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Steverink, D.W.B. Optimising insemination strategies in pigs. 
Timing of insemination is one of the factors that influence reproduction efficiency 

because of its direct effect on fertilisation. The research described in this thesis dealt 

with possibilities to optimise insemination strategies at farms. From experiments it 

could be concluded that fertilisation results were not very sensitive to variation in the 

number of inseminated sperm cells in the range of 1 x 109 to 6 x 109 sperm cells. However a 

combination of suboptimal circumstances like a low sperm dosage and substantial loss of 

sperm cells due to backflow during insemination resulted in sub-optimal fertilisation. A 

mathematical model was described of chances on fertilisation in relation to the interval 

between insemination and ovulation in sows. A PIG Simulation model for Insemination 

Strategies (PIGSIS) was developed. Many physiological processes are included in PIGSIS 

e.g. fertilisation, embryonic mortality (due to: degeneration, maternal recognition of 

pregnancy and embryonic uterine capacity) and foetal mortality (due to foetal uterine 

capacity). Optimal timing of insemination in PIGSIS is based on specific farm parameters 

like oestrus duration and the relation between weaning to oestrus interval and oestrus 

duration since oestrus duration is a reasonable estimate for ovulation. PIGSIS can be used 

to study reproduction results in relation to insemination strategies on farms. 
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STELLINGEN 

1. Voor een goede inseminatiestrategie op bedrijfsniveau moet bij het varken naast het 
begin ook het eind van de bronst worden bepaald. (ditproefschrift) 

2. Inseminatiestrategieen bij varkens moeten aan de bedrijfssituatie worden aangepast 
en niet andersom. (dit proefschrift) 

3. Aangezien met 1 miljard spermacellen vergelijkbare bevruchtingsresultaten kunnen 
worden gehaald als met 3 miljard spermacellen (dit proefschrift) zouden varkens-KI 
organisaties een diversiteit in dosisgrootte aan kunnen bieden afhankelijk van de 
wensen van een bedrijf. 

4. Terugvloei van sperma na inseminatie heeft onder normale omstandigheden geen 
invloed op de bevruchtingsresultaten bij varkens. (ditproefschrift) 

5. Simulatiemodellen zijn een goed middel om de kennis van procesonderdelen, 
voortgekomen uit afzonderlijke experimenten, te koppelen en daardoor inzicht te 
vergroten in het gehele proces. 

6. In het onderzoek naar embryonale sterfte wordt het effect van bevruchting meestal 
niet onderkend. 

7. De onzekerheid over het toekomstige beleid van de overheid is een factor die meer 
stagnerend is voor bedrijfsontwikkeling in de agrarische sector dan de lage 
opbrengstprijzen. 

8. Door het instellen van een mestquotum voor burgers zou er veel begrip voor 
mestproblematiek in de agrarische sector kunnen ontstaan. 

9. De voortdurende reorganisaties van de Wageningen Universiteit 
(Landbouwhogeschool, Landbouwuniversiteit Wageningen) laat weinig ruimte 
voor een evaluatie, zodat de kwaliteit van de veranderingen nauwelijks beoordeeld 
wordt. 

10. De wereld zou er waarschijnlijk anders hebben uitgezien als God zijn dochter zou 
hebben gestuurd in plaats van zijn zoon. 

11. Een goede inseminatiestrategie dekt de taak van een beer. 

12. Het leven is een groot feest maar je moet wel zelf de slingers ophangen. 

Stellingen behorend bij het proefschrift: 
"Optimising insemination strategies in pigs", 
D.W.B. Steverink, 
Wageningen, 22 ok to ber 1999 
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Voorwoord 

Op de middelbare school fantaseerden klasgenoten over de boeken die ze later 

gingen schrijven. Voor mij was in die tijd een ding duidelijk dat ik daar nooit over zou 

dromen. Maar zie hier nu heb ik toch een boek geschreven en ben ik wellicht een van de 

weinigen uit die klas die dat heeft gedaan. 

Tijdens dit vier jarig onderzoek hebben veel mensen mij gesteund en geholpen en 

deze wil ik graag bedanken. Op de eerste plaats waren dat Bas Kemp en Nicoline Soede. 

Jullie waren voor mij het 'duo' van steun. De een voor de grote lijnen en de ander voor 

de kritische blik op de details. Het pad leidend tot eenstemmigheid ging soms over 

hobbels van spraakversnelling en stemverheffing, maar op het eind werd de lucht altijd 

geklaard door gezellig een shaggie op te steken. Nicoline en Bas bedankt voor die vele 

uren van begeleiding. Beste Jos, promotor, in de eerste twee jaar was de begeleiding 

intensiever dan de laatste twee jaar doordat je naar Utrecht bent gegaan. De PIT werkte 

ook nog eens niet mee om de stukken heen en weer te krijgen. Desondanks heb ik veel 

steun van je nuchtere 'niet-repro' kijk op mijn manuscripten gehad. Ook wil ik Wiebe 

Koops bedanken voor de intensieve ondersteuning in het laatste jaar. Vele keren heb ik 

aan je bureau gestaan om iets over mathematische modellen te vragen en altijd wist je 

een goede oplossing voor mijn problemen. 

Verder waren er tijdens experimenten altijd veel helpende handen aanwezig bij 

Repro, maar die van Emmy waren er bijna altijd. Bedankt Emmy voor de hulp en 

gezelligheid tijdens het experiment. Ook studenten zijn van die harde werkers waarvan 

ik veel heb kunnen leren, of niet Patrick en Frank? Ik zou dit proefschrift ook niet op 

deze manier af hebben kunnen ronden zonder dat agrarische bedrijven gegevens over 

bronstduur zouden bijhouden. Daarom wil ik dan ook fam. Rexwinkel, fam. Huirne, 

fam. Oldenampsen, fam. Naves en Anton Oudenampsen (KI-Centraal-Nederland) 

bedanken voor hun inzet tijdens het bijhouden van de bronstduur op de bedrijven. 

Collega's op je werk zijn een van de belangrijkste factoren die een dag wel of niet 

kunnen laten slagen. Ik moet zeggen dat ze bijna altijd slaagden bij Veehouderij. 

Gezellige club, niet in de laatste plaats bij de bitterballen- en frikadellenparty's. De AIO-

zolder is ook een van de opmerkelijkste hokken waar mensen werken op Zodiac, zeker 



nu er een airco (Jos, ook daar voor hartelijk dank) staat. Henry, John, Gustavo, Pieter en 

vele anderen bedankt voor de gezelligheid op de AlO-zolder en bij Veehouderij. Pieter, 

ik vind het dan ook fijn dat je als een van mijn collega's mij wilt ondersteunen als 

paranimf tijdens mijn promotie. 

Familie, broers en zus bedankt voor de interesse in mijn werk. Ik ben blij dat 

Maurits als grote broer namens de familie naast mij wil staan als paranimf. De eeuwige 

interesse en ondersteuning kwamen van Papa en Mama. Niet alleen de afgelopen 4 jaar 

maar al precies 32 jaar. Als je een slechte dag hebt moet je eens een keer naar ze bellen, 

binnen 10 minuten zorgen zij ervoor dat je het weer helemaal ziet zitten. Daarom wil ik 

dit werk dan ook graag aan jullie opdragen. 

Tot slot Bart, een 24-uurs begeleiding waar iedereen jaloers op zou zijn, bedankt 

voor alles wat je me hebt geleerd. En sorry dat je nu ook alles van inseminatie-

strategieen bij varkens weet. 
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General introduction 

INTRODUCTION 

Reproductive efficiency in pigs can be defined as the total number of piglets 

born per sow per year at farms which has large variation between farms (Clark and 

Leman, 1987; Stein et al., 1990; Dewey et al., 1995). Various factors are involved in the 

reproduction efficiency such as: housing system (O'Grady et al., 1983), season 

(Koketsu et al., 1997; Xue et al., 1994 d406), parity (Xue et al., 1994), oestrus detection 

strategy (Dewey et al., 1995), lactation length (Clark and Leman, 1987) and weaning 

to oestrus interval (Vesseur et al., 1994). Reproduction efficiency can be seen as an 

accumulation of many physiological processes (Figure 1). One of the first 

physiological processes in this accumulation is fertilisation of the ovulated oocytes. 

Besides fertilisation, many events occur during a reproduction cycle. A few 

days after weaning (on average 5 to 6 days) sows start to show oestrus (Figure 1). 

WOI = 
IO = 
Onset O = 
EndO = 
F = 
EM = 
FM = 

Weaning to oestrus interval 
Insemination to ovulation interval 
Onset of oestrus 
End of oestrus 
Fertilisation 
Embryonic mortality 
Foetal mortality 

Figure 1. Time scale of reproduction events starting at weaning and ending in the 
number of piglets at farrowing of sows. 



General introduction 

During the oestrus period, either natural mating or artificial insemination can be 

performed. At insemination or mating, billions of sperm cells are deposited at the 

utero-cervical junction. Due to uterine contractions, sperm cells migrate through the 

uterine horns (1.5 m) to the oviducts (Einarsson, 1985). A relatively small number 

(about 0.01%) of sperm cells reach the oviduct where they are temporarily stored in 

the sperm reservoir and are protected against reduction in motility, in viability and 

in the capacity to fertilise (Overstreet et al., 1980; Suarez et al., 1991). At ovulation the 

remained sperm cells are released from the sperm reservoir and move to the 

ampullary-isthmic junction where fertilisation takes place if the oocytes and sperm 

cells are still capable to fertilise. The fertile lifespan of oocytes and sperm cells, 

border the period in which insemination can lead to successful fertilisation (Hunter, 

1995). This is confirmed by a study of Soede et al. (1995a) in which it was concluded 

that there was an optimal period for insemination in relation to the moment of 

ovulation. The best fertilisation results were found when insemination was 

performed between 24 and 0 h before ovulation. In their study a normal commercial 

sperm dosage was used with 3xl09 sperm cells. Similar results were found in 

Germany and Denmark (Waberski et al., 1994; Nissen et al., 1997). Waberski et al. 

(1994) defined an optimal insemination time between 12 and 0 h before ovulation in 

gilts. Nissen et al. (1997) found the highest reproduction results in terms of number 

of day 10 embryos, of farrowing rate and of litter size in sows that were inseminated 

between 28 h before ovulation and 4 h after ovulation. From these studies it can be 

concluded that the time interval between insemination and ovulation is related to the 

fertilisation results and reproduction results. Good insemination results will only be 

obtained within a restricted time interval from ovulation. Therefore, it will be 

important to predict the moment of ovulation for optimising fertilisation and 

defining a good insemination strategy. 

Some potential predictors for ovulation have been studied such as: onset of 

oestrus (Table 1), vaginal mucus conductivity (Stokhof et al., 1996), vaginal 

temperature (Soede et al., 1997) and follicle diameter (Nissen et al., 1995). 

Unfortunately, these parameters did not properly predict the moment of ovulation. 

The preovulatory LH surge could be a good predictor (Soede et al., 1994) but current 

methods are not suitable for practical application on commercial farms. From studies 

shown in Table 1, it is concluded that ovulation takes place at a rather fixed moment 

during oestrus. The average relative moment of ovulation varied between 67% and 
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72% of oestrus. This means that the oestrus duration could be a good estimator of 

ovulation but unfortunately this estimator is a retrospective one. 

Table 1. Mean ± SD and range of the oestrus duration, relative ovulation during 
oestrus and the moment of ovulation after onset of oestrus. 

Oestrus duration 

Mean± 

60 ±15 

56 ±8 

50 ±13 

60 ±11 

60 ±14 

(h) 

SD Range 

32-96 

46-73 

24-88 

32-88 

30-89 

Relative ovulation 

(%) 

Mean ± SD 

71±ndi> 

68 ±8 

72 ±15 

67 ±8 

71 ±14 

Range 

35-100 

54-78 

39-133 

42-94 

38-118 

Ovulation after 

onset of oestrus (h) 

Mean ± SD Range 

45 +13 15-85 

37 + 2 

35 + 8 

41 + 8 

nd 

35-43 

10-58 

22-58 

17-70 

N 

483 

20 

144 

91 

91 

Reference5 

1 

2 

3C 

4 

5 

"1: Weitze et al. (1994); 2: Mburu et al. (1995); 3: Soede et al. (1995a); 4: Soede et al. (1995b); 5: Nissen et al. 
(1997); 

b nd = not determined; 
1 Sows with a weaning to oestrus interval of more than 8 days were excluded (n=2). 

Oestrus duration shows variation between experiments and also within 

experiments (Table 1). One of the factors affecting oestrus duration is the interval of 

weaning to onset of oestrus. In a study of Kemp and Soede (1996) the oestrus 

duration decreased from 61 to 53, to 49 and to 38 h when onset of oestrus occurred at 

day 3 to day 4, 5 and 6 after weaning, respectively. Similar negative relations 

between oestrus duration and weaning to oestrus interval were found by Weitze et 

al. (1994) and Nissen et al., (1995). When more factors, that are related to oestrus 

duration, become available, oestrus duration might be predictable from which 

ovulation can be estimated. 

STUDY OBJECTIVE 

From the foregoing it can be concluded that there is a lack of knowledge with 

respect to the improvement of insemination strategies in pigs. The research described 

in this thesis deals with the possibility of developing a method to optimise 

insemination strategies on individual farms. This method should aid to a better 

understanding of the reproduction process and the effects of timing of insemination. 

To reach this goal different physiological processes like oestrus, ovulation, 

4 
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embryonic and foetal mortality will be combined. An optimal insemination strategy 

in this thesis is defined as: a maximal fertilisation with an efficient use of semen and 

a low number of inseminations. There are two important issues to consider in the 

development of an optimal insemination strategies (1) the effect of the moment of 

insemination in relation to ovulation on fertilisation results, and (2) possibilities to 

predict the moment of ovulation. 

For this thesis three objectives are formulated: 

1. Increase insight in the effects of the interval between insemination and 

ovulation on fertilisation results. 

2. Increase knowledge on the possibilities of predicting the moment of 

ovulation of sows at farm level. 

3. Develop a method which can be used for optimising insemination strategies 

at commercial farms. 

The variety of factors influencing the reproduction makes a model and simulation 

approach of interest. A mathematical model might be helpful since underlying 

processes can be controlled. 

OUTLINE OF THE THESIS 

This study consists of 3 parts presented as Chapter 2, 3 and 4 in this thesis. In 

Chapter 2 the relation of the interval between insemination and ovulation and 

fertilisation was studied. The sensitivity of this relation is studied by using different 

semen dosages (Chapter 2.1) and by investigating the effect of the amount of semen 

backflow (Chapter 2.2). The knowledge about fertilisation in relation to insemination 

to ovulation interval is summarised in Chapter 2.3, in which a mathematical model 

for conception and fertilisation is presented. 

In Chapter 3, differences in oestrus duration at farm level are studied. The 

consistency of the average oestrus duration of farms is studied and to what extent 

this information could be used in a prospective way to predict oestrus duration on 

farms. The effects of insemination strategies, as applied on these farms, on 

reproduction results are investigated as well (Chapter 3.1). 



Chapter 1 

Chapter 4 describes the development of the PIG Simulation model for 

Insemination Strategies (PIGSIS) (Chapter 4.1). Information of Chapter 2 and 3 

together wi th literature are used for estimating parameters in PIGSIS. Sensitivity 

analyses and validation are carried out to test the accuracy of PIGSIS. 

Finally, the results of the three chapters are discussed in the General 

discussion (Chapter 5). 
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Influence of insemination to ovulation interval and sperm cell 

dosage on fertilisation in sows 

Steverink DWB, Soede NM, Bouwman EG, and Kemp B 

Animal Health and Reproduction Group, 

Wageningen Institute of Animal Sciences (WIAS) 

P.O. Box 338, 6700 AH, Wageningen, The Netherlands 

ABSTRACT 

This experiment was conducted to determine effects of sperm dosage at 
insemination on fertilisation rates and accessory sperm cells attached to day 5 
embryos. Multiparous sows (n=115) were artificially inseminated once with 1, 3 or 6 
x 109 sperm cells between 3 to 48 h before ovulation. Transrectal ultrasonography 
was performed at intervals of 4 h to determine the time of ovulation and sows were 
killed at 120 ± 5 h after ovulation to assess results of fertilisation. The insemination to 
ovulation interval is of major influence on the fertilisation rate and accessory sperm 
count. A nonsignificant but consistent increase in fertilisation rate and in number of 
accessory sperm cells due to sperm dosage was observed. In the insemination to 
ovulation interval of 12-24 h the median fertilisation rates were 95%, 100% and 100%, 
and the median accessory sperm count was 11,17 and 31 for the dosages 1, 3 and 6 x 
109 dosages, respectively. In the insemination to ovulation interval of 24-36 h the 
median fertilisation rate was 88, 95 and 97% and the median accessory sperm count 
was 6, 8 and 11 for the dosages 1, 3 and 6 x 109 dosages, respectively. No direct 
relationship was detected between embryo quality and the accessory sperm count but 
there was a relationship between insemination to ovulation interval and accessory 
sperm count. The fertilisation rate was positively correlated to the breeding value for 
litter size of the sows. In conclusion, the effects of sperm dosage on fertilisation rate 
and on accessory sperm count in sows were small and non significant, indicating 
only small effects of sperm dosage on functioning of the sperm reservoir in the sow. 

12 



Sperm cell dosage 

INTRODUCTION 

At insemination or mating in pigs, billions of sperm cells are deposited in the 

uterus. From this site, spermatozoa start to migrate towards the site of sperm storage 

which is in the first 2 cm of the caudal region of the isthmus in the oviduct (Hunter, 

1981). When sperm cells reach the reservoir, they can be stored without a reduction of 

the motility, viability and fertilisation capacity (Overstreet et al., 1980; Suarez et al., 

1991), which makes the reservoir a temporal shelter to bridge the time until fertilisation 

of oocytes. Sperm cells can be stored in the reservoir for up to 40 h (Hunter, 1981; 

Pollard et al., 1991; Raycoudhurry and Suarez, 1991). 

Relative to the inseminated number of sperm cells, only a small number reaches 

the isthmic sperm reservoir (Hunter, 1981). Before the sperm cells reach the oviduct 

they have to pass a major barrier: the uterotubal junction (UTJ) (Smith et al., 1987). 

Dead (Viring, 1980), heterologous (pigs: Baker et al., 1968; hamster: Smith et al., 1988) 

or capacitated spermatozoa (Shalgi et al., 1992) pass the UTJ not as good as normal 

spermatozoa. Spermatozoa that do not reach the sperm reservoir in time are killed by 

the hostile uterine environment. In the hamster uterus, the motility of spermatozoa 

decreases from 60% immediately before insemination to 10% at 1 h after insemination 

(Smith et al., 1988). The spermatozoa that do not reach the sperm reservoir, are 

removed by backflow (Viring and Einarsson, 1981) or local phagocytosis which is seen 

within 2 h after insemination (Pursel et al., 1978). 

Fertilisation rate is dependent on the time interval between insemination and 

ovulation. In sows, it was shown that fertilisation rate is optimal when insemination 

with 3 x 109 sperm cells occurs between 0 and 24 h before ovulation (Soede et al.,1995a). 

Nissen et al. (1996) found an optimal insemination time, with 2 x 109 sperm cells, 

between 28 h before ovulation and 4 h after ovulation, based on a high farrowing rate 

and a large litter size in multiparous sows. Furthermore, Soede et al. (1995a) showed 

that the number of accessory sperm cells attached to the zona pellucida of the embryos 

fell rapidly when the interval between insemination and ovulation increased. 

Accessory sperm represent a population of spermatozoa able to traverse the barriers of 

the female reproductive tract and partially penetrate the zona pellucida at fertilisation 

(Weitze et al., 1988; Saacke et al., 1994). With an increase of the interval between 

insemination and ovulation, the number of potentially fertilising sperm cells and, 

consequently, the accessory sperm cells and also the fertilisation rate decreased. The 

13 
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question arises whether it is possible to increase the number of sperm cells at the site of 

fertilisation by increasing the number of sperm cells in the reservoir by using a greater 

number of sperm cells at insemination. This might extend the insemination to 

ovulation interval in which good fertilisation results can be achieved compared with 

the 0-24 h found with 3 x 109 sperm cells. A second question is whether the number of 

sperm cells at the site of fertilisation might be decreased by decreasing the number of 

sperm cells at insemination and, thereby, shortening the insemination to ovulation 

interval in which good fertilisation results can be achieved compared to the 0-24 h 

found with 3 x 109 sperm cells. In an in vitro study (Lefebvre and Suarez, 1996), the 

number of spermatozoa bound to oviductal epithelium was found to be dependent on 

the concentration of sperm cells. Bovine isthmus epithelium was incubated for 15-30 

minutes with 1 x 105 motile sperm cells, after which 30 sperm cells bound to 0.1 mm2 

epithelium, whereas incubation with 1 x 106 sperm cells resulted in 600 sperm cells 

bound to 0.1 mm2 epithelium. The change in number of sperm cells bound to oviduct 

epithelium in vitro might also occur in vivo and, as a consequence, increase fertilisation 

rate. 

The two hypotheses of this study are (1) that fertilisation rates are lower when 

a lower number of sperm cells (1 x 109) is inseminated within 24 h of ovulation; and (2) 

that fertilisation rates are higher when a greater number of sperm cells (6 x 109) is 

inseminated more than 24 h from ovulation. The objective of this study is to 

investigate the effects of the number of sperm cells at insemination on fertilisation 

rate and accessory sperm cells at 5 days after ovulation. 

MATERIALS AND METHODS 

Animals and housing 

For a period of 16 weeks, every 2 weeks, 9 to 22 sows (139 in total) were 

obtained at the day of weaning. At the experimental farm, the sows were housed 

individually in crates and received a total of 2.5 kg of a commercial sow diet (12.9 MJ 

ME kg-1) in two portions daily and 2 h water ad libitum after feeding. Sows that came 

into oestrus and ovulated between 3 and 7 days after weaning (n=115) were assigned 

to the study. The sows arrived from one commercial farm, from two synthetic lines 

(A, n=75 and B, n=40) which were terminal sire lines of fattening pigs (Dalland b.v., 
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Merselo). The original breeds of the lines were: Pietrain, Large White and Dutch 

Landrace. All sows had a breeding value for litter size (range; -1.06 to 1.13 piglets) 

which was calculated based on their own and sib-relation performances. The sows 

were healthy upon clinical inspection. The number of sows from parity 1 to 7 was 36, 

14, 36, 25, 3, 0 and 1, respectively. 

Oestrus 

Detection of oestrus was performed at intervals of 8 h, from 64 h after weaning 

until the end of oestrus. Every oestrus detection the back pressure test was 

performed, first in absence and then in presence of a boar. The time of onset of 

oestrus was defined as the first time a sow showed a standing response minus 4 h. 

The time of end of oestrus was defined as the last time a sow showed a standing 

response plus 4 h. 

Ovulation 

Ovulation was detected using transrectal ultrasonography as described by 

Soede et al. (1992). An annular array sector scanner (type 150V, Pie Medical b.v., 

Maastricht, The Netherlands) with a 5.0-7.5 MHz multiple scan angle transducer was 

used. A first check of the ovaries for presence and size of follicles (diameter of 

antrum > 4 mm) and corpora lutea was performed at approximately 70 h after 

weaning. From 16 h after the onset of oestrus, ovaries were checked at intervals of 4 h 

to estimate the moment of ovulation. Time of ovulation was defined as the first time 

when no follicles were counted minus 2 h. When the number of follicles was 

noticeably smaller than the previous scanning, ovulation was assumed to have just 

started, since ovulation takes on average 2 h in spontaneously ovulating sows (Soede 

et al, 1992). Ovulation was confirmed by one additional scanning 4 h later. 

Insemination 

Artificial insemination was conducted once with doses of 1, 3 or 6 x 109 mixed 

sperm cells from three boars in 80 ml. The age of the inseminated sperm cells (time 

from collection) was on average 23 ± 7 h with a range of 11-36 h at the moment of 

insemination. Sperm quality was assessed for 3 consecutive days in samples of the 

sperm cell dosages (magnification x 200) by determining motile spermatozoa (0% to 

100%) and quality of motility (0=very bad; 10=very good movement). At day 0, the 
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percentage of motile spermatozoa varied from 70% to 80%, and the quality of 

motility varied from 7 to 8. At day 2, the percentage of motile spermatozoa varied 

from 60% to 80% and the quality of motility varied from 6 to 7. 

The moment of insemination depended on the predicted ovulation moment. 

The predicted ovulation moment was obtained from the interval weaning to the onset 

of oestrus, based on data from Soede et al. (1995a, b). The 1 x 109 dosage was 

inseminated at the predicted insemination to ovulation interval of 12-24 h. The 6 x 109 

dosage was inseminated at the predicted insemination to ovulation interval of 24-36 h. 

The reference 3 x 109 dosage was inseminated at the predicted insemination to 

ovulation intervals of 12-24 h and 24-36 h. The sows were assigned randomly to the 

treatment groups. 

Before insemination, sows were taken to the boar pen for 5 min boar 

stimulation. Artificial insemination took place for each sow in her own cage. During 

insemination, the backflow of semen was collected with a 200 ml cup which was 

weighed on a balance. 

Embryonic development 

Sows were slaughtered 120 ± 5 h (111-131 h) after ovulation and the embryos 

were collected immediately. Both oviducts were flushed with 15 ml Dulbecco's PBS 

(DPBS) from the infundibulum to the uterus. The oviducts were then separated from 

the uterus and each uterine horn was flushed twice with 30 ml DPBS to collect the 

embryos and oocytes. The quality and morphology of the recovered embryos and 

oocytes was assessed (magnification x60) at the laboratory. Thereafter, embryos and 

oocytes were subjected to hypotonic treatment (0.6% w /v KCL, 0°C, 10 min) and 

subsequently placed on a fat-free glass slide. Small droplets of methanol/acetic acid 

(3/1 v/v) were added until disruption and spreading of the embryo (generally 1 

cm2) to allow the nuclei and spermatozoa to be counted (magnification x 200) after 

drying and staining with 10% (v/v) Giemsa (Merck, Damerstadt) in PBS. An oocyte 

was classified as unfertilised if the nuclei count was 0 or 1. Embryos with 

degenerated morphology and a small number of nuclei were classified as 

degenerated embryo. The remaining embryos were considered normal. Recovery 

rate per sow was determined as the percentage of embryos and oocytes recovered, 

based on the number of corpora lutea. The rate of normal and degenerated embryos 

and oocytes was determined on the basis of the total number of recovered embryos 
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and oocytes per sow. Fertilisation rate was determined as the percentage of normal 

and degenerated embryos among the total recovered embryos and oocytes per sow. 

Statistical analyses 

Data were analysed using SAS (1990). Data are presented as mean ± sd and a 

range (minimum-maximum) or least squares means ± sem when correction for 

specific factors was relevant. 

The two synthetic lines used did not differ in any respect. The duration of 

oestrus (h) was analysed using the procedure GLM with the following factors: parity 

(2 classes) and weaning to oestrus interval (h). Parity was divided into 2 classes: 

'young' sows (parity 1 and 2) and 'older' sows (parity 3 to 7). The time of ovulation 

(h) during oestrus was analysed using the procedure GLM with the factor duration 

of oestrus (h). 

The influence of embryonic age (h) on embryonic development (cell cycles) 

was analysed using the procedure GLM. Embryonic development was expressed as 

the average number of cell cycles (2log(nuclei count)) per sow. The embryonic age (h) 

was defined as the period between ovulation and slaughter of the sow. 

Proportions of unfertilised, degenerated and normal embryos per sow 

underwent a normalising arcsine transformation before analysis (Snedecor and 

Cochran, 1989). These proportions of embryos were analysed using the Wilcoxon test 

of the NPAR1WAY procedure with the factors: insemination to ovulation interval (4 

classes; 0-12 h, 12-24 h, 24-36 h and 36-48 h) and insemination dosages (3 classes: 1 x 

109, 3 x 109 and 6 x 109 sperm cells). 

The number of accessory sperm cells attached to normal embryos showed a 

lognormal distribution; therefore the 10log(accessory sperm count per embryo) 

transformation was applied before the analysis. The accessory sperm cells were 

analysed using the Wilcoxon test of the NPAR1WAY procedure with the factors: 

insemination to ovulation interval (4 classes: 0-12 h, 12-24 h, 24-36 h and 36-48 h) and 

insemination dosages (3 classes: 1 x 109,3 x 109 and 6 x 109sperm cells). The influence 

of the continuous insemination to ovulation interval (h) on accessory sperm cells was 

analysed using the procedure GLM. 

Sows were divided into 4 classes, depending on their fertilisation rate; 100-90, 

90-80, 80-50 and 50-0%. The distribution of the proportions of fertilisation rates of the 

sows in the classes of insemination to ovulation interval (4 classes: 0-12 h, 12-24 h, 24-
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36 h and 36-48 h) and insemination dosages (3 classes: 1 x 109, 3 x 109 and 6 x 109 

sperm cells) was analysed with chi-square of the procedure FREQ. 

The effect of sperm dosage (1, 3 and 6 x 109 sperm cells) on fertilisation rate 

was analysed in a continuous scale of insemination-ovulation intervals between 0 

and 48 h. The analysis of variance on arcsine transformed fertilisation rates was done 

with the procedure GLM with the factors: insemination to ovulation time (0-48 h); 

sperm cell dosage (3 classses: 1 x 109, 3 x 109 and 6 x 109 sperm cells); parity (2 classes; 

'young' and 'old' sows) and breeding value for litter size (-1.06 tol.13 piglets). 

RESULTS 

Animals 

Of the 139 sows obtained, 19 sows did not show oestrus before 7 days after 

weaning, 3 sows had more than 20 ml backflow of semen during insemination, 1 sow 

had an insemination to ovulation interval of more than 50 h and 1 sow had one 

uterine horn. These sows were excluded from the study. 

Oestrus and ovulation 

In the 115 sows remaining, the weaning to oestrus interval was 92 + 15 h, with 

a range of 65-132 h that was not affected by parity (P>0.05). The average duration of 

oestrus of all the sows was 59 ± 12 h, with a range of 24-88 h. The duration of oestrus 

was significantly shorter (P=0.002) in the young sows (parity 1 and 2: 55 ± 11 h, n=50) 

compared to the older sows (parity 3 to 7: 62 ± 12 h, n=65). The duration of oestrus 

was not significantly related to the weaning to oestrus interval (P=0.18). 

Time of ovulation in hours after the onset of oestrus (OV) during oestrus was 

related to the duration of oestrus (h) (OEST): OV = 8.6 + 0.5 x OEST (R2=59%, 

P<0.0001, «=114). On average, ovulation took place at 68 ± 10% of the oestrus period. 

Embryos and oocytes 

Sows had a mean number of 21.1 ± 6.1 corpora lutea. The number of recovered 

embryos and oocytes compared to the number of corpora lutea varied from 55% to 

100%, with a mean of 89 ± 6.8%. 
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Fertilisation rate varied between 0% and 100% per sow. Degenerated embryos 

appeared in 36% of the sows; the mean percentage of degenerated embryos in all 

sows was 4 ± 8%. The number of degenerated embryos was not affected by 

insemination dosage (P=0.29) nor by the insemination to ovulation interval (P=0.19). 

The proportion of unfertilised embryos was similar to the reciprocal of the 

proportion of normal embryos per sow, because of the small number and equal 

distribution of degenerated embryos. 

The mean age of the embryos was 120 ± 4.5 h and varied between 111 and 131 

h. The average development of the normal embryos per sow varied between 3.7 and 

7.3 cell cycles. The development of normal embryos was not significantly affected by 

the insemination dosage (P=0.89) or insemination to ovulation interval classes 

(P=0.45). The variation in embryo development between sows was related to the age 

of the embryos (AGE, h); cell cycles = -1.17 + 0.055 x AGE (R2=14%, P<0.0001, n=107); 

at an embryo age of 120 h, the mean development was 5.4 cell cycles. 
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S 50% 
o 

Js 40% 
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Figure 1. The percentage of sows displaying bad (0-50%), poor (50-80%), moderate 
(80-90%) and good (90-100%) fertilisation rates after artificial insemination with 1, 3 
or 6 x 109 sperm cells with insemination to ovulation interval classes of 10-12 h, 12-
24 h, 24-36 h and 36-48 h. 
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Fertilisation results in 12 h insemination to ovulation interval classes 

The percentage of normal embryos varied considerably in all the insemination 

to ovulation interval classes from 0 to 100%. A shift of good fertilisation to poor and 

bad fertilisation was observed when the insemination to ovulation interval increased 

(Figure 1). The 4 classes of fertilisation in Figure 1 are: good fertilisation (100-90% 

normal embryos), moderate fertilisation (90-80% normal embryos), poor fertilisation 

(80-50% normal embryos) and bad fertilisation (50-0% normal embryos). A shift of 

good fertilisation to poor and bad fertilisation was seen when the insemination to 

ovulation interval increased. 

The median percentage of normal embryos was not significantly different 

between insemination dosages 1 x 109 and 3 x 109 in the insemination to ovulation 

interval of 12-24 h (Table 1). However, the percentage of sows in the 4 fertilisation 

classes in the insemination to ovulation interval of 12-24 h were distributed 

significantly different (P<0.05) between the dosage 1 x 109 and 3 x 109 sperm cells 

(Figure 1). The dosage of 1 x 109 sperm cells resulted in 26% fewer sows with good 

fertilisation results (100-90% normal embryos) and 19% more sows with moderate 

fertilisation results (80-90% normal embryos) compared to the dosage 3xl09 sperm 

cells (Figure 1). 

Table 1. Fertilisation results in sows that were inseminated at 12-24 h and 24-36 h 
before ovulation with an insemination dosage of 1 x 109, 3 x 109 and 6 x 109 sperm 
cells. 

Dosage 

Sows (n) 

IO interval 

Normal embryos (%) 

Mean 

Median 

Range 

Accessory sperm count 

Mean 

Median 

Range 

lxlO9 

16 

19 + 3 

89 ±15 

95 

55-100 

30 ±41 

11 

1-147 

12-24 h 

3x109 

17 

20 ±3 

88 ±28 

100 

0-100 

22 ±20 

17 

2-66 

3xl09 

16 

29 ±4 

83 ±22 

95 

42-100 

16 ±18 

8 

0-57 

24-36 h 

6xl09 

20 

30 ±3 

83 ±26 

97 

6-100 

11 ±9 

11 

0-28 

Within an insemination to ovulation interval, there were no significant differences between dosages (P>0.05). 
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The median percentage of normal embryos was not significantly differently 

between insemination dosages 3 x 109 and 6 x 109 in the insemination to ovulation 

interval of 24-36 h (Table 1). The percentage of sows in the 4 fertilisation classes in the 

insemination to ovulation interval of 24-36 h were not distributed significantly 

different (P<0.05) between the dosage 3 x 109and 6 x 109 sperm cells (Figure 1). 

However, the fertilisation results of sows inseminated with 1 x 109 sperm cells in this 

insemination to ovulation interval were distributed significantly different compared 

with the higher sperm dosages (P<0.05). These group of sows inseminated with 1 x 109 

sperm cells had a higher percentage sows (23%) with moderate fertilisation results 

(Figure 1). 

Insemination between 36-48 h before ovulation with 3 x 109 and 6 x 109 sperm 

cells did not result in a significantly different distribution of sows among the 4 

fertilisation classes (Figure 1). However, the dosage 6 x 109 sperm cells still resulted in 

28% sows with good fertilisation results (100-90% normal embryos), whereas the 

dosage 3 x 109 resulted in 0% sows with good fertilisation. 

Percentage normal embryos in a continuous insemination to ovulation interval (0-48 h) 

An analysis of variance on the transformed percentage of normal embryos per 

sow showed significant relation (R2=0.28; P<0.0001) with the following variables. The 

effect of insemination to ovulation interval is negative and highly significant (b= -

0.019 + 0.003; P<0.0001), which means that an increase of the insemination to 

ovulation interval by 24 h resulted in a decrease of 20% in the percentage of normal 

embryos. Sperm dosage tends to affect the percentage of normal embryos (P=0.096); 

the dosages 1, 3 and 6 x 109 sperm cells resulted in respectively 78 ± 0.3%, 84 ± 0.3% 

and 91 ± 0.4% normal embryos (LSM ± SEM). The 'young' sows (parity 1 and 2) had 

significantly lower (P=0.026) percentages normal embryos (79.1%) than the 'old' sows 

(parity 3 to 7) (88.8%). The genetic background of the sows, based on the breeding 

value for litter size, also influenced the percentage of normal embryos in the sows 

(b=0.21 ± 0.05 ; P=0.0026). An increase in breeding value of 1 piglet increased the 

percentage of normal embryos by 4.5%. 

Accessory sperm count 

The accessory sperm count on normal embryos is highly variable among and 

within sows and within the dosages 1, 3 and 6 x 109 sperm cells (Figure 2). In the 
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Figure 2. The accessory sperm count on normal embryos per sow for the dosages 
1, 3 and 6 x 109 sperm cells (1, 3 and 6, respectively). The lines join the median 
accessory sperm count in the insemination to ovulation interval classes of 0-12 h, 
12-24 h, 24-36 h and 36-48 h for the three sperm dosages. 

insemination to ovulation interval of 0-12 h the dosages 1,3 or 6 x 109 sperm cells had 

a median accessory sperm count: 22,178 and -, respectively; in the interval of 12-24 h: 

11,17 and 31, respectively; of 24-36 h: 6, 8 and 11, respectively and of 36-48 h: -, 4 and 

8. The accessory sperm count was not significantly different among the insemination 

dosages in any of the insemination to ovulation interval classes. Sows inseminated 

with 1 x 109 sperm cells had a significantly higher (P<0.05) median accessory sperm 

count in the insemination to ovulation intervals of 0-12 h and 12-24 h (22 and 11, 

respectively) compared to the insemination to ovulation interval 24-36 h (6). Sows 

inseminated with 3 x 109 sperm cells had a significantly higher (P<0.05) median 

accessory sperm count in the insemination to ovulation interval of 0-12 h (178) 

compared to the insemination to ovulation intervals of 12-24 h, 24-36 h and 36-48 h 

(17, 6 and 4, respectively). Sows inseminated with 6 x 109 sperm cells had a 

significantly higher (P<0.05) median accessory sperm count in the insemination to 
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ovulation intervals of 12-24 h and 24-36 h (31 and 11) compared to the insemination 

to ovulation interval 36-48 h (8). The median number of accessory sperm cells in sows 

with 100% normal embryos (n=50) was 18, with a range of 1.6-220 accessory sperm 

cells. 

The accessory sperm count decreased significantly with an increase in the 

insemination to ovulation interval. The effect of insemination to ovulation interval in 

hours (IO) on accessory sperm count was (ASPERM): 10log (ASPERM)= 1.63 - 0.028 x 

IO; (R2=0.24, P<0.0001, n=101). 

DISCUSSION 

Fertilisation rates at day 5 of gestation were not significantly affected by 

insemination dosage 1 x IO9 versus 3 x IO9 in the insemination to ovulation interval of 

12-24 h and not affected by insemination dosage 3 x IO9 versus 6 x 109 in the 

insemination to ovulation interval of 24-36 h. However, small consistent differences 

were seen, both the median percentage of normal embryos and the median accessory 

sperm count increased with an increase in insemination dosage in all the insemination 

to ovulation classes 0-12 h, 12-24 h, 24-36 h and 36-48 h. 

A positive effect of increased number of sperm cells at insemination on 

fertilisation was expected. For example, Baker et al. (1968) compared insemination 

dosages 1 x IO9 and 5 x IO9 sperm cells in 10 gilts inseminated 6 to 8 h before ovulation 

and found 24% versus 73% fertilised eggs at 6 to 8 h after ovulation, respectively. The 

in vivo results of the expected increased number of sperm cells are supported by 

experiments in vitro. Lefebvre and Suarez (1996) showed that the number of sperm 

cells bound per mm2 isthmic epithelium in vitro increased by using more sperm cells 

in the medium. Increased sperm numbers at insemination in vivo may result in an 

increased length and thereby area of the sperm reservoir, and also a higher density of 

sperm cells per mm2. Therefore, it seems logical that the functional filling of the 

sperm reservoir in pigs can be increased by increasing the number of inseminated 

sperm cells. In the present study, no evidence was found for an increased fertilisation 

rate or accessory sperm count due to an increased number of sperm cells at 

insemination. 
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If a greater number of spermatozoa is deposited in the reservoir with a higher 

insemination sperm dosage, the lack of dosage effects might be explained by the 

release pattern from the reservoir. After filling the reservoir, the release of sperm 

cells from the reservoir is exponential in the first hours after insemination. Therefore, 

the difference between sperm dosages may be visible only when the insemination to 

ovulation interval is short (<12 h). Baker et al. (1968) inseminated gilts 6-8 h before 

ovulation with 1 x 109 to 5 x 109 sperm cells and found a significant increase in the 

median accessory sperm count from 3 to 130. In the present study, differences in 

accessory sperm count between dosages became progressively smaller with an 

increasing insemination to ovulation interval. The lack of effect of sperm dosages on 

fertilisation rates does not mean that sperm reservoirs are not filled with different 

numbers of sperm cells due to different sperm dosages. The regulation of the number 

of sperm cells bound to isthmic epithelium is still not understood. More research on 

reservoir filling, capacity and release of the sperm reservoir is necessary to 

understand these mechanisms better. 

It has been suggested that large numbers of accessory sperm cells positively 

affect embryo quality (Hunter and Wilmut, 1984; Dejarnette et al, 1992; Nadir et al., 

1993; Saacke et al., 1994 (review)). In the present study, the variation in accessory 

sperm count between animals is very high. In sows inseminated 0-12 h before 

ovulation, the mean accessory sperm count ranged from 1 up to 216. Many sows with 

100% normal developed embryos had a low accessory sperm count. This finding 

suggests that there is not a direct relationship between embryo quality and accessory 

sperm count. The accessory sperm count is strongly related to the insemination to 

ovulation interval. In the present study, large numbers of accessory sperm cells (>75) 

attached to normal developed embryos were found only when the insemination to 

ovulation interval was short (<18 h). A large number of accessory sperm cells is an 

indication of a short insemination to ovulation interval. A similar relation between 

accessory sperm count and insemination to ovulation interval was found in the studies 

of Soede et al. (1995a, b). Therefore, the cause of a higher embryo quality (good 

developed embryos) mentioned by Hunter and Wilmut (1984), Dejarnette et al. (1992), 

Nadir et al. (1993) and Saacke et al. (1994) could be the result of a short insemination to 

ovulation interval and not of the number of accessory sperm cells beforehand. For a 

correct interpretation of the relation between accessory sperm count and embryo 

quality it is necessary to know the insemination to ovulation interval. 
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In the present study, a part of the variation in fertilisation rate had a genetic 

basis. The percentage of normal embryos was positively related (P<0.01) to the 

breeding value for litter size of the sows. This means that the fertilisation rate at day 

5 of gestation is related to the number of piglets the sow potentially can produce. An 

enlargement of the optimal insemination to ovulation interval is seen in sows with a 

high breeding value. At present, there are no studies available describing relations 

between genetic potential for litter size in sows and their fertilisation rate on day 5 of 

gestation. 

In conclusion, no significant effect of the sperm dosage of 1, 3 and 6xl09 sperm 

cells was seen on fertilisation rate, nor on the accessory sperm count. The insemination 

to ovulation interval has a significant effect on the fertilisation rate and accessory 

sperm count. The process and regulation of filling, capacity and release of sperm cells 

in the reservoir are still not understood and require further study. 
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ABSTRACT 

The aim of the present study was to investigate the volume of and number of 
spermatozoa in semen backflow during and after insemination, and the effect of 
backflow on fertilisation results assessed at day 5 of pregnancy. Multiparous sows 
(n=140) were artificially inseminated with either 1, 3 or 6xl09 mixed spermatozoa 
from three boars in a constant volume of 80 ml. Backflow of semen was measured 
three times: during insemination (Ml); during the first half hour after insemination 
(M2); and from 0.5 h until about 2.5 h after insemination (M3). Transrectal 
ultrasonography was performed at intervals of 4 h to determine the time of 
ovulation. Sows were sacrificed at 120±0.4 h after ovulation to assess the results of 
fertilisation. Every sow had some backflow and the variation in volume, and number 
of spermatozoa within the backflow was high. The average semen backflow within 2.5 
h after insemination was 70±3.4% of the volume and 25±1.4% of the spermatozoa of the 
inseminated dosage. The concentration of the backflow (% of the inseminated dosage) 
decreased with time after insemination from 65% at Ml to 40% and 26% at M2 and M3, 
respectively. The correlations between volume and number of spermatozoa were high: 
r=0.97, r=0.73 and r=0.81 in Ml, M2 and M3, respectively. More than 5% of the 
inseminated spermatozoa in backflow during insemination affected fertilisation 
negatively in those sows inseminated with lxlO9 spermatozoa (P<0.05). Backflow 
after insemination had no effect on fertilisation results (P>0.05). Timing of 
insemination relative to ovulation and oestrus were not related to backflow during or 
after insemination (P>0.05). Of the sows which had backflow, those of parity 1 tended 
to have the highest proportion of sows with more than 5 ml backflow (47%; n= 8 of 17) 
compared with sows from parity 2 and higher (24%; n=14 of 59) (P=0.075). 

It was concluded that excessive backflow of semen during insemination had a 
negative effect on fertilisation results when sows where inseminated with only lxlO9 

spermatozoa. Causes of variation in backflow between sows were not clearly 
identifiable. 
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Key words: Pig, Reproductive technology, Artificial insemination, Fertilisation, 

Semen backflow, Retrograde spermatozoa 

INTRODUCTION 

Sufficient fertile spermatozoa should be present in the isthmus of the oviduct 

at ovulation for optimal fertilisation. A large volume of semen (natural mating: up to 

300 ml, and artificial insemination: 80-100 ml) containing a large number of 

spermatozoa (natural mating: up to 60xl09 and artificial insemination: up to 3xl09) is 

deposited directly into the uterus (Garner and Hafez, 1993) at insemination. A 

limited volume of semen is necessary for good fertilisation results. Baker et al. (1968) 

compared the results of inseminations with 20,100 and 200 ml semen and concluded 

that gilts inseminated with 100 ml semen had a significantly higher proportion of 

oocytes fertilised than gilts inseminated with 20 or 200 ml semen. 

Spermatozoa are transported for 1 to 2 m (length of uterine horn) through the 

female genital tract in the fluid of the inseminated dosage. Longitudinal contractions 

of the uterus are mainly responsible for transport of the spermatozoa (Zerobin, 1968; 

Bower, 1974). Spermatozoa are already found in the oviducts 5 min after artificial 

insemination (Viring et al., 1980; Baker and Degen, 1972), where a sperm reservoir is 

formed in the caudal region of the isthmus (Hunter, 1981; Overstreet et al., 1980; 

Suarez et al., 1991). 

The fluid and number of spermatozoa of the inseminated dosage decreases 

rapidly in the uterus, during the first hours after insemination (First et al., 1968; 

Viring and Einarsson, 1981)). Loss of semen soon after insemination (semen 

backflow) could hinder optimal transport of spermatozoa to the oviduct and 

decrease the number of spermatozoa available for fertilisation. 

The aim of the present study was to investigate the volume of and number of 

spermatozoa in semen backflow during and after insemination, and the effect of 

backflow on fertilisation results assessed at 5 days of pregnancy. 
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MATERIALS AND METHODS 

Data were used from an experiment which was designed to describe the 

effects of sperm dosage and the time of insemination relative to ovulation on 

fertilisation rate and accessory sperm count in sows (Steverink et al., 1997). The first 

batch was excluded since semen backflow was not measured and data from sows of a 

third genetic line (C) were added. Data on oestrus duration, weaning to oestrus 

interval and time of ovulation during oestrus have been described by Steverink et al. 

(1997). 

Animals and housing 

Every second week (batch) for a period of 14 weeks, 9 to 22 sows (161 in total) 

were obtained on the day their litter was weaned. The sows were housed 

individually in stalls at the experimental farm, and received a total of 2.5 kg of a 

commercial sow diet (12.9 MJ ME kg-1) in two portions daily, and 2 h water ad 

libitum after feeding. Sows that came into oestrus and ovulated between 3 and 7 days 

after weaning (n=140) were then assigned to the study. The number of sows from 

parity 1 until 8 was 36, 25, 39, 23, 7, 3, 5 and 2, respectively. There were 19 sows that 

did not show oestrus within 7 days of weaning, one sow had an insemination to 

ovulation interval of more than 50 h, and one sow had only one uterine horn to 

provide 140 sows suitable for investigation. The sows were derived from two 

commercial farms and from three synthetic lines (A: n=67, B: n=34 and C: n=39); A 

and B were terminal sire lines of fattening pigs, and C was a terminal dam line of 

fattening pigs (Dalland b.v., Merselo). 

Oestrus 

Detection of oestrus was performed each day at intervals of 8 h (8:00, 16:00 

and 24:00 h), from 64 h after weaning until the end of oestrus. The back pressure test 

was performed every oestrus detection, firstly in the absence and then in the 

presence of the boar. The onset of oestrus was defined as the first time a sow showed 

a standing response minus 4 h. The end of oestrus was defined as the last time a sow 

showed a standing response plus 4 h. 
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Ovulation 

Detection of ovulation was done by transrectal ultrasonography as described 

by Soede et al. (1992). An annular array sector scanner (type 200V, Pie Medical b.v., 

Maastricht, The Netherlands) with a 5-7.5 MHz multiple scan angle transducer was 

used. A first check of the ovaries for the presence and size of follicles (diameter of 

antrum > 4 mm) and corpora lutea was performed approximately 70 h after weaning. 

From 16 h after the onset of oestrus, ovaries were checked at intervals of 4 h to 

estimate the time of ovulation. Time of ovulation was defined as the first time when 

no follicles were observed minus 2 h. When the number of follicles was noticeably 

lower than for the previous scan, ovulation was assumed to have started, as 

ovulation spans an average period of 2 h in spontaneously ovulating sows (Soede et 

al., 1992). Ovulation was confirmed by an additional scan 4 h later. 

Insemination 

Artificial insemination was conducted once with either 1, 3 or 6xl09 mixed 

spermatozoa from three boars in a constant volume of 80 ml. The age of the 

inseminated spermatozoa (time from collection) was less than 36 h at the time of 

insemination. Sperm quality was assessed microscopically for 3 consecutive days 

after collection, in samples taken from the inseminate (magnification x200); motile 

spermatozoa (0% to 100%) and quality of motility (0=very bad; 10=very good linear 

straight forward movement). The percentage of motile spermatozoa varied from 70% 

to 80%, and the quality of motility varied from 7 to 8 on the first day after semen 

collection. On day 2, the percentage of motile spermatozoa varied from 60% to 80% 

and the quality of motility varied from 6 to 7. 

Prior to insemination, sows were taken in front of the boar pen for 5 min boar 

stimulation. Subsequently, each sow was artificially inseminated in her own cage 

making use of a 10 kg bag on the sows back. Sows were inseminated at different 

times after the onset of oestrus as described by Steverink et al. (1997). This resulted in 

insemination-to-ovulation intervals (IO) ranging from 0-48 h. For analyses, the IO 

was divided in an optimal and suboptimal class: 0-24 h and 24-48 h, respectively 

(Soede et al., 1995). 
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Backflow of semen 

Semen backflow was collected at three time points: during insemination (Ml); 

during the first half hour after insemination (M2); and backflow from 0.5 h onwards 

after insemination (M3). The average duration of M3 was 1.9 ± 0.8 h (range: 0.3 - 4.3 

h). Backflow during insemination was collected with a 200 ml cup. The backflow 

after insemination was collected into a human colostomy bag (ConvaTec, Woerden, 

The Netherlands). The colostomy bag was fixed around the vulva of the sow and 

secured with tape. When a sow had urinated into the colostomy bag or the colostomy 

bag was damaged, the value was deleted from the data. The cup (Ml) or the 

colostomy bag (M2 and M3) were emptied into a tube and weighed on a balance (± 1 

g). Then the semen backflow was frozen until further processing. The backflow 

samples were mixed on a vortex after thawing and diluted to 1:20 (1 billion dosage) 

and 1:50 (3 and 6 billion dosages). The sperm concentrations were assessed in 

duplicate per sample using a Burker counting chamber. 

Embryonic development 

Sows were slaughtered 120 ± 0.4 h (111-131 h) after ovulation and the embryos 

collected immediately. Both oviducts were flushed with 15 ml Dulbecco's PBS (DPBS) 

from the infundibulum to the uterus. Subsequently, the oviducts were separated 

from the uterus and each uterine horn flushed twice with 30 ml DPBS to collect the 

embryos and oocytes. The quality and morphology of the recovered embryos and 

oocytes were assessed (magnification x60) microscopically at the laboratory. 

Thereafter, embryos and oocytes were subjected to hypotonic treatment (0.6% w /v 

KCL, 0°C, 10 min) and subsequently placed on a fat-free glass slide. Small droplets of 

methanol/ acetic acid (3/1 v/v) were added until disruption and spreading of the 

embryo occurred (generally 1 cm2). The nuclei and spermatozoa were counted 

(magnification x200) after drying and staining with 10% Giemsa in PBS. An oocyte 

was classified as unfertilised if the nuclei count was zero or one. Embryos with 

degenerated morphology together with a low number of nuclei, were classified as 

degenerated embryo. The remaining embryos were considered normal. Recovery 

rate per sow was determined as the percentage of embryos and oocytes recovered, 

based on the number of corpora lutea. The rate of normal and degenerated embryos 

and oocytes was determined on the basis of the total number of recovered embryos 

and oocytes per sow. Fertilisation rate was determined as the percentage of normal 
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and degenerated embryos in the total number of recovered embryos and oocytes per 

sow. 

Statistical analyses 

Data were analysed using SAS (1996). Data are presented as mean+se and a 

range (minimum-maximum). 

Backflow volume, backflow sperm cell concentration and number of 

spermatozoa are expressed as % of the inseminated dosage to make the different 

insemination dosages comparable. The effects of sperm dosage on backflow volume, 

backflow sperm cell concentration and relative number of spermatozoa were 

analysed using the GLM procedure, as was the effect of the duration of M3 (total 

measure time) on the volume and number of spermatozoa in the backflow. 

In the 6 combinations of sperm dosage (3 classes: 1, 3 or 6xl09 spermatozoa) 

and insemination to ovulation intervals (IO) (2 classes: 0-24 h and 24-48 h), the effect 

of semen backflow on percentage normal embryos was analysed with Fisher's exact 

test (2x2 factorial design; Kendall and Stuart, 1979) using the FREQ procedure. Sows 

with backflow were divided in two classes: 'high' representing the 20% of sows with 

the highest percentage of spermatozoa in backflow; and 'low' representing the 80% 

sows with the lowest percentage of spermatozoa in backflow. This resulted in the 

following percentage of backflow in the two classes: for backflow during 

insemination; Ml: 0 to 4.8% and more than 4.8% spermatozoa; for backflow after 

insemination: M2: 0 to 23% and more than 23% spermatozoa; and for M3: 0 to 14% 

and more than 14% spermatozoa. For percentage normal embryos, the border of the 

classes was taken according to Steverink et al. (1997): Tow' was 0-80% and 'high' was 

80-100% normal embryos. 

The difference in distribution of sows over the two parity classes (parity 1 vs. 

parity 2 to 8) over the two classes of backflow was analysed with the Fisher's exact 

test of the FREQ procedure. 
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Table 1. The volume and number of spermatozoa in the semen backflow (mean+se 
and range) during insemination (Ml) and after insemination (M2, M3) with 80 ml 
and 1, 3 or 6xl09 spermatozoa1 for sows having backflow, expressed as a 
percentage of the inseminated dosage. 

Backflow2 

Ml 

M2 

M3 

n/n t
3 

76/120 

110/112 

78/80 

Volume 

Mean ± se 

7 + 1.1 

31 +1.7 

36 ±2.6 

(%) 

Range 

1-56 

3-76 

1-94 

Spermatozoa (%) 

Mean ± se 

8 + 1.3 

14 ±1.0 

9 ±0.8 

Range 

0.3 - 50 

0.3 - 79 

0.3 - 30 

The average of the dosages 1, 3 or 6xl09 spermatozoa are presented since no significantly differences were 
found between dosages. 
Measurement: Ml: backflow during insemination; Ml: backflow 0-0.5 h after insemination; M3: backflow 
0.5-2.5 h after insemination. 
n/nt.sows with backflow (>0%)/'all sows. 

RESULTS 

General 

Of the 140 sows used, 120 sows were successfully measured for Ml, 112 sows 

for M2 and 80 sows for M3. There were 59 sows with a complete record of 3 volume 

measurements of backflow (Ml, M2 and M3). From these 59 sows, 54 sows had a 

complete record of the number of spermatozoa in the backflow. 

Volume of the semen backfloiv 

Backflow was seen in each of the 140 sows: 63% of the sows had backflow 

during insemination (Ml); 98% had backflow from 0-0.5 h after insemination (M2); 

and 98% had backflow from 0.5-2.5 h after insemination (M3) (Table 1). In the sows 

with backflow, the volume of backflow was very variable in all three measurements; 

Ml ranged from 1 to 56%; M2 from 3 to 76%; and M3 from 1 to 94% (Table 1). The 

volume of backflow during M3 was not related to the duration of collection (P>0.05). 

The overall volume of backflow of sows with backflow (> 0 ml), was on average 

7±1.1%, 31+1.7% and 36+2.6% of the 80 ml during (Ml) and after insemination (M2, 

M3), respectively. The inseminated sperm dosage (1, 3 or 6xl09 spermatozoa) had no 

effect on the volume of backflow in either of the three measurements (P>0.05). 

The distribution of sows (with a complete record) in backflow volume classes of 

10% are shown in Figure 1. The total volume of backflow after insemination up to 
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Figure 1. Number of sows in classes of volume (n=59) and spermatozoa (n=54) in 
the backflow during and after insemination relative to the inseminated dosage, 
where all sows had a complete record (M1+M2+M3). 
Where, Ml: backflow during insemination; Ml: backflow 0-0.5 h after insemination; M3: backflow 0.5-2.5 
h after insemination. 

2.4+0.1 h was, 70+3.4% of the inseminated dosage recovered within a range of 17 to 

120%. 

The number of sows with backflow during insemination was not influenced by 

parity (P>0.05). Of the sows which had backflow, a larger proportion of those of parity 

1 tended to have more than 5 ml backflow (47%; 8 of 17) compared to those of parity 2 

and higher (24%; 14 of 59) (n=76; P=0.075). Of the 5 sows which had more than 20 ml 

backflow during insemination (Ml), 4 sows were from parity 1 and 1 sow was from 

parity 2 or higher which was significant different (n=76; P<0.01). The interval from 

onset of oestrus to insemination or the interval from insemination to ovulation were 

not related to the volume of backflow in any of the three measurements (P>0.05). 

Number of spermatozoa in the semen backflow 

The number and concentration of spermatozoa in the backflow was related to the 

sperm dosage, but the relative number of spermatozoa and the relative sperm cell 
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concentration (% of the inseminated dosage), were not affected by sperm dosage 

(P>0.05). The average concentration of the spermatozoa in the backflow compared to 

the inseminated dosage was 65+2.6%, 40±1.5% and 26±1.4% at Ml, M2 and M3, 

respectively. The correlation between volume and number of spermatozoa was high: 

r=0.97, r=0.73 and r=0.81 at Ml, M2 and M3, respectively. The average percentage of 

spermatozoa in the backflow was 8±1.3%, 14±1.0% and 9±0.8% at Ml, M2 and M3, 

respectively (Table 1). The highest number of spermatozoa was retrieved in period M2 

(14±1.0%). The average duration of measurement of M3 was 1.9±0.1 h, but the relative 

number of spermatozoa was not related to the duration of M3 (P>0.05). 

The distribution of sows (with a complete record) of backflow classes of 10% are 

shown in Figure 1. The average total number of spermatozoa in the backflow up to 

2.4±0.1 h after insemination, was 25±1.3% of the inseminated dosage, with a range of 3-

48%. 

The effect of backflow on fertilisation results 

Sows had a mean number of 20.8±0.5 corpora lutea. The number of recovered 

embryos and oocytes, compared to the number of corpora lutea varied from 55% to 

108%, with a mean of 88.4±0.7%. 

Fertilisation rate varied from 0% to 100% per sow. Degenerated embryos were 

seen in 36% of the sows; the mean percentage of degenerated embryos in all sows 

was 4±0.7%. The proportion of fertilised ova was similar to the proportion of normal 

embryos per sow, because of the low number and equal distribution of degenerated 

embryos. 

A negative effect was found with a high amount of backflow on the 

percentage normal embryos (P<0.05) when lxlO9 spermatozoa was inseminated 

(Table 2). In the 0-24 h IO, 96% of the sows with low backflow had a high percentage of 

normal embryos (median=100%), while only 50% of the sows with high backflow had a 

high percentage of normal embryos (median=68%) (P=0.035; Table 2). In the 24-48 h IO, 

82% of the sows with low backflow had a high percentage normal embryos 

(median=93%), while the sows with high backflow all had a low percentage of normal 

embryos (median=46%) (P<0.01: Table 2). This negative effect of backflow during 

insemination (Ml) was not seen in sows inseminated with 3 or 6xl09 spermatozoa 

(P>0.05). The amount of backflow after insemination (M2 and M3) had no effect on the 

percentage normal embryos in any of the 3 inseminated dosages (P>0.05; Table 2). 
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Table 2. Influence of backflow (low vs. high1) during (Ml) and after insemination 
(M2, M3) on median percentage normal embryos (Norm) for dosages 1, 3 and 6xl09 

spermatozoa in the 0-24 h and 24-48 h insemination to ovulation intervals (IO) for 
sows. 

Sperm 

dosage 

lxlO9 

3xl09 

Backflow2 

Ml 

M2 

M3 

Ml 

M2 

M3 

n 

28 

22 

14 

12 

6 

7 

0-24h IO interval 

Low 

Norm 

(%) 

100* 

100 

100 

98 

98 

95 

n 

4 

5 

2 

3 

4 

1 

High 

Norm 

(%) 

68 b 

100 

100 

96 

97 

96 

n 

17 

18 

9 

17 

15 

13 

24-48h IO interval 

Low 

Norm 

(%) 

93a 

85 

70 

68 

71 

88 

n 

5 

4 

4 

4 

5 

3 

High 

Norm 

(%) 

46 b 

90 

98 

89 

100 

53 

6xl09 Ml 92 21 90 6 97 

M2 

M3 

4 

1 

100 

-

0 

0 

21 

17 

100 

72 

3 

5 

42 

100 

' Backflow: high: 20% of the sows with the highest relative number of spermatozoa in backflow. 
low: 80% of the sows with the lowest relative number of spermatozoa in backflow. 

2 Measurement: Ml: backflow during insemination; Ml: backflow 0-0.5 h after insemination; 
M3: backflow 0.5-2.5 h after insemination. 

«> Within IO interval, different superscripts indicate significant differences between sows with low and high 
backflow according to the Fisher exact test where percentage normal embryos was divided in 2 classes: 0-80% 
and 80-100% (P<0.05). 

DISCUSSION 

Backflow of semen may be a normal physiological process in pigs, since semen 

backflow was seen with every sow. The volume of backflow (70% of the inseminated 

volume) was relatively high compared to the number of spermatozoa in backflow 

(25% of the inseminated spermatozoa) during the 2.5 h after insemination. In this 

study, the percentage of spermatozoa in backflow was similar to the spermatozoa in 

backflow recovered after natural mating in a study of Viring and Einarsson (1981). 

They concluded that approximately one-third of the spermatozoa in the ejaculate 
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disappeared by backflow within 2 h after mating. Although the variation in total 

amount of backflow was variable between sows, the correlation between the number 

of spermatozoa and the volume of backflow was high within the three measurements 

(Ml, M2 and M3). Therefore the volume of backflow was an indication of the number 

of spermatozoa in backflow. The total proportional volume of backflow within 2.5 h 

after insemination varied between 20% to 120%. Some sows (n=5) had more than 

100% backflow, probably as a result of secretion of mucus. It was not due to urine as 

evidenced by the small amount, colour and smell of the backflow. 

The amount of backflow during and after insemination was not related to the 

timing of insemination during oestrus. Backflow of semen is therefore not an 

indicator of incorrect timing of insemination relative to the time of ovulation. Baker 

and Degen (1972) found a correlation between size of uterus and number of 

spermatozoa in backflow. This may explain why relatively more parity 1 sows had a 

high volume of backflow (>20 ml) during insemination than older parity sows. Also, 

variation in contraction activity of the uterus may cause variation in backflow 

between sows. The uterus shows myometrial activity during oestrus (Claus et al., 

1989) and increased uterine contractions, both in frequency and amplitude after 

natural mating and artificial insemination (Zerobin, 1968; Bower, 1974). Variation 

between pigs was found in these studies. 

Spermatozoa seem to stay progressively in the reproduction tract of pigs, since 

the concentration of spermatozoa in backflow decreased when time from insemination 

to backflow collection increased from 0 to 2.5 h. The concentration of spermatozoa in 

backflow during insemination was high (Ml =65% of the concentration in the 

inseminated dosage) compared to the backflow after insemination (M3= 26% of the 

concentration in the inseminated dosage). Baker and Degen (1972) found a similar 

decrease of sperm cell concentration in uterine horns and oviducts after flushing. The 

concentration decreased from 62x10* spermatozoa/ml to llxlO6 spermatozoa/ml from 

15 to 60 minutes after insemination was performed with 19 to 24xl09 spermatozoa in 

100 ml fluid. Histological examination of uterine epithelium after mating demonstrated 

that spermatozoa do adhere to uterine cilia, glandular tubules and surface epithelium 

(Lovell and Getty, 1968). Phagocytosis seems to be responsible for the removal of the 

largest part of the inseminated spermatozoa, as Pursel et al. (1978) reported that gilts 

slaughtered 2 h after insemination had high numbers of leukocytes in the uterus. 

Summarising, from these studies it would seem that a large part of the inseminated 
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volume disappeared from the uterus due to backflow and that the inseminated 

spermatozoa disappeared from the uterus due to both backflow and phagocytosis. 

Excessive backflow during insemination affected fertilisation negatively, 

though only for the sows inseminated with lxlO9 spermatozoa. Although the number 

of sows was not large, it could be concluded that suboptimal circumstances like a 

combination of low dosage and loss of spermatozoa due to backflow during 

insemination, may lead to sub-optimal fertilisation results. The fluid of the 

inseminated dosage could be a limiting factor for optimal fertilisation results. The 

fluid of an insemination dosage is the medium for transporting the spermatozoa. Baker 

et al. (1968) compared the results of insemination with 5xl09 spermatozoa in 20,100 

and 200 ml semen and concluded that gilts inseminated with 100 ml semen had a 

significantly higher proportion of eggs fertilised and more sperm attached to the 

zona pellucida than gilts inseminated with 20 and 200 ml semen. Stratman and Self 

(1960) found a requirement of at least 50 ml to obtain suitable results with AI. Loss of 

semen during insemination could hinder the optimal transport of spermatozoa to the 

oviduct due to the reduced volume in the uterus. 

No effect of backflow after insemination (M2 and M3) was found on 

fertilisation results. The variation in the volume of backflow in M2 was high and 

ranged from 0-76% of the inseminated dosage. Spermatozoa have been found in the 

oviduct within 5 min after insemination (Baker and Degen, 1972; Viring et al., 1980). 

Rapid sperm transport due to uterine contraction will commence immediately after 

insemination. From our study it may be concluded that in some cases, enough 

spermatozoa are in the top of the uterine horns within 30 min after insemination, 

since in some sows more than 80% of the inseminated fluid disappeared through the 

vulva within 30 min and good fertilisation results were still obtained. Backflow after 

insemination, does not seem to affect the number of spermatozoa in the sperm 

reservoir. Even preventing backflow from the uterus with a cotton tampon or a 

plastic plug placed into the cervix after insemination did not increase the number of 

spermatozoa recovered from the uterine horns and utero-tubal-junction 4 h after 

insemination (Pursel et al., 1982). 

In conclusion, backflow during and after insemination was highly variable 

between sows. Excessive backflow during insemination (more than 5% of the 

inseminated dosage) had a negative effect on fertilisation results when sows were 

inseminated with lxlO9 spermatozoa, but this was not seen with an insemination 
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dosage of 3 and 6xl09sprematozoa. Semen backflow after insemination (up to 75 ml) 

did not affect fertilisation results. Causes of variation in backflow between sows are 

still poorly understood. 
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ABSTRACT 

Fertilisation results depend on the quantity and quality of sperm cells and 
oocytes, and is affected by the period in which the gametes are present in the female 
reproductive tract. To understand a complex process like fertilisation better, 
mathematical models can be helpful. The objective of this study is to develop a 
mathematical model for fertilisation in pigs. The model should be able to 
demonstrate the probability of fertilisation of oocytes in pigs, dependent on the time 
of insemination in relation to ovulation and on the number of ovulated oocytes. In 
the model the process of conception (at least one oocyte fertilised in a sow) and 
fertilisation (proportion of oocytes fertilised) are distinguished. The parameters of 
the model were estimated from data of sows inseminated once with a commercial 
sperm dosage in 80 ml extender at various intervals relative to ovulation. The 
residual standard error of the final model was 0.044 and the explained variance was 
R2=97%. In the model, the probability of conception is maximal 98%, when 
insemination is performed between 28.8 h and 3.1 h before ovulation, and the 
probability of good fertilisation (all oocytes fertilised) is maximal when insemination 
is performed at 9.6 h before ovulation. At this optimal fertilisation point, the 
probability of partial fertilisation is 21% and increases beyond this point. The 
probability of fertilisation seems to be more sensitive to timing of insemination than 
the probability of conception. In conclusion, the developed model gives more insight 
in the process of fertilisation and can be used to study effects of e.g. sperm cell and 
oocyte ageing on fertilisation. 

INTRODUCTION 

Fertilisation of oocytes is a complex process in which sperm cells and oocytes have to 

meet at the right time in the oviduct. The quality of oocytes (Hunter and Dziuk, 1968) 

and the quantity and quality of sperm cells (Hunter, 1990) are affected by the time 

the gametes are in the female reproductive tract until fertilisation. When 
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insemination takes place before ovulation the sperm cells will age, and when 

insemination takes place after ovulation the oocytes will age until fertilisation. Both 

ageing processes cause a decrease in the chances on fertilisation. This means that the 

moment of releasing sperm cells in the female reproduction tract (insemination) in 

relation to the moment of releasing the oocytes (ovulation) determines the period in 

which fertilisation is possible. 

Elements of the fertilisation process in relation to the time of insemination and 

ovulation are studied extensively, wresulting in specialised knowledge about 

particular aspects of fertilisation (Waberski et al., 1994ab; Soede et al., 1995ab; 

Steverink et al., 1997). Various elements of fertilisation in relation to insemination 

and ovulation in the pig are combined in reviews. (Polge, 1978; Hunter, 1990; Kemp 

and Soede, 1997). To understand a complex process like fertilisation better, 

mathematical models can be very helpful. In such a mathematical model, elements 

have to be combined and links between different aspects of the process have to be 

translated into mathematical functions which can increase the insight in the process. 

In literature, mathematical models have been reported that describe 

reproductive performance from ovulation until end of gestation as one whole 

process in pigs (Leymaster et al., 1986; Bennett and Leymaster, 1990ab) and in sheep 

(Geisler et al., 1977). In cattle, Koops et al. (1995) and Grossman et al. (1995) 

developed mathematical models to describe nonreturn rates for bulls from 

conception until end of gestation. In human, changes of fertilisation have been 

studied with respect to the time of coitus in relation to ovulation (Royston, 1982; 

Weinberg et al., 1994). In these mathematical models, special consideration has been 

given to a division between the process of ageing of sperm cells from ageing of 

oocytes. Unlike human, pig is a polytocous species and ovulate more than one 

oocyte. This means that besides total fertilisation of all oocytes also a part of the 

oocytes can be fertilised. In a study of Soede et al. (1995a) it was shown that partial 

fertilisation in pigs was seen in all insemination to ovulation intervals and increased 

when the interval between insemination and ovulation increased. 

For pigs, no mathematical model of the process of fertilisation is available, 

although various studies have been focussed on effects of the timing of insemination 

on fertilisation in pigs. Such a model should give more insight in the process of 

fertilisation in the pig and can be used as a base for decision supporting programs for 

managing insemination strategies in pig production. The objective of this study 
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therefore is to develop a mathematical model for fertilisation in pigs. The model 

should be able to demonstrate the fertilisation process in pigs dependent on the time 

of insemination relative to ovulation and on the number of ovulated oocytes. 

MATERIALS AND METHODS 

Model development 

The mathematical model to predict the probability of fertilisation of a number 

of oocytes in pigs is based on (1) the insemination to ovulation interval (A) and (2) the 

number of ovulated oocytes (N). In this study the process of conception and 

fertilisation are distinguished. Conception is defined as the event of at least one 

oocyte being fertilised after insemination (Hunter, 1967). In the case conception takes 

place, different levels of fertilisation are possible because one or more oocytes can be 

fertilised. When not all oocytes are fertilised this is called partial fertilisation. The 

model should be able to predict the probability of conception and the probability of 

fertilisation of n oocytes when A and N are known for a sow. 

Conception rate (Pc) for one single sow is a yes or no trait. The probability of 

conception can be derived from the frequency of conception in a group of sows: 

number of sows with at least one fertilised oocyte 
£ = 

*- number of inseminated sows 

Fertilisation rate (PF) can be calculated for one single sow as: 

number of fertilised oocytes 

F number of ovulated oocytes 

In case of failure to conceive, conception rate and fertilisation rate are both zero. 

Conception 

The probability for a sow to conceive (PC,A) is affected by the time (A) in hours 

between the moment of insemination (U) and ovulation (t0), thus A = (ti) - (t0), where A 

yields negative values when insemination was applied before ovulation. PC,A is 

assumed to be dependent on A and not on the number of ovulated oocytes N. Note that 

the probability of failure to conceive is 1 - PQA- The equation used for PC.A is: 
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rC,A 

where 

l + (l-l)x(l + e-( -ds>)bsx(1 + e( -*o)fo 

[1] 

PC,A is the probability of conception for an interval A; 
A is the insemination relative to ovulation interval (h); 
ds is the point (h) for A where conception rate starts to decrease associated with ageing of 

sperm cells; 
d„ is the point (h) for A where conception rate starts to decrease associated with ageing of 

oocytes; 
a is the maximum value for Pc,A for the period ds< A< cU; 
bs is an indicator for the duration (h) of decrease in conception rate associated with ageing of 

sperm cells; 
b0 is an indicator for the duration (h) of decrease in conception rate associated with ageing of 

oocytes; 

Figure l a shows a schematic 

presentation of Eq [1]. Basic assumptions 

made for Eq [1] are: (1) there is a range 

for A, between d5 and do, where 

conception rate is maximal, (2) the 

decrease in conception rate associated 

with ageing of sperm cells (bs) might not 

be equal to the decrease associated with 

ageing of oocytes (b0). The bs and ba 

indicate the duration of the decrease in 

conception rate from the maximum to the 

minimum conception rate. 

ds d0 
insemination relative to ovulation 

(h) 
Figure la. The probability of conception 
(one or more fertilised oocytes) in 
relation to the time between 
insemination and ovulation. 

Fertilisation 

The probability of fertilisation (PF) given conception is considered to be 

dependent on N and on A. First the relation of PF with N at a fixed A is shown and 

thereafter the relation of PF with A is proposed. 

Given conception, a number of n out of N ovulated oocytes can be fertilised. If 

n is smaller than N, this is called 'partial fertilisation'. It is expected that the 

probability for partial fertilisation is rather constant for each n, however for n close to 

N an increase in probability for partial fertilisation is observed (Soede et al., 1995a). 
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This is translated into the following assumptions with respect to fertilisation: (1) for 

each n substantially different from N, there is a constant probability of fertilisation, 

(2) for n close to N (complete and almost complete fertilisation) the probability of 

fertilisation is relatively higher. Figure lb shows a schematic pattern of these 

assumptions. These two assumptions give rise to applying two different distributions 

in the model. Assumption 1 leads to the use of an uniform distribution for describing 

the lower partial fertilisation and assumption 2 leads to an exponential distribution 

for describing complete and almost complete fertilisation. The transition point (q) 

separates the part in which the probability of fertilisation rate is determined by the 

uniform distribution from the part in which the probability is determined by the 

exponential distribution. For 

example if 20 oocytes are ovulated 

and q = 0.9, then the probability of 

less than 18 fertilised oocytes is 

determined by the uniform 

distribution, 18 fertilised oocytes is 

the transition point and the 

probability of 19 and 20 fertilised 

oocytes is determined by the 

exponential distribution. (Note that 

there is some small contradiction in 

this assumption, because in the 

range qxN till N there is still a small 

proportion which is determined by 

the uniform distribution. To keep 

the model simple we accept this 

small error.) 

The advantage of a 

cumulative function is that it can be 

restricted and sum up to one. 

Therefore is the estimation of the 

parameters best conducted on the 

cumulative function in this study. 

Figure lc is the cumulative 

number of fertilised oocytes (n) 

Figure lb and lc. The probability of 
fertilisation (up) and the cumulative 
probability (below) of n oocytes from the 
N ovulated oocytes in sows that have 
conception at a known insemination to 
ovulation interval, where q is the point of 
change from low partial fertilisation to 
almost complete fertilisation. 
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representation of Figure l b . It shows at each n the cumulative probability of 

fertilisation. At n = N the cumulative probability is summed to 1. The probability of 

complete and almost complete fertilisations (exponential) is assumed to be f, and 

thus the proport ion of lower partial fertilisations (uniform) is equal to 1 - f. The 

equation used for the cumulative probability of fertilisation (PF,H (cum)) w i th respect 

to n is: 

PFn(cum) = (l-fix^ + fxe N [ 2] 

where 
Pr,„(cum) is the cumulative probability of fertilisation ofn oocytes; 
N is the total number of oocytes ovulated; 
n is the number of oocytes fertilised; 
1-f is the probability for lower partial fertilisations (uniform sitribution); 
f is the probability for complete or almost complete fertilisations (exponential distribution; 
k is the transition point criteria where low partial fertilisation changes into complete or 

almost complete fertilisation. 

The transition point qxN is determined by parameter k in the exponential par t of Eq 

[2]. At point qxN the probability for complete or almost complete fertilisation should 

be low (5% of f). This is t rue for the situation e-W -qxN/N) = n.05, a n c j for q = 1 + (1 /k) x 

ln(0.05). For example if k is estimated as 30, the transition point is calculated as qxN 

= 0.90 N. From Eq [2] the probability for each n can be derived by taking the first 

derivative of PF,n(cum) wi th respect to n: 

(1-f) k - W I - T T ) 

P r ={±Jl + fxJLe N [3] 
F,n N J N 

which is the mathematical representation of Figure l b . 

The model can now be extended to account for varying insemination to 

ovulation intervals (A). When ageing occurs on either sperm cells or oocytes, then the 

proport ion of partial fertilisations will increase on the expense of the proport ion of 

good fertilisations (Soede et al., 1995a). Therefore, an equation similar to Eq [1] can be 

used to m a k e / d e p e n d e n t of A: 

1 
'A 
/A =7 *— J^ W 

1 + {l-1M1 + e-(^s)fsx{1 + e(^o)fo 
8 

v 
where 
fA is the probability of complete and almost complete fertilisations at interval A; 
A is the insemination relative to ovulation interval (h); 
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es is the point (h)for A where complete and almost complete fertilisation rate starts to decrease 
associated with ageing of sperm cells; 

e0 is the point (h)for A where complete and almost complete fertilisation rate starts to decrease 
associated with ageing of oocytes; 

g is the maximum value for / 4 for the period es< A< e„; 
cs is an indicator for the duration (h) of decrease in complete and almost complete fertilisation 

rate associated with ageing of sperm cells; 
c0 is an indicator for the duration (h) of decrease in complete and almost complete fertilisation 

rate associated with ageing of oocytes; 

By substituting/^ of Eq [4] f o r / i n Eq [3], the equation for PF,« is now also dependent on 

A, and the model for fertilisation rate (PF,U,A) is now complete. 

Final model 

The probability (PA,H) of the result of one insemination is now possible to 

describe at a given A and a given n out of N ovulated oocytes, by combining the 

conception rate (PQA ) and fertilisation rate (PF,H,A)'-

PAn = (1 - PQA ) + PC,A X PF,n,A [5] 

For estimating the parameters it is advisable to use cumulated observations and 

PF,n(cum) instead of PF,H because in the cumulated model the restriction is already 

included that the sum of all probabilities over n is equal to 1. 

Data 

Data used for this s tudy were from three experiments. Experiment 1 was 

designed to describe effects of moment of insemination relative to ovulation on 

fertilisation rate (Soede et al., 1995a). Experiment 2 was designed to s tudy the effect 

of a second insemination after ovulation on fertilisation rate (Soede et al., 1995b). 

Experiment 3 was designed to s tudy the effect of sperm dose at insemination on 

fertilisation rate (Steverink et al., 1997). From experiment 2, only data of sows that 

were inseminated once are used. The experimental procedures of the three 

experiments were similar and are described below. There were no differences 

between the three experiments in the effects of insemination to ovulation interval on 

conception and fertilisation rate. 

Animals and housing 

Every 2 weeks, sows were obtained at the day of weaning from a commercial 

farm and t ransported to the experimental farm. Sows were housed individually in 
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crates and received a total of 2.5 kg of a commercial sow diet (12.9 MJ ME kg-1) in 

two portions daily and water ad libitum. Experiment 1 consisted of 143 sows, 

experiment 2 of 58 sows and experiment 3 of 160 sows. The number of sows from 

parity 1 through 8 were 49, 105, 113, 74, 10, 3, 5 and 2, respectively. The sows 

originated from three parental synthetic lines for commercial crossbred sows 

(Dalland b.v., Merselo, The Netherlands). Sows that came into oestrus and ovulated 

between 3 and 7 days after weaning were assigned to the study. 

Ovulation 

Ovulation was detected using transrectal ultrasonography as described by 

Soede et al. (1992). An annular array sector scanner (type 150V, Pie Medical B.V., 

Maastricht, The Netherlands) with a 5.0-7.5 MHz multiple scan angle transducer was 

used. A first check of the ovaries for presence and size of follicles (diameter of 

antrum > 4 mm) and corpora lutea was performed at approximately 70 h after 

weaning. From 16 h after the onset of oestrus, ovaries were checked at intervals of 4 h 

to estimate the moment of ovulation. Time of ovulation was defined as the first time 

when no follicles were counted minus 2 h. When the number of follicles was 

noticeably smaller than at the previous scanning, ovulation was assumed to have just 

started, since ovulation takes on average 2 h in spontaneously ovulating sows (Soede 

et al., 1992). Ovulation was confirmed by one additional scanning 4 h later. 

Insemination 

Artificial insemination was conducted once with a commercial dose of 80 ml 

containing 3 x 109 sperm cells in experiment 1 and 2 and 1, 3 or 6 x 109 sperm cells in 

experiment 3. The effect of sperm dosage was not significant on fertilisation and 

therefore supposed to be similar. The age of the inseminated sperm cells (time from 

collection to insemination) ranged from 11 to 38 h at the moment of insemination. 

The moment of insemination was at variable times from onset of oestrus. 

Estimation of parameters 

To estimate the parameters for equation [5], the results from experiment 1, 2 

and 3 were pooled. The insemination to ovulation interval was divided into 10 

classes of 8 h (-56 to -48, -48 to -40, -40 to -32, -32 to -24, -24 to -16, -16 to -8, -8 to 0, 0 

to 8, 8 to 16 and 16 to 24). Classes -56 to -48 and 16 to 24 were excluded because of a 
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low number of observations (2 and 1, respectively). The probability of the fertilisation 

situations are calculated within each class of insemination to ovulation interval. 

Model parameters were estimated by nonlinear regression using adaptive nonlinear 

least squares algorithm (Sherrod,1994). A default value of l x lO 1 0 was used for the 

tolerance factor, which specifies the convergence criterion for the iterative estimation 

procedure. Goodness of fit of the model was measured by residual s tandard error. 

~ 100% 
5« 
:> 90% 

Z 80% 

£ 70% 

t- 60% 
o 
£ 50% 

<u 
£ 40% 
•a 

M 30% 
JP 20% 
§ 10% 
CD 

o- 0% 

* * A \J*&P'+* V 
ovulation 

• A • • > % * : . 
A • * A ^ ® 

A \ 1 ^ «> 

/ A ' V ^ . A 

• * • i * A
 A 

A * 

A * ® A 
A 

1 « • ffei 0 AT A A-

A 

4 

*~ • • • 

#* 

• 

« 

• 

• 

« • 

• i 
• 2 

A 3 

r • • 
—<M*i - • - " ~i 

-56 -48 -40 -32 -24 -16 -8 0 
insemination relative to ovulation (h) 

16 24 

Figure 2a. Percentage of fertilised oocytes in relation to insemination to 
ovulation interval of 360 sows at day 5 of pregnancy from three studies: 1: 
Soede et al. (1995a); 2: Soede et al. (1995b); 3: Steverink et al. (1997). 

RESULTS 

Descriptive results 

The average number of oocytes was 21 ± 3.8 (Table 1) and inseminations were 

performed between 52 h before ovulation and 19 h after ovulation. The percentage of 

fertilised oocytes varied between 0 and 100% and the variation was high (Figure 2a). 

Table 1. Mean number of oocytes, insemination relative to ovulation and percentage 
fertilised oocytes with a SD and the range. 
Variable N 

Number of oocytes 

Insemination to ovulation interval (h) 

Percentage fertilised oocytes (%) 

54 

Mean SD 

360 

360 

360 

21.0 

-18.3 

81.9 

3.8 

14.6 

30.7 

10 

-52 

0 

36 

19 

100 
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n=18 n=49 n=74 n=80 n=56 n=28 n=36 n=15 

-48 to -40 -40 to -32 -32 to -24 -24 to -16 -16 to -8 -8to0 0to8 
insemination relative to ovulation (h) 

8 to 16 

Figure 2b. The percentage of sows displaying 0%, 1-21%, 21-40%, 41-60%, 61-
80%, 81-99% and 100% fertilisation rates after insemination relative to 
ovulation in the classes of -48 to -40 h, -40 to -32 h, -32 to -24 h, -24 to -16 h, 
-16 to -8 h, -8 to 0 h, 0 to 8 h and 8 to 16 h. 

The highest percentage of 

sows with a complete 

fertilisation was seen when 

insemination was performed 

between 8 and 0 h before 

ovulation (Figure 2b). Partial 

fertilisation increased when 

insemination was performed 

further from ovulation with 

the highest number of sows 

with a partial fertilisation 

(72%) when insemination 

was performed between 48 to 

40 h before ovulation. The 

proportion of sows with a 

lower partial fertilisation (1 

to 80% fertilised oocytes) was 

also highest in this interval. 

0.6 « § 

0.5 I •§ 

0-4 Z % 

z ° 
0.3 £ J 

S s 
0.2 « "S 

o 

-84 -72 -60 ^ 8 -36 -24-12 0 12 24 36 48 
insemination relative to ovulation (h) 

Figure 3. The estimated probability of conception 
(one or more fertilised oocytes) (—) and complete 
or almost complete fertilisation of the sows with 
conception ( ) in relation to the time between 
insemination and ovulation. 
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Table 2. Estimates and standard errors for 
the parameters used in the model to 
estimate probability of conception and 
fertilisation. 

Parameter 

Conception: 

Fertilisation: 

a 

ds 

d0 

b 

g 
e 

Cs 

Ce 

k 

Estimate 

0.984 

-28.84 

-3.07 

5.29 

0.958 

-9.56 

7.55 

7.84 

34.0 

SE 

0.009 

3.45 

3.38 

0.73 

0.010 

1.35 

0.57 

1.16 

2.6 
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Conception 

According to the model, 

conception (fertilisation of at least one 

oocyte in a sow) was possible when 

insemination was performed between 

84 h before and 48 h after ovulation 

(Figure 3). The highest probability for 

conception was 98.4% (a=0.984) (Table 

2). The conception rate decreased due 

to ageing of sperm cells when 

insemination was performed more 

than 28.8 h (ds) before ovulation. The 

conception rate decreased due to 

ageing of oocytes when insemination 

is performed from 3.1 h (da) before 

ovulation onwards. This point d0 was not significantly different from 0 h (P > 0.1). 

The model did not converge when the duration of the decrease in conception rate 

due to ageing of sperm cells (bs) and oocytes (b0) were estimated separately. 

Therefore, bs was equated to b0 and the indicator for the duration of the decrease in 

conception due to ageing of sperm cells and oocytes was 5.3 h (b). 

Fertilisation 

The probability of fertilisation is illustrated by an example in which sows 

ovulated 20 oocytes (N=20) (Figure 4, 5 and 6). The transition point q*N at which the 

uniform distribution of the lower partial fertilisation (1-f) changed into the 

exponential distribution of good fertilisation (/) (complete and almost complete) in a 

sow that ovulated 20 oocytes was n=18.3 fertilised oocytes (/c=34.0) (Table 2). The 

probability of fertilising n oocytes (n = 1 to 20) with a given insemination to 

ovulation interval in sows with conception, is shown in Figure 4. The lowest 

probability on lower partial fertilisation (n = 1 to 18 fertilised oocytes) occurred when 

insemination took place between 13 and 5 h before ovulation and was in this interval 

0.3%. The probability of lower partial fertilisation increased to the maximum of 5% in 

this example when the relative insemination to ovulation interval was lower than -48 

h or higher than 29 h. 
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18 19 20 

Figure 4. The estimated probability of fertilisation (PF) n oocytes in relation to 
insemination to ovulation interval (IO) in sows that ovulated 20 oocytes and that 
had conception (one or more fertilised oocytes). 

The point A at which good fertilisation (n is 18 to 20) starts to decrease due to 

sperm cell ageing or oocyte ageing was similar and therefore was es equated to e0 to e 

(Table 2). The highest probability of good fertilisation (n=19 and 20) was found when 

insemination took place at e=9.6 h before ovulation and was 95.8% (Table 2). The 

indication of duration of decrease in fertilisation rate due to ageing of sperm cells (c5) 

was 7.6 h and due to ageing of oocytes (c0) was 7.8 h. 

Final model 

Figure 5 shows the probabilities of conception and fertilisation (P^n) of the 

final model described in Eq [5], illustrated by the example in which a sow ovulated 

20 oocytes. The residual standard error of the final model was 0.044 and the 

explained variance was R2=97%. The probability of no conception can be read from 

the figure at n=0. When n is 1 to 18, the probabilities of lower partial fertilisation are 

shown (uniform distribution), and when n is 19 to 20 the complete and almost 

complete fertilisations are shown (exponential distribution). 
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48 0 

Figure 5. The estimated probability of conception and fertilisation (P) n oocytes in 
relation to insemination to ovulation interval (IO) in sows that ovulated 20 
oocytes. 

The highest number of 

fertilised oocytes can be 

expected between -10 and -8 h 

(Figure 6). On average 90% of 

the oocytes were fertilised when 

the insemination took place 

between 20 and 0 h before 

ovulation. On average 80% of 

the oocytes were fertilised when 

the insemination took place 

between 29 h before and 3 h 

after ovulation. 
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Figure 6. The average total number of 
fertilised oocytes in relation to the 
insemination to ovulation interval in sows 
that ovulated 20 oocytes. 
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DISCUSSION 

General 

The total number of fertilised oocytes which is determined by the number of 

ovulated oocytes, the conception and fertilisation rate is the starting point for the 

potential litter size in pigs. The mathematical model used in this study, which is a 

function of the time of insemination in relation to ovulation and of the number of 

ovulated oocytes, was able to mimic probabilities of conception and fertilisation 

(Figure 5) of the observed results in the 3 experiments (Figure 2) with a small 

residual standard error for the final model (SE=0.04). 

Conception 

The model suggests an interval rather then a point in which the chance of 

conception will be maximal. The negative effect caused by ageing of oocytes on 

conception already starts with insemination around ovulation. Hunter (1967) also 

found a decrease in conception rate immediately after ovulation. In gilts with 

induced ovulation, conception linearly decreased from 100 to 66.7% when 

insemination was applied from 0 to 16 h after ovulation. For sperm cells, it takes 

longer (29 h) before the effect of ageing on conception is noticeable (Figure 3). After 

insemination a proportion of the sperm cells reach the oviduct where a sperm 

reservoir is formed. Sperm cells that reach the sperm reservoir are partly protected 

from a reduction of motility, of viability and of fertilisation capacity (Overstreet et 

al., 1980; Suarez et al., 1991). Therefore, it is likely that the process of ageing is 

postponed while sperm cells are stored in the reservoir. 

From the model it is concluded that the maximum conception rate is 98%, 

which means that there is always a proportion of sows that have no fertilised oocytes 

after insemination, even when the time between insemination and ovulation is 

optimal. A possible cause could be technical errors during the insemination 

procedure (Flowers, 1998) or ceased sperm transport. Sows normally have uterine 

contractions during oestrus but there is variation between pigs in frequency and 

amplitude of the contractions (Claus et al., 1989). In sows in which uterine 

contractions are absent or disturbed it is possible that too few sperm cells reach the 

site of fertilisation. Physical problems like uterine disorders or closed oviducts due to 

infection could also restrict sperm and oocyte transport (Heinonen et al., 1998). 
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In monotocous animals, conception rate is equal to fertilisation rate. In 

polytocous animals however, partial fertilisation is possible. A model on fertilisation 

in polytocous animals gives therefore information about differences between 

conception and fertilisation. This could be one of the reasons why maximum 

conception rate is rather high in this study (98%) compared to estimates in human 

(80%: Royston, 1982) and cows (76%: Grossman et al., 1995; 90%: Koops et al., 1995). 

Fertilisation 

In contrast to conception, fertilisation showed an optimal time point instead of 

an interval and this was found when insemination was applied 9.6 h before 

ovulation. This result indicates that negative effects on fertilisation start already with 

insemination 9.6 h before ovulation. Theoretically, the optimal time for insemination 

relative to ovulation could be the time for sperm cells to reach the site of fertilisation 

(Ampulla Isthmic Junction: AIJ) in sufficient numbers and capable (capacitated) of 

fertilising oocytes, minus the time for oocytes to reach the AIJ. The time for 

transportation of sperm cells from the place of insemination to the oviduct is less 

than 1 h (Hunter, 1984). In the oviduct, sperm cells have to move to the AIJ and 

capacitate before they can fertilise oocytes. Hunter et al. (1998) studied the time 

interval from surgical insemination into the caudal isthmus at ovulation until the 

time of fertilisation. When the period was 6 h it resulted in a high percentage of 

fertilised oocytes (46%) compared to a shorter interval (5 h: 2% fertilised oocytes). 

The time for transportation of sperm cells in the uterus and oviduct and thereafter 

capacitation should possibly be added because uncapacitated 'normal' sperm cells 

pass the uterotubal junction the best (Shalgi et al., 1992) and have to capacitate after 

they reach the oviduct. The time needed for sperm cells to reach the AIJ and be 

capable of fertilising will thus be 7 h. The time for the oocytes to be transported to the 

site of fertilisation takes less then 1 h (Hunter, 1974). Theoretically, the optimal time 

of insemination will thus be 6 h before ovulation (1 minus 7 h). In our model the 

optimal time (9.6 h) is close to this theoretical optimal time point and also within the 

optimal insemination to ovulation interval (0 to 24 h) as reviewed by Kemp and 

Soede (1997). 
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Final model 

The distribution of conception rate and fertilisation rate were both symmetric, 

but the final model is asymmetric due to the mutual positioning of these 

distributions on the insemination to ovulation axis. In human, it was also shown that 

the distribution of fertilisation was asymmetric. Time taken to reduce fertilisation 

from 80% to 40% was 1.5 day when reduction was due to ageing of sperm cells and 

the time was half a day when reduction was due to ageing of oocytes (Royston et al., 

1982). 

From the model it is clear that the impact of partial fertilisation can not be 

neglected. The probability on partial fertilisation is 21% when insemination was 

applied at 9.6 h before ovulation and increased when insemination was performed 

earlier or later then this optimal moment of insemination. The probability that 1 

oocyte is not fertilised or will not develop to an embryo from the total number of 

ovulated oocytes occurred at this interval more often (14%) than lower partial 

fertilisations (7%) (Figure 5). The reason that 1 or 2 oocytes are unfertilised or will not 

develop to an embryo after fertilisation can be for example chromosome 

abnormalities (McFeely, 1967) or polyspermic fertilisation (Hunter, 1967). 

The insemination to ovulation interval of the studies used, ranged between -

52 and 19 h. The model is extrapolated outside this range to estimate the duration of 

the decrease in fertilisation associated with ageing of sperm cells or oocytes. It is 

difficult to validate the model outside this range because no data are available. Sows 

are inseminated during oestrus, and oestrus duration can be up to 96 h (Weitze et al., 

1994). In this extreme long oestrus duration the insemination to ovulation interval 

theoretically could range between -64 and 32 h with ovulation taking place at 

twothirds of oestrus (reviewed by Soede and Kemp, 1997). The number of sows 

having these extreme insemination to ovulation intervals are very rare and therefore 

inseminations outside the range of -52 to 19 h (our studies) will not frequently occur. 

The parameters for this mathematical model are estimated from results 

obtained in sows that were inseminated once with a dose of 1, 3 or 6xl09 sperm cells 

mixed from three boars in 80 ml. Waberski et al. (1994a) studied fertilisation results 

with gilts instead of sows and concluded that the optimal interval for insemination 

was between 0 and 12 h, but the conception rate and fertilisation rate in that interval 

of 0 to 12 h was still high: 100% and 92%, respectively. This interval was smaller 

compared to the interval of -20 to 0 h in which on average 90% of the oocytes will be 
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fertilised in our model. Using frozen semen in gilts decreased the optimal 

insemination to 0 and 4 h before ovulation in which good conception and fertilisation 

results (100% and 88%, respectively) could be obtained. The use of longterm-stored 

liquid semen (48 to 87 h and 87 to 118 h) decreased the interval from insemination to 

ovulation in which 'good' fertilisation results could be obtained from 0 to 24 h to 0 to 

12 h compared to shorterm-stored semen (82.5% and 89.4%, respectively) (Waberski 

et al., 1994b). It might be speculated that if conditions for insemination are less 

optimal, the distribution of the model probably will be compressed and thus 

conception and fertilisation will be concentrated in a smaller range of insemination to 

ovulation interval. However, no changes in the maximum levels in the probability of 

conception and fertilisation are expected. 

In conclusion, this model gives more insight in the process of conception and 

fertilisation, in the optimal moment of insemination relative to the momejit of 

ovulation and in the effect of ageing of sperm cells and oocytes on conception and 

fertilisation results. 
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ABSTRACT 

This research was conducted to determine factors that influence duration of 
oestrus, insemination strategy, and reproduction results between and within 
commercial swine farms that use artificial insemination. Data from 15,186 sows and 
gilts on 55 farms for a period of 6.1 ± 4.2 mo per farm were used in this study. The 
average duration of oestrus was 48.4 ± 1.0 h, ranging from 31 to 64 h, and was 
consistent from month to month within a farm (repeatability of 86%). Differences in 
duration of oestrus between farms accounted for 23% of the total variation in 
duration of oestrus. On most farms (n=45), gilts showed a shorter (P<0.05) duration 
of oestrus than sows (40.8 ± 1.1 h vs 48.5 ± 1.0 h). The duration of first oestrus after 
weaning was longer (P<0.0001), compared to duration of oestrus of repeat breeder 
sows (50.2 ± 1.0 h vs 46.8 + 1.0 h). Duration of oestrus decreased (P<0.05) when 
interval from weaning to oestrus increased from 4 to 6 d (56.0 ± 1.2 h vs 45.8 ± 1.2 h). 
The regression of interval from onset to oestrus to first insemination and interval 
from weaning to oestrus varied between farms and ranged from -7.4 to +1.3 h/day; 
four farms had a positive relation. Farrowing rate decreased (P<0.05) when the 
interval from weaning to oestrus increased from 4 to 10 d (89.7 ± 2.7 h vs 78.2 ± 5.7 h). 
The litter size decreased (P<0.05) from 11.7 to 10.6 piglets when the interval from 
weaning to oestrus increased from 4 to 7 d. Compared with a single insemination, 
double insemination in sows and gilts resulted in a 4.3% and 7.0% higher (P<0.05) 
farrowing rate, respectively. When the first insemination was performed after 
expected ovulation, reproduction results were lower than when insemination was 
performed before or at expected ovulation in sows. Duration of oestrus was not 
related to farrowing rate or litter size in individual pigs. Number of inseminations 
per oestrus, time of insemination, and duration of oestrus were correlated, which 
made it difficult to assess which of these factors was primarily related to the 
farrowing rate or litter size. Knowledge of average duration of oestrus on farms and 
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of factors that influence the duration of oestrus on commercial farms can help to 
improve the efficiency of the insemination strategy specific for each farm. 

Key Words: Pigs, Oestrus, Insemination, Litter Size, Reproduction 

INTRODUCTION 

When the interval between insemination and ovulation is between 0 and 24 h, 

fertilization is optimal (Kemp and Soede, 1997). Ovulation takes place approximately 

two-thirds of the way through oestrus (Mburu et al., 1995; Nissen et al., 1997; 

Steverink et al., 1997) and the duration of oestrus of sows can vary from 24 to 96 h 

(Weitze, 1994; Soede et al., 1995a). The duration of oestrus is influenced by factors 

such as parity, season, stress, boar effects, and weaning to oestrus interval (Weitze et 

al., 1994; Kemp and Soede, 1996; Soede and Kemp, 1997). The high variation in 

duration of oestrus, results in a high variation in the interval from onset of oestrus to 

ovulation. Therefore, onset of oestrus is not a very good predictor for the optimal 

time of insemination. Duration of oestrus would be a better predictor but, 

unfortunately, a retrospective one. 

Our objectives for this study were 1) to investigate factors that influence 

duration of oestrus between and within commercial farms and to study whether this 

information can be used in a prospective way to predict duration of oestrus; 2) to 

study whether farms adjust their insemination strategy based on knowledge of 

factors affecting duration of oestrus; and 3) to investigate effects of traits related to 

duration of oestrus and the timing of insemination on reproduction results. 

MATERIALS AND METHODS 

Data and Definition of Variables 

Oestrus detection was recorded on 55 commercial farms in The Netherlands 

from September 1989 until January 1995 by the Animal Health Service Center. A total 

of 15,186 records were used with an average of 279 ± 60 records per farm (60 to 749). 

The average number of months recorded on a farm was 6.1 ± 4.2 and ranged from 2 
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to 19. The average herd size was 230 pigs ranging from 90 to 630 pigs. The pigs were 

commercial crossbreeds that had a lactation period of 21 to 28 d. 

The following variables were recorded: parity (gilt or sow) and history (repeat 

breeder or first insemination). Oestrus checks were performed twice daily in the 

presence of a boar at 08:36 h (07:12 to 10:12 h) in the morning and in the evening at 

17:48 h (13:24 to 23:00 h). The farmers received instructions about the frequency and 

method of oestrus detection. The onset of oestrus was defined as the first time a pig 

showed a standing response to the back pressure test in presence of a boar, minus 

half the time from the former oestrus check. The end of oestrus was defined as the 

first time a pig did not show a standing response to the back pressure test in presence 

of a boar, minus half the time since the previous oestrus check. The weaning to 

oestrus interval was calculated in hours but expressed in days (d 1 is the first 24 h 

after weaning). Sows with a weaning to first oestrus interval less than 1 d (n=20) or 

more than 30 d (n=122) were excluded from the analyses. The date and time of each 

insemination was recorded (52.1% of the pigs were singly and 47.9% were doubly 

inseminated at one oestrus). The second insemination was performed on average 22.6 

+ 0.3 h (13 to 27 h) after the first insemination. Insemination was performed with a 

commercial dose of pooled semen from 3 boars and containing 3xl09 sperm cells in 

80 ml and used within 2 days after collection. 

Ovulation was assumed to take place at 68% of duration of oestrus (reviewed 

by Soede and Kemp, 1997). The interval from first and second insemination to 

expected time of ovulation was calculated. 

Statistical Analyses 

Duration of oestrus (DO), farrowing rate (FR), or litter size (LS) were analyzed 

with individual animal as the experimental unit (SAS, 1990). The following general 

model was used for analyses between groups (parity and history): 

Yijk = (x + Fi + Pj + Hk + interactions + eijk 

where Yijk = a specific trait of animal; u = overall mean; Fi = random effect of farm i (i 

= 1...55); P, = fixed effect of parity j (j = 1,2); Hk = fixed effect of history k (k = 1, 2); 

and ê k = error term. The DO and LS were analyzed with the procedure MIXED. The 

FR was analyzed with the macro GLIMMIX (Littell et al., 1996), where FR was the 

proportion of farrowing pigs of the total number of inseminated pigs, using a logit 
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link function. Factors and interactions were tested for significance and omitted from 

the model in a stepwise way, leaving only significant factors and interactions (P<10). 

Farrowing rate and litter size were also analyzed within the three groups of 

gilts, repeat breeder sows, and weaned sows with animal as the experimental unit. 

The following model was used: 

Yijk = n + Fi + (DOj or NIj or IOj) + WOIk + interactions + e, 

where Yijk = a specific trait of animal; (x = overall mean; Fi = random effect of farm i (i 

= 1 to 55); (DOj or NIj or IOj) = fixed effect of one of the three factors: duration of 

oestrus, number of insemination (NI), or interval from insemination to expected 

ovulation (IO). The classes of (DOj or NIj or IOj) are defined as follows: DOj = 

duration of oestrus of the j class (j = 1 to 5; five classes: 1 to 24, 24 to 48, 48 to 72, 72 to 

96, and 96 to 120 h), NIj = j number of inseminations (j = 1, 2), and IOj = insemination 

to expected ovulation of the j class (j = 1 to 7; seven classes: 36 to 28, 28 to 20, 20 to 12, 

12 to 4, 4 to -4, -4 to -12, and -12 to -20 h). These three factors (DO, NI , and IO) were 

correlated (r>0.5), which implies that these factors should not be included in the 

model at the same time. For the weaned sows, the fixed effect of weaning to oestrus 

interval (WOI) of the k classes was included (k = 1 to 7; seven classes: 2 to 3, 4, 5, 6, 7, 

8 to 10, and 11 to 30 d). 

To study the effect of farm on duration of oestrus, the variance components of 

the final model of duration of oestrus were used as follows: ratio of variance = (at2 + 

c*fp2) / (at2 + ofp2 + ae
2), where at2 = variance component of farm; afp2 = variance 

component of the interaction of farm and parity; and ae
2 = variance component of the 

error. The repeatability of the average duration of oestrus per month was calculated 

using the following model: 

Yij = n + Fi+Mj(F)i+eij 

where Yij = duration of oestrus (h); p. = overall mean; Fi = random effect of farm i (i=l 

to 55); Mj = random effect of the recorded calendar month j (j=l to 3; 2nd, 3rd, and 

4th mo) nested within farm; and eij = error term. The repeatability of the monthly 

duration of oestrus at the farms was calculated for the 2nd, 3rd, and 4th mo (the first 

month was not complete on most farms because farms did not start at the first day of 

the month) as follows: r = at2 / (at2 + as
2); where at2 = variance component of farm; 

and as
2 = variance component of sows, calculated as os

2 = am
2 + (ae

2 / n) where n=30 

sows, which represents the average number of sows per month at the farms. 
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Farm effect on oestrus duration 

RESULTS 

Descriptive Results 

Of all records, 84.3% (n=12,794) were from sows and 15.7 % (n=2,389) were 

from gilts. Of all records, 11.5% were from repeat breeders at the time of 

insemination (8.7% [n=209] of the gilts and 11.9% [n=l,548] of the sows). Table 1 

shows the uncorrected averages and ranges for insemination, oestrus, and 

reproduction traits of the farms. High variation occurs between farms for almost all 

traits, as reflected in the large ranges of mean values in Table 1. 

Duration of Oestrus 

The overall average duration of oestrus on the 55 commercial farms was 48.4 + 

1.0 h, ranging from 31 to 64 h between farms (Table 1), and was consistent over the 

different months within most farms. Figure 1 shows the relationship between 

duration of oestrus in the second (D02) and the third recorded month (D03). The 
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Figure 1. Relationship between the average duration of oestrus between month 
2 (D02) and month 3 (D03) on the 55 farms. 
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repeatability of the monthly duration of oestrus on farms, calculated from the 

second, third, and fourth month was r=0.86. 

On average, gilts had a shorter duration of oestrus than sows (40.8 ± 1.1 h 

compared to 48.5 +1.0 h [P<0.001]). A significant interaction between farm and parity 

was observed (P<0.05). On 10 of the 52 farms, there was no difference in duration of 

oestrus between gilts and sows. The duration of first oestrus after weaning was 

longer (P<0.0001) than the duration of oestrus of repeat breeder sows (50.2 ± 1.0 h 

and 46.8 ± 1.0 h). However, there tended to be an interaction (P=0.06) between farm 

and history. This means that in 9 of the 52 farms no difference was seen in duration 

of oestrus between first oestrus after weaning and repeat breeders. For gilts, no 

difference was seen in duration of oestrus of the first oestrus or repeat breeders 

(P=0.3). Of the total variance in duration of oestrus, 23.3% was related to the 

component farm (af2=37.6, afp2=14.0 and cu2=226.9). After correction for parity, 
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Figure 2. Distribution of sows for weaning to oestrus interval (WOI) and the 
average duration of oestrus for sows at the first oestrus after weaning in 10 
classes of the weaning to oestrus interval (LSM + SE). 
"•''-'' Different superscripts indicate significantly different duration of oestrus between WOI classes 
(P<0.05). 
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history, and farm effect (n=15,186) the duration of oestrus was 44.0 ± 1.2 h (LSM ± 

SEM) and ranged from 27 to 60 h between farms. 

Duration of First Oestrus after Weaning 

The interval from weaning to first oestrus was 5.4 ± 3.5 d (mean + SD) and was 

not significantly affected by month or year. Of the sows that showed oestrus, 95% 

came into oestrus before 14 d after weaning; 42.7% of the sows showed oestrus on d 5 

after weaning (Figure 2). On 12 farms, most sows came into oestrus on d 4 (35 to 59% 

of the sows at the farm), on 41 farms on d 5 (33 to 78%), on 1 farm on d 6 (36%), and 

on one farm a similar number of sows came into oestrus on d 5 and 6 (43%). 

The duration of oestrus of all sows during their first oestrus after weaning was 

50.1 ± 1.1 h (Table 1). Figure 2 shows the average duration of oestrus for 10 classes of 

WOI and the percentage of sows in the classes. Duration of oestrus decreased 

(P<0.05) when WOI increased from 4 to 5 d (56.0 ± 1.2 h vs 50.3 ± 1.1 h) and from 5 to 

6 d (50.3 ± 1.1 h vs 45.8 + 1.2 h). A significant interaction was observed between farm 

and WOI (P<0.001); 11 (20%) of the 54 farms did not show a significantly negative 

relationship between duration of oestrus and weaning to oestrus interval between d 

4 and d 7. 

Insemination Strategy 

The first insemination of the sows was performed at 17.4 + 1.3 h after first 

standing response to the boar (on average 23 h after onset of oestrus), with a range of 

6 to 26 h between farms (Table 1). The average time of first insemination (FI) was 

positively related to the average DO at the farm (FI = 6.9 + 0.21 x DO; P=0.01; 

R2=0.11). Gilts were inseminated sooner after first standing response than repeat 

breeder sows and first inseminated sows: 11.9 ± 0.7, 14.6 + 0.6, and 18.2 ± 0.6 h, 

respectively (P<0.01). Of the total variance in time of first insemination, 27.0% was 

related to the component farm. 

A negative relationship (P<0.05) was found between the interval of first 

standing response to first insemination and weaning to oestrus interval. When WOI 

increased from 4 to 7 d, insemination was earlier after first standing response (Figure 

3). This negative relationship was seen in all duration of oestrus classes, except for 

the sows with a duration of oestrus shorter than 24 h. At the farm level, the 
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2 - 3 4 5 6 7 8-10 

weaning to oestrus interval (days) 

11-30 

Figure 3. The timing of the first insemination in weaned sows (LSM ± SE) in 
relation to the first standing response to the boar in four duration of oestrus 
classes for seven weaning to oestrus intervals. 

regression between FI and WOI ranged from -7.4 to +1.3 h/day, and four farms had 

a positive relationship. 

Farrowing Rate 

The average farrowing rate was 85.7% and ranged from 69 to 94% (Table 1) 

and was similar for sows and gilts (P>0.10). The average duration of oestrus on farms 

was positively correlated (r=0.29; P=0.04) with the farrowing rate. 

The repeat breeder sows had a lower (P<.001) farrowing rate than sows 

inseminated during their first oestrus after weaning (73.2 ± 4.2 vs 85.5 + 2.6%). The 

farrowing rate of the sows that were inseminated during the first oestrus after 

weaning was affected (P<0.05) by the weaning to oestrus interval, the time from first 

insemination to expected ovulation, and the number of inseminations. The duration 

of oestrus and the interactions with WOI were not related (P>0.05) to farrowing rate 

in sows. The highest farrowing rate was found when sows were first inseminated at 

d 4 (88.3%) or 5 (87.5%) after weaning and decreased up to d 10 thereafter (Figure 4). 

Sows that were inseminated twice had a 4.3% higher (P<0.001) farrowing rate than 
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litter size 
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Figure 4. The farrowing rate and litter size of sows with a weaning to oestrus 
interval of 2 to 3,4, 5, 6, 7, 8 to 10 and >=11 d. 
"•b-c Different superscripts indicate significantly different litter sizes between WOI classes (P<0.05), 
Um Different superscripts indicate significantly different farrowing rates between WOI classes (P<0.05). 

sows inseminated once (80.8 vs 85.1%). When a single insemination was performed, 

the interval from first insemination to expected ovulation resulted in the lowest 

farrowing rate when insemination was performed more than 4 h after expected 

ovulation (LSM(io=-4/-i2): 71.6%; LSM(io=-i2/-20): 59.4%; Figure 5). Doubly and singly 

inseminated sows showed similar trends, but this was not significant (P=0.13). 

However, no doubly inseminated sows were found receiving a first insemination 

more than 4 h after expected ovulation (Figure 5). Within the repeat breeder sows, 

duration of oestrus and number of inseminations did not affect farrowing rate. 

Insemination more than 12 h after expected ovulation tended to decrease farrowing 

rate. 

Neither duration of oestrus nor interval from first insemination to expected 

ovulation (Figure 5) was related to farrowing rate (P>0.10) in gilts. However, the 

number of inseminations per oestrus was related to farrowing rate (P<0.05). Gilts 

with single or double insemination had a farrowing rate of 81.2 ± 6 and 88.2 + 6%, 
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- • m - - sows repeat breeders 
- - -A- - - sows singly inseminated after weaning 
—*— sows doubly inseminated after weaning 

36/28 28/20 20/12 12/4 4 / 4 -4/-12 -12/-2D 

interval from first insemination to expected ovulation (h) 

Figure 5. Farrowing rate (LSM ± SE) in seven classes of the first insemination to 
expected ovulation interval (IO) of gilts, repeat breeder sows, and sows at first 
insemination after weaning (WOI), where singly and doubly inseminated sows 
are separate groups. 
P-value of the effect of IO on farrowing rate in gilts was P=0.7, repeat breeder sows was 
P=0.13, singly inseminated, weaned sows P<0.001, and doubly inseminated, iveaned sows 
P=0.13. 
a,t>,c4 Different superscripts indicate significantly different litter sizes between WOI classes 
(P<0.05). 

respectively. Repeat breeder gilts were not different (P=0.16) from gilts at first 

insemination (86.7 ± 8 vs 83.2 ± 4%). 

Litter Size 

The average litter size on farms ranged from 9.5 to 12.3 piglets (Table 1). The 

average duration of oestrus tended to be positively correlated with litter size within 

farm (r=0.23; P=0.09). The average litter size was smaller (P<0.01) for gilts than for 

sows (10.1 + 0.2 vs 11.4 ± 0.1). Repeat breeder gilts had a higher (P=0.01) litter size 

than first inseminated gilts (10.4 ± 0.3 vs 9.7 ± 0.1) but this was not seen in sows. 
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Figure 6. Litter size (LSM ± SE) in six classes of the first insemination to expected 
ovulation interval (IO) for gilts, repeat breeders sows, and sows at first 
inseminated after weaning. 
The P-value of the effect of IO on litter size in gilts was P=0.06, repeat breeder sows was P=0.03, singly 
inseminated weaned sows P=0.09. 
"' Different superscripts indicate significantly different litter sizes between IO classes within repeat breeder 
sows (P<0.05), where total effect oflO was P=0.03. 
''" Different superscripts indicate significantly different litter sizes between IO classes within gilts (P<0.05) 
where total effect oflO was P=0.06. 

The litter size of the sows that were inseminated during the first oestrus after 

weaning was related to the WOI. The litter size decreased (P<0.05) from 11.7 to 10.6 

piglets when WOI increased from d 4 to 7 (Figure 4). The duration of oestrus (P=0.2) 

and the number of inseminations did not affect litter size. The interval from 

insemination to expected ovulation (from 36 to -12 h) tended (P=0.09) to have a 

negative relationship to litter size, decreasing from 11.5 to 10.9 piglets in the singly 

inseminated sows (Figure 6). In sows inseminated twice, insemination to expected 

ovulation interval did not influence litter size. 

Within the repeat breeder sows the number of inseminations (single or 

double) affected (P<0.05) litter size (11.1 + 0.17 vs 11.8 ± 0.16 piglets). Duration of 

oestrus had a positive linear relationship to litter size (LS) (LS = 10.7 + 0.017 x DO (h); 
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P=0.03). The largest litters were seen when first insemination was performed 

between 12 and 28 h before expected ovulation (Figure 6). 

In gilts, the interval from first insemination to expected ovulation (IO) tended 

to influence litter size (P=0.07; Figure 6). The largest litters were seen when the first 

insemination took place between 4 and 20 h before the expected ovulation. Duration 

of oestrus and number of inseminations did not affect litter size in the gilts. 

DISCUSSION 

Duration of Oestrus 

The average duration of oestrus on farms was consistent from month to month 

with a repeatability of 86%. Differences in duration of oestrus between farms 

accounted for 23% of the total variation in duration of oestrus. Because no data were 

collected concerning management on the farms, it is difficult to explain the origin of 

differences seen between farms. A possible effect could be the different 

interpretations of behavioral signs during oestrus detection, despite an agreement on 

observation method of oestrus detection. Variation between farms can also be 

explained by specific factors that may influence duration of oestrus: stress conditions 

(Soede and Kemp, 1997), differences in the quality of an individual boar (Jongman et 

al., 1996), breed, or, possibly, nutritional condition of sows and gilts. Overall, it is 

clear that the high repeatability of duration of oestrus from month to month indicates 

that farmers can predict the average duration of oestrus in their gilts and sows, based 

on information from the former month. Based on the information that ovulation 

takes place two-thirds of the way through oestrus (Mburu et al., 1995; Nissen et al., 

1997; Steverink et al., 1997), farmers can adapt the insemination strategy based on the 

predicted duration of oestrus on their farm. High accuracy of oestrus detection is 

favorable to get a good impression of duration of oestrus. A twice daily oestrus 

detection program is preferable to once daily oestrus detection. When a once daily 

strategy is used some disadvantages can be expected. First, the duration of oestrus is 

less accurate, and, when time of ovulation is calculated, it will also be very 

inaccurate. Second, pigs with a short duration of oestrus will not be noticed to be in 

oestrus. 
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Within farms, the analyses indicated that the duration of oestrus differed 

between gilts and sows between first oestrus and repeat breeders, and was affected 

by WOI. Gilts and repeat breeders on average had a shorter duration of oestrus than 

sows after weaning. Parity of the sows in this study was unknown, but Steverink et 

al. (1997) found differences in duration of oestrus for sows in different parities. In 

their study, sows from parities 1 and 2 had a shorter duration of oestrus than sows 

from parity 3 or higher (55 vs 62 h). The effect of WOI on the duration of oestrus was 

seen in other studies as well (Weitze et al., 1994; Kemp and Soede, 1996; Nissen et al., 

1997). However, the relationship between duration of oestrus and WOI was different 

between farms. The latter was also seen in a study of Flowers (1998); the frequency 

of sows that showed a 1, 2, or 3 d duration of oestrus on the different WOI days was 

different between the farms. Information about factors on a farm that affect duration 

of oestrus would enhance the accuracy of predicted duration of oestrus. 

Insemination Strategy 

The optimal time of insemination is 0 to 24 h before ovulation (Soede et al., 

1995a). Ovulation takes place two-thirds of the way to through oestrus. In 1994, 

Weitze et al. recommended a decrease in the interval from onset of oestrus to first 

insemination when weaning to oestrus interval increased from 3 to 8 d, because of 

the decrease in duration of oestrus in this period. Because of the differences in the 

relationship between WOI and duration of oestrus between farms, time of 

insemination should be tailored to the individual farm. From the present study, one 

can concluded that most farms fulfill this supposition of Weitze et al. (1994) (93% of 

the farms). This implies that farmers use the advice in practice and might have 

learned from reproduction results from the past. Surprisingly, this study also showed 

that at each weaning to oestrus interval sows with a short duration of oestrus were 

inseminated sooner after first standing reflex than sows with a longer duration of 

oestrus. This might indicate that on these farms the timing of insemination is not 

only based on standing response to the boar but also on other characteristics, 

possibly vulva characteristics (color and mucus viscosity). Vulva characteristics (pro-

oestrus) could be related to duration of oestrus; Rojkittikhun et al. (1992) showed that 

the duration of pro-oestrus increased and of oestrus decreased when the weaning to 

oestrus interval increased from 3 to 4 to 6 to 8 d. However, Sterning et al. (1994) did 

not find a relationship between the duration of pro-oestrus and duration of oestrus in 
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primiparous sows. The reason why farmers can inseminate sows according to their 

duration of oestrus remains unclear. 

Reproduction Results 

In the present study, expected ovulation time was calculated at 68% during 

oestrus. The calculation of expected ovulation time was done to get an impression of 

the effect of the interval of insemination to expected ovulation on reproduction 

results. The review by Soede and Kemp (1997) shows that variation in the time of 

ovulation in different studies ranged from 64 to 72% of oestrus, with ranges from 39 

to 133% for individual sows. In this study, oestrus checks were performed only twice 

a day, and this might also, increase the variance for duration of oestrus. Because of 

this variation in the estimate of the interval from first insemination to expected 

ovulation (IO), this trait has to be used with caution. The calculated IO in this study 

should be used as an indication of the probability of insemination before ovulation, 

because fertilization results drop quickly when insemination is performed after 

ovulation (Waberski et al., 1994; Soede et al., 1995a). Therefore, negative effects on 

litter size and farrowing rate were expected to be found when insemination was 

performed after expected ovulation. This study supports this supposition, sows that 

had a single insemination 28 h before ovulation compared to 12 h after ovulation 

showed a decrease in FR from 85 to 60% and in LS from 11.5 to 10.8 piglets. 

Farms that had greater farrowing rates and litter sizes also had a longer average 

duration of oestrus. When analyzing reproduction results with a correction for farm, 

duration of oestrus was not related to farrowing rates and litter sizes in any of the 

parity or history groups (gilts vs sows; repeat breeders vs inseminated at first oestrus 

after weaning). The number of inseminations, time of insemination and duration of 

oestrus were correlated. Therefore, it is difficult to assess which of these factors is 

primarily related to the farrowing rate or litter size. For instance, a second 

insemination was performed 24 h after the first insemination on farms when a 

standing response for a boar was still observed. Sows and gilts with a short duration 

of oestrus or with a late first insemination (close to end of oestrus) could not get a 

second insemination. Therefore, these pigs have a higher risk of insemination after 

ovulation (insemination after two-thirds of oestrus) and consequently a higher risk of 

suboptimal fertilization. The reproduction results were probably indirectly 
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influenced by duration of oestrus, via the chance to inseminate a sow or gilt at least 

once within the optimal period before ovulation. 

Weaning to Oestrus Interval 

The decrease in farrowing rate when WOI increased from 4 to 8 days was also 

found by Vesseur et al. (1994). Their lowest farrowing rate (58.6 + 4%) was detected 

when WOI was 9 to 12 d. In this study, litter size decreased from 11.7 to 10.6 piglets 

when WOI increased from 4 to 7 d. A decrease in litter size when WOI increased 

from 4 to 10 d was seen in other studies as well (Dewey et al., 1994; Vesseur et al., 

1994; Cozier Le et al., 1997). Vesseur et al. (1994) found a decrease from 11.9 to 11.1 

piglets when WOI increased from 4 to 8 d. The decrease in litter size and farrowing 

rate with an increase in WOI was accompanied by a decrease in duration of oestrus 

and a decrease in the calculated time from insemination to expected ovulation. Kemp 

and Soede et al. (1996)'found high fertilization results for sows that were inseminated 

between 0 and 24 h before ovulation irrespective of the WOI and duration of oestrus. 

Therefore, timing of insemination during oestrus relative to ovulation could be the 

origin for this decrease in the reproduction results. In three studies under similar 

conditions ovulation rate and duration of oestrus were measured (Soede et al., 1995a, 

b; Steverink et al., 1997). In those studies, with a total of 400 multiparous sows, 

ovulation rate decreased (P<0.05) from 21.6 to 19.7 oocytes, when weaning to oestrus 

interval increased from d 3 to d 6. Therefore, a decrease in ovulation rate could be a 

cause for the decrease in litter size with an increasing WOI that is seen in several 

studies. 

IMPLICATIONS 

Duration of oestrus and the relationship between duration of oestrus and 

weaning to oestrus interval differs among farms. Recording the duration of oestrus at 

farms for approximately a month can give an impression of the duration of oestrus 

for the coming period. The relationship between duration of oestrus and weaning to 

oestrus interval could also be studied specific for a farm. Ovulation takes place two-

thirds of the way through oestrus, duration of oestrus is, therefore, the best 

retrospective estimate of ovulation time. The best reproduction results are depend on 
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the t ime of insemination relative to ovulation, so the insemination strategy could be 

optimized for each farm. Recording of the average durat ion of oestrus on farms and 

of factors that influence the durat ion of oestrus on commercial farms should improve 

the efficiency of the insemination strategy specific to each farm/ 

REFERENCES 

Cozier Le Y, Dagorn J, Dourmad JY, Johansen S, and Aumaitre A (1997) Effect of weaning to 

conception interval and lactation length on subsequent litter size in sows. Livestock 

Production Science 51:1-10. 

Dewey CE, Martin SW, Friendship RM and Wilson MR (1994) The effects on litter size of 

previous lactation length and previous weaning-to-conception interval in Ontario swine. 

Prev. Vet. Med. 18: 213-223. 

Flowers WL (1998) Management of reproduction. In: Progress in pig science. Nottingham 

University Press, Nottingham, U.K. 

Jongman EC, Hemsworth PH and Galloway DB. (1996) The influence of conditions at the 

time of mating on the sexual behaviour of male and female pigs. Appl. Anim. Behav. Sci. 48: 

143-150. 

Kemp B and Soede NM (1996) Relationship of weaning-to-estrus interval to timing of 

ovulation and fertilization in sows. Journal of Animal Sciende 74: 944-949. 

Kemp B and Soede NM (1997) Consequences of variation in interval from insemination to 

ovulation on fertilization in pigs. /. Reprod. Fertil. Suppl. 52: 79-89. 

Littell RC, Milliken GM, Stroup WW and Wolfinger RD (1996) SAS® System for Mixed 

Models. SAS Inst. Inc., Cary, NC. 

Mburu JN, Einarsson S, Darin AM and Rodriguez-Martinez H (1995) Ovulation as 

determined by transrectal ultrasonography in multiparous sows: Relationships with 

estrus symptoms and hormonal profiles. /. Vet. Med. A42: 285-292. 

Nissen AK, Soede NM, Hyttel P, Schmidt M, and D'Hoore L (1997) The influence of time of 

insemination relative to time of ovulation on farrowing frequency and litter size in sows, 

as investigated by ultrasonography. Theriogenology 47:1571-1582. 

Rojkittikhun T, Sterning M, Rydhmer L and Einarsson E (1992) Oestrus symptoms and 

plasma levels of oestrusdiol-17p in relation to the interval from weaning to oestrus in 

primiparous sows. Proc. 12th Cong, of the Int. Pig Vet. Soc, The Hague, The Netherlands. 

p485 (Abstract). 

SAS (1990) SAS/STAT® User's Guide (Version 6, 2nd Ed.). SAS Inst. Inc., Cary, NC. 

84 



Farm effect on oestrus duration 

Soede NM and Kemp (1997) Expression of estrus and timing of ovulation in pigs. /. Reprod. 

Fertil. Suppl. 52: 79-89. 

Soede NM, Wetzels CCH, Zondag W, de Koning MAI, and Kemp B (1995a) Effects of time of 

insemination relative to ovulation, as determined by ultrasonography, on fertilization rate 

and accessory sperm count in sows. /. Reprod. Fertil. 104: 99-106. 

Soede NM, Wetzels CCH, Zondag W, Hazeleger W and Kemp B (1995b) Effects of second 

msemination after ovulation on fertilization rate and accessory sperm count in sows. /. 

Reprod. Fertil. 105:135-140. 

Sterning M, Rydhmer L, Einarsson S and Andersson K (1994) Oestrus symptoms in 

primiparous sows. 1. Duration and intensity of external oestrus symptoms. Anim. Reprod. 

Sci. 36: 305-314. 

Steverink DWB, Soede NM, Bouwman EG, and Kemp B (1997) Influence of msemination-

ovulation interval and sperm cell dose on fertilization in sows. /. Reprod. Fertil. I l l : 165-

171. 

Vesseur PC, Kemp B and den Hartog LA (1994) The effect of the weaning to oestrus interval 

on litter size, live born piglets and farrowing rate in sows. /. Anim. Physiol. Anim. Nutr. 71: 

30-38. 

Waberski D, Weitze KF, Gleumes T, Schwarz M, Willmen T and Petzoldt R (1994) Effect of 

time of insemination relative to ovulation on fertility with liquid and frozen boar semen. 

Theriogenology 42: 831-840. 

Weitze KF, Wagner-Rietschel H, Waberski D, Richter L and Krieter L (1994) The onset of heat 

after weaning, heat duration and ovulation as major factors in AI timing in sows. Reprod. 

Domest. Anim. 91: 349-363. 

85 



4 PIG Simulation model for 
Insemination Strategies (PIGSIS) 



4.1 Development of PIGSIS 

Development of a simulation model to study the effect of 

insemination strategies on reproduction performance at 

commercial farms in pigs 

Steverink DWB, Koops WJ, Soede NM, Noordhuizen JPTM and Kemp B 



Development of a simulation model to study the effect of 

insemination strategies on reproduction performance 

at commercial farms in pigs. 

Steverink DWB1, Koops WJ2, Soede NM1, Noordhuizen JPTM3 and Kemp B1 

1Animal Health and Reproduction Group, 
2Animal Production Systems, Wageningen Institute of Animal Sciences (WIAS) 

P.O. Box 338,6700 AH, Wageningen, The Netherlands 

'University of Utrecht, Department of Farm Animal Health, Utrecht, The Netherlands 

ABSTRACT 

Timing of insemination can have important consequences for reproduction 
efficiency in pig production. The objective of this study is to develop a stochastic 
simulation model which can optimise and demonstrate effects of insemination 
strategies on farrowing rate and litter size on farms, depending on the oestrus 
duration of the sows. The PIG Simulation model for Insemination Strategies (PIGSIS) 
consists of two parts: (1) the reproduction events from the number of ovulated 
oocytes until the number of piglets at farrowing; (2) timing of insemination relative 
to ovulation based on farm parameters (weaning to oestrus interval, oestrus 
duration, etc.). From the farm parameters and a chosen insemination strategy, an 
interval between insemination and ovulation is simulated for each sow which is used 
to predict the conception and fertilisation rate with the first part of PIGSIS. The 
following physiological process are included in the model: fertilisation, embryonic 
mortality (due to degeneration, maternal recognition of pregnancy and uterine 
capacity) and foetal mortality (due to uterine capacity). From the verification and the 
validation it can be concluded that PIGSIS simulates reasonable reproduction results. 
Under the defined basic situation (oestrus duration of 47 h, average parity 4.2) and 
when insemination is applied between 0 to 24 h before ovulation PIGSIS simulates 
12.9 total born piglets and a farrowing rate of 94.9%. In this period, embryonic, foetal 
and total mortality in PIGSIS was 34.9%, 3.0% and 37.9%, respectively. The number 
of embryos at day 1, 5 and 10 of pregnancy are clearly related to IO. After day 10 of 
pregnancy this effect of IO on the number of conceptuses decreased due to loss of 
small litters under influence of maternal recognition of pregnancy and due to 
increased in large litters due to embryonic and foetal uterine capacity. The effect of 
insemination to ovulation interval was more pronounced on farrowing rate than on 
litter size in PIGSIS. The farrowing rate in PIGSIS was already established at day 15 
of pregnancy. 
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PIGSIS gives insight in the effect of inseminations strategies on reproduction 
results under influence of specific farm characteristics like average oestrus duration 
of sows and the relation between oestrus duration and weaning to oestrus interval. 

KeyWords: Litter size, Farrowing rate, Fertilization, Insemination Strategy, 
Simulation, Pigs 

INTRODUCTION 

The variation in farrowing rate and litter size in pigs is high and depends on 

many factors such as the number of ovulated oocytes, fertilisation of the oocytes and 

the survival of the embryos and foetuses to term. The timing of insemination relative 

to ovulation affects the reproductive output due to effects on fertilisation results 

(Soede et al., 1995a; Flowers, 1998; Nissen et al., 1997). 

At commercial farms, the timing of insemination depends on the onset of 

oestrus. The onset of oestrus however is not a good predictor for the moment of 

ovulation (reviewed by Soede and Kemp, 1997). At this moment, the best 

retrospective predictor of ovulation is oestrus duration; ovulation takes place at on 

average twothirds of oestrus (reviewed by Soede and Kemp, 1997). At farms, the 

average oestrus duration stays at the same level during a certain period and is highly 

repeatable between months (Steverink et al., 1999b). There is a negative relation 

between oestrus duration and the weaning to oestrus interval (Kemp and Soede, 

1996). Therefore, if information of the oestrus duration and the influence of weaning 

to oestrus interval at a farm is known, the insemination strategy could be optimised 

and effects on farrowing rate and litter size can be studied. The complexity of the 

reproduction process makes a modelling and simulation approach valuable because 

effects of the underlying processes and relations can be controlled by fixing or 

varying these parameters. 

The objective of this study is to develop a stochastic simulation model which 

can demonstrate effects of insemination strategies on farrowing rate and litter size on 

farms, depending on the oestrus duration of the sows. This model should give 

insight in the complex physiological cascade of the reproduction results. Such a 

simulation model could be used for decision support program for managing 

insemination strategies in pig production. 
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(Testis!^ 

Figure 1. Flow diagram of the number of ovulated oocytes to the number of piglets at 
farrowing in Part I of PIGSIS. 
I: Moment of insemination; Par: Parity; Ov: Moment of ovulation moment; DEG: Embryonic mortality 
due to degeneration: Abn: Embryonic mortality due to genetic abnormalities; MR: Maternal recognition 
of pregnancy; E-UC: Embryonic uterine capacity; P-UC: Foetal uterine capacity. 

MODEL DESCRIPTION 

Concept 

Reproduction results at commercial pig farms differ in level but also in 

variation. To study both elements, a stochastic model is developed of the 

reproductive performance of sows. The PIG Simulation model for Insemination 

Strategies (PIGSIS) consists of two parts. The first part simulates the reproduction 

events from the number of ovulated oocytes until the number of piglets at farrowing. 

In the second part of PIGSIS the farm parameters (weaning to oestrus interval, 

oestrus duration, etc.) and insemination strategies are introduced. From these farm 

parameters an interval between insemination and ovulation will be simulated for 

each sow which will be used to predict the conception and fertilisation rate in the 

first part of PIGSIS. PIGSIS is programmed in SAS (1997). 

Part I: Number of ovulated oocytes until farrowing rate and litter size 

In the simulation model, five intermediate moments of the pregnancy stage 
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are used: day 1, 5,10,15 and 35 (Figure 1). The processes that are responsible for the 

effects between stages are: conception and fertilisation (day 1), degeneration of 

embryos (day 5), genetic abnormalities of embryos (day 10), maternal recognition of 

pregnancy (day 15), embryonic uterine capacity (day35) and foetal uterine capacity 

(day 110). 

1. The first step in PIGSIS generates a number of oocytes at ovulation for each sow. 

The number of ovulated oocytes (OO) is assumed to be normally distributed and 

depends on the parity (Par) of the sow: 
c no 

OO = 23.1 - ^ - + e0o [1] 
Par 

where 
e00 >&N(0, 3.7) oocytes, which represents the residual standard deviation; 
OO is rounded to the nearest integer value of ovulation rate; 
Par is the parity of the sows (1, 2,..., 11; where 1 is first litter sow) 
R2 =0.97; P < 0.001 (Soede et al., 1995ab; Steverink et al., 1997). 

2. The number of embryos at day 1 (El) depends on the number of ovulated oocytes 

and on the probability of fertilisation (FR) of those oocytes. Steverink et al. (1999a) 

described a mathematical model for the probability of conception and fertilisation 

in pigs depending on the moment of insemination in relation to ovulation (IO) and 

on the number of ovulated oocytes in a sow. In this model the effects of ageing of 

sperm cells (insemination before ovulation) and ageing of oocytes (insemination 

after ovulation) are estimated. For each sow the probability of conception (at least 

one oocyte fertilised) and the probability of fertilisation (partial and complete: 1, 2, 

..., OO embryos) given conception is calculated resulting in a discrete distribution 

for a sow with OO (for example OO=20; Figure 2 from Steverink et al., 1999a) 

El=OOxPFR [2] 

where 
PFR is the discrete probability for each sow to have 0, 1,..., OO embryos and depends on the 
moment of insemination in relation to ovulation and on the number of ovulated oocytes 
(Steverink etal, 1999a). 

3. Between day 1 and 5 of pregnancy some embryos degenerate (Soede et al., 1995a). 

The probability of sows to have degenerated embryos (SowD) given conception, 
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Figure 2. The estimated probability (P) of conception (at least 1 oocyte fertilized) 
and fertilization of n oocytes in relation to insemination to ovulation interval (IO) in 
sows that ovulated in this example 20 oocytes (Steverink et al., 1999a) 

was related to the fertilisation rate of the sow as follows: 

where 

[3a] 

Psowo is the binomial probability of a sow having at least one degenerated embryo given 
conception (range Psawo 0.229 to 0.868); 
P <0.001; -2LOGL=33.7; (Soedeetal, 1995ab; Steverink et al, 1997). 

The number of degenerated embryos of a> sow that was assigned to have 

degenerated embryos [3a] is related to the fertilisation rate of the sow. The 

probability of embryos to degenerate (PDEG) given presence of degenerated 

embryos is: 

P D E G = 0.843 " 0.788 x f | L l p b ] 
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where 
PDEC is the probability of an embryo to degenerate, given presence of degenerated 
embryos (range PDEC 0.843 to 0.055); 
R2 =0.60; P < 0.001 (Soede et ah, 1995ab; Steverink et al., 1997). 

The number of embryos at day 5 (E5) of pregnancy depends on the PsowD, PDEC and 

the number of embryos at day 1 of pregnancy: 

E5 = Elx(l- PSm„D x PDEC) [3C] 

where 
PSOWD is proposed by equation [3a] and PDEC is proposed by equation [3b]. 

4. Little is known about embryo mortality between day 6 and 10 of pregnancy. One 

of the causes are genetic abnormalities (Hafez, 1993). McFeely (1967) found that on 

average 10% of the embryos had chromosomal abnormalities, that usually resulted 

in death of the embryo. The proposed probability of an embryo to die is generated 

by a binomial distribution wi th an average probability of mortality of 10% (PM6-

10), after which the number of embryos at day 10 (E10) is: 

E10 = E5 x(l- PMe-io) [4] 

where 
PM6-10 is the binomial probability of an embryo to die. 

5. The number of embryos at day 15 (E15) of pregnancy is depends on the maternal 

recognition of pregnancy (MR). When 4 or less embryos are present in the u terus 

there is no maternal recognition of pregnancy (Polge et al., 1966). When 5 embryos 

are present at least 2 embryos in each uterine horn are necessary for maternal 

recognition (Polge et al., 1966). Spacing of the embryos is supposed to be a r andom 

process in which embryos can be in the right or left uterine horn (drawing wi thout 

replacement). When 5 embryos are present in the u terus the chance is 62.5% that in 

both uterine horns at least two embryos are present. When 6 embryos are present 

in the u terus the chance is 78.1%. If 7 or more embryos are present in the uterus, it 

is supposed that there always will be maternal recognition of pregnancy (Polge et 

al., 1966). 

E15 = E10 XPSMR [5] 

where 
E10 <4 then PSMR= 0.0; 

E10 = 5 orb then PSMR = l-2x[.5™+E10x.5™); 
E10>7thenPSMR=1.0. 
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6. The uterus has a limited capacity for embryos to survive which is called in this 

study embryonic uterine capacity. The number of embryos at 35 days (E35) of 

pregnancy depends on the probability of embryonic survival between day 16 and 

35 (PS16-35). It is assumed that there is a negative correlation between E15 and 

survival. The relation is supposed to be independent to the parity of sows. The 

relation is estimated from a study with first parity sows (R2=0.52; P<0.001; Van 

den Brand, unpublished results). The probability of survival of embryos in a sow 

up to day 35 will be: 

f-E15] 
„_ 31.43 31.43 , , , 
PS-i£ oc = x l - e l ' [6J 

16-35 £15 

where 
PSw-35 is the binomial probability of an embryo to survive between day 16 and 35 of 
pregnancy due to embryonic uterine capacity; 
E15 is number of embryos at day 15 of pregnancy; 
R2=0.52; P<0.001 (Van den Brand, unpublished results). 

The number of embryos at day 35 of pregnancy (E35) is: 

E35 = E15xPSu-35 [7] 

7. The number of piglets at farrowing is limited by the capacity of the uterus to carry 

foetuses to term. The maximum number of piglets for a sow is based on the foetal 

uterine capacity (UC) (Leymaster et al., 1986; Wu et al, 1987). The foetal uterine 

capacity is the average upper limit of the number of foetuses that can survive. A 

linear-plateau model is used for the distribution of the probability of survival of 

foetuses between day 36 and 110: 

fUC-ln(l + e-im^5-UCy 
PS'36-110 E35 

[8] 

where 
PS36-U0 is the binomial probability for each foetus to survive between day 36 of pregnancy 
and farroiuing due to foetal uterine capacity; 
E35 is the number of embryos at day 35 of pregnancy; 
UC is foetal uterine capacity of the sow. 

The average uterine capacity depends on the parity of a sow and is arbitrarily 

chosen: 14.0, 15.0, 15.5 and 16.0 piglets in parity 1, 2, 3 and 4 to 11 sows, 

respectively. The total number of piglets born at farrowing (E110) is: 
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EUO = E35 x (PS36.no) [9] 

8. Litter size in PIGSIS is defined as the total number of born piglets (death and live). 

Farrowing rate is the percentage of sows that give birth to at least 1 piglet in 

relation to the total number of inseminated sows. (Note: Hardly any termination 

of pregnancies after day 15 occur, since late pregnancy failure (abortions, 

pseudopregnancy, etc.) are not taken into account in PIGSIS). 

Part II: The events of weaning until end of oestrus 

Figure 3 shows a number of events that are related to farm and management 

effects used in PIGSIS. The farm parameters (weaning to oestrus interval, oestrus 

duration, parities of the sows) can be considered as input parameters for the 

simulation model. In this paragraph a standard value is suggested for the parameters 

which can be seen as an average farm in the Netherlands and is defined as the basic 

situation. 

The parity of the sows in PIGSIS is a reflection of an average Dutch herd 

(SIVA, 1998) but gilts were excluded. Sows are generated with a parity from 1 to 11 

following a discrete distribution with probabilities of: 0.20, 0.15, 0.14, 0.13, 0.09, 0.08, 

0.06, 0.05,0.04,0.03 and 0.03, respectively. 

Weaning is the moment of the start of the cycle (8.00 in the morning). The first 

24 h after weaning is defined as day 1 after weaning. The distribution of the weaning 

to oestrus interval (WOI) for sows is a mixture of a normal N(5.13, 1.00) and an 

exponential distribution E(X=5.00) (Ten Napel et al., 1995). The normal distribution 

represents sows with a normal WOI (1 until 7 days) and the exponential distribution 

Weaning to oe.strii'- interval 

W 

_i_ 

Oestrus duration 

OO I Ov EO 

Figure 3. Time schedule of weaning, oestrus and insemination 
events in Part II of PIGSIS. 
W: moment of weaning; OO: Onset of oestrus; I: moment of Insemination; Ov: 
Moment of ovulation; EO: End of oestrus; IO: Insemination to ovulation interval. 
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represents sows with a prolonged WOI (more than 7 days). Parity 1 sows have a 

higher chance for a prolonged WOI compared to older sows and therefore a higher 

proportion of sows are part of the exponential distribution rather than the normal 

distribution. The proportion of sows in the normal and the exponential distribution is 

assumed to be: 0.7 and 0.3 for parity 1 (Ten Napel et al., 1995); 0.85 and 0.15 for parity 

2; and 0.9 and 0.1 for parity 3 and older, respectively. 

The oestrus duration in PIGSIS is the total time that a sow showed a standing 

response to a boar. Oestrus duration (OD) is negatively related to WOI (Kemp and 

Soede, 1996). The average oestrus duration in their two experiments was 53 h and 59 

h. The regression in this linear relation between OD and WOI was similar for both 

experiments (R2=0.25; P>.001). The proposed linear relation of OD and WOI in 

PIGSIS for sows with a WOI less then 144 h is: 

OD = 88-0.33xWOI + e O D [10] 

where 
WOI is expressed in hours; 
eoD ~N(0, 10 h), which represents the residual standard deviation ofOD; 
Kemp and Soede (1996). 

When WOI is 144 h or more the oestrus duration remains at a level of this WOI. In 

this basic situation this is 37 h. 

Ovulation (Ov) takes place at on average twothirds of the way through 

oestrus which is found in a number of studies; 68% (Mburu et. al., 1995); 72% (Soede 

et a l , 1995a); and 68% (Steverink et al., 1997). From the 3 studies: Soede et al. 

(1995ab) and Steverink et al. (1997) it could be seen that sows with a short oestrus 

duration (<24 h) had on average an ovulation closer to the end of oestrus. The 

proposed normal distribution (with SD = 0.10) of the relative moment of ovulation 

(RO) in relation to oestrus duration is therefore: 

fl0.06N 

X OD 
where 
OD is expressed in hours; 
eRO ~N(0, 0.10), which represents the residual standard deviation ofRO; 
R2=0.98; P<0.001 (Soede etai, 1995ab; Steverink et al, 1997). 

The insemination to ovulation interval (IO) is defined as the moment of 

insemination minus the moment of ovulation (Figure 3). The insemination strategy 

applied consisted of one insemination (I) (containing 3xl09 sperm cells in 80 ml BTS-
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extender of good quality used within 48 h after collection) for each sow, 24 h after the 

onset of oestrus as detected by the farmer. The oestrus detection strategy used in 

PIGSIS is performed twice a day at 8.00 h and 18.00 h by using a boar. 

Sensitivity analyses 

The relevance of the developed model is partly determined by its behaviour 

when the input variables are varied. Sensitivity analyses are carried out by varying 

the values of 6 important parameters. These parameters are chosen because they 

show the most likely effects on the reproduction events in relation to insemination 

strategies. The parameters are presented in Table 1. For each parameter (except for 

embryonic uterine capacity and oestrus detection strategy) 5 scenarios are studied: 

the basic value as described in the material and method section, the basic value ± a 

and the basic value ± 2a. Each scenario consists of 10,000 sows; such a large number 

has been chosen to avoid disturbances due to small samples. For example, the 5 

scenarios for the number of ovulated oocytes result in the following values for a 

parity 3 sow: 14.0,17.7, 21.4, 25.1 and 28.8 oocytes. The embryonic survival between 

day 16 and 35 (ES16-35) of pregnancy is varied by changing the upper limit in the 

exponential distribution for embryonic uterine capacity (basic limit is 31.4 ± 2.2). For 

the scenarios of the embryonic survival between day 16 and 35 a larger contrast is 

chosen because most litters are below the limit of 31.4 embryos. The scenarios will 

therefore be 2 and 4 times SE deviated from the basic upper limit (22.6, 27.0, 31.4, 35.8 

Table 1. Levels of the scenarios of the population parameters and farm and 
management parameters used in the sensitivity analyses. 
Parameters 

Population parameters: 

Oocytes 

Embryonic uterine capacity (dl5 to 35)2 

Foetal uterine capacity (d36 to term) 

Farm and management parameters: 

Oestrus duration (h) 

Oestrus detection strategy (times daily) 

Insemination strategy (h) 

N 

10000 

10000 

10000 

10000 

10000 

10000 

Levels1 

u-7.4, u-3.7, u, u+3.7, u+7.4 

22.6, 27.0, 31.4, 35.8, 40.2 

u-4, u-2, u, u+2, u+4 

27,37,47,57, 67 

1,2,3 

0,12, 24, 36, 48 

'/i refers to the mean of the parameter for the parity in the basic situation; 
2 levels are created by changing the upper limit of the embryonic survival in the basic situation. 
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and 40.2). For the foetal uterine capacity the standard deviation is supposed to be 2 

piglets. The 5 scenarios for uterine capacity of a sow of parity 3 are: 11.5,13.5,15.5, 

17.5 and 19.5. Three farm and management parameters are varied: the average 

oestrus duration (27, 37, 47, 57 and 67); oestrus detection strategy by once (0800), 

twice (0800 and 1800) or 3 times (0800, 1600 and 2400) a day; and insemination 

strategy were one insemination is applied at either 0, 12, 24, 36 or 48 h after the 

detected onset of oestrus. 

Validation 

The level of embryonic and foetal mortality are validated with data from Van 

der Lende and Schoenmaker (review; 1990), Lambert et al. (1991) and Pere et al. 

(1997). 

The reproduction results (part 1 of PIGSIS), events from the number of 

ovulated oocytes until farrowing rate and litter size in relation to the insemination to 

ovulation interval, are validated with a study of Nissen et al. (1997). They studied the 

-- day 5 to 10 
H- day 15 to 110 

-76 -68 -60 -52 -44 -36 -28 -20 -12 -4 4 12 20 28 36 44 52 
insemination to ovulation interval (h) 

Figure 4. Farrowing rate at day 1, 5 (and 10), and 15 to 110 in relation to the 
insemination to ovulation interval as simulated by PIGSIS for the basic situation. 
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effect of IO on E10 (n=20), farrowing rate (n=91) and litter size (n=75). 10,000 Sows 

are sampled with the parameters of the basic situation as described in the material 

and method section and the outcome is compared with results of Nissen et al. (1997). 

The average number of oocytes of PIGSIS is adjusted (basic +1.0 oocytes) to the 

number of oocytes found in Nissen et al (1997). 

RESULTS 

Basic situation 

The basic situation as described in the material and method section is used to 

show the results of PIGSIS. The percentage of sows with conception (at least one 

embryo) was more than 90% when insemination was applied between 38 before and 

5 h after ovulation (Figure 4). The average number of pregnant sows decreased two 

times: from day 1 to 10 and from day 10 to 15. The latter had the highest impact on 

terminating pregnancy of those two and was caused by maternal recognition. The 

decrease of number of pregnant sows between day 10 and 15 was more than 10 %, 

when insemination was applied more than 28 h before and more than 10 h after 

ovulation. The highest simulated average farrowing rate is 95.8% when insemination 

is applied between 8 and 16 h before ovulation. The farrowing rate was higher than 

90% when insemination was applied between 0 and 25 h before ovulation. Figure 5 

shows the average number of embryos at several stages of pregnancy as affected by 

the insemination to ovulation interval (IO). The differences between the lines 

represent the loss of number of embryos or foetuses between stages of pregnancy. 

The average number of oocytes was 21 irrespective of the interval between 

insemination and ovulation. Early embryonic mortality of the pregnant sows (day 0 

to 10) was on average 17% when insemination was applied between 0 and 24 h 

before ovulation from which 7% was due to fertilisation of the sows that were still 

pregnant. Total embryonic mortality of the pregnant sows (day 0 to 35) was 35% in 

this IO of the pregnant sows at d 35. Total embryonic and foetal mortality was 38% of 

the sows that farrowed that were inseminated between 24 and 0 h before ovulation. 

There is a pronounced effect of insemination to ovulation interval on the number of 

embryos at day 1 until day 10 of pregnancy. This effect of IO on the average number 

of embryos becomes less pronounced due to loss of the small litters (maternal 
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Figure 5. Number of oocytes, embryos (day 1, 5,10, and 15) and foetuses (day 35 and 
110) in relation to the insemination to ovulation interval as simulated by PIGSIS for 
the basic situation. 

recognition) around day 14 of pregnancy. The increase of the average number of 

embryos from day 10 to day 15 was due to this loss of the small litters. The effect of 

IO decreased further due to embryonic mortality up to d 35 and due to foetal 

mortality both caused by the uterine capacity. The limiting effect of the embryonic 

uterine capacity caused selective mortality of embryos in large litters. Therefore, the 

effect of insemination to ovulation interval is less pronounced on litter size at 

farrowing than at number of conceptuses at earlier stages of pregnancy. 

Sensitivity for the number of oocytes 

A decrease of on average 7.4 oocytes resulted in a decrease of 4.4% in 

farrowing rate and a decrease in litter size of 3.1 piglets (Table 2). An increase of 7.4 

oocytes increased farrowing rate with 0.8% and the number of piglets with 1.5. A 

decrease of the number of ovulated oocytes has a larger impact on reproduction 

results than an increase in the number of oocytes compared to the basic situation. 
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Table 2. The simulated average and SE of the number of oocytes, farrowing rate and 
litter size of the basic situation and the deviation from the basic situation for the 
proposed scenario's of number of oocytes (-2, -1,1 and 2)1, when insemination is 
applied between 24 and 0 h before ovulation (n=1855 per scenario). 

Oocytes 

Farrowing rate (%) 

Litter size 

-2 

-7.4 

-4.4 

-3.1 

-1 

-3.8 

-0.7 

-1.4 

basic2 

21.0 

93.7 

12.9 

1 

+3.7 

+0.5 

+1.0 

2 

+7.4 

+0.8 

+1.5 

SE 

0.60 

0.05 
1 -2: basic-2<r, -1: basic-la; 1: basic+la; 2: basic+2<T, 
2basic refers to the basic situation described in the material and method section. 

Sensitivity for the embryonic uterine capacity 

The different scenarios for embryonic survival between day 11 and 35 of 

pregnancy did not influence farrowing rate. Only sows with large litters are 

negatively affected by an increased embryonic mortality but this did not result in 

termination of pregnancy. A decrease in the upper limit for embryonic uterine 

capacity with on average 8.8 embryos resulted in a decrease of 1.0 piglets (Table 3), 

whereas an increase of the upper limit with 8.8 embryos increased litter size with 0.5 

piglets. A decrease of the upper limit for embryonic uterine capacity has higher 

impact on litter size than an increase compared to the basic situation. 

Table 3. The upper limit of embryonic uterine capacity at day 35 of pregnancy used 
in the scenarios and the simulated average and SE of farrowing rate and litter size of 
the basic situation and the deviation from the basic situation for the proposed 
scenario's of foetal uterine capacity (-2, -1, 1 and 2)1, when insemination is applied 
between 24 and 0 h before ovulation (n=1922 per scenario). 

Upper limit 

Farrowing rate (%) 

Litter size 

-2 

22.6 

-0.0 

-1.0 

-1 

27.0 

-0.0 

-0.4 

basic2 

31.4 

93.9 

12.9 

1 

35.8 

+0.0 

+0.3 

2 

40.2 

+0.0 

+0.5 

SE 

0.52 

0.06 
1 -2: basic-2xSE; -1: basic-2xSE; 1: basic+2xSE; 2: basic+4xSE; 
2basic refers to the basic situation where the upper limit is 31.4 piglets described in the material and method 
section. 

Sensitivity for the foetal uterine capacity 

The scenarios for foetal uterine capacity did not influence farrowing rate. 

Sows with large litters are negatively affected by uterine capacity but this did not 

result in termination of pregnancy. A decrease of the uterine capacity with on 

average 4 foetuses resulted in a decrease of 2.0 piglets at farrowing (Table 4). An 
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increase of the foetal uterine capacity with 4 foetuses increased liter size with 0.6 

piglets. A decrease of the uterine capacity has higher impact on reproduction results 

than an increase compared to the basic situation. 

Table 4. The foetal uterine capacity used in the scenarios and the simulated average 
and SE farrowing rate and litter size of the basic situation and the deviation from the 
basic situation for the proposed scenario's of embryonic uterine capacity (-2, -1,1 and 
2)1, when insemination is applied between 24 and 0 h before ovulation (n=1865 per 
scenario). 

Uterine capacity 

Farrowing rate (%) 

Litter size 

-2 

11.4 

-0.0 

-2.0 

-1 

13.4 

-0.0 

-0.8 

basic2 

15.4 

94.6 

12.8 

1 

17.4 

+0.0 

+0.4 

2 

19.4 

+0.0 

+0.6 

SE 

0.52 

0.05 

' -2: basic-2<r, -1: basic-la; 1: basic+lcr, 2: basic+2a. 
2basic refers to the basic situation described in the material and method section. 

Sensitivity for oestrus duration 

The average oestrus duration was increased with 10 h in each scenario, which 

resulted in a decrease of the average insemination to ovulation interval of 5 h (Table 

5). The effect of oestrus duration on farrowing rate (range 88.4% to 93.5%) is larger 

than on litter size (range 12.6 to 12.8 piglets). The result of one insemination at 24 h 

after detected onset of oestrus (expressed in total piglets per insemination) was 

highest for the basic scenario (12.0 piglets per insemination). Either an increase or a 

decrease of oestrus duration compared to the basic situation has similar negative 

effect on the reproduction results. 

Table 5. The average and SE of the simulated oestrus duration, insemination to 
ovulation interval (IO), farrowing rate and litter size of the basic situation and the 
deviation from the basic situation for the proposed scenario's of oestrus duration (-2, 
-1,1 and 2)1, when insemination is applied 24 h after detected onset of oestrus. 

Oestrus duration (h) 

IO(h) 

Farrowing rate (%) 

Litter size 

-2 

-20.0 

-9.9 

-5.1 

-0.1 

-1 

-10.0 

-5.0 

-1.4 

-0.0 

basic2 

47.7 

-9.8 

93.5 

12.8 

1 

+10.0 

+5.0 

-1.2 

-0.0 

2 

+20.0 

+10.1 

-4.1 

-0.2 

SE 

0.12 

0.1 

0.3 

0.05 

' -2: basic-2cr, -1: basic-la; 1: basic+la; 2: basic+2a 
2basic refers to the basic situation described in the material and method section. 
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Sensitivity for oestrus detection strategy 

The variation (SD) in oestrus duration decreased from 15.8 to 12.8 when the 

frequency of oestrus detection increased from 1 to 3 times daily (Table 6). In this 

simulation, with on average an oestrus duration of 46.9 h, 55 sows were not detected 

in oestrus with a once daily detection strategy, whereas 2 and 3 times daily oestrus 

detection did not detect 3 and 2 sows, respectively. The number of sows inseminated 

in the optimal IO decreased from 83.5% to 71.5% when oestrus detection strategy 

changed from a 3 times daily oestrus detection to a once daily detection. This 

decrease in detection frequency (from 3 to 1) results in a small negative effect of 2.3% 

in farrowing rate and 0.3 piglets at farrowing. 

Table 6. The average oestrus duration, SD of oestrus duration, frequency of sows in 
the optimal insemination to ovulation interval (IO) (-24 h to 0 h), farrowing rate and 
litter size of the simulated real oestrus duration of the 3 scenarios of oestrus detection 
frequency (1, 2 and 3 times a day). 

real 1 2> 3 SE 
Oestrus duration (h) 
SD oestrus duration 
Freq. in optimal IO (%) 
Farrowing rate (%) 
Litter size 
Total piglet output 

46.9 

12.4 

n.r.2 

n.r. 

n.r. 

n.r. 

46.9 

15.8 

71.5 

91.4 

12.8 

11.7 

46.9 

13.4 

81.1 

93.3 

12.8 

12.0 

46.9 

12.8 

83.5 

93.7 

12.8 

12.0 

0.2 

0.03 

0.04 

'2 refers to the basic situation described in the material and method section; 
2 n.r. means not relevant. 

Sensitivity for insemination strategy 

The best reproduction results are obtained in the basic situation compared to 

the other scenarios (Table 7) with a farrowing rate of 93.4% and a litter size of 12.8 

piglets. When insemination was applied later than in the basic situation (36 and 48 h) 

farrowing rate and litter size decreased to a larger extent than when insemination 

was applied earlier (0 and 12 h) after onset of oestrus. 
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Table 7. The average and SE simulated insemination to ovulation interval (IO), 
farrowing rate and litter size of the basic situation (24 h) and the deviation from the 
basic situation for the proposed scenario's (0,12, 36 and 48 h)1 of insemination 
strategies applied between 0 to 48 h after detected onset of oestrus. 

IO(h) 

Farrowing rate (%) 

Litter size 

0 

-24.0 

-19.8 

-0.9 

12 

-12.0 

-4.7 

-0.2 

241 

-9.5 

93.4 

12.8 

36 

+12.0 

-10.1 

-0.2 

48 

+24.0 

-40.4 

-0.7 

SE 

0.08 

0.3 

0.03 
1refers to the basic situation described in the material and method section. 

VALIDATION 

Information about prenatal loss in relation to the timing of insemination 

relative to ovulation is scarce in literature. In most studies double or triple 

inseminations are applied to achieve best attainable fertilisation. In our study it is 

supposed that those insemination strategies are comparable with insemination 

applied between 0 and 24 h before ovulation. In PIGSIS, the conception rate (at least 

one fertilised oocyte) was 98.2% and fertilisation rate of the sows with conception 

was on average 94.4% when insemination was applied between 0 and 24 h before 

ovulation. In a study with gilts of Lambert et al. (1991), conception rate at day 3 of 

pregnancy was 100% and the fertilisation rate was 94.7%, which is not different from 

PIGSIS. 

In most studies, mortality is calculated as the number of conceptuses (embryos 

or foetuses) divided by the number of ovulated oocytes of the pregnant gilts or sows. 

The embryonic, foetal and total mortality of the pregnant sows in PIGSIS was 34.9%, 

3.0% and 37.9%, respectively. Variation in embryonic and foetal mortality is very 

high. Van der Lende and Schoenmaker (1990) reviewed embryonic mortality as 

reported in 78 publications of western pig breeds. In these studies with 

spontaneously ovulating sows (15 publications) the average number of oocytes was 

16.4 ranging from 10.7 to 23.6 and the average embryonic mortality was 26.5% 

ranging from 19.6% to 36.8% between experiments. Although the number of 

ovulated oocytes is high in PIGSIS compared to their study, embryonic mortality was 

within the range of those sources. Van der Lende and Schoenmaker (1990) referred to 

4 publications on sows with induced ovulation. The number of ovulated oocytes of 

those sows were comparable to the number of oocytes in PIGSIS and was on average 
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22.0 (range 12.2 to 25.1) and the average embryonic mortality was 30.8% ranging 

from 18.0% to 39.0%. Pere et al. (1997) studied embryonic and foetal mortality in the 

same animal by using laparotomy at day 35 of pregnancy in gilts that ovulated on 

average 17.4 oocytes. In the control group the embryonic mortality before 35 days 

was 32%, foetal mortality (between day 35 and 112) was 15% and the total mortality 

was 46%. Foetal mortality in PIGSIS is rather low compared to the study of Pere et al. 

(1997). Lambert et al. (1991) found a similar low foetal mortality (3.2%) in gilts, in 

accordance with results of PIGSIS. The embryonic mortality in the study of Lambert 

et al. (1991) of the pregnant gilts was 23.5% which, in contradiction to PIGSIS, was 

established by day 10 of pregnancy. 

Farrowing rate in PIGSIS was 94.9% of the sows that were inseminated 

between 0 and 24 h before ovulation. This was already established at day 15 of 

pregnancy. In the study of Lambert et al. (1991), pregnancy rate at day 30 of 

pregnancy was 80% which was lower than in PIGSIS. In their study, pregnancy rate 

PIGSIS oocytes 
PIGSIS day 10 
PIGSIS litter size 
Nissen oocytes 
Nissen day 10 
Nissen litter size 

-44 -36 -28 -20 -12 -4 4 12 
insemination to ovulation interval (h) 

20 

Figure 6. Number of oocytes, embryos at day 10 of pregnancy and number of total 
born piglets in relation to the insemination to ovulation interval as studied by 
Nissen et al. (1997) and the simulated results of PIGSIS. 
Where n are the number of sows from the study of Nissen et al. (1997). 
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did not change from day 30 until end pregnancy which was also the situation in 

PIGSIS. 

Nissen et al. (1997) studied the effects of the insemination to ovulation interval 

on reproduction results. They used 91 multiparous sows to study farrowing rate, 75 

sows for litter size and 18 sows to study number and development of the embryos at 

day 10 of pregnancy. The number of ovulated oocytes was similar for both studies 

(Nissen et al. (1997) vs. PIGSIS) and independent of lO (Figure 6). The average 

number of day 10 embryos and the litter size (total number of born piglets) are at a 

similar level for both studies when insemination was applied between 24 h and 0 h 

before ovulation. When insemination is applied more than 24 h before ovulation the 

number of embryos at day 10 and the litter size seems to decrease more rapidly in 

Nissen et al. (1997) than in PIGSIS (Figure 6). In PIGSIS, the simulated farrowing rate 

is 95.8% when insemination was applied between 24 h and 0 h before ovulation 

which was 88.5% in Nissen et al. (1997) (n=52) (Figure 7). Farrowing rate decreases 

60 

a 
'$ o 

-44 -36 -28 -20 -12 -4 4 

Insemination to ovulation interval (h) 

12 20 

Figure 7. Farrowing rate in relation to the insemination to ovulation interval 
as studied by Nissen et al. (1997) and the simulated results of PIGSIS. 
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when insemination is applied more than 24 h before ovulation or after ovulation. A 

similar decrease in farrowing rate was seen when insemination was applied between 

0 and 8 h after ovulation, -8% in PIGSIS and -10% in Nissen et al. (1997). 

DISCUSSION 

Verification and validation 

From the verification it can be concluded that the used scenarios gave realistic 

levels for farrowing rate and litter size, within ranges as found at commercial farms. 

In the Netherlands, twenty percent of the commercial farms with the lowest 

farrowing rate on average had a farrowing rate of 74% and the twenty percent best 

farms on average had 90% (Siva, 1999). The twenty percent commercial farms with 

the lowest litter size (live and death piglets born) on average had 11.0 piglets and the 

twenty percent best farms had on average 12.7 total born piglets (Siva , 1999). The 

basic situation of PIGSIS simulated a litter size of 12.9 piglets when insemination was 

applied between 0 and 24 h before ovulation, which is similar to the 20% best farms 

in the Netherlands. This interval of 0 to 24 h is chosen because it can be considered as 

a good timing of insemination and reproduction results are expected to be 'optimal'. 

The level of farrowing rate and litter size in PIGSIS are relatively high compared to 

the levels found at commercial farms. This high level in PIGSIS may be caused by the 

fact that results of PIGSIS are obtained with only the sows that are inseminated in the 

optimal time before ovulation (insemination between 0 and 24 h before ovulation. At 

commercial farms and in literature, in which ovulation is not controlled, it can be 

expected that there will be more variation in the IO and that there are sows that are 

inseminated outside the range of the optimal IO. Another reason for the high levels 

of farrowing rate and litter size of PIGSIS can be that at commercial farms other 

management strategies than insemination strategies (nutrition, stress) or state of 

health (Heinonen et al., 1998), could cause a decrease in farrowing rate or litter size 

because of extra mortality due to: abortions or increased embryonic or foetal 

mortality. This is not taken into account in PIGSIS. It is also possible that the 

parameters like e.g. number of ovulated oocytes or uterine capacity have different 

levels related to management factors (e.g. feeding) or genetic background (Johnson et 

al., 1999). 
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Embryonic and foetal mortality in literature is most often studied in gilts 

(reviewed by van der Lende and Schoenmaker, 1990). Embryonic and foetal 

mortality might have different levels for sows and gilts and can have different 

biological backgrounds because gilts ovulate on average less oocytes than sows. 

Many studies on prenatal loss are done more than 10 years ago and the genetic 

potential of pigs in e.g. number of ovulated oocytes and uterine capacity is changed 

by, for example, selection on litter size. Literature in the study of Van der Lende and 

Schoenmaker (1990) are publications from 1954 to 1986 and the information used in 

PIGSIS are mainly based on sows and studies from 1994 to 1997. Validation with 

publications from different decades or from publications with animals from different 

ages (gilts vs. sows) has to be done with caution. 

Effect of 10 on farrowing rate and litter size 

The number of embryos at day 1, 5 and 10 of pregnancy are clearly related to 

IO. After day 10 of pregnancy this effect of IO on the number of conceptuses 

decreased (Figure 5) which can be seen as the less parabolic line when conceptuses 

are older than 10 days. This decrease of the effect of IO is due to (1) the ending of 

pregnancy when not enough embryos are present in the uterus around day 14 of 

pregnancy (no maternal recognition); (2) a higher rate of embryonic and foetal 

mortality in the larger litters which results in less variation and more similarity in the 

litters between sows. Steverink et al. (1999b) related the results of litter size and 

farrowing rate of 55 commercial farms to the interval of insemination to the expected 

ovulation. In their study, ovulation was not obtained but the moment of ovulation 

was estimated at 68% of the duration of oestrus. In those farms, litter size decreased 

on average with 0.5 piglet when sows were inseminated between 12 h before 

ovulation to 12 h after ovulation (Steverink et al.,1999b). This was in agreement with 

PIGSIS were the decrease was 0.6 piglets. In both studies IO had a small effect on 

litter size when insemination was applied between 24 h before ovulation to 12 h after 

ovulation. The litter size in the study of Nissen et al. (1997) also showed a less 

pronounced relation with IO compared to the number of embryos at day 10 of 

pregnancy. Nissen et al. (1997) concluded that the optimal moment of insemination 

was between 28 h before ovulation and 4 h after ovulation, based on litter size and 

farrowing rate. Soede et al. (1995a) defined a smaller interval were good results could 

be obtained which was were insemination was between 24 h to 0 h before ovulation 
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which was based on reproduction result at day 5 of pregnancy. The decrease of litter 

size, when insemination was performed between 24 and 36 h before ovulation, 

seemed to be more affected by IO in Nissen et al. (1997) (4.1 piglets) than in PIGSIS 

(0.5 piglets). Their low number of piglets might be explained by coincidence because 

of the low number of animals (n=4) inseminated between 24 h and 36 h before 

ovulation. Moreover a relative early insemination (more 24 h before ovulation) 

results in a high number of sows with partial fertilisation (Soede et al., 1995a; 

Steverink et al., 1999a). Kemp and Soede (1997) concluded that litters with partial 

fertilisation have slightly retarded embryo development and increased variation in 

embryo development. Variation of embryo development is supposed to cause 

increased embryo mortality (Pope et al., 1990). In PIGSIS this aspect is not 

considered, which could result in an underestimation of the effects of IO on litter 

size. 

The effect of insemination to ovulation interval (IO) on farrowing rate was 

more pronounced than on litter size in PIGSIS. The farrowing rate in PIGSIS was 

already established at day 15 of pregnancy. After day 15, mortality affected only 

large litters which did not result in a complete termination of pregnancy in sows. 

Termination of pregnancy due to, amongst others, abortions was not taken into 

account in PIGSIS, because information was scarce and because it was supposed to be 

independent of insemination strategies. Steverink et al. (1999b) related the results of 

farrowing rate of 55 commercial farms to the interval of insemination to the expected 

ovulation. In their study, ovulation was not obtained but the moment of ovulation 

was estimated at 68% of the duration of oestrus. In those farms, farrowing rate was 

more related to IO than litter size of the sows that received a single insemination, 

which was in accordance with results of PIGSIS. 

From the sensitivity analyses one could conclude that in the basic situation, 

the 3 used biological parameters: ovulated oocytes, embryonic and foetal uterine 

capacity, are in balance. An increase in the level of one of these parameters did not 

increase litter size and farrowing rate to a large extent. For example, the effect of an 

increase in the number of ovulated oocytes was weakened because of the limitation 

of the large litters due to uterine capacity. This was also seen in a selection 

experiment on ovulation rate of Johnson et al. (1999). The increase in ovulation rate 

of 11 generations was 7.4 oocytes which resulted in an increase in litter size of 2.3 

piglets. The increased number of oocytes with 7.4 oocytes in the sensitivity analyses 
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(Table 2) resulted in an increased of litter size of 1.5 piglet. It can be hypothesised 

that the parameters that affect litter size used in PIGSIS are in equilibrium. Selection 

on number of oocytes, without increasing uterine capacity, will result only in a small 

positive effect. When an increase of litter size and farrowing rate is desired, 

parameters like number of ovulated oocytes, embryonic and foetal uterine capacity 

need to be increased at the same time. 

The differences in oestrus duration or insemination strategy affect the 

reproduction results by affecting the insemination to ovulation interval of the herd 

(average and variation). It will depend on the level of the specific farm parameters 

(oestrus duration, relation WOI and oestrus duration, etc.) to what extent 

insemination strategies will influence reproduction results. Flowers et al. (1998) 

applied a control insemination strategy (every 24 h during oestrus) and an adapted 

insemination strategy at two farms. On only one of those farm differences between 

treatments were observed. The differences between the two farms can be explained 

due to a different relation of oestrus duration and weaning to oestrus interval for 

those two farms. Changing the oestrus detection frequency from 3 to 1 times daily 

had no dramatic changes in reproduction results and the percentage not detected 

sows (silent oestrus) on a farm with an average oestrus duration of 48 h. However, 

on farms with a lower average oestrus duration an increase of sows with silent 

oestrus will be expected with a decrease in oestrus detection frequency. 

In conclusion, a model like PIGSIS gives insight in the reproduction process 

due to combining information of different physiological processes. PIGSIS is a basis 

from which a decision support program for managing insemination strategies 

specific for each farm can be distilled. 

IMPLICATIONS 

The PIG Simulation model for Insemination Strategies (PIGSIS) can be a 

helpful tool to increase insight in the physiological processes of reproduction, for 

defining an efficient insemination strategy and for evaluating an insemination 

strategy as used on a farm. This model enables to define an insemination strategy 

adapted to the circumstances on a farm. Farms have to record the average oestrus 

duration, relation between oestrus duration and weaning to oestrus interval and the 

112 



Development ofPIGSIS 

frequency of weaning to oestrus interval which characterise the individual farm. The 

proposed simulation model can be extended into a practical implementation at farm 

level. 
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General discussion 

INTRODUCTION 

Reproduction efficiency in pigs shows a large variation between farms (Clark 

and Leman, 1987; Stein et al., 1990; Dewey et al., 1995). In the Netherlands, twenty 

percent of the commercial farms with the lowest farrowing rate average had an 

average farrowing rate of 74% and the twenty percent best farms on average had 90% 

(Siva, 1999). This variation was also seen in litter size, twenty percent of the 

commercial farms with the lowest litter size (live and dead born piglets) had an 

average of 11.0 piglets and the twenty percent best farms had an average of 12.7 total 

born piglets (Siva, 1999). The origin of the variation between farms, with respect to 

these reproduction results, is very complex. Factors like health status, husbandry 

system, management and breed can influence reproduction results. One of the 

management factors is timing of insemination, which can influence reproduction 

results by affecting fertilisation. 

The research described in this thesis studied the possibility of developing a 

method to optimise insemination strategies for an individual farm. There are two 

important issues to consider in the development of an insemination strategy: (1) the 

effect of the moment of insemination in relation to ovulation interval (IO) on 

fertilisation results, and (2) possibilities to predict the moment of ovulation in order 

to adapt the moment of insemination to it. These two parts are the basis of the 

simulation model, which enables studying and defining optimal insemination 

strategies. 

In this chapter, the history of the timing of insemination during the last 

decades is described as an introduction. The ideas about timing of insemination have 

been changed through the years. After this introduction, firstly, the sensitivity of the 

relation between insemination to ovulation interval and fertilisation will be 

discussed. Secondly, the possibilities of predicting the moment of ovulation from 

oestrus duration will be discussed. Thirdly, the development of the pig simulation 

model for insemination strategies (PIGSIS) will be discussed. 
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History of the timing of insemination 

Timing of mating or timing of artificial insemination (AI) has always been an 

important issue. One of the earliest studies on AI was done with 100 to 150 ml of 

diluted semen (dilution 1:3) with the result that about 70% of the sows became 

pregnant (Rodin and Liptatov, 1935). The authors suggested that the best results 

would be obtained when pigs are inseminated on the second day of oestrus. 

In the fifties, fertilisation results were related to the interval of insemination 

relative to ovulation. It was thought that ovulation occurred at about the middle of 

oestrus, and generally between 24 and 36 h after the onset of oestrus (Polge , 1956). 

The best time for insemination was said to be between 6 and 12 h before the moment 

of ovulation. In those days, the advice for the moment of AI was that it should take 

place on the second day of oestrus. 

In 1970, Dziuk studied the optimal moment for insemination by using 

heterospermic inseminations (two inseminations of semen from two different boars). 

He reasoned that the semen inseminated closest to the optimum time would account 

for a greater proportion of offspring as compared to semen used at a less favourable 

time. Gilts, in which ovulation was controlled by human chorionic gonadotophin 

(hCG), were naturally mated twice with an interval of 6 h. In four groups of gilts that 

had the first mating at 30 to 24, 20 to 16, 14 to 12 and 10 to 6 h before expected 

ovulation, the percentage of offspring of the first boar was 33%, 30%, 78% and 71%, 

respectively. It was concluded that there was an optimum time point for 

insemination and it appeared to be about 12 h before ovulation. In that study it was 

striking that the latter two intervals (14 to 12 and 10 to 6 h) had better pregnancy 

rates: 100% and 91%, than the earlier two intervals (30 to 24 and 20 to 16 h) 67% and 

69%, respectively. Furthermore, insemination closest to ovulation (10 to 6 h) resulted 

in the highest litter size (9.3 piglets, which was 1.1 to 2.0 piglets higher than the other 

3 groups). From this it could be concluded that a first insemination from 10 to 6 h 

before ovulation, with a second insemination 6 h thereafter, gave the best 

reproduction results irrespective of the boar that sired the offspring. 

Until the nineties, studies on the assessment of the optimal moment of 

insemination were based on litter size and farrowing rate. In the early nineties 

ultrasonography became a usable tool to determine the moment of ovulation 

transrectally (Soede et al., 1992) or transcutanously (Weitze et al., 1994; Waberski et 

al., 1994ab). Ultrasonography gave the possibility to study fertilisation results in pigs 
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with spontaneous (non-controlled) ovulation, without affecting sows by surgery and 

anaesthesia which might influence the fertilisation process. The results of 

insemination were also studied sooner after ovulation (at 5 days) instead of at 

farrowing, which enables to measure the direct effects of fertilisation. Using 

ultrasonography, Soede et al. (1995a) concluded that the best fertilisation results were 

obtained when insemination was performed between 24 and 0 h before ovulation 

based on number of embryos at day 5 of pregnancy. In a similar study with gilts in 

which ultrasonography was used and fertilisation results were obtained at 2 to 4 

days after ovulation, an optimal insemination time was found between 12 and 0 h 

before ovulation (Waberski et al., 1994a). In a later study with gilts no differences in 

fertilisation results were obtained when insemination was applied between 12 and 24 

h before ovulation compared to fertilisation results when insemination was applied 

between 0 and 12 h (Waberski et al., 1994b). Nissen et al. (1997) used transrectal 

ultrasonography and found the highest reproduction results when insemination was 

applied between 28 h before and 4 h after ovulation based on embryos at day 10 of 

pregnancy, farrowing rate and litter size. 

At this moment it is clear that a large part of the variation in fertilisation 

results is related to the interval between insemination and ovulation. Desirable 

fertilisation results can be obtained when insemination takes place between 0 and 24 

h before ovulation, under present circumstances. 

FERTILISATION IN RELATION TO INSEMINATION AND OVULATION 

From the above mentioned it is clear that the moment of insemination in 

relation to ovulation has a great impact on the fertilisation results. Variation can be 

studied and quantified by using mathematical model, which is developed in Chapter 

2.3. Moreover, it is of interest what the physiological mechanism is explaining this 

relation and to what extent this relation can be influenced by factors like e.g. quantity 

of semen, quality of semen and sow effects. 

Physiological background 

At insemination or mating in pigs, billions of sperm cells are deposited in the 

uterus near the cervix. From this site, spermatozoa start to migrate towards the site of 
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sperm storage which is in the first 2 cm of the caudal region of the isthmus in the 

oviduct (Hunter, 1981). Longitudinal contractions of the uterus are responsible for 

transport of the spermatozoa (Zerobin, 1968; Bower, 1974). Relative to the inseminated 

number of sperm cells, only a small number reaches the isthmic sperm reservoir 

(Hunter, 1981). Before the sperm cells reach the oviduct they have to pass a major 

barrier: the uterotubal junction (UTJ) (Smith et al., 1987). Dead (Viring, 1980) or 

capacitated spermatozoa (Shalgi et al., 1992) pass the UTJ not as good as normal 

spermatozoa. When sperm cells reach the reservoir, they can be stored for a certain 

period which delays the reduction of the motility, viability and fertilisation capacity 

(Overstreet et al., 1980; Suarez et al., 1991). This makes the reservoir a temporal shelter 

to bridge the time until fertilisation of oocytes. Sperm cells can be stored in the reservoir 

for up to 40 h (Hunter, 1981; Pollard et al., 1991; Raycoudhurry and Suarez, 1991). 

However, a general decrease in number of fertile sperm cells is seen during storage in 

the sperm reservoir. Spermatozoa that do not reach the sperm reservoir in time are 

killed by the hostile uterine environment. In the hamster uterus, the motility of 

spermatozoa decreases from 60% immediately before insemination to 10% at 1 h after 

insemination (Smith et al., 1988). The spermatozoa that do not reach the sperm 

reservoir, are removed by backflow (Viring and Einarsson, 1981; Chapter 2.2) or local 

phagocytosis which is seen within 2 h after insemination (Pursel et al., 1978). 

From the described above it can be concluded that the relation between IO 

and fertilisation is based on the ageing processes of sperm cells and oocytes. When 

insemination takes place before ovulation, the sperm cells will age. The ageing 

process of sperm cells causes a decrease of the number of sperm cells in the sperm 

reservoir. When insemination takes place after ovulation the oocytes will age until 

fertilisation. Both ageing processes cause a decrease in the chances of fertilisation. 

This means that the moment of releasing sperm cells in the female reproduction tract 

(insemination) in relation to the moment of releasing the oocytes (ovulation) 

determines the period in which fertilisation is possible. 

Factors affecting the relation between IO and fertilisation 

As mentioned before, Soede et al. (1995a) concluded that the best fertilisation 

results were obtained when insemination was performed between 24 and 0 h before 

ovulation. In their study sows were inseminated with a normal commercial sperm 

dosage of good quality containing 3xl09 sperm cells. This means that given these 
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circumstances ageing of sperm cells becomes visible when sperm cells are stored for 

longer than 24 h in the sperm reservoir. The effect of ageing of sperm cells on 

fertilisation might be changed by different circumstances. Chapter 2.1 and 2.2 

explores factors that can be seen as changed circumstances compared to the study of 

Soede et al (1995a). 

Quantity of semen: In Chapter 2.1 three different sperm dosages are compared 

and differences of fertilisation were obtained 5 days after ovulation. Insemination at 

12 to 24 h before ovulation, with a threefold reduced sperm dosage (1 x 109 sperm 

cells) did not result in a significant reduction in fertilisation results in sows. 

Insemination at 24 to 36 h before ovulation with a twofold increased sperm dosage (6 

x 109 sperm cells) did not result in an increase in fertilisation results. However, small 

consistent differences were seen, both the median percentage of normal embryos and 

the median accessory sperm count increased with an increase in insemination dosage in 

all the insemination to ovulation classes 0-12 h, 12-24 h, 24-36 h and 36-48 h. These 

results indicate that fertilisation results are not very sensitive to variation in the number 

of inseminated sperm cells in the range of 1 x 109 to 6 x 109 sperm cells. This will mean 

that the number of fertile sperm cells in the sperm reservoir is not much affected in the 

range of 1 x 109 to 6 x 109 sperm cells. 

In Chapter 2.2, the influence of backflow of semen on fertilisation rate was 

studied. The hypothesis was that backflow of semen in the first half hour after 

insemination would negatively influence the number of sperm cells that could reach 

the sperm reservoir and consequently would negatively influence fertilisation. The 

volume of backflow up to 2.5 h after insemination was 70% of the inseminated 

volume, which was relatively high compared to the number of sperm cells in 

backflow that was 25% of the inseminated sperm cells. When sows had more than 5% 

backflow of the inseminated volume, then the fertilisation results were negatively 

affected in the sows inseminated with lxlO9 sperm cells. This was not seen with an 

insemination dosage of 3 x 109 or 6 x 109 sperm cells. However, no effect of backflow 

after insemination on fertilisation results was found. It could be concluded that 

suboptimal circumstances like a combination of low dosage and loss of spermatozoa 

due to backflow during insemination, will lead to sub-optimal fertilisation results. This 

will mean that the combination of two suboptimal factors will lead to a less good filling 

of the sperm reservoir and therefore cause less good fertilisation results. 
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Quality of semen: The quality of semen (e.g. fertilisation capacity, morphology), 

is different among boars (Harkema et al., 1997). The quality of semen is also affected 

by the longterm storage and cryopreservation (cell damage, motility). 

Cryopreservation and long term storage cause cell damage which results in a higher 

number of dead cells and a higher elimination rate of sperm cells in the female 

reproductive tract (Pursel et al., 1978; Saacke, 1982). 

Waberski et al. (1994a) studied the effect of timing of insemination in relation 

to ovulation of frozen stored semen compared to fresh (stored for less than 48 h) 

semen in gilts on fertilisation results between 2 and 4 days after ovulation. The 

optimal insemination time with cryopreserved semen was 0 and 4 h before ovulation 

in which good (more than 80%) fertilisation results could be obtained. This period 

was shorter compared to fresh semen which had an optimal insemination time of 0 

to 12 h before ovulation. 

Longterm storage of semen decreases the fertilisation capacity of the sperm 

cells. The use of longterm stored semen (48 to 87 h) decreased the interval from 

insemination to ovulation in which good fertilisation results (more than 80%) could 

be obtained from 0 to 24 h to 0 to 12 h compared to fresh semen (Waberski et al., 

1994b). A further increase of storage time of semen (87 to 118 h) resulted in lower 

fertilisation rate (73.0%) even in the insemination to ovulation interval of 0 to 12 h. 

Summarising, it can be concluded that the quality of semen affects fertilisation 

result clearly. The IO in which good fertilisation results can be obtained is shortened. 

Cryopreservation or storing of semen for more then 48 h result in cell damage or 

dead sperm cells which result in less fertile sperm cells at the side of fertilisation 

compared to good quality semen. 

Sow effects (parity, breed): Beside semen characteristics that influences the 

relation between IO and fertilisation, individual sow factors can also play a role. 

These factors can be e.g. the parity or the genetic background of a sow. 

In the experiment described in Chapter 2.1 sows of parity 1 to 8 were used. In 

those sows, a small but significant effect of parity was found on the relation between 

IO and fertilisation results (unpublished results, Steverink DWB). Sows of parity 3 

and older on average have a better fertilisation rate. When insemination was applied 

between 12 and 24 h, before ovulation the average fertilisation rate for parity 1, 2 and 

older sows was 85.9%, 84.2% and 90.5%, respectively. When insemination was 
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applied between 24 and 36 h before ovulation, the average fertilisation rate for parity 

1, 2 and older sows was 77.3%, 67.4% and 84.7%, respectively. In contradiction to 

this, Soede et al., (1995a) found no difference in fertilisation rate between parity 2 and 

older sows (5 parity 1 sows, 55 parity 2 sows and 83 parity 3 and older sows). In a 

study in which gilts were used, the optimal period of insemination relative to 

ovulation was between 0 to 12 h (Waberski et al., 1994a). This was a shorter IO than 

in studies where sows were used (Chapter 2.1; Soede et al., 1995ab). However, in 

another study with gilts no difference in fertilisation rate were found when 

insemination was applied between 0 and 12 h before ovulation compared to 

insemination between 12 and 24 h before ovulation (Waberski et al. (1994b). 

Difference in fertilisation rate due to parity is conflicting in literature. It seems 

however that the younger sows and gilts have a small disadvantage in fertilisation 

results. Differences due to age might be related to a suboptimal sperm transport in 

the uterus (e.g. worse uterine contractions). However, no such effects have been 

reported. 

The variation in fertilisation rate as described in Chapter 2.1 partly had a 

genetic basis. The fertilisation rate was positively correlated (R2=26%, P<0.01) to the 

breeding value for litter size of the sows. This means that the fertilisation rate at day 

5 of gestation is related to the number of piglets the sow potentially can produce. A 

prolongation of the optimal insemination to ovulation interval is seen in sows with a 

high breeding value for litter size. A similar effect was seen when the fertilisation 

results of two breeds (dam and sire line) were compared (Kemp and Soede, et al., 

1997). When insemination was performed between 0 and 12 h after ovulation the 

dam-line showed still good fertilisation (98.7%; n=ll) whereas the sire-line showed a 

marked decline in fertilisation (68.5%; n=33)(P<0.05). It could be concluded that 

selection for reproduction parameters has a positive effect on the fertilisation and 

that, consequently, the insemination to ovulation interval is longer for dam-lines than 

for sire-lines in which good fertilisation results will be obtained. 

In conclusion, it appeared that age and genetic background of the sow affect 

the fertilisation results as measured at day 5 of gestation. Both, sows that are selected 

for reproduction performance and sows of older age have a larger IO in which good 

fertilisation results can be obtained in comparison to younger sows and animals that 

are selected for production traits. 
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Mathematical model of conception and fertilisation 

From the reported studies it became clear that there is a high variation in 

fertilisation rate among sows (Chapter 2.1). Fertilisation is not an all or non 

phenomenon which it was thought to be for a long time (Hunter, 1994), but sows also 

can have partial fertilisation. Fertilisation has to be described more accurately to 

estimate the impact of IO on the number of fertilised oocytes per sow. A mathematical 

model of conception and fertilisation was developed based on data obtained under 

'normal' conditions in the Netherlands (Chapter 2.3). These conditions consist of using 

multiparous sows and insemination with a commercial sperm dose of 3x 109 sperm 

cells which is stored for less than 48 h and with sperm cells of proven quality. Figure 1 

shows the estimated relation of conception and fertilisation under these 'normal' 

conditions. At the moment, there are not enough data available to estimate the 
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Figure 1. The estimated probability of conception (C; —) (at least one embryo) 
and complete and almost complete fertilisation (F; — ) of the sows with 
conception in relation to the interval between insemination and ovulation for 
normal (Norm) insemination conditions and suggested probability conception 
and fertilisation for bad (Bad) insemination conditions. 
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parameters for the mathematical model on fertilisation under less optimal conditions 

(e.g. insemination with frozen stored sperm cells). In Figure 1, an example is given of 

how negative factors (bad conditions) might affect the conception and fertilisation 

results. As was suggested in Chapter 2.3 the insemination to ovulation interval in 

which good conception and fertilisation results can be obtained is shorter under these 

bad conditions but the highest level is similar in both situations. If more information 

about conception and fertilisation becomes available under specific circumstances, the 

mathematical model could be adapted to it. 

From Chapter 2.2 it was concluded that a low dosage of semen (1 x 109 sperm 

cells) hardly affected fertilisation results. However, a low dosage of semen in 

combination with excessive backflow during insemination had a negative influence on 

fertilisation. This in contrast to a normal or high dosage of semen in combination with 

high volume of backflow which did not affect fertilisation. From this it might be 

concluded that negative effects of one factor can be partly compensated by changing 

one of the other factors. Moreover, it is of interest whether negative factors, like frozen 

stored semen, could partly be compensated by using positive factors like older sows or 

dam-line sows. 

The mathematical model represents the results of fertilisation using a single 

insemination. In the Netherlands this is not common practice where on average 1.5 

inseminations per oestrus period are used (Siva, 1999). The effect of a double 

insemination in relation to the optimal insemination to ovulation interval has hardly 

been studied. Soede et al. (1995b) applied a second insemination between 0 and 5 h 

after ovulation. They found good fertilisation results, irrespective of the timing of 

first insemination relative to ovulation. In this study, it seems that the later 

insemination compensated a first insemination, when the first one had been 

performed too early (insemination 32 to 24 h before ovulation) without an adverse 

affect of the second insemination. From this it could be suggested that, when a 

double insemination is applied, the one with the highest probability on good 

fertilisation results is the one responsible for the fertilisation results. 

In conclusion, fertilisation is a complex process resulting in no, partial or 

complete fertilisation. The mathematical model in Chapter 2.3 describes this process 

accurately for 'normal' insemination conditions. Although the variation in 

fertilisation in relation to insemination and ovulation is described, the origin of this 

variation is still not understood very well. Deviations from the proposed 
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mathematical model are expected when circumstances are substantially different 

from these 'normal' conditions. 

POSSIBILITIES OF PREDICTING OVULATION 

General 

From the foregoing it can be concluded that the moment of ovulation is a 

crucial moment for timing of insemination. This is because fertilisation results 

depend on the insemination to ovulation interval. Therefore, prediction of ovulation 

is a prerequisite for optimising insemination strategies. 

At commercial farms the timing of insemination is based on the onset of 

oestrus. However, ovulation takes place at very variable moments after the onset of 

oestrus (detected as standing response for the boar). The ovulation moment varied 

between 10. and 85 h after the onset of oestrus (Soede and Kemp, 1997). Because of 

this variation, onset of oestrus is not an accurate predictor for the moment of 

ovulation and therefore not a good parameter for timing of insemination. 

Many possible ovulation predictors have been studied. Stokhof et al. (1996) 

studied vaginal mucus conductivity. The vaginal mucus conductivity increased 

during oestrus but the variation between sows was very high and there was no 

relation with the observed ovulation moment as determined with ultrasonography. 

Soede et al. (1997) studied vaginal temperature from 4 days before ovulation to 2 

days after ovulation in 10 sows. In these sows a clear day/night rhythm in vaginal 

temperature was found but a relation with the ovulation moment could not be 

demonstrated. Soede et al. (1994) studied concentrations of oestradiol, LH and 

progesterone in relation with the ovulation moment. The preovulatory LH surge is a 

good ovulation predictor but there is not a simple practical test available to 

determine the preovulatory LH surge at this moment. Ultrasonography is a tool to 

detect the ovulation moment retrospectively. A prediction of ovulation based on the 

follicle diameter is not possible because of high variation. The size of follicles at the 

moment of ovulation varied between 5 and 10 mm (unpublished data, Steverink 

DWB). Nissen (1995) found that the follicles reached a maximum diameter of 7-10 

mm, at which size they remained for about 24 h until ovulation. None of these 
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parameters can predict ovulation accurate enough to be used for timing of 

insemination. 

Oestrus duration 

Oestrus duration is a retrospective estimator of ovulation that might be used 

in a prospective way. Table 1 shows oestrus and ovulation data from 6 different 

studies in which ovulation was detected by ultrasonography (Weitze et al., 1994; 

Nissen et al., 1995; Mburu et al., 1995; Soede et al., 1995a; Soede et al., 1995b; Chapter 

2.1). In these studies the mean oestrus duration ranged between 56 and 60 h and the 

weaning to oestrus interval between 86 and 124 h. The mean relative ovulation time 

during oestrus varied between 67% and 72%, and ranged between 35% and 163%. 

Only a few sows had a relative ovulation of more than 100% (ovulation after oestrus) 

and these were sows with an oestrus duration which was shorter than 32 h (Soede et 

al., 1995a; Chapter 2.1). From these experimental studies it can be concluded that 

oestrus duration can be used as an estimator of the moment of ovulation but 

unfortunately this estimator is a retrospective one. 

Table 1. Relative ovulation (%) during oestrus and the oestrus duration (h). 
Relative ovulation (%) 

Mean+sd 

71±n.d> 

71+14 

68±8 

72±15 

67±8 

68+10 

Range 

35-100 

38-118 

54-78 

39-133 

42-94 

46-163 

N 

483 

91 

20 

144 

91 

115 

Oestrus duration 

Mean+sd 

60±15 

60±14 

56±8 

50±13 

60±11 

59±12 

Reference 

Weitze et al., 1994 

Nissen et al., 1995 

Mburu et al., 1995 

Soede et al., 1995ab 

Soede et al., 1995b 

Chapter 2.1c 

" n.d. not determined 
b Sows with a WOI of more than 8 days were excluded (n=2) 
1 Sows with a WOI of more than 7 days were excluded (n=19) 

Oestrus duration at farm level 

From Chapter 3.1 it can be concluded that the average oestrus duration on 

farms was different between farms but consistent from month to month within a 

farm with a repeatability of 86%. Therefore, recording of the duration of oestrus at 

farms for approximately a month can give a good impression of the duration of 

oestrus for the coming period on that farm. 
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Oestrus duration is negatively related to the weaning to oestrus interval 

(Chapter 2.1; Weitze et al., 1994; Kemp and Soede, 1996). In Chapter 3.1 it was also 

shown that the relation between oestrus duration and weaning to oestrus interval 

differs among farms. Moreover, a difference in the average weaning to oestrus 

interval among farms was found. When the insemination strategy will be based on 

oestrus duration at a farm, these specific farm characteristics like average oestrus 

duration and the relation of weaning to oestrus interval and oestrus duration need to 

be taken into account. 

Oestrus duration on sow level 

An insemination strategy specific for each sow would be the ultimate goal for 

optimising timing of insemination. This will be possible when the moment of 

ovulation is predictable for an individual sow. The question is if oestrus duration is 

repeatable for sows. The heritability was 0.16 for oestrus duration and .29 for the 

ability to show standing reflex (Rydhmer et al., 1994). From this it can be concluded 

that a genetic component of oestrus duration is present in pigs. In a pilot study, data 

on oestrus duration were collected of 153 sows from 1995 to 1997 at one commercial 

farm (unpublished results, Steverink). Sows with more than 3 reproductive cycles 

were included in the analysis. From this pilot study it was concluded that the 

repeatability of oestrus duration was between 0.16 and 0.22 at this farm. With a 

repeatability of around 0.2, oestrus duration is not predictable accurate enough for 

sow. Oestrus duration and its predictability should be studied further. Possibly more 

parameters should be obtained in order to predict oestrus duration more accurate for 

individual sows. 

DEVELOPMENT OF A MODEL FOR INSEMINATION STRATEGIES 

From the above it can be concluded that there are two issues to consider when 

developing a method to optimise insemination strategies in pigs. At the first place 

fertilisation results as depending on the interval between insemination and ovulation 

and in the second place possibilities to predict the moment of ovulation in order to 

adapt the moment of insemination to it. Combining these factors and also the factors 

that are involved in embryonic and foetal mortality makes a model approach of 
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interest. A model is a good aid to investigate the impact of variation of certain input 

factors on the reproduction outcome. Moreover, putting down existing knowledge 

into a simulation model would result in a valuable tool for educational purposes. 

In literature two models have been published which studied reproduction 

results by using underlying physiological mechanisms. One model is based on the 

concept that litter size is the product of ovulation rate and embryonic survival 

(Johnson et al., 1984). In the other model, litter size is based on the concept of 

ovulation rate and uterus capacity (Bennet and Leymaster, 1989). The major 

shortcoming of these models is caused by the fact that fertilisation can not be 

distinguished from mortality during pregnancy. The effect of insemination can 

therefore not be studied by these two models. Moreover, the impact of insemination 

strategies on the change in number of embryos and foetuses at several stages in 

pregnancy can not be detected. Therefore, a new mathematical model was 

introduced. 

Chapter 4.1 proposed this new model and it can be concluded that the basic 

model reasonably simulated reproduction results. The sensitivity analysis indicated 

that PIGSIS is a robust model because it did not generate exceptional results when 

values of the parameters were changed. 

Illustration of the effect of a similar insemination strategy on two different farms 

To illustrate the importance of an insemination strategy for an individual farm 

a simulation study was done with a preliminary version of PIGSIS (Steverink et al., 

1999). The objective of that study was to show the consequences for reproduction 

results when applying the same insemination strategy on farms with a different 

average oestrus duration. One simulated farm had an average oestrus duration of 36 

h and the other farm had an average oestrus duration of 60 h. The applied 

insemination strategy consisted of a single insemination 24 h after observed onset of 

oestrus. In this study it was concluded that the farm with the short average oestrus 

duration had a lower farrowing rate than the farm with the long average oestrus 

duration, 79% and 86%, respectively. The litter size was not different between the 

two farms. The origin of the difference was the shift in insemination to ovulation 

interval (Figure 2). At the farm with an oestrus duration of 60 h, more sows were 

inseminated more than 24 h before ovulation, while at the farm with an oestrus 

duration of 36 h more sows were inseminated after ovulation. The percentage of 
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Figure 2. Percentage of sows in the farm with an average oestrus duration of 60 
and 36 h with bad (0-80%) and good (80-100%) fertilisation rate at the different 
insemination to ovulation intervals. "Q=the moment of ovulation. 

sows inseminated in the optimal IO (0 to 24 h before ovulation) was 38% at the farm 

with an OD of 36 h and 68% at the farm with and OD of 60 h (Figure 2). 

This simulation study is an example of the possibilities of using a model to 

improve the insemination strategy on a farm and an example of how the model it 

gives insight in the processes involved in reproduction. 

Illustration of achieving information with PIGSIS 

A model like PIGSIS, can be used to study fictive pig populations. The impact 

of number of ovulated oocytes and 

uterine capacity can be studied. An 

example of four different 

populations of sows is simulated by 

PIGSIS (Table 2): a control 

population as described in Chapter 

4.1 as the basic situation, a 

population with a low number of 

ovulated oocytes (low OO), a 

population with a high embryonic 

Table 2. Four simulated pig populations to 
study the effect of insemination to ovulation 
interval on reproduction results. 

population 

control 
lowOO 
high UC 
low 0 0 + 
high UC 

oocytes 

basicb 

basic-7.4 
basic 
basic-7.4 

embryonic 
UG> 

basic 
basic 
basic+8.8 
basic+8.8 

foetal 
UC 

basic 
basic 
basic+4.0 
basic+4.0 

' UC is uterine capacity; OO is number of oocytes 
b basic is basic value as described in Chapter 4.1 

129 



17 

16 

15 

14 

3 1 3 

t l 

10 

9 

8 

7 

- • • - - l o w O O 
- -A--highUC 

low OO; high UC 

~ " — A - - _ . 

A ' ""A 
• ' _.*•• • ° - - - « . . 

* .*••' ••*. ^ 

. ' 

Chapter 5 

and foetal uterine capacity 

(high UC) and a population 

with low OO and high UC. 

The effect of IO on litter size 

is shown in Figure 3. The two 

populations with a low 

ovulation rate result in a 

lower litter size. Moreover, 

The effect of IO on litter size 

is less pronounced in the two 

populations with the lower 

number of oocytes compared 

to the basic situation. This 

less pronounced effect of IO 

on conceptuses was already 

seen at day 1 and became less 

at day 15. The embryonic 

mortality in the basic 

population was higher compared to population with low OO and high UC (Figure 4). 

In the latter foetal mortality was almost absent. This example shows how ovulation 

rate and uterine capacity affects reproduction results. 

-44 20 -36 -28 -20 -12 -4 4 12 
insemination to ovulation interval (h) 

Figure 3. Simulated litter size of the control 
population of PIGSIS (basic), low number of 
ovulated oocytes (low OO), high embryonic and 
foetal uterine capacity (high UC) and with low OO 
and high UC. 
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Figure 4. Number of oocytes and conspectuses for the basic population (left) and 
for the population with low number of ovulated oocytes (basic - 7.4 oocytes)and 
high embryonic and foetal uterine capacity (right) at day 1,10,15,35 and 110. 
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Improvements ofPIGSIS 

Until now PIGSIS has been validated in parts with data from literature 

because no other data were available. A complete validation of PIGSIS as a whole is 

needed for a better evaluation of the model. For this further validation, data of 

commercial farms that apply two different insemination strategies can be used. 

PIGSIS used the oestrus duration in relation to weaning to oestrus interval 

and the frequency of parity of the sows as input parameters. These parameters 

characterise the farm which makes the insemination strategy adapted to the unique 

situation at that farm. A further improvement of PIGSIS would be if more farm 

characteristics related to oestrus duration could be defined. In Chapter 3.1 it was 

shown that the average oestrus duration was different between farms, which is 

accounted for in PIGSIS. But it was also seen that the standard deviation (SD) of 

oestrus duration was different between farms, ranging from 8 to 18 h (unpublished 

results). In PIGSIS the SD of oestrus duration was 10 h and was equal for all farms. 

When the variation in oestrus duration at a farm is high the variation of the moment 

of ovulation will also be high at that farm. To inseminate all animals in a good 

insemination to ovulation interval will then be impossible with one insemination. An 

insemination strategy for farms with a high variation in oestrus duration will need 

more inseminations per sow than farms with a low variation in oestrus duration. To 

improve PIGSIS also the variation on oestrus duration can be used specific for the 

farm. 

Instead of anticipating on the variation in oestrus duration, another approach 

could be to study the possibility to reduce variation in oestrus duration at a farm. 

Therefore, it is of interest to investigate the factors that are responsible for the 

difference in average oestrus duration and variation of oestrus duration between 

farms. Factors that are known to influence oestrus duration are e.g. stress of group-

housing (Pederson et al., 1993), boar (Jongeman et al., 1996) and possibly the skills of 

the farmer. If underlying factors are known it might be possible to adapt the method 

of oestrus detection into a method in which the oestrus duration will be less variable 

and thus improving the possibility to identify an efficient insemination strategy at 

farm level. 

The bottleneck of timing of insemination is the accuracy of predicting 

ovulation. As described before, the oestrus duration is the best retrospective 

ovulation estimator at this moment. However, variation was seen in the moment of 
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ovulation during oestrus. It will be an advantage for PIGSIS when prediction of 

ovulation can be done with a higher accuracy. Possibly a combination of oestrus 

characteristics like standing reflex in front of the boar in combination with colouring 

of the vulva could give a better predictor for moment of ovulation (Langendijk et al., 

1999). 

PIGSIS is a model which is based on sows that show their first oestrus after 

weaning. Gilts and rebred sows are not included in the model because prediction of 

oestrus duration and therefore moment of ovulation is less accurate. However when 

oestrus duration of these two groups is known a prediction of ovulation could be 

made and an insemination strategy can be defined. 

An insemination model like PIGSIS, becomes of more interest when 

circumstances become worse. For example, when sperm dosages become more 

expensive or the labour costs for insemination become higher. Also when it is 

favourable to use a low dosage of semen due to health problems (e.g. classical swine 

fever) or using less boars. In these situations, applying a single insemination has an 

advantage over a double insemination and timing of insemination will become more 

crucial. 

This study demonstrated the importance of taken into account the specific 

farm parameters when defining an insemination strategy. On farms, oestrus duration 

needs to be registered for a certain period of time to enable prediction of oestrus 

duration for the coming period. Also, the relation of oestrus duration and weaning to 

oestrus interval should be registered on farms. With these two parameters, a specific 

insemination strategy can be formulated adapted to circumstances on the farm. 

PIGSIS is a basis from which a software application for use at commercial farms 

could be distilled. 

Models in scientific research are used to gain insight in the processes under 

study. In PIGSIS assumptions are made and not all of them could be validated 

because data were not available. Therefore, PIGSIS is still in its developing stage and 

reservation has to be taken into account by using PIGSIS, at this stage, as a decision 

supporting program. Nevertheless, the value of the current simulation model is that 

it helps to increase understanding and insight in the reproduction processes that are 

important for the insemination strategy. Directions for further research can be 

defined, leading to more information for optimising the insemination strategies at 

commercial farms. 
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INTRODUCTION 

Reproductive efficiency shows large variation between farms. The origin of the 

variation between farms, with respect to these reproduction results, is very complex. 

Factors like health status, husbandry system, management and breed can have an 

influence on reproduction results. One of the management factors is timing of 

insemination, which influences reproduction results by affecting fertilisation. 

The research described in this thesis deals with the possibility of developing a 

method to optimise insemination strategies for individual farms. Therefore three 

objectives were formulated: the first objective is increasing insight in the effects of the 

interval between insemination and ovulation on fertilisation results. The second 

objective is increasing knowledge on the possibilities of predicting the moment of 

ovulation of sows at a farm. The final objective is developing a method which can be 

used for optimising insemination strategies at commercial farms. 

FERTILISATION IN RELATION TO INSEMINATION AND OVULATION 

In Chapter 2 the sensitivity of the relation of the insemination to ovulation 

interval (IO) and fertilisation results is studied. Fertilisation results are not very sensitive 

to variation in the number of inseminated sperm cells in the range of 1 x 109 to 6 x 109 

sperm cells (Chapter 2.1). Sows with more than 4 ml backflow of semen during 

insemination had reduced fertilisation results when the sows were inseminated with 

lxlO9 sperm cells, but this was not seen with an insemination dosage of 3 x 109 or 6 x 109 

sperm cells (Chapter 2.2). Backflow of semen after insemination did not affect fertilisation 

results. It could be concluded that sub-optimal circumstances like a combination of a low 

dosage and loss of sperm cells due to backflow during insemination, lead to sub-optimal 

fertilisation results. 
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Fertilisation is a complex process, resulting in no, partial or complete fertilisation 

of the oocytes. The variation in conception (at least one oocyte fertilised) and fertilisation 

rate between sows is high, but a large part of the variation is related to the interval 

between insemination and ovulation. A mathematical model for conception and 

fertilisation is described in Chapter 2.3. The data used for estimating the parameters in 

the model were derived from multiparous sows that were inseminated once with a 

commercial sperm dose of 3xl09 sperm cells of proven quality which was stored for less 

than 48 h and with sperm cells. In the model, the probability of conception is maximal 

(98%), when insemination is performed between 29 and 3 h before ovulation. The 

probability of complete fertilisation (all oocytes fertilised) is maximal when insemination 

was performed at 9.6 h before ovulation. At this optimal fertilisation point, the probability 

of partial fertilisation is 21% which increases beyond this point. 

PREDICTION OF OVULATION 

Fertilisation results are related to the interval between insemination and 

ovulation. Therefore, the moment of ovulation is a crucial moment for timing of 

insemination. Many potential ovulation predictors have been studied, but only oestrus 

duration is a reasonable estimate (retrospectively) for ovulation. Ovulation takes place 

at on average twothirds of oestrus. Unfortunately oestrus duration is very variable. 

The average oestrus duration is different between farms ranging between 31 and 

64 h (Chapter 3.1). Moreover, oestrus duration is consistent from month to month within 

a farm with a repeatability of 86%. Furthermore, oestrus duration is negatively related 

to the weaning to oestrus interval. This relation differs among farms. These specific farm 

parameters can be used to predict the oestrus duration and from that the ovulation can 

be predicted. These farm parameters (average oestrus duration and the relation of 

weaning to oestrus interval and oestrus duration) can be used to define a specific 

insemination strategy for each farm. 
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DEVELOPMENT OF A MODEL FOR INSEMINATION STRATEGIES 

There are a variety of factors influencing the reproduction process. The 

complexity of this reproduction process makes a modelling and simulation approach 

valuable because effects of the underlying processes can be controlled. A PIG Simulation 

model for Insemination strategies (PIGSIS) was developed which consists of two parts: 

(1) the reproduction events from the number of ovulated oocytes until the number of 

piglets at farrowing and (2) timing of insemination relative to ovulation based on the 

farm parameters (weaning to oestrus interval, oestrus duration, etc.). PIGSIS simulates 

the reproduction results at day 1, 5,10,15,35 and 110 of pregnancy. Many physiological 

processes are included in PIGSIS e.g. fertilisation, embryonic mortality (degeneration, 

maternal recognition of pregnancy, embryonic uterine capacity) and foetal mortality 

(foetal uterine capacity). After verification and validation it could be concluded that 

PIGSIS is a robust model that reasonably simulates reproduction results. Under the 

basic situation (average oestrus duration of 47 h and average parity of 4.2) and when 

insemination was applied between 0 and 24 h before ovulation PIGSIS simulates 12.9 

total born piglets and a farrowing rate of 94.9%. Under these conditions the average 

embryonic and foetal mortality of the conceptuses was 34.9% and 3.0%, respectively. 

The effect of insemination to ovulation interval on fertilisation results is clear, but the 

effect becomes less clear as gestation proceeds resulting in a more pronounced effect on 

litter size than on farrowing rate. 

In the General discussion the results of the studies are discussed and an 

illustration of the usability of PIGSIS is given. Verification and partial validation gave 

confidence in the model. However, a further validation is required to evaluate the 

model as a whole. Therefore PIGSIS is still in its developing stage and reservations has 

to be taken into account at this stage by using PIGSIS for defining optimal insemination 

strategies on farms. 
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INLEIDING 

De variatie in reproductie efficientie is groot tussen bedrijven. De oorsprong van 

deze variatie is erg complex. Factoren zoals gezondheidsstatus, houderijsysteem, 

management en ras kunnen een invloed op de reproductieresultaten hebben. Een van 

deze management factoren is het moment van insemineren (inseminatiestrategie) welke 

via bevruchting een invloed heeft op de reproductie resultaten. 

Het onderzoek in dit proefschrift beschrijft de mogelijkheid van het ontwikkelen 

van een methode om de inseminatiestrategie te optimaliseren die rekening houdt met de 

siruatie op individuele bedrijven. Voor dit proefschrift zijn daarom drie doelstellingen 

geformuleerd: het eerste doel is om het inzicht te vergroten van de effecten van het 

interval tussen insemineren en ovuleren op bevruchtingsresultaten. Het tweede doel is 

om de kermis te vergroten over het voorspellen van het ovulatie moment van zeugen op 

bedrijven. Het laatste doel is om een methode te ontwikkelen welke gebruikt kan 

worden om de inseminatie strategie te optimaliseren op commerciele bedrijven. 

BEVRUCHTING IN RELATIE TOT INSEMINATIE EN OVULATIE 

In Hoofdstuk 2 is de relatie tussen het inseminatie tot ovulatie interval (IO) en 

bevruchtingsresultaten bestudeerd. Bevruchtingsresultaten bleken niet erg gevoelig voor 

de variatie in het aantal geinsemineerde spermacellen wanneer inseminatie doses in de 

range van 1 x 109 tot 6 x 109 sperma cellen werden gebruikt (Hoofdstuk 2.1). Zeugen met 

meer dan 4 ml sperma terugvloei gedurende de inseminatie hadden slechtere 

bevruchtingsresultaten als ze gemsemineerd waren met lxlO9 spermacellen, maar dit werd 

niet geconstateerd bij zeugen die gei'nsemineerd waren met een dosis van 3 x 109 of 6 x 109 

spermacellen (Hoofdstuk 2.2). Terugvloei van sperma na het insemineren had geen effect 

op de bevruchtingsresultaten. Hieruit kan worden geconcludeerd dat suboptimale 

omstandigheden, zoals een combinatie van een lage spermadosis en verlies van sperma 
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door spermaterugvloei tijdens insemineren, tot suboptimale bevruchtingsresultaten kan 

leiden. 

Het bevruchtingsproces is een complex proces en kan als resultaat de bevruchting 

van geen, een deel, of alle eicellen hebben. De variatie in de kans op conceptie (minstens 

een eicel bevrucht) en bevruchting tussen zeugen is groot. Een groot deel van de variatie in 

beide kenmerken hangt samen met het interval tussen inseminatie en ovulatie. Een 

mathemarisch model voor deze kansen op conceptie en bevruchting is beschreven in 

Hoofdstuk 2.3. De gebruikte data voor het schatten van de parameters in het model zijn 

afkomstig van bevruchtingsgegevens van meerdere-worps zeugen die een keer zijn 

gei'nsemineerd met een commerciele spermadosis met 3xl09 sperma cellen die een 

bewezen goede kwaliteit hadden en die voor minder dan 48 uur bewaard werden. In het 

model is de kans op conceptie maximaal 98% wanneer de inseminatie tussen 29 en 3 uur 

voor ovulatie heeft plaatsgevonden. De kans op complete bevruchting (alle eicellen 

bevrucht) is maximaal wanneer de inseminatie 9,6 uur voor ovulatie heeft plaatsgevonden. 

Op dit optimale bevruchtingstijdstip is de kans op gedeeltelijke bevruchting 21%. Voor en 

na dit optimale tijdstip neemt het aandeel gedeeltelijke bevruchting toe ten koste van het 

aandeel complete bevruchting. 

VOORSPELLING VAN OVULATIE 

Uit het voorgaande blijkt dat bevruchtingsresultaten duidelijk gerelateerd zijn 

aan het interval tussen insemineren en ovuleren. Daarom is het ovulatiemoment een 

cruciaal moment voor het bepalen van een optimale inseminatiestrategie. Vele 

potentiele ovulatievoorspellers zijn besrudeerd maar alleen de bronstduur bleek een 

redelijke schatter voor het ovulatiemoment. Het nadeel van de bronstduur als 

ovulatievoorspeller is dat het een rerrospectieve voorspeller is. Ovulatie vindt namelijk 

plaats op tweederde deel van de bronst. 

De gemiddelde bronstduur varieerde van 31 tot 64 uur op verschillende 

bedrijven (Hoofdstuk 3.1). Bovendien bleek de bronstduur op een bedrijf consistent over 

maanden, met een herhaalbaarheid van 86%. Verder bleek dat de bronstduur op veel 

bedrijven negatief gerelateerd is met het interval spenen-bronst en dat deze relatie 
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verschillend is tussen bedrijven. Deze specifieke bedrijfsparameters kunnen worden 

gebruikt om de bronstduur van zeugen te voorspellen en daarmee het ovulatiemoment. 

Deze bedrijfsparameters (gemiddelde bronstduur en de relatie bronstduur en interval 

spenen-bronst) kunnen daarom worden gebruikt om een specifieke inseminatiestrategie 

voor ieder bedrijf te def inieren. 

ONTWIKKELING VAN EEN MODEL VOOR INSEMINATIE STRATEGIEEN 

Er zijn vele factoren die het reproductieproces beinvloeden. Een beter inzicht in 

een dergelijk complex proces kan worden verkregen via simulatie-studies waarin de 

onderliggende processen gereguleerd kunnen worden. Een simulatie model voor 

inseminatie strategieen (PIG Simulation model for Insemination Strategies ; PIGSIS; 

Hoofdstuk 4.1) is ontwikkeld en bestaat uit twee delen: (1) de opeenvolgende 

gebeurtenissen in het reproductieproces vanaf het aantal geovuleerde eicellen tot aan 

het aantal biggen bij geboorte en (2) timing van inseminatie ten opzichte van ovulatie 

gebaseerd op de bedrijfsparameters (interval spenen-bronst, bronstduur, etc.). PIGSIS 

simuleert reproductieresultaten op dag 1, 5, 10, 15, 35 en 110 van de dracht. Veel 

fysiologische processen zoals bevruchting, embryonale sterfte (door degeneratie, 

maternale herkenning van de dracht en door embryonale baarmoedercapaciteit) en 

foetale sterfte (door foetale baarmoedercapaciteit) kunnen in PIGSIS worden gevarieerd 

om het effect op reproductieresultaten te bestuderen. Na verificatie en validatie kon 

worden geconcludeerd dat PIGSIS een robuust model is dat reproductieresultaten goed 

lijkt te simuleren. In de basis situatie (gemiddelde bronstduur van 47 uur en een 

gemiddeld worpnummer van 4.2) met een inseminatie tussen 0 en 24 uur voor ovulatie 

simuleert PIGSIS 12.9 totaal geboren biggen en een afbigpercentage van 94.9%. Onder 

deze omstandigheden is de gemiddelde embryonale en foetale sterfte van het aantal 

dieren dat drachtig was respectievelijk 34.9% en 3.0%. Het effect van het interval tussen 

inseminatie en ovulatie op de bevruchtingsresultaten is groot, maar dit effect wordt 

steeds minder groot naarmate de dracht langer is. Uiteindelijk is het effect van het 

inseminatiemoment op afbigpercentage groter dan op worpgrootte. 
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In de Algemene Discussie zijn de resultaten van de diverse studies in dit 

proefschrift bediscussieerd en een voorbeeld van de bruikbaarheid van PIGSIS is 

gegeven. De verificarie en de deel-validatie van PIGSIS gaven betrouwbare resultaten. 

Een verdere evaluatie van PIGSIS is noodzakelijk door middel van een gehele validatie. 

Daarom moet PIGSIS nog beschouwd worden als een model dat in de ontwikkelfase en 

voorzichtigheid moet worden betracht bij het gebruik van PIGSIS om een optimale 

inseminatie strategie voor bedrijven te definieren. 
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