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A Bayesian Belief Network to Infer Incentive Mechanisms  
to Reduce Antibiotic Use in Livestock Production 

 
Abstract 
 
Efficient policy intervention to reduce antibiotic use in livestock production requires knowledge about 
the rationale underlying antibiotic usage. Animal health status and management quality are considered 
the two most important factors that influence farmers’ decision-making concerning antibiotic use. 
Information on these two factors is therefore crucial in designing incentive mechanisms. In this paper, 
a Bayesian belief network (BBN) is built to represent the knowledge on how these factors can directly 
and indirectly determine antibiotic use and the possible impact on economic incentives. Since both 
factors are not directly observable (i.e. latent), they are  inferred from measurable variables (i.e. 
manifest variables) which are influenced by these factors. Using farm accounting data and registration 
data on antibiotic use and veterinary services in specialized finisher pig production farms, a 
confirmatory factor analysis was carried out to construct these factors. The BBN is then parameterized 
through regression analysis on the constructed factors and manifest variables. Using the BBN, possible 
incentive mechanisms through prices and management training are discussed.  
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1. Introduction 
   
The impact of antibiotic resistant bacteria, especially multi-resistant strains, on human health has 
become a major international concern (Salisbury, et al., 2002). Attention has focused on food-
producing animals as one of several potential sources of antibiotic-resistant bacteria (WHO, 1997). As 
a result, in 1999, the European Union banned the sub-therapeutic use of four widely applied antibiotics 
in animal feed that are similar to drugs used in human medicine. In recent years, however, the 
therapeutic (over)use of antibiotics in infectious diseases treatment is believed to be a significant 
factor for increasing resistance (Witte, 1998, Phillips, et al., 2004, Martin, 2006). There are serious 
indications that the majority of the treated animals is likely not sick, at least not clinically visible. The 
question arises as to whether therapeutic antibiotics use is really intended for disease treatment or 
more for improving growth and feed efficiency (McNamara and Miller, 2002).   
 
Although considerable uncertainty exists about the causal link between antibiotic use in livestock 
production and antibiotic resistance to human antibiotics, public health concern has made the 
reduction of antibiotic use in livestock production an urgent issue in public policy agenda. This is 
particularly the case in the Netherlands where antibiotics for human use is highly restricted. The 
intensive livestock sector is criticized to have used antibiotics excessively to achieve economic 
efficiency. To limit antibiotic resistance, the Dutch government aimed to reduce the use of antibiotics 
in livestock at least by 20% in 2011. Efficient policy intervention to reduce antibiotic use in livestock 
production requires knowledge regarding the rationale of antibiotic use, which can be used to design 
effective incentive mechanisms.  
 
The use of antibiotics in livestock production is a complex issue (Bywater, 2004, Bester and Essack, 
2010). Farmer’s antibiotic use results not only from veterinary considerations, but also from their 
economic implications. As such, antibiotic use is intricately linked to the status of animal health and 
the style of farm management, which are again influenced by the characteristics of the farm and the 
farmer. Given the natural variability in the biological processes of farm animals, the relations among 
these factors are inherently uncertain. These uncertainties need to be taken into account when 
designing policy intervention. Bayesian belief networks (BBNs) with their associated methods is a 
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powerful tool for dealing with uncertainty in decision making pertaining to human behavior (Jensen, 
2002).  
 
Bayesian networks have been successfully applied in a variety of disciplines, most notably in human 
medicine, and they are beginning to be more applied in ecological modeling (Borsuk, et al., 2004, 
Hammond, 2004), and microbial risk assessment in the food chain (Smid, et al., 2010). Recent 
research developments led to the creation of a number of integrated BBN models combining 
knowledge stemming from different disciplines. Such BBN models described in literature mainly 
relate to ecosystems and water management. For example, potential management strategies for salmon 
fisheries were evaluated by synthesizing the findings from the disparate biological and ecological 
stock assessment in combination with economic and sociological studies (Levontin, et al., 2010);  the 
model for analyzing catchment management (Kragt, et al., 2009); the model for assessing the 
management of (Sadoddin, et al., 2009); and the model combining analysis of (Farmani, et al., 2009). 
Such a multidisciplinary approach is also a prerequisite in assisting policy makers with preferred 
incentive based policy instruments aimed at the reduction of non-therapeutic antibiotic use in livestock 
production. 

 
This paper demonstrates the application of the BBN methodology to infer possible factors affecting 
antibiotic use in livestock production and how this knowledge can be used to design policy 
intervention to reduce antibiotic use. As an illustration, data from specialized fattening pig farms in the 
Dutch Farm Accountancy Data Network (FADN) were used to estimate parameters for the model. In 
Section 2, the FADN data and monitoring data on antibiotic use were first described to provide 
contextual information of this study. This is followed by the description of the key steps in building 
the BBN model. Section 3 then presents the resulting BBN model and illustrates how it can be used to 
infer the latent factors. Section 4 discusses the results and the implications for incentive design. 
Section 5 concludes the paper with an outlook on further research.  
 
2. Material and methods 

2. 1 Dutch FADN and monitoring data on antibiotic usage  

Due to its potential impact on public health, antibiotic usage in livestock production has been closely 
monitored and reported in the Netherlands  (MARAN, 2008). Since 1998, FIDIN, a federation of the 
Dutch veterinary pharmaceutical industry, annually reports antibiotic sales figures in the Netherlands 
(FIDIN, 2009). Besides monitoring of total sales data at the national level, detailed monitoring of 
antibiotic use is also carried out on a stratified sample of Dutch farms that supply data to the FADN of 
LEI, part Wageningen UR. The Dutch FADN contains a representative sample of around 1500 
agricultural and horticultural farms in the Netherlands (Vrolijk, et al., 2009). For livestock farms, the 
sampling details are shown in Table 1. The FADN database records economic data and technical 
performance indicators of the farms. Each year, a number of farms are replaced by other farms to 
ensure that the database of the Dutch FADN remains representative for Dutch livestock farming. 
Besides regular FADN information, detailed records have also been kept of the animal-medicine data 
and veterinary services. Containing veterinary, technical and economic information, these data offer 
insight not only into the exposure of farm animals to antibiotics but also into the underlying factors 
that could explain changes in antibiotic use.  
 
Based on the monitoring data on the FADN farms, tendencies of antibiotic use in the livestock farms 
are shown in Figure 1 for the key subsectors (MARAN, 2008). Figure 1shows strong variations in the 
levels and trends of antibiotic use in different sectors. For example, while antibiotic use declined in 
other intensive farms, it steadily increased in fattening pig farms. The variations call for sector-specific 
analysis to understand the underlying factors. As an illustration, fattening pig farms are used in this 
study to apply the BBN methodology.   
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Table 1 Number of animals and farms in the Dutch FADN (2004-2009) 

Variable  
name 

Type of 
holding  

 2004 2005 2006 2007 2008 2009 

Number of 
animals 

Sows/piglets  17467 16790 13642 19861 19079 20806 

 Fattening pigs  58617 58622 61503 128132 158210 159104 

 Broilers  801914 1061981 2047487 1930923 2563231 2530313 

 Veal calves  n.a.* n.a. n.a. 125125 131879 134446 

 Dairy cows  3929 2962 3099 3025 7273 7382 

Number of farms Sows/piglets  49 46 34 42 47 48 

 Fattening pigs  39 42 33 51 79 72 

 Broilers  15 29 29 29 29 28 

 Veal calves  n.a. n.a. n.a. 182 186 193 

 Dairy cows  45 36 37 36 82 83 

Total   148 150 125 336 432 424 

*n.a. =no data available 
 
 

Source: MARAN 2008 

Figure 1 Antibiotic use in Dutch livestock sectors in 2004-2008 (reference year 2007) 

 

2. 2  Developing the BBN  

A BBN is a graphical model that incorporates probabilistic relationships among variables of interest. 
The probabilities connected to the arrows are conditional probabilities that show how the state of a 
variable effects the probability distribution for the states of another variable. The strength of BBN 
manifests itself in the possibility of reasoning about results given certain observations according to 
Bayesian rules. BBN can answer request of the form “what if” with respect to specific variables. 
Applied in this way, BBN are powerful probabilistic inference machine (Lauría and Duchessi, 2006). 
Constructing a BBN typically involves three steps. The first step is the development of the graphical 
structure indicating the relevant variables and dependencies. This step provides the basis for 
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determining the degree of decomposition to be used in subsequent construction of the model. From a 
modeling perspective, this step requires developing a conceptual model to identify variables of interest 
and hypothesize their causal relationships. The conceptual model should provide insights into possible 
incentive mechanisms for farmers to reduce antibiotic use. The second step in constructing a BBN is 
the quantification of conditional relationships and the third step is building the graphical model which 
can visualize the quantitative relationships. These steps are explained below.  
 

2.2.1  Step 1: The conceptual model for the BBN  

The conceptual model is developed in consultation with experts from the veterinary science and 
agricultural economics. A schematic overview of the conceptual model  is shown in Figure 1. The 
conceptual model is built upon the understanding that farmers’ antibiotic use is not only an element of 
animal health management, but also conditioned by the general management strategy, which was 
chosen to maximize farming objectives. Since short-term profit maximization is often considered a 
rational behavioral assumption in modeling farmer’s decision making, profitability of the farm is 
considered the key incentive variable for policy intervention. Since neither animal health status nor 
management quality can be observed directly, they are treated as latent variables of which information 
can be inferred from manifest variables. Manifest variables are observable variables whose variations 
are influenced by the latent variables (Bartholomew and Knott, 1999).   
 

 

Figure 2 Conceptual model of the causal relationships among key variables 

 
The conceptual model describes the boundary of our study and possible causal relationships among the 
manifest variables and latent variables. Prices of output, feed and antibiotics are indicated as control 
variables because they can be controlled externally to generate profit incentives for the farmer. While 
highlighting the central role of the animal health status and management quality in shaping 
profitability of farming, the conceptual model also indicates these factors are influenced by the 
specific characteristics of animals, farm, farmer, and the institutional environment. In view of the 
heterogeneous nature of these characteristics, considerable variations can be expected from the levels 
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of animal health and management quality in different farms. Knowledge regarding the levels of these 
factors and how they can be inferred from the manifest variables is therefore essential for effective 
policy design.   
 
In the context of pig production, a number of technical and economic performance indicators are 
identified as manifest variables to construct the latent factors. Technical indicators include mortality 
and feed conversion ratio (FCR) of pigs and the use of antibiotics. In animal husbandry, feed 
conversion ratio (FCR), also known as feed conversion rate, or feed conversion efficiency (FCE), is a 
measure of an animal's efficiency in converting feed mass into increased body mass. Lower FCR 
indicates higher efficiency and lower feed costs. Economic indicators are variables reflecting capital 
structure, various operating costs and revenue-cost ratio. The conceptual model reveals the complex 
relationship between on farm antibiotic use and profitability due to the interdependencies among 
various variables. On the one hand, high antibiotic use can improve profitability by reducing animal 
mortality and feed conversion ratio. On the other hand, high antibiotic use can imply poor animal 
health which manifests itself in higher mortality and feed conversion ratio, resulting in low 
profitability. Theoretically, it is impossible to ascertain whether antibiotic use will lead to higher or 
lower profitability. The influence of antibiotic use on the profitability of livestock production is 
therefore an empirical issue which can be assessed using relevant data.   

2.2.2 Step 2: Quantification of conditional relationships 

Based on the conceptual model, data were retrieved and processed to obtain quantitative information 
on the relationships among key variables. In particular, we combine the FADN data collected in the 
period 2004-2009 with registration data on animal medication and veterinary services (DAR) in the 
same period.  DAR data are collected on a subset of the FADN-farms. The merged FADN-DAR 
dataset enables analysis on the economic impact of antibiotic use.  A number of variables  from the 
dataset and their descriptive statistics are described in Table 2.  
 

Table 2 Definition and descriptive statistics of the variables used in the BBN model (N=284) 

 

Variable 
name Description Unit Mean Std Min P50 Max 

        
NDD Number of daily dosages 

per average pig year 
dosage/day 
/animal year 

18.8  11.6  0.02  16.9  48.6  

NonabCost Costs of non-antibiotic 
health service and material 
per average animal 

€/animal/year 56.8  38.0  3.9  45.2  163.8  

FCR Feed conversion ratio (the 
mass of the feed eaten 
divided by the body mass 
gain, all over a specified 
period of time) 

Percentage 2.9  0.9  2.0  2.8  9.8  

Mortality Mortality of pigs (%) Percentage 2.8  1.0  0.8  2.7  5.1  

GenCost General costs per animal 
per year 

€/animal/year 219.0  84.3  101.2  198.8  415.0  

DepCost Depreciation costs per 
animal per year 

€/animal/year 365.0  153.9  61.3  343.6  653.6  

RCR Revenue to costs ratio (%) Percentage 87.7  13.9  62.3  89.4  122.2  

Solvency Solvency rate (%) Percentage 64.1  26.6  10.5  62.8  99.9  

 
Before quantifying the conditional relationships among the variables, a confirmatory factor analysis is 
first performed on the data to verify the existence of the two factors. Factor analysis is a statistical 
approach that is used to analyze interrelationships among a large number of variables and to explain 
these variables in terms of their common underlying dimensions (factors). In essence, the statistical 
approach is used to find a way of condensing the information contained in a number of original 
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variables into a smaller set of factors with a minimum loss of information. Factors with eigenvalue 
greater than one are retained for further analysis (Child, 1990). Rotated factor loadings are then used 
to construct the factors and select variables for the BBN based on the ranking. The conditional 
relationships among the factors and the manifest variables are then obtained through regression 
analysis.  
 

2.2.3 Building the BBN 

Besides the choice of variables, BBN requires the conditional probabilities among variables to be 
known. These are collected in the conditional probability table (CPT).  CPT’s are the most important 
BBN parameters that summarize all knowledge about the probabilistic relationships among variables. 
The word “conditional” refers to the use of prior knowledge which can change due to improved 
information. In a BBN model, prior knowledge refers to the probability distribution of independent 
variables which can be updated when new information (evidence) is available.  
 
The BBN methodology typically uses discrete states of the variables. Since the variables in the 
conceptual model are continuous, they must be discretized into levels of the variables. For this 
purpose, the statistical information of the variables is used to define relative levels of the variables in 
terms of “very low” to “very high”. For all the variables, we used the 15th, 35th, 55th, and 75th 
quantile to discretize variables into five levels and call these levels “very low”, “low”, “average”, 
“high” and “very high” respectively. The choice of the percentile is made to ensure equal distribution 
of the farms into different categories. The boundary values can differ in other populations of farms. 
 
The BBN allows information to flow in the opposite direction of the causality (Jensen, 1996).  The 
Bayesian network software GeNIe1 is used to visualize the model structure and the quantitative 
relationships among the model variables. Statistical information of the data is used as the default 
situation without policy intervention. As a versatile and user-friendly development environment for 
graphical decision-theoretic models, GeNIe has been widely acknowledged in Bayesian network 
modeling (Korb and Nicholson, 2004) . 
 
The BBN model can be used to infer the observable factors through the manifest variables. 
Information of the manifest variables  In Bayesian terminology, an evidence on a variable is a 
statement or a piece of information of the certainties of its states (Jensen, 1996). If the information 
gives the exact state of the variable, it is called a hard evidence, otherwise it is called soft.  
 
3. Results 

3.1 Factors explaining antibiotic use 

Confirming the theoretical expectation, the factor analysis on the technical and economic variables 
indicated two factors with eigenvalue greater than one. These two factors are then retained for further 
analysis. After the factor analysis, a Varimax rotation is performed to obtain insight into the nature of 
the factors. The rotated loadings of the variables on the factors are shown in Table 2.   
 
Based on the rotated factor loadings, factor 1 appears to be mainly explained by depreciation cost, 
solvency and the use of antibiotics. More specifically, high level of depreciation cost correlates 
positively with high level of factor 1. The opposite holds for solvency. This may imply that the factor 
1 can be strongly influenced by investment decisions that typically correlates with high depreciation 
and debt.  Antibiotic use positively correlates with both factor 1 and factor 2, but to a greater extent to 
factor 1 than to factor2. Feed conversion ratio and non-antibiotic veterinary costs contribute 
considerably to factor 1, but to a much lesser extent. Variations in Factor 2 seem to be primarily 
determined by the level of general costs and the return to cost ratio. Mortality and feed conversion 
ratio are both positively correlated with factor 2. Since depreciation costs and level of solvency depend 
to a large extent on managerial decisions, factor 1 can be loosely interpreted as an indicator for 
                                                 
1 GeNIe may be downloaded at no charge from http://genie.sis.pitt.edu/. 
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management quality. On the other hand, since mortality and revenue to cost ratio can be reasoned to 
be dependent on animal health status, Factor 2 can be interpreted as an indicator for animal health 
status. 
 

Table 2 Rotated factor loadings of manifest variables. 

 Factor1 Factor2 

NDD 0.271 0.109 

FCR -0.180 0.122 

Mortality -0.043 0.126 

GenCost -0.029 0.695 

DepCost 0.685 -0.045 

RCR 0.037 -0.650 

Solvency -0.606 0.031 

 
Using the rotated factor loadings, the two factors are constructed and discretized into five levels. To 
simplify the illustration, variables with factor loadings greater than 0.1 are retained to build the BBN 
model. The conditional probabilities among these two factors and the retained manifest variables are 
calculated through a regression analysis.  The regression analysis assumes a multivariate normal 
distribution of the disturbance to the factors. Without prior information on the manifest variables, the 
basic structure of the BBN model is then shown in Figure 3. Besides indicating the relationships 
among variables with directed arrows, GeNIe also visualizes the strength of the relationships with the 
thickness of the arrows. 
 

 

Figure 3 The Bayesian Belief Network (BBN) in GeNIE to infer animal health status and 
management quality 

 
 



 9

3. 2 Using the BBN model to infer animal health status and management quality 

 
The BBN model captures the conditional relationships among the manifest variables such as antibiotic 
use and the unobservable factors of the fattening pig farms that are important in farmers’ decision 
making. As such, the model can be used to infer the possible rationale underlying antibiotic use to gain 
insights into the incentive mechanisms that can influence farmers’ behavior. For policy makers, it is 
important to distinguish which factor is more likely to be the main cause for high level of antibiotic 
use: animal disease status (the need for treatment) or management failure (the preference for more 
antibiotic use to avoid eventual diseases or generate other beneficial effects).  For farms with different 
profiles, the BBN model can be used to show the possible composition of the causal factors. This can 
be done by setting evidence on various levels of antibiotic use, while keeping the prior distributions of 
other variables constant. As an illustration, Figure 4 shows the resulting distributions of the two 
factors with evidence set on the average level for all variables except antibiotic use. 
 

 

Figure 4 Using the BBN model to infer animal health status and management quality 

Figure 4 shows a likelihood of 49% that, with other features in the average level, a fattening farm with 
very high antibiotic use has poor management quality in terms of antibiotic use. The likelihood that 
such a farm has poor animal health status is much lower (26%). This suggests that for such farms 
interventions should be targeted at improving management quality rather than improving animal health 
status. Similar analysis can be performed on other features. 

 
4. Discussion 

4. 1 Data and the parameterization of the BBN  

The empirical relevance of the BBN model depends on the quality of data used to obtain the 
parameters. Due to the small size of the data set, the results of the BBN model presented in this paper 
should be interpreted with caution. Furthermore, statistical tests showed that some of the manifest 
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variables in the data set are not normally distributed. This can be a feature of small sample set, but can 
also indicate inherent non-normality of the underlying population. To provide more reliable policy 
recommendation, a larger sample size may therefore be necessary. For more practical policy purposes, 
it is highly recommended to collect more data on animal diseases and entrepreneurial decisions.  
 
In addition to statistical analysis on the data, model parameters can also be elicited from experts. In 
particular, CPT’s derived from expert opinion can be used to validate the model. It should however be 
pointed out that using expert opinion on complex relationships among multiple variables is often 
subject to a limitation of human capacity in processing and interpreting large amount of data. 
 

4. 2 Using BBN to infer incentives to reduce antibiotic use 

 
The BBN model summarizes knowledge derived from the conceptual model and the empirical data 
regarding the quantitative relationships among factors related to both profitability and on farm 
antibiotic use. As such, it provides a natural framework to investigate the possible economic incentives 
of different interventions on antibiotic use for different types of farms. Policy intervention can be 
modeled as “evidence” on the manifest variables in the BBN-model or through sub-models to the 
BBN model through the control variables such as prices. For example, policy intervention can directly 
affect the level of antibiotic use through regulations. This is likely to have different economic 
implications for the farms due to the variations in animal health status and management quality. For 
example, farms with very high levels of antibiotic use and low level of animal health status would be 
the most influenced when no adjustments are made to improve the level of animal health status.  
 
Economic theory and studies suggest that market-like mechanisms are likely to be more efficient in 
realizing policy goals by inducing the desired behavior voluntarily (see e.g., Pascual and Perrings, 
2007). Without proper incentives, regulations that directly restrict antibiotic use per farm may incur 
high enforcement costs due to low level of voluntary compliance. Assume the overuse of antibiotics 
lies in the economic incentives offered by current markets and other institutions, one solution to the 
problem can lie in corrective institutional design. Based on the BBN model, a number of possible 
incentive mechanisms can be derived. For example: 
 

1) Increasing the price of antibiotics; For farms with very high level of antibiotic use due to poor 
animal health status or management quality, this creates a disincentive to use antibiotics and as 
such generates the incentive to improve animal health or improve management health. For 
farms with low level of antibiotic use, changes in the price of antibiotics may only have 
limited impact.   

2) A Bonus-malus system which raises the output price for antibiotic-free products and attaches a 
penalty to products produced with high level of antibiotic use. The bonus for antibiotic-free 
products creates economic incentive for farms with high level of animal health status to further 
reduce antibiotic use and the penalty generates disincentive for farms to apply antibiotics 
excessively. When excessive antibiotic use is caused by poor management quality, these 
incentives will likely induce changes in management quality in terms of antibiotic use. For 
example, alternative veterinary measures can be used to replace antibiotics.  
 

Although the BBN model presented can be used to infer possible incentive mechanisms for different 
farms, in its current state it offers limited possibilities to calculate the economic incentives offered by 
specific interventions. For that purpose, the BBN should be expanded to include more detailed 
information regarding the costs and revenues of the farm. Another limitation of the model is that 
possible feedback effects among the variables cannot be included. This suggests however other 
modeling approaches such as system dynamics (see e.g., Forrester, 1971).    

 
5. Concluding remarks 
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In this paper we show how the BBN methodology can be used to infer animal health status and 
management quality of livestock farms based on observed features of these farms. We also discussed 
how this knowledge can be used to support policy making in reducing antibiotic use in livestock 
production. Farm accounting data and registration data on medication and veterinary service were 
essential to parameterize the BBN model.  
 
Effective policy intervention on antibiotic use often requires knowledge about the rationale of 
antibiotic use. Animal health and management quality are considered two important factors explaining 
farmer’s behavior with regard to antibiotic use. Given the uncertainties about these two factors in 
different farms, the BBN methodology is shown to be a useful tool to infer this knowledge and 
possible incentive mechanisms. The modeling approach described in this paper is of a general nature 
and can be extended to other intensive livestock sectors such as the poultry.    
 
The BBN model summarizes knowledge about animal health status and management quality of a 
fattening pig farm in the Netherlands. This knowledge can be used to obtain insight into the possible 
incentive mechanisms of policy intervention in the Dutch context. Based on the preliminary analysis, 
it is expected that price mechanisms in combination with management training can lead to the 
reduction of antibiotic use by livestock farms. Whether this reduction contributes to social welfare 
requires however further economic analysis on the wider economy. Future research should therefore 
consider the effect of policy intervention on other stakeholders.  
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