was immediately sieved through a 5-mm sieve and then split up into two 
parts. One part, the moist soil sample, was extracted immediately according the 
0.01 M CaCl2 procedure (17). The water content of the moist soil was determined 
after drying a subsample at 105°C for 24 h. The other part was split into six lots. 
All lots were spread out in a shallow layer of 1-2 cm on trays covered with water 
resistant paper and mixed at regular time intervals during a 24 h drying period. 
Four lots were dried at 20° C, 40° C, 70° C, and 105°C, respectively, without 
forced-air ventilation. These lots were characterized as 20C, 40C, 70C, and 105C, 
respectively, and used to study the effect of oven drying temperature. Two lots 

Table 1. Characteristics of the Test Soils 

Soil 

Calcareous clay soil 
Sandy soil 
Noncalcareous clay soil 

Organic 
Matter (%) 

8.7 
3.5 

16.5 

Characteristic 

Clay 
(%) 

26 
4 

28 

CaC03 

(%) 

10 
0 
0 

CEC, 
cmol (-)kg -1 

18 
6.5 

29 
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were dried at 20°C and 40° C, respectively, with forced-air ventilation and char­
acterized as 20C+ and 40C + . These two treatments together with the 20C and 
40C treatments were used to study the effect of forced-air ventilation at low tem­
peratures. The perspectives of optimization of the drying protocol were evaluated 
by comparing soil test values of the moist treatment with the 20C, 20C+ , 40C, 
and 40C+ treatments. After drying, the six lots were crushed gently and passed 
through a 2-mm sieve and stored in plastic bottles with screw caps. The dried soil 
samples were then extracted according to the 0.01 M CaCl2 procedure (17). To 
limit storage effects on pH and ex tractable nutrient elements (11,18,19) the soil 
samples were extracted as soon as possible after drying. The water content of the 
dried soil samples just before extraction was determined by drying a representa­
tive subsample at 105°C for 24 h. After 2 h extraction time, pH was measured in 
the settling suspension. The concentrations of Mg, K, Na, N, NH4-N, N03-N, and 
ortho-P were determined in the clear centrifugate of the soil suspension. Sodium 
and K were determined by flame emission spectrometry, Mg and Mn by atomic 
absorption spectrometry, and ortho-P, N03-N, NH4-N, and N spectrophotometri-
cally by means of a segmented flow technique (17). When the P concentrations 
were very low, 4-cm cuvettes instead of 1-cm cuvettes were used. The experiment 
was carried out in fivefold. Org-N, the amount of soluble organic N, was calcu­
lated as the difference between (total) N extracted and the summation of extracted 
N03-N and NH4-N. The results were expressed as the amount of nutrient elements 
extracted in mg kg"1 dry soil (dried at 105°C). 

The reproducibility of the analytical results was determined by the coeffi­
cient of variation (CV) = [standard deviation X 100%]/[mean of the replicates]. 

The experimental results were statistically analyzed using analysis of vari­
ance. When the analysis of variance showed significant effects (P = <0.05), dif­
ferences between the treatments were tested by the Tukey test (P = <0.05). The 
statistical analysis were carried out with the statistical package Genstat 5 (20). 

RESULTS AND DISCUSSION 

Statistical Analysis 

The CV of the analytical results are given in Table 2. Four CV classes have 
been considered: <10, 10-15, 15-20, and >20%. Coefficient of variation values 
in the <10, 10-15, 15-20, and >20% classes are assumed to be good, moderate, 
bad, and unacceptable, respectively. The reproducibility of the analytical results 
were good for pH, N, N03-N, Na, K, and Mg. A large number of observations for 
ortho-P, NH4-N, and Mn occurred in the CV classes 15-20% and >20% and 
resulted from (very) low absolute values of the mean. The low absolute values 
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Table 2. Calculated CV of the Experimental Results of pH and 
Nutrients Extracted from the Test Soils According the 0.01 M CaCl2 

Procedure" 

Parameter 

pH 
N 
NH4 

N0 3 

ortho-P 
Na 
K 
Mg 
Mn 

<10 

21 
18 
17 
16 
8 

21 
20 
21 
15 

CV (%) 

10-15 

0 
2 
1 
4 
2 
0 
1 
0 
1 

15-20 

0 
1 
0 
1 
2 
0 
0 
0 
0 

>20 

0 
0 
3 
0 
9 
0 
0 
0 
5 

"CV is tabulated in classes and the total number of observations per 
parameter is 21. 

were found in the moist soil samples (NH4-N, Mn, and ortho-P) and in the clay 
soils (ortho-P). The CV results agree with certification work of a soil sample for 
pH and nutrients extracted by 0.01 M CaCl2 (21). It is concluded that these ex­
perimental results could be used for further study. 

Water Content 

The soil samples were taken during a rainy period. As a result water content was 
(very) high: 11.3, 76.3, and 27.21%(w) for the moist sand soil and moist calcare­
ous and moist noncalcareous clay soils, respectively (Fig. 1). Just before extrac­
tion, i.e., after drying and storage, water content of the 105°C treatment sand soil, 
noncalcareous clay, and calcareous clay soils was 0.6, 3.8, and 4.9% again. This 
shows that during sieving, storage, or weighing out the soils have adsorbed water. 
Water content of the dried soils just before extraction was markedly lower than 
water content of the field moist test soils. In the clay soils water content decreased 
as drying temperature increased. Water content of all drying treatments of the sand 
soil was about 1% and always lower than the water content of the same treatments 
of the clay soils. The use of forced-air ventilation at 20 and 40°C lowered the 
water content of the clay soils with 0.9-5.7%, but had no clear effect on water 
content of the sand soil. Since dried soils seem to adsorb water after the drying 
process, soil water content should always be determined prior to extraction to 
avoid misinterpretations of 0.01 M CaCl2 soil test results. 
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Figure 1. Water content of the soil samples after drying and just before extraction, in 
percentage. Drying treatments: 20C, 40C, 70C, and 105C are the soils dried without forced-
air ventilation at 20°C, 40°C, 70°C, and 105°C, respectively, and 20C+ and 40C+ are the 
soils dried at 20°C and 40°C with forced-air ventilation. Sand: sand soil, Calc: calcareous 
clay soil, and Noncalc: noncalcareous clay soil. 

General 

The results for pH, Mg, K, Na, and N03-N showed a normal distribution, 
thus allowing straight forward statistical analysis. The experimental results of Mn, 
org-N, NH4-N, and ortho-P had to be transformed to a log-normal distribution 
prior to statistical analysis. 

Table 3 gives an overview of the experimental results. Differences in pH and 
extracted nutrient elements between the treatments result from differences in the 
course of water content and soil temperature of the test soils as a function of time. 

pH 

After drying at 105° C, the pH of the test soils was always significantly lower 
than after drying at 70°C. The pH lowering was maximal, i.e., 0.2 pH unit, in the 
noncalcareous clay soil, which had the highest organic matter content. In the sand 
soil as well as in the noncalcareous clay, soil pH was not significantly different 
between the 20°C and 40°C treatments. Soil pH in the calcareous clay soil dried 
according the 40° C treatment was significantly higher than pH of the same soil 
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dried according the 20° C treatment. An increase of drying temperature from 40° C 
to 70° C resulted in a significant pH increase in the sand soil, a significant pH 
decrease in the noncalcareous clay soil, and had no significant effect on pH in the 
calcareous soil. A pH lowering because of soil drying is generally attributed to the 
production of H30 + because of hydrolysis or oxidation of organic compounds or 
from the exposure of acidic groups to the solution due to fragmentation of soil 
organic matter (10). There is no explanation for a pH increase because of drying. 
According to ISO 10390 (22) the acceptable variation (repeatability) of pH mea­
surements of soils in the pH range smaller than 7.0 equals 0.15 pH units. There­
fore, pH values in soil testing programs as well as pH values in most liming rec­
ommendation schemes are generally expressed in one decimal. Thus, most of the 
significant effects found in our experiment are small and negligible from a prac­
tical point of view. 

Manganese 

In all test soils extracted Mn increased significantly when drying tempera­
ture increased. The difference in extracted Mn between the 20° C and 105°C treat­
ment was maximal on the calcareous clay soil. Increasing drying temperature from 
40 to 70° C and from 70 to 105°C yielded on average three-fold amount of ex­
tracted Mn from each of the test soils. An increase of extracted Mn has often been 
reported for several soil extractants (11,12,23,24) and is generally attributed to the 
release of organically bound Mn and the reduction of insoluble Mn4+ compounds. 

Organic-Nitrogen 

Org-N extracted by 0.01 M CaCl2 may be an important indicator of the soil 
N status because it is thought to be related to the soil mineralization potential (25). 
In each test soil org-N extracted was not significantly different between the 20° C 
and 40°C treatments. When drying temperature increased from 40 to 70°C and 70 
to 105°C org-N extracted increased significantly. Increasing drying temperatures 
from 40 to 70° C and 70 to 105° C yielded on average two or threefold amount of 
org-N from each of the test soils. Barekzai and Muhling (3) who tested 17 differ­
ent soils found a six-fold increase in org-N extracted when drying temperature 
was raised from 40 to 105°C which agrees with our findings. Org-N originates 
from soil organic matter, crop residues (26), and residues of (dead) soil microbes 
(4). Water loss rate during the drying process at 70 and 105°C will be very high 
and associated with a very low microbial activity. The contribution of microbial 
residues to org-N extracted at 70 and 105°C will, thus, be low and, consequently, 
org-N originates mainly from soil organic matter. Microbial activity cannot be 
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neglected during (part of) the drying process at 20 or 40° C because water content 
of the moist clay soils was relatively high. 

Ammonium-Nitrogen 

On all test soils extracted NH4-N showed a tendency to increase when dry­
ing temperature increased. The increase in extracted NH4-N was significant be­
tween the 70° C and 105°C treatment. Differences in extracted NH4-N were not 
significant between the other treatments. Barekzai and Miihling (3) found that 
NH4-N extracted increased by 80%, on average, when drying temperature in­
creased from 40 to 105°C. However, in most of their 17 test soils NH4-N extracted 
increased two or threefold, which is in accordance with our present findings. The 
increase in NH4-N extracted when drying temperature increased from 70 to 105° C 
cannot be attributed to microbial activity because there is no ammonification in 
this temperature range. It is possible that the NH4 determination by the indophenol 
blue method was affected by the easily hydrolyzable org-N (27) which was also 
increased significantly between these treatments or that amino acids present in the 
extract were measured as NH4-N (28). We found that up to 20% of org-N could 
be amino acids (data not presented). 

Nitrate-Nitrogen 

The amount of extracted N03-N from the sand soil was not significantly 
affected by drying temperature. Probably, drying temperature was too high or wa­
ter content too low for microbial activity. Drying temperature had an effect on 
extracted N03-N from the clay soils. Extracted N03-N from the 20° C treatment 
was significantly lower than extracted N03-N from the 40° C treatment. A lower 
amount of extracted N03-N at 20° C can be attributed to microbial activity, which 
may lead to the immobilization of N03-N because of population growth or to the 
loss of N03-N because of denitrification. Since water content of the moist clay 
soils was relatively high denitrification losses cannot be neglected during part of 
the drying period. Extracted N03-N from the clay soils dried at 70 and 105°C was 
always significantly lower than after drying at 40°C. Repetition of this part of the 
experiment confirmed this N03-N loss. Barekzai and Miihling (3) found a com­
parable decrease in N03-N extracted by the 0.01 CaCl2 procedure when drying 
temperature was raised from 40 to 105°C. There are three possible reasons for 
N03-N losses at higher temperatures. Firstly, a loss because of microbial denitri­
fication is possible, but this is unlikely at high temperatures (29,30). Secondly, the 
combined presence of N03-N, NH4-N, and soluble organic compounds makes a 
N03-N loss via chemodenitrification possible (30). Thirdly, N03-N is bound to 
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aromatic rings present in the soluble organic material via nitration reactions (30). 
It is remarkable that the N03-N loss at higher temperature did not occur on the 
sand soil. As long as the problem of N03-N losses at higher temperatures is not 
solved drying temperature should not exceed 40°C. 

Ortho-Phosphorus 

The amount of extracted ortho-P tended to increase when drying tempera­
ture increased. Differences in extracted ortho-P were not significantly different 
between the 20°C and 40°C treatments. Ortho-P extracted from the test soils dried 
at 105°C was significantly higher than ortho-P extracted at 20°C. This also ac­
counts for the clay soils dried according the 70° C treatment. An increase in ex-
tractable ortho-P upon drying has been attributed to oxidation of organic matter 
and the subsequent reduction of Fe3+ , releasing previously nonextractable organic 
and Fe-phosphates (24). 

Sodium 

Extracted Na tended to decrease when drying temperature increased. How­
ever, differences in extracted Na were not significant between the drying treat­
ments of the sand soil. Sodium extracted from the 20° C treatment of the clay soils 
was always significantly higher than extracted Na from the 40° C, 70°C, and 
105°C treatments. This effect may be related to microbial activity since conditions 
for microbial activity may have been optimal during part of the drying process of 
the relatively wet clay soils. Differences in extracted Na between the 70°C and 
105°C treatment were not significant. The tendency for a lower amount of ex­
tracted Na when drying temperature increased suggests that part of the Na is con­
verted into insoluble forms or that the size of the cation adsorption complex has 
increased. 

Potassium 

Drying temperature had no effect on the amount of extracted K from the 
calcareous clay soil. On the sand soil and non-calcareous clay soil extracted K 
from the 20° C treatment was significantly lower than extracted K from the 105°C 
treatment. The effect of a 40 and 70° C drying temperature on extracted K is vari­
able. The varying results may be explained by the phenomena found by Rich (31) 
that soils initially high in K would fix K on drying and that soils initially low in K 
released "fixed" K on drying. 
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Magnesium 

Drying temperature had no effect on the amount of extracted Mg on all test 
soils. It suggests that drying temperature has no effect on the soil processes that 
determine extracted Mg. 

Effect of Forced-Air Ventilation 

Forced-air ventilation will increase water loss rate and as a result may limit 
the time period of microbial activity. However, it may promote soil reactions like 
precipitation and oxidation reactions. 

Table 4 gives an overview of the effect of forced air ventilation at 20 and 
40° C on pH and extracted nutrients by the 0.01 M CaCl2 procedure. At 20 and 
40° C the use of forced-air ventilation had no effect on the amount of org-N, 
NH4-N, ortho-P, K, and Mg extracted from the test soils. The effect on pH and 
other nutrient elements were variable and difficult to interpret, e.g., in the calcare­
ous clay soil forced-air ventilation resulted at 20° C in a significant increase of 
extracted Mn but at 40° C it resulted in a significant decrease. Moreover, forced-
air ventilation resulted in a significant increase in extracted N03-N at 40° C in the 
sand soil and calcareous clay soil but in a significant decrease in the non-calcare­
ous soil. In general, the results suggest that the effect of forced-air ventilation on 

Table 4. Effect of Forced Air Ventilation at a Drying Temperature of 20° C 
and 40° C on pH and Extracted Nutrients from a Sand Soil, a Noncalcareous 
Clay Soil, and a Calcareous Clay Soil According the 0.01 M CaCl2 Procedure 

Sand Noncalcareous Calcareous 

20C 40C 20C 40C 20C 40C 

pH + - + 
Mn + + 
org-N 
NH4-N 
N03-N + - + + 
ortho-P 
Na -
K 
Mg 

The + and — means that forced air ventilation resulted in a significant 
increase or decrease, respectively (P = 0.05). Empty cell means there is 
no significant effect. 
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Table 5. The pH, Mn, org-N, NH4-N, and N03-N Extracted According the 0.01 M CaCl2 

Procedure from the Moist Test Soils (Moist) and the Same Soils Dried at 20° C and 40° C 
without and with (+) Forced Air Ventilation 

pH 

Mn 

org-N 

NH4-N 

N03-N 

ortho-P 

Na 

K 

Mg 

Soil 

Calc.clay 
Sand 
Noncalc. clay 
Calc.clay 
Sand 
Noncalc. clay 
Calc.clay 
Sand 
Noncalc. clay 
Calc.clay 
Sand 
Noncalc. clay 
Calc.clay 
Sand 
Noncalc. clay 
Calc.clay 
Sand 
Noncalc. clay 
Calc.clay 
Sand 
Noncalc. clay 
Calc.clay 
Sand 
Noncalc. clay 
Calc.clay 
Sand 
Noncalc. clay 

Moist 

6.94 
6.61 
6.45 
0.00 
0.09 
1.10 
5.70 
1.80 
2.19 
0.07 
0.00 
1.78 
8.60 
5.83 
4.55 
0.16 
2.60 
0.13 
41.2 
15.2 
34.5 
45.5 
109.7 
167.92 
237 
47.8 
238 

20C 

6.89* 
6.08* 
6.31* 
0.18* 
0.67* 
0.55* 
16.3* 
2.78* 
6.21* 
5.96* 
1.37* 
1.71 
0.84* 
6.14 
3.57* 
0.17 
2.61 
0.05* 
48.9* 
16.3 
36.4 
51.8 
126.25* 
122.6* 
205* 
48.6 
218 

Treatment 

20C + 

6.95 
6.07* 
6.25* 
0.72* 
0.82* 
1.18 
18.9* 
2.40 
7.64* 
4.84* 
1.39* 
2.53 
4.70* 
6.44* 
3.48* 
0.16 
2.73 
0.08 
42.5 
16.1 
31.3* 
51.2 
135* 
128* 
190* 
49.9 
211* 

40C 

6.96 
6.13* 
6.30* 
3.94* 
1.25* 
0.97 
18.1* 
2.80* 
7.50* 
7.93* 
2.32* 
2.41 
8.88 
6.19 
5.32* 
0.22 
3.25 
0.06* 
45.4* 
15.8 
33.0 
54.7* 
130* 
11* 
206* 
51.3 
199* 

40C + 

6.97 
6.19* 
6.33* 
2.35* 
1.24* 
1.07 
18.5* 
2.20 
8.77* 
3.65* 
1.69* 
2.40 
9.47* 
6.74* 
3.62* 
0.26 
3.88 
0.08 
43.9* 
15.3 
30.7* 
48.9 
127* 
105* 
190* 
50.5 
202* 

Nutrients are expressed in mg kg ' dry soil. Test values followed by * means that this 
value is significantly different from the test value of the respective moist soil (P = 0.05). 

pH and extracted nutrient elements is limited. Probably, the drying period of 24 h 
outweighed the possible effects of forced-air ventilation. 

EVALUATION 

The value of a 0.01 M CaCl2 soil testing program is determined by its ability 
to characterize the actual soil nutrient element status at sampling time and on the 
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relationship between the actual status and crop response. Since it is almost impos­
sible to measure the actual nutrient element status of the soil in situ, we assumed 
that pH and nutrient elements extracted from a moist test soil immediately after 
sampling at 20° C is the best indicator of the actual soil nutrient element status at 
the time of sampling. Table 5 gives a summary of the results of a comparative 
study between the test results of the moist soils and the respective soils given 20C, 
20C+ , 40C, and 40C+ treatments. In total, 27 comparisons were made per treat­
ment (nine soil test parameters X three test soils). Soils dried according the 20° C 
treatment gave in 18 out of 27 comparisons a test value which was significantly 
different from the test value of the respective moist soil. For the 20°C+, 40°C, 
and 40°C+ this was 16 out of 27, 17 out of 27, and 17 out of 27, respectively. 
There is no indication that results differed between the test soils. Differences be­
tween the moist soils and dried soil cannot be explained by the sieve size used for 
sieving the moist soil. Shortly after starting the 2 h shaking period, all large soil 
particles had disappeared. Because of the differences in soil test values of moist 
and dried test soils it is questionable if the use of dried soils should be recom­
mended in the 0.01 M CaCl2 procedure. A decision about this should be deduced 
from the relationship between soil test values of moist and dried soils extracted 
with 0.01 M CaCl2 and crop response. Until that moment it is recommended to 
use the current standardized drying protocol. 

CONCLUSIONS 

The current soil drying protocol of the 0.01 M CaCl2 procedure may seri­
ously affect pH and amount of nutrient elements extracted, especially at high 
drying temperatures. If soil drying is preferable drying temperature should not 
exceed 40° C. 
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ABSTRACT 

A multinutrient soil extraction procedure in routine soil testing is at­
tractive. Therefore, it has been suggested to convert conventional 
soil testing programs into a 0.01 M calcium chloride (CaCl2) multi-
nutrient soil testing program using the relationship between test val­
ues of the 0.01 M CaCl2 extractant and those of the various conven­
tional extractants. However, these relationships are often weak and 
an interpretation of the coefficient(s) is almost impossible. There­
fore, a fundamental relationship has been deduced relating magne­
sium (Mg) extracted by conventional methods, (Mg-ext)a, with Mg 
extracted by the 0.01 M CaCl2 method (Mg-ext)CaC,2: (Mg-ext)a = 
a + [£*(Mg-ext)CaCl2l=t] + [A*(Mg-ext)CaCl2,=, * (Q-re)CaC,2]. In 
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this relationship, a, f3, and A are related to characteristics of the ex­
traction procedure and Mg-fractions in the soils. The (Q-re)CaC,2 is 
the actual cation exchange capacity of the soil during the CaCl2 ex­
traction. To test the usefulness of this relationship, 39 agricultural 
soils with widely differing soil characteristics were extracted with 
0.01 M CaCl2 and seven conventional Mg extractants. For six con­
ventional methods, the explained variance of the fundamental rela­
tionships was more than 0.92. The explained variance of the rela­
tionship among 0.01 MCaCl2 and the 0.1 Af ammonium-lactate/0.4 
N acetic acid extractant buffered at pH 3.75 was poor when the soils 
contained carbonates. We conclude that the derived fundamental re­
lationship can be used for the design of a CaCl2 soil testing program 
for Mg. Preferably, this CaCl2 soil testing program should be vali­
dated in pot and field experiments. 

INTRODUCTION 

In a multinutrient soil extraction procedure, several elements or ions are 
extracted from a soil with one chemical reagent (= extractant). The introduction 
of a multinutrient extraction procedure in routine soil testing is attractive because 
it generates options for optimization of laboratory management and because the 
procedure is often cheaper as compared to a series of conventional single nutrient 
element extraction procedures (1). However, above all the introduction of a mul­
tinutrient extraction procedure should be justified by strong relationships between 
the amount of element or ion extracted and crop response. Houba et al. (2) found 
a good relationship between the results of the 0.01 M CaCl2 extraction procedure 
and conventional extraction procedures for pH and for several plant nutrient ele­
ments. They assumed that if the amount of element or ion extracted by a conven­
tional procedure is related to crop response, then the amount of element or ion 
extracted by the 0.01 M CaCl2 procedure will also be related to crop response. 
Based on this assumption, Houba et al. (2) proposed to investigate the perspectives 
of the 0.01 M CaCl2 procedure as a multinutrient extractant for routine soil testing. 
They suggested to convert conventional soil testing programs into a 0.01 M CaCl2 

soil testing program using the—mostly linear—relationships found between the 
amounts extracted by the two procedures. 

In most comparative studies, the results of two extraction procedures are 
related using statistical techniques like (multiple) linear regression. Usually, how­
ever, the explained variance of the relationships is rather small. To increase the 
explained variance, soil characteristics like soil type, organic matter, clay, and 
carbonate contents are arbitrarily included (3-6). As a result, relationships may 
vary among studies although the same procedures and nutrient elements are com-
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pared. Moreover, a soil chemical interpretation of the coefficients in the (multiple) 
linear regression equations remains obscure, which limits generalization of the 
results obtained. It is, therefore, questionable whether this type of relationships 
can be used for the design of a 0.01 M CaCl2 soil testing program. The assessment 
of fundamental relationships deserves the highest priority. These fundamental re­
lationships should take into account characteristics of the nutrient element, soil, 
extractant, and extraction procedure. 

Magnesium is an important plant nutrient and several extractants are used 
in routine soil testing to determine the soil Mg status. Many of the conventional 
extractants for Mg use salt solutions and wide soil-solution ratios, suggesting that 
dissolution processes and cation exchange reactions between Mg and the added 
cation of the salt solution play an important role. The effect of dissolution and 
exchange processes on the composition of the soil solution are well-known and 
mathematically described. We think that the mathematical descriptions should be 
the basis of the fundamental relationships between Mg extracted by 0.01 M CaCl2 

and conventional procedures. 

Dissolution and Exchange Chemistry of Magnesium 

Magnesium is an essential nutrient element for plant growth and plant 
reproduction (7). Magnesium in soil includes soluble, readily exchangeable, 
slowly exchangeable and structural forms (8,9). The (water) soluble Mg forms, 
(Mg-sol), accounts for soil Mg present in the soil solution and in water soluble 
precipitates. The readily exchangeable Mg forms, (Mg-rex), comprise cationic 
Mg species in the diffuse layer electrostatically adsorbed to negatively charged 
soil particles. The slowly exchangeable Mg fraction, (Mg-sex), includes Mg spe­
cifically adsorbed to humic substances (10,11), (hydr)oxides (12) and clay min­
erals. The structural Mg forms, (Mg-str), includes Mg present in the lattices of 
clay minerals, in carbonates, etc. (13,14). Generally, (Mg-rex) is 3 to 20% of the 
total soil Mg content (15). Plant roots absorb Mg from the soil solution, thereby 
lowering the actual Mg concentration. However, the concentration of Mg in the 
soil solution is buffered by (Mg-rex) that, in turn, is slowly replenished by (Mg-
sex) and (Mg-str) (7). Pot experiments in which soils were exhausted and Mg 
balance sheet studies of long-term field experiments, have shown that plant uptake 
of Mg is related to the size of (Mg-rex) (16-18). Routine Mg soil testing programs 
use salt solutions, acidified salt solutions or acid solutions as extractant to assess 
"plant-available Mg" (Table 1; 27). The cations or protons added via these ex­
tractants replace (part of) (Mg-rex) resulting in an increased Mg concentration in 
the solution immediately after addition (28). Depending on extraction time and 
the affinity of the (specific) adsorption site(s) for Mg and the added cation, Mg is 
also extracted from (Mg-sex). Acidified extractants may promote the dissolution 
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of structural forms like Mg containing carbonates and minerals (29). The extent 
of dissolution strongly depends on procedural aspects like proton activity, ionic 
strength, extraction time, and soil-solution ratio. When it is assumed that during 
soil extraction (Mg-sol) dissolves completely in the extractant, irrespective of the 
extraction procedure, then the total amount of Mg in the extractant solution after 
extraction, (Mg-ext), should equal the sum of (Mg-sol) and the changes of the 
other soil Mg fractions. 

i=3 

(Mg-ext)ai,=, = (Mg-sol),=0 + 2 {(Mg-i)a,=0 - (Mg-i)a/=,} (1) 

In Equation (1), i — 1 to i = 3 stands for (Mg-rex), (Mg-sex), and (Mg-str), re­
spectively, expressed in mg kg -1 soil. The subscript a refers to the extraction pro­
cedure A and the subscripts t = 0 and t — t to the time of start and termination of 
extraction, respectively. 

Equation (1) can be worked out for two hypothetical extraction procedures 
A and B. At t = 0, (Mg-rex), (Mg-sex), and (Mg-str) will be the same irrespective 
of the extraction procedure. Then, subtraction of the results of B from A, gives: 

i=3 

(Mg-ext)a,,=f - (Mg-ext)b>,=, = £ {(Mg-0b,=, - (Mg-i)a/=,} (2) 
1=1 

Provided that the chemical processes and factors which determine the changes in 
(Mg-sex), (Mg-rex), and (Mg-str) at t = t are known, Equation (2) can be used to 
derive a fundamental relationship for the difference in the amount of Mg extracted 
by the two procedures A and B. 

The equivalent fraction of cations at the readily exchangeable adsorption 
sites of a soil is closely related to the activity of the cations in the soil solution at 
equilibrium in the soil suspension (29,30). Addition of cations to a soil in equilib­
rium will result in cation exchange processes at the readily exchangeable adsorp­
tion sites. In general, these exchange reactions are completed and in equilibrium 
within several minutes provided that the exchange process is not retarded by ster-
ical hindering or diffusion controlled transport processes (31-33). In most soil 
testing programs, soil samples are gently crushed or milled to prevent possible 
physical/sterical blockades during extraction. Moreover, diffusion controlled pro­
cesses in the soil suspension are (nearly) absent because soil samples are homoge­
nized before extraction and because soil suspensions are prepared that have a wide 
soil-solution ratio and that are continuously stirred or shaken. Because these con­
ditions prevail in most procedures we assume that a chemical equilibrium is at­
tained in the soil suspension during extraction. The mathematical description of 
the equilibrium stage of an exchange reaction in which Mg adsorbed at the readily 
exchangeable adsorption sites is replaced by cation Z is given below (30). 
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2 

((E-rex)z)<« * [Mg] * /M g 

(E-rex)Mg = °— (3) 
(^GT(S2Mg^SmZ))2 * ( [Z] * fz)m 

In Equation (3), (E-rex)Mg and (E-rex)z are the dimensionless fractions of Mg and 
Z, respectively, at the readily exchangeable adsorption site S; [Mg] and [Z] are the 
concentrations of these ions in the extractant solution in mol L _ 1 ; / M and/ z rep­
resent their activity coefficients; and KGT is the exchange coefficient for the ex­
change reaction in which Mg at site S is replaced by cation Z. This exchange 
reaction is described by S2Mg —> SmZ, m representing the valency of cation Z. 
For an extraction procedure A, [Mg] in Equation (3) equals (Mg-ext)a /=r, divided 
by the added volume of the extractant, VOLa in L kg ! soil, and the atomic weight 
of Mg, MMg in g mol -1 . Equation (3) can thus be rewritten as follows: 

2 

((E-rex)M=riZ)» * (Mg-ext)a,=/ * / a M g 

(E-rex)a,=/M = 2 
(*GT(s2Mg->sraz))

2 * ([ZJ * / a ,z )" * VOLa * MMg * 1000 
(4) 

In Equation (4) the subscript a refers to the extraction procedure A, the subscript 
t = t to the time of termination of the extraction procedure A and the subscript 
Mg or Z to the cations Mg and Z that exchange during extraction procedure A. To 
calculate (Mg-rex)a,=p in mg kg"1 soil, (E-rex)af=,Mg should be multiplied with 
the charge of the readily exchangeable adsorption sites S during procedure A, (Q-
re)a in cmol(-) kg"1 soil, and MMg and divided by the valency of Mg. Equation (4) 
should then be rewritten as follows: 

2 

((E-rex)a t= tZ)- * / * (Mg-ext)af=, * (Q-re)a 

(Mg-rex)a,,=, = j (5) 
(^GT(s2Mg-smz))2 * ([ZJ * / a , z ) - * VOLa * 2 * 100 

Equation [5] is a mathematical description of the mutual dependency of (Mg-
rex)a t=t, soil characteristics ((Q-re)a, KGT), characteristics of the extractant used 
in procedure A ([Za], m, / a M g and/ aZ) and procedural aspects (VOLa). Equation 
(5) can be simplified into Equation (6), 

(Mg-rex)a,=r = Sa * (Mg-ext)a(=r * (Q-re)a (6) 

in which 5a equals Equation (7). 

2 

((E-rex)a z)m * / 
Sa = 2 ~ (7) 

(̂ GT(S2Mg-SmZ))2 * ([ZJ * / a . z ) - * VOLa * 2 * 100 
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Generally, the release of Mg from (Mg-sex) and (Mg-str) is kinetically deter­
mined. As a result, the soil suspension is mostly far from equilibrium. Without 
additional information on soil characteristics and kinetic aspects of the release 
processes during an extraction procedure A, it is impossible to estimate the 
amount (Mg-sex)a ,=, and (Mg-str)a r=r. Because extraction time of most Mg ex­
traction procedures is relatively short, we assume that a very small and constant 
amount of Mg is extracted from (Mg-sex)/=0 and (Mg-str),=0 during soil extrac­
tion, i.e., (CON-sex)a t=t and (CON-str)aJ=t, respectively. This results in: 

(Mg-sex)^, - (Mg-sex),=0 - (CON-sex)a,=, (8) 

and, 

(Mg-str)^, = (Mg-str),=0 - (CON-str)^, (9) 

The description of (Mg-rex), (Mg-sex), and (Mg-str) in Equations (7-9) can also 
be worked out for the procedures B and then for both procedures incorporated in 
Equation (2). Then, a mathematical description is obtained for a fundamental re­
lationship for the difference in the amount of Mg extracted by the procedures A 
and B. Rearranging variables in this formulae yields Equation (10). 

(Mg-ext)af=, = a + [J3* (Mg-ext)bJ=t] + [A * (Mg-ext)b,=, * (Q-re)b] (10) 

In Equation (10), a, p, and A equal CON/[l + (5a * (Q-re)a)], 1/[1 + (5a * (Q-
re)a)], and <5b/[l + (<5a * (Q-re)a)], respectively. CON is a constant and equals the 
sum of (CON-sex)a,=, - (CON-sex)b,=, and (CON-str)a,=, - (CON-str)b,=, • Sb 

equals Equation (7) worked out for procedure B. 
The aim of the experiments described below is to evaluate Equation (10) as 

a useful tool to relate the amount of Mg extracted by a conventional Mg extraction 
procedure and the 0.01 M CaCl2 procedure. 

MATERIALS AND METHODS 

Thirty-nine soil samples with widely differing soil characteristics were col­
lected from the plough layer of agricultural fields in The Netherlands. The fresh 
soil samples were pretreated according to ISO 11464 (34). Within the framework 
of an EC-Copernicus project (35) the 39 soils were extracted in The Netherlands, 
Hungary, Poland, and the Czech Republic according to current soil testing proce­
dures for Mg in the respective countries (Table 1). Six unbuffered salt solutions 
and two acidified salt solutions were tested. The Mg concentration in the super­
natant was measured by atomic absorption spectrophotometry (AAS) in all coun­
tries. The actual cation exchange capacity (CEC) of the soil was determined with 
the unbuffered BaCl2 method (24), the clay content according NEN 5753 (36), 
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Table 2. Soil Characteristics of the 39 Samples from Agricultural Soils in 
The Netherlands 

Soil characteristics 
pHKCl 
Clay content (%) 
Organic carbon content (%) 
Carbonate content (%) 
Volume weight (g 1 ') 
Cation exchange capacity, 

cmol(-)(kg-') 

Mg extracted by the procedures 
0.01MCaCl2 

Schacht I 
Schacht II 
NaCl 
KC1 
BaCl2 

Amlac 
Mehlich II 

Minimum 

4.0 
2 
0.6 
0 
1069 
2.1 

(mgkg-1) 
18 
24 
12 
20 
13 
21 
12 
23 

Maximum 

7.5 
52 
8.3 
8.27 
1479 
40.3 

287 
318 
238 
312 
350 
494 
810 
456 

Average 

5.7 
15 
2.6 
0.78 
1291 
13.8 

120 
128 
91 
140 
126 
195 
222 
183 

pH-KCl according to ISO 10390 (37), the organic carbon content according ISO 
14235 (38), and carbonate content (% CaC03) according to NEN 5757 (39). 
Table 2 shows the soil characteristics and the results of tested Mg extraction pro­
cedures. Statistical analysis were carried out using the computer program Genstat 
5 (40). Equation (11) was used for linear regression analysis. 

(Mg-ext)ar=, = K + fx * (Mg-ext)CaCl2,=, (11) 

In Equation (11), Mg extracted by the 0.01 M CaCl2 procedure, (Mg-ext)CaCI J=l, 
was the explanatory variable and Mg extracted by the conventional procedure, 
(Mg-ext)a t=t, the response variable; K equals the intercept of the regression line 
with the F-axis and //. equals the slope of the regression line. The multiple linear 
regression analysis was carried out according (Mg-ext)a,=, = a + ft * (Mg-
ext)Caci2,(=, + [̂  * (Mg-ext)CaCl2,=, * (Q-re)CaCl2]. In this analysis, (Mg-
ext)CaC,2 l=l and (Mg-ext)CaC] ,=, * (Q-re)CaC1 were the explanatory variables and 
(Mg-ext)a t=t the response variable; a equals the intercept of the regression line 
with the y-axis and yS and A are coefficients of the response variables. Confidence 
intervals of the coefficients in the (multiple) linear regression equations were de­
termined at P = 0.05. 

In the multiple regression analysis it was assumed that the charge of the 
readily exchangeable adsorption sites during the CaCl2 extraction procedure, 
(Q-re)CaC1 , equaled the actual CEC. 
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RESULTS AND DISCUSSION 

Statistical Analysis 

The explained variance (R2) of the simple linear relationships between the 
CaCl2 procedure and one of the seven conventional procedures varied from 0.01 
for the CaCl2-Amlac relationship to more than 0.97 for the CaCl2-Schacht(I) 
relationship (Table 3). 

The low R2 of the CaCl2-Amlac relationship suggests that the mechanism 
of Mg extraction is different for CaCl2 and Amlac. Except for the CaCl2-Amlac 
relationship, the intercept K of the linear relationships is not significantly different 
from zero. When the intercept K is significantly different from zero it means that 
one of the procedures extract Mg from a soil Mg fraction which is not extractable 
for the other procedure. When yii = 1, an increase of Mg extracted by 0.01 M 
CaCl2 equals the increase of Mg extracted by the conventional procedure. This 
means that both procedures extract Mg from the same soil Mg fractions and that 
both procedures are equally effective in Mg extraction. When /x is significantly 
smaller or higher than 1, the conventional procedure is less or more effective, 
respectively, in extracting Mg compared to CaCl2. Table 3 shows that JJL is signifi­
cantly smaller than 1 for the CaCl2-Schacht(II) relationship, not significantly dif­
ferent from 1 for the CaCl2-KCl relationship and significantly higher than 1 for 
the relationships relating CaCl2 with Schacht(I), sodium chloride (NaCl), barium 
chloride (BaCl2), and Mehlich. 

The R2 of the multiple regression relationships was found to be equal or 
higher than R2 of the comparable simple linear relationships (Table 3). Improve­
ment of R2 is considerable for the CaCl2-Amlac, CaCl2-KCl, CaCl2-Mehlich, 
CaCl2-BaCl2, and CaCl2-NaCl relationships. Improvement is negligible for the 
CaCl2-Schacht(I) and CaCl2-Schacht(II) relationships, reflecting that both the 
type of extractant and procedural aspects of Schacht(I), Schacht(II), and CaCl2 are 
comparable. Except for the CaCl2-Amlac relationship (Table 3), all relationships 
have high R2 values, higher than 0.92, indicating that Equation (10) and its ex­
planatory variables (Mg-ext)CaC1 ,=r and (Mg-ext)CaC1 t=t * (Q-re)CaC1 can be used 
to relate the amount of Mg extracted by CaCl2 and conventional procedures. 

Coefficient /3 

In Equation [10], (3 equals 1/[1 + (5a * (Q-re)a)]. From Equation (6) it 
follows that [<5a * (Q-re)J equals the ratio (Mg-rex)a ,=,/(Mg-ext)a t=t. When [5a * 
(Q-re)J is replaced by (Mg-rex)aI=/(Mg-ext)af=r,/3 equals Equation (12). 

= (Mg-ext)a/=t 

(Mg-ext)aj,=, + (Mg-rex)a,=, 
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When procedure A is effective in replacing Mg from the readily exchangeable 
sites, then (Mg-rex)a ,= , is relatively small and (Mg-ext)a t=t relatively large and as 
a result ft should approach the value 1. When procedure A is ineffective in replac­
ing (Mg-rex) than (Mg-ext)a ,=r will be small and ft will approach zero. Thus, ft is 
an indicator of "the extracting power" of procedure A of Mg from (Mg-rex). 
Indicator ft theoretically ranges from 0 to 1. The results for the multiple relation­
ships in Table 3 show that ft varies from —0.820 for the CaCl2-Amlac relationship 
to 1.034 for the CaCl2-Schacht(I) relationship. The ft of the CaCl2-Amlac rela­
tionship is negative, but not significantly different from 0. This low value suggests 
that Amlac extracts almost no Mg from the readily exchangeable sites or that the 
assumptions underlying Equation (10) are not correct. The (3 of the CaCl2-
Schacht(I) relationship is not significantly different from 1 and suggests a com­
plete exchange of Mg at the readily exchangeable sites. The (3 of the other rela­
tionships varied from 0.71 to 0.83. 

The experimental results showed that Schacht(II) extracted less Mg from 
the test soils than Schacht(I). In the CaCl2-Schacht(I) relationship, (3 was signifi­
cantly higher than /3 found in the CaCl2-Schacht(II) relationship and equal to the 
theoretical maximum of 1. When the exchange of calcium (Ca) for Mg at the 
readily exchangeable adsorption sites is instantaneous, and when f3 is a charac­
teristic of the conventional extraction procedure A, then f3 of Schacht(I) and 
Schacht(II) should be of the same order of magnitude because both methods only 
differ in shaking time, 2 and 1 h, respectively. The observed significant difference 
in (3 suggests that shaking time is an important factor. An effect of shaking time 
has also been observed by van Erp et al. (41). They found that the amount of Mg 
extracted by the CaCl2 procedure continued to increase up to an extraction period 
of 2 h. This suggests that the exchange process of Mg for Ca is kinetically deter­
mined for part of the exchange sites. Figure 1 shows that the difference between 
Mg extracted by the Schacht(I) and Schacht(II) procedure in the present study 
tends to increase when the organic carbon (C) content of the soil increases. This 
means that during the second hour of the extraction period Schacht(I) extracts Mg 
from a slowly exchangeable Mg fraction (Mg-sex) related to organic C. When it 
is assumed that a (pseudo-) equilibrium exist among Mg concentration in the so­
lution and Mg that resides at (Mg-rex) and (Mg-sex) after a 2 h shaking period 
(41), then the Gaines-Thomas approach is also valid for the derivation of a causal 
relationship between (Mg-ext)a;=r and (Mg-sex)ar=r Hence, an equation (Mg-
sex)a t=t comparable to Equation (5) will be found. This new equation can be in­
corporated in Equation (2) together with the original (Mg-rex)a,=, and (Mg-
str) a r = r Rearranging this new Equation (2) will result in an equation similar to 
Equation (10) in which ft includes characteristics of both the readily and slowly 
exchangeable fraction. Because of that ft of the CaCl2-Schacht(I) procedure may 
equal 1. The ft of the CaCl2-Schacht(II) relationship will be smaller than 1 be­
cause a much smaller amount of Mg is extracted from (Mg-sex). 
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Figure 1. Relationship between the organic C content, % C, of the test soils with a pH-
CaCl2 larger than 5 and the difference in Mg extracted by Schacht(I) and Schacht(II). 

Coefficient a 

According to Equation (10), a equals CON/[l + (<5a * (Q-re)a)]. Since fi 
equals 1/[1 + (<5a * (Q-re)J, a can also be written as CON * /3. When no Mg is 
extracted from (Mg-sex) or (Mg-str) then CON is nil and a will not be signifi­
cantly different from 0. Is Mg extracted from (Mg-sex) or (Mg-str) then CON as 
well as a will be significantly different from zero provided f3 is significantly dif­
ferent from zero. The statistical analysis (Table 3) shows that the CaCl2-Mehlich, 
CaCl2-Amlac, and CaCl2-BaCl2 relationships have an intercept a significantly 
higher than 0. The intercept a of the CaCl2-Amlac relationship is much higher 
than for the CaCl2-Mehlich and CaCl2-BaCl2 relationships. The Mehlich and 
Amlac procedures use acidified extractants which may dissolve, e.g., Mg-calcites, 
present in carbonate containing soils. As the dissolution of carbonates is kineti-
cally determined (42,43), the (unbuffered) proton activity and short extraction pe­
riod of the Mehlich extractant may be insufficient to dissolve the same amount of 
carbonates as the Amlac procedure. When the difference in Mg extracted among 
Amlac and Mehlich, AMg, results from the dissolution of extra carbonates by 
Amlac, then also extra Ca should be extracted by Amlac compared to Mehlich, 
ACa. Figure 2 shows the linear relationship among ACa and AMg. The slope of 
the regression line is highly significant (standard error = 0.01) and suggests that 
the Ca/Mg composition of the dissolved carbonates is more or less the same in 
the different test soils. A ratio of Ca and Mg in carbonates of 0.05, i.e., 100:5, 
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Figure 2. Relationship between ACa, the difference in Ca extracted between Amlac and 
Mehlich, and AMg, the difference in Mg extracted between Amlac and Mehlich. Calculated 
for the carbonate containing test soils. 

falls in the range of Ca/Mg ratios for soil Mg-calcites and magnesium limestone 
(44). When the carbonate containing test soils were left out in the multiple linear 
regression analysis a was not significantly different from zero for the CaCl2-Meh-
lich and CaCl2-Amlac relationships (data not shown). We conclude that acid ex-
tractants may dissolve Mg containing soil carbonates increasing the amount of 
Mg extracted. Kinetic aspects of the carbonate dissolution and procedural aspects 
determine the actual amount of Mg extracted. The BaCl2 procedure uses a re­
peated extraction with barium (Ba2+) ions to extract Mg from soil fractions. Since 
the dehydration energy of Ba2+ is relatively low compared to other cations, an 
inner-sphere adsorption of Ba2+ is possible. Then, Ba2+ may replace cations (spe­
cifically) adsorbed to humic substances and at the surface of clay minerals, oxides 
and carbonates (45) and may even replace cations from the interlayer of clay min­
erals. The cation potassium (K+) ions in the KC1 extractant will replace cations 
adsorbed at the surface of clay minerals but also from the interlayer of clay min­
erals. Therefore, the difference among Mg extracted by the BaCl2 and KC1 pro­
cedure, may originate from Mg specifically adsorbed at humic substances, oxides 
or carbonates. Analysis of the difference in Mg extracted among BaCl2 and KC1 
showed that the difference was related to the clay content of the soils (not shown 
here) and not to the organic C content or carbonate content. Since, the (hydr)oxide 
content of soils is positively related to the clay content, Ba2+ may have replaced 
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Mg specifically adsorbed at the surface of these (hydr)oxides which is not replace­
able by K at high pH (12). We conclude that a in the CaCl2-BaCl2 relationship is 
larger than 0 because BaCl2 replace Mg from an unknown slowly exchangeable 
Mg-fraction related to the soil clay faction. 

Coefficient A 

Coefficient A in Equation (10) equals 5CaC,2/[l + (<5a * (Q-re)a)]. As shown, 
1/(1 + (<5a * (Q-re)a)] equals /3 which is an indicator of "the extracting power" of 
procedure A. According to Equation (6), <5CaC,2 equals (Mg-rex)CaCl2,=,/[(Mg-
ext)CaCl2 ,=, * (Q-re)CaC,2]. This means that A is an integration of the effect of i) the 
extraction power of procedure A, ii) the actual CEC of the test soil during CaCl2 

extraction, and iii) the extraction characteristics (Mg-rex)CaC1 t=t and (Mg-
ext)CaC,2 t=t of the CaCl2 procedure. Since the constituents of A are equal to or 
larger than 0, the theoretical minimum of A is 0. When two or more relationships 
have comparable values for A, "the extracting power" of the conventional proce­
dures must be comparable since (Mg-rex)CaC1 t=t, (Mg-ext)CaC,2,=r, and 
(Q-re)CaC1 are fixed values when two relationships are compared. This holds for 
the CaCl2-KCl and CaCl2-NaCl, CaCl2-Mehlich and CaCl2-BaCl2, and the 
CaCl2-Schacht(I) and CaCl2-Schacht(II) relationships. 

Evaluation 

Fundamental relationships exists between the CaCl2-procedure and conven­
tional procedures for Mg. The relationships are based on the extraction of Mg 
from Mg fractions in the soil. These fundamental relationships are a reliable basis 
for the conversion of conventional soil testing programs for Mg into a 0.01 M 
CaCl2 soil testing program for Mg. The fundamental relationship require addi­
tional information on (Q-re) of the test soils during the CaCl2-procedure. The 
actual CEC, determined through the unbuffered BaCl2 extraction, can be used for 
this. Determination of the actual CEC necessitates the execution of an extra ana­
lytical procedure. Therefore, the perspectives of calculating the actual CEC on the 
basis of pH and content of organic matter and clay of the soil should be investi­
gated. Field and pot and field experiments are necessary subsequently to test the 
CaCl2 soil testing program for Mg in practice. 

CONCLUSIONS 

The fundamental relationship (Mg-ext)CaC] l=t = a + fi * (Mg-ext)CaC1 ,= / 

+ [A * (Mg-ext)CaC,2 ,=, * (Q-re)CaC|2] can be used for conversion of conventional 
soil testing programs for Mg into a CaCl2 soil testing program for Mg. However, 
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the fundamental relationship cannot be applied to carbonate containing soils when 
acidified extractants buffered at a relatively low pH are used. 
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ABSTRACT 

For the set up of a multinutrient 0.01 M calcium chloride (CaCl2) 
soil testing program a conversion from conventional soil testing 
programs to a CaCl2 program has been proposed in literature. Such 
conversion should be based on the relationship between test values 
of the conventional method and the CaCl2 method. For magnesium 
(Mg) it was shown in earlier work that the conversion could be 
improved when the actual cation exchange capacity (CEC) of the 
soil, CECact, was taken into account. However, determination of 
CECact necessitates an extra analytical procedure. The goal of this 
study was to test a procedure for estimating CECact of a soil. In this 
procedure, CECact was calculated as the summation of the esti-
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mated charge of organic carbon (C) and clay in the soil at pHact, 
the actual pH of the soil. A series of 39 test soils representing 
agricultural soils in The Netherlands was used to derive the pH 
dependency of the negative charge of organic C and clay. The 
following relationship was found: CECact: [M(1)X0.0624] + 
[M(2)X (0.295-£>(2)pHact)]. In this relationship, M(l) and M(2) 
represent clay and organic C in g kg"1 dry soil, respectively, and 
£>(2)pHact the difference in negative charge of organic C at pHact 

and pH 8.1. The pHact equals pH measured in 0.01 M CaCl2. The 
relationship was tested on another dataset of 38 agricultural soils. 
There was good agreement between the calculated and measured 
CECact (/?

2=0.89). It was concluded that the procedure can be used 
for estimation of CEC,,.,. 

INTRODUCTION 

Soil testing is an important tool for optimization of fertilization and soil 
fertility status of agricultural soils. The perspectives of the use of 0.01 M CaCl2 as 
a multinutrient soil extractant in soil testing are good (1). Already Houba et al. (2) 
suggested to convert conventional soil testing programs for nutrient elements and 
pH into a 0.01 M CaCl2 multinutrient soil testing program. This conversion should 
be based on the relationship found between test values of the 0.01 M CaCl2 ex­
tractant and conventional extractants. For Mg it was shown that the relationship 
between Mg extracted by 0.01 M CaCl2 and Mg extracted by six conventional Mg 
extraction procedures improved significantly when the actual cation exchange ca­
pacity, CECact, of the soil was taken into account (3). The CECact was measured 
according to the unbuffered 0.01 M barium chloride (BaCl2) procedure (ISO 
11260, 1994) yielding the CEC at a pH and ionic strength (/) comparable to nor­
mal field conditions. This method is a slight modification of the compulsive ex­
change method as originally proposed by Gillman (4). Since the determination of 
CECact requires an extra analytical procedure it was proposed to investigate the 
perspectives of calculating CECact on the basis of soil characteristics like pH and 
the content of soil organic carbon and clay (fraction <2 mm). 

The CEC of a soil is defined as the total sum of exchangeable cations that a 
soil, soil constituent, or other material can adsorb at a specific pH (5). This ad­
sorption results from the negative charge of clay minerals, organic matter or or­
ganic C and (hydr)oxides in the soil (6). The negative charge may depend on pH 
and /. The CEC is often written as the summation of the negative charge of soil 
constituents according to Equation (1). 
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x=3 

CEC - 2 Q(x) (1) 
x=l 

In Equation (1), CEC is the negative charge of the soil in cmol(—) kg - 1 dry soil, 
Q the negative charge of the soil constituent in cmol(—) kg"1 dry soil, and x= 1, 
2, and 3 represent the soil constituents clay minerals (<2 /mm), organic C and 
(hydr)oxides, respectively. The Q(x) can be written as the multiplication of the 
mass weight M(x) and negative charge R(x) of soil constituent x according to 
Equation (2). 

Q(x) = Mix) X R(x) (2) 

In Equation (2), M(x) is expressed in g soil constituent kg""1 dry soil and R(x) 
in cmol(—) g"1 soil constituent. The R(l), the negative charge of clay minerals, 
may vary from practically zero to more than 0.200 cmol(—) g _ 1 (6,7). The R(l) 
of, e.g., 2:1 layer type clay minerals, is independent of pH and ionic strength (/) 
because the negative charge results from an isomorphic substitution of cations in 
the mineral lattice. In contrast, R(\) of, e.g., 1:1 layer type clay mineral depends 
on pH and / because hydrogen (H) dissociation and association characteristics of 
exposed surface-OH-groups depend on pH and / (6). Generally, the clay fraction 
of soils is a mixture of (crystallic and or amorphous) 1:2 and 1:1 clay minerals. 
Therefore, an effect of pH (and I) on R(l) cannot be excluded (8,9). 

The R(2), the negative charge of organic C, mainly originates from the ion­
ization of H from carboxyl-(COOH) and phenolic OH groups (10). The magnitude 
of the negative charge of these functional groups is positively related to soil pH in 
the pH range from 3.0 to 8.0, and to the ionic strength I of the solution (10,11). 
Beyond the pH range from 3.0 to 8.0, the negative charge is more or less constant. 
The effect of / is maximal between pH 4.0 and 6.0 and negligible at about pH 3.0 
and 8.0 (11). An effect of pH on R(2) of organic C in soils is often found (8,12,13). 

The R(3), the negative charge of soil (hydr)oxides, mainly (amorphous) 
iron- and aluminum-(hydr)oxides, originates from surface-OH-groups which may 
adsorb hydrogen (H+) or hydronium (OH") ions. Not all surface-OH-groups ad­
sorb H + and OH" at the same pH. Generally, Fe- and Al-(hydr)oxides become 
net negatively charged at a pH above 7.7 (6). Comparable to R(2) the negative 
charge of (hydr)oxides increases when pH and / increase. 

Summarizing, R(x) may depend on pH and /, and therefore R(x) in Equation 
(2) should be estimated at the / and pH of the soil under field conditions. In this 
study, it is assumed that the average / of soil solutions is 0.03 M which equals the 
ionic strength of 0.01 M CaCl2. The actual pH of a soil, pHact, is assumed to be 
equal to the pH measured in 0.01 M CaCl2. In literature the contribution of 
(hydr)oxides, <2(3), to the CECact is often neglected in the pH range of 4.0 to 8.0 
because ./?(3) of pure Fe- and Al-(hydr)oxides gets net negatively charged above 
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pH 7.7 (6). Moreover, there is little insight in the (hydr)oxide content of soils 
mainly because a cheap, common soil testing method for determination of soil 
(hydr)oxide content is lacking. When 7?(3) is neglected, then Equation (3) pro­
vides a mathematical description of the relationship between CECact and the clay 
content M(l), organic C content M(2), and 7?(1) and R(2) at pHact and 7=0.03 M. 

CECacf = M(l) X R(l)pHactJ=om + M(2) X R(2)pHactJ=om (3) 

The aim of this paper is to test Equation (3) for estimation of CECact. 

MATERIALS AND METHODS 

Thirty-nine soil samples with widely differing soil characteristics were col­
lected from the plough layer of agricultural fields in The Netherlands. The selected 
soils represent the major agricultural soils in The Netherlands. The fresh soil 
samples were pretreated according to ISO 11464 (14). 

The actual cation exchange capacity (CECpHact / =003) of the test soils was 
determined according to the unbuffered 0.01 M BaCl2 method (15). The potential 
CEC, CEC8 j / = 0 3 , was determined according the 0.1 MBaCl2 method buffered at 
pH 8.1 (16). The clay content of the test soils, M(l), was determined according to 
NEN 5753 (17), the organic C content, M(2), according to ISO 14235 (18), and 
pHact according to the 0.01 M CaCl2 procedure (19). Table 1 gives an overview of 
the soil characteristics. 

To estimate CECact according to Equation (3), 7?(l)pHact /=003
 anc* 

^(2)PHact /=o 03 °f t n e s o ^ should be known. This requires knowledge of the re­
lationship between R(l) and R(2) with pH at 7=0.03 M. However, this relation­
ship is soil specific and difficult to attain. Therefore, a general 7?(l)pH / = 0 0 3 and 
^(2)PH,/=O.O3 relationship was deduced in four steps. 

Table 1. Soil Characteristics of the 39 Samples from Agricultural Soils in 
The Netherlands 

Soil Characteristics 

pH-CaCl2 

Clay content (%) 
Organic carbon (%) 
CECac t(cmol(-)kg-
Potential CEC (cmol( 

) 
- )kg">) 

Minimum 

4.2 
2 
0.6 
2.1 
6.5 

Maximum 

7.5 
52 

8.3 
40.3 
44.6 

Average 

5.7 
15 
2.6 

13.8 
19.7 
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Step l 

Comparable to CECact in Equation (3), Equation (4) gives the mathematical 
description of the potential CEC (CEC8, / = 0 3 ) : 

C E C 8 U = 0 3 = M(l) X R(l)8XI=03 + M(2) X fl(2)8.u=a3 (4) 

In the Netherlands, 2:1 layer type minerals like illites and smectites are the pre­
dominant clay minerals in soils. The negative charge of the minerals originates 
from an isomorphic substitution in the mineral lattice, and is, therefore, not af­
fected by /. In contrast, the negative charge of organic C depends on /, but at pH 
values of about 8.0 the effect of lis negligible (11). Then, CEC8 j l=0 3 in Equation 
(4) can be replaced by CEC8 u = 0 0 3 as well as R(l)s.u=o.3 a n d (̂2)3.1,7=0.3 by 
7?(1)8 j>/=o.o3 a n ( i (̂2)8.i,7=o.o3> respectively. Subtraction of Equation (3) from the 
modified Equation (4) gives Equation (5). 

^k^-8.1, /=o.o3 ~~ ^-kCp//ac, 7=0 03 — ACEC 

= M(l) X D(l) + M(2) X D(2) (5) 

Equation (5) shows that the difference in CEC of a soil at pH 8.1 and pHact is a 
function of M(l) and M(2) and D(l) and D(2). The £>(1) equals the difference 
between /?(l)8.i,7=0.03 an^i ^(l)PHact,/=o.o3 an(* D(2) equals the difference between 
R(2)s, 7=003 and /?(2)pHact 7=0.03- Both are expressed in cmol(—) g _ 1 soil constit­
uent. Re-arranging Equation (5) gives Equation (6): 

ACEC M(2) 
= D(l) + —— X D(2) (6) 

M(l) v ' M(l) w 

It follows from Equation (6) that D(l) and D(2) of a soil equal the intercept and 
slope, respectively, of the linear relationship between M(2)/M(l) as the explana­
tory variable andACEC/M(l)as the response variable. In this study, Equation (6) 
and the experimental data of the 39 test soils were used to relate D(l) and Z)(2) to 
pHact. First of all, the 39 test soils were arranged in ascending pHact order. Then 
D(l) and D(2) were estimated as a moving estimate of six successive test soils 
using Equation (6) and linear regression analysis. Moreover, pHact was calculated 
as the average pH of the six test soils. In this way, 34 [pHact, £>(1)] and 34 [pHact, 
D(2)] data combinations were obtained. The choice of grouping six test soils was 
arbitrary. When soils were grouped in less than six successive test soils then the 
confidence intervals of the estimates of D(l) and D(2) were large. However, then 
pHact as an estimate of the average pH of the six soils was reliable. The opposite 
occurred when more than six test soils were grouped. 
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Step 2 

In Step 1, 34 [pHact, D(l)] and 34 [pHact, D(2)] data combinations were 
deduced. The relationship between pHact and D(x) was fitted using curve fitting 
techniques in the statistical computer program Genstat 5 (20). 

Step 3 

The R(x)pliact / = 0 0 3 equals the summation of R(x\A / = 0 03 and D(x)pHact ac­
cording to Equation (7): 

R(X)pHact,I=0.03 = ~D(X)pHact + ^(X)8.1,/=0.03 ( 7 ) 

In Equation (7), D(x)pHact equals D(x) at pHact which can be estimated with the 
relationship found in Step 2. Filling in Equation (7) in Equation (3) gives Equa­
tion (8). 

CECflCf = M(l) X [-D(l)pHact + tf(l)8.u=0.o3] 
+ M(2) X [~D(2)pHact + / ?(2)8 U = 0 0 3] (8) 

Re-arranging Equation (8) gives Equation (9). 

CECac, + M(l) X D(l)pHacl + M(2) X D(2)pHact 

M(l) 

= ^(l)8.i,/=o.03 + ^T jT x ^(2)8.i,/=o.o3 ( 9 ) 

From Equation (9) it follows that ^(1)8 i/=o.o3an<^ ̂ (2)8.i,/=o.o3 equal the intercept 
and slope, respectively, of the linear relationship between M(2)/M(l) as the ex­
planatory variable and left hand side of Equation (9) as the response variable. The 
experimental data of the 39 test soils were used to estimate #(l)8.i,/=o.o3 a n ^ 
R(2)8A / = 0 0 3 using linear regression analysis. 

The negative charge of organic C and clay at pH 8.1 was also estimated via 
multiple linear regression using M(l), M(2), and the potential CEC measured ac­
cording the buffered BaCl2 method (7=0.3). 

Step 4 

The R(x) H / = 0 03 relationships can be obtained by filling in i) the estimate 
R(x)8 ! / = 0 03 (Step 3) and ii) the relationship between D(x) and pHact (Step 2) in 
Equation (7). The R(x)pH / = 0 0 3 relationships obtained can be filled in in Equa­
tion (3). 
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The usefulness of Equation (3) for estimation for CECact was tested by com­
paring the measured and calculated CECact of the 39 test soils and an extra data 
set of 38 agricultural soils from The Netherlands. Statistical analyses were carried 
out using the computer program Genstat 5 (20). Differences between estimates 
were tested at P=0.05. 

RESULTS AND DISCUSSION 

Multiple linear regression analysis using M(l), M(2), and the CEC values 
obtained via the buffered BaCl2 method (CEC8_1>/=0_3), showed that R(\)s.i,i=o.3 
equaled 0.0578 cmol(-) g"1 clay and # ( 2 ) 8 1 / = 0 3 of organic C equaled 
0.3214 cmol(-) g_1 . The standard error s.e. of the estimates were 0.006 and 
0.057, respectively. The explained variance R2 of the multiple linear regression 
equation was 0.82. The ^(l)8.i,/=o.3 value found is normal for soils containing 
mixtures of illites and smectites (6,21). The i?(2)8A / = 0 3 is of the same order of 
magnitude as found by Addiscott (22) and Helling et al. (8). When it is assumed 
that organic C is 55 percent of organic matter, then the calculated charge of or­
ganic matter at pH 8.1 is 0.187 cmol(—) g_1 . 

Figures la and b give estimates and standard error of difference (sed) found 
for D(l) and D(2) in Step 1, respectively. The pHact ranged from 4.5 to 7.3. At 
pHact values smaller than 5.5 clay content of the test soils was low and sed of Z)(l) 
estimates were relatively large. When pHact was larger than 6.5 sed values were 
small because then most test soils were loam and clay soils having a considerable 
clay content. In the pH range from 5.5 to 6.5 sand, loam as well as clay soil were 
present, resulting in intermediate sed values. The estimated D(l) values did not 
differ significantly from zero (Fig. la). As a result, D(l) does not depend on pHact 

and ^(1)PH,/=O.O3 equals /?(l)8.i/=o.o3- The absence of an effect of pH on R(l) is 
often reported in literature (6). D(2) was most times significantly higher than zero 
(Fig. lb) which means that £>(2)pHact was significantly different from zero. Figure 
lb shows that the estimates of D{2) are relatively high at pH values between 4.5 
and 5.0 and between 6.0 and 6.5 indicating that £>(2)pHact is not linear related to 
pH. Table 2 gives the statistical results of curve fitting the relationship between 
D(2) and pHact (Step 2). 

In Step 3, the estimated value #(l)8.1;/=0.03 equals 0.0447 cmol(-) g - 1 

clay (s.e.d.=0.0382) and R(2)sl / = 0 0 3 equals 0.3845 cmol(-) g~l organic C 
(s.e.d=0.0159). The estimate i?(2)8 j / = 0 0 3 is not significantly different from 
^(2)8.i,/=o.3 a s estimated by multiple linear regression using the potential CEC 
values obtained via the buffered BaCl2 method. The estimate of ^(l)8.i,/=o.o3 
agrees very well with the charge of illitic clay minerals, namely 0.040 cmol(—) 
g _ 1 clay (21), but this estimate is not significantly different from zero and consid­
erably lower than ^ (1) 8 . I J /= 0 .3 as estimated by multiple linear regression using 
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Figure 1. Estimated D(l) and D(2) values according to Step 1 (see Materials and Meth­
ods). Error bars equal to the standard error of difference of the estimates. D(l) and D(2) 
incmol(—)g_1-

CEC values obtained via the buffered BaCl2 method. After a more precise analysis 
of the experimental data it turned out that one soil showed a leverage effect. When 
the statistical analysis was repeated without this soil, then /?(1)8} /=0o3 equals 
0.0624 cmol(-) g"1 clay (s.e.d.=0.027) and R(2\ , / = 0 0 3 equals 0.295'cmol(-) 
g - 1 organic C (s.e.d. = 0.0193). These results are in close agreement with and not 
significantly different from /?(l)8 .u=0 .3 and /?(2)8, / = 0 3 as found by multiple lin­
ear regression. 
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Table 2. Statistical Results of Curve Fitting the 
Relationship Between D(2) and pHact in Step 2 
[D(2)pHact = a+bx+cx2 + dx3 + ex4+fx6;x=pHact 

and/?2=0.80] 

Coefficient 

a 
b 
c 
d 
e 
f 

Estimate 

-1083.15 
909.5273 

-295.814 
45.23841 

-2.89521 
0.005491 

Standard Error 

0.0390 
160.4117 
52.28245 
8.027384 
0.5167 
0.000996 

According to Equation (7), ^ (2) p H a c t / = 0 03 equals the summation of 
R(2)gl I=o03 and £>(2)pHact as found via curve fitting (Table 2). Filling in 
^(2)PHact,/=o.o3in Equation (3) gives Equation (10). 

CECac, = [M(l) X 0.062] + [M(2) X (0.295 - D(2)pHact)] (10) 

Equation (10) is valid in the pH range from 4.5 to 7.3. Figure 2 gives the calculated 
relationship between pHact and the negative charge Q(2) of 10 g organic C kg - 1 

dry soil using Equation 10 when M(l) is zero. The Q{2) decreases in the pH range 
from 4.5 to 4.7, increases in the pH range from 4.7 to 5.5, decreases in the pH 
range from 5.5 to 6.3, and then increases again. This relationship differs from the 
normal positive (linear or curved) relationship between pH and Q{2) often found 
for organic matter or organic C originating from a specific soil (8,23). In our study, 
the pH-<2(2) relationship is deduced from and comprises the charge characteris­
tics of organic C in six different soils with a comparable pHact and therefore, the 
pH-<2(2) relationship may differ from pH-g(2) relationships found for one type 
of organic C. In Figure 2 three zones can be distinguished. In the pH range from 
4.7 to 5.5, (2(2) increases when pH increases. In this range the test soils were most 
times acid sandy soils. In the pH range from pH 5.5 to 6.3 <2(2) decreases when 
pH increases. In this range the test soils were sandy soils, loamy soils, and clay 
soils. In the pH range from pH 6.3 to pH 7.3 most test soils were clay soils and 
<2(2) increases when pH increases. When it is assumed that the origin of organic 
C in the tested agricultural soils is the same, namely residues from crops and 
manures, then the course of Q(2) may be explained by the effect of the interaction 
between organic matter and the surface of clay minerals on JR(2) (24). In the pH 
range lower than 5.5 the effect of this interaction on R(2) will be small because 
clay content is very low. In clay soils, in the pH range higher than 6.3, the inter­
action may seriously affect R(2). Organic C in the double layer of clay minerals 
will have different ionization characteristics because / and pH at the surface of 

125 



-1 

3 
2.5 

2 
1.5 

1 
0.5 

0 
-0.5 

-1 

Q(2), cmol(-) 10 g organic C 

• • • • • 
• • 

• • 
• • • • • 

— i — ^ ^ — i 1 1 1 i i 

4.5 5 5.5 6 6.5 7 7.5 

pHact 

Figure 2. Relationship between pHact and Q(2). 

clay minerals differ from that in solution. It is well known that pH at the clay 
surface can be 1 to 2 pH units lower than in the solution (6). If it is true that 
interaction plays a role, then #(2) of organic C in a sandy soil with a pH A will be 
more or less equal to R(2) of organic C in a clay soil having a pH between A 4-1 
and A+2. It follows from Figure 2 that this relationship exist for sandy soils hav­
ing a pH between pH 5 and pH 5.5 and clay soils between pH 6.3 and 6.8. In the 
pH range of 5.5 to 6.3, the effect of interaction of organic C and clay becomes 
more dominant when pH increases because the clay content of the soils increases. 

Figure 3 gives the relationship between the measured CECact of the 39 test 
soils on the X-axis and the calculated CECact, CECact-calc, on the K-axis. More­
over, the 1:1 relationship is given. CECact-calc was calculated using Equation (10) 
for the test soils in the pH range of 4.5 to 7.3. The relationship (7?2=0.88) could 
be described as: CECact-calc= 1.50 (s.e.d.=2.96) + 0.823 (s.e.d=0.059)* CECact. 
The intercept was not significantly different from zero but the slope was signifi­
cantly different from 1. 

Figure 4 gives the relationship between the measured CECact and calculated 
CECact-calc for 38 different agricultural soils in the pH range of 4.5 to 7.3 using 
Equation (10). Since the organic matter content of the 38 soils was known and 
not organic C, it was assumed that organic C is 55% organic matter. Then, the 
statistical analysis showed that CECact-calc=-1.59 (s.e.d. = 3.43) + 0.99 
(s.e.d.=0.06)XCECact (fl

2=0.89). The intercept was not significantly different 
from zero and the slope was not significantly different from 1. It is concluded that 
the tested procedure can be used for estimation of CECact. Moreover, Equation (3) 
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Figure 3. Relationship between measured CECact and calculated CECact, CECact-calc. 
Results from 39 test soils. 
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Figure 4. Relationship between measured CECact and calculated CEC^,, CECact-calc ac­
cording to Equation (10). Results from 38 agricultural soils in The Netherlands. 
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will simplify the conversion of conventional soil testing programs for Mg into a 
0.01 M CaCl2 soil testing program. 

CONCLUSIONS 

This study showed that the actual CEC, CECact, of agricultural soils in 
The Netherlands can be estimated according CECact: [M(1)X0.0624] + 
[M(2)X(0.295-D(2)pHact)]. 
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ABSTRACT 

The soil-plant-nutrient relationships in a four-quadrant scheme can be used for the set 

up of more fundamental fertilization schemes. The absence of a soil testing method 

determining the pool of plant available nutrient hinders the use of this scheme. 

Unbuffered 0.01 M BaCl2 is an effective extractant for the determination of 

exchangeable cations like K, Mg, Ca, etc. When K extracted by 0.01 M BaCl2 would 

equal the pool of plant available K in a soil, this would promote the use of the four-

quadrant scheme and thus the design of a new K fertilization scheme. Goal of this 

study was to investigate the relationship between BaCl2 extractable soil K (K-BaCl2) 

and the pool of plant available soil K. 

The double pot technique (DPT) and the test crops maize and tomato were used to 

determine the pool of plant available K of eight agricultural soils differing widely in K 

soil status and soil characteristics. Dry matter production of tomato and maize was 

highly correlated to K-BaCl2 (R
2 >0.95). K-BaCl2 equaled K uptake of maize and 

tomato at clay contents < 20 % but K uptake exceeded K-BaCl2 at clay contents > 

20%. We argue that clay minerals have released non-exchangeable K in these soils. It 

is therefore concluded that K-BaCl2 is available for plant uptake and can be used as the 

lower boundary of the magnitude of the pool of plant available K. K-BaCl2 equals the 

pool of plant available K in soils with not more than 20 % clay. For soils higher in clay 

our data suggest a release of 5 mg K per % clay, on average. 
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INTRODUCTION 

The perspectives of 0.01 M CaCl2 as a multi-nutrient soil extractant are challenging 

(Houba et al., 1986). However, the interpretation of CaCl2 extraction data and the set 

up of fertilization schemes needs further study. Baier and Baierova (1998) have shown 

that 0.01 M CaCl2 extractable K (K-CaCl2) is related to K extracted by conventional K 

extractants. Therefore, it has been proposed to use these relationships to convert 

conventional fertilization schemes for K into a CaCl2 fertilization scheme for K. It is 

widely known and well documented that plant growth and K uptake are related to the 

amount of soil exchangeable K. (Bear et al., 1945; Bray, 1945; Pearson, 1952). 

Therefore, soil exchangeable K could be a basis for the set up of K fertilization 

schemes. CaCl2 extractable K is generally lower than exchangeable K determined via 

the unbuffered 0.01 M BaCl2 method (ISO 11260, 1994). The four-quadrant scheme 

(De Willigen and Van Noordwijk, 1987) comprises relevant soil-plant-nutrient 

relationships and can be used for the set up of more fundamental (and dynamic) 

fertilization schemes. In the four-quadrant scheme, the pool of plant available nutrient 

is an important soil nutrient availability index. At this moment no soil testing method 

is available for the determination of this pool. This hinders the use of this scheme for 

the set up of K fertilization schemes. The unbuffered 0.01 M BaCl2 extraction 

procedure (ISO 11260, 1994) is a common soil extraction method for the 

determination of exchangeable cations. In the BaCl2 procedure, soils are extracted 

three times by a 0.1 M BaCl2 solution to replace exchangeable cations. Ba ions have a 

strong replacing power, are not preferentially adsorbed and do not cause collapse of 

phyllosilicates as do both K and NH4 (Wada and Harada, 1969). Studies by Horn et al. 

(1982) and Gillman et al. (1983) have shown that extraction with Ba yields a 

comparable content of exchangeable bases as do procedures using NH4 salts. 

Generally, K extracted by BaCl2 is equal to or somewhat lower than K extracted by 

NH4OAC (pH=7) (Gillman, 1979; Amacher et al., 1990; Simard and Zizka, 1994). In a 

previous study, a method has been proposed to estimate the amount of BaCl2 

extractable K (K-BaCl2) from CaCl2 soil extraction data (Van Erp et al., 2002). When 

it can be shown that K-BaCl2 is plant available and equals the pool of plant available 
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K, then the combined use of the four-quadrant scheme and the CaCl2 procedure may 

promote the set up of fundamental (and dynamic) K fertilization schemes. 

Soil exhaustion via plant uptake is a direct method for the determination of the pool of 

plant available nutrients. Grezbisz and Oertli (1992, 1993) used a modified Neubauer 

test in which seedlings took up nutrients from a limited soil volume during a relatively 

short period of time (15-20 days). This method has the disadvantage that it is difficult 

to maintain an adequate status for the essential nutrients other than the nutrient under 

study. The double pot technique (Janssen, 1974; 1990) overcomes this problem. In the 

double pot technique (DPT), growing conditions and water and nutrient availability are 

optimal except for the nutrient under study. Uptake of this nutrient takes place from a 

limited volume of test soil. DPT can thus be regarded as a practical method of soil 

testing enabling the identification of nutrients in short supply without the use of 

chemical analysis. In DPT, the test soil will be very intensively rooted and soil 

moisture content is kept optimal. Therefore, plant nutrient uptake in DPT will equal or 

approach the pool of plant available soil nutrient. However, DPT is time consuming 

and labour intensive. Goal of this study was to study the relationship between 0.01 M 

BaCl2 extractable soil K (K-BaCl2) and the pool of plant available K using DPT. 

MATERIALS AND METHODS 

The experiment has been carried out with eight test soils (Table 1). These soils include 

all combinations of a low, intermediate and high contents of K-BaCl2 and 0.01 M 

CaCl2 extractable K (K-CaCl2). All test soils, except soil 7, have been chosen from a 

collection of 39 soils originating from the plough layer of agricultural soils in The 

Netherlands (Van Erp et al., 2001). K-BaCl2 has been determined according to the 

unbuffered 0.01 M BaCl2 extraction method (ISO 11260, 1994) and K-CaCl2 

according to the 0.01 M CaCl2 method (Houba et al., 2000). 

DPT was used to relate K-BaCl2 of the test soils with K uptake and plant growth. The 

experimental set up of DPT consisted of a small upper pot (200 cm3) standing on a 

larger lower pot (700 cm3). The upper pot has a gauze bottom through which roots can 

grow. The upper pot was filled with moist (60 % of water holding capacity) test soil 

and then weighed. The lower pot was filled with nutrient solution containing all 
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TABLE 1. 

Soil 
number 

1 
2 
3 
4 
5 
6 
7 
8 

Characteristics of the 

Soil type 

Sand 
Loam 
Clay 
Clay 
Sand 
Clay 
Clay 
Loam 

Organic 
C,% 

3.4 
1.6 
3 
4.1 
1 
4.9 

14 
3.1 

eight test soils 

Clay, % 
<2 um 

2 
17 
14 
28 
6 

21 
28 
3 

pH-CaCl2 

5.0 
6.3 
5.0 
6.4 
6.0 
4.6 
5.5 
5.3 

CEC, 
cmol(-) 
kg1 

7.3 
11.7 
9.2 

30.4 
3.6 

13.1 
33.4 
6.6 

K-CaCl2, 
mgkg"1* 

32 
28 

127 
139 
123 
207 
215 
212 

K-BaCl2, 
mgkg'1** 

47 
82 

238 
410 
176 
378 
495 
277 

* = K extractable with 0.01 M CaCl2; ** K extractable with 0.1 M BaCl2. 

essential nutrients except K (3mM Ca(N03)2, 2 mM NH4H2PO4, 0.75 mM MgS04, 0.5 

mM CaCl2, 1 mM NH4NO3, 0.5 mM MgCl2, 1 ml I"1 of Hoagland's micro nutrient 

solution and 1 ml l"1 of Hoagland's Fe-EDTA solution). The test plants maize (Zea 

mays L.) and tomato (Solanum lycopersicum L.) were sown in the upper pot. When 

roots penetrated the gauze bottom they came in the nutrient solution of the lower pot. 

Test plants could take up K only from the test soil in the upper pot. The control 

treatment consisted of an upper pot filled with test soil 2 and a lower pot filled with the 

nutrient solution in which CaCl2, NH4NO3 and MgCl2 were replaced by 2mM KC1 and 

2 mM KNO3. The total number of 'double pots' was 72 [(8 soil treatments + 1 control 

treatment) * 4 replicates * 2 test crops]. After filling the upper pots with moist soil, 3-4 

seeds of the test crop were sown in each pot. The upper pots were then water sprayed 

and covered with plastic to ensure optimal germination conditions and placed upon the 

lower pot. The double pots were placed in a greenhouse on two tables, each containing 

4 rows. Each row consisted of one test crop and one replicate of each treatment; i.e. 9 

pots per row. Day/night temperature in the greenhouse was approx. 20/18°C. After 

germination, the number of seedlings was reduced to one plant per pot and 

illumination was provided (16 h day'1; 84 J mV1). To maintain soil moisture content, 

the upper pots were weighed daily and water was added when necessary. To ensure 

comparable growing conditions for all pots both the rows and the position of the pots 

within the row were rotated daily. The solution in the lower pot was refreshed every 

three days. 
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Maize and tomato were harvested after 50 and 60 days, respectively. By that time, 

most treatments showed a very low growth rate. Fresh weight was determined for the 

shoots, and for the roots in the lower pot. The roots from the upper pot were washed 

with demineralised water in three replicates. The roots were dried in paper tissues and 

then fresh weight was determined. The soil of the upper pot of the fourth replicate was 

air-dried and used for determination of K-BaCl2 after removing the air-dry root 

residues. The air-dry root residues were collected for determination of root dry matter 

production. Dry matter of all plant samples was determined after drying for two days 

at 70°C. Subsequently, the root and shoot material from one pot was mixed, ground 

and analyzed for K. The results were evaluated using analysis of variance and linear 

regression. Differences between treatments were tested according LSD test and 

Tukey's test at P=0.05 (Genstat 5 Committee, 1987). 

RESULTS AND DISCUSSION 

Total DM production of both tomato and maize grown on the control treatment with 

soil 2 was significantly higher than DM production of plants grown on soil 2 (Figure 

1). This means that the presence of K in the lower pot promoted growth and DM 

production of the test crops compared to soil 2 were K was omitted in the lower pot. 

Evidently, the K status of soil 2 is too low for optimal DM production. In the 

beginning of the experiment, plant growth rate in the control treatment was low 

compared to e.g. soils 4 and 7 that both have a high K soil status. As soon as the roots 

in the control treatment penetrated the gauze bottom and came in contact with the 

nutrient solution in the lower pot, growth rate of the control treatment was comparable 

to that on soils 4 and 7. This means that the 'low' K soil status of soil 2 in the control 

treatment was responsible for the low growth rate just after germination. 
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Table 2 presents the dry matter (DM) production of i) the shoots, ii) the roots in the 

upper pot, iii) the roots in the lower pot, iv) the roots in upper plus lower pot, and v) of 

the whole plant. Results of fresh yield were comparable to those of dry matter (not 

shown). 
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(R2 = 0.98) 

TOMATO 

(IT = 0.95) 

100 

FIGURE 1. Relationship between BaCl2 extractable K (K-BaCl2) of the test soils and 

total dry matter production of tomato and maize; •= maize control treatment, •= 

tomato control treatment. Numbers in the figure indicate soil number. 

Figure 1 shows the relationship between K-BaCl2 and total DM production. The soil 

with the highest K-BaCl2 content (soils 4, 6, 7) showed the highest DM production and 

the soil with the lowest K-BaCl2 content (soils 1, 2) the lowest DM production. DM 

production of maize grown on soils 4, 6 and 7 was not significantly different from the 

control treatment. These three soils have a high K-BaCl2 content suggesting that K was 

not limiting DM production in these soils. K-CaCl2 showed a moderate relationship 

with total DM production of maize and tomato (results not shown). There was a good 

relationship (R2> 0.95) between K-BaCl2 and DM production (Figure 1). Since all 

other growth factors were optimal in DPT, this means that K-BaCl2 has determined the 

level of DM production of the test crops. 
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FIGURE 2. Relationship between K uptake and dry matter production of whole maize 

and tomato plants 

The relationship between total K uptake and total DM production of tomato and maize 

is given in Figure 2. DM production of both maize and tomato increased 

proportionally with K uptake from 0 to about 50-60 mg K per pot and leveled off at 

higher rates. In the linear part of this relationship, K content of the whole plant was 

0.49% for maize and 0.25% for tomato. Under these conditions, these figures may thus 

be considered as the critical concentrations for the respective species. The K content of 

the control plants was 1.66% for maize and 2.84 % for tomato. 

The relationship between soil K-BaCl2 content and total K uptake of the plants is 

presented in Figure 3. An almost 1:1 relationship was found between K-BaCl2 and K 

uptake for five test soils suggesting that K-BaCl2 equals the pool of plant available K 

in these soils. K-BaCl2 content of all five soils was smaller than 60 mg pot "' (i.e. 300 

mg kg_1 soil). 
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FIGURE 3. Relationship between BaCl2 extractable K (K-BaCl2) and K uptake of 

whole tomato and maize plants. 

K uptake exceeded K-BaCl2 in three clay soils with high K-BaCl2 values. In these soils 

K-BaCl2 does not equal the pool of plant available K. It is possible that in these clay 

soils 0.01 M BaCl2 has underestimated exchangeable K. content. In literature it is often 

found that e.g. NH4OAc (pH=7) extractable soil K is somewhat higher than 0.1 M 

BaCl2 extractable soil K (Gillman, 1979; Amacher et al., 1990; Simard and Zizka, 

1994). The difference in extractable K would result from the chemical characteristics 

of NH4 which are comparable to K. When a NFLtOAc solution is added to a clay soil, 

NH4 may replace K from specific binding sites at the clay minerals. Ba added via 0.1 

M BaCl2 cannot replace K. from such sites. However, differences in K extracted 

between NH4OAc (pH=7) and 0.1 M BaCl2 are generally much smaller than the 

difference we found between K plant uptake and K-BaCl2 in this DPT experiment. It is 

postulated here that in the DPT experiment plant roots have taken up non-

exchangeable soil K from illitic clay minerals (Mengel and Uhlenbecker, 1993) which 

are common in agricultural soils in The Netherlands. These clay minerals may have 

high affinity sites for K in the wedge shaped voids of their mineral lattice (Mc Lean 

and Watson, 1985). When the concentration of K in the soil solution decreases during 

crop growth, the bonding energy of K to the high affinity sites is overcome and K. will 
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desorb (Mc Lean and Watson, 1985). In DPT, the rooting density is very high and 

conditions are optimal for plant growth. Since K uptake on the three clay soils exceeds 

K-BaCl2 content, it is likely that the soil solution has been K depleted followed by a 

release of non-exchangeable K from the clay minerals. 

The K-release from clay minerals can be estimated from a balance-sheet approach. In 

this case, K-release was calculated as the summation of K-BaCl2 of the soils at harvest 

and total K plant uptake minus the initial K-BaCU content of the soils. Figure 4 clearly 

show that the calculated K-release was negligible in the range from 0 to about 20 % 

clay. K release increased considerably when clay content increased from 20% to 30%. 

The available data suggests that in the pots about 5 mg K was released per % clay, on 

average. 
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FIGURE 4. Relationship between clay content and calculated K release, per pot. 

It is concluded that 0.01 M BaC^ extractable K is strongly correlated to dry matter 

production of maize and tomato. On soils containing less than 20 % clay, K-BaC^ 

equals the total K uptake of maize and tomato. In these soils K-BaC^ is an indicator of 

the pool of plant available K. In soils with more than 20 % clay, we assume that non-
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exchangeable K in clay minerals becomes plant available. For these soils K-BaCk is 

the lower boundary of the pool of plant available K in soil. 

The use of K-BaCb in the four-quadrant scheme as an indicator of the pool of plant 

available K seems adequate on soils containing less than 20 % clay. Since 

determination of K-BaCl2 requires an extra analytical procedure in soil testing, 

estimation of the magnitude of K-BaCl2 using the multi-nutrient CaCl2 procedure (Van 

Erp et al., 2002) seems promising. For soils containing more than 20 % clay detailed 

research into the working mechanisms of unbuffered BaCl2 extraction will be 

necessary to determine its applicability for the determination of the pool of plant 

available K. 
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ABSTRACT 

After the 0.01 M CaCk soil extraction procedure considerable amounts of exchangeable K 

and Mg are retained at the soil exchange sites. This may underestimate the soil supply of K 

and Mg. In this paper a method has been derived to calculate the amount of Mg and K 

retained at the exchange sites after extraction. Aim of this study was i) to determine 

Kcâ Mg, Kcâ K and K-MĝK, the selectivity coefficients of the Ca-Mg, Ca-K and Mg-K 

exchange reactions during the 0.01 M CaCh procedure, and ii) to identify soil 

characteristics and factors contributing to the variation in these selectivity coefficients. 

Twenty-eight agricultural soils from The Netherlands were chosen with Ca, Mg and K as 

dominant exchangeable cations. Both water extractable and exchangeable Ca, Mg and K 

were determined as well as general soil characteristics. Kcâ Mg ranged from 0.70 to 1.26 

(av. 0.87) and decreased when % organic C increased. KC3^K ranged from 3.35 to 17.02 

(av. 8.35) and was correlated with the ratio of Ca and K concentration in the filtrate after 

extraction, the fraction of the total negative charge originating from clay, and with clay 

content. K-MĝK ranged from 4.38 to 17.39 (av. 9.48) and was positively correlated with the 

fraction of the total negative charge originating from clay. K-MĝK and Kcâ K were highly 

correlated. 

The selectivity coefficients were used to calculate the amount of soil exchangeable Ca, Mg 

of K and their relative saturation of the exchange sites after CaCl2 extraction. There was a 

good agreement between measured and calculated saturation of the soil exchange sites with 

K and Mg for most soils. We conclude that Kc^Mg, Kcâ K and KMĝK selectivity 
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coefficients and the proposed method for calculation of residual cations are applicable for 

neutral, non-sodic soils. 

INTRODUCTION 

The use of 0.01 M CaCk as a multi-nutrient soil extractant has been proposed by Houba et 

al. (1986). Several studies have shown that ions extracted with CaCb are well related to 

those extracted by conventional procedures (Baier and Baierova, 1998; Fotyma et al., 1998; 

Loch et al., 1998). It has been proposed to use these relationships to convert fertilizer 

recommendation schemes based on conventional procedures into CaCk fertilizer 

recommendations schemes (Houba et al., 1986; Fotyma et al., 1998; Van Erp et al., 2001b). 

The amount of CaCb extractable nutrient element can be related to soil nutrient supply 

under field conditions, because of comparable pH and ionic strength. 
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FIGURE 1. CaCb extractable K and the amount of exchangeable K remaining at the soil 

exchange sites after the 0.01 M CaCb extraction. Results from 39 agricultural soils. 

Ion concentrations in the filtrate after the CaCh extraction are the resultant of chemical 

processes that redistribute nutrient elements over the liquid and solid phase. Figure 1 shows 

that a considerable amount of K remains at the exchange sites of the solid phase after 

extraction. We found that on clay soils 20-50% of exchangeable K is extracted and 50-80 
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% on sand soils (Van Erp et al., 1998). When the CaCh procedure is repeated, more of this 

exchangeable K can be released (Van Erp et al., 1998). 

It is well documented that plant growth and K and Mg uptake are related to 

exchangeable concentrations (Bear et al., 1945; Bray, 1945; Pearson, 1952; Rice and 

Kamprath, 1968). The 0.01 M CaCb procedure does not extract all exchangeable Mg and 

K and may therefore underestimate the actual supply of Mg and K. It is postulated here that 

the agricultural interpretation of the amount of CaCb extractable K and Mg will improve, 

when the amount of exchangeable K and Mg retained at the exchange sites can be taken 

into account. 

The amount of a cation that retains at the exchange sites equals the multiplication of the 

relative charge fractions of that cation at the exchange sites and the total charge of these 

sites, divided by the charge of the cation. The total charge of the sites equal the actual CEC 

and the charge of the cation equals its valency. At equilibrium, the relative cationic 

composition can be calculated from the cationic composition of the liquid phase and the 

selectivity coefficients of the prevailing cation exchange reactions. The concentration of 

cations in the liquid phase after CaCh extraction can be measured. However, there is no 

insight into the selectivity coefficients of exchange reactions during the CaCb extraction. 

Aim of this study is to determine Kcâ Mg, Kcâ K and K-Mĝ K, the selectivity coefficients of 

the Ca-Mg, Ca-K. and Mg-K exchange reactions during the 0.01 M CaCb procedure. 

EXCHANGE CHEMISTRY 

In the CaCb procedure, pH and nutrient element concentration in the liquid phase of the 

soil suspension are in (adsorption) equilibrium state after a 2 h extraction period (Van Erp 

et al., 1998). Then, the distribution of cations over the liquid phase and the soil exchange 

sites obey the Gaines & Thomas approach for cation exchange reactions (Gaines and 

Thomas, 1953). The Gaines &Thomas approach (1953) is thermodynamically sound and is 

applicable to multi-cationic systems (Bolt, 1979). Equation 1 gives the mathematical 

description of a binair cation exchange reaction according to Gaines & Thomas. 
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_(EB)1/b*(A)1/a 

K x a A - > X b B = (E^ i r (1) 

In Equation 1, EA and EB are the dimensionless charge fractions of cation A and B, 

respectively, at the soil exchange sites X. (A) and (B) represent the activity of A and B in 

the liquid phase of the soil suspension in mol l"1. KxaÂ xbB is the selectivity coefficient for 

the exchange reaction in which A at X is replaced for B. The valence of A and B is 

represented by a and b, respectively. The selectivity coefficient is an indicator of the 

preference of X for cation A as compared to cation B. In Equation 1, (A) can be substituted 

by: 

fA*— (2) 
VOL v ; 

in which f\ is the dimensionless activity coefficient of A, VOL the total volume of the 

liquid phase in 1 kg" soil and LA the total amount of A in the liquid phase in mol kg" soil. 

LA equals the multiplication of VOL and [A]. [A] is the concentration of A in mol 1". 

Further, EA in Equation 1 can be substituted by: 

(TA-LA)*a 
~ / (3) 

in which Z represents the total negative charge of X in mol(-) kg"1 soil, and TA is the total 

amount of cation A at X and in the liquid phase, in mol kg" soil. Then, TA-LA represents the 

amount of cation A at X in mol kg" soil. Equations 2 and 3 can also be worked out for 

cation B. Substitution of (2) and (3) in Equation 1 gives Equation 4. 
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A'ALAJ ay/a*/TB L B y* 

Z VOL 

When KxaA ->xbB, fB, fA, a, b, Z, VOL, LA and LB are known for a binary system, then TA 

and TB can be deduced. For that, Equation 4 can be mathematically solved, taking into 

account that EA + EB = 1 (see Equation 5). 

<™i + G ^ = E A + E B = , (5) 

The Gaines & Thomas approach also applies to ternary systems in which the cations A, B 

and C exchange at X (Bolt, 1979). Then, Equation 4 describes the exchange reaction in 

which A at X is replaced by B. The selectivity coefficient for the exchange reaction in 

which A at X is replaced by C, KxaA x̂cc, can be derived comparable to KxaÂ xbB using 

equations 1 to 3. TA, TB and Tc can then be deduced when KxaA x̂bB, KxaA x̂cC, f\, fB, fc a, 

b, c, Z, VOL, LA, LB and Lc are known. For that, the equations of KXM ̂ xbB and KxaA ̂  xcc 

(see Equation 4) can be mathematically solved, taking into account that EA+ EB+EC = 1. 

In non-sodic, non-acidic agricultural soils Ca, Mg and K are the major exchangeable 

cations. When these soils are extracted according to the CaCk procedure and when 

adsorption equilibrium is attained after 2 h, then the soil suspension can be treated as a 

ternary system which obeys the Gaines & Thomas approach. Equation 1-5 should apply to 

this system and the amount of Ca, Mg and K at X and in the liquid phase, TA, TB and Tc, 

respectively, can be calculated as described above. The necessary variables a, b, c, VOL, 

LA, LB and Lc are known or can be calculated from the CaCk extraction results. Z, which 

equals the actual CEC of the soil, can be estimated when pH-CaCh., organic C and clay 

content are known (Van Erp et al., 2001a). The activity coefficients fA, fB, fc are unknown. 

However, fA, fB, fc are constant since the ionic strength (I) of the soil suspension during 

CaCh extraction is largely determined by the ionic strength of the 0.01 M CaCh solution 

(7=0.03). Because of their constancy, f\, fB, fc can easily be incorporated into KxaA ̂  xbB 
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and KxaA _» xcc. In Equation 6 this is worked out for KxaA ̂  xbB 

r(TB-LB)*b.1 / b + , LA 

(fB)1/b < " > * ( T T £ - ) 
l/a 

K - v * v~a/ = ^ VOL , , x 
(fA)1/a /(TA-LA)*ay/a»^ L B y/ 

Z VOL 

The magnitude of KA^B and KA_»C is unknown and not measured before. At this moment, 

this hinders the applicability of the derived method for estimating TA, TB and Tc in ternary 

soil systems during the CaCb procedure. It is therefore not possible to calculate the amount 

of A, B and C remaining at X, TA-LA, TB-LB and Tc-Lc, respectively, in which we are 

highly interested. 

A study has been carried out to: 

• deduce the Kca-»Mg, Kca-»K and KMĝ K selectivity coefficients of the Ca-Mg, Ca-

K and Mg-K exchange reactions during the 0.01 M CaCh procedure and, 

• to identify soil characteristics and factors contributing to the variation in these 

selectivity coefficients. 

MATERIALS AND METHODS 

Thirty-nine soil samples with widely differing soil characteristics were collected from the 

plough layer of agricultural fields in The Netherlands. After sampling, the soil samples have 

been pretreated according to ISO 11464 (1994). Subsequently, the soils have been 

extracted according to the unbuffered 0.01 M BaCb method (ISO 11260, 1994) to 

determine the actual CEC and the exchangeable Ca, Mg, K, Al, NH4 and Na 

concentrations. Extractable Na and NH4 were negligible in all soils. Soils were discarded in 

the further study when the amount of exchangeable Al was more than 1 % of the actual 

CEC. This was done to ensure that only ternary soil systems with Ca, Mg and K were 

involved. After this selection 28 soils remained. Organic C content (ISO 14235,1998), clay 

content (NEN 5753, 1994), pH KC1 (ISO 10390, 1994) and pH CaCl2 (Houba et al. 2000) 

were determined (Table 1). 
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TABLE 1. Relevant soil characteristics of the 28 test soils. 

Characteristic 
Organic C. % 
Clav.% 
pH-CaCb 
pH-KCl 
Actual CEC. cmolM kg"1 (l) 
% Organic C/%clav 
Ca.cmolWke'a) 
Ma.cmol(+)kzA (2) 
JCcmolMkg"1^ 

Average 
2.91 

19 
6.22 
6.06 

18.8 
0.268 

17.35 
1.85 
0.74 

Minimum 
0.6 
3 
4.32 
4.13 
2.66 
0.037 
2.54 
0.17 
0.16 

Maximum 
8.3 

52 
7.68 
7.46 

50.42 
1.033 

48.7 
4.07 
2.20 

(1) Calculated, see materials and methods. (2) Determined via the unbuffered 0.01 M BaCh 

method (ISO 11260,1994) 

Equation 5 has been used to calculate Kcâ Mg, Kcâ K and KM^K. The variables TMgand TK 

were considered to be represented by Mg and K extracted by unbuffered BaCh (ISO 

11260, 1994). Tea equaled the sum of Ca extracted by unbuffered BaCb and Ca added to 

the soil via the 0.01 M CaCb extractant. LQ,, LMg and Lk were calculated from VOL of the 

0.01 M CaCb procedure and [Ca], [Mg] and [K] in the filtrate after the CaCb extraction. 

Because unbuffered BaCb (ISO 11260, 1994) turned out to underestimate the actual CEC 

(Van Erp et al., 2002), Z was calculated in this study as the total charge of 0.1 M BaCb 

extractable Ca, Mg and K plus the charge of Ca added via 0.01 M CaCk minus the charge 

of 0.01 M CaCb extractable Ca, Mg and K. It was assumed that no cationic complexes 

were present or adsorbed. 

Via regression analysis the magnitude of the calculated selectivity coefficients has been 

related to soil characteristics (pH-KCl, pH-CaCb, % organic C, % clay), the ratio % organic 

C/% clay (Curtin et al. 1998), Fclay, [Caf7[K], [CafVfMgf and [Mg]y7[K]. F ^ is the 

fraction of Z originating from clay particles. The charge of clay particles is thereby set at 

0.624 mol(-) kg"1 (Van Erp et al., 2001a). [CafVpC], [Caf7[Mg]'/2, [Mg],/2/[K] are indicators 

of the cationic composition of the filtrate and calculated using [Ca], [Mg] and [K]. 

Statistical analyses were carried out using the statistical package Genstat 5 (Genstat 5 

Committee, 1987). 
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RESULTS AND DISCUSSION 

Table 1 gives a summary of the characteristics of the 28 test soils. 

In one sand soil, Fcjay exceeded 1 which means that the estimated total negative charge of 

the clay particles exceeded Z. A possible explanation for this is that the assumed charge of 

clay particles, i.e. 0.624 mol(-) kg", is too high for the type of clay particles present in this 

sandy soil. Therefore, the sand soil was omitted from the study and 27 test soils resulted. 

Kca-̂ Mg 

Table 2 gives an overview of the selectivity coefficients. Kcâ Mg of the exchange reaction 

in which Ca at X is replaced for Mg ranged from 0.70 to 1.26 with an average value of 0.87 

and a standard error of 0.02. Kcâ Mg values in this range are often found for soils as well as 

for specific soil constituents (e.g. Bruggenwert and Kamphorst, 1979). 

TABLE 2. Kcâ Mg, Kcâ K and Kjuĝ K selectivity coefficients 

Parameter 

Average 
Standard deviation 
Standard error 
Median 
Minimum value 
Maximum value 

Selectivity coefficients 
Kca^Mg 

0.87 
0.11 
0.02 
0.85 
0.70 
1.26 

Kca^K 

8.35 
3.49 
0.67 
7.33 
3.35 

17.02 

KMg^K 

9.48 
3.41 
0.66 
8.91 
4.38 

17.38 

Ca and Mg are bivalent and have a comparable hydrated ion radius. When the exchange 

sites X show no preference for Ca or Mg, i.e. standard free enthalpy (AG ex) equals 0, then 

Kcâ Mg should be 1 (Bolt, 1979). In 26 soils Kcâ Mg was smaller than 1 which means that 

exchange sites in natural soils generally prefer Ca to Mg. One soil had a selectivity 

coefficient of 1.26 indicating a preference for Mg to Ca. An overestimation of Kcâ Mg 

cannot be excluded for this soil since the absolute values of Z and LMg are (very) low and 

therefore an analytical error cannot be excluded. 

When Fciay ranges from 0.2 to 0.3, i.e. the clay exchange sites have a minor contribution to 
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Z, then Kca-»Mg ranges from 0.7 to 0.8. Kcâ Mg approaches 1 when Fciay ranges from 0.9 to 

1. A lack of preference at these high Fciay values suggests that Ca and Mg are 

electrostatically bound at the clay surfaces. When Fciay is low, exchange sites on organic 

matter are the main contributors to Z. Then, small Kcâ Mg values suggest that exchange 

sites on organic matter prefer Ca to Mg. In literature, it is often found that organic matter 

prefers Ca to Mg because of the formation of specific organic complexes (Salmon, 1964; 

Hunsaker and Pratt, 1971; Murray and Linder, 1984; Baes and Bloom, 1988). Figure 2 

confirms that organic matter, represented by % organic C, is related to the magnitude of 

Kca-»Mg Kca-»Mg decreases from 1.25 to 0.9 in the range from 0% to 2% organic C. In the 

range from 2% to 8% organic C Kcâ Mg decreases gradually from 0.9 to 0.8. 

1.6 

1.2 

I 0.8 

0.4 

y = 1.0175x •0.1724 

R* = 0.54 

T -

2 4 6 

organic C, % 

10 

FIGURE 2. The relationship between % organic C and the calculated Kcâ Mg of 27 test 

soils 

According to literature, there is no clear effect of pH on Ca-Mg selectivity. No effect of pH 

on Ca-Mg selectivity was found for smectite dominated soils (Curtin et al., 1998), pure 

smectite (Clark, 1966) and montmorillonite soils in the pH-range 6-7 (Fletcher et al., 1984 

a,b). Edmeades and Judd (1980) found that liming of New Zealand soils generally 

increased selectivity for Ca relative to Mg. Our experimental data showed no effect of pH-
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CaCl2 or pH-KCl on Kcâ Mg. Curtin et al., (1998) found that the ratio %organic 

matter/%clay was the best single indicator of Ca-Mg selectivity. In our study the ratio % 

organic C/% clay was not related to Kcâ Mg. 

Kca^K 

Kcâ K of the exchange reaction in which Ca at X is replaced for K ranged from 3.35 to 

17.02 with an average value of 8.35 and a standard error of 0.67. Fciay showed a moderate, 

positive relationship with Kcâ K (R =0.33). This means that soil exchange sites show a 

preference for K when clay minerals are the main contributors to Z. Kca->K should be 1.65 

when exchange sites show no preference for Ca or K, i.e. standard free enthalpy (AG ex) 

equals 0 (Bolt, 1979). Exchange sites prefer the divalent cation Ca to the monovalent cation 

K when these cations are electrostatically bound. As a result Kca->K is smaller than 1.65. 

This is often found for Ca-K exchange on e.g. montmorillonite clay minerals (Bruggenwert 

and Kamphorst, 1979). Illitic clay minerals show a broad range of Kca-»K values which are 

most times (much) larger than 1.65. The different types of exchange sites on illitic clay 

minerals are probably responsible for this (Bolt et al., 1963). On the planar exchange sites 

cations are electrostatically bound and Ca is preferred over K. The edge-interlayer sites and 

interlattice sites show a high affinity for K and as a result K is highly preferred over Ca. 

Especially, the interlattice sites show a high preference for K leading to very high Kcâ K 

selectivity coefficients (Bolt et al., 1963; Ehlers et al, 1967). 

In The Netherlands, the clay fraction is most times dominated by illitic type of clay 

minerals. Therefore, the clay soils with high Fciay and Z values will probably contain many 

affinity sites of illitic clay minerals. As a result Kcâ K is much higher than 1.65. In literature 

it is often found that Kcâ K is much higher than 1.65 for real soils (Bruggenwert and 

Kamphorst, 1979). 

[Ca]/2/[K] of the filtrate after CaCh extraction showed a positive relationship with KQI^K 

(Figure 3). Since, [Ca] in the filtrate is "constant" and about 0.01 M., the preference of the 

soil exchange sites for K. increases when [K] decreases. 
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FIGURE 3. Relationship between [Ca]77[K] and the Kcâ K selectivity coefficient of the 27 

soils. 

Differences between the measured and estimated Kcâ K values in Figure 3 were related to 

Fciay and % clay. Multiple linear regression analysis showed that Kcâ K can be estimated 

according Equation 7. 

Kca_>K=2.26 + (0.007 *[Ca]7[K]) + (7.526 * F ^ ) - (0.101 * % clay) (R = 0.85) (7) 

In literature, an effect has been suggested of pH on Ca-K selectivity in organic matter 

containing soils and variable charge soils (Munns, 1976; Curtin et al., 1995; Rhue and 

Mansell, 1988). A pH increase would promote the development of exchange sites that 

prefer Ca. Our experimental data did not show such effect of pH on Kca_»K. 

K-Mg-^K 

K-MĝK of the exchange reaction in which Mg at X is replaced for K ranged from 4.38 to 

17.38 with an average value of 9.48 and a standard error of 0.66. KM^K values exceeded 

1.65, which means that the soil exchange sites prefer K (Bolt, 1979). Kniĝ K was not related 

to %organic C, %clay, pH, [Mg] 7[K] and the ratio % organic C/% clay. There was a 

moderate positive relationship between Fciay and KM^K (Figure 4). Illitic clay minerals in 

the soil clay fraction and their high affinity sites for K may explain the increase in KM^K 
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when Fciay increase. Deviations of the regression line were not related to other (soil) 

characteristics. 

20 i 
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1 10-

5-

y = 8.4247X + 4.3576 

R2 = 0.3214 

i i i 1— 

0.2 0.4 0.6 0.8 

clay 

FIGURE 4. Relationship between Fciay and KMĝ K. 

EVALUATION 

After extraction of the 27 test soils according to the CaCh procedure, the occupation of Z 

with Ca ranged from 87% to 97.8%, for Mg from 0.5% to 7.7% and for K from 0.7% to 

7.2%. When Z is 40 cmol(-)kg"', one percent occupation with Ca, Mg and K would equal 

280 kg Ca ha"1, 168 kg Mg ha"1 and 560 kg K ha" assuming a plough layer weight of 3.5 

million kg. These calculations show that the amount of K and Mg not extracted by the 

CaCb procedure is considerable when it is expressed on a hectare basis. Residual K. and 

Mg may exceed the average annual plant uptake of K and Mg. 

In this study Kca-»Mg, Kcâ K and KM^K selectivity coefficients have been derived for 

exchange processes during the 0.01 M CaCb extraction procedure. KC^K is related to 

[Ca] 7[K], Fciay and % clay (Equation 7), Kcâ Mg to % organic C (Equation 8), and KM^K 

to Fciay (Equation 9). 
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K C _ M =1.0175*(%organicC) ,-0.1724 
(R =0.54) (8) 

KMg^K=4.3576+8.4247*Fc lay (R =0.32) (9) 

Equations 7, 8 and 9 can be used for an arbitrary soil to obtain estimates for the selectivity 

coefficients. K.Mĝ>K shows a moderate relationship with Fciay and therefore the estimates of 

K.Mĝ>K may be unreliable. 
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FIGURE 5. Relationship between KMĝ K and Kca^K. for the 27 test soils. 

Figure 5 shows that a very good relationship exists between KMĝ K and Kca^K found for the 

test soils in this study. This relationship can be used for estimation of K-Mĝ K when Kca^K is 

known. 

According to the method proposed in this paper, the total amounts of Ca, Mg and K at X 

and in the liquid phase (Tca, T\ig and TK) has been calculated. In these calculations Kca-»Mg 

and Kca^K have been derived from Equations 7 and 8. Subsequently, the amount of Ca, Mg 

and K remaining at X after the CaCh extraction (Tca-Lca, TMg-LMg, TK-LK) has been 

calculated. 
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Figure 6 gives the relationship between the measured %Mg at Z and the difference between 

the estimated %Mg and measured %Mg, A % Mg, at Z for the 27 soils. For 26 soils, A % 

Mg ranged between - 1 % and 1%. For K all soils deviated less than 2% and 24 soils 

deviated less than 1%. For Ca it was found that 22 out of 27 soils deviate less than 1% but 

all soils deviated less than 2% percent. It is concluded that for most soils the estimated % 

occupation of Z with K and Mg equals the measured % occupation +/-1%. 
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FIGURE 6. Relationship between the measured % Mg at the exchange sites Z and the 

difference between the estimated and measured % Mg (A %Mg). 

During the CaCfe procedure the ionic strength, / equals 0.03 M and the activity coefficients, 

e.g. fA, fB, fc are constant. Because of their constancy, the activity coefficients were 

incorporated in Kcâ Mg, KG^K and KM^K (Equation 6). In sodic soils or just after 

fertilization / may be higher than 0.03 M. The magnitude of the "constant" fA, fB, fc and 

with that the selectivity coefficients will then change accordingly. The selectivity 

coefficients derived in this study are therefore only applicable for exchange processes 

during the CaCh procedure at 7=0.03 M. 

In this paper a method is described to calculate To,, TMg and TK for soils where Ca, Mg and 
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K are the dominant cations (ternary soil system). However, soils may contain (considerable) 

amounts of other cationic species, e.g. NH4, Na or Al. For these multi-cationic soils the 

described method is also valid but the mathematical solution of the equations is much more 

complicated. 
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ABSTRACT 

The total charge of the individual cations extracted according to the unbuffered BaCb 

method (ISO 11260) often exceeds the charge of the actual CEC determined in the 

same procedure. A study has been carried out to determine the backgrounds for this 

difference. Twenty-eight soils have been used with Ca, Mg and K as the dominant 

exchangeable cations. The soils have been extracted with unbuffered and buffered 

BaCb, KG and water. The total charge of water extractable cations could explain only 

part of the observed difference. In soils with CEC values > 25 cmol(-) kg", the 

measured actual CEC was considerably higher when the amount of soil weighed out 

was 50 percent of the amount recommended in ISO 11260. This result means that the 

replacing power of the added MgS04 is not sufficient to exchange Ba from all soil 

exchange sites resulting in an underestimation of the actual CEC in the ISO procedure. 

In soils with pH higher than 5.5-6.0, the unbuffered BaCb method replaces 

exchangeable Ca (specifically) bound to organic matter where the KC1 method cannot. 

This Ca exchange is not complete when ionic strength is larger than 0.75 M. We 

conclude that the difference between the total (positive) charge of cations replaced by 

0.1 M BaCb and the total (negative) charge of the actual CEC, results from i) the 

cations present in the original soil suspension or released from readily soluble minerals, 

and ii) an underestimation of the actual CEC in soils high in CEC when extracted 

according ISO 11260 (1994). 
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INTRODUCTION 

In 1986, Houba et al. proposed the use of 0.01 M CaCh as a multi-nutrient soil 

extractant. The perspectives for the development of a multi-nutrient CaCh soil testing 

program are good (Van Erp et al., 1998). One of the aims of our CaCk research 

program is to deduce selectivity coefficients of cation exchange reactions at soil 

exchange sites during the CaCh procedure. For the derivation of these selectivity 

coefficients, the total charge of the exchange sites during extraction (= actual CEC) as 

well as type and amount of exchangeable cations should be known (Van Erp et al., 

2002). Moreover, the charge balance must be closed, i.e. the measured total charge of 

exchangeable cations should equal the measured charge of the actual CEC plus 

dissolved cations. The unbuffered 0.01 M BaCh method may be a helpful extraction 

method since it determines the (actual) CEC as well as the amount of exchangeable 

cations in a single analytical procedure. 
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FIGURE 1. Relationship between the total charge of BaCh extractable Ca, Mg and K, 

in cmol(+) kg", and the total charge of the actual CEC measured according to the 

unbuffered BaCl2 method in cmol(-) kg"1 (ISO 11260,1994). 

In Figure 1 there is a tendency that the total (positive) charge of BaCk extractable Ca, 

Mg and K exceeds the (negative) charge of the actual CEC determined via ISO 11260. 
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Deviations increased at higher actual CEC. A higher content of dissolved cationic 

species seems unlikely because all soils originate from the top layer of agricultural soils 

after a period of nutrient depletion by crops. 

The unbuffered 0.01 M BaCl2 according to ISO 11260 (1994) integrates the original 

BaCl2 method (Gillmann, 1979,1981,1987) with modifications proposed by 

Hendershot and Duquette (1986). In ISO 11260 (1994), a 0.1 M BaCl2 solution is 

added to the soil and then shaken for 1 h to replace the exchangeable cations with Ba. 

This step is repeated three times. The supernatant of all three batches is collected and 

the type and the amount of cations extracted is determined. Thereafter, the soil is 

equilibrated with 0.01 M BaCl2 solution so that the ionic strength (7) and pH of the soil 

suspension is more or less equal to the actual pH and I of the soil under field 

conditions. Subsequently, a well-known amount of Mg is added to the soil suspension 

via a 0.02 M MgS04 solution. This addition results in the replacement of Ba for Mg 

followed by precipitation of the highly insoluble BaSO.*. The amount of Mg redrawn 

from the liquid phase is then used as an indicator of the actual CEC. There are many 

reports about the problem that more cations are extracted by 0.1 M BaCl2 than the 

actual CEC permits. Possible explanations are a high content of dissolved cationic 

species in the soil solution and dissolution of readily soluble salts and soil carbonates. 

Deller (1983) concluded that the dissolution of carbonates cannot be responsible for 

the cation excess. There are also suggestions that during the 0.1 M BaCl2 extraction Ba 

precipitates as BaC03 thereby dissolving CaC03, or that Ba exchanges with Ca and Mg 

at the surface of carbonates. However, Kuderna and Blum (1992) could not confirm 

this. They found that the excess of 0.1 M BaCl2 extractable cations was related to the 

organic matter content of the soils. An underestimation of the actual CEC as 

explanation of the cation excess is thusfar mosttimes excluded, because the 

precipitation of BaS04 is expected to result in a complete exchange of Ba for Mg at the 

exchange sites (Sumner and Miller, 1996). 

Figure 1 shows that the negative charge of the actual CEC is not equal to the total 

charge of the cations extracted by the unbuffered BaCl2 method (ISO 11260, 1994). A 

study has been carried out to investigate the difference found. 
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MATERIALS AND METHODS 

Twenty-eight soils have been collected from the top layer of agricultural soils in The 

Netherlands and pretreated according to ISO 11464 (1994). The pH-KCl of the soils 

was measured according to ISO 10390 (1994), organic carbon according to ISO 14235 

(1998), the actual CEC and the amount of exchangeable Ca, Mg, K, Al, Na and NH4 

according to the unbuffered BaCl2 method (ISO 11260, 1994) and exchangeable Ca 

and Mg according to the buffered BaCl2 method (ISO 13536, 1995), and the 1 M KC1 

method (Mazaeva, 1967). Water extractable Ca, Mg and K was measured according to 

the 0.01 M CaCl2 procedure (Houba et al., 2000) in which 0.01 M CaCl2 has been 

replaced by demineralized water. In each of the soils Ca, Mg and K were the major 

exchangeable cations and exchangeable Al was <1 % of the actual CEC. Exchangeable 

Na and NH4 were negligible in these soils. All statistical analyses were executed 

according to standard (multiple) linear regression analysis using the statistical package 

Genstat (Genstat 5 Committee, 1987). 

RESULTS AND DISCUSSION 

We define EXC as the difference between the total (positive) charge of 0.1 M BaCl2 

extractable Ca, Mg and K and the total (negative) charge of the actual CEC. Figure 2 

shows that EXC exceeded the total charge of water extractable Ca, Mg and K 

(WSOL). When water extracts all cationic species in the original soil solution plus 

cations present in readily soluble salts, then BaCl2 extracts extra cations. A possible 

source of the extra cations are (Ca and Mg) carbonates that dissolve during the BaCl2 

treatment. 

The dissolution (rate) of carbonates during the BaCl2 extraction is still not clear. From 

studies of Plummer et al. (1978) and Busenberg and Plummer (1982) it follows that i) 

the dissolution rate of carbonates is related to the square root of the proton activity, ii) 

the dissolution rate is low at pH 8 but increases at lower pH values, and iii) carbonate 

dissolution increases when contact time and surface area of the carbonate particles 

increases. Since, the pH drop after addition of 0.1 M BaCl2 to a carbonate containing 

soil is relatively small (0.1-0.3 pH units), the contact time is only 3 times 1 h, and 
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because the surface area of the soil carbonates in the test soils was small (carbonates 

were visible by eye), it is reasonable to assume that the dissolution of soil carbonates 

during 0.1 M BaCb extraction will be minimal. The experimental results of Deller 

(1983) and Kuderna and Blum (1992) confirm this assumption. 
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FIGURE 2. The relationship between EXC (the total (positive) charge of 0.1 M BaCl2 

extractable Ca, Mg and K minus the (negative) charge of the actual CEC) and WSOL, 

the total (positive) charge of water soluble Ca, Mg and K. 

At pH 8.1 the dissolution of carbonates is negligible. Ca and Mg extracted according to 

the BaCb method buffered at pH 8.1 should therefore equal Ca and Mg extracted 

according to the unbuffered BaCU method, when soil carbonates do not dissolve. 

Figure 3 shows that Ca and Mg extracted by buffered BaCh is smaller than with 

unbuffered BaCb. This can indicate that soil carbonates dissolve during the unbuffered 

BaCU method. However, this phenomenon holds for both calcareous and non-

calcareous soils; the dissolution of carbonates is therefore no explanation for the 

difference in Ca and Mg extracted between both BaCb methods. Moreover, the 

difference in Ca and Mg extracted between both methods is large for soils having a pH 

higher than 7 (data not presented). It is unlikely that a relatively small pH increase from 
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an original soil pH higher than 7.0 to pH 8.1 results in such large reduction in 

extractable Ca and Mg. The results suggests that (an)other soil process(es) affect the 

difference in Ca and Mg extracted between both BaCh methods. 
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FIGURE 3. Relationship between calcium (A), and magnesium (B) extracted via the 

unbuffered BaCh method (X-axis) and the amount of Ca and Mg extracted via the 

buffered BaCb and 1 M KCI method (Y-axis). 
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Ca and Mg extracted via the KG method is much lower than Ca and Mg extracted via 

the unbuffered BaCU (Figure 3), suggesting that KG and unbuffered BaCb seem to 

extract Ca and Mg from different binding sites 
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FIGURE 4. Relationship between pH KG of the test soils and the difference in Ca 

extracted via the unbuffered BaCU method and the KG method expressed per % 

organic C (=A Ca/% org.C). 

Figure 4 shows the relationship between pH KG of the 28 test soils and the difference 

in Ca extracted via the unbuffered BaCk method and the KG method expressed per % 

organic C. PH KG is used as an indicator of the pH of the soil suspension during the 1 

M KG extraction as well as the 0.1 M BaCb extraction. In the pH range from 4 to 5.5 

the ratio ranges from 0 to 1 and seems to be pH-independent. In the pH range from 5.5 

to 7.5 the ratio increases when pH increases. This positive correlation may be 

interpreted as follows. Given a constant pH, the BaCb method extracts much more Ca 

compared to the KG method when % soil organic C increases. Given a constant soil 

organic C content, this increase means that the BaCb method extracts much more Ca 

compared to the KG method when pH increases. Monovalent cations like K show 

almost no specific interaction with bindings sites on organic matter. This in contrast to 

divalent cations (Murray and Under, 1984; Baes and Bloom, 1988a; Baes and Bloom, 
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1988b; Van den Hoop et al., 1990). Therefore, the divalent cation Ba may extract more 

cations from binding sites at organic matter than the monovalent cation K. Moreover, it 

is well known that organic C shows an increased affinity for Ca when pH increases 

(De Wit et al., 1992; Milne et al., 1995). This increased adsorption is attributed to the 

increased dissociation of functional groups on organic matter leading to more negative 

charge (De Wit et al., 1993). Apparently, 0.1 M BaCh is able to extract Ca and Mg 

from organic matter that could not be extracted with KC1. 

Ca extracted by unbuffered BaCh exceeded that extracted by the buffered BaCh 

method (Figure 3A). It is unlikely that the Ba concentration is limiting the exchange 

process because the Ba concentration in the buffered BaCh method is higher than in 

the unbuffered method, 0.1 and 0.5 M BaCh respectively. As mentioned before, 

differences in Ca and Mg extracted between the two methods were large in 

(calcareous) soils with a high pH. In these soils, the pH during extraction is almost the 

same for the buffered and unbuffered method. Therefore, an effect of pH on the 

affinity of organic matter for Ca (and Mg) in these (calcareous) soils is unlikely. A 

significant difference between both BaCh methods is that the unbuffered method 

extract soils at 7=0.3 M (0.1 M BaCh solution) and the buffered BaCl2 method at 7=1.5 

M (0.5 M BaCh solution). It is well known that 7 may affect the conformation and 

charge characteristics of organic matter (De Wit et al., 1992; Tits, 1990) as well as the 

affinity of organic matter for Ba, Ca and Mg (Baes and Bloom, 1988a, 1988b; De Wit 

et al., 1993). Our results suggest that at 7=1.5 M the exchange of Ca by Ba is not 

complete. Baes and Bloom (1988a) found that three times washing of organic matter 

with 0.25 M BaCh replaced all adsorbed Ca. We therefore suggest that at 7 larger than 

0.75 M the replacement of Ca by Ba is repressed. 

The CEC determination according to ISO 11260 will underestimate the actual CEC 

when soil particles are lost during the procedure or when the added MgS04 does not 

remove all adsorbed Ba. During the unbuffered BaCh extraction the ionic strength of 

the soil suspension ranges from 0.03-0.3 M. In this range clay and organic matter 

coagulate and deposit. Therefore, losses of soil particles are assumed to be small. 
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An additional experiment has been carried out to check the sufficiency of the amount 

of MgS04 added according to ISO 11260 (1994) to replace all Ba adsorbed at the 
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FIGURE 5. Relationship between the actual CEC measured according ISO 11260 

using 3 g of test soil and a modified ISO method using 1.5 g of soil. 

actual CEC. Instead of 3 g of soil 1.5 g soil was used. Figure 5 shows that the actual 

CEC measured according to the modified method exceeds the actual CEC measured 

according to the original method. Differences were small for soils having a low CEC 

but on soils having a CEC of about 35 and 40 cmol(-) kg"1 deviations were 

considerable. This result clearly indicates that added MgSC4 is not sufficient to 

replace all Ba at the actual CEC. Hendershot and Duquette (1986) suggested to repeat 

the procedure when more than 50 % of the added MgS04 was consumed. Then, the 

ionic strength / is kept in the desired range and the probability for incomplete exchange 

is minimized. In the ISO 11260 procedure, the BaCb procedure is repeated when the 

actual CEC exceeds 40 cmol(-) kg" soil. This is remarkable since the total charge of 

the Mg added via MgS04, equals 40 cmol(+) kg". The result is that in soils high in 

CEC a shortage of Mg (and SO4) occurs. An incomplete Ba exchange and an 

underestimation of the actual CEC will then be the result 
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Equation 1 gives the linear regression equation of the relationship between the actual 

CEC measured by the original and modified method (see Figure 5). 

Modified CEC^, = 1.1159 * original CECact - 0.8416 (r = 0.99) (1) 

Figure 6 gives the relationship between the modified actual CEC of the 28 test soils, 

calculated according to Equation 1, and the amount of 0.1 M BaCb extractable Ca, Mg 

and K minus the total charge of water extractable Ca, Mg and K, yielding an almost 1:1 

relationship. This shows that the total charge of 0.1 M BaCh extractable cations 

diminished with the charge of water extractable cations equals the total charge of the 

actual CEC. It is concluded that the present ISO 11260 underestimates the actual CEC 

of soils with a high CEC. ISO 11260 should therefore be adjusted. 

r 
30 

T 

50 0 10 20 30 40 50 60 

BaCI2ext. cations- watersol. cations, cmol(+) kg 

FIGURE 6. The relationship between the modified CEC, calculated according 

Equation 1, and the total charge of 0.1 M BaCb extractable Ca, Mg and K minus the 

charge of water-extractable Ca, Mg and K. 
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10.1 Multi-nutrient extractants 

10.1.1 General 

Most current soil testing programs are single nutrient programs (e.g. Soil and Plant 

Analysis Council Inc., 2000). When all essential nutrients have to be determined, 

numerous procedures need to be executed for sampling, sample preparation, extraction 

and analysis. As a consequence the use of these programs is time consuming and 

expensive. 

Recent developments in analytical procedures, analytical techniques (e.g. inductively 

coupled plasma emission) and analytical equipment (e.g. autoanalyzer) have made 

simultaneous determination of several elements possible (Benton Jones, 1998). These 

developments have promoted the use and development of multi-nutrient extractants 

(Table 1). Multi-nutrient extractants are attractive from a laboratory point of view: soil 

sample treatment and soil sample extraction is executed only once and the subsequent 

simultaneous determination of nutrients ensures that soil testing data becomes 

available rapidly. Multi-nutrient extractions are cost-effective and thus will reduce soil 

testing costs for farmers. The use of the multi-nutrient extractants is often restricted to 

certain soil types (Table 1). The CaCb method and the ion-exchange 

resins/membranes are applicable to all soil types. The chemical composition of the 

extracting reagent is often complex and in many cases pH and ionic strength of the soil 

suspension during extraction deviate strongly from average field conditions. As 

discussed in Chapter 3, the CaCl2 reagent is an exception; 0.01 M CaCl2 extracts 

nutrients at a pH and ionic strength comparable to average field conditions. The 

number of nutrients determined in the liquid phase after extraction varies from 6 for 

Mehlich No. 1 to 21 for CaCl2. The analytical procedures and analytical techniques for 

the determination of the 21 nutrients in the CaC^ method have been described in detail 

(Houba et al., 2000). The repeatability and reproducibility of the CaCl2 method is often 

better than for common (multi-nutrient) extraction methods (Houba et al., 1998) 
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TABLE 1. Some current multi-nutrient extraction methods, their applicability to soil 

types, the extracting reagent and the elements or nutrients determined (Benton Jones, 

1998) 

Method 

Morgan 

Wolf-Morgan 

MehlichNo. 1 

Mehlich No. 3 

AB-DPTA 

CaCl2 

Ion-exchange resins 
/membrames 

Soil type 

All acid soils and 
soil-less mixtures 

All acid soils and 
organic soils 

Acid sandy soils 

All acid soils 

Alkaline soils 

All soils 

All soils 

Extracting reagent 

0.54 M HOAc + 0.7 
MNaOAcatpH4.8 

0.0001 MDPTA 
+0.52 M HOAc + 
0.073 M NaOAc at pH 
4.8 
0.05 MHC1 +0.0125 
M H2S04 

0.2 N CH3COOH + 
0.25 M NH4NO3 + 
0.015 MNH4F + 
0.013 MHNO3 + 
0.001 MEDTA 
IMNH4HCO3 + 0.005 
M DTPA at pH 7.6 
0.01MCaCl2 

Cationic and anionic 
resin 

Elements or 
nutrients determined 
P, K, Ca, Mg, Cu, 
Fe, Mn, Zn, NO3, 
NH4, SO4, Al, As, 
Hg,Pb 
P, K, Ca, Mg, Cu, 
Fe, Mn, Zn, Al, 
NO3, NH4 

P,K,Ca,Mg,Na, 
Mn, Zn 
P, K, Ca, Mg, Na,B, 
Cu, Fe, Mn, Zn 

P, K, Na, Fe, Mn, 
Zn, As, Cd, NO3 
H (i.e.pH), K, ortho-
P, P, Mg, Na, 
organic C, N, NO3, 
NH4 ,S04-S,S, B, 
Fe, Cu, Mn, Zn, Cd, 
Pb, Ni, Al, As, 
(polyphenols) 
P ,Ca ,Mg ,K ,S , 
NO3, NH4, Al, Mn, 
Na, Fe, Zn, Cu 

So far, studies on the perspectives of multi-nutrient extractants have focussed mainly 

on laboratory aspects. Recently, more attention has been given to the interpretation of 

the amount of nutrient extracted and to the set up of fertilizer recommendations 

schemes. However, the methods used so far to translate laboratory results of multi-

nutrient extractants into fertilizer recommendations do not differ from the 'trial and 

error' methods used for the development of the classic single soil testing methods. The 

notion emphasized in this thesis is that the agricultural value of fertilizer 
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recommendation schemes will increase when nutrient interactions are taken into 

account. In theory, the use of multi-nutrient extractants may facilitate the study on 

interactions between nutrients because nutrients are extracted from one and the same 

soil sample, with one reagent and one extraction procedure. So far this very important 

aspect has received marginal attention. 

An alternative for soil extraction with a chemical reagent, is the use of ion-exchange 

resins (Table 1). The resins, which have a cationic and/or anionic behaviour, act as a 

sink for the ions in the solution. After extraction the adsorbed ions are removed from 

the resin and measured via standard procedures. The perspectives of using resins in 

(bio)availability studies are promising since adsorption of ions by the resins presents 

some analogy with nutrient uptake by roots. However, the implementation of the resin 

method on a laboratory scale seems to be limited: the resin method is time consuming 

and often considered to be too laborious. Instead of resins it is sometimes possible to 

use ion-exchange membranes. 

10.1.2 CaCl2 procedure 

In 1986, Houba and co-workers proposed the use of 0.01 M CaCl2 as a multi-nutrient 

soil extractant. The perspectives of this procedure are described in Chapter 3. The 

procedure is applicable to all soils and is simple: air dry soil (< 2mm particle size) is 

extracted with a solution of 0.01 M CaCl2 (w/v 1:10) at 20°C. After a 2h shaking 

period, pH is measured in the settling suspension. The solution is centrifuged or 

filtrated and then various nutrients (fractions) can be measured in the supernatant or 

filtrate (Houba et al., 2000). There are numerous considerations for choosing CaCl2 as 

an (multi-nutrient) extraction reagent. 

• During extraction the soil suspension has an ionic strength (0.03 M) and pH 

comparable to that of the soil solution under average field conditions. 

• The divalent calcium (Ca) ion causes an effective coagulation in the soil 

suspension; a high salt concentration, as would be the case with salts of 

monovalent cations like sodium (Na) and ammonium (NH4), is unnecessary. 
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• Since Ca is the primary cation at the adsorption complex of most soils, CaCl2 is 

a more effective exchanger of other adsorbed cations than solutions with other 

cations. 

• In addition to all important nutrients, various heavy metals and soluble organic 

carbon, nitrogen, phosphorous and sulphur can be determined as well. Soluble 

organic compounds may be important for interpreting the influence of extracted 

metals and for the evaluation of microbiological transformations. 

• Since various nutrients and metals are extracted in the same extract, 

interpretation can easily include mutual interactions. 

• The simultaneous measurement of a number of parameters and automation of 

laboratory labour is attractive from a laboratory-operational point of view. This 

will reduce the costs for soil testing as well as the rapidity of the CaCl2 

program. 

• The repeatability and reproducibility of the method are better than that of 

common (multi- nutrient) soil testing methods. 

• The use of chemicals is minimized which is positive from an environmental 

point of view. 

• The electrolyte concentration remains practically constant. 

• The measured nutrient concentrations reflect the availability at the pH and ionic 

strength of the soil since the extractant is an unbuffered solution. 

• After an extraction period of 1-2 hours an (adsorption) equilibrium state is 

attained, which facilitates a soil chemical interpretation of the results. 

After the CaCl2 extraction, the concentration of nutrients is determined and this 

concentration can be used for the set up of a multi-nutrient CaCl2 soil testing program. 

The necessity of numerous, costly and many years laboratory, pot and field 

experiments has hindered the development of such CaCl2 program. It has been 

proposed to convert straightforward the fertilization schemes of conventional 

procedures into fertilization schemes of the CaCl2 procedure. This conversion should 

be based on the relationship between the amount of nutrient extracted by the 

conventional method and the CaCl2 procedure. However, such simple conversion has 
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several disadvantages. The explained variance of the relationship is often moderate 

and the coefficients of the regression equation do not or seldom have a plant 

nutritional or soil chemical meaning. In Chapter 5 a fundamental relationship has been 

deduced between Mg extracted by conventional Mg extraction procedures and Mg 

extracted by the CaCl2 procedure. The coefficients in this fundamental relationship 

have a soil chemical meaning or are related to characteristics of the extraction 

procedure. 

The CaCl2 procedure is well tested and the repeatability and reproducibility of the 

method are good. Point of discussion is still, as with so many other procedures, the 

effect of soil drying on the amount of nutrient extracted. In Chapter 4 it is shown that 

soil drying affects the actual (field) status of pH and many nutrients. Despite this, it is 

believed that the CaCh method can be used as a standardized method to equilibrate the 

liquid and solid phase of a soil and to define the nutrient composition of the liquid 

phase. 

10.2 Soil chemistry 

10.2.1 Soil testing 

Soil chemistry studies the (physico-) chemical behaviour of soil constituents. During 

soil testing, (mixtures of) chemicals are added to a soil sample. The addition of these 

chemicals affects soil constituents via soil processes like ion exchange, 

adsorption/desorption, precipitation/dissolution, etc. Therefore, soil testing can be seen 

as 'applied soil chemistry'. 

Since the middle of the twentieth century soil testing has been focussed on the 

optimization of the relationship between the amount of nutrient extracted and crop 

response. In contrast to soil chemistry, soil testing was not really focussed on the 

working mechanisms of nutrient extraction, on a precise characterization of soil 

nutrient fractions or the modelling of nutrient extraction. This has driven soil 

chemistry and soil testing apart. 
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To optimize nutrient management, it must be possible to interpret the amount of soil 

nutrient extracted via soil testing in terms of the working mechanism of the procedure 

and soil nutrient fractions that are plant available. Moreover, it should be possible to 

use the extraction results in soil chemical models and crop growth models. Such use 

seems only possible when present day soil chemical knowledge and tools are 

introduced in soil testing. 

10.2.2 Soil chemical models 

The soil consists of four phases: water (liquid), soil particles (solid), gases and biota. 

Plant nutrients may be present in each of these phases and in different chemical forms 

(hereafter called nutrient species). Soil chemistry is mainly focussed on the (physico-) 

chemical interactions of species in the liquid, solid and gas phases. 

Particularly in the middle of the twentieth century many studies have been carried out 

on the physico-chemical processes that affect the behaviour and occurrence of species 

in soil, e.g. complexation, hydrolysis, precipitation, dissolution, volatilisation, 

oxidation, reduction, adsorption and desorption. The effect of these processes on 

changes in speciation can be described mathematically under equilibrium conditions 

(Bolt, 1982; Sposito, 1994). With these mathematical descriptions it is possible to 

calculate the effect of e.g. addition or withdrawal of species on speciation and its 

distribution. In the second half of the twentieth century the mathematical descriptions 

have been incorporated into computer models. These models have simplified the 

execution of time-consuming calculations. With present day computer technology it is 

possible to calculate almost instantaneously speciation in multi-element soil-water-gas 

systems under varying conditions. Well-known soil chemical models are MINEQL, 

GEOCHEM and ECOSAT (Keizer and Van Riemsdijk, 1998). With some of these 

models it is possible to calculate speciation under non-equilibrium conditions. 

Figure 1 gives a simple presentation of the set up of a soil chemical model. The model 

consists of an input module, a calculation module and an output module. In the input 

module the user characterizes the soil system under study and defines his problem or 

question. Subsequently, this information is used in the calculation module to perform 
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the necessary system specific calculations. Finally, the results of the calculations are 

presented via the output module. 

INPUT 
MODULE 

CALCULATION 
MODULE 

OUTPUT 
MODULE 

FIGURE 1. Simplified presentation of the set up of a soil chemical model. 

The system characteristics that should be filled in in the input module depend on the 

type of problem or question, and on the type of calculations that are necessary to 

produce the desired results. In general, characterization of a soil-water system consists 

of a characterization of the liquid phase, the solid phase, the total system and the 

choice of the calculation rules describing the prevailing processes. Characteristics of 

the liquid phase are e.g. pH, ionic strength, total element concentration and DOC 

(dissolved organic carbon). 

Theoretically, soil chemical models can be used to calculate nutrient speciation and 

distribution over the liquid and adsorptive phase during soil testing. However, the 

usefulness of soil chemical models for this is limited thus far because the necessary 

characterization of the liquid and solid phase of soils during soil testing has been 

unknown so far. 

The 0.01 M CaCl2 soil extraction procedure is executed under well-defined and 

controlled conditions. In Chapter 2 it is shown that it is likely that an (adsorption) 

equilibrium state is reached during the CaCl2 procedure when extraction time is more 

than one hour. This (adsorption) equilibrium state makes that soil chemical models can 

be used to characterize the liquid and solid phase during CaCl2 extraction. With 

modern analytical techniques it is possible to characterize the composition of the liquid 

phase after filtration. The studies presented in this thesis have shown that it is also 

possible to characterize the solid phase during CaCl2 extraction. In Chapter 6 it is 

described how the actual CEC of the solid phase during the 0.01 M CaCl2 procedure 
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can be estimated using pH and content of organic carbon and clay. In Chapter 8 the 

selectivity coefficients are deduced of Ca, Mg and K exchange reactions during CaCl2 

extraction. In the same Chapter a procedure is proposed to calculate the amounts of 

soil exchangeable Ca, Mg and K during the CaCl2 procedure. In Chapter 7 it is shown 

that exchangeable K is a good indicator of the lower boundary of the pool of plant 

available K. In the studies the amount of exchangeable cations is determined according 

the unbuffered 0.01 M BaCl2 method. This BaCl2 method is discussed in Chapter 9. 

Based on the results obtained in the studies, it is stated that the 0.01 M CaCl2 

procedure may promote the use of soil chemical models for characterization of plant 

available soil nutrients and for optimization of nutrient management. 

10.2.3 Combined use soil chemical model and CaCl2 procedure 

This section presents examples showing the perspectives of a combined use of a soil 

chemical model and the CaCl2 procedure. It is illustrated how a soil chemical model 

can be used to characterize the solid and liquid phases of the soil and how it can be 

used to examine the sensitivity of various factors that may determine the results of the 

CaCl2 procedure. 

The examples deal with nutrient distribution over the liquid and adsorptive phase and 

focus on the cationic nutrients Ca2+, Mg2+ and K+. These cations are dominant in non-

acid agricultural soils in The Netherlands. It is assumed that the cations show an 

interaction with negatively charged adsorption sites located at the adsorptive phase. 

The studies have been carried out with two soil types: soil A and soil B. The charge of 

the adsorption sites in both soils is 0.1 mol(-) kg"1 dry soil. The composition of the soil 

solution is the same for both soils and the cations adsorbed at adsorptive phase are in 

equilibrium with this soil solution. Soil B has two types of adsorption sites: B-I and fi­

ll. B-II shows a higher affinity for K compared to B-I. Adsorption sites of soil A are 

equal to that of B-I and show the same affinity for the cations under study. The total 

charge of B-I and B-II is 0.075 and 0.025 mol(-) kg"1 dry soil, respectively. In the 

model calculations it is assumed that the soils have no adsorption sites for negatively 

charged ions. Most soil characteristics used for soil A and B are measured values from 

an 'average' agricultural soil. The exchange processes in the model calculations obey 
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the Gaines & Thomas approach for ion exchange. Details on the model input 

characteristics and model calculations are omitted. The emphasis here is conceptual 

rather than focussing on the absolute value of the results of the model calculations. 

Example 1: Calculation nutrient speciation soil liquid phase 

In most current soil testing programs the total nutrient concentration in the liquid 

phase is determined without reference to its chemical speciation. Determination of 

speciation is sometimes possible but time-consuming and expensive. With help of a 

soil chemical model the speciation of the liquid phase can be calculated. 

TABLE 2. Speciation of the liquid phase of soil A. In the liquid phase the dominant 

anions are CI, N03 and ortho-P. Concentrations are presented as log(mol l"1). 

Species 

H+ 

OH" 
Ca (total) 
Ca2+ 

CaHP04 

CaH2P04
+ 

CaP04~ 
CaOH+ 

CI (total) 
K (total) 
K+ 

Mg(total) 

Concentration 

-6.28 
-7.68 
-3.46 
-3.46 
-7.01 
-7.42 
-9.32 
-9.99 
-2.96 
-4.18 
-4.12 
-3.68 

Species 

w+ 

MgHP04 

MgH2P04
+ 

MgOH+ 

MgPCV 
N (total) 
N03" 
Na (total) 
Na+ 

P (total) 
H2P04" 
HP04

2" 

Concentration 

-3.61 
-7.10 
-7.53 
-8.88 
-9.41 
-3.89 
-3.89 
-4.41 
-4.41 
-5.21 
-5.29 
-6.13 

Table 2 gives the calculated speciation in the liquid phase of soil A. Numerous species 

can be distinguished in the liquid phase but concentrations are most times low. The 

ions Ca2+, Mg2+, K+ and Na+ are the cationic species with the highest concentrations. 

Although the effect of speciation on plant nutrient availability is not clear yet, this 

example shows that the soil chemical model is a practical tool to estimate speciation in 

the liquid phase. 
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Example 2: The effect of high affinity sites on cationic composition adsorptive phase 

According to the Gaines & Thomas approach for ion exchange, a relationship exists at 

(adsorption) equilibrium between the concentration of cationic species in the liquid 

phase and the equivalent fractions of these species at the adsorptive phase. Under 

equilibrium conditions it is possible to calculate the cationic composition of the 

adsorptive phase with a soil chemical model, when the cationic composition of the 

liquid phase, the selectivity coefficients of the relevant cation exchange reactions and 

the total negative charge of the adsorptive phase are known. 

In this example the cationic composition of the adsorptive phases of soil A and B has 

been estimated based on the cation concentrations of the liquid phase of the soils. 

TABLE 3. Adsorption of Ca, Mg, K and Na at the adsorptive phase of soil A (A-I) and 

at the different adsorptive phases of soil B (B-I and B-II). Adsorption is calculated 

from the cation concentration in the liquid phase using standard selectivity 

coefficients. Results presented as log(mol kg"1 soil). 

Element 

Ca 
Mg 
K 
Na 

Soil A 
A-I 
-1.44 
-1.87 
-3.21 
-4.14 

Total 
-1.44 
-1.87 
-3.21 
-4.14 

SoilB 
B-I 
-1.57 
-1.99 
-3.34 
-4.27 

B-II 
-2.07 
-2.49 
-2.83 
-4.76 

Total 
-1.45 
-1.87 
-2.72 
-4.15 

B-I represents 75 percent of the total negative charge of soil B. Therefore the amounts 

of Ca, Mg and Na at B-I are larger than that at B-II (Table 3). Although the total 

negative charge of B-II is much smaller than of B-I, K adsorption at B-II is much 

higher than at B-I. This can be explained by the high affinity for K of B-II compared to 

B-I. Because of the increased K adsorption in the adsorptive phase of soil B the total 

amount of adsorbed Ca, Mg and Na in soil B is correspondingly lower than in soil A. 

This example shows that when the cation concentrations in the liquid phase are the 

same, cation adsorption at the adsorptive phase may differ because of differences in 

the affinity of particular adsorption sites for one of the cations present. The soil 

chemical model can be used to quantify the effect of high affinity sites on distribution. 
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Example 3: Effect CaCh soil extraction on cationic composition adsorptive phase 

In the CaCl2 soil extraction procedure a 0.01 M CaCl2 solution is added to a dry soil 

(w/v=l:10) and then shaked during 2 h. The addition of Ca results in the replacement 

of (part) of the cations originally present at the adsorptive phase. With a soil chemical 

model it is possible to estimate the effect of Ca addition via CaCl2 on the composition 

of the liquid and adsorptive phase after extraction. In this example such calculations 

have been carried out for soil A. 

TABLE 4. Adsorption of Ca, Mg, K and Na at soil A before and after soil extraction 

according to the CaCl2 procedure. Cation adsorption is presented in mol.kg"1 soil and 

as % charge occupation (= 100*total charge of the adsorbed cation/total negative 

charge of A-I). 

Element 

Ca 
Mg 
K 
Na 

Before extraction 
Amount 
3.60 * 10"2 

1.37* 10"2 

6.03 * lO-4 

7.08 * 10° 

Occupation 
72.0 
27.3 
0.6 
0.1 

After extraction 
Amount 
4.66*10"" 
3.37 *10"J 

1.02 *10"4 

2.76* 10"" 

Occupation 
93.1 
6.8 
0.1 
0.0 

The addition of Ca leads to an increase of the Ca adsorption at the adsorptive phase 

from 3.60*10"2 mol.kg"1 before extraction to 4.66*10"2 mol.kg"1 after extraction. After 

extraction Ca occupies more than 93% of the negative charge of A-I. This adsorption 

of Ca resulted in the replacement of 75, 83 and more than 95 % of the Mg, K and Na 

originally present at A-I, respectively. Ca and Mg are the dominant ions at the 

adsorptive phase. The results show that Ca replaces K and Na more easily than the 

divalent cation Mg. The cations replaced from the adsorptive phase are dissolved in 

the liquid phase (data not presented). 

The nutrient concentration of the liquid phase can be used as a nutrient availability 

index. Table 4 shows that the CaCl2 procedure does not extract all cations originally 

present at the adsorptive phase. This means that the concentration of extracted cations 

underestimates the amount of plant available cation (assuming that the cations retained 
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at the adsorptive phase remain exchangeable and thus potentially plant available). The 

model may provide estimates for these amounts. 

Example 4: Effect of shaking ratio on the distribution of cations 

In this example the effect is studied of shaking ratio in the CaC^ procedure on the 

distribution of Ca, Mg, K, Na and CI over the liquid and adsorptive phases. Soil A is 

subjected to shaking ratios of 1:0.3,1:3,1:10 and 1:30 (w/v). 

When shaking ratio increases extra Ca and CI is added to the soil. As a result the sum 

of Ca in the adsorptive and liquid phase increases when shaking ratio increases (Figure 

2a). CI shows no interaction with the adsorptive phase and therefore CI will remain in 

the liquid phase. Ca shows an interaction with the adsorptive phase and therefore part 

of Ca added will adsorb at the adsorptive phase. At a shaking ratio of 1:30 Ca occupies 

more than 95 percent of A-I, the adsorptive phase. However, the majority of Ca 

remains in the liquid phase. 

The total amounts of Mg and K in the liquid and adsorptive phase remain constant 

irrespective of the shaking ratio (Figure 2b and 2c). At a low shaking ratio 

considerable amounts of Mg and K are retained at the adsorptive phase but when the 

shaking ratio increases, this amount decreases sharply. At the same time, the amounts 

of Mg and K in the liquid phase increase sharply. For Na the results are comparable to 

Mg and K. 

The CaCl2 procedure recommends a shaking ratio of 1:10 (w/v). Figure 2 shows that at 

this shaking ratio the amounts of Mg and K retained at the adsorptive phase are much 

higher than at a shaking ratio of 1:30. This means that CaCl2 does not replace all Mg 

and K (and Na) when shaking ratio is low. A shaking ratio of 1:0.3 is comparable to 

the soil:water ratio under field conditions. Figure 2 shows that under such conditions 

only part of the total amounts of Mg and K in the soil is in the liquid phase. This 

example clearly shows that when a soil system is characterized with the standard 

CaCl2 procedure, then the soil chemical model can be used to calculate the effect of 

shaking ratio on cation distribution under e.g. under field conditions. 
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FIGURE 2. The effect of shaking ratio on the amounts of Ca (a), Mg (b) and K (c) in 

the liquid and the adsorptive phases of soil. 

197 



Example 5: Effect ofCaCh concentration on cation distribution 

In this example, the effect of CaCl2 concentration in the CaCl2 procedure on the 

distribution of Ca, Mg, K, Na and CI is studied. Table 5 gives the calculated 

distribution of Ca, Mg, K, Na and CI over the liquid and adsorptive phase when soil A 

is extracted according to the CaCl2 procedure with solutions of 0.005,0.01 and 0.03 M 

CaCl2. It was assumed that differences in ionic strength have no effect on system 

characteristics. 

Table 5 clearly shows that the CaCl2 concentration in the extractant has a considerable 

effect on nutrient distribution. The Mg, K and Na concentration in the liquid phase 

increases when CaCl2 concentration increases. Furthermore, the model calculations 

show that the amounts of Mg, K and Na retained at the adsorptive phase decreases 

when CaCb concentration increases. CI shows no interaction with the adsorptive phase 

and therefore all CI added via CaCl2 remains in the liquid phase. 

TABLE 5. The effect of the use of 0.005 M, 0.01 M and 0.03 M CaCl2 solutions in the 

CaCl2 procedure on the distribution of Ca, Mg, K, Na and CI over the liquid and 

adsorptive phase of soil A. Concentrations of the liquid phase in log(mol.l0 l"1) and at 

the adsorptive phase in log(mol kg"1 dry soil). 

Element 
Ca 

Mg 

K 

Na 

CI 

Phase 
Liquid 
Adsorptive 
Liquid 
Adsorptive 
Liquid 
Adsorptive 
Liquid 
Adsorptive 
Liquid 

CaCl2 concentration 
0.005 
-1.38 
-1.35 
-2.09 
-2.26 
-3.33 
-3.87 
-4.17 
-5.42 
-1 

0.01 
-1.05 
-1.33 
-1.98 
-2.47 
-3.30 
-3.70 
-4.17 
-5.56 
-0.70 

0.03 
-0.54 
-1.31 
-1.91 
-2.88 
-3.27 
-4.20 
-4.16 
-5.80 
-0.22 

The total concentration of N03 and ortho-P in the liquid phase was independent of the 

CaCl2 concentration used: these anions show no interaction with the adsorptive phase. 
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This example clearly shows that the soil chemical model can be used to estimate the 

effect of CaCl2 concentration on the distribution of cations over the liquid and 

adsorptive phases of the soil system. 

Example 6: The effect of the size of the CEC on cation distribution 

In this example, the effect has been investigated of varying CEC values of the 

adsorptive phase of soil A on cation distribution. The CEC of the 'test soils' was 0.02, 

0.05 and 0.12 mol(-) kg"1 dry soil. The equivalent fraction (total positive charge cation 

/ total negative charge adsorptive phase) of Ca, Mg, K and Na at the adsorptive phase 

and the concentration of the cations in the liquid phase were the same for all 'test soils' 

under field conditions. 

TABLE 6. The effect of CEC values of soil A of 0.02, 0.05 and 0.12 mol(-) kg"1 on 

the equivalent fraction of Ca, Mg, K and Na remaining at the adsorptive phase after 

0.01 M CaCl2 extraction. Equivalent fraction = total positive charge cation / total 

negative charge adsorptive phase. 

Element 

Ca 

Mg 

K 

Na 

CEC, in mol(-) kg"1 dry soil 

0.02 

0.983 

0.016 

0.0000 

0.0000 

0.05 

0.961 

0.038 

0.0005 

0.0000 

0.12 

0.921 

0.078 

0.0012 

0.0000 

Table 6 gives the equivalent fraction of Ca, Mg, K and Na at the adsorptive phase after 

extraction according to the CaCl2 procedure. The replacement of Na and K is almost 

complete irrespective of the size of the CEC. The replacement of the divalent cation 

Mg is not complete and related to the size of the CEC: the Mg equivalent fraction after 

extraction is 0.016 and 0.078 at CEC values of 0.02 and 0.12 mol(-) kg"1 soil, 

respectively. This example clearly shows that the soil chemical model can be used to 
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estimate the effect of the size of the CEC on the equivalent fraction of Ca, Mg, K and 

Na at the adsorptive phases. 

Example 7: Effect high affinity sites on cation distribution during CaCl2 extraction 

In example 2, the effect of high affinity sites in soil B on the distribution of Ca, Mg 

and K was estimated and compared to soil A which had no such high affinity sites. In 

this example, soil A and B were extracted according to the CaCl2 procedure and the 

effect of the presence of different high affinity sites on the distribution of cations after 

extraction is determined. The total amount of K is more than three times larger in soil 

B than in soil A (Table 7). The higher amount in soil B can be explained by the large 

amount of K at the high affinity site B-II. 

TABLE 7. Total amount of Ca, Mg, K and Na in soils A and B before extraction, and 

the distribution of Ca, Mg, K and Na over the liquid phase and the adsorptive phase in 

soil A (A-I) and soil B (B-I and B-II) after extraction. B-II shows a high affinity for K. 

Results in liquid phase in log (mol. 10 l"1), at A-I in log(mol kg"1 soil), at B-I in 

log(mol 0.75 kg"1 soil), and at B-II in log(mol 0.25 kg"1 soil). 

Element 

Ca 
Mg 
K 
Na 

Before extraction 
Soil A 

-1.44 
-1.87 
-3.21 
-4.15 

SoilB 

-1.44 
-1.87 
-2.72 
-4.15 

After extraction 
Soil A 
Liquid 
-1.05 
-1.99 
-3.30 
-4.17 

A-I 
-1.33 
-2.47 
-3.99 
-5.56 

SoilB 
Liquid 
-1.05 
-1.99 
-2.94 
-4.17 

B-I 
-1.46 
-2.60 
-3.75 
-5.69 

B-II 
-1.94 
-3.09 
-3.23 
-6.17 

Because Ca is added to the soils via CaCl2 the total amount of Ca after extraction 

exceeds the total amount of Ca before extraction. After extraction, the Ca equivalent 

fraction at A-I, B-I and B-II is 0.93, 0.93 and 0.91, respectively. In soil A about 17 

percent of the total amount of K is retained at the adsorptive phase and in soil B about 

40 percent. The K equivalent fraction at B-l is low and comparable to the K equivalent 

fraction at A-I. However, the K equivalent fraction at B-II is about 10 times higher 

than at B-I. This much higher fraction results from the high affinity of B-II for K. 
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After extraction, 83 percent of the total amount of K in soil A and 60 percent of total K 

in soil B is present in the liquid phase. 

In this example it was assumed that K affinity of B-II was two times higher than K 

affinity of A-I and B-I. Although the increase in K affinity is relatively small, there is a 

clear effect on K-distribution. Some clay minerals contain adsorption sites with a very 

high affinity for K ions. In soils containing these minerals, the availability of K bound 

to these sites is extremely low (K-fixing soils). When this type of soil is extracted 

according to the CaC^ procedure, Ca will not replace all K adsorbed at the high 

affinity sites and as a result K content in the liquid phase will be (very) low. 

Example 8: Effect size CEC on interpretation CaCh extraction results 

Foregoing examples have shown that CaCl2 does not replace all cations originally 

present at the adsorptive phase. This is of importance for the interpretation of the 

concentration of nutrient extracted. In this example, the cation concentration remaining 

at the adsorptive phase is estimated for three soils with different CEC values but with 

the same cationic composition of the liquid phase after extraction as soil A. The CEC 

of the adsorptive phases was 0.05, 0.1 and 0.15 mol(-) kg-1 dry soil, respectively. All 

adsorption sites have the same affinity for the cations. 
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FIGURE 3. Relationship between the CEC and the amount of Mg, K and Na retained 

at the adsorptive phase after CaCl2 extraction. 
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Figure 3 gives the relationship between the CEC and the calculated Mg, K, and Na 

concentrations at the adsorptive phase after CaCl2 extraction. The model calculations 

show that the concentrations of Mg, K and Na remaining at the adsorptive phase 

increases when CEC increases. In this study the calculated increase is 50% when CEC 

increases with 0.05 mol(-) kg"1 soil. 

The calculations show that the cation concentration of the liquid phase after CaCl2 

extraction is no indicator of the amount of cation retained at the adsorptive phase. As 

the CEC of the adsorptive phase increases the concentration of cations remaining at 

the adsorptive phase increases. This example shows that the soil chemical model leads 

to a better interpretation of CaCl2 soil extraction results. 

Example 9: Effect Mg concentration on cation equivalent fraction adsorptive phase 

In this example, the effect of Mg concentration in the liquid phase of soil A after 

CaCl2 extraction on the cation concentration of the adsorptive phase is investigated. In 

the model calculations it is assumed that the composition of the liquid phase is the 

same, except for Mg (and CI which acts as the counterion for Mg) and that there was 

no effect of ionic strength on exchange behaviour. 

The model calculations show that a higher Mg concentration in the liquid phase leads 

to an increase of the Mg equivalent fraction and a decrease of the Ca equivalent 

fraction at the adsorptive phase (Table 8). A higher Mg concentration of the liquid 

phase resulted also in lower K and Na equivalent fractions at the adsorptive phase. 

TABLE 8. The effect of Mg concentration (in mol l"1) in the liquid phase of soil A on 

the equivalent fractions of Ca, Mg, K and Na at the adsorptive phase after extraction. 

The total concentration of cations, i.e. cations in liquid phase plus adsorptive phase, 

was the same except for Mg. Equivalent fraction = total positive charge cation / total 

negative charge adsorptive phase. 

Mg cone. 
3.386* 10_J 

1.026*10"z 

3.078* lO-2 

Equivalent fraction 
Ca 
0.976 
0.931 
0.820 

Mg 
0.023 
0.067 
0.178 

K 
0.001 
0.001 
0.001 

Na 
0.000 
0.000 
0.000 
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The model calculations show that changes in the concentration of one cation in the 

liquid phase affect the cation equivalent fractions at the adsorptive phase. This may 

affect the interpretation of CaCl2 extraction results. 

Practical value of the examples 

The examples were restricted to two test soils with one (or two) type(s) of negatively 

charged adsorption sites. However, most agricultural soils contain positively charged 

adsorption sites in the adsorptive phase as well. These sites adsorb anions. It is 

possible to carry out the same type of calculations with the soil chemical model for 

anions as described for cations. In this way it is possible to estimate e.g. the effect of 

the CI addition via the CaCl2 reagent on the exchange of negatively charged ions at the 

adsorptive phase. 

In the examples the model calculations were focussed on nutrients like Ca, Mg, K, Na 

and CI. The same type of model calculations can be used to calculate speciation and 

distribution of other (nutrient) elements, e.g. Cu, Zn, Fe, Al, Mn. When a soil 

containing these elements is characterized e.g. via the CaC^ procedure, then the soil 

chemical model can estimate the effect of e.g. adsorption sites at Fe- and Al-

(hydr)oxides on P availability or the effect of Zn adsorption at dissolved organic 

matter (DOC) on Zn availability. For these calculations a mathematical description of 

the adsorption process at this type of sites is necessary. 

In the examples it was assumed that an equilibrium state exists. However, the model 

can also be used to estimate the effect of (kinetically determined) soil processes where 

every time step nutrients are released or fixed. In that situation, calculations should be 

repeated for each time step. 

10.3 Decision-making in nutrient management 

10.3.1 Framework nutrient management 

Nutrient management is the prime factor determining nutrient efficiency, nutrient 

losses and food quality. Nutrient management on agricultural farms has to comply 

with an increasing number of demands and border conditions of society and industry 

(FAO, 1999; European Community, 2000; FAO, 2001). 
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FIGURE 4. General presentation of nutrient management decision-making in current 

farm management. 
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Nutrient management can be defined as "specialized activities dealing with all nutrient 

sources and transformations within a defined system so as to achieve both economic 

and environmental targets" (Oenema and Pietrzak, 2002). Figure 4 gives a general 

scheme of nutrient management decision-making in current farm management. After 

chemical analysis, soil testing data are interpreted resulting in a characterization of the 

soil nutrient status. Subsequently, a recommendation scheme is used to determine the 

optimal nutrient application rate. In such scheme the soil nutrient status and plant and 

soil characteristics are input variables. 

The recommended nutrient application rate in combination with the knowledge and 

experience of the farmer determines the final nutrient application rate. Disadvantage of 

this nutrient management decision-making is that: 

• soil testing is carried out annually or once a crop rotation. A dynamic and 

continuous decision-making is therefore not possible; 
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• the basis for the interpretation of soil testing data and the recommendation 

schemes is the statistical analysis of numerous field and pot experiments 

('trial and error' method); 

• the fundamentals of soil-plant-nutrient relationships, which determine the 

actual nutrient requirements are minimally incorporated; 

• the procedure does not profit from present day scientific knowledge about 

soil-plant-nutrient relationships, computer technologies for data collection 

and data processing, new analytical techniques and optimization procedures. 

Figure 5 provides a framework for adjusted nutrient management decision-making. 

Three steps can be distinguished. 

In step 1 the 0.01 M CaCl2 procedure is used as a standard method to extract nutrients 

from a soil sample. After a 2 h shaking period, when an (adsorption) equilibrium is 

attained, pH and nutrient concentration are determined irt the liquid phase according to 

standard procedures. The pH and nutrient concentrations determined are then used as 

input in a soil chemical model. 

In step 2 the effect of (proposed or expected changes in) the actual (nutrient) status of 

the soil-plant system on crop growth, nutrient status, soil nutrient fractions, etc. is 

calculated. For these calculations a soil chemical model, a crop growth model, a 

microbiological model and a soil hydraulic model are coupled. Each model contain a 

mathematical description of related relevant processes in the soil-plant system. 

The microbial model in step 2 is relevant when e.g. N, P and S availability is studied. 

Namely, organic N, P or S added to soils via crop residues, catch crops or organic 

fertilizers becomes available for plant uptake when it is converted into mineral forms 

by microbes. The soil chemical model calculates soil nutrient fractions and speciation, 

e.g. after plant nutrient uptake or addition of nutrients via mineral or organic 

fertilizers. The soil hydraulic model becomes relevant when e.g. transport processes of 

water, nutrients and air are studied, e.g. after rain showers. 

205 



o 
3-S 
3 3 
P P 

0 0 — 
2 3 
3 £ 
3 5-

3 

O
ther inpu 

(w
eather, cr 

characteristi 
etc.) 

O O oo 

C
haracterist 

solid and liq 
soil phase 

E. o 
p CO 

a 

V V 

3 9 
ft ^ 
- O Q 

o 
^ 
3* 

i 

^ 

l 

3 0 0 

O 2 . 
G. — 
ft o 
~ 3" 

3. 
P_ 

i 

\ / \ / \ / 
V A 

/ \ 
' / \ i 

3 00 
O 2 . 
Q. — 
2. g 

o' 
o a* 
p . 

^ r 
OQ 

Predi 
row

th, 
upt ction p 

plant n 
ake, et 

p £ p 
3. 3 f t 
3 

i 

m 
H 
W 

N> 

' 
3 00 
o 2 . 
D. — 
f t EJ-

a. 

^ c 
o' 

^ ' 

o. Speciation 
istribution o 

nutrients 

i-t, g 

o &• 

o 
o 

O 
p 

o 
CO 
o 
'—' f t 

p o 

1/) 

H 

H^ 

o 
3 

o 

ft. 
C 

P 
H 

C 
H 

P 
3 
CL 
co 
O 

3 " 
*< co 
o 

3 o 
a . 
m 

P 

<D 

3 
O 

D . 
ft 
P 

(T> 
a-

|-r| 

O 
a s 
U l 

•Tl 

P 

3 f t 

o 
• i 
7? 
O 

3 
f t 
o 
3 " 
P 
3 
co 

o 
"1 
CD 

P 

O 
3 
CO 
3" 

3 

f t 

g 
3 
P 
3 
P 

OQ 
ft 
3 
f t 

a. ft o 

3 
P ?r 
5' 

OQ 

3 
T3 
C 
CO 

P 
3 
a. 
o 

3" 
f t 

O 

a* 

206 



The crop growth model may calculate e.g. biomass production, nutrient uptake in 

course of time, (total) nutrient use efficiency, changes in the pool of plant available 

nutrients, etc. The pool of plant available nutrient is an important growth-determining 

factor in this model. The nutrient speciation and distribution as calculated with the soil 

chemical model can be used to define this pool. 

Step 3 encompasses the determination of e.g. optimal nutrient application rate. In this 

step a mathematical procedure optimizes nutrient management and nutrient application 

using data on farm profitability, crop growth, soil nutrient status, crop production and 

crop quality and legislative and environmental boundary conditions. To carry out the 

necessary calculations in step 2, the models need relevant input information, e.g. 

weather conditions, soil and crop characteristics, CaC^ extraction data, etc. Moreover, 

the calculation results of one model can be used as input in one of the other models. 

The proposed concept of nutrient management includes several inter-connected and 

innovative aspects: 

• the use of the CaCl2 soil extraction procedure to standardize the equilibration of 

the liquid and solid phase of the soil under study (step 1); 

• the use of CaCl2 soil extraction data in a soil chemical model and the 

calculation of nutrient speciation and distribution (step 2); 

• a mechanistic approach of the soil-plant-nutrient relationships in agricultural 

soil using a soil chemical, soil microbial, soil hydraulic and crop growth model 

(step 2); 

• the use of a mathematical procedure to optimize nutrient management taking 

into account farm specific and agricultural demands and legislative and 

environmental boundary conditions (step 3). 

The building blocks of the framework, i.e. the 0.01 M CaCb extraction procedure, a 

soil chemical model, a crop growth model, a microbial model, a soil hydraulic model 

and optimization procedures, are available but still need to be integrated into a 

computer model. Further, the framework has to be tested using data from laboratory, 

pot and field experiments. 
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10.3.2 Examples showing perspectives framework 

This section presents some examples showing the perspectives of the proposed 

framework. The examples are restricted to the use of the CaCU procedure and the soil 

chemical model in combination with a crop growth model or a soil hydraulic model. 

See section 10.2.3. for a description of soil A and B and their CaC^ extraction results. 

Example 1: Effect offertilization on cation distribution 

This example studies the effect of fertilization with 300 kg ha"1 K on the distribution of 

Ca, Mg, K, Na and CI over the liquid phase and adsorptive phase of soil A. K is added 

via KC1 and the applied K is homogeneously distributed over the top 5 cm of the 

plough layer. Table 9 gives the results of the model calculations. 

Addition of 300 kg ha"1 K via KC1 leads to a small decrease of the Ca, Mg and Na 

concentrations at the adsorptive phase but to a considerable increase of the K 

concentration. The addition of 300 kg ha"1 K resulted into a higher content of all 

nutrients in the liquid phase. As expected, the increase in the liquid phase was 

considerable for K and CI. This example shows that the effect of the addition of 

fertilizers on the distribution of cations can be calculated using the soil chemical 

model in combination with 0.01 M CaCl2 procedure. 

TABLE 9. Effect of fertilization with 0 and 300 kg ha"1 K on the distribution of Ca, 

Mg, K, Na and CI over the liquid and adsorptive phase of soil A. Soil water content is 

set at 0.3 kg water kg"1 soil. Results of the adsorptive phase are expressed in log (mol 

kg"1 soil) and the results of the liquid phase in log(mol 0.3 l"1 water). 

Phase 
Adsorptive 

Liquid 

Element 
Ca 
Mg 
K 
Na 
Ca 
Mg 
K 
Na 
CI 

K-application, kg ha"1 

0 
-1.443 
-1.863 
-3.219 
-4.149 
-3.979 
-4.201 
-4.699 
-4.932 
-3.485 

300 
-1.448 
-1.872 
-2.735 
-4.216 
-3.310 
-3.535 
-3.879 
-4.659 
-2.774 
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Example 2: Effect of plant nutrient uptake on nutrient distribution 

In this example the effect of K uptake on the K concentration of the liquid phase and 

adsorptive phase has been calculated for soils A and B. Total K. content in soil B is 

higher than in soil A. In both soils the water content is set at 0.3 kg water kg"1 dry soil. 

Figure 6a gives the K uptake during a growing period of 100 days as calculated with 

the crop growth model. In 100 days 200 kg K ha"1 is taken up. 

At the start, the K. concentration in the liquid phase is higher in soil B than in soil A, 

because the K. status of soil B is higher (Figure 6b). In the first 20-30 days of the 

growing period when K uptake is small, K concentration in the liquid phase lowers 

gradually. In the period from day 30 to 75, K uptake is high and K concentration in the 

liquid phase lowers quickly. In the period from day 75 to 100, K uptake levels off and 

as a result K concentration of the liquid phase levels off. The decrease in K 

concentration in soil B is higher than in soil A and a direct result from the high affinity 

sites B-II. These sites will only release enough K when K concentration in the liquid 

phase is much lower compared to A-I and B-I. Figure 6c shows the time course of the 

K concentration at the adsorption sites A-I in soil A and at the adsorption sites B-I and 

B-II in soil B. K concentration at B-II is much higher than at B-I although the total 

negative charge of B-II is only 0.025 mol(-) kg"1 soil. In soil B the major part of K is 

released from B-II. The decrease in K concentration of B-I is relatively small. 

This example shows that the combined use of the CaCl2 extraction procedure, a soil 

chemical model and a crop growth is promising for estimating nutrient concentration 

of the liquid phase and adsorptive phase CEC during a growing season. 
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FIGURE 6. The K uptake of a crop during a growing period of 100 days (a), the K 

concentration of the soil solution in soil A and B (b), and the calculated K 

concentration at A-I, B-I and B-II (c). 
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Example 3: Effect soil moisture content on nutrient distribution, speciation and 

leaching 

In this example the effect of varying moisture content, i.e. 1, 0.5 and 0.1 kg kg"1 dry 

soil, on speciation, distribution and leaching losses is estimated for the top 5 cm of the 

plough layer of soil A. Water holding capacity of soil A is 0.5 kg kg"1 dry soil. 

Lowering moisture content resulted in a (small) decrease of the Ca and Mg 

concentration at the adsorptive phase and a small increase of K and Na concentration 

(Table 10). In the liquid phase the concentration of all species increased when 

moisture content lowered. Lowering moisture content to 0.5 and 0.1 kg water per kg 

soil, resulted in the formation of CaHP04, CaH2P04
+, MgHPQ, and MgH2P04

+. The 

effects of these changes in speciation on plant nutrient availability need more research. 

TABLE 10. Effect of moisture content on the cation concentration in the adsorptive 

phase in mol kg"1, and on the presence and concentration of species in the liquid phase 

in log(mol l"1 water). Species in the liquid phase are omitted when log(mol l"1 water) 

was lower than -7. 

Phase 
Adsorptive 

Liquid 

Species 
Ca 
Mg 
K 
Na 
H+ 

Caz+ 

CaHPC-4 
CaH2P04

+ 

cr 
K+ 

Mgz+ 

MgHP04 

MgH2P04
+ 

N03" 
Na+ 

H2P04" 
HP<V" 

Moisture content, kg. kg"1 c 
1 
3.602* 10"2 

1.365*10~2 

6.026* 10"4 

7.079* 10"5 

-6.281 
-3.457 

-2.963 
-4.177 
-3.678 

-3.891 
-4.407 
-5.288 
-6.134 

0.5 
3.601 *10"2 

1.364*10"2 

6.202* 10"4 

7.878* 10"3 

-6.118 
-3.146 
-6.590 
-6.830 
-2.662 
-4.009 
-3.368 
-6.68 
-6.945 
-3.590 
-4.205 
-4.981 
-5.959 

rysoil 
0.1 
3.600* 10"2 

1.363*10"2 

6.459* 10"4 

9.317*10"5 

-5.705 
-2.433 
-5.545 
-5.727 
-1.963 
-3.635 
-2.654 
-5.657 
-5.813 
-2.891 
-3.776 
-4.299 
-5.576 
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The calculated leaching losses are nil when moisture content is 0.1 and 0.5 kg kg'1 dry 

soil; namely the soil holds all water. When moisture content is 1.0 kg kg"1 dry soil, 

water is transported to the underlying soil layer until water content in the top layer is 

0.5 kg kg"1 dry soil (0.3 * 106 kg ha"1 water will leach when dry weight of the top layer 

equals 0.6 * 106 kg ha"1). Using the N03 and Ca concentrations in liquid phase as 

calculated with the soil chemical model, the estimated loss of N03 and Ca will equal 

3.6 and 6.4 kg ha"1, respectively. 

This example shows that the combined use of CaCl2 extraction procedure, a soil 

chemical model and a hydraulic model may estimate nutrient distribution, nutrient 

speciation and nutrient losses under varying soil moisture conditions. 

10.4 Conclusions 

Nutrient management in agricultural farms has to change to comply with the 

increasing demands and boundary conditions of market, society and industry which 

become more and more strict. Nutrient management decision-making must integrate 

these demands and must optimize manure and fertilizer applications towards maximal 

profit, within boundary conditions. 

The sensitivity analyses have made clear that the combined use of the standardized 

CaCl2 procedure and a soil chemical model form a sound basis for a better 

understanding of nutrient speciation and distribution during CaCl2 extraction and 

under field conditions. At this moment the extended use of the CaCl2 procedure and 

the soil chemical model is hindered because relevant soil input characteristics, e.g. 

quantity and characteristics of the adsorption sites, content of oxides, formation 

constants, solubility products etc, are not or not readily available. The determination of 

these characteristics needs further study. 

The proposed framework for nutrient management is based on a mechanistic 

understanding of the soil-plant-nutrient relationships. A soil chemical, soil hydraulic, 

soil microbial and crop growth model are linked to judge the actual nutrient status and 

to calculate future status. An important innovative aspect of the framework is that the 

multi-nutrient 0.01 M CaCl2 soil extraction method is used as a standard method to 

equilibrate the solid and liquid phase of a soil sample. Subsequently, the composition 
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of the liquid phase is measured via standard procedures and used as input in asoil 

chemical model. This input together with additional information on characteristics of 

eg the solid phase makes that the soil chemical model can execute the desired 

calculations. The examples have shown that the perspectives of using the framework 

for improvement of nutrient management are promising. 

Precision agriculture and real-time simulation are helpful concepts in optimizing 

nutrient management. Integration and combination of the proposed framework of 

nutrient management decision-making in precision agriculture and real-time 

simulation is possible. Such integration may lead to an acceleration of the introduction 

and implementation of good nutrient management on agricultural farms. 

The effects of the MINAS policy of the Dutch government on nutrient management in 

agriculture indicate that the introduction and implementation of adjusted nutrient 

management has high priority. 
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SUMMARY 



SUMMARY 

Introduction 

Farm management is governed by a continuous process of decision-making on 

strategic, tactical and operational levels, so as to comply with legislation and demands 

of market, industry and society. In this process, economical, environmental, 

legislative, agricultural and farm specific boundary conditions have to be integrated 

and profits optimized. Such decision-making is only possible when data of the actual 

status of soil, plant, farm economics, etc. are readily available, and when practical 

tools are available to evaluate the present status and to predict the future status after 

execution of farm activities. 

Nutrient management is a major topic in farm management for various reasons. It 

determines crop yield and crop quality (i.e. financial crop yield), surpluses of nutrients 

may result in nutrient losses to the environment, and fertilizer costs contribute to the 

total farm production costs. It is postulated that the value of current soil and plant 

testing programs in nutrient management is limited, since most programs are based on 

'trial and error' methods and lack a mechanistic underpinning in terms of relevant soil-

plant-nutrient relationships. Moreover, most programs are single nutrient programs. 

Aim of the thesis was to improve the understanding of the (bio)availability of nutrients 

in soil to agricultural crops and, thereby, to improve the decision-making process in 

nutrient management of crop production systems. The specific objectives were as 

follows: 

• to test and improve 0.01 M CaC^ as multi-nutrient soil extractant in soil testing 

programs; 

• to provide a sound mechanistic interpretation of the results of the multi-nutrient 

soil extractant 0.01 M CaCl2; 

• to develop a conceptual framework that links results of the multi-nutrient soil 

extractant mechanistically to nutrient demand of crops. 
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Detailed studies 

Eight detailed studies are presented in Chapters 2-9 which increases the understanding 

of the basic mechanisms that occur during the extraction of nutrients from soil with 

CaCl2. The perspectives of the design of a multi-nutrient 0.01 M CaCl2 soil testing 

program is evaluated. Much attention has been paid in the studies to the nutrients Ca, 

Mg and K. The results of the detailed studies were the basis for the set up of a 

conceptual framework for nutrient management decision-making (Chapter 10). 

Literature is reviewed on the perspectives of current soil and plant testing programs as 

a tool for optimization of fertilization strategies (Chapter 2). Most of the current 

programs turn out to be single nutrient programs, are site specific and focus on 

maximal crop production or maximal financial crop yield and do not take 

environmental considerations into account. The analytical procedures in the programs 

are labour intensive and time-consuming. Data are not readily available and its 

reliability some times questionable. The fertilizer recommendations in the programs 

are deduced from 'trial and error' methods and lack a mechanistic underpinning in 

terms of relevant soil-plant-nutrient relationships. Present day computer technology is 

seldom used to refine, optimize or develop more dynamic fertilizer recommendations. 

It is concluded that most of the current soil and plant testing programs are not a 

valuable tool for nutrient management. 

Economical and operational aspects of 0.01 M CaCl2 as a multi-nutrient soil extractant 

make the procedure attractive for the development of a 0.01 M CaCl2 soil testing 

program. A literature review has been carried out on the soil chemical, analytical and 

plant nutritional aspects of CaCl2 solutions as a soil extractant (Chapter 3). CaCl2 

solutions are often used as a single nutrient extractant and the amount of plant nutrient 

extracted turns out to be sensitive for differences in sample treatment and extraction 

procedure. Therefore, the 0.01 M CaCl2 soil extraction procedure must be 

standardized. Calibration studies show reasonable relationships between nutrient 

elements extracted by the 0.01 M CaCl2 procedure and conventional procedures. It is 

concluded that a 0.01 M CaCl2 soil testing program is a promising tool for 

optimization of nutrient management. 
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In the current soil drying protocol of the 0.01 M CaC^ procedure, soils are oven dried 

at 40°C for 24h. From literature it is well known that soil drying may affect the amount 

of nutrient element extracted compared to moist soils. Chapter 4 gives the results of an 

explanatory study in which the effect was determined of oven drying temperature and 

forced-air ventilation on pH and the amount of soluble organic N (org-N), NH4-N, 

NO3-N, ortho-P, K, Mg, Na and Mn extracted by 0.01 M CaC^. Increasing drying 

temperature and the use of forced air ventilation affected pH and most of the nutrient 

elements extracted. Mg was not affected by drying temperature and at 20° and 40°C 

not affected by forced air ventilation. There was no effect of forced air ventilation on 

K extracted but the effect of drying temperature was variable. Based on the differences 

found between moist and dried soils for pH and for nutrients, it is questionable 

whether soil drying should be recommended in the 0.01 M CaC^ procedure. If soil 

drying is preferable because of sample storage or optimization of laboratory activities, 

drying temperature should not exceed 40°C. 

A simple straightforward conversion of conventional soil testing programs into a 0.01 

M CaCl2 soil testing program has been suggested by using the relationship between 

test values of the 0.01 M CaCl2 extractant and those of conventional extractants. 

However, these relationships are often weak and an interpretation of the coefficient(s) 

of the regression equations is questionable. Therefore, a fundamental relationship has 

been deduced relating magnesium (Mg) extracted by conventional methods with Mg 

extracted from dried soils by the 0.01 M CaCl2 method (Chapter 5). The coefficients in 

the relationship are related to characteristics of the extraction procedure and Mg 

fractions in the soil. The magnitude of the actual cation exchange capacity (actual 

CEC) of the soil during CaCl2 extraction is an important explaining variable. The 

relationship has been tested for seven conventional Mg extractants. For six 

conventional extractants the explained variance was more than 0.92. We concluded 

that the derived fundamental relationship could be used for the design of a more 

mechanistically based CaC^ soil testing program for Mg. It is stated that the 

fundamental relationship can also be used for the design of a CaCl2 soil testing 

program for potassium (K). 
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The actual cation exchange capacity (CEC) of the soil during CaCl2 extraction is an 

important explaining variable in the relationship between Mg extracted by 0.01 M 

CaCl2 and six conventional Mg extractants (Chapter 5). However, determination of 

the actual CEC necessitates an extra analytical procedure. In Chapter 6 a procedure is 

tested for the estimation of the actual CEC of a soil. The study showed that the actual 

CEC could be calculated as the summation of the charge of organic carbon and clay at 

the actual pH of the soil. The actual pH equals pH measured in the liquid phase of the 

soil suspension after the CaCl2 extraction. It was concluded that the proposed 

procedure could be used for estimation of the actual CEC. 

After the 0.01 M CaCl2 procedure, still considerable amounts of exchangeable K and 

Mg are retained at the soil exchange sites. It suggests that CaCl2-extractable K of Mg 

does not equal the pool of plant available K or Mg. To test this suggestion, the pool of 

plant available K was determined via 'soil exhaustion' by maize and tomato using the 

double pot technique (Chapter 7). Dry matter production and K uptake showed a 

moderate relationship with CaCl2-extractable K. However, dry matter production 

showed a good relationship with K extracted by the unbuffered 0.01 M BaCl2 method. 

The amount of BaCl2-extractable K equalled the pool of plant available K in soils with 

less than 20% clay. In soils with more than 20% clay, K uptake exceeded BaCl2-

extractable K. It is suggested that K is released from clay particles at clay contents 

exceeding 20%. 

The unbuffered 0.01 M BaCl2 method extracts exchangeable cations. A method has 

been derived (Chapter 8) to calculate the amount of exchangeable soil Mg and K and 

the amount of Mg and K retained at the soil exchange sites after CaCl2 extraction. In 

this method the selectivity coefficients of the Ca-Mg, Ca-K and Mg-K exchange 

reactions during the CaCl2 procedure are important input variables. These coefficients 

have been determined for neutral, non-sodic soils (Chapter 8). The coefficients are 

related to one or more of the following soil characteristics: % organic C, the ratio of 

cations in the filtrate after CaCl2 extraction, the fraction of the total negative charge 

originating from clay and % clay. Generally, these characteristics are well known or 

can be estimated easily. It is concluded that the amount of Ca, Mg and K retained at 

the soil exchange sites can be calculated using the Ca, Mg and K concentrations of the 
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filtrate after 0.01 M CaC^ extraction, the deduced selectivity coefficients and the 

actual CEC (see Chapter 6). 

During the derivation of the selectivity coefficients it turned out that the total positive 

charge of cations extracted by the unbuffered 0.01 M BaC^ method (ISO 11260) did 

not equal the total negative charge of the actual CEC measured via the same method. 

A study was carried out to determine the backgrounds of this difference (Chapter 9). It 

was shown that the unbuffered BaC^ method (ISO 11260) underestimates the actual 

CEC for soils high in CEC and, therefore, it is recommended that the ISO procedure 

should be adjusted. 

Framework for nutrient management and conclusions 

In Chapter 10 the results of the studies were integrated. A conceptual framework for a 

mechanistic approach of the soil-plant-nutrient relationships in nutrient management 

has been worked out. Three steps can be distinguished in the concept. In the first step 

the multi-nutrient 0.01 M CaCl2 soil extraction procedure is used as a standardized 

procedure to give a chemical characterization of soils at a pH and ionic strength 

comparable to field conditions. In the second step a soil chemical model, crop growth 

model, microbiological model and soil hydraulic model are combined and integrated. 

The four models are linked and are the basis for a mechanistic approach of the soil-

plant-nutrient relationships in agricultural soils. In the soil chemical model the results 

of the CaCl2 soil extraction are used as input parameter. Nutrient speciation and 

nutrient distribution for different CaCl2 extraction conditions or under different soil 

field conditions can then be calculated. The pool of plant available nutrients is an 

important growth-determining factor in crop growth. The nutrient speciation and 

distribution as calculated in step 2 can be used to define this pool. In the third step, 

step 2 is coupled to an optimization procedure which optimizes fertilization and 

nutrient management to the demands on farm profitability, plant growth, soil nutrient 

status, crop production and crop quality and legislative and environmental boundary 

conditions. 

The innovative aspects in the proposed concept are: 
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• the use of the CaC^ soil extraction procedure to standardize the equilibration of 

the liquid and solid phase of the soil under study (step 1); 

• the use of CaC^ soil extraction data in a soil chemical model and the 

calculation of nutrient speciation and distribution with this model (step 2); 

• the use of the calculated nutrient speciation and distribution in a crop growth 

model (step 2); and, 

• the use of an optimization procedure to optimize nutrient managament taking 

into account farm specific and agricultural demands and legislative and 

environmental boundary conditions (step 3). 

The building blocks of the framework, i.e. the 0.01 M CaC^ procedure, a soil 

chemical model, a crop growth model, a soil microbiological model, a soil hydraulic 

model and an optimization procedures, are available but need to be integrated into a 

computer model. 

The studies presented in this thesis have increased the understanding of the availability 

of nutrients in soil to agricultural crops. The 0.01 M CaCl2 reagent turned out to be a 

promising multi-nutrient soil extractant. A sound mechanistic interpretation of the 0.01 

M CaCl2 soil extraction results is possible. A conceptual framework for nutrient 

management decision-making has been developed which links results of the multi-

nutrient soil extractant mechanistically to nutrient requirements of crops. The design 

of a multi-nutrient 0.01 M CaC^ soil testing program is possible but requires more 

research. 
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SAMENVATTING 



SAMENVATTING 

Inleiding 

In de bedrijfsvoering van landbouwbedrijven worden vrijwel continue beslissingen 

genomen op strategisch, tactisch en operationeel managementniveau om te kunnen 

voldoen aan regelgeving en eisen van de maatschappij en industrie. In dit beslisproces 

worden economische, milieukundige, wettelijke, landbouwkundige en 

bedrijfsspecifieke randvoorwaarden gei'ntegreerd en geoptimaliseerd naar een 

(maximaal) bedrijfsresultaat. Zo'n beslisproces is alleen maar mogelijk als gegevens 

over de actuele toestand van bodem, gewas, financiele situatie van het bedrijf, etc. 

makkelijk beschikbaar zijn, en wanneer hulpmiddelen ter beschikking staan om de 

actuele toestand te evalueren en om de toekomstige toestand te schatten na uitvoering 

van landbouwkundige handelingen of na zich veranderende groeiomstandigheden. 

Nutrientenmanagement is een van de belangrijkste thema's in de bedrijfsvoering van 

landbouwbedrijven. Nutrientenmanagement, en met name de uitgevoerde bemesting 

daarin, bepaalt mede de gewasopbrengst en -kwaliteit (en daarmee de financiele 

gewasopbrengst). Een te hoge bemesting kan leiden tot ongewenste neveneffecten op 

het milieu. Voor de productie van meststoffen worden eindige voorraden grondstoffen 

gebruikt en de bemestingskosten zijn een wezenlijk onderdeel van de totale 

productiekosten van bedrijven. De waarde van het huidige grond- en gewasonderzoek 

als basis voor de gewenste, snelle en adequate aanpassingen in nutrienten­

management lijkt beperkt (Hoofdstuk 2). 

Doel van dit proefschrift is bij te dragen aan het begrip van (bio-)beschikbaarheid van 

nutrienten in de bodem voor gewassen om daarmee het beslisproces omtrent 

nutrientenmanagement te verbeteren. De specifieke doelen van dit proefschrift zijn als 

volgt: 

• het testen en verbeteren van 0,01 M CaC^ als een multi-nutrient 

grondextractiemiddel; 

• te komen tot een mechanistische interpretatie van de resultaten van de 0.01 M 

CaCl2 extractieprocedure; 
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• een conceptueel raamwerk te ontwikkelen waarmee resultaten van 0.01 M 

CaCU als multi-nutrient grondextractiemiddel op een mechanistische wijze 

worden gekoppeld aan de nutrientenbehoefte van gewassen. 

Gedetailleerde onderzoeken 

Als eerste stap is een literatuuronderzoek uitgevoerd naar de perspectieven van het 

gebruik van de huidige grond- en gewasonderzoekprogramma's als hulpmiddel voor 

de optimalisatie van bemestingsstrategieen (Hoofdstuk 2). De meeste van de huidige 

programma's blijken zich te beperken tot een nutrient, zijn vaak locatiespecifiek en 

richten zich enkel op een maximale gewasproductie en maximale financiele 

gewasopbrengst. De analytische procedures en handelingen op het laboratorium zijn 

arbeidsintensief en tijdrovend en daardoor zijn data niet snel beschikbaar en is de 

betrouwbaarheid soms twijfelachtig. De bemestingsadviezen in de programma's zijn 

veelal afgeleid met behulp van empirische 'trial and error' methoden. Er ontbreekt een 

mechanistische onderbouwing in termen van relevante, wetenschappelijke bodem-

plant-nutrient relaties. De hedendaagse computertechnologie wordt niet of zelden 

gebruikt om bestaande adviezen te verfijnen c.q. te optimaliseren of om meer 

dynamische adviezen te ontwikkelen. Er is geconcludeerd dat de huidige grond- en 

gewasonderzoeksprogramma's niet goed bruikbaar zijn voor de verdere optimalisatie 

van bemestingsstrategieen. 

Economische en operationele aspecten van een 0,01 M CaCl2 oplossing als een multi-

nutrient grondextractiemiddel maakt het aantrekkelijk om de 0,01M CaCl2 

grondextractieprocedure te gebruiken voor de ontwikkeling van een 0,01 M CaCl2 

grondonderzoeksprogramma. Er is een literatuuronderzoek uitgevoerd naar 

bodemchemische, analytische en plantenvoedings aspecten van het gebruik van CaCl2 

als grondextractiemiddel (Hoofdstuk 3). CaCl2-oplossingen worden vaak gebruikt voor 

de extractie van een enkel nutrient. De hoeveelheid geextraheerd nutrient blijkt 

gevoelig te zijn voor monstervoorbehandeling en extractieprocedure. Daarom moet de 

0,01 M CaCl2 procedure gestandaardiseerd worden. Er bestaat een redelijke relatie 

tussen de hoeveelheid nutrient geextraheerd met de 0,01 M CaCl2 procedure en die 

met conventionele procedures. Er is geconcludeerd dat de 0,01 M CaCl2 procedure een 
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veelbelovend hulpmiddel is om te komen tot een meer mechanistische benadering van 

nutrientenmanagement. 

In het huidige protocol voor het drogen van grond in de 0,01 M CaCl2 procedure staat 

beschreven dat gronden moeten worden gedroogd gedurende 24 uur bij 40°C. Het is in 

de literatuur bekend dat het drogen van grond invloed heeft op de hoeveelheid nutrient 

die wordt geextraheerd. Hoofdstuk 4 geeft de resultaten weer van een onderzoek naar 

het effect van oventemperatuur en geforceerde beluchting op de pH en de 

hoeveelheden oplosbare organische N (org-N), NH4-N, NO3-N, ortho-P, K, Mg, Na en 

Mn die worden geextraheerd uit grond na extractie met 0,01 M CaCl2. Verhoging van 

de oventemperatuur en het gebruik van geforceerde beluchting had invloed op de pH 

en bij de meeste nutrienten invloed op de hoeveelheid geextraheerd nutrient. De 

hoeveelheid geextraheerd Mg was onafhankelijk van oventemperatuur en werd bij 20° 

en 40°C niet bei'nvloed door de geforceerde beluchting. Er was geen effect van een 

geforceerde beluchting op de hoeveelheid geextraheerde K terwijl het effect van 

oventemperatuur op de hoeveelheid geextraheerde K variabel was. Gelet op de 

verschillen die zijn vastgesteld tussen gedroogde en niet-gedroogde grond, is het 

twijfelachtig of in de CaCl2 procedure geadviseerd zou moeten worden om grond te 

drogen. Als toch wordt gedroogd, dan zou de temperatuur niet hoger mogen zijn dan 

40°C. 

De omzetting van conventionele grondonderzoeksprogramma's in een CaCl2 

grondonderzoekprogramma zou kunnen plaatsvinden op basis van de relatie tussen de 

hoeveelheid nutrient geextraheerd met de CaCl2 procedure en die met conventionele 

procedures. Deze relaties zijn echter vaak matig en er is geen of een beperkte 

mechanistische interpretatie mogelijk van de coefficienten in de 

regressievergelijkingen. Voor Mg is een mechanistische basisrelatie afgeleid tussen 

Mg geextraheerd volgens conventionele methoden en Mg geextraheerd met de CaCl2 

procedure (Hoofdstuk 5). De coefficienten in de relatie zijn gerelateerd aan Mg-

fracties in de bodem en karakteristieken van de extractieprocedure. De grootte van de 

actuele CEC van de grond tijdens de CaCl2 procedure blijkt een belangrijke 

verklarende variabele te zijn. De basisrelatie is getest voor zeven conventionele Mg 

extractiemiddelen. Bij zes extractiemiddelen was de verklaarde variantie meer dan 
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0.92. Er is geconcludeerd dat de basisrelatie bruikbaar is om te komen tot een ontwerp 

van een CaCl2 grondonderzoekprogramma voor Mg. De basisrelatie lijkt ook 

bruikbaar te zijn voor K. 

De actuele CEC van een grond tijdens de CaCl2 extractie is een belangrijke 

verklarende variabele in de relatie tussen Mg geextraheerd met CaCl2 en Mg 

geextraheerd met conventionele Mg extractiemiddelen (Hoofdstuk 5). Echter de 

bepaling van de actuele CEC vraagt een extra analytische bepaling. 

In Hoofdstuk 6 wordt een procedure getest voor het schatten van de actuele CEC van 

gronden. Uit de studie blijkt dat de actuele CEC berekend kan worden als de som van 

de lading van de organische koolstof en kleimineralen bij de actuele pH van de bodem. 

De actuele pH is hierbij gelijk aan de pH gemeten in de vloeistoffase van de 

bodemsuspensie bij de 0,01 M CaCl2 extractie. Er is geconcludeerd dat de 

voorgestelde methode bruikbaar is om de actuele CEC te schatten. 

Bij de 0,01 M CaCl2 procedure blijft nog een aanzienlijke hoeveelheid omwisselbare 

K en Mg achter op de omwisselplaatsen van de bodem. Het suggereert dat de 

hoeveelheid CaCl2 extraheerbaar K of Mg niet gelijk is aan de voorraad 

plantbeschikbare K en Mg in de bodem. Om dit te testen is de voorraad 

plantbeschikbaar K in gronden bepaald door uitputting van de gronden met mai's en 

tomaten. Daarbij is gebruik gemaakt van de dubbele-pottechniek (Hoofdstuk 7). De 

drogestofproductie en de K-opname vertoonden een matige relatie met de hoeveelheid 

K die werd geextraheerd met CaCl2. Echter, de drogestofproductie vertoonde een 

goede relatie met de hoeveelheid K geextraheerd via de niet-gebufferde 0,01 M BaCl2 

methode. In gronden met minder dan 20% klei kwam de hoeveelheid BaCl2 

extraheerbaar K overeen met de voorraad plantbeschikbare K. In gronden met meer 

dan 20% klei was de K-opname groter dan de hoeveelheid BaCl2 extraheerbaar K. De 

resultaten suggereren dat in deze gronden K vrijkomt uit kleimineralen. 

De niet-gebufferde 0,01 M BaCl2 extraheert omwisselbare kationen uit een grond. Er 

is een methode afgeleid (Hoofdstuk 8) waarmee de totale hoeveelheden omwisselbare 

K en Mg in een bodem en de hoeveelheden K en Mg die achterblijven aan het 

omwisselcomplex na CaCl2 extractie, kunnen worden berekend. In deze methode zijn 

de selectiviteitscoefficienten van de Ca-Mg, Ca-K en Mg-K omwisselreacties tijdens 
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de 0,01 M CaCl2 procedure belangrijke inputvariabelen. Deze coefficienten zijn 

bepaald voor neutrale, niet-zoute gronden (Hoofdstuk 8). De coefficienten zijn 

gerelateerd aan % organische koolstof, de ratio van kationen in het filtraat na de CaCl2 

extractie, de fractionele bijdrage van kleimineralen aan de totale negatieve lading van 

een grond en het percentage klei. Deze karakteristieken zijn in het algemeen bekend of 

kunnen makkelijk geschat worden. Er is geconcludeerd dat de hoeveelheden Ca, Mg 

en K die achterblijven aan het omwisselcomplex na CaCl2 extractie, berekend kunnen 

worden met behulp van gegevens over de samenstelling van het filtraat na de CaCl2 

extractie, de afgeleide selectiviteitscoefficienten en de actuele CEC van de gronden. 

Bij de afleiding van selectiviteitscoefficienten bleek dat de totale positieve lading van 

kationen, die werden geextraheerd met de niet-gebufferde 0,01 M BaCl2 methode (ISO 

11260), niet gelijk was aan de totale negatieve lading van de actuele CEC die met 

dezelfde methode werd gemeten. Er is een studie uitgevoerd naar de oorzaak van dit 

verschil (Hoofdstuk 9). Er is aangetoond dat de niet-gebufferde BaCl2 methode de 

actuele CEC onderschat voor gronden met een grote CEC. Er is geadviseerd om de 

ISO-procedure van de niet-gebufferde BaCl2 methode aan te passen. 

Raamwerk voor nutrientenmanagement en conclusies 

De resultaten van de Hoofdstukken 2 tot en met 9 zijn in Hoofdstuk 10 gei'ntegreerd en 

uitgewerkt tot een conceptueel raamwerk voor een mechanistische benadering van 

bodem-plant-nutrient relaties in nutrientenmanagement. In het concept worden drie 

stappen onderscheiden. In de eerste stap wordt de gestandaardiseerde 0,01 M CaCl2 

grondextractieprocedure gebruikt om te komen tot een chemische karakterisering van 

gronden bij een pH en ionsterkte vergelijkbaar met die onder veldomstandigheden. In 

de tweede stap worden een bodemchemisch model, een gewasgroeimodel, een 

microbiologisch model en een bodemfysisch model gecombineerd en gei'ntegreerd. De 

vier modellen werken simultaan en vormen de basis voor een meer mechanistische 

benadering van bodem-plant-nutrient relaties in landbouwgronden. Het 

bodemchemisch model gebruikt de gegevens van de CaCl2 grondextractieprocedure 

als inputparameter. Het bodemchemisch model kan de speciatie en verdeling van 

nutrienten ook berekenen bij een afwijkende uitvoering van de CaCl2 procedure en/of 
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bij afwijkende veldomstandigheden. De voorraad plantbeschikbaar nutrient in een 

bodem is een belangrijke groei-bepalende factor voor gewassen. De speciatie en 

verdeling van nutrienten zoals berekend in stap 2 kan gebruikt worden om deze 

voorraad te definieren. In stap 3 wordt stap 2 gekoppeld aan een optimalisatie 

procedure die bemesting en nutrientenmanagement optimaliseert, rekening houdend 

met eisen met betrekking tot winstgevendheid, gewasgroei, bodemvruchtbaarheid, 

gewasproductie en -kwaliteit en met wettelijke en milieukundige randvoorwaarden. 

De innovatieve aspecten van het voorgestelde concept zijn: 

• het gebruik van de CaCl2 grondextractieprocedure om de evenwichtsinstelling 

tussen de vloeibare en vaste fase van gronden te standaardiseren (stap 1); 

• het gebruik van resultaten van de CaC^ grondextractie in een bodemchemisch 

rekenmodel en de berekening van de speciatie en verdeling van nutrienten in 

een grond met een bodemchemisch model (stap 2); 

• het gebruik van de berekende speciatie en verdeling van nutrienten in een 

gewasgroeimodel (stap 3); en, 

• het gebruik van een optimalisatieprocedure om nutrientenmanagement te 

optimaliseren rekening houdend met bedrijfsspecifieke, landbouwkundige, 

wettelijke en milieukundige randvoorwaarden (stap 3). 

De bouwstenen, dat wil zeggen de 0.01 M CaC^ procedure, het bodemchemisch 

rekenmodel, het gewasgroeimodel, het microbiologisch model, het bodemfysisch 

model en de optimalisatieprocedure, zijn beschikbaar maar moeten nog wel 

geintegreerd worden in een computermodel en vervolgens getoetst worden in de 

praktijk. 

De studies die in dit proefschrift zijn gepresenteerd, hebben het begrip omtrent de 

beschikbaarheid van nutrienten in de bodem voor planten vergroot. Een 0,01 M CaC^ 

oplossing is een veelbelovend multi-nutrient grondextractiemiddel.. Het was mogelijk 

de resultaten van de CaCl2 procedure te verklaren met behulp van een mechanistische 

benadering. Het conceptueel raamwerk voor een nutrientenmanagement beslisproces, 

waarin via een mechanistische benadering de resultaten van een 0,01 M CaC^ grond 

extractie worden gekoppeld aan de nutrientenbehoefte van gewassen, biedt 
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perspectieven voor een verdere ontwikkeling. De verdere ontwikkeling van een multi-

nutrient CaCl2 grondonderzoekprogramma vraagt nog wel veel onderzoektijd. 
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