PRIORITY SETTING IN THE CGIAR

C.T. de Wit, G. Gryseels and D. van Kraalingen

December 1992

TAC Secretariat/CGIAR
FAO
Via delle Terme di Caracalla
00100 Rome, Italy

Tel: (39-6) 57975442
Fax: (39-6) 57975731
E-mail: CGI501

PRIORITY SETTING IN THE CGIAR ${ }^{1}$

1. Introduction

The Consultative Group on International Agricultural Research (CGIAR) is an informal association of more than 40 countries, foundations and international agencies that provides donor support to a network of 18 international centres that conduct research on agriculture, forestry and fisheries for the benefit of developing countries. While the annual budget of the CGIAR amounts to approximately US $\$ 300$ million, it remains a relatively small actor in the global research scene, accounting for only 4% of public sector expenditure for agricultural research in developing countries. The CGIAR has to be very selective in choosing which of the many demands for agricultural research it will help to meet. In addition, the nature and focus of this research must also be selected vigorously. In this selection process, the CGIAR is advised by a Technical Advisory Committee (TAC) that provides recommendations on CGIAR priorities and strategies, on resource allocation, on the quality and relevance of CGIAR activities. In general, TAC provides intellectual leadership to the System.

TAC prepares an updated report on CGIAR priorities and strategies approximately every five years. The most recent report (TAC/CGIAR, 1992) was endorsed at the MidTerm Meeting of the CGIAR in May 1992. The report provides recommendations on CGIAR priorities by region, agroecological zone, activity, production sector and commodity.

TAC began its review of CGIAR priorities and strategies by investigating the challenges facing research and development in agriculture, forestry and fisheries between now and the year 2010. It analysed the need for CGIAR involvement in resource management, germplasm enhancement, production systems research, policy research and institution building, and provided the necessary background information to allow for the formulation of judgements on priorities by category of research activity, although these are not further considered in this paper.

A main methodological innovation was the development of a modified congruence approach and scoring model to assist in priority setting by region, agroecological zone and commodity. This paper explains this model approach. Since the methodology can be explained fully by considering the problem of priority setting in agriculture (crops and livestock), the work that has been done for forestry and fisheries is not treated further here.

The paper first presents the units of analysis and then discusses the congruence approach and the modification of the results to take into account the special nature of the

1

CGIAR, the needs of its clients and the demands of its donors. It also provides a user's guide for the application of the spreadsheets that were developed for priority setting.

2. Units of Analysis

The units of analysis are regions, agroecological zones, regional agroecological zones and agricultural commodities. These are considered in this section, but only to the extent necessary to understand the methodology of priority setting.

2.1 Regions

TAC's geographic coverage of regions was limited to the developing countries of sub-Saharan Africa (AFRS), West Asia/North Africa (WANA), Asia and the Pacific (ASIA), and Latin America and the Caribbean (LAC). Some selected socioeconomic indicators for these four regions are given in Table 1. Countries of Eastern Europe and other former republics of the Soviet Union were not included in the analysis.

2.2 Agroecological zones

TAC adapted the agroecological characterization originally developed by FAO (FAO, 1978-81). In this classification, a distinction is made between tropical areas, and subtropical'areas with summer or winter rainfall. These major ecological regions are further subdivided into rainfed moisture zones, using standard lengths of growing period, and into thermal zones, using the temperature regime prevailing during the growing period. In this way, nine basic agroecological zones were distinguished for the review of CGIAR priorities:

1. Warm arid and semi-arid tropics (AEZ1);
2. Warm subhumid tropics (AEZ2);
3. Warm humid tropics (AEZ3);
4. Cool tropics (AEZ4)
5. Warm arid and semi-arid subtropics with summer rainfall (AEZ5);
6. Warm subhumid subtropics with summer rainfall (AEZ6);
7. Warm/cool humid subtropics with summer rainfall (AEZ7);
8. Cool subtropics with summer rainfall (AEZ8);
9. Cool subtropics with winter rainfall (AEZ9).

2.3 Regional agroecological zones

Applying the classification of agroecological zones to that of the regions leads to a total of 23 regional agroecological zones (RAEZs): four in sub-Saharan Africa, three in West Asia/North Africa, seven in Asia and nine in Latin America and the Caribbean. Because two out of the three WANA zones are relatively unimportant, the results for all three zones in WANA have been aggregated. Throughout this paper, results are, therefore, given for 21 RAEZs, except in Table 2 that provides selected agroecological and socioeconomic indicators for the 23 RAEZs.

To link the socioeconomic database (which is organized by political units or national boundaries) with the natural resource database (organized by agroecological zones), it was necessary to reconcile agroecological and political boundaries. For smaller countries with relatively uniform terrain this presented few problems. Larger countries or countries with non-uniform terrain were mostly assigned to more than one agroecological zone. Zone boundaries were then reconciled with provincial or regional boundaries. Data on population and land area were available at national/ subnational level and these provided the basis for the disaggregation of other socioeconomic data.

2.4 Commodity

In order to enable assessment of the importance of commodities and in view of the need for a common unit of analysis, commodities were ranked by their value of production. This value was estimated by multiplying the average annual production volume of each commodity during 1987/89 as reported in the FAO production yearbooks, with its corresponding price. One global price was used for each commodity. It is acknowledged that there are major caveats associated with the concept of value of production:

- First, several commodities have no published data sources and estimates had to be found elsewhere.

1. Second, for the purpose of this exercise, it was not possible to account for intermediate products such as draught power, manure, fodder crops, pasture hay, and certain tree products, because they are not usually traded and have no international price. Nevertheless, these intermediate products are indispensable inputs to the production of many of the priced commodities.

- Third, prices of commodities may vary considerably by region and over time.
- Fourth, the relative importance of commodities may depend on how they are aggregated. This is particularly important for fish, fruits and vegetables.
- Fifth, the reported international price for several commodities refers to only a minor share of the market which has been distorted by subsidies and other government policies.
- Sixth, there is no consistency in the way price data are reported. This ranges from farm gate prices to Cost Insurance Freight (CIF).
- Seventh, available international prices usually refer to the high quality portion of a commodity which is usually only a minor share of production.

Despite such caveats, gross value of production provides a useful indicator of the importance of commodities across production sectors. It would be possible to use other
indicators such as nutritional values, but this would require the estimation of the opportunity costs in terms of nutritional values of all crops that are not grown for direct human consumption.

In agriculture, the 45 most important commodities were incorporated in the analysis. These are listed in Table 3, where they are ranked according to their economic importance in the developing countries. About half of these commodities are currently the subject of research by the CGIAR.

3. Congruence Approach

3.1 Introduction

At the Mid-Term Meeting of the CGIAR in 1987 in Montpellier, the CGIAR endorsed a recommendation from TAC that priority setting should be a continuing activity, and that greater use should be made of quantitative models for this purpose. Subsequently, TAC reviewed quantitative models for use in priority setting in agricultural research and recommended that a congruence approach combined with scoring techniques was the most appropriate technique to assist in priority setting for the CGIAR (TAC/CGIAR, 1987, TAC/CGIAR, 1988).

3.2 Concept of congruence

The congruence approach is a method by which resources are allocated on the basis of the contribution of a particular unit (e.g., commodity) to an overall given standard of measure (e.g., value of production, supply of energy or protein, area of land under use etc.). The congruence approach was originally developed for commodities and is based on two main assumptions: that the opportunities for research to generate new knowledge to increase productivity are equal across commodities; and that the value of new knowledge produced by research is proportional to the value of output, ignoring the costs of inputs or the value added by processing. If these two assumptions are more-orless valid, then research is most efficiently distributed according to the value of production of the commodities (Scobie, 1984; Kirschke, 1987).

A congruence approach can also be applied for an initial ranking of CGIAR priorities by region, agroecological zone, regional agroecological zones (RAEZ), by assessing their respective contribution to a specific unit of measure, such as total value of production or total area of agricultural land.

Congruence analysis can only be applied to parameters that measure extensive rather than intensive magnitudes. To decide in which class a parameter belongs, it is often helpful to note the effect of the addition of two equal quantities of the parameter in question (Forsythe, 1956); if twice the quantity results, then the parameter has extensive magnitude. For example, if the GNP of country A is US\$500 million, and that of country B is US $\$ 300$ million then the combined total GNP of countries A and B is US $\$ 800$ million. On the other hand, if GNP per caput in country A is US $\$ 250$ and that
of country B is US $\$ 120$, the combined GNP/caput for countries A and B is not the sum of their respective levels (US\$370). Such parameters measure quantities of intensive magnitude. Examples of measures of extensive magnitude, which are referred to as extensity parameters in the remainder of this paper, include; value of production, number of people, or hectares of land. Examples of measures of intensity, referred to as intensity parameters in the remainder of this paper, include: value of production per ha, share of malnourished in a population, and number of tractors per ha of land.

Extensity and intensity parameters express different concerns. Whereas the size of population of a particular country can be small compared to other countries, its population/land area may be high. A congruence approach can only be applied to extensity parameters because only these can be added and aggregated.

3.3 Application of the congruence approach

In its quantitative analysis of CGIAR priorities, TAC first proceeded with the spatial dimension and an assessment of geographical priorities, i.e. by region, AEZ and RAEZ. Rather than using a single criterion, TAC made an initial ranking of priorities on the basis of the weighted average of three extensity parameters, each of which reflect a major concern expressed by the CGIAR in its mission statement: the contribution of research to productivity, to the well-being of low-income people and to sustainability of production. These are the three most important concerns of the CGIAR and can be expressed for each RAEZ in terms of value of production, number of poor people, and usable land. This approach emphasizes efficiency considerations: if research has to enhance production, it is better done where the value of production is large; if it has to alleviate poverty, it is better done where there are a large amount of poor people; and if it has to support sustainability of production, it is better done where there are large areas of land. In this perspective, a congruence approach allows for optimalization of the objective function.

In the case of agriculture, TAC decided to weight all three of the parameters equally. Value of production was estimated by aggregating production sector the value of each commodity by RAEZ, the number of poor was estimated on the basis of World Bank data, and usable land was defined as agricultural, plus forestry and woodland. Data for usable land were found in FAO production yearbooks. The value of each parameter was standardized to sum to 1000 so as to allow for aggregation of the relative value of each parameter. Table 4 gives the three extensivity arrays and the resulting baseline. These baseline values provide an initial indication of the relative priority of each RAEZ, region and AEZ.

4. Modification of Baseline Values

4.1 Need for modification

The initial assignment of geographical priorities in the form of a baseline value which was determined by value of production, number of poor people and land area is an
optimalization procedure determined by criteria of economic efficiency. It does not reflect other important concerns expressed in the CGIAR mission statement related to equity, resource degradation or strength of national research systems. The baseline values should, therefore, be modified to allow for incorporation of these other concerns. A standardized approach was therefore developed for modifying the initial baseline values by intensity parameters in a zero-sum game. Such parameters allow for expression of intensity of particular phenomena in each region and AEZ.

4.2 Modification procedure

Table 5A provides an example of how the initial baseline of priorities is modified with intensity parameters. For reasons of simplicity, the example uses the four regions as units of analyses. The yield gap is used as a modifier, and is defined as the potential yield level that is achieved with the best technical means minus the present yield level, divided by the potential yield level and expressed as a percentage. The yield gap ranges from $0-100 \%$. A yield gap of 0% means that the potential yields are achieved and therefore yields can only be increased by further enhancement of the potential yield level by strategic research. When the yield gap is high, there is considerable scope to increase the actual yield level by applied research, extension and improvement of the socioeconomic environment. Since the mission of the CGIAR is strategic research, TAC opted for the situation where the research priority is higher for a region, the smaller the yield gap.

The modification process for this proceeds as follows: In row 1 of Table 5A, the initial baseline priorities are given ranging from 74 for WANA to 530 for ASIA, and with a total of 1000 . The yield gap for each region is with a low of 60% in ASIA and a high of 79% in AFRS is given in row 2. This range of values is then normalized in row 3 by division by its maximum value. Because in this case, the highest priority is given to the region with the lowest yield gap, the complement is taken in row 4 by subtracting the relative yield gap from 1. It provides AFRS now with the lowest value of 0 and ASIA with the highest value of 0.24 . In row 5 , these values are multiplied by the weight of the modifier, which is here set at 0.75 . The gross change of base-line values in row 6 is now obtained by multiplying row 5 with row 1 . These values have to be added to the initial baseline priorities. However, to maintain the total priorities at 1000 , the baseline has to be reduced at the same time by the values in row 7. These are the baseline values, but now standardized at the total of the gross changes in row 6 of 103.39. The difference in row 8 of the gross change and the baseline reduction gives the net change to each of the base-line values. The priority of ASIA with the lowest yield gap is increased with 38.75 and of AFRS with the highest yield gap decreased with -18.85 . The addition of row 8 to row 1 gives at last the modified priority values of row 9 . Since the total of row 8 is always zero, the addition does not increase the total relative priority of 1000. This reflects the zero-sum character of the process.

All values in row 3 would be equal to 1 if the yield gaps were the same for the four regions. In that case all values in the rows $4-8$ would be equal to zero, so that priorities would not be changed. The total of row 6 would then also be equal to zero. In general, this total depends on the variability of the yield gap and is directly proportional to the weight attached to the modifier. It quantifies therefore the overall impact of the
modifier, and is therefore further referred to as the gross redistribution. Apart from the weight, the value of this gross redistribution depends on the variability of the yield gap with respect to the base-line priority. In this example, this gross redistribution is 103.39.

For research organizations that are much more concerned with applied research than the CGIAR, it could be argued that the priority of research in regions with a high yield gap should be increased at the expense of research in regions with a low yield gap. The consequences of this reversal of priorities is calculated in Table 5B where the complement of row 3 is not taken in row 4. The values of the net increase of the baseline in row 8 appear then the same as in Table 5A, but for the important difference that the signs are reversed. Other calculation procedures can be visualized, but this mirrored, symmetrical response to reversal in priorities is a main reason why the present procedure is preferred.

It is noted that the total of the gross change in row 6 of Table $5 B$ is 646.61 , rather then 103.39 in Table 5A. Likewise in the situation that all yield gaps are the same, this sum is 750 rather than 0 . Apparently, the sum of these numbers in both tables equals 750 , which appears to be the product of the weight of 0.75 and the priority total of 1000. Hence, to maintain comparable gross redistributions, it should be defined in Table 5B as the difference between the weight*1000 (in this case 750) and the total of the gross change.
7. However, it appears less confusing to do all calculations as in Table 5A, and to simply change the sign in row 8 if the reverse situation is considered. The sign convention is then conveniently chosen such that with a positive sign (+1) the priority of a region increases with increasing value of the modifier and with a negative sign (-1) the reverse occurs.

There is usually more than one modifier used. Where this is the case, the values of row 8 for the next modifier are added to row 9 of the previous modifier. Accordingly row 9 accumulates the effect of all modifiers. Since the baseline priorities are always used as a point of reference for the calculations, the outcome of the calculation process remains independent of the order in which the modifiers are applied. As the modification process is additive, negative priorities may occur. Formally, this would mean taxing one region to the benefit of the others. Since the CGIAR is not empowered to levy taxes, these negative values have to be eliminated. This is done by setting all negative values in the end result at zero, with the consequence that the total of the relative priorities across regions becomes larger than 1000 . This is corrected by a proportional decrease of all priorities. Hence, if the priority for WANA were to become -100 , it should be set at 0 , while at the same time the other priorities should be multiplied by $1000 / 1100$ to remain at a total of 1000 .

The effect of a modifier depends on the weight it has been assigned and on the spread or variability of its value across regions, and is reflected in the value of the gross redistribution. There are two opposing strategies for weighting modifiers: the first is to give each the same weight. In that case, the differences in impact of the modifiers that are brought about by their difference in variability are conserved. The magnitude of this weight then reflects the impact that the user wants to attach to the entire modifying
process. The second method is to eliminate the differences in impact of modifiers by making the weight inversely proportional to the gross redistribution values that are calculated with a same weight for each modifier. The gross redistribution is then forced to be the same for each modifier. Recognizing that there is a large freedom of choice, TAC has opted for the first strategy, since it is more relevant and transparent.

The above modifying approach does not present an optimizing procedure. It only aims at clarifying choices. It makes the decision process fully transparent because it is clear how certain factors are taken into account and what their impact is on the outcome. The zero-sum nature of the process also forces the user to recognize that increasing the priority in one region, agroecological zone, RAEZ or commodity means decreasing priorities for others. Furthermore, it allows priority setting to become an interactive process in which stakeholders have an opportunity for reasoned input.

5. Results

TAC had to consider a wide range of modifiers that would take into account the special nature of the CGIAR, the needs of its clients and the demands of its donors. It is also to be recognized that the choice of modifiers was limited to those for which sufficient information was available, although this did not distinguish the present process from any other process of priority setting. In the end, TAC retained nine modifiers for agriculture. These were; yield gap or scope for growth, share of malnourished people, gross domestic product/caput, need for production growth, deforestation, soil-degradation risk, capacity of national research systems, size of countries, and food import gap. The data associated with these modifiers are given in Table 6. Some of these, such as deforestation and capacity of NARS, which are measured as number of scientists are clearly extensity parameters. Before use, these have to be converted to intensity parameters by division with the base-line values. Some modifiers distinguish only between regions because sufficiently detailed data for a distinction on RAEZ were not available or could not be found in time.

Table 7 illustrates the effect of each modifier on the baseline values by RAEZ, region and AEZ. It shows whether the effect was positive or negative and by how much. In this example, all modifiers were given the weight of 0.5 . The table allows the reader also to compute the effect of the removal of one or more of the modifiers, of a directional change of the modifiers, and of changes in weights. Table 8 provides the results of the quantitative analysis by geographical area. It illustrates the effects of the use of the nine modifiers, all applied with a weight of 0.5 , on the baseline values. The final priorities can be referred to as the priority index by RAEZ, agroecological zone and region. The RAEZ of highest priority is AFRS1 or the arid and semi-arid tropics of sub-Saharan Africa with an index of 136. LAC6, the warm subhumid subtropics with summer rainfall of Latin America has the lowest priority with an index of only 2.5. The agroecological zone and the region of highest priority are respectively the humid tropics (AEZ3), and ASIA.

6. Implications of Geographical Priorities for Commodity Priorities

The development of a geographical priority index has considerable consequences for priorities among commodities. The first step in ranking commodities consists in the estimation of their value of production. This value is subsequently modified to take into account the results of the geographic priority analysis. This is done by adjusting the value of production of each commodity in each RAEZ by the ratio of the priority index (provided in Table 8) and the initial value of crop and livestock production by RAEZ (presented as VOP in Table 4). The ratio ranges from 5.06 for AEZ1 of AFRS, to 0.20 for AEZ7 of ASIA. The next step is then to multiply the value of production of each commodity in each RAEZ with the ratio obtained for that RAEZ. The value of all commodities grown in AEZ1 of AFRS will thus be multiplied by 5.06, and those in AEZ7 of ASIA by 0.2 . The resulting outcome is the modified value of production of commodities (assuming a weight of 0.5).

The approach implies that a commodity with a high production value but mainly grown in an area of low priority, may end up with lower priority than a commodity with a low production value grown mainly in an area that has been assigned high priority.

The modified VOP by RAEZ, can then be aggregated for each commodity by region and AEZ. The results by region are illustrated in Tables 9 and 10. Whereas rice, for example, accounts for 17.8% of the value of production of the agricultural commodities-included in this analysis, it accounts for only 13.2% of the global aggregated modified value of production. As illustrated in Table 9 and 10, the application a geographical priorities to value of production also substantially affects the regional distribution of this value.

7. The Spreadsheet Programmes

7.1 Introduction

The three main spreadsheet programs that perform the priority allocation operations are discussed in this section. To use the spreadsheet programmes, either an IBM compatible PC with Excell 2.1C or an Apple Macintosh with Excell 2.2 or higher is needed. The spreadsheets are available on request on a $3.5^{\prime \prime} \mathrm{HD}$, MS-DOS floppy. This floppy can also be used on Macs that have a 1.44 Mb superdrive.

The program "PRIOR.XLS" allocates priorities over the 21 regional agroecological zones, but it can easily be adapted to programmes that distinguish between the four regions, the nine agroecological zones or the 45 commodities. A program printout is given in Table 11. Relevant equations are shown in Table 12, which may be useful for those who want to check details or to rewrite the program in another spreadsheet language.

The program COM.XLS calculates the consequences of the priority setting for the 21 RAEZs for priorities among agricultural commodities. It can be adapted for any number of commodities and regions or zones. It is printed out in Table 13.

Upon opening of the program TAC.XLM, a pull-down menu with the name "TAC-index" is created, that contains two entries: "Modifier Macros" and "Chart Macros". The Modifier Macros are used in the PRIOR.XLS spreadsheet and the "Chart Macros" facilitate graphical presentation in both the PRIOR.XLS and COM.XLS programs.

7.2 The priority program (PRIOR.XLS)

PRIOR.XLS, shown in Table 11, contains four main blocks. The first calculates the baseline priority, the second modifies this priority, the third eliminates negative priorities and the fourth summarizes the results. These blocks are discussed below.

The baseline priority

The first block (columns A-G and rows 21-50) calculates the baseline priority. Column A contains the RAEZs and columns B-F the data for a maximum of five extensity parameters. This seems sufficient for any purpose. Only three extensity arrays are used here; value of production, number of poor, and area of usable land. Rows $25-48$ contain the extensity arrays, standardized at 1000 , as is shown by their sums in row 50. Row 23 contains the weight attached to each extensity array. The baseline priority is calculated by multiplying each extensity array by its weight and adding the values per row to a total in column G. There are "error" messages when the weights do not add up to 1 and the totals do not add up to 1000 .

The modifying process

The second block (columns A-N and rows 63-95) contains the modification process by means of intensity parameters. In columns A and B the names of the RAEZ and the array with baseline priorities automatically correspond to these in columns A and G of the previous block. There are two modifiers considered in this example: yield gap in columns $\mathrm{C}-\mathrm{H}$ and malnutrition in columns I-N. The equations for additional modifiers can be created by loading the program TAC.XLM and choosing the entry "Modifier Macro" from the pull-down menu "TAC index". The pull-down menu "TAC macros" that is then created contains an entry "Add relative block". If this entry is called upon, a third modifier block is created in the columns O-T. This has then to be loaded with appropriate input data for another modifier. This procedure of creating new modifier blocks can be repeated as many times as is needed. The pull-down menu "Modifier Macro" also contains references to start calculations, to check for "error" messages, to delete modifier blocks and to go to the summary tables. These are self-explanatory when used.

In columns $\mathrm{C}-\mathrm{H}$ all the modifier steps are given. Column C contains the yield gap for all 21 RAEZs as in row 2 of Table 5A. Rows 3, 4 and 5 of Table 5A are calculated in column D. The weight being used is given in cell D63. The gross change and gross
redistribution (row 6, Table 5A) are calculated in column E and the baseline reduction (row 7, Table 5A) in column F. Column G with the net increase of the baseline priority (row 8, Table 5A) contains the values in column E minus those in column F , multiplied by the sign (S) in cell D64. The signs are chosen such that $\mathrm{S}=-1$ refers to the situation where the priority decreases with an increase in the value of the modifier. The modified baseline priority (row 9) in column H is at last calculated by adding the values in columns B and G. The program contains "error" checks on the totals that have to add up to 1000 and on the value -1 or +1 of the sign S.

The second modifier block (columns I-N) repeats the same calculations with malnutrition as the intensity parameter. Additionally, it should be noted that the level of malnutrition (in \% of population that is malnourished) is only known by region, so that within regions the same percentages are used for the different agroecological zones. This is better than not using the information at all. The priority of research should increase with the percentage of malnutrition, so that the value of S is set at +1 . To calculate the modified base-line priority in column N , the net increase of the baseline is added to the value in column H. Accordingly, the modified relative priorities are cumulative.

Automatic correction of negative priorities

The third block in columns A-E and rows 106 to 135 takes care of the automatic correction of negative priorities. For this purpose, the modified baseline of the last modifying blopek is automatically selected and transferred to column B under the heading "semi-final priorities". Negative values do not occur in the example given in Table 11, but they do in the example shown in Table 14 which was generated with a very high weight of 10 for malnutrition. The operation is as follows: Under the title "changes to eliminate negative values", the values which, upon addition to those in the previous column will eliminate any negative values, are created in column C . The "unadjusted total" of columns B and C is given in column D. It contains zeros instead of negative values, but the grand total is accordingly increased to the value of 1462.98 in D135. By multiplying all values in column D with the ratio 1000/1462.98, the priorities are again standardized at a total of 1000 in column E .

Summary tables

Relevant input information is automatically transferred to the "Summary tables". These consist of the names of the extensity parameters and their weights (W) and the names of the intensity parameters and their weights and sign (S) in columns A-G and rows 139-153. Subsequently, the baseline and final priorities for all 21 RAEZs, for the four regions and the nine agroecological zones are reported in columns A-G and rows 157-186. To facilitate graphical output, there is a self-explanatory entry "Chart macros" under "TAC index" which allows the user to construct uniform and readable graphs.

7.3 The commodity program (COM.XLS)

The commodity spreadsheet adjusts relative priorities of commodities for relative priorities of the 21 regional agroecological zones. An example is given in Table 13.

The core of this program is formed by Table 13.2 of gross values of production (VOP) in columns A-Y and rows 11-67, specified according to the 21 RAEZ and 45 commodities. Standardized at 1000, these values give the relative priority that would be allotted to each commodity in each RAEZ, according to the classical congruence approach. The total VOP per RAEZ, standardized at 1000, is given in row 67 in columns B-V. This array is also written in row 7 of Table 13.1 with the heading "Value of Prod. (VOP)" and is used as an extensity array in the program PRIOR.XLS in Table 11. It would be the outcome of the priority-setting process across RAEZ, if no other extensity arrays and no modifiers were used.

The outcome of the priority-setting process, which is under the heading "final priority" in rows $162-185$ of column C in the PRIOR.XLS program shown in Table 11 is transposed (see menu "Paste Special") to row 4 of COM.XLS shown in Table 13.1. Subsequently, all blanks between the values are removed. The resulting row is then copied into row 8. The quotient (weighted/VOP) of rows 6 and 7 in row 8 , now gives the value by which the VOP of the commodities in the same column have to be multiplied by in order to account for the influence of the RAEZ priorities on the priority of the commodities.

It is seen that in the agroecological region AFRS1, the priority based on value of production would be 26.9 per 1000, whereas after the priority setting process, the result is 81.9 per 1000. Hence, the adjusted priorities of the commodities in that RAEZ are 3.04-larger than if based on VOP only. Similar reasoning holds for other RAEZs. The outcome of this weighting process is given in columns A-Y and rows 74-126 in Table 13.3. It should be noted that this matrix contains absolute values, but these are no longer in millions of dollars. Comparison of the relative unweighted crop totals in block Y17-Y63 and the weighted crop totals in block Y77-Y123 shows the overall effect of the process.

The data are further summarized per region. Table 13.4 contains in columns AA-AK and rows $14-65$ the unweighted absolute and relative values for each of the four regions, summed across the nine agroecological zones. Table 13.5 contains in columns AA-AK and rows 74-126 the weighted values. Similar tables are calculated for each of the nine agroecological zones, summed across the four regions, but these are not reproduced here.

Summary tables are given in columns A-K and rows 139-201 (Table 13.6). This concerns all straightforward accounting, which can be done according to need.

8. Concluding Comments

The spreadsheet approach described in this paper has been successful in providing a transparent analytical framework for the assessment of agricultural research priorities in the CGIAR, particularly with respect to priorities by region, agroecological zone and commodity. The advantages of the approach are many. It is fully transparent; the zerosum game involved clearly illustrates trade-offs between alternative choices; it allows both
sequential and simultaneous use of modifiers; it demonstrates the sensitivity of results to changes in weights used for the baseline and the modifiers; it allows multiple decisionmaking variables to be taken into account; and the selection of baseline and modifier variables is separate from the process of establishing weights. Furthermore, the approach allows for linking the process of priority setting with that of resource allocation (TAC/CGIAR, 1992).

The approach is demand driven and places primary emphasis on the agroecological zone, regionally confined as the unit of analysis. This highlights the two major areas for further improvement of the approach. The process of priority setting also requires a supply dimension, as there is a need to have information on the rate of substitution with different research portfolios in the achievement of alternative goals. This would require estimates on research outputs as a function of inputs. To obtain reliable information in this regard, substantial inputs will be required by the scientific community based on sound judgement and experiences gained. This supply consideration will receive careful attention in the future.

Furthermore, many data, particularly those of a socioeconomic nature, are only available on the basis of political boundaries and cannot be easily reconciled with agroecological boundaries. The data set used in the approach requires regular updating and careful scrutiny and will be improved over time.

[^0]
REFERENCES

FAO, 1978-81. Reports of the Agroecological Zones Project. World Soil Resources Report No. 48. FAO, Rome.

Forsythe, W.E., 1956. Smithsonian Physical Tables. Smithsonian Institution, 1956.
Kirschke, D., 1988. Prioritäten in der Agrarforschung. Das Beispiel der internationalen Agrarforschungsinstitute. Agrarwirtschaft.

Scobie, G.M., 1984. Investment in Agricultural Research: Some Economic Principles. Working Paper, CIMMYT, Mexico.

TAC/CGIAR, 1987. The Use of Quantitative Models for Setting Priorities in Resource Allocation to Agricultural Research. TAC Secretariat, FAO, Rome.

TAC/CGIAR, 1988. TAC's Approach to CGIAR Priority Assessment. TAC Secretariat, FAO, Rome.

TAC/CGIAR, 1992. A Review of CGIAR Priorities and Strategies. Parts I and II.
7. TAC-Secretariat, FAO, Rome.

Table 1: Selected socioeconomic indicators by region

Indicator	AFRS	Asia	LAC	WANA	Absolute Number Million
Population (\% of LDC total)	12.5	68.4	11.2	7.9	4005
Number of poor (\% of LDC total)	16.2	72.1	6.3	5.4	1110
Share of urban population :,	28	25	69	65	1340
Calorie intake/caput (1986/88)	2030	2600	2730	2960	
Income/caput (US\$)	294	448	1847	1544	
Arable land (\%)	18.6	53.2	18.6	9.6	868.7 m.ha
Irrigated land (\%)	3.0	78.2	8.1	10.7	173.7 m.ha
Demand in 1990 for food crops (million tGE)	115	736	133	104	1088
Demand in 2010 for food crops (million tGE)	224	1074	209	185	1692
Production of cash crops (million tGE)	72	237	118	22	450
Production of food crops (million tGE)	104	733	- 142	$\cdots 65$	1044
Production of food and cash crops (million tGE)	176	970	260	87	1494
Use of fertilizer (kg/ha)	7.2	82.8	35.1	49.1	
Food self-sufficiency ratio	90	100	107	63	.
Agr. GDP/agr. Labourer (USS)	413	341	2116	1196	
Agr. GPD/total GDP (x)	34	24	10	16	
Agr. Land-labour ratio (ha/worker)	4.7	1.0	18.8	7.0	
Deforestation (1980-90, \% p.a.)	1.7	0.9	1.4	1.0	16.8 m.ha
Total wooded area (1987/89, m.ha) (closed + open + forest fallow)	668	489	961	59	2177

$G E=$ Grain equivalent
Source: FAO and World Bank data files.

Table 2: Land area, population, food demand, arable land and production by regional agro-ecological zone

RAEZ	$\begin{gathered} \text { Land } \\ \text { Agea } \\ \left(10^{8} \mathrm{ha}\right) \end{gathered}$	$\begin{gathered} \text { Population } \\ 1990 \\ \left(10^{\circ}\right) \end{gathered}$	$\begin{gathered} \text { Population } \\ 2010 \\ \left(10^{\circ}\right) \end{gathered}$	Population Growth (\%)	Food Demand 1890 ($10^{\circ} \mathrm{tGE}$)	$\begin{aligned} & \text { Food } \\ & \text { Demand } \\ & 2010 \\ & \left(100^{\prime} G E\right) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Production } \\ & \text { Food 1990 } \\ & \left(10^{6} \mathrm{tGE}\right)(\mathrm{Bi}) \end{aligned}$	Production Cash 1990 (10^{6} tGE)	Rainfed Arable ($10^{\circ} \mathrm{ha}$)	Irrigated Arable ($10^{\circ} \mathrm{ha}$)	$\begin{gathered} \text { Total } \\ \text { Arable } \\ \left(10^{6} \mathrm{ha}\right) \end{gathered}$
SSA	2191.2	501.1	922.3	3.10	115.2	223.9	104.2	72.3	156.5	5.22	161.8
1	1245.7	166.6	301.3	3.01	37.9	72.6	33.3	8.7	60.3	3.69	64.0
2	348.4	106.3	197.0	3.13	24.6	48.5	22.7	13.2	43.3	0.43	43.8
3	502.1	152.3	282.4	3.14	36.1	71.9	33.4	35.7	36.8	0.44	37.3
4	95.0	75.9	141.6	3.17	16.6	30.9	14.8	14.7	16.1	0.66	16.7
HANA	1253.1	316.0	510.1	2.42	103.8	185.0	65.2	22.4	64.3	18.66	83.0
1	49.1	5.5	9.8	2.93	1.5	3.3	0.3	0.1	0.1	0.10	0.2
4	33.3	8.0	15.5	3.36	2.0	4.3	0.9	0.2	1.1	0.25	1.4
9	1170.7	302.5	484.8	2.39	100.3	177.4	64.0	22.0	63.1	18.31	81.4
Asia	2035.0	2739.7	3678.2	1.48	735.8	1073.6	732.6	236.7	326.8	135.75	462.5
1	149.2	466.2	666.2	1.80	115.4	167.7	113.0	14.5	63.8	22.15	85.9
2	184.0	228.9	319.0	1.67	59.7	89.2	69.4	25.9	32.8	7.70	40.5
3	385.3	474.5	677.2	1.79	123.5	204.2	124.6	58.3	30.5	14.50	45.0
5	178.4	456.6	645.2	1.74	120.7	190.9	117.9	65.1	63.0	43.02	106.0
6	53.7	212.9	269.8	1.19	61.5	86.3	54.2	36.9	22.4	10.14	32.5
7	148.8	485.9	587.3	0.95	138.1	179.7	138.1	31.4	55:6	22.77	78.4
8	935.6	414.7	513.5	1.07	116.9	155.6	115.6	4.8	58.7	15.47	74.2
LAC	2038.3	447.7	630.1	1.72	133.4	209.4	141.8	118.7	147.5	14.07	161.4
1	190.8	37.7	51.3	1.55	10.9	16.4	11.8	4.2	9.2	1.76	10.9
2	312.4	70.3	100.0	1.78	20.8	33.3	21.1	32.3	24.0	2.16	26.1
3	743.9	87.3	123.9	1.77	25.1	39.7	23.4	27.2	20.0	1.80	21.8
4	259.5	130.2	191.1	1.94	38.0	62.1	33.1	28.3	13.4	2.02	15.4
5	103.2	13.5 .	18.9	1.70	4.6	7.2	4.4	1.7	5.5	2.59	8.1
6	16.6	3.8	4.7	1.07	1.3	1.7	3.0	1.0	6.6	0.47	7.1
7	108.7	62.5	87.0	1.67	18.8	30.0	20.5	21.5	32.6	1.14	33.7
8	149.6	27.8	34.3	1.06	9.5	12.6	20.6	2.1	32.1	0.10	32.2
9	153.6	14.6	18.9	1.30	4.4	6.4	4.0	0.3	4.1	2.03	6.1
Overall	7517.6	3996.5	5740.7	1.82	1088.2	1691.9	1043.8	450.1	695.1	173.70	868.7
- 1	1634.8	676.0	1028.6	2.12	165.7	260.0	158.4	27.5	133.4	27.70	161.0
2	844.8	405.5	616.0	2.11	105.1	171.0	113.2	71.3	100.1	10.29	110.4
3	1631.3	714.1	959.6	2.15	159.6	276.1	157.9	121.2	67.3	14.94	82.3
4	387.8	206.1	332.7	2.42	54.6	93.0	48.0	43.2	29.5	2.68	32.1
5	281.6	470.1	664.1	1.74	125.3	198.1	122.3	66.8	68.5	45.61	114.1
6	70.3	216.7	274.5	1.19	62.8	88.0	57.2	37.9	29.0	10.61	39.6
7	257.5	548.4	674.3	1.04	156.9	209.7	158.5	53.0	88.2	23.91	112.1
8	1085.2	442.5	547.8	1.07	126.4	168.2	136.1	6.9	90.8	15.57	106.4
9	1324.3	317.1	503.7	2.34	104.7	183.8	68.0	22.3	67.2	20.34	87.5

GE = Grain Equivalent
Source: FAO data files

Table 3: Gross value of production of major commodities in developing countries (US\$'million, 1987/89)

COMMODITY		TOTAL	COMMODITY
Rice	85998.6	Tomato	TOTAL
Milk	45156.9	Beans	5832.7
Wheat	31147.3	Coconut	5491.0
Beef \& Buffalo Meat	24140.7	Apple	5428.0
Pigmeat	23208.7	Rubber	5106.3
Maize	19720.7	Tea	5103.2
Orange	17176.8	Sorghum	4112.1
Sweet Potato	14037.2	Cocoa	4038.0
Potato	13790.0	Onion	3846.0
Cotton	13578.5	Palm 0i1	3666.6
Eggs	13447.4	Lemon \& Lime	3528.2
Coffee	13224.6	Millet	3339.9
Sugar	12968.5	Barley	3317.2
Tobacco	12434.4	Yam	3117.9
Groundnut	12419.2	Pineapple	2959.1
Grape	12326.2	Chickpea	2573.3
Soybean	12197.9	Broad Bean	2242.4
Banana \& Plantain	10334.6	Cabbage	2031.1
Cassava	9847.7	Cowpea	2027.1
Poultry Meat	9378.2	Lentil	1102.6
Sheep \& Goat Meat	8102.3	Pigeonpea	1066.4
		Jute	1054.7
		Sisal	864.0

Table 4.

Value of production	Number of poor	Tot. Useable land	Base- line	
Weight--->	0.334	0.333	0.333	1.000
RAEZ		0		
AFRS 1	26.91	52.81	131.45	70.35
AFRS 2	24.60	35.77	52.62	37.65
AFRS 3	26.69	42.72	88.74	52.69
AFRS 4	13.24	30.70	20.91	21.61
				0.00
WANA 9	93.41	54.00	75.06	74.18
				0.00
ASIA 1	63.35	147.89	23.31	78.17
ASIA 2	44.68	58.27	21.52	41.49
ASIA 3	103.17	110.81	64.04	92.68
ASIA 5	125.44	142.70	32.52	100.24
ASIA 6	66.42	35.08	14.89	38.82
ASIA 7	132.59	112.05	40.31	95.02
ASIA 8	54.04	114.21	82.72	83.63
				0.00
LAC 1	16.57	5.19	27.68	16.48
LAC 2	44.75	9.13	77.77	43.88
LAC 3	41.03	12.39	107.11	53.50
LAC 4	28.92	20.28	42.11	30.44
LAC 5	11.07	1.84	12.16	8.36
LAC 6	6.38	0.48	6.43	4.43
LAC 7	44.22	8.15	36.03	29.48
LAC 8	25.96	3.37	32.78	20.71
LAC 9	6.56	2.17	9.83	6.19

Table 5.

A: with complement taken

R	DESCRIPTION	OPERATION	$\begin{aligned} & \text { AFR } \\ & \text { SS } \end{aligned}$	WANA	ASIA	LAC	TOTAL
	base-line rel. priority	input	182.30	74.18	530.06	213.47	1000.00
2	yield gap	input	78.85	72.00	60.29	76.39	
3	standarizes max. at 1	row2/max.value row2	1.00	0.91	0.76	0.97	
	takes complement,	1- row3	0.00	0.09	0.24	0.03	
5	applies weight of 0.75	0.75* row4	0.00	0.07	0.18	0.02	-
6	gross change	row1* row5	0.00	4.83	93.56	5.00	103.39
7	base-line reduction	row1* total row5/1000	18.85	7.67	54.80	22.07	103.39
8	net increase base-line	row6-row7	-18.85	-2.84	38.75	-17.07	0.00
9	modified rel. priority	row1+row8	163.45	71.34	568.81	196.40	1000.00

B: without complement taken

	ASIA	1	2	3	5	6	7	8
1. Yield gap or scope for growth	0.60	0.45	0.46	0.60	0.64	0.62	0.66	0.64
2. Malnutrition (X population malnourished)	22					-		
3. GDP/Caput (US Dollars)	448	298	424	490	304	1043	504	368
4. Production growth needed to meet demand (\% p.a.)	1.45	1.71	1.27	1.72	1.53	1.15	1.08	1.40
5. Deforestation ('000 ha)	2500							
6. Soil degradation hazard (\% rainfed cropland)	35.6	29.2	31.1	63.0	17.9	17.9	46.0	46.2
7. Capacity of NARS (no. of scientists)	54558	4436	2630	6095	9884	4772	14416	12325
8. Size of countries (no. of countries)		2	4	17	3	4	2	7
9. Food import gap by 2000 (MMT)	2.55							
10. Wooded area/caput (ha)	0.18	0.07	0.26	0.47	0.05	0.07	0.04	0.30

	LAC	1	2	3	4	5	6	7	8	9
1. Yield gap or scope for growth	0.79	0.61	0.84	0.77	0.53	0.84	0.90	0.82	0.86	0.82
2. Malnutrition (\% population malnourished)	14									
3. GDP/Caput (US Dollars)	1847	1887	2061	1758	1504	2029	2458	2109	2422	1750
4. Production growth needed to meet demand (\% p.a.)	1.17	1.41	0.99	1.15	1.54	1.71	$\because 0.44$	1.06	0.60	1.93
5. Deforestation ('000 ha)	7600									
6. Soil degradation hazard (X rainfed cropland)	11.4	12.0	17.1	26.0	10.4	9.1	12.1	4.9	5.0	7.3
7. Capacity of NARS (no. of scientists)	8861	636	1664	1702	1367	392	169	1831	2813	289
8. Size of countries (no. of countries)		9	14	21	9	2	1	3	2	2
9. Food import gap by 2000 (MMT)	6.3									
10. Wooded area/caput (ha)	2.15	2.62	2.48	5.10	0.77	1.68	0.93	0.99	1.04	1.76

Table 7.

	WEIGRT	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5	0.5
	DIRECTION	-1	1	, .1	1	1	. 1	1	. 1	1
GROSS REDISTRIIGUTION		125	190	334	255	262	248	279	359	417
BASE-LINE RELATIVE PRIORITY	NAME MODIFIER	YIELD GAP	MAL- NUTRITION	GDP/ CAPUT	URGENCY	$\begin{aligned} & \text { DE } \\ & \text { FOREST- } \\ & \text { ATION } \end{aligned}$	CAPACITY OF NARS	SOIL DEGRADATION	AV. SIZE COUNTRY IN RAEZ	FOOD IMPORT GAP
70.3	AFRS 1	-1.8	13.37	7.5	13.0	18.5	11.1	-9.5	7.9	6.0
37.7	AFRS2	-4.3	7.15	4.3	3.6	9.9	5.7	-3.8	4.6	3.2
52.7	AFRS3	-4.8	10.01	4.7	1.0	13.8	9.3	0.4	6.7	4.5
21.6	AFRS4	-1.1	4.11	2.8	0.2	5.7	3.1	-2.9	2.3	1.8
74.2	WANA9	-1.9	-13.46	-11.0	18.9	-13.5	-7.1	-4.5	8.0	30.9
78.2	AStA1	9.8	0.34	8.3	0.1	-13.9	5.0	0.9	-16.1	-5.6
41.5	ASIA2	5.0	0.18	3.3	-2.6	-6.9	1.8	1.1	2.4	-3.0
92.7	ASIA3	3.8	0.40	6.2	0.2	-15.5	3.3	25.9	9.8	-6.6
100.2	ASIA5	1.9	0.43	10.5	-2.5	-16.8	-7.3	-7.9	--18.8	-7.2
38.8	ASIA6	1.2	0.17	-1.8	-3.1	-6.5	-5.9	-3.0	4.2	-2.8
95.0	ASIA7	0.8	0.41	6.0	-8.5	-15.9	-23.5	13.7	-34.1	-6.8
83.6	ASIAB	1.6	0.36	7.6	-3.6	-14.0	-19.5	12.2	1.0	-6.0
16.5	LAC1	0.6	-1.81	-3.6	-0.7	4.2	2.1	-2.1	2.2	-0.7
43.9	LAC2	-4.0	-4.83	-11.1	-4.5	11.2	6.3	-3.7	5.7	-1.7
53.5	LAC3	-2.8	-5.88	-10.2	-4.3	13.6	7.9	-0.8	7.2	-2.1
30.4	LAC4	2.4	-3.35	-4.3	-0.7	7.7	1.8	-4.2	3.4	-1.2
8.4	LAC5	-0.8	-0.92	-2.1	0.0	2.1	0.8	-1.2	0.9	-0.3
4.4	LAC6	-0.6	-0.49	-1.5	-0.8	1.1	0.6	-0.6	0.4	-0.2
$29: 5$	LAC7	-2.4	-3.24	-7.7	-2.7	7.5	1.4	-5.4	1.4	-1.2
20.7	LAC8	-2.1	-2.28	-6.8	-3.3	5.3	2.6	-3.7	0.2	-0.8
6.2	LACS	-0.5	-0.68	.1.2	0.2	1.6	0.6	-1.0	0.8	-0.2
1000.0	SUM	0.0	0.0	0,0	0.0	0.0	0.0	0.0	0.0	0.0
182.3	AFRICA SS	-12.0	34.6	19.3	17.8	47.8	29.3	-15.8	21.4	15.5
74.2	WANA	-1.9	-13.5	-11.0	18.9	-13.5	-7.1	-4.5	8.0	30.9
530.1	ASIA	24.1	2.3	40.1	-19.9	-88.7	-46.2	42.9	-51.6	-38.0
213.5	LAC	-10.2	-23.5	-48.4	-16.8	54.3	24.0	-22.6	22.2	-8.5
165.0	AEZ 1	8.6	11.9	12.2	12.4	9.6	18.1	-10.7	-6.0	-0.3
123.0	AEZ2	-3.4	2.5	-3.5	-3.4	14.1	13.8	-6.4	12.7	-1.5
198.9	AEZ3	-3.8	4.5	0.6	-3.0	11.9	20.6	25.6	23.7	-4.3
52.0	AEZ4	1.3	0.8	-1.5	-0.5	13.4	4.9	-7.1	5.7	0.6
108.6	AEZ5	1.2	-0.5	8.4	-2.5	-14.6	-6.4	-9.1	-17.9	-7.5
43.3	AEZ6	0.6	-0.3	-3.3	-3.9	-5.4	-5.4	-3.6	4.6	-3.0
124.5	AEL7	-1.6	-2.8	-1.7	-11.2	-8.4	-22.2	8.4	-32.7	-8.0
104.3	AEZ8	-0.5	-1.9	0.9	-6.9	-8.7	-17.0	8.5	1.1	-6.8
80.4	AEZ9	-2.4	-14.1	-12.1	19.1	-11.9	-6.5	-5.5	8.8	30.7

Table 8.
5

Table 9.

VALUE OF PROD.(VOP)	,	
COTMMODIIES	VOP	$\begin{gathered} \text { ADJUS } \\ \text { TED } \\ \hline \end{gathered}$
AICE	17.8	17.8
WHEAT	6.4	6.4
MAIZE	4.1	4.1
BARLEY	0.6	0.6
SORGHUM	0.8	0.8
MILLET	0.7	0.7
CASSAVA	2.0	2.0
POTATO	2.8	2.8
SWEET POTATO	2.9	2.9
YAM	0.6	0.6
BANANA \& PLANTAIN	2.1	2.1
CHICK PEA	0.0	0.5
COW PEA	0.2	0.2
PIGEON PEA	0.2	0.2
BROAD BEAN	0.4	0.4
LENTIL	0.2	0.2
BEANS	1.1	1.1
SOYBEAN	2.5	2.5
GROUNDNUT	2.6	2.6
COCONUT	1.1	1.1
TOMATO	1.2	1.2
ONION	0.8	0.8
CABBAGE	0.4	0.4
ORANGE	3.5	3.5
LEMON \& LIME	0.7	0.7
PINEAPPLE	0.5	0.5
GRAPE	2.5	2.5
APPLE	1.1	1.1
SUGAR	2.7	2.7
COFFEE	2.7	2.7
TEA	0.8	0.8
COCOA	0.8	0.8
TOBACCO	2.6	2.6
RUBBER	1.1	1.1
COTTON	2.8	2.8
JUTE	0.2	0.2
HEMP	0.0	0.0
SISAL	0.0	0.0
PALM OIL	0.7	0.7
BEEF \& BUFFALO MEAT	5.0	5.0
SHEEP \& GOAT MEAT	1.7	1.7
PIGMEAT	4.8	4.8
POULTRY MEAT	1.9	1.9
MILK	8.9	8.9
EGGS	2.8	2.8
SUM	100.0	100.0
GRAIN CROPS	30.4	30.4
STARCHY CROPS	10.5	10.5
LEGUMENOUS CROPS	7.8	7.8
VEGETABLES AND FRUITS	10.7	10.7
OTHER CROPS(MAINLY COMMERCIAL)	15.5	15.5
L:LIVESTOCK	25.0	25.0

AFRICA	WANA	ASA	AT.AM.	SUMM
1.8	1.1	93.0	4.2	100.0
0.8	19.0	70.0	10.2	100.0
10.3	4.0	57.5	28.2	100.0
4.7	65.9	23.0	6.4	100.0
32.4	2.7	40.3	24.6	100.0
41.3	0.8	57.6	0.3	100.0
45.0	0.0	34.6	20.4	100.0
3.1	15.2	65.1	16.5	100.0
5.0	0.1	93.1	1.9	100.0
96.6	0.0	0.8	2.6	100.0
34.5	0.8	29.2	35.6	100.0
2.7	14.5	80.3	2.5	100.0
95.5	0.4	1.9	2.2	100.0
6.1	0.0	92.4	1.5	100.0
8.9	22.5	64.0	4.5	100.0
1.2	47.9	47.8	3.1	100.0
23.9	7.8	20.2	48.1	100.0
0.5	0.9	33.3	65.3	100.0
21.8	0.9	73.5	3.9	100.0
4.9	0.0	87.9	7.1	100.0
4.7	49.5	23.0	22.8	100.0
2.8	23.4	58.9	14.9	100.0
0.7	9.0	85.1	5.2	100.0
1.6	15.3	20.7	62.3	100.0
2.8	29.3	20.6	47.2	100.0
11.1	0.0	63.7	25.2	100.0
0.2	53.7	9.1	37.1	100.0
0.1	29.5	50.7	19.7	10000
6.9	6.5	40.1	46.5	100.0
20.4	0.1	17.0	62.5	100.0
12.3	8.7	76.6	2.4	100.0
57.7	0.0	14.6	27.6	100.0
5.8	6.1	73.4	14.8	100.0
6.1	0.0	92.8	1.1	100.0
8.9	11.4	65.1	14.7	100.0
0.1	0.2	99.0	0.7	100.0
0.0	3.9	93.1	2.9	100.0
24.5	0.4	4.2	70.9	100.0
16.7	0.0	77.7	5.6	100.0
13.0	8.6	21.3	57.2	100.0
17.9	29.8	44.0	8.3	100.0
1.2	0.1	87.7	10.9	100.0
6.5	14.0	43.7	35.8	100.0
8.5	11.1	52.2	28.3	100.0
4.3	11.6	61.5	22.5	100.0
9.1	9.3	59.0	22.5	100.0

WEIGHTED 0.5 AND BASE-LINE PRIORITY		
COMMMODTIES :	VOP	$\begin{gathered} \text { ADUUS } \\ \text { TED } \end{gathered}$
RICE	17.8	13.2
WHEAT	6.4	4.0
MAIZE	4.1	4.2
BARLEY	0.6	0.6
SORGHUM	0.8	1.5
MILLET	0.7	1.5
CASSAVA	2.0	4.5
POTATO	2.8	2.1
SWEET POTATO	2.9	1.4
YAM	0.6	1.9
BANANA \& PLANTAIN	2.1	3.6
CHICK PEA	0.5	0.4
COW PEA	0.2	0.9
PIGEON PEA	0.2	0.2
BROAD BEAN	0.4	0.4
LENTIL	0.2	0.2
BEANS	1.1	1.6
SOYBEAN	2.5	1.5
GROUNDNUT	2.6	3.7
COCONUT	1.1	1.4
TQMATO	1.2	1.1
ONION.	0.8	0.7
CABBAGE	0.4	0.3
ORANGE	3.5	2.9
LEMON \& LIME	0.7	0.6
PINEAPPLE	0.5	0.7
GRAPE	2.5	1.9
APPLE	1.1	0.7
SUGAR	2.7	2.9
COFFEE	2.7	3.9
TEA	0.8	0.9
COCOA	0.8	2.0
TOBACCO	2.6	1.8
RUBBER	1.1	1.3
COTTON	2.8	2.6
JUTE	0.2	0.2
HEMP	0.0	0.0
SISAL	0.0	0.1
PALM OIL	0.7	1.1
BEEF \& BUFFALO MEAT	5.0	5.9
SHEEP \& GOAT MEAT	1.7	2.3
PIGMEAT	4.8	3.2
POULTRY MEAT	1.9	2.0
MILK	8.9	9.7
EGGS	2.8	2.4
SUM	100.0	100.0
GRAIN CROPS	30.4	25.0
STARCHY CROPS	10.5	13.6
LEGUMENOUS CROPS	7.8	8.9
VEGETABLES AND FRUITS	10.7	8.9
OTHER CROPS(MAINLY COMMERCIAL)	15.5	18.1
:LIVESTOCK	25.0	25.5

AFRICA	WANA	ASIA AT.AM.	SUM	
9.0	1.2	84.8	5.0	100.0
4.6	26.4	60.1	8.9	100.0
36.6	3.3	38.7	21.4	100.0
14.9	62.6	17.5	5.0	100.0
72.8	1.3	15.3	10.6	100.0
80.8	0.3	18.8	0.1	100.0
74.8	0.0	16.2	9.0	100.0
13.0	17.7	51.4	17.8	100.0
35.0	0.1	62.0	2.9	100.0
98.7	0.0	0.3	1.0	100.0
62.6	0.4	15.9	21.1	100.0
9.8	14.3	73.2	2.8	100.0
98.8	0.1	0.5	0.6	100.0
20.7	0.0	77.8	1.5	100.0
32.8	21.4	41.5	4.4	100.0
4.2	46.4	46.7	2.7	100.0
55.4	4.7	11.7	28.1	100.0
3.5	1.2	23.9	71.3	100.0
62.6	0.5	35.1	1.8	100.0
15.1	0.0	79.4	5.4	100.0
19.3	44.9	15.7	20.2	100.0
13.4	23.2	49.1	14.3	100.0
3.4	11.1	77.4	8.1	100.0
7.2	15.9	15.7	61.2	100.0
13.0	27.2	19.4	40.4	100.0
31.4	0.0	49.3	19.3	100.0
1.0	62.7	6.9	29.3	100.0
0.4	41.2	37.2	21.2	100.0
27.3	5.2	27.9	39.6	100.0
45.3	0.1	12.7	41.9	100.0
33.1	7.1	58.6	1.2	100.0
81.4	0.0	6.6	11.9	100.0
30.3	7.3	45.8	16.6	100.0
18.3	0.0	80.8	0.9	100.0
40.6	10.7	34.8	13.9	100.0
0.7	0.2	98.5	0.7	100.0
0.0	7.4	87.0	5.6	100.0
63.0	0.2	0.9	35.9	100.0
36.8	0.0	58.4	4.8	100.0
43.0	6.2	14.5	36.3	100.0
54.0	18.8	22.8	4.5	100.0
6.7	0.1	78.6	14.6	100.0
24.0	11.9	32.4	31.7	100.0
33.9	8.8	36.0	21.3	100.0
18.7	11.5	46.0	23.8	100.0
34.0	8.1	39.5	18.4	100.0

Table 11.1

Table 11.2

Table 11.3

PRIOR.XLS
S

Table 11.4

	A	B	C	D	E	F	G
20				1			
21		Value of production	Number of poor	Tot useable land			Baseline
23	Weight-->	0.334	0.333	0.333	0	0	=SUM(B23:F23)
24	RAEZ						
25	AFRS 1	26.912912461501	52806531100478	131.44815773974	0	0	= $8 \$ 23^{*} \mathrm{~B} 25+\mathrm{C} \$ 23^{\circ} \mathrm{C} 25+\mathrm{D}$ \$
26	AFRS 2	24.595789232499	35.771532874705	52.623612305888	0	0	= $\mathrm{B} \$ 23^{*} \mathrm{~B} 26+\mathrm{C} \$ 23^{\circ} \mathrm{C} 26+\mathrm{D}$ \$
47	LAC 8	25.961507469975	3.3688301816073	32.780057655993	0	0	= $\mathrm{B} \$ 23^{\circ} \mathrm{B} 47+\mathrm{C} \$ 23^{\circ} \mathrm{C} 47+\mathrm{D}$
48	LAC 9	6.5621011741758	$\underline{2.1657684481601 ~}$	9.8324125509670	0	0	= $\mathrm{B} \$ 23^{\circ} \mathrm{B} 48+\mathrm{C} \$ 23^{\circ} \mathrm{C} 48+\mathrm{D}$
49		=SUM (B25:B48)	=SUM (C25:C48)	=SUM(D25:D48)	=SUM(E25:E48)	=SUM(F25:F48)	=SUM(G25:G48)

Table 12.2

	A	B	C	D	E	F	G	H
63			$\begin{aligned} & W= \\ & S= \end{aligned}$	0.5-1				
64								
65								
65		base-line	yield gap	modifier	gross redis-	base-line	net increase	modified
67		priority		stand. at	tribution=	reduction	of base-line	base-line
68		BLP	\%	(1-mod.rel.)	=SUM(E69:E92)	<-1.--	priority	priority
69	aA25	=G25	72	-1-C69/C\$95:	=\$B69*D69*D\$63	=\$B69*E\$68/1000	=(F69-E69)*D\$64	= B69+G69
70	$=A 26$	=G26	88	=1-C70/C\$95	=\$B70*D70*D\$63	- \$ $870^{\circ} \mathrm{E} \$ 68 / 1000$	=(F70-E70) ${ }^{\text {- } \$ 64}$	= $870+\mathrm{G70}$
91	$=A 47$	=G47	86	=1-C91/C $\$ 95$	=\$891*D91*D\$63	-\$891*E\$68/1000	=(F91-E91) ${ }^{\text {- } \$ 64}$	-891+G91
92	$=A 48$	=G48	82	-1-C92/C $\$ 95$.	$=\$ 892 \cdot \mathrm{D} 92^{*}$ D $\$ 63$	= $\$ 892^{\prime} \mathrm{E} \$ 68 / 1000$	$\underline{=(F 92-E 92)}{ }^{\text {- }}$ (\$64	= $892+\mathrm{G92}$
93								$=\mathrm{IF}$ (MIN(H69:H92)<0.*NEC
94		$=1 \mathrm{~F}$ (OR(B95<99	- max $=$					= IF/OR(H95<999.99.H95>
95	Totals:	=SUM(B69:B92)	$=$ MAX(C69:C92)			=SUM(F69:F92)	=SUM(G69:G92)	$=$ SUM (H69:H92)

Table 12.3

Table 13.1

	A	B	C	D	E	F	G	H		J	K	L	M	N	0	P	0	R	S	T	U	v	W	
	FORMATTING OF FINAL RELATIVE PRIORITY: COPY FROM PRIOR.XLS WITH "PASTE. SPECIAL" USING "VALUES" AND "TRANSPOSE". remove then blancs between raez's for region. then copy to row 8.																							
2																								
3	WEIghted, table 11	$\begin{array}{r} 81.94 \\ \text { AFRS } 10.51 \\ \text { AFRS } \end{array}$		$\begin{gathered} 57.87 \\ \text { AFRS3 } \end{gathered}$	$\begin{gathered} 24.57 \\ \text { AFRS } 4 W \end{gathered}$	$\begin{array}{r} 58.86 \\ \text { NANA9 } \end{array}$	$\begin{aligned} & 88.26 \\ & \text { ASIAT } \end{aligned}$	$\begin{array}{r} 46.62 \\ \text { ASIA2 } \end{array}$	$\begin{array}{r} 98.93 \\ \text { ASIA3 } \end{array}$	$\begin{aligned} & 102.61 \\ & \text { ASIA5 } \end{aligned}$	$\begin{array}{r} 40.17 \\ \text { ASIAB } \end{array}$	$\begin{array}{r} 96.21 \\ \text { ASIA7 } \end{array}$	$\begin{array}{r} 85.80 \\ \text { ASIA8 } \end{array}$	$\begin{aligned} & 15.26 \\ & L A C 1 \end{aligned}$	$\begin{array}{r} 35.03 \\ \text { LAC2 } \end{array}$	$\begin{aligned} & 44.78 \\ & \text { LAC3 } \end{aligned}$			$\begin{array}{r} 3.39 \\ \text { LAC6 } \end{array}$	$\begin{aligned} & 23.8 B \\ & \text { LAC7 } \end{aligned}$	$\begin{aligned} & 16.30 \\ & \text { LAC8 } \end{aligned}$	5.01		
4				$\begin{aligned} & 29.54 \\ & \text { LAC4 } \end{aligned}$													$\begin{array}{r} 6.67 \\ \text { LAC5 } \end{array}$							
5				LACS																				
6																						SUM		
7	VALUE OF PROD.(VOP)	26.9	24.6		26.7	13.2	93.4	63.3	44.7	103.2	125.4	66.4	132.6	54.0	18.6	44.7	41.0	28.9	11.1	6.4	44.2	26.0	6.8	1000.0
8	WEIGHTED, TABLE 11	81.94	40.51	57.87	24.57	58.86	88.28	46.62	96.93	102.61	40.17	96.21	85.60	15.26	35.03	44.78	29.54	6.67	3.39	23.86	16.30	5.01	1000.0	
9	WEIGHTEDNOP	3.04	1.65	2.17	1.86	0.63	1.39	1.04	0.94	0.82	0.60	0.73	1.58	0.92	0.78	1.09	1.02	0.60	0.53	0.54	0.63	0.76		

COMXIS

Table 13.4

Table 13.5

	AA	AB	AC	AD	AE	AF	AG	AH	AI	AJ	AK	
72	AFRICA WANA			HTED	FIORI	ESACROSSREGIONS						
74			ASIA	Lat.am.	SUM		AFRICA WANA		ASIA	LAT.AM.		
75												
76												
77	3408	581	72022	2983	78994	RICE	4	1	91	4	100	
78	566	3722	20584	2065	26936	WHEAT	2	14	76	8	100	
79	4559	496	11796	4338	21188	MAIZE	22	2	56	20	100	
80	276	1295	768	151	2489	barley	11	52	31	6	100	
81	3238	68	1645	787		SORGHUM	56	1	29	14	100	
82	3448	17	1945	6	5416	MILLET	64	0	36	0	100	
83	9754	0	3398	1753	14905	CASSAVA	65	0	23	12	100	
84	834	1325	8752	1857	12768	POTATO	7	10	69	15	100	
85	1469	5	9726	199	11399	SWEET POTATO	13	0	85	2	100	
86	5464	0	23	75			98	0	0	1	100	
87	6657	49	2751	3326	12783	banana \& Plantain	52	0	22	26	100	
88	120	205	1993	49		CHICK PEA	5	9	84	2	100	
89	2533	3	21	22	2580	COW PEA	98	0	1	1	100	
90	129	0	1108	14	1251	PIGEON PEA	10	0	89	1	100	
9	383	288	1342	77	2091	BROAD BEAN	18	14	64	4	100	
92	26	322	572	26	945	LENTIL	3	34	61	3	100	
93	2657	270	1197	2107	6231	BEANS	43	4	19	34	100	
94	154	66	3208	5625	9053	SOYbEAN	2	1	35	62	100	
95	6720	67	8823	332	15942	GROUNDNUT	42	0	55	2	100	
96	611	0	4827	329	5767	COCONUT	11	0	84	6	100	
97	640	1818	1375	1073		tomato	13	37	28	22	100	
98	257	542	2236	443	3478	ONION	7	16	64	13	100	
99	30	115	1700	102		cabbage		6	87	5	100	
100	615	1657	3438	8384	14095	ORANGE	4	12	24	59	100	
101	242	617	770	1241		LEMON \& LIME	8	21	27	43	100	
102	620	0	1589	569	2778	PINEAPPLE	22	0	57	20	100	
103	57	4168	1069	3126		GRAPE	1	50	13	37	100	
1704	8	950	2242	735	3935	APPLE	0	24	57	19	100	
105	2271	532	5021	5052	12875	SUGAR	18	4	39	39	100	
1706	5239	8	2091	7281	14618	COFFEE	36	0	14	50	100	
107	921	225	3099	68		TEA	21	5	72	2	100	
1008	4708	0	529	998	6235	COCOA	76	0	8	16	100	
109	1624	476	7350	1418	10868	tobacco	15	4	68	13	100	
170	672	0	4447	49	5168	RUBBER	13	0	86	1	100	
171	3031	971	7416	1601	13020	COTTON	23	7	57	12	100	
${ }^{1712}$,	1	771	5		JUTE		0	99	1	100	
7173	0	1	${ }_{5}^{28}$	1		HEMP	0	3	94	3	100	
714	105	,		93		SISAL	51	0	3	46	100	
1715	1158		2558	206	3922	PALM OIL	30	0	65	5	100	
${ }^{116}$	7473	1302	5215	10655	24646	BEEF \& BUFFALO MEAT	30	5	21	43	100	
-177	3623	1519	3729	521	9392	SHEEP \& GOAT MEAT	39	16	40	6	100	
7189	633	17	20181	2160	22991	PIGMEAT	3	0	88	9	100	
(1989	1378	827	3995	2851	9051	POULTRY MEAT	15	9	44	32	100	
1720	9682	3020	24110	9796	46609	MILK	21	6	52	21	100	
(127	1331	986	8268	2631	13217	EGGS	10	7	63	20	100	
$\frac{1722}{173}$	0	0	0	0	0	0	0	0	0	0	0	
(123 ${ }^{124}$. 0	0	0	0	0	0	0	0	0		0	
1725												
$\frac{126}{127}$	99327	28531	269731	87181	484770		20	6	56	18	100	

Table 13.6

		D	E	F	G	H	11	J	K									
737	SUMMARYTABLE																	
1338	RELATIVE PRIORITIES FOR COMMODITIES DISTRIBUTION OF RELATIVE PRIORITIE ACCORONG OO VALUE OF PRODUCTICN (VOP) AND FOR COMMODIIISS ADUSTED WITH ACROSS REGIONS																	
$\frac{139}{} 140$																		
$11+1$																		
42 WEIGHTED. TABLE 11																		
744	COMMMODIIES	VOP	ADJUS:		[AFRICA	WANA	ASIA	AT.AM.	SUM									
T45																		
146		17.8	6.3		4.3	0.7	91.2	3.8	100.0									
147	$\begin{aligned} & \text { PRICE } \\ & \text { DWHEAT } \end{aligned}$	6.4	5.6		2.1	13.8	76.4	7.7	100.0									
148		4.1	4.4		21.5	2.3	55.7	20.5	100.0									
150	BARLEY	0.6	0.5		11.1	52.0	30.8	6.1	100.0									
	SORGHUM	0.8	1.2		56.4	1.2	28.7	13.7	100.0									
151		0.7	1.1		63.7	0.3	35.9	0.1	100.0									
	Cassava	2.0	3.1		65.4	0.0	22.8	11.8	100.0									
152	POTATO	2.8	2.6		6.5	10.4	68.6	14.5	100.0									
153	SWEET POTATO	2.9	2.4		12.9	0.0	85.3	1.7	100.0									
155	YAM	0.6	1.1		98.2	0.0	0.4	1.4	100.0									
	BANANA \& PLANTAIN	2.1	2.6		52.1	0.4	21.5	26.0	100.0									
156 157 15	CHICK PEA	0.5	0.5		5.1	8.7	84.2	2.1	100.0									
$\begin{aligned} & 157 \\ & \hline 150 \\ & \hline 106 \end{aligned}$	COW PEA	0.2	0.5		98.2	0.1	0.8	0.9	100.0									
$\begin{aligned} & 135 \\ & \hline 150 \\ & \hline 150 \end{aligned}$	PIGEON PEA	0.2	0.3		10.3	0.0	88.5	1.1	100.0									
	broad bean	0.4	0.4		18.3	13.8	64.2	3.7	100.0									
(160	LENTIL	0.2	0.2		2.7	34.1	60.5	2.7	100.0									
$\frac{161}{162}$	BEANS	1.1	1.3		42.6	4.3	19.2	33.8	100.0									
$\frac{162}{163}$	SOYBEAN	2.5	1.9		1.7	0.7	35.4	62.1	100.0									
	GROUNDNUT	2.6	3.3		42.2	0.4	55.3	2.1	100.0									
${ }^{164} 16$	COCONUT	1.1	1.2		10.6	0.0	83.7	5.7	100.0									
$\frac{165}{166}$	tomato	1.2	1.0		13.0	37.1	28.0	21.9	100.0									
$\begin{array}{\|l\|} \hline 166 \\ 167 \\ \hline \end{array}$	ONION	0.8	0.7		7.4	15.6	64.3	12.7	100.0									
1167	CABBAGE	0.4	0.4		1.5	5.9	87.3	5.2	100.0									
${ }^{168} 16$	ORANGE	3.5	2.9		4.4	11.8	24.4	59.5	100.0									
${ }^{170}$	LEMON \& LIME	0.7	0.6		8.4	21.5	26.8	43.2	100.0									
	PINEAPPLE	0.5	0.6		22.3	0.0	57.2	20.5	100.0									
$\frac{172}{173}$	GRAPE	2.5	1.7		0.7	49.5	12.7	37.1	100.0									
	APPLE	1.1	0.8		0.2	24.1	57.0	18.7	100.0									
$\begin{array}{r}174 \\ \hline 175 \\ \hline\end{array}$	SUGAR	2.7	2.7		17.6	4.1	39.0	39.2	100.0									
	COFFEE	2.7	3.0		35.8	0.1	14.3	49.8	100.0									
1796	TEA	0.8	0.9		21.4	5.2	71.9	1.6	100.0									
	COCOA	0.8	1.3		75.5	0.0	8.5	16.0	100.0									
	tobacco	2.6	2.2		14.9	4.4	67.6	13.1	100.0									
$\begin{aligned} & 178 \\ & 179 \\ & \hline 108 \end{aligned}$	RUBBER	1.1	1.1		13.0	0.0	86.0	0.9	100.0									
	COTTON	2.8	2.7		23.3	7.5	57.0	12.3	100.0									
$\left[\begin{array}{lll} {[800} \\ \hline 87 \end{array}\right]$	JUTE	0.2	0.2		0.4	0.1	98.9	0.6	100.0									
182	HEMP	0.0	0.0		0.0	3.2	93.8	2.9	100.0									
${ }^{1783}{ }^{184}$	SISAL	0.0	0.0		51.5	0.2	2.5	45.8	100.0									
	PaLM OIL	0.7	0.8		29.5	0.0	65.2	5.3	100.									
${ }^{1856}$	SEEF \& BUFFALO MEAT	5.0	5.1		30.3	5.3	21.2	43.2	100.0									
186	SHEEP \& GOAT MEAT	1.7	1.9		38.6	16.2	39.7	5.5	100.0									
787	POULTRY MEAT	4.8 1.9	4.7 1.9		2.8 15.2	0.1 9.1	87.8.	9.4 31.5	100.0 100									
1889	MILK	8.9	9.6		20.8	6.5	51.7	21.0	100.0									
	EGGS	2.8	2.7		10.1	7.5	62.6	19.9	100.0									
193																		
194	SUM	100.0	100.0		20.5	5.9	55.6	18.0	100.0									
195	GRAIN CROPS																	
197	STARCHY CROPS	10.5	11.8															
798	LEGUMENOUS CROPS	7.8	8.3															
[99]	VEGETABLES AND FRUITS	10.7	8.8															
200	OTHER CROPS(MAINLY COMMERCIAL)	15.5	16.0															
	LLIVESTOCK	25.0	26.0															

Table 14.

PAIOR.XLS

[^0]: Finally, it is to be stressed that quantitative analysis is an aid to but should not be a substitute for informed qualitative analysis and decision making.

