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Stellingen 

1) De niet fytopathogene schimmel Aspergillus nidulans lijkt een geschikt model om de 
expressie van het avirulentiegen Avr9 van de tomatenpathogene schimmel 
Cladosporium fulvum te bestuderen (dit proefschrift). 

2) De in de Avr9 promoter aanwezige TAGATA-sequenties zijn cruciaal voor de inductie 
van deze promoter in Aspergillus nidulans (dit proefschrifi). 

3) De belangrijkste regulator, Nrfl, van het Cladosporium fulvum avirulentiegen Avr9 is 
tevens betrokken bij de regulatie van het stikstofmetabolisme van deze schimmel (dit 
proefschrifi). 

4) Onderzoek naar de fysiologische aspecten van een plant-pathogeen interactie is sterk 
onderbelicht in vergelijking met de moleculaire aspecten. 

5) Het toegenomen aantal gei'soleerde avirulentiegenen heeft er nog niet toe geleid dat 
het inzicht in de intrinsieke functie van deze genen is vergroot. 

6) Een recombinant DNA-laboratorium is een speelplaats voor grote mensen, het 
onderzoek laat zich dan ook omschrijven als knippen en plakken met DNA. 

7) Op de fiets doet de Wageningse berg soms zijn naam eer aan. 

8) Het druk hebben is een luxeprobleem. 

9) Een goedgelovig wetenschapper is de waarheid vaak ontrouw. 

10) Normaal zijn alleen de mensen die je niet kent. 

11) Soms is het resultaat teleurstellend, dit betekent echter nog niet altijd dat het een 
teleurstellend resultaat is. 

12) Dit proefschrift is een grote stap voor mij maar een kleine stap voor de wetenschap 
(vrij vertaald naar Neil Armstrongs eerste stap op de maan, 20 juli 1969). 

Stellingen behorende bij het proefschrift van Sandor Snoeijers: Regulation of the 
avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum. Wageningen, 
10 oktober 2000. 
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Veluwemeer o.l.v. Bert altijd weer een enorm succes en iets om weer vele weken op te 

kunnen teren. Daarnaast wil ik Diana en Hans bedanken die mij als verse OIO de eerste 

stapjes op het lab hebben bijgebracht. 

Ik werd tijdens mijn onderzoeksperiode bijgestaan door een flink aantal studenten. 
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wetenschap heet. Special was the collaboration with our Spanish post-doc Alejandro. 

Alejandro, many thanks for your contribution to this thesis and the good times we had also 
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would be a brilliant career for you in the future as a singer, for sure. 

Natuurlijk wil ik ook de gehele populatie van de vakgroep Genetica bedanken voor de 

goede tijd die ik aldaar heb doorgebracht. De discussies tijdens de koffiepauzes waren van 

allerhande niveau maar desalniettemin buitengewoon gezellig. Als ik weer eens te laat was 

voor de koffie was daar altijd Henny die iets voor me had achtergehouden zodat ik alsnog van 

m'n "caffei'neshot" kon genieten. In het bijzonder wil ik buurman Wim bedanken met wie ik 



naast het lableven ook vele (sportieve) uren heb doorgebracht en met wie ik de emotionele 

pieken en dalen van het OlO-schap van dichtbij heb gedeeld. 

Twee mensen van het Fytolab waren ontzettend belangrijk voor de totstandkoming 

van dit proefschrift. Matthieu, bedankt voor je enorme steun tijdens vooral de schrijffase. Je 

wist door je precieze manier van nakijken, soms tot grote frustratie van mij want meestal had 

je gelijk, net iets beter de puntjes op de i te zetten. Pierre, ondanks het feit dat ik toch een 

beetje een vreemde eend in de bijt was van het Fytolab heb ik dat nooit zo gevoeld en kon ik 

wat betreft begeleiding altijd voor de voile honderd procent op je rekenen. 
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Chapter one General introduction 

Chapter one 

General introduction 

S. S. Snoeijers, A. Perez-Garcia, M. H. A. J. Joosten and P. J. G. M. De Wit 

Adapted from European Journal of Plant Pathology 106: 493-506 

Plants acquire nitrogen from two major pools: soil and the atmosphere. Nitrogen from the soil 

is usually taken up as nitrate, whereas atmospheric molecular nitrogen is incorporated through 

symbiotic fixation by micro-organisms (Mylona et al., 1995). Irrespective of the source, in 

higher plants inorganic nitrogen must eventually be reduced to ammonia before it can be 

assimilated (Lea, 1992). Ammonia is incorporated into glutamine, glutamate, asparagine and 

aspartate, which are the predominant nitrogen-carrying molecules in plants (Lam et al., 1996). 

They provide building blocks for synthesis of additional amino acids, proteins, nucleotides, 

hormones, chlorophyll and a variety of other essential plant constituents. 

Successful colonisation of plants by a pathogen requires utilisation of nutrient 

resources present in host tissues. Although little is known about how plant pathogens 

assimilate nitrogen after their entry into the host, it is tempting to speculate that the nutritional 

status of the plant affects transcription of specifically in planta-induced genes of pathogens. 

The nitrogen sources available for a pathogen in the host plant are dependent on the tissue that 

is being colonised. Nitrogen sources used by a root pathogen might be different from those 

used by a leaf pathogen. Similarly, a necrotrophic pathogen which kills tissues, is probably 

able to use a broader spectrum of nitrogen sources than a biotrophic pathogen which feeds on 

living host tissue and only has access to nitrogen sources available in the apoplast and/or the 

haustorial matrix. Knowledge of nitrogen metabolism of phytopathogenic bacteria and fungi 

is limited. However, extensive studies on nitrogen metabolism and its regulation have been 

conducted with model organisms like the enteric bacteria Escherichia coli and Salmonella 

spp. (Magasanik, 1996), and the filamentous fungi Aspergillus nidulans and Neurospora 

crassa (Marzluf, 1997). 
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Nutritional limitation of various types, in particular of nitrogen, appears to affect 

pathogenesis. The observation that bacterial and fungal genes (Talbot et al., 1997) are both 

induced during pathogenesis and under nitrogen-limiting conditions in artificial media, 

suggests that during growth in planta there is limited nitrogen available for pathogens. Here 

we describe the effect of nitrogen and nitrogen-regulated genes on development of bacterial 

and fungal pathogens in the host. In planta-induced pathogenicity, virulence and avirulence 

genes, that are also induced in vitro under nitrogen- or nutrient-limiting conditions, are also 

discussed. 

Effect of the availability of nitrogen on plant disease development 

Nitrogen supply can affect disease development. High concentrations of nitrogen often 

increase susceptibility of plants to diseases (Agrios, 1997). Pathogens and diseases that are 

stimulated by nitrogen supply to the host are presented in Table 1. 

Table 1. Pathogens, hosts and diseases stimulated by increased nitrogen supply to the host. 

Pathogen 
Corynebacterium sepedonicum 
Erwinia amylovora 
Erwinia stewartii 
Pseudomonas syringae subsp. savastanoi 
Streptomyces scabies 
Xanthomonas campestris pv. vesicatoria 
Botrytis cinerea 
Colletotrichum gloeosporioides 
Erysiphe graminis 
Magnaporthe grisea 
Puccinia graminis 
Verticillium albo-atrum 

Host 
potato 
pear 
corn 
olive 
potato 
tomato 
grape 
tomato 
wheat 
nee 
wheat 
potato, tomato 

Disease 
ring rot 
fire blight 
Stewart's wilt 
olive knot 
scab 
bacterial spot 
botrytis bunch rot 
fruit and root rot 
powdery mildew 
rice blast 
stem rust 
wilt 

References 
Gallegly and Walker, 1949 
Agrios, 1997 
McNew and Spencer, 1939 
Balestra and Varvaro, 1997 
Lapwood and Dyson, 1966 
McGuire et al., 1991 
Cherif and Boubaker, 1997 
Williams, 1965 
Last, 1953 
Teng, 1994 
Daly, 1949 
Wilhelm, 1950 

In general, nitrogen is needed to provide plants with building blocks required for growth and 

to resist or recover from disease injury. Plants suffering from a lack of nitrogen are weaker, 

grow slower and age faster. Such plants become more susceptible to pathogens that are 

specialised in infecting weak, slowly-growing plants. It has been reported that reduced 

availability of nitrogen increases the susceptibility of tomato to wilt caused by Fusarium 

oxysporum f.sp. lycopersici, early blight of many solanaceous plants caused by Alternaria 

solani and damping-off of seedlings, resulting from Pythium spp. infections (Agrios, 1997). 

The form of nitrogen available to plants and pathogens also affects the severity of the disease 
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(Huber and Watson, 1974). For example, ammonia stimulates diseases caused by Fusarium, 

Rhizoctonia and Sclerotium on citrus, wheat, cotton, tomato and sugar beet. Alternatively, 

corn and pea root rots, cotton root rot and tobacco and tomato wilts, diseases caused by 

Pythium, Phymatotrichum and Pseudomonas, respectively, are favoured by nitrate. 

Contradictory results have been reported by McElhaney et al. (1998) who studied the 

interaction between cabbage and Xanthomonas campestris pv. campestris. Irrespective of the 

source of nitrogen used, high levels of nitrogen dramatically reduced the level of systemic 

colonisation of the xylem by the bacterium as well as the development of black rot lesions. 

Modification of plant nitrogen metabolism by pathogens 

Nitrate, which is the major source of inorganic nitrogen available for plants is, after uptake 

from the soil, either stored in the vacuole or converted into nitrite by nitrate reductase (NR). 

After conversion, nitrite enters the chloroplast (or plastid in the root) and is reduced by nitrite 

reductase (NiR) to ammonia, which is then converted to various amino acids by glutamine 

synthetase (GS) (Crawford, 1995). Perez-Garcia et al. (1995) found that during infection of 

tomato by P. syringae pv. tomato a novel GS isoform accumulated in infected leaves. This 

isoform might be involved in reassimilation and transport of nitrogen released during protein 

degradation in infected tissues to healthy parts of the plant. However, the amino acid levels 

detected in infected leaves indicate that asparagine, rather than glutamine, the main precursor 

for the synthesis of all other amino acids, is involved in nitrogen transport (Perez-Garcia et 

al., 1998). Interestingly, asparagine is also the major amino acid involved in remobilization of 

nitrogen during leaf senescence, while the most important route for asparagine biosynthesis in 

plants is glutamine-dependent. This suggests that, both during natural senescence and during 

pathogenesis similar mechanisms are induced to save nitrogen. 

Although increased synthesis of amino acids and other nitrogen-carrying compounds 

is necessary for active plant defence, knowledge of nitrogen metabolism and amino acid 

synthesis during host plant colonisation by pathogens is very limited. It is known that 

phenylalanine and hydroxyproline are amino acids important in active plant defence. 

Following infection, phenylalanine is converted, by phenylalanine ammonia lyase (PAL), into 

trans-cinnamic acid, an important precursor for biosynthesis of phenylpropanoid compounds. 

These include phytoalexins, as well as precursors of structural defence molecules such as 

lignin (Dixon and Harrison, 1990). Hydroxyproline is the most abundant amino acid present 
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in hydroxyproline-rich glycoproteins, which strongly increase in concentration during active 

defence and are deposited in cell walls. There they may contribute to resistance by trapping 

the pathogen, or act as structural barriers and sites for lignin deposition (Showalter, 1993). 

Some pathogens have acquired specialised virulence factors (mainly toxins), that 

interfere with nitrogen metabolism of the host. Among the wide variety of toxins produced by 

bacterial and fungal pathogens, some inhibit biosynthesis of amino acids (antimetabolites), 

resulting in amino acid deficiency. The best known antimetabolite toxins produced by 

phytopathogenic bacteria are tabtoxin and phaseolotoxin, both produced by pathovars of 

Pseudomonas syringae (Bender et al., 1999). Tabtoxin is a monocyclic B-lactam that is not 

toxic by itself, but after hydrolysis by host aminopeptidases releases the toxic tabtoxinine 

(Durbin and Uchytil, 1984). Tabtoxinine irreversibly inhibits GS, resulting in ammonia 

accumulation, causing disruption of the thylakoid membrane of the chloroplast and the 

uncoupling of photosynthesis and photorespiration, leading to chlorosis (Turner and Debbage, 

1982). 

Phaseolotoxin competitively inhibits ornithine carbamoyltransferase (OCTase), which 

converts ornithine and carbamoyl phosphate to citrulline, a precursor of arginine (Mitchell, 

1976; Moore et al., 1984). The toxin is hydrolysed in plants by peptidases to produce 

octicidine, a more potent, irreversible inhibitor of OCTase and apparently the active form of 

the toxin in plants. Inhibition of OCTase causes accumulation of ornithine and deficiency in 

intracellular pools of arginine, leading to chlorosis (Mitchell and Bielski, 1977). 

One obvious advantage for a pathogen to produce an antimetabolite toxin is the 

induction of metabolic deficiency in host cells and the concomitant accumulation of 

intermediates that can be metabolised by the pathogen itself. Most of the antimetabolite toxins 

secreted by pathogens possess antimicrobial activity with a different spectrum and efficiency 

(Volksch and Weingart, 1998). Thus, the antagonistic activity of antimetabolite toxins could 

be an advantage for the toxin-producing bacteria to adapt to different habitats in competition 

with other micro-organisms. This is supported by the observation that in P. syringae, genes 

for toxin production seem to be conserved among most pathovars, suggesting that they are 

important for competitive ability of the bacteria in plants. Thus, toxins interfering with amino 

acid biosynthesis appear to be pathogenicity factors, facilitating pathogens to colonise host 

tissues. 



Chapter one General introduction 

Bacterial and fungal genes that are induced in planta and under conditions of 

nitrogen limitation, in vitro 

Whether a plant is susceptible or resistant to an attacking pathogen depends in most cases on 

the presence of specific proteins produced by both the plant and the pathogen. Proteins from 

the pathogen that are recognised by the host are called elicitors and are encoded by avirulence 

(Avr) genes. After recognition of the pathogen (through its elicitors) by the host, carrying the 

matching resistance (R) gene, the plant often mounts a hypersensitive response (HR) which is 

considered to be the most versatile plant resistance response to viruses, bacteria, fungi, 

nematodes and insects (Keen et al., 1990; Joosten and De Wit, 1999). During HR, a cascade 

of defence responses is activated. These responses often include early irreversible membrane 

damage, generation of reactive oxygen species and induction of genes coding for enzymes 

involved in synthesis of phytoalexins, hydroxy proline-rich cell wall glycoproteins and 

pathogenesis-related proteins (PRs) (Lucas, 1998). 

Pathogenicity (Path), virulence (Vir) and Avr genes are usually highly expressed 

during growth of the pathogen in the host tissue. In the remaining part of this review 

examples of bacterial and fungal genes which are highly expressed in planta, but which are 

also induced under conditions of nitrogen- or general nutrient limitation in vitro, are 

discussed. 

Expression of bacterial pathogenicity, (a)virulence and regulatory genes in planta and in 

vitro 

The Gram-negative phytopathogenic bacteria of the four major genera Pseudomonas, 

Xanthomonas, Ralstonia and Erwinia, contain hrp (for hypersensitive response and 

pathogenicity) genes, which are essential for the interaction with both susceptible and 

resistant plants (Bonas, 1994; Lindgren, 1997). Hrp proteins are homologous to the proteins 

of the mammalian bacterial pathogen type III secretion system and are thought to be involved 

in transfer of (a)virulence and pathogenicity factors to host cells (Long and Staskawicz, 1993; 

Bonas and Van den Ackerveken, 1997; Rossier et al., 1999). This hypothesis is supported by 

the observations that bacterial Avr genes only function in the presence of a complete set of 

hrp genes (Dangl, 1994) and that injection of bacterial AVR proteins into the intercellular 
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spaces of leaves of plants containing the matching resistance genes, does not result in the 

induction of a HR (Knoop et al., 1991). 

In general, hrp genes are highly expressed in minimal media, whereas they are usually 

not expressed in rich media (Rhame et al., 1992; Wei et al., 1992; Bonas, 1994). 

Transcriptional activation of hrp genes of P. syringae during co-culture with tobacco cells did 

not occur, but could be achieved by incubating the bacteria in nitrogen-deficient media (Yucel 

et al., 1989). Also in Erwinia amylovora, high levels of expression of the hrp loci, comparable 

to those obtained during the development of a HR in tobacco, were detected in nitrogen-

limiting media (Wei et al., 1992). 

Regulation of hrp genes has been studied extensively in the phytopathogenic 

bacterium P. syringae pv. syringae. In this strain, the hrp genes hrpR, hrpS and hrpL are part 

of a multicomponent regulatory system that controls the expression of certain hrp and Avr 

genes. The HrpR and HrpS proteins are related to the bacterial NtrC class of nitrogen 

regulators (Xiao et al., 1994). NtrC is a member of a two-component regulatory system 

consisting of an environmental sensor (NtrB) and a response regulator (NtrC) (Albright et al., 

1989; Lindgren, 1997). The NtrB/NtrC pair regulates transcriptional activation of various 

genes involved in nitrogen assimilation. The amino-terminal domain of NtrC acts as the 

regulatory domain. Under conditions of nitrogen limitation phosphorylated NtrB interacts 

with this domain to activate NtrC by phosphorylation (Figure 1A; Merrick and Edwards, 

1995). A characteristic feature of genes activated by the NtrC class of proteins is the 

requirement for sigma factor 54 (encoded by the rpoN gene) as coactivator. HrpR and HrpS 

differ from most members of the NtrC family as they lack the amino-terminal, regulatory 

domain. However, they do contain the conserved carboxy-terminal domain of NtrC, which is 

a helix-turn-helix motif that enables NtrC to recognise specific enhancer sequences. 

In general, sigma factors control a large array of bacterial genes that are expressed 

during nutrient limitation. Conserved sigma factor 54 motifs have been found in promoters of 

a number of P. syringae hrp and Avr genes (Innes et al, 1993; Shen and Keen, 1993; Xiao 

and Hutcheson, 1994). An important sigma factor in bacteria is the RpoS protein which 

regulates a set of genes that serves to maintain viability during periods of starvation and 

environmental stress (O'Neal et al., 1994). Though highly sensitive to a number of 

environmental stresses, an E. amylovora rpoS mutant was not compromised in its ability to 

grow or cause disease on apple seedlings (Anderson et al., 1998). Similarly, the rpoN gene of 

Xanthomonas campestris pv. vesicatoria is not the only regulatory gene required for 

pathogenicity (Horns and Bonas, 1996). 
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Avirulence gene D (AvrD) from P. syringae pv. tomato, of which the encoded product directs 

the synthesis of syringolide elicitors inducing a genotype-specific HR, contains a typical 

sigma factor 54-dependent promoter (Keen et al., 1990; Midland et al. 1993; Shen and Keen, 

1993). The AvrD gene is highly induced upon colonisation of host tissues or when the bacteria 

are growing in vitro at low pH or in media containing low concentrations of carbon or 

nitrogen (Shen et al., 1992; Shen and Keen, 1993). The AvrB and AvrE genes from P. 

syringae pv. glycinea and pv. tomato, respectively, show comparable expression patterns 

when grown under similar conditions (Huynh et al., 1989; Lorang and Keen, 1995). This is 

also the case for the Avr genes DspA and DspE from E. amylovora (Gaudriault et al., 1997; 

Bogdanove et al, 1998). 

Research on bacterial infectious diseases of mammals has a long history. The 

"nutrition-inhibition" hypothesis, stating that facultative intracellular pathogens encounter 

both an inhibitory and a nutrient-limited environment during infection, was proposed more 

than forty years ago (Groisman and Ochman, 1994). A direct role for RpoS in regulation of 

expression of pathogenicity factors has been confirmed for a number of mammalian 

pathogens, such as Salmonella and Yersinia species (Heiskanen et al., 1994; Iriarte et al., 

1995). A stress response of Salmonella typhimurium occurs when this bacterium is starved for 

essential nutrients, such as phosphate, carbon or nitrogen. The physiological changes that S. 

typhimurium undergoes in response to starvation stress are referred to as the starvation stress 

response (SSR). The genetic loci whose expression increases in response to starvation-stress, 

together form the SSR stimulon. Loci of the SSR stimulon encode transport systems, enzymes 

involved in carbon catabolism, protective enzymes, respiratory enzyme systems, regulatory 

proteins, virulence factors and unclassified products. The majority of these loci are under 

positive control of RpoS. Furthermore, there might be a link between SSR and virulence, 

since RpoS is required for full virulence of Salmonella. Moreover, the spv (Salmonella 

pjasmid-associated virulence) genes, required for Salmonella to cause systemic disease, are N 

(and P- and C-)-starvation-inducible (Nickerson and Curtiss, 1997; Spector, 1998). However, 

a direct link between starvation-stress and virulence has not been conclusively established yet. 

The infectious gram-positive bacteria Listeria monocytogenes and L. ivanovii carry a 

special set of Vir genes that are switched on when the bacterium encounters a host. In 

Listeria, the PrfA protein regulates Vir gene expression during pathogenesis. A peak in PrfA 

expression during growth in liquid media coincides with the onset of the stationary phase 

when nutrients become limiting, suggesting that nutrient starvation contributes to 
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upregulation of Listeria Vir genes (Mengaud et al., 1991). Table 2A gives an overview of the 

nitrogen-induced or repressed Path, Avr and Vir genes and their regulators in bacteria. 

Table 2A. Bacterial genes induced during infection of the host and during nitrogen starvation in vitro. 

Bacterial 
pathogen 
Pseudomonas 
synngae 

Erwinia 
amylovora 

Erwinia spp, 
Salmonella 
typhimurium 
Listeria 
monocytogenes, L 
ivanovu 

Host 

tomato. 
soybean 

tomato, 
soybean 

pear 

pear 

several 
species 
mammals 
mammals 

Induced gene(s) 

hrp genes 

AvrB, AvrD and 
AvrE 

Dsph, DspE 

hrp 

hrp sad Avr 

Vir 

Possible 
function(s) 
secretion of 
avirulence factors 

(a)virulence 

(a)virulence 

secretion of 
avirulence factors 

secretion of 
avirulence factors 
and avirulence 
virulence 

Regulatory genes 

hrpL, hrpR, hrpS, 
rpoN 

rpoS 

rpoS 

PrfA 

References 

Rhame et al., 
1992; Xiao et al., 
1994 
Huynh et al., 
1989; Shen et al., 
1992; Lorang and 
Keen, 1995 

Gaudriault et al., 
1997; Bogdanove 
et al., 1998 

Wei et al., 1992 

O'Neal et al., 
1994 

Mengaud et al., 
1991 

Figure 1A shows a model of the bacterial nitrogen-catabolic pathway. The proposed role of 

NtrC for induction of nitrogen-dependent Path and AvrlVir genes in bacterial pathogens is 

also shown in this figure. 



Chapter one General introduction 

Bacterial modal 

nitrogen excess/deprivation 
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Figure 1A. Model for nitrogen-sensing and induction of nitrogen-dependent hrp and AvrlVir genes of bacterial 

pathogens. Under conditions of nitrogen excess the Pn protein binds to NtrB to activate its phosphatase activity. 

When this occurs, NtrB dephosphorylates NtrC so it can not bind to enhancer sequences to increase 

transcription. However, Pn-UMP, which is present during nitrogen deprivation, can not bind to NtrB. In this 

situation, NtrB is autophosphorylated on His-139. When NtrB is in its phosphorylated state, it catalyses the 

phosphorylation and activation of NtrC. NtrC has an ammo-terminal that acts as the regulatory receiver domain. 

Phosphorylated NtrB interacts with this domain to phosphorylate Asp-54 of the NtrC protein. The NtrC central 

domain contains a conserved nucleoside-binding site and is believed to be the domain responsible for interacting 

with sigma factor RpoN to activate transcription. The carboxy-terminus contains a helix-turn-helix motif which 

facilitates interaction of NtrC with specific enhancer sequences. The bacterial HrpR and HrpS proteins are 

related to the NtrC class of proteins, although they lack the amino-terminal domain of NtrC, an interaction with 

RpoN/RpoS, that induce several AvrlVir and hypersensitive response and pathogenicity (hrp) genes is 

hypothesised (for further details see text). 

OM: outer membrane; IM: inner membrane; P: phospate; UMP: 2p-deoxyuridine 5p-monophosphate 
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Expression of fungal pathogenicity, (a)virulence and regulatory genes in planta and in 

vitro 

To be a successful pathogen, a fungus must be able to adjust its metabolism to utilise nutrients 

available within the host tissue. Little is known about metabolic control circuits in 

phytopathogenic fungi and the role of regulation of metabolism and/or nutritional signals in 

disease development. This is in contrast to the non-pathogenic filamentous fungi Aspergillus 

nidulans and Neurospora crassa of which nitrogen metabolism has been studied extensively 

(Marzluf, 1997). In the latter fungi the major, positively-acting regulatory genes are A (A. 

nidulans) and nit-2 (N. crassa) mediate global nitrogen repression and derepression. The 

regulatory proteins that these genes encode, possess both a DNA-binding domain which 

consists of a single Cys2/Cys2-type zinc finger motif (Scazzocchio, 2000). Both AREA and 

NIT2 are members of the GATA-family of transcription factors that bind to promoter domains 

containing a GATA sequence (Fu and Marzluf, 1990; Punt et al., 1995). AREA and NIT2 

activate the expression of many genes whose products are required for the utilisation of 

nitrogen from various secondary sources (e.g. nitrate- and nitrite reductase) or when nitrogen 

is limited (Marzluf, 1997). 

In pathogenic fungi, the loss of such a major, wide-domain nitrogen regulator might 

repress the expression of genes that are necessary for pathogenicity and could affect the 

ability of the pathogen to grow and proliferate within the host. AREA-like proteins with 

similar structure and function have been described in Penicillium and Aspergillus (Haas et al., 

1995; Ellis, 1996; Christensen et al., 1998; Hensel et al., 1998; McCabe et al., 1998; Gente et 

al., 1999), in the phytopathogens Magnaporthe grisea (Froeliger and Carpenter, 1996), 

Gibberellafujikuroi (Tudzynski et al., 1999) and Cladosporium fulvum (A. Perez-Garcia et 

al., unpublished), and in the insect pathogen Metarhizium anisopliae (Screen et al, 1998). 

Avirulence gene Avr9 of the biotrophic fungal pathogen C. fulvum (Van Kan et al., 

1991; Van den Ackerveken et al., 1992) is both induced in planta and during nitrogen 

starvation in vitro (Van den Ackerveken et al., 1994; Snoeijers et al, 1999). Although the 

intrinsic function of the AVR9 peptide is unknown, it triggers a HR in tomato plants carrying 

the matching Cf-9 resistance gene (De Wit et al., 1995; Joosten and De Wit, 1999). The Avr9 

promoter, which contains twelve putative AREA-binding sites, was found to be also active in 

A. nidulans. In an A. nidulans are A null mutant, however, the promoter was not induced upon 

nitrogen starvation, suggesting that an AREA-like transcription factor is involved in the 

induction of Avr9 expression in C. fulvum (Van den Ackerveken et al., 1994; Snoeijers et al., 
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1999). The C. fulvum areA-homologous gene (Nrfl) has been cloned (Perez-Garcia et al., 

unpublished.) and gene disruption experiments will reveal whether the NRF1 protein is 

involved in regulation of Avr9 expression in C. fulvum. From this fungus five unique, 

differentially expressed cDNAs have been isolated after screening a cDNA library, obtained 

from nitrogen- and carbon-starved mycelium, with cDNA probes prepared from infected 

tomato leaf tissue (Coleman et al., 1997). Northern hybridisation confirmed that all five 

cDNAs were both starvation- and in planta-induced. Two of the clones were found to encode 

an alcohol- and aldehyde dehydrogenase, respectively (Coleman et al, 1997). In addition, six 

different hydrophobin-encoding genes have recently been cloned from C. fulvum (Segers et 

al., 1999; Spanu et al., 2000). Two of those, HCf-4 and HCf-5, showed clear induction under 

nitrogen-limiting conditions. Fungal hydrophobins have been shown to play an important role 

in many morphogenetic processes including sporulation, fruiting body development and 

infection structure formation (Wessels, 1997; Kershaw and Talbot, 1998). 

For the rice blast fungus M. grisea, a pathogen of various cereals and grasses (Valent 

and Chumly, 1991; Talbot, 1995), the role of the areA-like gene, nutl, in pathogenesis was 

studied by generating nutl null mutants (Froeliger and Carpenter, 1996). Under standard 

assay conditions, colonisation of susceptible plants by nut 1 null mutants was similar to that of 

wild-type M. grisea strains. Although only a small number of host plants has been tested, the 

major nitrogen regulator NUT1 appears to only partly affect pathogenicity of this fungus, 

causing smaller lesions on plants infected by the nutl null mutants when compared to the 

wild-type strain. It was suggested that in these transformants, which can not utilise secondary 

nitrogen sources, nitrogen starvation and inhibition of fungal growth might occur sooner than 

in wild-type strains. Two additional nitrogen-regulatory genes, non-allelic to nutl, designated 

nprl and nprl (for nitrogen pathogenicity regulation genes 1 and 2), were identified and 

mutation of either of these genes resulted in an are A-like mutant phenotype and a dramatic 

loss of pathogenicity. It appeared that NPR1 and NPR2, in addition to their involvement in 

nitrogen regulation, are required for starvation-related gene expression in M. grisea (Lau and 

Hamer, 1996). NPR1 and NPR2 are likely to be alternative global nitrogen regulators of a 

wider control mechanism, that regulates genes involved in pathogenesis. Furthermore, Talbot 

et al. (1997) found that under nitrogen starvation M. grisea also secretes products that cause 

senescence of rice leaves, reminiscent of the symptoms caused by the fungus itself. Strains 

defective in nutl, nprl or nprl, produced only residual senescence-inducing activity. 

The mpgl gene from M. grisea was identified in a differential cDNA screen for fungal 

genes expressed during growth in planta. The mpgl gene encodes a small hydrophobic 
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protein that is highly expressed during appressorium formation, which is required for 

successful penetration of this fungus into host cells (Talbot et al, 1993). Examination of the 

regulation of mpgl, revealed that the gene is induced during nitrogen- and carbon limitation in 

vitro. The mpgl promoter also contains typical GATA-sequences (Talbot et al., 1993). 

Although NUT1 is required for high-level expression of mpgl (Lau and Hamer, 1996), a 

direct role for these GATA-sequences in regulation of mpgl expression has not yet been 

demonstrated. 

The most striking example of genes of which expression is induced under nitrogen-

limiting conditions in vitro, and in planta comes from the genus Colletotrichum, which 

includes pathogens that infect a wide range of tropical crop plants. A cDNA clone (pCgGS) 

that preferably hybridised to a cDNA probe prepared from leaves of the forage legume 

Stylosanthes guianensis infected by C. gloeosporoides, has been isolated by differential 

screening of a cDNA library from a nitrogen-starved axenic culture of this fungus 

(Stephenson et al, 1997). The sequence of pCgGS is highly homologous to genes encoding 

glutamine synthetase (GS). Expression studies indicated that in C. gloeosporoides induction 

of GS occurred during early infection and also under nitrogen-limiting conditions in vitro 

(Stephenson et al, 1997). In addition, an essential Path gene, called CgDN3 has been isolated 

from this fungus. It was suggested to be a suppressor of plant defence, since its disruption led 

to loss of pathogenicity and a strong induction of defence responses in the host. CgDN3 is 

expressed at early stages of infection and is also induced in axenic culture by nitrogen 

starvation. The CgDN3 promoter also contains GATA sequences, potentially interacting with 

AREA-like transcription factors (Stephenson et al., 1998). 

The production of extracellular proteases seems particularly important for insect and 

nematode-infecting fungi. In the entomopathogenic fungus Metarhizium anisopliae, the 

products encoded by the genes prlA. and pr2 show protease activity. Both genes are major 

determinants of pathogenicity and their expression is subject to both carbon and nitrogen 

repression (St. Leger et al., 1992; St. Leger, 1995; Smithson et al, 1995). This has also been 

observed for the extracellular serine protease PII of the nematode-trapping fungus 

Arthrobotrys oligospora (Ahman et al., 1996). Both prlA and pr2 genes contain GATA 

sequences in their promoters, suggesting that they are under control of the M. anisopliae 

AREA-like protein, designated NRR1 (Screen et al., 1998). 

For the fungus Aspergillus fumigatus, pathogenic on mammals and the major agent of 

invasive aspergillosis, two observations support the importance of an areA-like gene (afareA) 

for growth in lung tissue. First, in neutropenic mice, which have a strong reduction of 
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resistance against pathogens, inoculated with an a/areA-deletion mutant, the onset of 

symptoms of aspergillosis was delayed compared to mice inoculated with the afareA wild-

type parent strain. Secondly, among fungal colonies rescued from lung tissue inoculated with 

an afareA disruptant, the percentage of revertants was approximately 40%, compared to 

approximately 5% among colonies that had been growing on artificial medium with 

ammonium as nitrogen source. These results indicate that the AFAREA regulator protein is 

beneficial for growth in lung tissue, an environment where the fungus encounters different 

nitrogen sources that require the induction of several nitrogen-catabolic genes (Hensel et al., 

1995; Hensel et al., 1998). 

In N. crassa, mutation of the nmr (for nitrogen metabolic regulation) gene results in 

derepression of nitrate reductase and other nitrogen-controlled genes, in the presence of 

ammonia or glutamine concentrations that completely repress expression of these genes in 

nmr wild-type strains (Tomsett et al., 1981). The nmr genes of TV. crassa, A. nidulans and G. 

fujikuroi have been cloned (Young et al, 1990; Andrianopoulos et al., 1998; Tudzynski et al., 

unpublished). The encoded proteins have no distinctive characteristics, such as DNA-binding 

or protein kinase motifs. Most likely the N. crassa NMR protein functions as a negative 

regulator by binding to the NIT2 protein. Direct interaction between NMR and NIT2 has been 

shown to occur in the yeast two-hybrid system (Xiao et al, 1995) and in in vitro binding 

assays (Xiao and Marzluf, 1993). In vitro mobility shift assays suggested that NMR inhibits 

binding of NIT2 to DNA (Xiao et al, 1995). Most probably the NMR protein binds directly to 

the NIT2 protein, thereby blocking trans-activation of NIT2 when sufficient concentrations of 

primary nitrogen sources (e.g. glutamine or ammonia) are available. Isolation and 

characterisation of nmr homologues from pathogenic fungi should give more insight into the 

role of this gene during pathogenesis. Table 2B gives an overview of nitrogen-induced Path 

and AvrlVir genes, and their regulators in fungi. 
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Table 2B. Fungal genes induced during infection of the host and during nitrogen starvation in vitro. 

Fungal pathogen 

Cladosporium 
fulvum 

Magnaporthe 
gnsea 

Collelotrichum 
gloeosporioides 

Melarhizium 
anisopliae 

Arthrobotrys 
oligodpora 

Host 

tomato 

rice and several 
grasses 

tropical legumes 

insects 

nematodes 

Induced 

Avr9 

pSI-9 

pSI-10 

mpgl 

pCgGS 

CgDNi 

prlA 

pr2 
pll 

gene(s) Possible 
function(s) 
avirulence factor 

aldehyde 
dehydrogenase 
alcohol 
dehydrogenase 
hydrophobin 

glutamine 
synthetase 
suppressor of 
plant defences 
protease 

protease 
protease 

Regulatory 
genes 
Afr/1* 

nut\,npr\,npr2 

n.i. 

nrr\ 

n.i. 

References 

Snoeijers et al., 
1999 

Coleman et al., 
1997 
Coleman et al., 
1997 
Talbot et al., 
1993; Froeliger 
and Carpenter., 
1996; Lau and 
Hamer., 1996 
Stephenson et al., 
1997 
Stephenson et al., 
1998 
St. Leger, 1995; 
Smithson et al. 
1995 

Ahman et al., 
1996 

* Isolation of the Nrfl gene from C. fulvum is published in Chapter five, 
n.i. = not isolated 

In Figure IB a model for the fungal nitrogen-catabolic pathway and the proposed role of the 

AREA-like protein for induction of nitrogen-dependent Avr/Vir genes in fungal pathogens are 

shown. 
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Fungal model 

nitrogen excess/deprivation 

a«* 

• nrtrogen-dependent Palti. Avranti VirQene1. 
-hydropnobins 
- suppressors ol plant defences 

inea Involved In nitrogen metebollem.llke: 
- nilrale reductase 
- nilrite reductase 

Figure IB. Model for nitrogen-sensing and induction of nitrogen-dependent pathogenicity (Path) and 

(a)virulence (Avr/Vir) genes of fungal pathogens. The encoding genes are depicted as grey boxes, GATA 

sequences are depicted as white boxes in the promoter regions. When primary nitrogen sources are available, the 

negative regulatory (NMR-like) protein binds to the major positive-acting (AREA-like) protein preventing 

activation of genes involved in nitrogen utilisation. Under conditions of nitrogen limitation the NMR-like protein 

dissociates from the AREA-like protein. The released AREA-like protein induces the expression of a broad 

range of nitrogen metabolism genes (like nitrate- and nitrite reductase; for further details see text). It is assumed 

that the AREA-like proteins co-operate with multiple positive-acting, pathway-specific regulatory (PSR) 

proteins to turn on specific sets of nitrogen-catabolic genes, depending upon the availability of substrates and 

need for nitrogen. Whether the PSR proteins bind the AREA-like regulators is speculative. Several areA-like 

genes contain potential AREA-binding sites in their promoters, suggesting autogenous regulation (here depicted 

as a loop). A proposed role for the AREA-like proteins on expression of nitrogen-dependent Avr/Vir genes in 

fungal pathogens is shown. 
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Concluding remark 

The general introduction consists of an overview concerning bacterial and fungal genes which 

are both specifically induced in planta during pathogenesis and during nitrogen (nutrient) 

starvation in vitro. Based on the data described in the introduction, we hypothesise that most 

of the in planta-induced genes are probably nutrient-survival genes, necessary to supply the 

pathogen with the suitable type of nutrients during growth in a nutrient-limiting micro-

environment. 

Acknowledgements: S. S. Snoeijers was supported by a grant from the Dutch Earth and Life 

Science Foundation (ALW; Projectnumber: 805.45.006), which is subsidised by the 

Netherlands Organisation for Scientific Research (NWO). 

Outline of the thesis 

The aim of the research presented in this thesis is to obtain better insight into the regulation of 

avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum. Expression of the 

Avr9 gene is strongly induced in planta and is also induced in vitro under conditions of 

nitrogen starvation. 

As mentioned in the general introduction, the Avr9 promoter contains (TA)GATA 

sequences which are known as specific binding sites for a global positive nitrogen regulator in 

Aspergillus nidulans and Neurospora crassa, designated AREA and NIT2, respectively. Van 

den Ackerveken et al. (1994) hypothesised that the Avr9 gene is regulated by a protein similar 

to AREA and NIT2, which can bind to these specific sequences and induce Avr9 gene 

expression. As there are A. nidulans areA mutants available in our laboratory and gene-

targeting systems have been developed for A. nidulans, initially this fungus was used as a 

model system to study Avr9 regulation. 

Chapter two describes the induction of Avr9 promoter activities in different A. 

nidulans areA backgrounds, following nitrogen starvation. The observation that no Avr9 

promoter activity was obtained in A. nidulans areA null mutants indicates that the A. nidulans 

AREA protein is able to induce Avr9 expression solely. 

Chapter three emphasises the importance of the (TA)GATA sequences for Avr9 

promoter activity in A. nidulans. Interestingly, the overlapping TAGATA sequences which 

are most proximal to the start codon were found to be crucial for promoter activity. However, 
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C. fulvum transformants containing Avr9 constructs with various mutations in the promoter 

region that resulted in abolishment of inducibility in A. nidulans, were still avirulent on 

tomato plants containing the Cf-9 gene, indicating that AVR9 is produced by these 

transformants. Subsequent in vitro expression studies revealed that in the C. fulvum 

transformants Avr9 is also expressed in nutrient-rich liquid media, indicating that probably 

due to multiple integrations of the Avr9 construct throughout the genome, Avr9 is expressed 

independently from any nitrogen-regulatory element, and is under control of additional 

factors. The latter result emphasises the importance of a gene-targeting system for C. fulvum, 

allowing insertion of a construct of interest to a specific locus in the genome, by site-directed 

integration. Using such a targeting-system, promoter activities can be compared, without the 

influence of the chromosomal environment on expression. The development of such a C. 

fulvum gene-targeting system, based on the C. fulvum pyrl marker gene, is described in 

Chapter four. 

The isolation of the C. fulvum areAJnit-2-like gene, designated Nrfl (for nitrogen 

response factor 1), and the role of the NRF1 protein in induction of Avr9 expression in vitro 

and in planta is described in Chapter five. The data described in this chapter suggest that 

NRF1 is a major regulator of the Avr9 gene, but that in planta at least one additional positive 

regulator of Avr9 is active. 

Chapter six deals with the question whether nitrogen starvation is the signal for Avr9 

expression in planta. Tomato plants containing both the functional Cf-9 gene and elevated 

levels of nitrate in their apoplast, where the fungus resides, were more susceptible to strains of 

C. fulvum containing the Avr9 gene, than wild-type C/9-containing plants. This indicates that 

the Avr9 gene is repressed in these plants and suggests that in planta, nitrogen-limiting 

conditions induce expression of the Avr9 gene. 

Finally, the implications of the results are discussed in Chapter seven and embedded 

in a broader perspective concerning communication between plants and their pathogens. 
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Chapter two 

Transcription of the avirulence gene Avr9 of the fungal tomato 

pathogen Cladosporium fulvum is regulated by a GATA-type 

transcription factor in Aspergillus nidulans 

S. S. Snoeijers, P. Vossen, T. Goosen, H. W. J. Van den Broekand P. J. G. M. De Wit 

Adapted from Molecular and General Genetics 261: 653-659 

Summary 

The avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum is highly 

induced during infection of tomato plants. Expression of the Avr9 gene can also be induced in 

vitro when grown on synthetic liquid medium containing little or no nitrogen. The Avr9 

promoter contains six copies of the sequence TAGATA and six additional copies of the core 

sequence GATA in the region immediately 0.4 kb upstream of the translation start site. In the 

filamentous fungi Aspergillus nidulans and Neurospora crassa, these promoter sequences 

have been identified as the binding sites for a wide-domain GATA-type regulator (AREA in 

A. nidulans and NIT2 in N. crassa) involved in nitrogen utilisation. Quantification of GUS 

activity of A. nidulans transformants, containing a single copy of the fully active Avr9 

promoter-M/dA (GUS) reporter gene fusion in different areA backgrounds, following nitrogen 

starvation, showed that induction of the Avr9 promoter is similarly regulated in A. nidulans and 

C. fulvum. This suggests that AREA can regulate the Avr9 promoter and that C. fulvum contains 

an AREA-like regulator that can bind to these specific sequence motifs. Comparison of 

induction of Avr9 and nidD showed that Avr9 expression is independent of NIRA, as is nidD 

expression upon nitrogen- starvation. Studies with Avr9 promoter-Mi'dA fusions in which all or 

most of these sequences had been deleted, showed that Avr9 promoter activity is dependent 
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on the presence of these specific cis regulatory elements, suggesting that they are functional 

in transcriptional regulation of the Avr9 gene. 

Introduction 

The interaction between the biotrophic, imperfect fungus Cladosporium fulvum Cooke (syn. 

Fulvia fulva) the causal agent of tomato leaf mold and its only host tomato (Lycopersicon 

esculentum), is an established model system to study plant-fungus gene-for-gene relationships 

(Oliver, 1992; De Wit, 1995; Xing et al., 1997; Hammond-Kosack and Jones., 1997). In 

incompatible C. fulvum tomato-interactions, avirulent races of the pathogen are recognized by 

resistant plants. Recognition is mediated by perception of extracellular race-specific elicitors, 

the products of avirulence (Avr) genes of the fungus, by tomato genotypes carrying the 

matching resistance genes, resulting in the induction of a hypersensitive response (HR) and 

other defence responses arresting fungal growth immediately after penetration of the leaf 

through the stomata (De Wit and Spikman., 1982; De Wit et al., 1986; Scholtens-Toma and 

De Wit, 1988; Van Kan et al., 1992; Wubben et al., 1994; Joosten et al., 1997). 

The avirulence gene Avr9 of C. fulvum encodes a pre-pro-protein that is processed 

into a mature extracellular cysteine-rich peptide of 28 amino acids (Van den Ackerveken et 

al., 1993). The AVR9 peptide shows structural homology to cystine-knotted peptides which 

include ion-channel blockers, protease inhibitors and growth factors (Pallaghy et al., 1994; 

Isaacs, 1995; Vervoort et al., 1997) but it is not yet known whether these structural 

homologies have biological relevance. 

Northern blot analysis indicated that expression of the Avr9 gene is highly induced in 

planta during pathogenesis in a compatible interaction (Van Kan et al., 1991). Expression of 

the Avr9 gene could also be induced in vitro when grown on synthetic liquid medium 

containing little or no nitrogen (Van den Ackerveken et al., 1994). This raises the question 

whether limitation of nitrogen, which is the inductive condition for Avr9 expression in vitro 

reflects the growth conditions in planta. In contrast to C. fulvum, the regulation of nitrogen 

metabolism in filamentous fungi such as Aspergillus nidulans and Neurospora crassa has 

been studied extensively. In both fungi, positive-acting global regulatory genes, designated 

areA in A. nidulans (Caddick et al., 1994) and nit-2 in N. crassa (Marzluf et al, 1992), 

encoding AREA and NIT2, respectively, specify GATA-type transcription factors which 

activate the expression of nitrogen metabolic genes (e.g. nitrate- and nitrite reductase) when 
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primary nitrogen sources (e.g. ammonium or glutamine) are not available (Marzluf, 1997). 

Wide-domain regulatory proteins with a similar structure and function are also present in 

fungi such as Penicillium chrysogenum (Haas et al., 1995) and Magnaporthe grisea (Froeliger 

and Carpenter, 1996). Both AREA and NIT2 bind to promoter sequences containing at least 

two copies of the sequence (TA)GATA (Fu and Marzluf, 1990). 

Previous studies have shown that the 0.6 kb promoter fragment immediately upstream 

of the translation start fused to the E. coli uidA (GUS) reporter gene (Jefferson et al., 1987) is 

expressed in planta (Van den Ackerveken et al., 1994). In this promoter region six copies of 

the TAGATA sequence and six additional copies of the core sequence GATA are present. We 

will describe the construction of Avr9 promoter deletions and their GUS activity when 

introduced in C. fulvum. The results of this study suggested that in C. fulvum, induction of the 

Avr9 promoter in vitro and in planta is dependent on the presence of these sequence motifs. 

If the nitrogen control circuit is sufficiently conserved in filamentous fungi, a detailed 

promoter study could be performed in A. nidulans, for which both efficient gene-targeting 

systems and a variety of are A mutants are available. Here we describe experiments, using 

Avr9 promoter-Mj'dA fusion constructs, which show that regulation in A. nidulans involves the 

AREA protein and is similar to the regulation in C. fulvum. 

Results 

Deletion of (TA)GATA sequences in the Avr9 promoter affects its expression both in 

vitro and in planta 

In order to get more information on the sequences that are necessary for Avr9 expression 

constructs pCF211, -241, -251, -261,-271, -281, -291 (Figure 1) and pCF004 were introduced 

at ectopic locations into a pyf strain of Cladosporium fulvum. GUS activity was determined 

both after 48 hours of nitrogen starvation in vitro and in planta during infection of tomato 

genotype MM-CfO. 
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Figure 1. Overview of the constructs used in this study. Only relevant parts of the constructs are shown. pCF21 

contains a 3 kb Avr9 promoter (PAvr9) fragment fused to the uidA. gene and the terminator of the A. nidulans 

trpC (JtrpQ gene (Roberts et al., 1989, Van den Ackerveken et al., 1994). A blunt HindlE-Sstl fragment, 

containing the A. nidulans pyrG gene was introduced into the filled-in ficoRI site to form pCF211. Deletions 

were made from pCF211 by removing the EcoBI-Spel fragment (pCF241, 0.8 kb of the promoter left), the 

EcoRl-Sstl fragment (pCF251, 0.6 kb of the promoter left) and EcoW-BglB. fragment (pCF261, 0.1 kb of the 

promoter left). EcoRV, Hindi and Accl and Styl and Accl were used for making internal deletions in the 

promoter fragment of pCF251, resulting in plasmids pCF271, pCF281 and pCF291, respectively. A 3.4 kb Xbal 

fragment containing a mutant A. nidulans argB allele (Punt et al., 1990) was inserted into the Spel site of pCF21 

to form pGW1201. 
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The results (Table 1) show that dissection of the Avr9 promoter from 3 kb to 0.6 kb from the 

translation start, does not affect GUS activity both in planta and in vitro. These data confirm 

previously described results showing that 0.6 kb of the promoter is sufficient for Avr9 

expression in planta (Van den Ackerveken et al., 1994). Further deletion removing all 

(pCF261) or several (pCF271, pCF281, pCF291) putative AREA/NIT2 binding sites showed 

strong reduction or complete loss of GUS activity. These results suggest that both in vitro and 

in planta, Avr9 promoter activity is dependent on the presence of these specific sequence 

motifs. 

Table 1. GUS activity in vitro and in planta of C. fiilvum transformants containing various lengths of the 
Avr9 promoter upstream of the translation start. 

construct" 

pCF211 

pCF241 

pCF251 

pCF261 

pCF004 

pCF271 

pCF281 

pCF291 

promoter size (kb)"' 

3 

0.8 

0.6 

0.1 

0 

0.4 
EcoRV deletion 

0.4 
Accl-Hincll 
deletion 
0.5 
Styl-Accl 
deletion 

PCRC) 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

-

n.d. 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
n.d. 

GUS-expression 
(in 

+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

-
-
-
-
_ 
-
-
-
+/-
+/-

-
+/-

-
+ 

vitrof 
GUS-expression 
(in planta)® 

+ 
+ 
+ 
+ 
++ 
++ 
+ 
++ 
+ 

-
-
-
-
_ 
-
-
-
+/-
+/-

-
+/-
+/-
+ 

a) Three independent transformants were analysed for each construct 
b,Size of the Avr9 promoter upstream of the start codon 
c)PCR using primers PI and P2 was performed on spores to verify the presence of the constructs 
d)Mycelium was stained with X-gluc. Very strongly stained mycelium was scored as ++, strongly stained 
mycelium as +, weakly stained mycelium as +/- and no staining as -. Each score is the average of two 
independent determinations, n.d. = not determined 
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The Avr9 promoter is active and regulated in A. nidulans 

A. nidulans was transformed with pGW1201 which contains the 0.8 kb Avr9 promoter fused 

to the uidA gene and the mutant argB allele (Figure 1). Prototrophic argB+ transformants 

were selected and one (WG802) with a single copy integrated at the argB locus was picked. 

When WG802 was grown in liquid medium containing proline as sole nitrogen source, no 

GUS activity could be detected. In A. nidulans, nitrate utilisation is dependent on the presence 

of active AREA a condition that can be met by growth on nitrate. Upon growth of WG802 on 

medium containing nitrate as sole nitrogen source no Avr9 promoter activity could be 

detected. However, upon growing the transformant under nitrogen starvation conditions GUS 

activity was induced 30 minutes after the medium shift, reaching maximum levels after 3 

hours (data not shown). Depletion of carbon, sulphate or phosphate did not result in induction 

of Avr9 promoter activity. Thus, the Avr9 promoter is induced under nitrogen limiting 

conditions in A. nidulans in a similar way as in C. fulvum. As in C. fulvum, deletion construct 

pCF261 did not exhibit any promoter activity in A. nidulans. 

In A. nidulans the Avr9 promoter is regulated by the AREA protein 

WG800 and WG801 were constructed by transforming the A. nidulans strains SAA244 

(containing the xprDl mutation, a derepressed are A allele) and SAA236 (containing the 

areAl9 mutation, a loss-of-function mutation in the areA gene) (Kudla et al., 1990) with 

pGW1201, respectively, and selecting argB+ transformants with a single copy of the plasmid 

integrated at the argB locus. When the transformants were grown for 17 hours on liquid 

medium with proline as nitrogen source, no GUS activity was observed with WG801 and 

WG802, but high activity was observed in the areA constitutive mutant WG800 (Figure 2A, 

white bars). In response to nitrogen starvation, expression in the areA wild-type WG802 is 

induced (Figure 2A, grey bars). 
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non-starved 

nitrogen-starved 

1_ 
WGSOII WGSfll WG802 G324 

Figure 2A. GUS activity of transformants 

containing one copy of the construct of interest at 

the argB locus in different A. nidulans 

backgrounds. Each bar represents the average GUS 

activity of three independent determinations. The 

GUS activity of the are A * transformant (WG802) 

after starvation is assigned 100% and GUS 

activity present in each transformant is shown as a 

percentage of WG802. G324 is the untransformed 

A. nidulans strain. WG800 and WG801 are 

transformants containing the Avr9 promoter-uidA 

fusion construct in an areA constitutive and areA" 

background, respectively. 

The areA loss-of-function mutant WG801 shows no expression, whereas expression in 

WG800 is at the same level as on proline. These results indicate that under these conditions 

the A. nidulans transcription factor AREA is (both) necessary (and sufficient) to mediate 

induction of expression of the Avr9 promoter. 

Induction of both Avr9 and niaD expression on starvation is independent of NIRA 

Induction of expression of the nitrate assimilatory genes is regarded to be dependent on the 

pathway-specific regulatory gene nirA (Burger et al., 1991a, b). To investigate a possible role 

of NIRA in Avr9 expression, WG803 was constructed as a targeted single copy transformant 

of pGW1201 in A. nidulans strain SAA9003 (containing a loss-of-function mutation in the 

nirA gene). GUS activity of this transformant was compared to that of WG802 and to 

G324[pTRAN3-lA] and SAA9003[pTRAN3-lA]. The latter two contain a fusion of the 

promoter of the niaD gene to the uidA reporter gene in the areA+ and nirA' background, 

respectively. The results (Figure 2B) show that induction of Avr9 expression is not dependent 

on functional NIRA. Surprisingly, starvation induction of the expression of niaD is also 

independent of NIRA, in contrast to induction by nitrate which is absolutely NIRA dependent 

(Punt et al., 1995). 
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| | non-starved 

^ ^ | nitrogen-starved 

AA 
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Figure 2B. GUS activity of transformants 

containing one copy of the construct of interest at 

the argB locus in different A. nidulans 

backgrounds. Each bar represents the average 

GUS activity of three independent determinations. 

The GUS activity of the areA * transformant 

(WG802) after starvation is assigned 100% and 

GUS activity present in each transformant is 

shown as a percentage of WG802. G324 is the 

untransformed A. nidulans strain. WG803 contains 

the Avr9 ptomotec-uidA fusion construct in an 

areA*, nirA background. G324[pTRAN3-lA] and 

SAA9O03[pTRAN3-lA] contain a fusion of the 

promoter of the niaD gene to the uidA reporter 

gene in the areA*, nirA* and areA*, nirA" 

background, respectively. 

Discussion 

The observations that Avr9 expression is induced in vitro under nitrogen-limiting conditions, 

together with the fact that the Avr9 promoter contains several (TA)GATA sequence motifs, 

which are canonical nitrogen regulatory elements, suggest that expression of the Avr9 gene in 

C. fulvum might be regulated by a nitrogen response protein binding to one or more of these 

consensus sequences. 

Previous experiments have shown that sequences required for expression in planta are 

contained in a small region region of the Avr9 promoter (0.6 kb) upstream of the translation 

start, in which all the putative binding sites are located (Van den Ackerveken et al., 1994). 

However, detailed gene expression studies in C. fulvum are hampered by a general lack of 

genetic information and specifically by a lack of mutants affecting the regulation of nitrogen 

metabolism. Furthermore, no gene-targeting system is available for C. fulvum, which results 

in the majority of cases in integration of the constructs of interest at random locations in the 

genome. Since the expression of an introduced gene-construct can be highly influenced by the 

chromosomal environment (Timberlake and Marshall, 1989), comparison of different 

constructs is greatly complicated. In A. nidulans, on the other hand, both an efficient gene-

targeting system and a variety of areA mutants are available. For these reasons we have 
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chosen A. nidulans as a host for initial studies on the regulation of the Avr9 promoter. An 

additional justification for this choice is the observation that functional interchange of GATA-

transcription factors between fungi is possible (Davis and Hynes, 1987; Haas et al., 1995; 

Froeliger and Carpenter, 1996). 

Monitoring GUS activity during nitrogen starvation of a single copy A. nidulans 

transformant, containing the Avr9 promoter uidA fusion construct, showed promoter activity 

30 minutes after the medium shift, reaching maximum levels after 3 hours. Maximal 

induction in vitro in C. fulvum takes 20-24 hours of starvation as measured by Northern blot 

analysis (Van den Ackerveken et al., 1994). Probably, the large difference in time required to 

deplete the intracellular pool of nitrogen reflects the difference in timing of Avr9 expression. 

The A. nidulans transformant showed no Avr9 promoter activity when grown under 

conditions where carbon, sulphate or phosphate was limiting, suggesting that in vitro the Avr9 

promoter is regulated in a similar way, both in A. nidulans and C. fulvum. 

A comparison of GUS activity in C. fulvum and A. nidulans transformants containing 

constructs in which stretches of the Avr9 promoter region had been deleted, showed the 

essence of this region for induction of expression in both organisms. This is compatible with 

the suggestion that A. nidulans contains a transcription factor(s), homologous to those of C. 

fulvum, which regulate(s) the Avr9 promoter. Therefore, A. nidulans can probably be used as a 

model system to perform detailed Avr9 promoter analyses. 

Results obtained in different are A backgrounds showed high Avr9 promoter activity in 

the constitutively expressed are A A. nidulans transformant (WG800) both during growth in 

normal, nitrogen-containing medium and after nitrogen starvation. The areA gene of this 

transformant is under control of a strong promoter which results in high levels of active 

AREA. This can explain the difference in Avr9 promoter activity of transformant WG800 and 

the areA wild-type transformant (WG802) on nitrogen- starvation media. In contrast, in the 

transformant with a non-functional areA gene (WG801), no expression occurs under either 

condition. These observations strongly suggest that the AREA transcription factor is 

mediating the expression of the Avr9 promoter, and by extrapolation that a similar factor is 

involved in the regulation of expression of the Avr9 gene in C. fulvum. 

Expression of the extensively studied nitrate reductase gene niaD is also subject to 

areA regulation, but in addition this gene is also regulated by the product of the pathway-

specific nirA gene. Classically, expression of the niaD gene is induced by changing the 

nitrogen source to nitrate (Cove, 1979). This is thought to increase the concentration/activity 

of both active AREA and NIRA. No expression of niaD in the absence of active NIRA has 
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ever been reported. In our experiments we have shown that upon nitrogen starvation AREA 

alone is sufficient to induce nidD expression. In Aspergillus niger it has been shown that are A 

expression is more strongly induced by starvation than induction on nitrate (MacCabe et al., 

1998). We conclude that the level of active AREA is probably (much) higher under starvation 

conditions, or a slightly different AREA product is formed. The potency of the areA gene to 

encode long and short versions of mRNA has been reported before (Langdon et al., 1995). 

The NIRA product is not involved in the regulation of Avr9 expression, nor is it induced by 

nitrate. This suggests that only one of the alternative forms of AREA is able to stimulate 

expression of Avr9. 

Recently, cDNA clones from C. fulvum mycelium starved for nitrogen and carbon 

were isolated which are derived from genes that are also induced during pathogenesis 

(Coleman et al., 1997). Nitrogen deprivation might be linked to pathogenesis and the loss of a 

major nitrogen-regulatory factor can possibly reduce the virulence of pathogenic fungi (Lau 

and Hamer. 1996, Talbot and Hamer. 1997). An areA loss-of-function mutant of the 

mammalian lung pathogen A. fumigatus shows significantly reduced virulence, when 

compared to an isogenic areA wild-type strain (Hensel et al., 1995). Also strains of the rice 

blast fungus Magnaporte grisea, carrying mutations in the genes nprl and nprl, which appear 

to act as wide-domain nitrogen regulatory genes, showed a dramatic reduction of 

pathogenicity (Lau and Hamer. 1996). On the other hand, inactivation of the functional M. 

grisea areA equivalent gene (nutl) did not result in reduction of virulence on susceptible rice 

plants (Froeliger and Carpenter. 1996). A better understanding of nitrogen metabolism in C. 

fulvum is needed to unravel the mechanism of regulation of the Avr9 gene and to provide 

further insight in the biological function of the Avr9 gene for the pathogen. If Avr9 expression 

in planta requires a functional GATA-transcription factor, disruption of the gene encoding 

this factor should change the phenotype of a C. fulvum Avr9+ strain on tomato genotype MM-

Cf9 from avirulent to virulent. Currently, isolation of the gene encoding this regulatory 

protein from C. fulvum is underway. 

Experimental procedures 

Strains and growth conditions 

The following Aspergillus nidulans strains were used: SAA236 (yA2, metH2, argB2, areA19), 

SAA244 (siAl, metH2, argBl, xprDl), SAA9003 (yAl, pyroAA, argh2, nirAl) and G324 (wA3, yA2, 
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metH2, argB2, galAl, sCl2, i'voA4). For mycelial growth approximately 2xl08 conidiospores were 

transferred to 100ml supplemented minimal medium (1.5g/l KH2P04 (pH 6.0), 0.5g/l MgS04.7H20, 

0.5g/l KC1 and 10g/l D-glucose, 75mg/l methionine, 4mg/l biotin, 0.1mg/l pyridoxine, and lg/1 L-

proline). Cultures were incubated for about 17 hours at 37°C in an orbital shaker at 220 rpm. For 

nitrogen- starvation, mycelium was harvested by filtration, rinsed with starvation medium and divided 

in equal portions, which were transferred to 100ml supplemented minimal medium without any 

nitrogen source. After 3 hours of incubation at 37°C, mycelium was harvested again and frozen in 

liquid nitrogen. 

The Cladosporiumfulvum pyf strain (race 4-4.2, Marmeisse et al., 1993) was grown on potato 

dextrose agar (PDA) or in liquid B5 (Duchefa) medium in shake cultures at 23°C. Ten days old PDA 

cultures of C.fulvum were used to prepare spore suspensions (5xl05 conidiospores/ml) for inoculation 

of plants and for liquid cultures. Modified B5 medium without nitrogen (B5-N) was prepared as 

described previously (Van den Ackerveken et al., 1992). For C. fulvum nitrogen starvation 

experiments, 25ml B5 medium was inoculated with 107 conidiospores and grown for 48 hours at 23°C 

and 100 rpm Subsequently, mycelium was harvested and incubated for 24 hours in B5-N medium 

Construction of plasmids 

For the construction of the plasmids used in this study, see Figure 1. Only relevant parts are depicted. 

pCF004 contains the A. nidulans pyrG gene in pBluescript (KS-). 

Generation and analysis of C. fulvum and A. nidulans transformants 

C. fulvum mycelium grown for 48 hours in liquid B5 medium was harvested by filtration and used for 

the isolation of protoplasts (Harling et al., 1988). Transformations (Oliver et al., 1987) were performed 

with 107 protoplasts and 5(ig DNA. Transformation of A. nidulans was performed as previously 

described (Wernars et al., 1985). C. fulvum pyr* transformants were analysed by PCR on 

conidiospores, using primer PI, specific for the uidA gene (5'-GAATGCCCACAGGCCGTCGAG-3') 

and primer P2 specific for the Avr9 gene (5' CTCrTCTACTCTACTGGTTAC-3'). A. nidulans argB* 

transformants were analysed by Southern blotting for the presence, location and copy number of the 

introduced construct. 

Determination of ^-glucuronidase activity 

(5-glucuronidase (GUS)-activity in C. fulvum growing in planta was assayed at ten days after 

inoculation on 14-days-old tomato plants as described previously (Van den Ackerveken et al., 1992). 
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GUS activity of C. fulvum mycelium growing in vitro was determined visually after adding 0.5mg/ml 

X-gluc (5-bromo-4-chloro-3-indolyl P-D-glucuronide, Sigma) in 50mM sodium phosphate (pH 7.0), 

ImM potassium ferri/ferro cyanide, 0.05% Triton X-100 to mycelium and incubated overnight at 

37°C. 

For A. nidulans, mycelium was ground in liquid nitrogen using a Mikro-Dismembrator II 

(Braun). Protein was extracted with a buffer containing 50mM sodium phosphate (pH7.0), lOmM 

Na2EDTA, 0.1% sarkosyl, 0.1% triton X-100, 25ug/ml phenylmethane sulfonyl fluoride (PMSF). 

After 2 centrifugation steps (10 min, 4000 rpm, 4°C; 6 min, 13000 rpm, 4°C), 50ul of the cleared 

protein extract was used for a fluorimetric assay using methyl umbelliferyl glucuronide (MUG) as a 

substrate (Jefferson et al., 1987). Specific activity was defined as produced MU in nM/min/mg protein 

at 37°C. Protein concentration was determined using the Bradford assay (Bradford, 1976). 

Acknowledgements: The authors would like to thank Dr. P.J. Punt for providing the A. 

nidulans strains G324[PTRAN3-1A] and SAA9003 [PTRAN3-1 A] and Dr. M.H.A.J. Joosten 

for critically reading the manuscript. The investigations were supported by the Dutch Earth 

and Life Science Foundation (ALW; Projectnumber: 805.45.006), which is subsidised by the 

Netherlands Organisation for Scientific Research (NWO). 

30 



Chapter three Promoter analysis of the Avr9 gene 

Chapter three 

Promoter analysis of avirulence gene Avr9 of the phytopathogenic 

fungus Cladosporium fulvum 

S. S. Snoeijers, T. Goosen, A. Perez-Garcia, M. H. A. J. Joosten, H.W. J. Van den Broek 

and P. J. G. M. De Wit 

An adapted version of this chapter has been submitted for publication 

Summary 

The promoter of avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum 

contains twelve sequences within a region of 0.6 kb that are reminiscent of the binding 

sequences of the GATA-type regulator involved in nitrogen utilisation of the filamentous 

fungi Aspergillus nidulans and Neurospora crassa. Mutational analysis of this 0.6 kb 

promoter region, fused to the GUS reporter gene, revealed that two domains, each containing 

two TAGATA-boxes in inverted orientation and overlapping by two base pairs, are important 

for induction of Avr9 promoter activity in A. nidulans. Each overlapping TAGATA-box 

differentially affected Avr9 promoter activity when shifted apart by nucleotide insertions. The 

other regions, which do not contain two overlapping TAGATA-boxes have no, or only a 

limited, contribution to the inducibility of promoter activity. The mutated Avr9 promoter 

fragments which did not show any activity in A. nidulans were fused to the Avr9 coding 

region and introduced into strains of C. fulvum lacking Avr9. C. fulvum transformants 

containing these constructs were avirulent on tomato genotypes carrying the matching Cf-9 

resistance gene, indicating that these transformants still produce the AVR9 elicitor. In vitro 

studies revealed that Avr9 gene expression is induced when the transformants are grown in 

rich, liquid media. This result suggests that, although not determined by Southern blot 

analysis, due to multiple integrations of the construct in the genome, Avr9 expression is no 

longer only induced by nitrogen-dependent factors. 

31 



Chapter three Promoter analysis of the Avr9 gene 

Introduction 

Specific elicitor AVR9, which is the product of avirulence gene Avr9 of the imperfect 

pathogenic fungus Cladosporium fulvum, is produced to high levels during colonisation of 

leaflets of its host, tomato (Lycopersicon esculentum) (De Wit, 1995; Joosten and De Wit, 

1999). Histological studies on expression of the Avr9 gene in planta, using transgenic C. 

fulvum containing an Avr9 promoter-MirfA (coding for the reporter gene B-glucuronidase, 

GUS) fusion, revealed that the promoter of this gene is induced immediately upon penetration 

of tomato leaves through stomata (Van den Ackerveken et al, 1994). Tomato genotypes 

containing the Cf-9 resistance gene specifically recognise the AVR9 peptide and respond by 

mounting a hypersensitive response (HR) that eventually leads to resistance against the 

fungus (Joosten and De Wit, 1999). 

Expression of the Avr9 gene is induced under conditions of nitrogen starvation in 

vitro, as growth on synthetic liquid media containing low amounts of any nitrogen source 

induces Avr9 expression (Van den Ackerveken et al., 1994). Knowledge on nitrogen 

metabolism of C. fulvum during growth in vitro and during colonisation of tomato leaves is 

limited. For the filamentous fungi Aspergillus nidulans and Neurospora crassa, the control of 

nitrogen-metabolic circuits has been extensively studied and was shown to be largely identical 

(Marzluf, 1997). Both fungi contain a major transcription factor, designated AREA in A. 

nidulans and NIT2 in N. crassa, that activates expression of many genes whose products are 

required for uptake and utilisation of nitrogen from various sources, when primary nitrogen 

sources such as ammonia or glutamine become limiting. 

AREA and NIT2 belong to the GATA-family of DNA-binding proteins. They contain 

a DNA-binding domain, consisting of a single zinc finger and basic region, which binds to 

specific domains that are located in the promoter region of nitrogen-regulated genes. Each 

domain either contains the consensus sequence TAGATA, the core sequence GATA or their 

complements (Chiang and Marzluf, 1995; Punt et al., 1995). It was shown that almost any 

base substitution within the core GATA sequences abolished NIT2 binding (Chiang et al., 

1994). The presence of regulatory proteins with a similar structure and function has also been 

reported for other filamentous fungi such as A. niger (MacCabe et al., 1998), A. oryzae 

(Christensen et al, 1998) and Penicillium chrysogenum (Haas et al, 1995), the lung tissue 

pathogen A. fumigatus (Hensel et al., 1995), the phytopathogens Magnaporthe grisea 

(Froeliger and Carpenter, 1996) and Gibberella fujikuroi (Tudzynski et al., 1999), and the 

insect pathogen Metarhizium anisopliae (Screen et al., 1998). 
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Individual genes controlled by AREA and NIT2 can be expressed at different levels and with 

different kinetics, which, among others, may be due to a different number, orientation or 

location of the (TA)GATA-boxes in the promoters of these genes (Chiang and Marzluf, 1995; 

Punt et al, 1995). 

Within a region of 0.6 kb of the Avr9 promoter, immediately upstream of the main 

transcription start site, twelve (TA)GATA-boxes are present. This 0.6 kb region is sufficient 

for regulated expression of Avr9 in planta and in vitro (Van den Ackerveken et al., 1994). As 

Avr9 expression is also induced under nitrogen starvation, likely also in C. fulvum, an 

AREA/NIT2-like transcription factor is involved in regulation of Avr9 expression. 

In a previous study we have shown that in transgenic A. nidulans the Avr9 promoter is 

also induced in vitro during nitrogen starvation, suggesting that the nitrogen control circuit is 

conserved in both A. nidulans and C. fulvum. Moreover, we demonstrated that Avr9 promoter 

activity in A. nidulans is dependent on active AREA and on the presence of the 0.6 kb region 

containing the (TA)GATA-boxes (Snoeijers et al., 1999). 

Here we present a detailed mutational analysis of the Avr9 promoter in A. nidulans. 

The importance of the (TA)GATA-boxes was determined by introducing specific point 

mutations and small insertions. The two overlapping TAGATA-boxes most proximal to the 

transcriptional start site, appeared to be crucial for inducibility of Avr9 promoter activity. The 

mutated Avr9 promoter fragments which did not show any activity in A. nidulans, were fused 

to the Avr9 coding region and introduced into different strains of C. fulvum lacking the Avr9 

gene. Unexpectedly, these transformants were avirulent on tomato plants only containing the 

functional Cf-9 gene, suggesting that the AVR9 elicitor is still produced by the transformants. 

Northern blot analysis revealed that Avr9 gene expression is induced when the transformants 

are grown in rich liquid media, in which Avr9 is normally not induced in C fulvum wild-type 

strains (Van den Ackerveken et al., 1994). These results indicate that, probably due to 

multiple integrations of the constructs in the C. fulvum genome, in the various transformants 

Avr9 expression is no longer only induced by nitrogen-dependent factors. 
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Results 

The effect of mutations in one or more (TA)GATA-boxes on Avr9 promoter activity in 

A. nidulans 

A region of 0.6 kb of the Avr9 promoter, immediately upstream of the start codon contains 

twelve (TA)GATA-boxes. Based on the constellation of these (TA)GATA-boxes, this region 

was divided into five putative binding domains (A to E, Figure 1A). 
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Figure 1A. Diagram of the 0.6 kb promoter region of Avr9, delineating the five putative binding domains (A to 
E) which were mutagenised. Primers used to introduce nucleotide substitutions (top) or insertions (below) are 
listed in Table 1. 

Initially, to investigate whether these (TA)GATA-boxes play a role in the induction of the 

Avr9 promoter, construct pGW1204 (Figure IB), containing the 0.6 kb region of the Avr9 

promoter, was used to introduce mutations in eight of the twelve (TA)GATA-boxes (Figure 

2A; construct pGW1281). This was done by replacing the distal A nucleotide, which is 

essential in functional GATA-boxes (Chiang et al., 1994) by a C nucleotide, using primers 2 

to 5 at the same time in the Altered Sites in vitro mutagenesis system (Table 1; see 

Experimental procedures). The mutated Avr9 promoter was subsequently fused to the coding 

region of the uidA gene, present in plasmid pGW1202 and the resulting construct, pGW1281 

(Figure IB), was transformed to the A. nidulans argBmms strain G324. A. nidulans argB+ 

transformants that gave the expected product after performing a PCR with primers PI and P2 

specific for the uidA gene and the Avr9 promoter, respectively (see Experimental procedures), 

were further analysed by Southern blotting to confirm the presence of a single copy 

integration, targeted at the argB locus (data not shown). 
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Table 1. Primers used to introduce mutations in the various putative binding domains of the Avr9 

promoter. Nucleotides that are changed and insertions are underlined. The promoter domains (A to E) 

are classified as in Figure 1 A. Mutated (TA)GATA sequences or their complements are depicted in 

bold. 

primer 

1 
2 

3 
4 
5 

6 
7 
8 

9 
10 
11 

sequence 

5-GCAAACGCG.ATCGGGTCTTGGATCGGCGGGCA-3' 
5-GGCGGGCAAGAGCTCTATCGGCTG-3' 

5'-AAACCTAGATCGCTAGTTGAC-3' 
5'-ATATTGGCTAGAGCTCTACCTAGAGC-3' 
5'-AACTTGATCTTAACTAGAGCTCTACCTAGGCA-3' 

5'-CTTGATATTAACTAGATATATCTACCTAGGCAGTAGAT-3' 
5'-CTTGATATTAACTAGATAQaCTATCTACCTAGGCAGTAGAT-3' 
S'-CTTGATATTAACTAGATAGGCTOTCCTATCTACCTAGGCAGTA 
GAT-3' 
5'-CTTCATATTGGCTAGATAlATCTACCTAGAGCAATACA-3' 
5'-CTTCATATTGGCTAGATAeeCTATCTACCTAGAGCAATACA-3' 
S'CTTCATATTGGCTAGATAGGCTGTCCTATCTACCTAGAGCAA 
TACA-3' 

domain 

A 
B 

C 
D 
E 

D 
D 
D 

E 
E 
E 

mutation(s) 

T -» G; A - C 
T ^ G ; A - > C 

A - > C 
T ->G; A - » C 
A - « C ; T - > G 
A - ^ C 
shift overlap apart 
shift overlap half a helical turn 
shift overlap a full helical turn 

shift overlap apart 
shift overlap half a helical turn 
shift overlap a full helical turn 

C W J (^-ai 
p4vi9 AurQ 

pGW1280lopGW1293 

P9P0 uidA 

PGW1202 

frinlioducad inlo A mdutens (G324) 

t>Avt9 Avfi 
pGWI294lopGWt296 

• inlioducsd inlo C. lubum Avfi m 

Figure IB. Construction of plasmids. A suitable 

plasmid (pGW1203) was created by ligation of a 

linker containing a Spel and a Hpal site, into a 

Hindlll- and Smal-digested, Klenow-treated 

pALTER™-l plasmid. Subsequently, a 0.8 kb Spel-

BspHl Avr9 promoter fragment from pCFl containing 

the various (TA)GATA-boxes (Van den Ackerveken 

et al., 1992) was Klenow-treated and cloned into 

plasmid pGW1203, creating plasmid pGW1204. 

Plasmid pGW1202 was constructed by inserting a 

Xbal fragment containing a mutated A nidulans argB 

allele (Snoeijers et al., 1999) into the Klenow-treated 

Hindlll site of pCF20 (Van den Ackerveken et al., 

1992). After mutagenesis (see Experimental 

procedures), Avr9 promoter regions were excised 

with EcoRI and BspHl and inserted in £coRI-A/coI-

digested pGW1202 (resulting in pGW1280 to 

pGW1293; see Figures 2A and 2B). The £coRI-flglII 

/tvr9 promoter fragments from the plasmids 

pGW1280, pGW1281 and pGW1287 were ligated 

into EcoRI-Bg/II digested pCFl, resulting in the 

plasmids pGW1294, pGW1295 and pGW1296, 

respectively. 

From two independent A. nidulans transformants mycelium was grown, nitrogen-starved and 

the GUS activity of mycelial extracts was determined. When GUS activity of the non-mutated 
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Avr9 promoter (pGW1280) was set at 100%, the activity of the mutant construct (pGW1281) 

was completely abolished (Figure 2A). This result indicates that the (TA)GATA-boxes are 

important for the induction of Avr9 promoter activity. 

To assess the relative importance of the individual (TA)GATA-boxes, mutations were 

introduced separately into each of the putative binding domains (Figure 1A, domains A to E). 

Single copy transformants of A. nidulans with a targeted integration of the various constructs 

at the argB locus were selected as before and analysed for GUS activity after nitrogen 

starvation. Figure 2A shows that there is no significant difference in Avr9 promoter activity 

between the transformant containing the wild-type Avr9 promoter (pGW1280) and 

transformants carrying the constructs in which the (TA)GATA-boxes of either domains A, B 

or C are mutated (pGW1282, pGW1283 and pGW1284). However, mutation of either domain 

D (pGW1285) or domain E (pGW1286) leads to a decrease in GUS activity to 10-15% of the 

level of the wild-type Avr9 promoter. Mutating both domains D and E (pGW1287) 

completely abolished inducibility, indicating that the TAGATA-boxes in these domains are 

crucial for induction of Avr9 promoter activity. 
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Figure 2A. Inducibility of the Avr9 promoter 

mutated in (TA)GATA-boxes due to 

nucleotide substitutions (for details, see Table 

1). GUS activity of single copy, targeted, A. 

nidulans transformants was measured after 

nitrogen starvation. Each bar represents the 

average of three independent determinations. 

Activity is expressed relative to that of the 

wild-type Avr9 promoter (100%; pGW1280). 

G324 is the untransformed A. nidulans strain. 

The domains of the Avr9 promoter are 

depicted as open boxes. The mutated domains 

are shown as black boxes. 
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Partial overlap of the TAGATA-boxes of domain D and E is required for Avr9 promoter 

activity 

Both domains D and E contain two TAGATA-boxes in inverted orientation and overlapping 

by two nucleotides (Figure 1A). To investigate the relevance of this feature, insertions were 

introduced that increased the distance between the two TAGATA-boxes in both domains D 

and E. Activity of these mutant Avr9 promoters in single copy, targeted, A. nidulans 

transformants was analysed as before. 

Figure 2B shows that insertion of two and five nucleotides into the TAGATA-boxes, 

thereby shifting the overlap either just apart or half a helical turn, respectively, in domain D 

(pGW1288 and pGW1289, respectively) reduced Avr9 promoter activity almost to background 

level. Insertion of ten nucleotides (shifting the overlap a full helical turn, pGW1290) restored 

Avr9 promoter inducibility to wild-type levels. This indicates that the position of the TAGATA 

sequences in domain D is crucial for induction of Avr9 promoter activity. 

A B C O E 

ZH 

- i — r — i — i — i — I — r — i — i — r 

H 

IH 

Figure 2B. Inducibility of the Avr9 promoter 

mutated in (TA)GATA-boxes due to 

nucleotide insertions (for details see Table 1). 

GUS activity of single copy A. nidulans 

transformants was measured after nitrogen 

starvation. Each bar represents the average of 

three independent determinations. Activity is 

expressed relative to that of the wild-type Avr9 

promoter (100%; pGW1280). G324 is the 

untransformed A. nidulans strain. The domains 

of the Avr9 promoter are depicted as open 

boxes. The shifted domains are shown as black 

boxes. The number of nucleotides inserted is 

depicted underneath the box. 

In contrast, introduction of two nucleotides to shift the TAGATA-boxes of domain E 

(pGW1291) showed only a slight reduction of Avr9 promoter activity. However, shifting the 

TAGATA-boxes of domain E five and ten nucleotides (pGW1292 and pGW1293) resulted in a 

strong reduction of expression, similar to that of the "loss-of-function" mutation (pGW1281, 
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Figure 2A). This suggests that for domain E the distance between the TAGATA sequences is 

important for Avr9 promoter activity. 

The effect of mutations in the (TA)GATA-boxes on expression of Avr9 by C. Julvum in 

planta 

The Avr9 gene is highly expressed in the apoplast during colonisation by C. fulvum of leaves 

from susceptible tomato plants (Van den Ackerveken et al, 1994). To reveal whether the 

(TA)GATA-boxes are also important for induction of Avr9 expression in planta, the Avr9 

promoter regions from constructs pGW1280 (non-mutated Avr9 promoter), pGW1281 

(binding domains B to E are mutated) and pGW1287 (binding domains D and E are mutated) 

were fused to the Avr9-coding region, resulting in constructs pGW1294, pGW1295 and 

pGW1296, respectively (Figure IB). These three constructs were co-transformed with the 

pAN7-l plasmid (containing the hygromycine B resistance cassette; Punt et al., 1987) to the 

natural C. fulvum strain race 2.5.9, lacking the Avr9 gene, and the transformant of race 4 in 

which the Avr9 gene has been deleted (Marmeisse et al, 1993). 

For each of the three constructs, at least two independent hygromycin B-resistant 

transformants, giving the expected PCR product using primers Avr9II and Avr9III (see 

Experimental procedures), were used for inoculation of MM-CfO (containing no known 

resistance genes against C. fulvum) and MM-Cf9C (only containing the functional Cf-9 gene; 

Parniske et al., 1997) tomato plants. Western blot analysis using antibodies raised against the 

extracellular protein ECP2, a marker for colonisation by C. fulvum (Lauge et al, 1997), 

indicated that all MM-CfO plants were equally colonised by the C. fulvum strains and 

transformants (data not shown). However, all C. fulvum transformants were avirulent on MM-

Cf9C, indicating that still a sufficient amount of AVR9 is produced by transformants 

containing a mutated Avr9 promoter region (data not shown). 

Furthermore, Northern blot analysis showed that Avr9 expression is induced in all 

transformants following nitrogen starvation in vitro (Figure 3A). However, when a selection 

of these transformants was grown in rich, liquid medium, Avr9 expression was also apparent 

(Figure 3B). 
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Figure 3. Analysis of Avr9 expression of the C. fulvum strains and transformants in vitro. Ten ng of total RNA 

was separated on 1.5% denaturing formaldehyde-agarose, blotted onto Hybond N+ membrane and hybridised 

with Avr9 cDNA (Van Kan et al., 1991) and the C. fulvum actine (act) gene. The act gene is constitutively 

expressed in C. fulvum and is used as RNA loading-control. (A) Total RNA from nitrogen-starved mycelium 

from C. fulvum wild-type strain (race 4), the Avr9-lacking strains (race 2.5.9 and the race 4 Avr9 deletion 

mutant) and the C. fulvum transformants 7.1, 7.2 (pGW1294 in the race 2.5.9 background), 8.4, 8.8 (pGW1295 

in the race 2.5.9 background), 9.2, 9.4 (pGW1296 in the race 2.5.9 background), 10.2 (pGW1294 in Avr9 

deletion mutant), 11.2, 11.3 (pGW1295 in Avr9 deletion mutant) and 12.3, 12.5 (pGW1296 in Avr9 deletion 

mutant) was isolated and hybridised with labelled Avr9 cDNA or the labelled C. fulvum act gene. (B) Total RNA 

from nitrogen-starved mycelium (lanes marked -N) or mycelium grown in rich, liquid medium (lanes marked 

+N) from a selection of the C. fulvum transformants presented in Figure 3A was isolated and hybridised with 

labelled Avr9 cDNA. 

Discussion 

Sequence analysis revealed that the Avr9 promoter contains in total twelve (TA)GATA-boxes 

which are known as binding sites for the transcription factors AREA and NIT2 in the 

filamentous fungi A. nidulans and N. crassa, respectively (Van den Ackerveken et a l , 1994). 

These regulators belong to the GATA-family of transcription factors, which have also been 

found in other pathogenic fungi such as Magnaporthe grisea (Froeliger and Carpenter, 1996) 
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and Metarhizium anisopliae (Screen et al., 1998). AREA and NIT2 positively regulate the 

expression of various unlinked genes which specify nitrogen-catabolic enzymes (Davis and 

Hynes, 1987; Fu and Marzluf, 1990), including nitrate and nitrite reductases. 

Expression of nit-3, coding for nitrate reductase in N. crassa, is completely dependent 

on the presence of NIT2. The nit-3 promoter has two NIT2-binding domains, containing five 

(TA)GATA-boxes, located 1.2 kb upstream and a single NIT2-binding domain, containing 

three (TA)GATA-boxes, present 0.3 kb upstream of the transcription start site of the nit-3 

gene. Mutation analysis of the various (TA)GATA-boxes showed that all sequences are 

important for induction of nit-3 activity (Chiang and Marzluf, 1995). In A. nidulans, 

expression of the niaD and niiA genes, coding for nitrate and nitrite reductase, respectively, 

which are divergently transcribed from an intergenic region of 1.3 kb, is regulated by AREA 

(Johnstone et al., 1990). Of the ten (TA)GATA-boxes present in this intergenic region, only 

three (TA)GATA-boxes, located 0.7 kb upstream of niaD and 0.6 kb upstream of niiA, are 

crucial for both niaD and niiA activity (Punt et al., 1995). 

By mutational analysis we have demonstrated that regulation of Avr9 expression is 

mediated by the (TA)GATA-boxes in its promoter. Mutation of all TAGATA-boxes 

completely abolished Avr9 promoter activity in A. nidulans (Figure 2A). Subsequent detailed 

promoter analysis revealed that the proximal putative binding domains D and E are essential 

for induction of Avr9 promoter activity in A. nidulans (Figure 2A). Mutations introduced into 

the more distal domains A, B and C did not influence promoter activity, when compared with 

the wild-type Avr9 promoter (Figure 2A). This result suggests that the (TA)GATA-boxes 

present in these domains are not required for induction of Avr9 promoter activity. However, 

one could envisage a role of these boxes under different environmental conditions, for 

example when the AREA protein is limiting. 

As already mentioned, the two (TA)GATA-boxes present in domains D and E are 

essential for Avr9 promoter activity in A. nidulans. Both domains contain two overlapping 

TAGATA sequences. Within both domains these sequences are in opposite orientation, while 

two nucleotides are overlapping (Figure 1A). By insertion of additional nucleotides, the 

TAGATA sequences are shifted and at the same time, the position on the helix will turn about 

36° for every inserted nucleotide. These insertions had different effects on the two putative 

binding domains D and E (Figure 2B). Insertion of two nucleotides in the TAGATA-box 

present in domain D abolished promoter activity, while insertion of two nucleotides in the 

TAGATA-box in domain E hardly affected Avr9 promoter activity (Figure 2B). Insertion of 

five nucleotides, which results in positioning the TAGATA sequences on opposite sites on the 
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helix, gave strongly reduced activity of the Avr9 promoter, both for domain D and E (Figure 

2B). Probably this shift changes the constellation of the TAGATA-box so drastically that 

binding of the transcription factor is strongly inhibited. Insertion of ten nucleotides gives a 

complete turn of 360°, leaving only a different spacing between the two TAGATA sequences. 

For promoter domain D this resulted in wild-type levels of inducible Avr9 promoter activity. 

Apparently, a functional TAGATA-box is reconstituted which suggests that for Avr9 

promoter activity, in domain D, the position of the TAGATA sequences within the box is 

more important than the distance between the sequences. 

In contrast, for domain E no restoration of promoter activity occurred when ten 

nucleotides were inserted to shift the TAGATA sequences. Here the distance between the 

sequences seems to be more important than the position of the sequences on the helix. One 

possible explanation could be that insertion of ten nucleotides results in an altered chromatin 

structure which prevents the binding of the transcription factor. Such "masking" of binding 

sites by nucleosome proteins in the promoter region has previously been observed for 

Saccharomyces cerevisiae genes. In this system, nucleosomes participate in promoter 

repression by interfering with binding of transcription factors (Svaren and Horz, 1995). 

In previous experiments with C.fulvum it was found that for the expression of Avr9 in 

vitro under nitrogen-limiting conditions, the (TA)GATA-boxes in the Avr9 promoter are 

important (Snoeijers et al., 1999). In this study we have exploited A. nidulans to analyse the 

role of these boxes in induction of Avr9 promoter activity in more detail. The most interesting 

promoter mutants were subsequently tested in C. fulvum grown in planta. 

C. fulvum transformants containing mutated Avr9 promoter fragments which did not 

show any inducibility in A. nidulans, fused to the Avr9 coding region, were avirulent on 

tomato genotypes containing the functional Cf-9 gene. This result indicates that still a 

sufficient amount of AVR9 is produced in these transformants. However, it has to be 

emphasised that in these C. fulvum transformants copy numbers of the constructs were not 

determined and the various constructs were not targeted to a specific locus in the genome. As 

a consequence, copy number and the unknown chromosomal environment of the introduced 

constructs are able to influence Avr9 expression. This seems to be the case, as in vitro studies 

showed that Avr9 expression is also induced in C. fulvum transformants growing in rich liquid 

medium. This observation made clear that a gene-targeting system is a necessity to perform 

reliable expression studies in C. fulvum. The development of such a system for C. fulvum is 

described in chapter four. 
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Experimental procedures 

Strains and growth conditions 

The Aspergillus nidulans argB1™1"" strain G324, for targeting the constructs at the argQ locus, and the 

natural isolate of race 2.5.9 of Cladosporium fulvum lacking the Avr9 gene and an Avr9 deletion 

mutant of race 4 of C. fulvum (Marmeisse et al , 1993) were used as acceptor strains for 

transformations. Growth of A. nidulans and C. fulvum in liquid shake cultures and A. nidulans nitrogen 

starvation experiments were performed as described previously (Snoeijers et al., 1999). 

For C. fulvum nitrogen starvation experiments, 100 ml of B5 medium containing 50 mM 

glutamine was inoculated with approximately 4xl07 conidiospores and the culture was incubated for 2 

days in a rotary shaker at 23°C, 100 rpm. Subsequently, mycelium was harvested, rinsed with B5 

medium and transferred to 25 ml liquid B5 medium without any nitrogen source. After 24 hours of 

incubation in a rotary shaker at 23°C, 100 rpm, mycelium was harvested again and freeze-dried. 

Construction of plasmids 

The Altered Sites in vitro mutagenesis system (Promega, Madison, Wis, USA), to obtain site-specific 

mutations in the C. fulvum Avr9 promoter region, was used according to the manufacturer's 

instructions. The construction of the plasmids for pGW1280 to pGW1293 and pGW1294 to pGW1296 

is shown in Figure IB. 

Primers used to introduce base substitutions and insertions in the Avr9 promoter are listed in 

Table 1. The sequence of the two, five, and ten nucleotide insertions are designed to keep the 

TAGATA-boxes intact, and to shift the overlap either just apart (two nucleotides), half a helical turn 

(five nucleotides), or a full helical turn (ten nucleotides). All Avr9 promoter regions were sequenced to 

confirm whether the appropriate mutations and insertions were introduced. 

Generation and analysis of A. nidulans and C. fulvum transformants 

Transformation of the plasmids pGW1280-1293 (Figure IB) to the A. nidulans arg&™n™ strain, 

targeting the constructs at the argQ locus, was performed as previously described (Wernars et al., 

1985). For transformation of C. fulvum, mycelium grown for 48 hours in liquid B5 (Duchefa) medium 

was harvested by filtration and used for the isolation of protoplasts (Harling et al., 1988). Co-

transformations were performed with 107 protoplasts (Oliver et al., 1987) and 5 jig of either plasmid 

pGW1294, pGW1295 or pGW1296 (Figure IB) in a 1:1 ratio with plasmid pAN7-l, containing the 

hygromycin B resistance gene (hph; Punt et al., 1987). 
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The initial screening of A. nidulans argB* transformants was performed by PCR on minipreps of 

genomic DNA (Thijs et al. 1995), using primer PI, specific for the uidA gene (5'-

GAATGCCCACAGGCCGTCGAG-3') and primer P2, specific for the Avr9 promoter (5'-

CTCTTCTACTCTACTGGTTAC-3'). A. nidulans transformants which gave the expected PCR 

product were further analysed by Southern blotting for the presence, location and copy number of the 

introduced construct. Determination of GUS activity of the various argR* A. nidulans transformants 

was performed as described previously (Snoeijers et al., 1999). 

Hygromycin B-resistant C. fulvum transformants were analysed by PCR, using the primers 

Avr9II, specific for the Avr9 gene (5'-CATTGTAGCTTATGAAAGTCGC-3') and Avr9III, specific 

for the Avr9 promoter (5'-GGGAGCTCCTTACACCTTGT-3'), on conidia. 

Total RNA of the C. fulvum transformants was isolated according to the Clontech (Clontech 

Inc., Palo Alto, USA) protocol. Probes were labelled using the Random Primers Labeling System (Life 

Technologies Inc., Rockville, USA) including 20|xCi cc32P-dATP (Amersham, Buckinghamshire, 

England). 

Plants and inoculations 

Ten-day-old PDA cultures of C. fulvum were used to prepare spore suspensions (approximately 5xl03 

conidiospores/ml) for inoculation of plants. The tomato cultivar Moneymaker (MM-CfO), susceptible 

to all known strains of C. fulvum and MM-Cf9C plants, only containing the functional Cf-9 gene, 

which mediates recognition of the AVR9 peptide (Parniske et al., 1997) (transgenic seeds were kindly 

provided by Dr. M. Parniske, The Sainsbury Laboratory, John Innes Centre, Norwich, England) were 

used. Five-week-old plants were inoculated with aqueous conidial suspensions as described by De Wit 

(1977). 

Isolation and analysis of apoplastic fluids 

Apoplastic fluids (AFs) were isolated as described by De Wit and Spikman (1982). AFs were analysed 

on 15% (wt/vol) SDS polyacrylamide gels. Western blot analyses were carried out after electro 

transfer of the separated proteins to nitrocellulose membrane (Schleicher and Schiill, Dassel, 

Germany). Polyclonal antibodies against ECP2 (Wubben et al., 1994), a marker for colonisation by C. 

fulvum (Lauge et al., 1997) were raised in rabbits (Veenendaal, The Netherlands). 
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Chapter four 

Development of a gene-targeting system for the tomato pathogen 

Cladosporium fulvum 

S. S. Snoeijers, T. Goosen, B. Wennekes, R. Drissen, P. Schatz, C. Reis, M. H. A. J. 

Joosten and P. J. G. M. De Wit 

Summary 

Here we describe the development of a gene-targeting system for the tomato pathogen 

Cladosporium fulvum. For this purpose we isolated the C. fulvum pyrl gene, which codes for 

the enzyme orotidine-5'-monophosphate decarboxylase (OMPdecase). OMPdecase is 

involved in the pyrimidine biosynthetic pathway and is considered to be a versatile selection 

marker for filamentous fungi. Isolation of the C. fulvum pyrl gene was based on 

complementation of an Aspergillus nidulans pyrG-minus mutant strain with digested, 

genomic DNA of C. fulvum, co transformed with an autonomously-replicating plasmid 

("instant gene bank" method). A transformation vector, containing the C. fulvum pyrl gene 

with a defined mutation, was used to transform C. fulvum pyrl-mutant strains. Southern 

analysis of the obtained pyrl* transformants showed that site-directed integration of this 

vector at the pyrl locus had occurred. A homologous C. fulvum transformation system, as 

described here, allows the targeting of constructs of interest to a certain site in the genome of 

the fungus. 

Introduction 

Selection markers which are available for transformation systems of filamentous fungi can be 

divided into dominant and auxotrophic markers. In general, dominant markers mediate 
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resistance against a toxic compound or allow utilisation of a substrate not used by the 

recipient strain. This type of markers has the advantage that they can be used in wild-type as 

well as mutant strains, as presence of a particular mutation in the recipient is not required. An 

example of a dominant selection marker is the Aspergillus nidulans amdS gene that codes for 

acetamidase, permitting growth on acetamide as sole carbon source (Kelly and Hynes, 1985; 

Beri and Turner, 1987). 

Another type of dominant selection marker is based on mutant fungal genes, isolated 

from fungicide-resistant mutants, conferring resistance to fungicides, like oligomycin or 

benomyl (Ward et al., 1986; Bull et al, 1988; Ward et al, 1988). In case dominant markers 

are based on non-fungal genes that confer resistance to antimicrobial compounds, such as 

hygromycin B, bleomycin, neomycin or kanamycin, the coding sequence of these genes has to 

be fused to fungal promoter and terminator sequences to allow adequate expression to occur. 

Such hybrid-dominant selection markers have been used for the development of 

transformation systems for a wide variety of filamentous fungi (Goosen et al, 1992). 

The use of auxotrophic selection markers is based on complementation of an 

auxotrophic mutation in the recipient strain with the corresponding wild-type gene. It has 

been demonstrated that not only the homologous gene (from the same species) but also the 

corresponding heterologous gene (from different species) can be used to complement the 

auxotrophy of the recipient. For example, the argB gene of A. nidulans, which codes for 

ornithine carbamoyltransferease, can complement argB mutants from several fungi (Buxton et 

al., 1985; Parson et al, 1987; Pentilla et al., 1987; Hahm and Bath, 1988). Similarly, it has 

been demonstrated that the nitrate reductase (nidD) gene of different filamentous fungi is 

functionally expressed in several heterologous systems (Unkles et al., 1989a and b; Daboussi 

et al., 1989; Campbell et al., 1989; Malardier et al, 1989; Whitehead et al., 1989; Johnstone et 

al., 1990; Sanchez-Fernandez et al., 1991). 

Once an auxotrophic mutant and the corresponding wild-type gene are available, it is 

possible to develop a gene-targeting system. The use of such a system provides the possibility 

of site-directed integration of a construct of interest through homologous recombination. In 

particular, for detailed studies on gene expression, site-specific integration is important to 

allow reliable conclusions to be drawn (Van Gorcom et al., 1985; Miller et al., 1987; Van 

Gorcom and Van den Hondel, 1988; Hamer and Timberlake, 1987; Punt et al., 1990). 

Based on research on various filamentous fungi, the pyr gene, which codes for 

orotidine-5'-monophosphate decarboxylase (OMPdecase), is considered to be a versatile 

auxotrophic marker (Ballance et al., 1983; Cullen and Leong, 1986; Diez et al, 1987; Goosen 
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et al, 1987), as mutants lacking OMPdecase-activity are not able to grow in media without 

uridine or uracil. OMPdecase converts orotidine-5'-phosphate into uridine-5'-phosphate in the 

pyrimidine biosynthetic pathway. 

In this study we describe a strategy to develop a gene-targeting system for the fungal 

tomato pathogen Cladosporium fulvum based on the pyrl gene. In addition to C. fulvum pyrl-

mutant strains, that have been described previously (Marmeisse et al., 1993), the 

corresponding wild-type pyr\ gene of C. fulvum still had to be isolated. 

We used the A. nidulans "instant gene bank" strategy (Gems et al., 1994) to isolate this 

gene. This strategy is based on functional complementation of an A. nidulans pyrG-mutant 

strain, using digested genomic C. fulvum DNA in combination with an autonomously-

replicating vector, designated pHELPl (Gems and Clutterbuck, 1993). A targeting construct, 

containing the C. fulvum pyrl gene with a defined mutation was used to transform C. fulvum 

pyr\-mutant strains. Southern analysis of the obtained pyrl* transformants showed that site-

directed integration of this vector at the pyr\ locus had occurred. 

Results 

Isolation of the C. fulvum pyrl gene 

The first step of the "instant gene bank" strategy to isolate the C. fulvum pyrl gene involved 

transformation of a /ryrG-mutant strain of A. nidulans (WG499) with SamHI-digested C. 

fulvum (race 5) chromosomal DNA, together with BamHI-digested pHELPl plasmid (see 

Experimental procedures). 

This resulted in 8 independent A. nidulans pyrG* transformants, that were expected to 

have resulted from the uptake of the pHELPl plasmid in which the C. fulvum wild-type pyrl 

gene had been integrated by in vivo ligation. The AMA7-sequence on the pHELPl plasmid 

allows autonomous replication. The second step involved reisolation of the recombinant 

pHELPl plasmid from total DNA isolated from the A. nidulans pyrQt transformants. 

Only from one A. nidulans pyrG+ transformant, transformation of lu,g of total DNA, 

resulted in ca. 1000 ampicillin-resistant Escherichia coli colonies. To confirm whether the 

plasmid replicated autonomously in these pyrG* transformants, the E. coli transformants were 

pooled and plasmid DNA was isolated. Subsequently, the mixture of plasmids was 

retransformed to WG499, resulting in approximately 40 A. nidulans pyrG+ transformants/(J,g 

plasmid DNA. Total DNA of one of these A. nidulans pyrG+ transformants was isolated and 
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used for retransformation of E. coli. From the resulting ampicillin-resistant E. coli colonies, 3 

different plasmids were isolated, which varied in size and showed different restriction 

patterns. One of these plasmids, pHELPl with an insert of ± 7 kb (designated pGW1241), 

complemented WG499, indicating that the entire functional C. fulvum pyrl gene is present on 

this insert. 
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Figure 1. Subcloning of the ± 7 kb genomic 

BamHI-fragment present in pGW1241 and 

strategy to obtain a plasmid for site-specific 

integration. (A) pGW1241 was digested 

with Hindlll and the 4.3 kb fragment 

containing the functional C. fulvum pyrl 

gene, was ligated into the pHSS19 vector, 

resulting in plasmid pGW1250. C. fulvum 

pyrl sequence information was obtained 

from this plasmid. (B) Subsequently, 

pGW1250 was digested with Smal and 

Nrul, resulting in pGW1270 after religation. 

To obtain a defined mutation in the pyrl 

gene, pGW1270 was digested with EcoKV 

to introduce the BamHl linker, resulting in 

plasmid pGW1273. C. fulvum pyrl" 

transformants will be obtained after 

integration at the pyr locus by a single 

crossover event (depicted as dotted lines), 

following transformation with pGW1273. A 

tandem duplication of the pyrl sequence 

(one is defective because both mutations are 

present) will be separated by vector 

sequence. Expected fragment lengths after 

digestion of the C. fulvum pyrl* 

transformants with £coRI and Hindlll, and 

hybridisation with the pyrl gene are also 

shown. Ap: Ampicillin resistance gene; 

Kan: Kanamycin resistance gene; The C. 

fulvum pyrl gene is depicted as a grey box; 

the introduced mutation is shown as a black 

box. 
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To determine the location of the pyrl gene on the insert, pGW1241 was digested with various 

restriction enzymes. The resulting mixture of restriction fragments were transformed to 

WG499 and complementation was obtained with //wuflll-digested pGW1241, indicating that 

the entire functional C. fulvum pyrl gene is present on one of these fragments. Subsequently, 

the pGW1241 //indHI-fragments were separately transformed to WG499, resulting in pyrG* 

transformants after transformation with a 4.3 kb //i/wflll-fragment. This fragment was cloned 

into vector pHSS19 (carrying a kanamycin-resistance gene; Nickoloff and Reynolds, 1991) 

resulting in plasmid pGW1250 (Figure 1A). From pGW1250 the C. fulvum pyrl gene was 

sequenced (Figure 2). 
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TTGCCCTm 

""ESS 
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T tg f e f cACA 

CCTCTCCCTC 

TCTTCSACCG 

GCICCGACAC 

CTCCTCCAGA 

GATACCGCTG 
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TTCCACACAA 

TTCCCCICAC 

CCCCAACriC 

TTATCAACTC 

GGnCTGACC 

GCCTCACTAC 

TCACCGCTCC 

CACTACCAGA 

CCCCGTCGAG 

icrcoacK 

AGCGATAAGA 

TCTCATCTIT 

CATOCGAICC 

" " " 

G C A C C C C I C C 

• " 
ACTTCGGACC 

ATCCACATCC 

GCGCTCTTCT 

GCGCCCAAAT 

CGACAACCAC 

cccccCAcrc 

CCAGCCAAGC 

C T I U I G C G C A 

ATCTATACCC 

CICTAACCAC 

"™"» c 

ACATTGGAAT TCGTTGACGA 

CATACACTCC TCAGAGAAC* 

TTCKTCGCGA 40 

T C T C T T C T C A 160 

ACGCCCTCAC ATAGCACCCC GTIAAGTCGT 1 1 0 

AGAGCAATTC AATCACGTAG 

TCCTCCCCCT ACGTGATTCA 

« ™ = "™*"™ 

ACCACTTAAT ATACCCCCCC 

CCCAACCCGC TCGCTCCCAA 

CACCAAGGAG CTCCTGGACC 

CGAGACCATC MTCGCCICA ACGCGCTGGC 

CTAACACCGT CCAGAAGCAG TACCACGCCG 

artcrcscT 

MXCCAOCTT 

GAGATGACCT CCAAGGGCTC 

CCTCCTIMC TTCGTCTCCA 

GACTICCTCC 1CTTCACCAC CGGTCtCAAC 

GGCTATTGGC CGCGCTCCCC ACTTTATCAT 

AATACCACCA CCAGGGATGC GAAGCCTATC 

TATACTCCCC 

GGGCAGACAA 310 

ATTCCCTTCT1 * 0 0 

TCCCGTTATT »>0 

CAACGAGCTC 5 SO 

TCEAATTAAA 6*0 

AACCCCTCCA 710 

CCTCTTCGAG 8 0 0 

CCAGAAGCAC 10*0 

" ™ " "" 

tTTCCCTACC 1110 

creCTCCGCT U i O 

OTTBTPTCTA 1 U 0 

CCCCGGACCT 1510 

TGGCTWTCT 1600 

AATTTCACAC ATCCATCCAA TAGCGCTTCT IStO 

TAAACTITAA CTCATCGTCT CCTCATCGAC ! ' * » 

TAGAATAATA AGnTTACAT AAGACACGGC ACCCCCCATT GCAGATCAGA 1 1 1 0 

ATGCGACCCT CGGCAAACTC CTGGAGCTAC ATCTCTACAC CCAGATCATT D I D 

CAACCTFGGC 

(XAACCATAA 

GTAATCATCG TCATAGCTCT TTCCTCTCTC 

ACTCTAAAGC ClttOCCTCCC TAATGAGTCA 

AAATTCTTAT 1 0 0 0 

GCTAACTCAC 10»0 

Figure 2. Nucleotide sequence of the C. fulvum pyrl gene. Start codon, intron, the deletion present in the two C. 

fulvum pyrl-mutant strains, the EcoRV restriction site and the termination codon are indicated. 

The sequenced region comprises 2110 bp, which includes 722 bp upstream of the open 

reading frame (ORF) and 491 bp sequence downstream of the ORF. Analysis, employing 

Dnastar and EditSeq software, revealed the presence of an ORF of 837 bp encoding 

OMPdecase. The coding region is interrupted by an intron of 60 bp, that is conserved, both in 

size and position, among most pyr genes of filamentous fungi (Figure 2). The mutation 

present in the pyrl-mutant strains of race 4 and race 5 of C. fulvum was found to be identical 

and appeared to be a deletion of 4 nucleotides, resulting in a frame-shift (Figure 2). 
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Figure 3. Alignment of the amino acid sequences of orotidine-5' monophosphate decarboxylase (OMPdecase) 

proteins from various fungi and the yeast Saccharomyces cerevisae. Ang: Aspergillus niger (Accession No 

S79674NID); Ao: Aspergillus oryzae (Accession No. AB017705NID); Af: Aspergillus fumigatus (Accession 

No. Y11303NID); Pc: Penicillium chrysogenum (Accession No. A15364NID); Cf: Cladosporium fulvum; An: 

Aspergillus nidulans (Accession No. M19132NID); Sc: Saccharomyces cerevisae (Accession No. 

NC_001137NID); Nc: Neurospora crassa (Accession No. X05993NID). Conserved amino acids are repressed as 

black boxes. Amino acid sequences were compared using ClustalW 1.8. 

The OMPdecase protein encoded by the pyrl gene of C. fulvum was compared with the 

OMPdecase proteins from A. niger, A. oryzae, A. fumigatus, Penicillium chrysogenum, A. 
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nidulans, Neurospora crassa and the yeast Saccharomyces cerevisiae. The C. fulvum protein 

reveals the highest homology with the P. chrysogenum protein (85% identical amino acids) 

and the lowest with the N. crassa protein (35% identical amino acids), which is due to the fact 

that the N. crassa protein contains a middle part of additional amino acids which is lacking in 

the other proteins (Figure 3). 

Strategy to obtain site-specific integration at the C. fulvum pyr locus 

Figure IB shows the cloning strategy followed to obtain a plasmid that can be employed for 

site-specific integration of any gene of interest at the C. fulvum pyrl locus. To reduce the size 

of the 4.3 kb pyrl-containing fragment present in pGW1250 into a 1.8 kb, the plasmid was 

digested with Smal and Nrul and religated, resulting in plasmid pGW1270. Transformation of 

pGW1270 to the two C. fulvum pyrl-mutant strains, resulted in pyrl+ transformants, 

indicating that the functional part of the C. fulvum pyrl gene is present on the 1.8 kb fragment 

present in plasmid pGW1270 (Table 1). 

To obtain a plasmid containing the C. fulvum pyrl gene carrying a defined mutation in 

the coding region, pGW1270 was digested with EcoKV, followed by insertion of a Bamffl-

linker, resulting in plasmid pGW1273 (Figure IB). Upon transformation of pyrl-mutants of 

C. fulvum with pGW1273, complementation can only occur when single crossover takes place 

at the pyrl locus. This will result in a tandem duplication of the pyrl sequence, of which one 

is defective due to the presence of two mutations (Figure IB). Table 1 shows the number of 

transformants that were obtained upon transfer of plasmid pGW1273 to the two C. fulvum 

pyrl-mutant strains. 

Table 1. Number of C. fulvum transformants obtained after introduction of plasmids 

pGW1270 or pGW1273 into the two C. fulvum pyrl- mutant strains. 

plasmids used for transformation 

pGW1270 

pGW1273 

number of C. fulvum pyr* transformants 

recipient race 4 pyrl recipient race 5 pyrl 
mutant mutant 

38 23 

5 2 

To determine whether pGW1273 had integrated at the resident C. fulvum pyrl locus, PCR on 

transgenic conidiospores was performed, using primer (Cfpyr2; see Experimental 
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procedures), annealing to sequence upstream of the pyrl gene present in the 4.3 kb Hindlll 

fragment and primer (M13R; see Experimental procedures) which anneals to the pHSS19 

vector sequence (Figure IB). Three C. fulvum pyr\+ transformants, designated 41, 411 (derived 

from the race 4 pyrl mutant) and 51 (derived from the race 5 pyrl mutant) showed the 

expected PCR fragment of 2.1 kb, indicating that the construct had integrated at the resident 

C. fulvum pyrl locus (data not shown). 

Southern blot analysis of the C. fulvum pyr* transformants 

In addition to PCR, Southern blot analysis was carried out to confirm that homologous 

recombination had occurred at the pyr locus. For this purpose, genomic DNA of the 3 C. 

fulvum pyr* transformants and the race 4 pyrl-mutant strain was isolated and digested with 

EcdBl or HindlH, respectively. 
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Figure 4. Southern blot analysis of the C. fulvum pyrl-

mutant strain (race 4) and the C. fulvum pyr* 

transformants 41, 411 and 51. Genomic DNA was 

digested with (A) EcoVl or (B) Hindlll, separated on 

0.8% agarose gel, transferred to Hybond N* and probed 

with a 32P-labelled pyrl probe (1.8 kb Hindlll 

fragment). Washes were performed at 65° C, in 

0.2xSSC, 0.1% SDS. Transformants 411 and 51 show 

£coRI fragments of approximately 6.5 and 2.9 kb and 

Hindlll fragments of 4.3 and approximately 1.9 kb 

following hybridisation with the probe. 
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In case of site-directed integration has occurred at the C. fiilvum pyrl locus, probing with the 

1.8 kb HindlU fragment from pGW1270, carrying the pyrl gene, is expected to result in 

hybridising EcoKl fragments of approximately 6.5 and 2.9 kb and Hindlll fragments of 4.3 

and approximately 1.9 kb (Figure IB). 

Transformants 411 and 51 indeed show the expected fragments after hybridisation with 

the pyrl-probe, confirming occurrence of site-directed integration (Figures 4A and B), 

whereas transformant 41 shows several additional hybridising fragments, indicating that in 

addition to homologous recombination, ectopic integration of pGW1273 had occurred. 

Discussion 

The interaction between the biotrophic fungus C. fulvum and tomato is a well established 

model to study plant-pathogen interactions. Until now, several C. fulvum genes have been 

isolated which are highly expressed during growth of the fungus in the tomato plant (Joosten 

and De Wit, 1999). One of such genes is avirulence gene Avr9, of which expression is highly 

induced when C. fulvum colonises the intercellular spaces of tomato leaves (Van Kan et al., 

1991). The Avr9 promoter contains several sequences which are known to act as binding sites 

for a major nitrogen regulatory protein in the filamentous fungi A. nidulans and N. crassa 

(designated AREA and NIT2, respectively) (Van den Ackerveken et al., 1994). For detailed 

studies on regulation of the Avr9 gene, it is essential that subtle differences in mutant Avr9 

promoter activity can be detected. For these studies, it is a prerequisite that C. fulvum 

transformants carry the mutant Avr9 promoter constructs as a single copy and in an identical 

chromosomal environment. 

Until now, C. fulvum is genetically poorly characterised. Here we describe the 

development of a homologous transformation system, designed for targeting constructs of 

interest to a one known site in the genome of the fungus. As pyrl mutants of C. fulvum were 

already available (Marmeisse et al., 1993), we decided to develop such a targeting system 

based on this marker gene. An additional advantage of the pyr gene is that only very low 

frequencies of spontaneous reversion have been reported in literature, suggesting that the pyr 

gene can be considered as a strong selection marker (Goosen et al., 1987). Successful 

targeting based on homologous recombination at the pyr locus has been reported for A. niger, 

A. nidulans and A. awamori (Van Gorcom and Van den Hondel, 1988; Gouka et al., 1995). 
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For isolation of the C. fulvum pyrl gene, "instant gene bank" strategy was used, which 

involves in vivo ligation of the genomic fragment containing the functional C. fulvum pyrl 

gene into the autonomously-replicating pHELPl plasmid (Gems and Clutterbuck, 1993). The 

advantage of this strategy is that complementation occurs by a plasmid-borne gene. Therefore, 

the entire gene, including essential regulatory regions, must be present on the complementing 

recombinant pHELPl plasmid. This method was used in A. nidulans to isolate the trpC gene 

of Penicillium canescens (Gems et al., 1994) and the pyrG gene of the plant pathogen 

Gaeumannomyces graminis (Bowyer et al., 1994), supporting that this is an efficient method 

which obviates the need for conventional gene library construction. 

On the other hand, the strategy still has several unpredictable steps. From only one, 

out of 8 A. nidulans pyr+ transformants, a sufficient amount of pHELPl plasmids could be 

recovered. No pHELPl plasmids could be rescued in E. coli from the other A. nidulans pyr* 

transformants, which is probably the result of disruption of vector sequences present in the 

recombinant pHELPl plasmid that are essential for propagation in bacteria. 

In a targeting experiment, seven C. fulvum pyr+ transformants were obtained upon 

introduction of the construct containing the functional C. fulvum pyrl gene with a defined 

mutation into both race 4 and race 5 C. fulvum pyrl-mutant strains. Southern blot analysis 

revealed that two of these transformants had a single integration at the C. fulvum pyrl locus, 

indicating that site-specific, single copypyrl+ transformants were obtained. 

From previous observations it is known that homologous recombination, is not very 

efficient in C. fulvum (Marmeisse et al., 1993). However, the limited number of pyrl* 

transformants by using the targeting construct, pGW1273, was possibly due to the fact that 

the introduced mutation in the construct, described here, is very close to the resident mutation. 

The small distance between both mutations reduces the chance of homologous recombination, 

and as a consequence, the efficiency of the targeting system. To increase the chance of 

homologous recombination, the defined mutation in the pyrl gene of the targeting construct 

should be more distal from the mutation in the resident gene. 

An other possibility to obtain a larger distance between both mutations is 

transformation of C. fulvum pyrl wild-type strains with a construct containing the pyrl gene 

with a defined mutation which is located more to the 5' or 3' end of the pyrl mutation which is 

present on the targeting construct. After transformation, C. fulvum transformants can be 

selected for 5-fluoro-orotic acid resistance, indicating that the pyrl gene is not functional and 

that possibly replacement of the resident wild-type C. fulvum pyrl gene, with the defined pyrl 
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mutant gene, has occurred. The latter principle is described for A. awamori (Gouka et a l , 

1995). 

We can conclude from the research described here, that, although a greater distance 

between both pyrl mutations would increase efficiency, gene-targeting, based on site-directed 

integration at the pyrl locus, is possible for C. fulvum. The /ryr-based targeting system used to 

study the regulation of several cloned genes of C. fulvum such as the cloned Avr and Ecp 

genes (Joosten and De Wit, 1999) 

Experimental procedures 

Strains and growth conditions 

For complementation cloning, the Aspergillus nidulans /jyrG-mutant strain WG499 (yAl, pyrG89, 

acrAl, pyroAA, meiAA ) was used. For cultivation of mycelium, approximately 2xl08 conidia were 

transferred to 100ml supplemented minimal medium (1.5g/l KH2P04 (pH 6.0), 0.5g/l MgS04.7H20, 

0.5g/l KC1 and 10g/l D-glucose, 0.1mg/l pyridoxine and lg/1 L-proline). Cultures were incubated for 

ca. 17 hours at 37°C in an orbital shaker at 220 rpm. 

The Cladosporium fulvum pyrl-mutant strains (race 4 and race 5; Marmeisse et al , 1993), 

were grown on potato dextrose agar (PDA) or in liquid B5 (Duchefa) medium, supplemented with 2g/l 

uridine, in shake cultures at 23°C. Ten-day-old PDA cultures of C. fulvum were used to prepare 

conidial suspensions (5xl05 conidia/ml) for liquid cultures. 

Generation and analysis of A. nidulans and C. fulvum transformants 

For co transformations of A. nidulans, aimed at complementation of the pyrG mutation, 100|ig 

BcmHI-digested C. fulvum (race 5) chromosomal DNA in combination with 40u,g of linear BamYH-

digested pHELPl plasmid was used to transform 2.107 protoplasts (Wernars et al., 1985). The 

pHELPl plasmid carries a 6.1 kb A. nidulans sequence (AMA1) responsible for autonomous 

replication and the Escherichia' coli ampicillin resistance gene (Gems and Clutterbuck, 1993). 

C. fulvum mycelium, grown for 48 hours in liquid B5 medium, was harvested by fdtration and 

used for the isolation of protoplasts (Harling et al., 1988). Transformations (Oliver et al., 1987) were 

performed with 107 protoplasts and lOug plasmid DNA. As a first screen, C. fulvum pyrl* 

transformants were analysed by PCR on conidia, using primers Cfpyr2 (5'-

CGCGATATTATGGGATTTCA-3'; annealing to the 5'-end of the pyrl gene, not present in plasmid 
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pGW1273, which is used for targeting the construct to the C. fulvum pyrl locus, see Figure IB) and 

M13R (5'-CAGGAAACAGCTATGAC-3'; annealing to vector (pHSS19) sequence. 

DNA manipulations 

Standard DNA manipulation techniques were as described by Sambrook et al. (1989). The E. coli 

strain DH5oc F was used to propagate the plasmids. Isolation of A. nidulans and C. fulvum DNA was 

performed as described by Yelton et al. (1984). 

Following restriction enzyme digests, DNA fragments were separated on 0.8% agarose gels 

and transferred to Hybond N+ membranes, using 0.4 M NaOH according to the manufacturer's 

instructions (Amersham). Membranes were probed with random-primed [a-32P]dATP-labelled DNA 

fragments and washes were performed at 65° C, in 0.2xSSC, 0.1% SDS). 

Phylogenetic analysis 

Protein alignments were performed using ClustalW 1.8. The alignment file was analysed using the 

Boxshade 3.21 program (http://dot.imgen.bcm.tmc.edu:9331/multi-align/multi-align.html). 

Phylogenetic analysis was performed using the Clustal method with PAM250 residue weight table 

(MegAlign, DNAstar program). 
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Chapter five 

Expression of the a virulence gene Avr9 of the fungal tomato 

pathogen Cladosporium fulvum is regulated by the global nitrogen 

response factor NRF1 

A. Perez-Garcia, S. S. Snoeijers, M. H. A. J. Joosten, T. Goosen and P. J. G. M. De Wit 

An adapted version of this chapter has been submitted for publication 

Summary 

Here we describe the role of the Cladosporium fulvum Nrfl (for nitrogen response factor 1) 

gene in regulation of the expression of avirulence gene Avr9 and virulence on tomato. The 

Nrfl gene, which was isolated by a PCR-based strategy, is predicted to encode a protein of 

919 amino acid residues. The protein contains a putative zinc finger DNA-binding domain 

that is 98% identical to the zinc finger of the major nitrogen regulatory proteins AREA and 

NIT2 of Aspergillus nidulans and Neurospora crassa, respectively. Functional equivalence of 

Nrfl to are A was demonstrated by complementation of an A, nidulans areA loss-of-function 

mutant with Nrfl. Nrfl -deficient transformants of C. fulvum that were obtained by 

homologous recombination, were unable to utilise nitrate and nitrite as a nitrogen source. 

Expression analysis in liquid media revealed that in Nrfl -deficient strains, the Avr9 gene is 

not induced under nitrogen starvation conditions, which is in contrast to what is observed in 

wild-type C. fulvum. On susceptible tomato plants the Nrfl -deficient strains were as virulent 

as wild-type strains of C. fulvum although the expression of the Avr9 gene was strongly 

reduced. In addition, Nrfl -deficient strains were still avirulent on tomato plants containing the 

functional Cf-9 resistance gene, indicating that in planta apparently still sufficient quantities 

of stable AVR9 elicitor are produced. Our results suggest that NRF1 is a major regulator of 

the Avr9 gene, but that in planta at least one additional positive regulator of Avr9 is active. 
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Introduction 

Plant pathogenic bacteria and fungi generally have limited host ranges, and are often confined 

to members of a single plant species or genus. This appears to result from the products of 

avirulence (Avr) gene(s), present in the pathogen, restricting the host range rather than from 

positive factors which allow the pathogen to infect many hosts. Avr gene products are 

recognised by plants that carry the matching resistance (R) genes. When a pathogen, carrying 

an Avr gene, attacks a plant with the matching R gene, a hypersensitive response (HR) is 

triggered which results in localised host-cell death, preventing onset of the disease and spread 

of the pathogen. In absence of either one or both members of the AvrlR gene pair, the plant 

fails to recognise the pathogen, HR is not triggered and the host will become diseased (Vivian 

and Gibbon, 1997; Lauge and De Wit, 1998). 

The expression of Avr genes seems to be subject to environmental stimuli and 

nutritional signals. Expression of Avr genes from Pseudomonas syringae and Erwinia 

amylovora has shown to be induced in vitro by culturing bacteria on minimal media (Shen 

and Keen 1993; Lorang and Keen 1995; Gaudriault et al., 1997; Bogdanove et al., 1998). 

Both expression of P. syringae Avr and hrp (hypersensitive response and pathogenicity) genes 

occurs under similar environmental conditions. In this plant-pathogenic bacterium, Avr and 

hrp genes are under control of a multi-component regulatory system, consisting of the hrp 

genes hrpS, hrpR and hrpL. The products of these genes control expression of /»p-responsive 

genes under conditions similar to those encountered by bacteria in planta, such as low pH and 

low nutrient concentration (Salmeron and Staskawicz, 1993; Xiao and Hutcheson, 1994; Xiao 

et al., 1994). 

However, very little is known of regulation of fungal Avr genes. An exception is Avr9 

of the fungal pathogen Cladosporium fulvum, which encodes a 28 amino acid peptide (Van 

Kan et al, 1991; Van den Ackerveken et al. 1992). Virulent races transformed with the Avr9 

gene become avirulent on tomato genotypes carrying the R gene Cf-9. The Avr9 gene is 

highly expressed in C. fulvum while growing in planta, whereas expression of Avr9 during 

growth in rich liquid media in vitro is very low (Van Kan et al., 1991). Several observations 

suggest that Avr9 expression is nitrogen-controlled. First, nitrogen limitation in vitro induces 

Avr9 expression. Secondly, in the promoter of Avr9 several copies of the sequence 

(TA)GATA are present, which in Aspergillus nidulans and Neurospora crassa are known to 

represent binding sites for the major nitrogen regulatory proteins AREA and NIT2, 

respectively (Van den Ackerveken et al., 1994). In previous experiments we have shown that 
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the A. nidulans AREA protein induces Avr9 promoter activity in A. nidulans (Snoeijers et al., 

1999). 

These nitrogen regulatory proteins are members of the GATA family of transcription 

factors and contain a remarkably similar DNA-binding domain, which consists of a single 

Cys2/Cys2-type zinc finger motif with a central loop of 17 amino acids and an adjacent basic 

region. In both A. nidulans and N. crassa, these GATA-type transcription factors activate 

expression of many genes whose products are required for the uptake and utilisation of 

nitrogen from various sources (e.g., nitrate, nitrite, purines, amides, most amino acids, and 

proteins), when primary nitrogen sources, such as ammonia or glutamine, are not available or 

during conditions of nitrogen starvation (Marzluf, 1997). The presence of regulatory proteins 

with a structure and function similar to AREA and NIT2 has been reported for other 

filamentous fungi, such as many Aspergillus and Penicillium species (Fu and Marzluf, 1990; 

Kudla et al., 1990; Haas et al., 1995; Ellis, 1996; Christensen et al., 1998; Hensel et al., 1998; 

MacCabe et al., 1998; Gente et al., 1999). Furthermore, the plant pathogens Magnaporthe 

grisea (Froeliger and Carpenter, 1996) and Gibberella fujikuroi (Tudzynski et al., 1999) and 

the insect pathogen Metarhizium anisopliae (Screen et al., 1998) have been shown to contain 

AREA/NIT2-like proteins. 

Some of these genes have also a role in expression of secondary metabolites. The NRE 

protein of P. chrysogenum binds to GATA sequences in the intergenic promoter regions of 

the penicillin biosynthetic gene cluster (Haas and Marzluf, 1995), whereas the G. fujikuroi 

AREA protein is involved in regulation of gibberellin synthesis (Tudzynski et al., 1999). 

Here we describe the isolation of the gene that encodes a GATA factor of C. fulvum, 

designated Nrfl (for nitrogen responsive factor 1), and report on its role in regulation of Avr9 

expression in vitro and in planta. We found that Avr9 expression in Nrfl -deficient 

transformants was abolished in vitro, following nitrogen starvation, and was strongly 

repressed on plants normally susceptible to the parent C. fulvum strains. However, Nrfl-

deficient transformants did not show significant reduction in virulence, nor did they loose 

avirulence on Cf-9 containing plants. 

Taken these data together, we conclude that the NRF1 nitrogen factor is a major 

regulator of Avr9 expression but that upon growth in planta at least one additional positive 

regulator of Avr9 is active. 
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Results 

Isolation of the C.fulvum areA/nit-2 homologous gene 

To isolate the C. fulvum areA/w'r-2-homologous gene, a PCR-based strategy was followed. 

Initially, PCR with degenerated oligonucleotide primers based on the zinc finger domain of 

the areA and nit-2 gene of A. nidulans and N. crassa, respectively, (see Experimental 

procedures; Haas et al., 1995) were performed. Amplification by PCR resulted in a product of 

141 bp. The DNA sequence of this PCR-product revealed high homology with the region that 

encodes the DNA-binding zinc finger domain of other known AREA/NIT2-like proteins. 

Subsequently, PCR with specific zinc finger primers in combination with primers annealing 

to the vector sequences (see Experimental procedures) was carried out to isolate sequences 

flanking the zinc finger domain. For this approach, a cDNA library prepared from C. fulvum 

mycelium grown under nitrogen starvation conditions was used as template. PCR on this 

library resulted in products of 1.2 kb and 300 bp, respectively. Both PCR-products were 

sequenced and again showed high homology to other fungal areA/nit-2 like-genes. 

A genomic 1.2 kb PCR-product, which was obtained by using two additional specific 

primers (see Experimental procedures), was used as homologous probe to screen a genomic 

library of C. fulvum. Following two purification steps, six plaques were identified as putative 

candidates containing at least a part of the areA/nit-2 homologue of C. fulvum. All six clones 

showed a similar restriction pattern (data not shown), whereas Southern blot analysis showed 

the same hybridisation pattern for all clones, using the genomic 1.2 kb PCR-product as probe, 

indicating that similar genomic DNA fragments were present in these clones (data not 

shown). 

Functional analysis of the C.fulvum areA/nit-2 homologue 

To determine whether the C. fulvum genomic clones contain a functional areA/nit-2 

homologue, clones 1 to 6 were transformed to the A. nidulans areA-loss-of-function mutant 

areAlS (Arst et al., 1989). As for A. nidulans a functional AREA protein is required for 

nitrate assimilation (Caddick et al. 1994), selection was performed by determination whether 

growth of the transformants occurred on minimal medium, with nitrate as sole nitrogen 

source. A positive control, the wild-type A. nidulans areA gene, which is present on the 
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pAR4-322-l plasmid (Davis and Hynes, unpublished) was transformed. All C. fulvum 

genomic clones resulted in A. nidulans transformants which were able to grow on this nitrate-

selective medium. 

Twenty independent A. nidulans transformants containing either genomic clones 1 or 3 

of C. fulvum were chosen for analysis of additional growth properties on minimal medium 

supplemented with various nitrogen sources (Table 1). In all cases, the growth properties of 

the transformants resembled those of the A. nidulans are A wild-type strain and the (positive 

control) pAR4-322 transformants. Therefore, we concluded to have isolated the C. fulvum 

areA/nit-2 homologue, which we designate Nrfl (for nitrogen response factor 1). 

Table 1. Growth properties of strains of Aspergillus nidulans and transformants of this fungus on minimal 

medium, supplemented with various nitrogen sources. Growth properties of the A. nidulans wild-type (A4) and 

areA-loss-of-function mutant arehXZ are shown, in addition to the growth properties of transformants of the 

areA18 mutant. 

supplemented 
nitrogen source 
(5mM) 

ammonia 
nitrate 
nitnte 
glutamate 
histidine 
asparagine 
adenine 
hypoxanthine 
uric acid 
glutamine 

A. 

A4 

+ + + b ,c ) 

+++ 
+++ 
+++ 
+/-
+++ 
+++ 
+/+ 
+ 
+++ 

nidulans strains 

areA18 

+++ 

-
-
-
-
-
-
-
-
+++ 

pAR4 
+++ 
+++ 
+++ 
+++ 
+/-
+++ 
+++ 
+ 
+ 
+++ 

A. nidulans areA18 strain 
transformed with:" 

clone 1 
+++ 
+++ 
++ 
+++ 
+/-
+++ 
++ 
+ 
+ 
+++ 

clone 3 
+++ 
+++ 
++ 
+++ 
+/-
+++ 
++ 
+ 
+ 
+++ 

a) Plasmid pAR4-322-l contains the A. nidulans are A wild-type gene; 

C. fulvum clones 1 and 3 contain the putative areAJnit-2 homologue of Cladosporium fulvum (see text for 

details) were transformed to A. nidulans areA18. 
b'+++: strong growth; ++; good growth; +: growth; +/-: weak growth; -: no growth 
c) For the growth tests 20 representative A. nidulans transformants were chosen. 

Sequence analysis of the C. fulvum Nrfl gene 

Genomic clone 1 of C. fulvum was found to contain an insert of 5206 bp, which includes 1171 

bp upstream of the predicted ATG, 2754 bp of coding sequence and 1217 bp of downstream 

non-coding sequence. In addition, DNA sequence analysis showed that clone 3 contains a 

promoter region of approximately 500 bp, indicating that, at least in A. nidulans, this fragment 
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contains sufficient Nrfl promoter elements to allow Nrfl expression and utilisation of 

secondary nitrogen sources. 

IS A WP GA AIHNAP TQ RTXNSNRIPN S R 
--S--VAR--N-ANRPSRRFA 

IDSMAG TGLGGAAM S S S S ANNN HNQH 
AAPGRDPGSDSSDD 

YDSVSGTSSAIASLTS 

AREA 384 KNSSVPSAl 
AREA 37 9 A 
NIT2 434 G--PNN<_ 
NUT1 347 N GQSS' 
NRF1 381 N NFQPPPSi 

AREA 
AREA 432 VPAYITQRSS] 
NIT2 48"? Q--PY§PG{$HC 
NUT1 399 --SHSFRQPSATtyjMQ' 
NRF1 430 --SFQPHHHQQSAW 

SNGNS- - -GS™§s5PGTAiESI^ 
ISSQDITQQNAHM|AQJ _ 

LGNGN MMijPJj[sSAGQDPTPsl 
•GGFSPQSMASNGM^^TSGm ,F| 

|pNSDSKFSAIASTSAPAHHSGFNQP\if 

FSAGGLAMPAEFJ 

JSQGMEE 
WSS^JPGAHDE 
M*P1 

: AREA 
: AREA 
: NIT2 
: NUT1 
; NKF1 

PMVG PGgMHGMPfGQAgQMMGASSSSGPGSgPSRTGA| 
914 MITPGMlSGGMSTSALSSTGG LLSSGSfAATi 
876 QMVPPGSSEAGPG?MTPlQHGP PPGVPPSMIT? 

Figure 1. Comparison of the amino acid 

sequence of Cladosporium fulvum NRF1 with 

AREA/NIT2-like proteins from various other 

fungi. Gf: Gibberella fujikuroi (AREA; 

Accession Yl 1006NID); An: Aspergillus 

nidulans (AREA; Accession X52491NID); Nc: 

Neurospora crassa (NIT2; Accession 

M33956NID); Mg: Magnaporthe gnsea (NUT1; 

Accession U60290NID); Cf: Cladosporium 

fulvum. Conserved amino acids are indicated in 

black boxes. Homologous amino acids are 

indicated in grey boxes. Amino acid sequences 

were compared using ClustalW 1.8. 

A dash (-) represents a gap position. 
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The Nrfl gene is predicted to encode a 918 amino acid protein. The coding region is 

interrupted by one intron of 64 bp that occurs at approximately the same position as the intron 

that is conserved among all fungal areAJnit-2-\ike genes. Furthermore, the intron shows 5' 

and 3'-splicing sites which are typical for filamentous fungi. Comparison of the C. fulvum 

NRF1 with the major nitrogen regulatory proteins of Gibberella fujikuroi, A. nidulans, N. 

crassa and Magnaporthe grisea reveals significant homology at the amino acid level (Figure 

1). 

Within the zinc finger domain 48 out of 50 amino acids are identical among all 

AREA/NIT2-like proteins analysed so far. Ten C-terminal amino acids are also highly 

conserved. In N. crassa this C-terminal region has been shown to interact with the NMR 

protein (for nitrogen metabolic repression), which is involved in nitrogen metabolite 

repression (Marzluf, 1997). 

Disruption of the C. fulvum Nrfl gene 

To inactivate the Nrfl gene by gene replacement following homologous recombination, a 

Nrfl -disruption construct, designated pNRFIKO, was obtained by introducing the 

hygromycin B resistance expression cassette (hph, Punt et al., 1987) into the domain coding 

for the Nrfl zinc finger (Figure 2A). 

Approximately 900 hygromycin B-resistant transformants were generated following 

transformation of the C. fulvum wild-type strains race 4 and race 5 with pNRFIKO. As for 

nitrate assimilation a functional NRF1 protein is expected to be required, all hygromycin B-

resistant transformants were tested for growth on C. fulvum minimal medium with sodium 

nitrate as sole nitrogen source. Thirty-seven hygromycin B-resistant transformants were not 

able to grow on this nitrate-selective medium. Subsequently, these transformants were 

analysed by PCR, using Nrfl-(p9 and plO; see Experimental procedures) and hph (pl2; see 

Experimental procedures)-specific primers, on their genomic DNA. 

Three out of the thirty-seven transformants gave a PCR-product, indicative of a 

disrupted Nrfl gene. The three transformants, two originating from race 4 (4.94 and 4.125) 

and one from race 5 (5.224), were analysed by Southern blotting for presence, location and 

copy number of the introduced construct. Transformant 4.125 contained one additional 

integration of pNRFIKO in the genome and was not used for further analyses (data not 

shown). Both 4.94 and 5.224 are single copy transformants with a unique integration of the 
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2.8 kb hph cassette in the Nrfl locus (Figure 2B). Nrfl-disruptants 4.94 and 5.224 were used 

for further study. 

hph-probe 

s s s s 

f t 

mz-mn-yn | |i^j 

Nrfl -probe 

2 ^ 2 ui 

«•> * 1 » — 3 Kb 

Figure 2. Disruption by replacement of the Nrfl gene in C.fulvum. (A) The 2.8 kb blunted Hindm/Sstl fragment 

of pAN7-l (Punt et al., 1987), containing the hygromycin B resistance gene (hph cassette; depicted as a white 

box), was ligated into the blunted Notl site of the sequence coding for the zinc finger domain (depicted as black 

box) of the genomic 1.2 kb Nrfl PCR-product (depicted as grey box) which was cloned in the TA cloning vector 

pCR 2.1, resulting in pNRFlKO. Single copy integration of pNRFIKO at the Nrfl locus will result in a 5.8 kb 

Xhol fragment hybridising with the hph cassette or the Nrfl gene. (B) Southern blot analysis of Xftol-digested 

genomic DNA isolated from C. fulvum wild-type strains (race 4 and race 5) and the Nrfl -disruptants 4.94 and 

5.224, using the 2.8 kb hph cassette or the genomic 1.2 kb Nrfl PCR fragment as probe, showed that in 4.94 and 

5.224 the 2.8 kb hph cassette had replaced the Nrfl gene. 

To characterise the C. fulvum Nrfl -disruptants, growth properties of disruptants 4.94 and 

5.224 on minimal medium supplemented with various nitrogen sources were compared to 

those of the wild-type strains, race 4 and race 5 (Table 2). 
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Table 2. Growth properties of C. fulvum wild-type strains, race 4 and race 5, and the corresponding Nrfl-

disruptants 4.94 and 5.224, respectively. 

supplemented 
nitrogen source 
(SmM) 

ammonia 
nitrate 
nitnte 
glutamate 
histidine 
asparagine 
adenine 
hypoxanthine 
uric acid 
glutamine 

C. fulvum wild-type strains 

race 4 race 5 
+++" +++ 
+++ +++ 
+++ +++ 
+++ +++ 
++ ++ 
+++ +++ 
+/- +/-
+/- +/-
++ ++ 
+++ +++ 

corresponding Nr/l-disruptants 

4.94 5.224 
+ + 

-
-
+ + 
+/- +/-
+ + 

-
-
+/- +/-
+++ +++ 

a)+++: strong growth; ++: good growth; +: growth; +/-: weak growth; -: no growth 

As shown in Table 2, C. fulvum race 4 and race 5 displayed strong growth on most of the 

various nitrogen sources. In contrast, the 7V>/l-disruptants were unable to utilise nitrate and 

nitrite, but still utilised glutamine and to a lesser extent other nitrogen compounds, such as 

ammonia, glutamate and asparagine. 

Avr9 expression of the Nr/1-disruptants of C. fulvum is abolished under nitrogen 

starvation in vitro 

Avr9 expression can be induced under conditions of nitrogen limitation in vitro. In the 

promoter of the Avr9 gene several copies of putative binding sites for AREA/NIT2 factors are 

present (Van den Ackerveken et al., 1994), suggesting that the NRF1 factor can bind to these 

sites, and induce Avr9 expression. Previous experiments have shown that in A. nidulans, the 

activity of the Avr9 promoter is induced under nitrogen starvation conditions and that the 

expression of the Avr9 gene is fully dependent on presence of AREA (Snoeijers et al., 1999). 

Northern blot analysis was performed in order to determine whether the Avr9 gene is induced 

in the 7Vr/l-disruptants 4.94 and 5.224 under nitrogen starvation conditions, in vitro. 

Conidiospores from the wild-type strains race 4 and race 5 and the corresponding 

Nr/1-disruptants were grown in B5 medium, supplemented with 50 mM glutamine. After 2 

days, mycelium was harvested, divided into equal portions and transferred to B5 medium 

supplemented either with 50 mM glutamine (areA-repressing nitrogen source in A. nidulans) 

or 50 mM nitrate (areA-inducing nitrogen source in A. nidulans), or without any nitrogen 
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source (areA-inducing condition in A. nidulans). After 24 hours of incubation, total RNA was 

isolated and Avr9 expression was followed by Northern blot analysis. As shown in Figure 3, 

in the wild-type strains, Avr9 is not only induced under nitrogen starvation but also, albeit to a 

much lower extent, in medium supplemented with nitrate as sole nitrogen source. In both 

Afr/1-disruptants, no Avr9 was observed under any of the conditions applied. 

Avi9 

act 

race 4 4.94 

Bhitamina nitrate -N glutamlna nitrate -N 

• 4 k a d i » A l taM 

race 5 5.224 

OiiHamirw nitrate -N glutamine nitrate -N 

Avr3 ..,„» | B K . 

act ^ J ^ ^ ^ T B B ^ ^ ^ ^ ^ 

Figure 3. Analysis of Avr9 expression in vitro of the C. fulvum wild-type strains and the corresponding Nrfl-

disruptants. Avr9 expression in C. fulvum grown in vitro in liquid B5 medium containing 50 mM glutamine 

(lanes marked glutamine), 50 mM nitrate (lanes marked nitrate) or no nitrogen source (lanes marked -N). Total 

RNA (10 ug) was separated on 1.5% denaturing formaldehyde-agarose, blotted onto Hybond N+ membrane and 

hybridised with Avr9 cDNA (Van Kan et al., 1991) and the C. fulvum actine (act) gene. The act gene is 

constitutively expressed in C. fulvum and is used as RNA loading-control. 

C. fulvum wild-type strains and Nr/1-disruptants show no difference in virulence on 

susceptible tomato plants 

Using a standard inoculation assay of susceptible MM-CfO tomato plants (see Experimental 

procedures), sporulation and disease symptoms caused by the single copy 7V>/l-disruptants 

4.94 and 5.224 were comparable to those caused by wild-type strains. Two weeks after 

inoculation conidiophores emerged from the stomata at the lower side of leaves and started to 

produce conidiospores. Western blot analysis of apoplastic fluid (AF), isolated from infected 

leaves 20 days after inoculation, probed with antibodies raised against ECP2 (Lauge et al., 

1997), showed similar concentrations of ECP2 in MM-CfO plants irrespective whether they 

were inoculated with wild-type strains, or with Nrfl-disruptants (data not shown). 

In addition, Southern blotting performed with DNA isolated from MM-CfO leaves 

infected by wild-type strains and the Nrfl -disruptants digested with Xhol. and probed with the 
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genomic 1.2 kb Nrfl PCR-product, gave no signals indicating the true nature of both 

disruptants (data not shown). 

Avr9 expression in C. fulvum Mr/1-disruptants is reduced in planta 

When susceptible tomato plants were inoculated with Avr9-containing C. fulvum strains, the 

Avr9 gene is highly expressed during growth in planta (Van Kan et al., 1991; Van den 

Ackerveken et al, 1994). To determine whether the Nrfl -disruptants still produce AVR9 in 

planta, AFs were isolated from MM-CfO tomato leaves, 20 days after inoculation with the 

wild-type strains race 4 and race 5 and the corresponding Nrfl -disruptants 4.94 and 5.224, all 

containing the Avr9 gene. 

Although Western blot analysis (see above) showed that colonisation of MM-CfO 

plants by both wild-type strains and corresponding Nrfl -disruptants was comparable, 

injections of the various AFs into leaves of MM-Cf9 plants revealed that the production of 

AVR9, determined by necrosis-inducing activity (NIA) of AFs from the Nrfl -disruptants was 

lower when compared with that of the wild-type strains (Figure 4). 

Figure 4. Hypersensitive response (HR) induced in leaves of MM-Cf9 plants upon injection with undiluted and 

four times diluted apoplastic fluids (AFs) isolated from leaves of MM-CfO plants, inoculated with C. fulvum 

wild-type strains race 4 and race 5 and the corresponding Nrfl-disruptants 4.94 and 5.224. (A) necrosis 

developed after injection of undiluted AFs isolated from MM-CfO plants inoculated with the C. fulvum parent 

strains and the Nrfl -disruptants. (B) necrosis developed after injection of four times diluted AFs from the same 

C. fulvum strains/disruptants as shown in A. AFs were isolated 20 days post inoculation. Photographs were taken 

six days after injection. 
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However, both 4.94 and 5.224 were still avirulent on MM-Cf9C plants (transgenic for the 

functional Cf-9 gene), indicating that still sufficient AVR9 peptide is produced in the Nrfl-

disruptants to be recognised by these plants (data not shown). 

In addition, Northern blot analysis of total RNA isolated from leaves infected by the 

wild-type strains and corresponding M/1-disruptants was performed to investigate whether 

the lower concentrations of AVR9 produced by the M/l-disruptants in planta, are due to 

reduced Avr9 expression. Figure 5 shows that Avr9 mRNA is abundantly present at 20 days 

post inoculation, when tomato leaves were infected by C. fulvum wild-type strains. Although 

significantly reduced when compared to the wild-type strains, some Avr9 expression could 

still be detected in the M/l-disruptants. 

race 4 4.94 race 5 5.224 

Avr9 ^ ^ V Avr9 w 
act JUP Wf/s act ^̂ WMi ' ^ P * 

Figure 5. Avr9 expression in planta of the C. fulvum wild-type strains and the corresponding Nrfl-disruptants. 

Total RNA from MM-CfO plants infected by the C. fulvum wild-type strains race 4 and race 5 and the 

corresponding M/1-disruptants 4.94 and 5.224, respectively, was isolated 20 days post inoculation. Total RNA 

(10 p.g) was loaded on a 1.5% denaturing formaldehyde-agarose gel, blotted onto Hybond N+ membrane and 

hybridised with Avr9 cDNA (Van den Ackerveken et al., 1992) and the C. fulvum actine (act) gene. The C. 

fulvum act gene is constitutively expressed in C. fulvum and is used as a marker for fungal colonisation. Note the 

strongly reduced expression of Avr9 in the iVr/1-disruptants 4.94 and 5.224 as compared to the parent strains race 

4 and 5, respectively. 

Discussion 

A better understanding of the function and regulation of avirulence (Avr) genes of pathogens 

is essential, as the trigger of active plant resistance cannot be their primary function. Our 

results suggest that regulation of Avr genes is subject to environmental stimuli and nutritional 

signals. Avr9 of C. fulvum and infl of Phytophthora infestans are induced in vitro under 

nitrogen- and carbon-limiting conditions, respectively (Van den Ackerveken et al., 1994; 

Kamoun et al., 1997). 
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During nitrogen metabolite repression, preferential utilisation of favoured nitrogen sources 

occurs due to repression of enzymes and permeases required for utilisation of nitrogen sources 

other than ammonia or glutamine (Wiame et al., 1985; Marzluf, 1997). Nitrogen metabolite 

repression not only controls genes encoding enzymes of primary metabolism, but also 

regulates genes involved in secondary metabolism, like penicillin and gibberellin biosynthesis 

(Haas and Marzluf, 1995; Tudzynski et al, 1999). In the present study, the putative nitrogen 

regulation of the Avr9 gene of C. fulvum has been examined in detail. We have cloned the 

areA/nit-2 homologue of C. fulvum, designated Nrfl, and we have studied Avr9 expression in 

C. fulvum iV>/l-disruptants. 

Several lines of evidence suggest that Nrfl is indeed the major nitrogen regulatory 

gene from C. fulvum. First, NRF1 shares strong homology with reported fungal, positively-

acting nitrogen regulatory proteins from G.fujikuroi (AREA), A. nidulans (AREA), N. crassa 

(NIT2) and M. grisea (NUT1) (Fu and Marzluf, 1990; Kudla et al., 1990; Froeliger and 

Carpenter, 1996; Tudzynski et al., 1999). Secondly, Nrfl is able to complement an areA-loss-

of-function mutant of A. nidulans, in restoring wild-type growth of transformants on a variety 

of nitrogen sources. These results suggest that NRF1 recognises similar specific (TA)GATA 

elements in the promoter of A. nidulans AREA-regulated genes and that NRF1 and AREA 

respond to similar external nutritional signals of nitrogen metabolite repression. Thirdly, C. 

fulvum M/1-disruptants are unable to utilise a wide range of nitrogen sources. Therefore, we 

conclude that the Nrfl gene of C. fulvum encodes a protein with a similar function as the 

positively-acting global nitrogen regulatory proteins reported for other fungi. 

Although the C. fulvum A/frl-disruptants were unable to grow on a variety of nitrogen 

sources, they were still able to utilise, in addition to glutamine, secondary nitrogen sources 

such as glutamate and asparagine. As both in A. nidulans and A. fumigatus the AREA protein 

is not required for ammonia utilisation (Kudla et al., 1990; Hensel et al., 1998), it was 

expected that the M/1-disruptants would reveal wild-type growth on ammonia. Interestingly, 

in the plant-pathogenic fungus Colletotrichum gloeosporioides, the gene coding for glutamine 

synthetase (GS), designated CgGS, has been shown to be induced during pathogenesis on its 

host Stylosanthes guianensis, but also in vitro under nitrogen-limiting conditions (Stephenson 

et al., 1997). In general, the GS enzyme is required for ammonia assimilation in a broad 

variety of organisms. An explanation for poor growth of the iVV/l-disruptants on ammonia 

could be that in C. fulvum the gene encoding GS is under control of NRFL 

areAJnit-2-\ike genes play a major role in regulating expression of genes involved in 

utilisation of various nitrogen sources and in regulation of genes involved in secondary 
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metabolism. As C. fulvum is a biotrophic pathogen of tomato, we hypothesised that disruption 

of Nrfl in this fungus would have a major effect on both regulation of the Avr9 gene, and 

disease development. However, using a standard inoculation assay, disease symptoms caused 

by the Afr/1-disruptants were similar to those caused by C. fulvum wild-type strains. This 

indicates that disruption of Nrfl does, at least under greenhouse conditions, not affect 

virulence. A similar observation was reported for the rice blast pathogen M. grisea. 

Disruption of the M. grisea areAlnit-2 homologous gene, nutl, did not result in reduced 

virulence (Froeliger and Carpenter, 1996). However, the mechanisms employed by C. fulvum 

and M. grisea to infect plants are different. In a compatible interaction (plant susceptible, 

fungus virulent), M. grisea grows intracellular^ (Valent and Chumley, 1991), whereas C. 

fulvum grows extracellularly in the intercellular space (De Wit, 1977). Full colonisation of 

susceptible tomato plants by C. fulvum M/1-disruptants, suggests that primary nitrogen 

sources, such as glutamine, are available in the apoplast to allow fungal growth. Possibly, C. 

fulvum possesses other nitrogen control systems that function independently of Nrfl, as has 

been suggested for M. grisea where other regulatory genes involved in both nitrogen 

metabolism and virulence are present (Lau and Hamer, 1996). 

Avr9 expression in M/1-disruptants of C. fulvum was completely abolished following 

nitrogen starvation in vitro, suggesting that induction of Avr9 expression in vitro is fully 

under control of the NRF1 protein. In addition, using 50 mM nitrate as sole nitrogen source, a 

weak induction of Avr9 could be detected in the wild-type C. fulvum strains, which is in 

contrast to previous results observed by Van den Ackerveken et al. (1994). 

However, upon inoculation of M/1-disruptants on susceptible tomato plants, AVR9 

still accumulated in the apoplast, albeit at very low levels, as compared to the wild-type 

strains. In addition, Northern blot analysis confirmed that expression of Avr9 was indeed 

significantly reduced in leaves colonised by the M/1-disruptants. Taken together, these results 

indicate that, although the NRF1 protein is a major factor, at least one additional factor is 

involved in induction of Avr9 expression in planta. 

The counterpart of areAJnit-2-\ike genes, is the nmr gene (for nitrogen metabolic 

repression). This gene was first isolated from N. crassa (Young et al, 1990) and recently 

from A. nidulans (Adrianopoulos et al., 1998) and G. fujikuroi (Tudzynski, personal comm.). 

In N. crassa and A. nidulans rcmr-mutants, show a derepressed phenotype in the presence of 

ammonia or glutamine, which normally completely represses nitrogen-induced activity 

(Tomsett et al, 1981; Adrianopoulos et al., 1998). The NMR protein is supposed to act by 

binding to the AREA/NIT2-like protein, thereby preventing DNA-binding when sufficient 
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concentrations of primary nitrogen sources, such as glutamine, are present (Marzluf, 1997). A 

gene with significant homology to the nmr gene was recently isolated from C. fulvum in our 

group (A. Perez-Garcia et al., unpublished). We hypothesise that disruption of this gene in C. 

fulvum may lead to derepression of avirulence genes which are under control of NRFl. 

In addition to areA/nit-2 and nmr genes, other genes are involved in regulation of 

nitrogen metabolism. The tamA gene of A. nidulans, for example, encodes a protein required 

for full expression of genes under areA control (Kinghorn and Pateman, 1975; Davis et al., 

1996). Recently, it has been shown that TAMA fused to a DNA-binding domain is able to 

activate expression of nitrogen regulated genes. It has been proposed that the TAMA fusions 

are recruiting AREA to the relevant promoters (Small et al., 1999). 

The positively-acting pathway specific proteins NIRA in A. nidulans and NIT4 in N. crassa 

are required for expression of nitrate assimilation genes (Burger et a l , 1991a, b; Yuan et al., 

1991). For C. fulvum one could speculate that Avr9 expression is not only under control of 

NRFl but also under control of an additional positively-acting pathway specific regulator. 

More data on C. fulvum nitrogen metabolism are needed to fully understand the mechanism of 

regulation of Avr9 expression. 

Experimental procedures 

Fungal strains and culture conditions 

The following Aspergillus nidulans strains were used: A4 (wild-type) and the areA loss-of-function 

mutant areA18 (yA2, pabaAl, inoB2, areA18; Arst., 1989). A. nidulans strains were grown routinely 

on solid complete medium, supplemented with the appropriate requirements as described by 

Pontecorvo et al. (1953). For mycelial growth, approximately 2xl08 conidiospores were transferred to 

100ml supplemented liquid minimal medium containing 1.5g/l KH2P04 (pH 6.0), 0.5g/l MgS04.7H20, 

0.5g/l KC1 and 10g/l D-glucose, 0.1mg/l pyridoxine and lg/1 L-proline (Pontecorvo et al., 1953). 

Cultures were incubated for about 17 hours at 37°C in an orbital shaker at 220 rpm. 

Strains of C. fulvum (race 4 and race 5) were grown on potato dextrose agar (PDA) or in liquid 

B5 medium (Duchefa Biochemie BV, Haarlem, The Netherlands) in shake cultures at 23°C (100 rpm). 

Ten-day-old PDA plates of C. fulvum were used to prepare spore suspensions for plant inoculations 

and for liquid cultures. C. fulvum Nrfl-deficient transformants were grown on PDA and B5 medium 

supplemented with 10 mM glutamine. 

For C. fulvum nitrogen starvation experiments, 100 ml of B5 medium (supplemented with 50 

mM glutamine) was inoculated with approximately 4xl07 conidiospores and the culture was incubated 
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for 2 days at 23°C (100 rpm). Subsequently, mycelium was harvested, rinsed with B5 medium, and 

divided into equal portions, which were transferred to 25 ml liquid B5 medium supplemented with 50 

mM nitrate, 50 mM glutamine or without any nitrogen source. After 24 hours of incubation at 23 °C 

and shaking at 100 rpm, mycelium was harvested again, freeze-dried and stored at -80°C. 

PCR-strategy to isolate the C. fulvum areA/nit-2 homologous gene 

The areA/m'/-2-like gene is conserved in various fungi, suggesting that a similar gene is also present in 

C. fulvum. Initially, degenerated oligonucleotide primers, based on the region coding for the zinc 

finger domain of the are A and the nit-2 gene of A. nidulans and N. crassa, respectively, pi (5'-

TGTACNAAYTGYTTYACNCA-3') and p2 (S'-TTCTTPATNACPTCNGTYTT-S'), as described by 

Haas et al. (1995) were used. PCR resulted in a 141 bp fragment which was subsequently ligated into 

the TA cloning vector pCR 2.1 (Invitrogen, Carlsbad, USA) and sequenced. The DNA sequence of 

this fragment revealed indeed high homology with the domain that encodes for the conserved DNA-

binding zinc finger domain of other known AREA/NIT2-like proteins. 

Based on the DNA sequence of the 141 bp fragment, specific primers were designed to isolate 

the flanking sequences. The specific zinc finger primers p3 (5'-TGTACTAATTGTTTTACGCA-3') 

and p4 (S'-TTCTTGATGACGTCGGTCTT-S') were used, in combination with primers annealing to 

vector sequence p5 (5'-TACCGGGCCCCCCCTCGATT-3') and p6 (5'-

TCTAGAACTAGTGGATCCCC-3'), respectively. PCR, using these specific primers, on a cDNA 

library, in Uni-ZAP XR (Stratagene, La Jolla, USA) prepared from C. fulvum mycelium grown under 

nitrogen starvation conditions was performed. Fragments of 1.2 kb (using primers p3 and p5) and 300 

bp (using primers p4 and p6) were amplified and ligated into the TA cloning vector pCR 2.1. 

Subsequently, these fragments were sequenced and based on the DNA sequences, the primers p7 (5'-

TGAATACTCCGCAATGGACG-3') and p8 (5'-CAGGGGAACTCGTGGGTACG-3') were designed 

to amplify a genomic 1.2 kb fragment, which was used as homologous probe to screen a ^.BlueStar 

(Novagen, Madison, USA) C. fulvum genomic library (R. Oliver, unpublished). 

Generation and analysis of A. nidulans and C. fulvum transformants 

Transformation of A. nidulans was performed as previously described by Wernars et al. (1985). For A. 

nidulans complementation experiments, transformed protoplasts were plated on selective minimal 

medium, containing sodium nitrate (10 mM) as sole nitrogen source. A. nidulans transformants were 

analysed for their ability to grow on minimal medium supplemented with various nitrogen sources. 

The gene which was able to complement was designated Nrfl (for nitrogen response factor 1) 
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In order to obtain a Nrfl -disruption construct, the 2.8 kb Hindlll-Sstl fragment containing the 

hygromycin B resistance gene (hph cassette), originating from plasmid pAN7-l (Punt et al., 1987), 

was blunted and inserted into the, blunted, Noil site of the sequence coding for the zinc finger domain, 

resulting in pNRFlKO. In pNRFIKO, the hph cassette is flanked on both sides by approximately 0.6 

kb Nrfl sequence (Figure 2A). Subsequently, pNRFIKO was transformed to the C. fulvum wild-type 

strains race 4 and race 5. 

For C. fulvum transformation, mycelium grown for 3 days in liquid B5 medium was harvested 

by filtration and used for the isolation of protoplasts according to the method of Harling et al. (1988). 

Transformations were performed as previously described by Oliver et al (1987). 

Initially, hygromycin B-resistant C. fulvum transformants were selected for the inability to 

grow on C. fulvum minimal medium containing 0.5 g/1 KC1, 0.5 g/1 Mg-glycerophosphate, 1 mg/1 

FeS04, 0.35 g/1 K2S04, 15 g/1 sucrose, 15 g/1 agar (pH 6.0) with sodium nitrate (0.51 g/1) as sole 

nitrogen source. Genomic DNA of C. fulvum hygromycin B-resistant transformants which did not 

grow on this nitrate-selective medium was analysed by PCR using Nrfl -specific primers p9 (5'-

GGCTCACCACAGTGGTTTCAA-3') and plO (5'-GCACAGAGTTGCCACTTCCG-3'), and the hph 

specific primer p l l (5'-CATACACCGGGCAAAGCAGG-3'), to determine whether the insertion of 

the hph gene had occurred at the Nrfl locus. Finally, DNA isolated from the putative C. fulvum Nrfl-

disruptants was analysed by Southern blotting for the presence, location and copy number of the 

introduced construct. 

Isolation and analysis of nucleic acids 

Total DNA of C. fulvum and tomato leaves infected with the fungus was isolated according to Lauge 

et al (1997). Total RNA was isolated according to the Clontech (Clontech Inc., Palo Alto, USA) 

protocol. Southern and Northern blotting procedures were performed essentially according to 

Sambrook et al. (1989). Probes were labelled using the Random Primers Labeling System (Life 

Technologies Inc., Rockville, USA) including 20jiCi oc32P-dATP (Amersham, Buckinghamshire, 

England). 

Plants and inoculations 

Ten-days-old PDA cultures of C. fulvum were used to prepare spore suspensions (approximately 5xl05 

conidiospores/ml) for inoculation of plants. For this purpose, the tomato cultivar Moneymaker (MM-

CfO), susceptible to all known strains of C. fulvum and MM-Cf9C plants, only containing the 

functional Cf-9 gene (Hcr9-9C; Parniske et al., 1997), mediating recognition of the AVR9 peptide 

(transgenic seeds were kindly provided by Dr. M. Parniske, The Sainsbury Laboratory, John Innes 
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Centre, Norwich, England), were used. Five-week-old plants were inoculated with conidial 

suspensions as described by De Wit (1977). 

Isolation and analysis of apoplastic fluids 

For detection of AVR9 in C. fulvum-'mfected tomato leaves, apoplastic fluids (AFs) were isolated as 

described by De Wit and Spikman (1982) and injected into leaflets of five-week-old MM-Cf9 plants, 

containing the complete Cf-9 locus (Parniske et al., 1997). AFs were analysed on 15% (wt/vol) SDS 

polyacrylamide gels. Western blot analyses were carried out after electro transfer of the separated 

proteins to nitrocellulose membrane (Schleicher and Schtill, Dassel, Germany). Polyclonal antibodies 

against ECP2, a marker for colonisation by C. fulvum (Wubben et al., 1994; Lauge et al., 1997) were 

raised in rabbits. GARAP antibodies were obtained from Bio-Rad (Veenendaal, The Netherlands). 
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Chapter six 

A virulence gene Avr9 of the tomato pathogen Cladosporium 

fulvum is repressed in planta by elevated levels of nitrate 

S. S. Snoeijers, A. Perez-Garcia, M. H. A. J. Joosten and P. J. G. M. De Wit 

An adapted version of this chapter has been submitted for publication 

Summary 

Strains of the fungal tomato pathogen Cladosporium fulvum that carry avirulence gene Avr9 

are avirulent on tomato genotypes carrying matching resistance gene Cf-9. Expression of the 

Avr9 gene is strongly induced upon nitrogen starvation in vitro and during colonisation of the 

intercellular spaces of tomato leaves. In order to determine whether the amount of nitrogen 

available affects expression of Avr9 by the fungus in planta, tomato plants containing high 

levels of nitrate were inoculated with transgenic strains of C. fulvum containing the Avr9 

promoter fused to the GUS reporter gene. We used either plants with a defective nitrate 

reductase gene or plants that had been supplied with additional nitrate. Nitrate levels in leaves 

of such plants were 3-8 times higher than in wild-type plants. Plants containing both the Cf-9 

gene and the defective nitrate reductase gene or plants containing Cf-9 that were supplied with 

additional nitrate, were more susceptible to strains of C. fulvum containing the Avr9 gene, 

than wild-type Cf9 plants. This indicates that the Avr9 gene is repressed in plants with 

elevated levels of nitrate and strongly suggests that in planta, nitrogen-limiting conditions 

induce expression of the Avr9 gene. Although the promoter of the Avr9 gene contains several 

(TA)GATA sequences that are present in promoters of various genes involved in nitrogen 

metabolism, we have no indications yet that the Avr9 gene itself has a role in nitrogen 

metabolism. 
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Introduction 

The interaction between tomato and the biotrophic, imperfect fungal pathogen Cladosporium 

fulvum is well characterised. Runner hyphae of the fungus penetrate tomato leaves through 

stomata, and colonise the apoplastic space of the mesophyll. The strictly extracellular growth 

of C. fulvum allows the isolation and identification of fungal components secreted in the 

apoplast of infected plants (Lauge and De Wit, 1998). 

Tomato plants that carry one, or more, resistance (Cf) gene(s) against the fungus 

perceive secreted protein(s) (so-called elicitors), that are encoded by matching avirulence 

(Avr) genes of C. fulvum. After recognition, the plant mounts a hypersensitive response (HR) 

that eventually leads to resistance against the fungus (Joosten and De Wit, 1999). 

Cf-9/Avr9 is a well-studied gene pair. MM-Cf9, a near isogenic line derived from the 

tomato cultivar Moneymaker (MM-CfO) which does not contain any known Cf gene against 

C. fulvum, contains an introgression segment originating from Lycopersicon pimpinellifolium 

which carries five Cf gene homologues. These homologous genes are referred to as Hcr9-9s 

(for homologues of C. fulvum resistance gene Cf-9, present at the Cf-9 locus; Parniske et al., 

1997). Homologue Hcr9-9C is the functional Cf-9 gene, which mediates specific HR-

associated recognition of the AVR9 peptide (Jones et al., 1994). Previous experiments have 

shown that MM-Cf9 plants show partial resistance to strains of C. fulvum lacking Avr9, 

indicating that one, or more, of the other Hcr9-9s are also functional (Parniske et al., 1997; 

Lauge et al., 1998) in recognising strains of C. fulvum carrying Avr genes other then Avr9. 

The Avr9 gene encodes a peptide of 63 amino acids which is processed to a stable 28 

amino acid peptide that accumulates in planta. The expression of the Avr9 gene is highly 

induced when C. fulvum colonises the intercellular spaces of tomato leaves (Van Kan et al., 

1991). Van den Ackerveken et al. (1994) observed that Avr9 expression can also be induced 

under nitrogen-limiting conditions in vitro. They speculated that the apoplast might represent 

a nitrogen-limiting environment, inducing Avr9 expression. The observation that the 

Aspergillus nidulans major nitrogen regulatory protein, designated AREA, is able to induce 

Avr9 promoter activity (Snoeijers et al., 1999) supports this hypothesis. So far, the intrinsic 

function of AVR9 for the fungus is not known. The structure of AVR9 is very similar to that 

of the potato carboxypeptidase inhibitor (Vervoort et al., 1997). However, protease inhibition 

assays showed that AVR9 has no inhibitory activity (Van den Hooven, unpublished data). 
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Marmeisse et al. (1993) found that strains of C. fulvum in which the Avr9 gene had been 

deleted, did not show reduced virulence when compared to Avr9-containing strains. This 

result indicates that the Avr9 gene has, at least under greenhouse conditions, only a limited 

role in virulence. Nevertheless, plant breeders consider the Cf-9 gene as a stable resistance 

gene as fungal strains virulent on Cf-9-containing plants most probably also lack competitive 

ability, as no serious epidemics of strains lacking the Avr9 gene have been reported in the 

past. Furthermore, loss of only the Avr9 gene is not sufficient to overcome the additional 

functional Hcr9-9s (Parniske et al., 1997; Lauge et al., 1998) present on the Cf-9 cluster. 

In this report we have studied the effect of varying nitrate levels on the expression of 

Avr9 in planta during infection by C. fulvum. Nitrate reductase-deficient tomato plants, which 

lack Cf genes and accumulate elevated levels of nitrate in the apoplast (Schoenmakers et al., 

1991) and MM-Cf9 plants crossed to such plants, have been used to investigate whether Avr9 

expression is suppressed during colonisation of these plants by C. fulvum. In addition, MM-

CfO plants transformed with Hcr9-9C were supplied with potassium nitrate (KNO3), to 

artificially increase nitrate levels in the apoplast. Plants containing both the Cf-9 resistance 

gene and elevated levels of nitrate in the apoplast, were inoculated with an Avr9-containing 

transformant of C. fulvum, constitutively expressing the uidA (GUS) reporter gene (encoding 

6-glucuronidase), allowing monitoring of fungal colonisation (Oliver et al., 1993). We 

observed increased growth of C fulvum in plants with elevated levels of nitrate when 

compared to control plants with normal nitrate levels, which is most probably due to 

repression of Avr9 expression. 

Results 

The Avr9 promoter of C. fulvum is suppressed upon infection of plants with elevated 

levels of nitrate 

To determine whether elevated levels of nitrate in the apoplast repress Avr9 induction, five-

week-old nitrate reductase-deficient tomato plants (A29 plants), which lack Cf genes and 

accumulate elevated levels of nitrate in the apoplast, and MM-CfO plants were inoculated with 

conidia of the PAvr9-uidA transformant of C. fulvum (Van den Ackerveken et al., 1994). In 

this transformant, GUS activity is correlated with Avr9 promoter activity. 
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Figure 1. MM-CfO 
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Figure 1. Avr9 promoter activity of the PAvr9-uidA transformant, inoculated onto plants with low (MM-CfO) 

and elevated levels of nitrate in the apoplastic fluid (A29). Leaf disks were taken 20 days after inoculation, 

stained for GUS activity and analysed by light microscopy. GUS activity (blue staining) is a reflection of Avr9 

promoter activity, (h) intercellular hyphea; (v) vascular tissue; (c) conidiophores emerging through the stomata; 

(s) stoma 

Figure 2. Colonisation of leaves of tomato genotypes MM-CfO, A29-Cf0, MM-CC9, and A29-Cf9 by the C. 

fulvum Pgpd-uidA transformant (carrying Avr9). Leaf disks were taken 20 days after inoculation and stained for 

GUS activity. The blue patches on the leaf disks of the infected plants represent mycelium of C. fulvum. 

Figure 3. Colonisation of the mesophyll of MM-Cf9 and A29-Cf9 tomato plants by the C. fulvum Pgpd-uidA 

transformant (carrying Avr9). Leaf disks were taken 20 days after inoculation, stained for GUS activity and 

analysed by light microscopy, (c) inoculated conidiospores; (r) runner hyphae; (v) vascular tissue; (h) 

intercellular hyphae 

Figure 4. Colonisation of leaves of tomato genotypes MM-Cf9C and MM-Cf9C (s) by the C. fulvum Pgpd-uidA 

transformant (carrying Avr9). Leaf disks were taken 20 days after inoculation and stained for GUS activity. The 

blue patches on the leaf disks of the infected plants represent C. fulvum mycelium. 

Figure 5. Colonisation of leaves of the mesophyll of MM-Cf9C and MM-Cf9C (s) tomato plants by the C. 

fulvum Pgpd-uidA transformant (carrying Avr9). Leaf disks were taken twenty days after inoculation, stained for 

GUS activity and observed by light microscopy, (c) inoculated conidiospores; (r) runner hyphae; (h) intercellular 

hyphae; (v) vascular tissue 

Two weeks after inoculation, symptoms started to develop in both plants. Conidiophores 

emerged through the stomata at the lower side of leaves and sporulation on both A29 and 

MM-CfO plants was similar (data not shown). Twenty days after inoculation, the 

concentration of nitrate in apoplastic fluid (AF) of A29 plants was 38 mM, compared to 7 

mM for MM-CfO plants. At this time point, leaf disks of MM-CfO plants showed abundant 

blue-stained mycelium in the intercellular spaces, indicating that the Avr9 promoter is highly 

induced (Figure 1). However, in the apoplastic space of A29 plants no blue-stained mycelium 

was detected while conidiophores were blue (Figure 1), suggesting that in the apoplast of A29 

plants Avr9 promoter activity is suppressed. 
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Suppression of Avr9 expression in C/"-9-containing plants with elevated levels of nitrate, 

allows increased fungal growth 

If Avr9 expression is suppressed as a result of high nitrate levels, an Avr9-containing strain of 

C. fulvum is expected to show increased colonisation of Cf9 plants with elevated levels of 

nitrate in the apoplast as compared to control plants. To test this hypothesis, MM-Cf9 plants 

were crossed to A29 plants and as a control, a cross between MM-CfO and A29 plants was 

performed. As expected, about 25% of the F2 plants, resulting from a selfing of the Fl of each 

cross, showed the recessive nitrate reductase-deficient phenotype. Plants with this phenotype 

and also containing the Cf-9 resistance gene (as determined by injection with AF containing 

AVR9), were designated A29-Cf9, whereas nitrate reductase-deficient plants present in the F2 

of the cross between MM-CfO and A29 were designated A29-Cf0. 

Five-week-old MM-CfO, A29-Cf0, MM-Cf9 and A29-Cf9 plants were inoculated with 

the C. fulvum (race 4) Pgpd-uidA transformant (carrying the Avr9 gene), which is virulent on 

MM-Cf4 and avirulent on MM-Cf5 plants, allowing determination of fungal growth by GUS-

staining. The nitrate concentration in AF of these plants was determined at the day of 

inoculation (to) whereas at twenty days post inoculation (t2o), the nitrate concentration was 

determined of AF isolated from the A29-Cf0 and A29-Cf9 plants. In addition, the nitrate 

concentration of AF isolated from uninoculated A29-Cf0 plants incubated under the same 

conditions as the inoculated plants, was determined. Table 1 shows that at t0 nitrate 

concentrations in AF were 5-8 times higher in plants with the A29 phenotype (A29-Cf0 and 

A29-Cf9 plants) than in MM-CfO and MM-Cf9 plants. At t2o, nitrate concentrations in AF of 

the various A29 plants, either inoculated with C. fulvum or not, were similar. 
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Table 1. Nitrate concentration of apoplastic fluid (AF) and fungal colonisation after inoculation of 

various tomato genotypes with the C. fulvum Pgpd-uidA transformant. Nitrate concentration of AF 

was determined at day zero (to) and twenty days (t20) after inoculation. Nitrate concentrations 

presented are the average of three independent determinations. Fungal growth was determined 

twenty days (t20) after inoculation by GUS-staining. 

tomato genotypes 

MM-CfO 

A29-Cf0 

MM-Cf9 

A29-Cf9 

A29-Cf0, n.i.c) 

nitrate concentration 
of AF(mM) 

to 

6±3 

30±5 

5±2 

41±7 

35±3 

(20 

n.d.a) 

30±3 

n.d. 

30±4 

21±8 

fungal colonisation 
att2o 

+++"> 

+++ 

-

+ 

n.a.d> 

a)n.d.: not determined, b)+++: the apoplast was fully colonised by C. fulvum; +: partial colonisation 

of the apoplast by C. fulvum; -: no mycelium detected; c)n.i.: not inoculated; d,n.a.: not applicable 

MM-CfO and A29-Cf0 plants were found to be fully susceptible to the Pgpd-uidA 

transformant; at t2o, sporulating patches of mycelium were observed on the lower side of the 

leaves (data not shown). No difference in infection could be detected between the two 

genotypes, indicating that the elevated level of nitrate in the apoplast has no influence on the 

susceptibility of these plants. Furthermore, ELISA on AF isolated at t2o, employing antibodies 

raised against ECP2, a marker for colonisation by C. fulvum (Lauge et al., 1997), indicated 

that similar concentrations of ECP2 were present in the MM-CfO and A29-Cf0 plants (data 

not shown). However, no sporulating patches of mycelium could be observed on the leaves of 

the inoculated MM-Cf9 and A29-Cf9 plants. 

Figure 2 shows the presence of mycelium of C. fulvum in leaf disks of MM-CfO, A29-

CfO, MM-Cf9, and A29-Cf9 plants, inoculated with the Pgpd-uidA transformant, after 

staining for GUS activity at t2o- Leaf disks of infected MM-CfO and A29-Cf0 plants show 
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plants. Microscopic observation revealed that fungal colonisation of the MM-Cf9C (s) plants 

mainly occurred in the vicinity of the vascular tissue. In leaf disks of MM-Cf9C plants no 

fungal growth inside the plant was observed (Figure 5). 

After GUS-staining, only very small blue spots were observed on leaf disks of MM-

Cf5 and MM-Cf5 (s) plants, indicating that nitrate-supply had no effect on the outcome of an 

incompatible interaction not dependent on Avr9 expression (Table 2). 

Discussion 

Little is known about basic metabolic control circuits in phytopathogenic fungi and nutritional 

conditions in plants affecting disease development. Induction of fungal genes, both in vitro 

under conditions of nitrogen limitation and in planta, has been reported before (Pieterse et al., 

1994; Lau and Hamer, 1996; Talbot et al, 1997; Stephenson et al., 1997; Segers et al., 1999). 

Van den Ackerveken et al. (1994) hypothesised that in planta expression of the C. fulvum 

Avr9 gene might depend on nitrogen concentrations in the apoplastic space of tomato leaves. 

The observation that the Avr9 promoter contains various copies of the sequence (TA)GATA, 

which bind major fungal nitrogen regulators (designated AREA in Aspergillus nidulans), 

would support this hypothesis. 

Previously, we have shown that in an A. nidulans areA wild-type strain transformed 

with an Avr9 promoter-uidA (GUS) fusion, this promoter is induced following nitrogen 

starvation, whereas this induction does not occur in a strain of A. nidulans lacking the areA 

gene (Snoeijers et al., 1999). This suggests that an AREA-like transcription factor is likely 

involved in the induction of Avr9 expression when nitrogen levels are low. 

Hardly any induction of the Avr9 promoter was observed following inoculation with a 

C. fulvum transformant, carrying the Avr9 promoter-wrdA fusion, of susceptible nitrate 

reductase-deficient plants (A29 plants; Schoenmakers et al., 1991), that showed 5-6 times 

more nitrate in the AF than MM-CfO plants. This result suggests that elevated levels of nitrate 

in the apoplast indeed cause Avr9 suppression in planta. Interestingly, conidiophores 

emerging from stomata of these plants showed strong GUS activity. This migh suggest that (i) 

nitrogen outside the plant is soon limiting and (ii) that Avr9 expression is strongly induced 

during the production of conidiophores which is probably independent of a nitrogen factor. A 

similar phenomenon was observed before, when C. fulvum transformants carrying the uidA 

gene fused to promoter sequences of the Ecpl or Ecp2 gene, coding for extracellular proteins 

1 and 2, respectively, were inoculated on susceptible tomato plants (Wubben et al., 1994). 
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Both the promoter of Ecp\ and Ecp2 were strongly induced in conidiophores emerging from 

stomata. Ecp genes of C. fulvum are normally highly expressed during pathogenesis and it has 

been shown that at least some of them are virulence factors (Lauge et al., 1997). 

Significantly more growth of C. fulvum (carrying the Avr9 gene) was observed in the 

apoplast of inoculated A29-Cf9 plants, containing the Cf-9 locus in a nitrate reductase-

deficient background, than in inoculated MM-Cf9 plants. Microscopic analysis showed highly 

branched and slightly thickened hyphae around the vascular tissue in the apoplast of A29-Cf9 

plants, which are characteristic for a compatible interaction. However, a fully compatible 

interaction was not expected, as additional resistance gene(s) have been reported to be present 

at the Cf-9 locus (Parniske et al., 1997; Lauge et al, 1998). 

To circumvent the influence of these additional resistance gene(s), experiments were 

carried out with transgenic MM-CfO tomato plants only containing the Hcr9-9C gene (the 

functional Cf-9 gene), designated MM-Cf9C. Inoculation of MM-Cf9C plants, containing 

elevated levels of nitrate in the apoplast, with C fulvum (carrying the Avr9 gene), however, 

did not result in more colonisation compared to A29-Cf9 plants. 

Based on these results we conclude that Avr9 expression is not fully suppressed in plants 

containing elevated levels of nitrate in the apoplast. Nevertheless, partial growth of C. fulvum 

in the apoplast of the leaves of Cf-9 genotypes indicates that during the first phase of 

pathogenesis the fungus is not recognised. Possibly, a minimal concentration of AVR9 elicitor 

is necessary for recognition and induction of a defence response. The partial growth of C. 

fulvum suggests a delayed defence response of the plant in a later phase of the infection. As a 

result of the increased fungal biomass, a sufficient amount of AVR9 is produced for 

recognition. If this is true, the continuous stress to host cells during the first phase of the 

infection would possibly lead to high levels of pathogenesis related (PR) protein accumulation 

as observed for partial resistance by Lauge et al. (1998). 

Recently the C. fulvum are A homologue, designated Nrfl for nitrogen response factor 

1, has been cloned (Perez-Garcfa et al., unpublished). However, 7Vr/l-disruptants were still 

avirulent on MM-Cf9C plants, indicating that AVR9 is still produced in these disruptants. 

This implies that Avr9 expression in planta is not fully dependent on the global nitrogen 

regulatory AREA-like protein. Further research is required to determine whether other (host) 

factor(s) are able to induce Avr9 expression in planta, causing low, but constitutive 

expression of Avr9. 
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Experimental procedures 

Plant genotypes 

Several genotypes, derived from the tomato (Lycopersicon esculentum Mill.) cultivar Moneymaker 

(MM-CfO) were used in this study. MM-Cf9 is a near-isogenic line (NIL) of MM-CfO, containing an 

introgression segment of L. pimpinellifolium, PI126933, carrying the actual Cf-9 resistance gene 

(Hcr9-9C), in addition to four C/-9-homologous genes (Hcr9-9A, -9B, -9D and -9E). MM-Cf5 is a 

NIL derived from MM-CfO, containing an introgression segment of L. esculentum var. cerasiforme, 

PI 187002, carrying the Cf-5 gene (Stevens and Rick, 1988). 

A29 is a nitrate reductase-deficient mutant obtained by mutagenizing seeds of MM-CfO with 

ethylmethanesulphonate (EMS) (Schoenmakers et al., 1991; seeds were kindly provided by M. 

Koornneef)- The mutation is monogenic and recessive and nitrate reductase deficiency probably 

results from the inability of the enzyme to bind the molybdenum cofactor (MoCo) necessary for nitrate 

reductase activity. A29-Cf9 plants are the result of a cross between A29 and MM-Cf9 plants; they are 

nitrate reductase-deficient and contain the five Hcr9-9s. Selection for the A29 phenotype was 

performed visually (A29 plants grow slower and have a chlorotic appearance) and by determination of 

the nitrate concentration present in apoplastic fluid (AF) isolated from the leaves (De Wit and 

Spikman, 1982). The presence of the Cf-9 resistance gene in the A29 background was confirmed by 

injection of AF containing AVR9 and subsequent scoring for a hypersensitive response (HR) visible as 

necrosis two days after injection. Seeds from transgenic MM-CfO plants, containing the functional 

Cf-9 gene {Hcr9-9C; designated MM-Cf9C plants), were kindly provided by Dr. M. Parniske (The 

Sainsbury Laboratory, John Innes Centre, Norwich, England). 

In experiments where plants were supplied with nitrate, daily approximately 100ml of lOOmM 

KN03 were added to the soil from ten days before inoculation, till the end of the inoculation 

experiment. 

Fungal strains and plant inoculations 

Two C. fulvum transformants were used. One (transformant YAvr9-uidA) was obtained by 

transforming C. fulvum race 5 (containing the Avr9 gene) with the pCF24 plasmid containing 800 bp 

of the Avr9 promoter fragment fused to the uidA (GUS) reporter gene (coding for B-glucuronidase; 

Van den Ackerveken et al., 1994). The other transformant (Pgpd-uidA) was obtained by introducing 

the pNOM12 plasmid, containing the constitutively-expressed A. nidulans gpd promoter fused to the 

uidA gene, into C. fulvum race 4 (containing both the Avr5 and Avr9 gene; Van den Ackerveken et al., 

1994). Culture conditions for C. fulvum, as well as the plant inoculation procedure were as described 
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by De Wit (1977). The development of symptoms was followed in time and representative 

photographs were taken twenty days after inoculation. 

Visualisation of fungal growth in planta 

Growth of the C. fulvum transformants in planta was visualised by GUS-staining. Leaf disks were 

infiltrated in vacuo with a solution of 0.2 mg ml"1 X-Gluc (5-bromo-4-chloro-3-indolyl-B-D-

glucuronide, Duchefa) in 50 mM sodium phosphate buffer (pH 7.0), containing 1 mM potassium 

ferri/ferrocyanide and 0.05% (v/v) Triton X-100 (Jefferson, 1987). After infiltration leaf disks were 

incubated at 37°C in the dark and subsequently cleared by successive washes in 70% ethanol and 

finally analysed by light microscopy, using a Nikon UFX-II microscope. 

Isolation and analysis of apoplastic fluids 

Apoplastic fluids (AFs) were isolated at the day of inoculation and twenty days later. From each plant, 

approximately 10 leaflets were randomly chosen and AF was obtained by in vacuo water infiltration, 

followed by centrifugation at 2,000 x g according to De Wit and Spikman (1982). For quantification of 

the extracellular C. fulvum protein ECP2, ELISA was performed in Nunc-Immuno Plate Maxisorp 

plates (Nunc, Roskilde, Denmark), using polyclonal antibodies raised against ECP2 in rabbits (Lauge 

et al., 1997). Optical density was determined at 405 nm, employing an EL312 microplate reader (Bio-

Tek, Winooski, VT). 

Nitrate concentrations were determined following the method described by Cataldo et al. 

(1975), with minor modifications. To 200 ul of a two-fold dilution of AF in distilled water, 800 ul of 

5% (w/v) salicylic acid in 96% (w/v) sulphuric acid was added in a 25 ml glass tube. The mixture was 

incubated for 20 minutes at room temperature (RT), and subsequently 19 ml of 2M NaOH was slowly 

added. After incubation for 30 minutes at RT, absorbance was measured against the blank (1 ml of 

distilled water) at 410 nm. Nitrate concentration was calculated using a standard curve obtained with a 

concentration series of KN03. 
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Chapter seven 

General discussion 

Introduction 

Plants are the largest and most important nutritional source for prokaryotic and eukaryotic 

organisms. Like other organisms, plants are continually exposed to the threat of diseases 

caused by viruses, bacteria, fungi, nematodes and insects. One possibility to reduce diseases 

caused by pathogens and pests is through the use of selective agrochemicals. A big 

disadvantage of using such compounds is their toxicity towards and persistence in the 

environment. 

An alternative to reduce and control plant diseases is to exploit natural resistance of 

plants. Plants carry resistance genes that can be introgressed into crop plants by classical 

breeding or introduced using by tools. To obtain the full benefit of molecular resistance 

breeding, a detailed understanding of the molecular communication between plants and their 

pathogens is required. 

The interaction between the fungal pathogen Cladosporium fulvum (syn Fulvia fulva), 

the causal agent of leaf mould disease, and its only host tomato is used as a model system to 

study avirulence and resistance in C. fulvum and tomato, respectively. The fungus only 

colonises the extracellular spaces of tomato leaves, allowing the identification of all proteins 

that are involved in a compatible plant-pathogen interaction, by isolation of apoplastic fluid 

(AF) of C. fulvum-infected leaves. One compound that causes avirulence of C. fulvum is the 

peptide AVR9, which is a specific elicitor encoded by avirulence gene Avr9. The peptide is 

secreted into the intercellular space and is specifically recognised by tomato plants carrying 

the matching resistance gene Cf-9. 

To increase our understanding of the molecular basis of the Avr9 function and 

regulation, we set out to investigate in detail the expression of this gene both in vitro and in 

planta. Prior to the study described in this thesis, it had already been observed that Avr9 is 
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strongly expressed during growth of the fungus in planta and under nitrogen-limiting 

conditions in vitro. 

Avirulence genes and their role in pathogenicity 

Although there was no understanding of the molecular basis of host resistance and pathogen 

avirulence, at that time, the occurrence of genotype/cultivar-specific resistance of plants to 

fungal pathogens were already described a century ago. In 1905, Biffen proved that resistance 

of wheat to yellow rust was genetically determined and followed Mendel's laws of inheritance 

(Biffen, 1905). However, the first major breakthrough came in the nineteen-forties when Flor 

provided the genetic basis for the outcome of an interaction between host and pathogen (Flor, 

1946), which later became known as the gene-for-gene hypothesis. He demonstrated that both 

resistance in flax to the fungal pathogen Melampsora lini, the causal agent of flax rust, and 

avirulence of the fungus, inherited as dominant monogenic factors. Since this theory was 

proposed, many scientists have struggled to find a biochemical and molecular basis for this 

theory. Recombinant DNA-techniques made it possible to prove this hypothesis at the 

molecular level. The evidence came in the nineteen-eighties, with the cloning of the first 

avirulence (Avr) gene from the bacterium Pseudomonas syringae pv. glycinea, a pathogen of 

soybean, by Staskawicz et al. (1984). Although many gene-for-gene systems have been 

described in genetic terms, very few biochemical mechanisms have been developed so far. 

If the host plant carries matching resistance (R) genes, the products of Avr genes 

(which are termed elicitors) are recognised by the host, which will subsequently mount a 

defence reaction which is known as the hypersensitive response (HR). HR involves 

genetically programmed, local death of a few plant cells at the site of invasion. This restricts 

further growth of the pathogen in the plant and thereby inhibits any further infection. Other 

defence responses include the production of reactive oxygen species, release of hydrolytic 

enzymes, the production of phytoalexins, cell wall modification, and accumulation of 

pathogenesis-related (PR) proteins. Although the general principle is understood, there are 

still many questions remaining concerning elicitor perception and subsequent induction of 

defence responses. In addition, little is known about the intrinsic function of avirulence genes 

for the pathogen and factors controlling these genes. 

The puzzling question is: why would pathogens expressing dominant genes which 

allow them to be recognised and repressed by their hosts? Pathogens are highly adapted 

micro-organisms, with survival strategies that usually require multiplication on, or within, 
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another living organism. The apparent need of the pathogen to possess Avr genes, even when 

its product is recognised by individual resistant host plants, suggests an important intrinsic 

function for these genes during pathogenesis. 

One current theory is that avirulence gene products are required for growth of the 

pathogen in the host. According to this hypothesis, avirulence genes might encode a "survival 

protein". Such a protein could possibly provide the pathogen with nutrients while growing in 

the host. This theory is supported by the observation that expression of various bacterial and 

fungal (a)virulence/pathogenicity genes is highly induced during nutrient- (nitrogen-) 

starvation in vitro, suggesting that these conditions might mimic the environment in the host 

(reviewed in Chapter one). The abundant production of "survival proteins" by the pathogen, 

will trigger the surveillance system of the host and as a result of selection pressure on the 

host, HR-based resistance will develop by recognising one or more of these particular 

proteins. According to this theory, a virulence/pathogenicity gene, encoding such a protein 

could become an Avr gene as soon as its product is recognised by the host (Leach and White, 

1996; Joosten and De Wit, 1999; Lauge et al., 2000). When this hypothesis is true, individual 

HR-based resistance against these "survival proteins" would be expected to be present in 

natural host populations. 

Only from a few phytopathogenic bacterial and fungal avirulence genes their 

importance in pathogenesis has been established. One such a gene is the avrBs2 gene from the 

phytopathogenic bacterium Xanthomonas campestris pv. vesicatoria (Xcv), causing leaf spot 

on pepper. Studies by Kearny and Staskawicz (1990) and Swords et al. (1996) have shown 

that avrBs2 mutant strains induce disease symptoms on susceptible pepper plants that are 

significantly reduced compared to Xcv strains that contain the wild-type avrBs2 gene. The 

structure of avrBs2 shows homology to agrocinopine synthase genes of Agrobacterium 

tumefaciens, and probably provides the bacterium with a carbon and nitrogen source during 

colonisation of its host plant. 

One fungal Avr gene with a function in pathogenicity is the nipl gene of the barley 

pathogen Rhynchosporium secalis. This gene encodes a specific elicitor (NIP1) that induces 

accumulation of pathogenesis-related (PR) proteins in barley cultivars carrying the matching 

resistance gene Rrsl. R. secalis nipl mutant strains are less pathogenic on barley plants than 

wild-type strains that do produce the NIP1 protein (Rohe et al., 1995; Knogge, 1996). 

For Avr gene Avr-Pita (formerly called Avr2-YAMO) of the rice blast fungus 

Magnaporthe grisea, a possible role in pathogenesis has been claimed. Mutational analysis 

and sequencing of virulent and avirulent Avr-Pita alleles indicated that the conservation of a 
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putative protease motif in the encoded protein is essential for avirulence (Bryan et al., 1999). 

The deduced amino acid sequence of the AVR-Pita protein has 29% identity to NpII, a neutral 

zinc metalloprotease from Aspergillus oryzae (Tatsumi et al, 1991). However, biochemical 

evidence for metalloprotease activity is lacking. 

Pathogenicity and virulence of C. fulvum 

As mentioned earlier, C. fulvum only colonises the extracellular spaces of tomato leaves, 

allowing the identification of fungal proteins that are secreted into the apoplast, by isolation 

of apoplastic fluid (AF) of C. fulvum-mfected leaves (De Wit and Spikman, 1982). 

Two extracellular proteins ECP1 (for extracellular protein 1) and ECP2 (Van den 

Ackerveken et al., 1993) are abundantly secreted by the fungus during infection of tomato. 

Both proteins, produced by all C. fulvum strains that have been analysed so far, seem to play 

an essential role during pathogenesis. Ecpl- and £'cp2-deficient strains were still able to cause 

disease, however, they were blocked in a later stage of the disease development (Lauge et al., 

1997). 

Three more C. fulvum extracellular proteins have been isolated so far (ECP3, ECP4 

and ECP5; Lauge et al., 2000). All ECPs seem to be unique with no homology to other 

proteins. 

Avirulence of C. fulvum and resistance of tomato 

From C. fulvum, the race-specific avirulence genes Avr2, AvrA and Avr9 (Takken et al., 

unpublished; Joosten et al., 1994; Van Kan et al, 1991; Van den Ackerveken et al., 1992) 

have been cloned. Natural C. fulvum mutant strains or transformants not producing the AVRs 

did not show reduced virulence under greenhouse conditions when compared to wild-type 

strains, implicating that these peptides are not required for full virulence (Marmeisse et al., 

1993). 

Many R genes, conferring resistance against different types of pathogens, have been 

cloned from various plant species (Hammond-Kosack and Jones, 1997; De Wit, 1997). The 

homology between R genes in many unrelated plant species suggests the existence of a 

general surveillance system in plants, providing protection against putative pathogens. From 

tomato, four R genes, Cf-2, Cf-4, Cf-5 and Cf-9, conferring resistance to C. fulvum strains 

carrying the Avr2, Avr4, Avr5 and Avr9 genes, respectively, have been cloned (Jones et al., 

92 



Chapter seven General discussion 

1994; Dixon et al, 1996; Thomas et al, 1997). All four Cf gene products share extensive 

structure and sequence similarities. The structure of the loci suggests that sequence 

duplication, gene recombination, gene conversion and diversifying selection has occurred in 

natural populations of Lycopersicon species. The various events, result in new recognitional 

specificities of fungal factors (Parniske et al., 1997). This is confirmed by the observation 

that, using a functional screen for wild tomato species, a resistance gene has been detected for 

every C. fulvum ECP (Lauge et al., 1999; Lauge et al, 2000), indicating that virulence factors 

can become avirulence factors once mounting an HR in a particular genotype. 

Regulation of the expression of the C. fulvum Avr9 gene 

The mechanisms by which the expression of most bacterial and fungal avirulence genes is 

regulated, are still largely unknown. To obtain a better insight in the intrinsic role of 

avirulence genes in the pathogenic process, it is necessary to understand the regulation and 

regulators of these genes. We set out to study the regulation of the Avr9 gene (Van Kan et al., 

1991; Van den Ackerveken et al., 1992). 

Van den Ackerveken et al. (1994) observed that specific TAG AT A sequences, which 

have been described in the filamentous fungi A. nidulans and N. crassa as binding sites for a 

positively acting major global nitrogen regulator (named AREA and NIT2, respectively), are 

present in the Avr9 promoter. In addition, Van den Ackerveken et al. (1994) found that Avr9 

expression is specifically induced in vitro under conditions of nitrogen starvation. Combining 

both observations made it tempting to speculate that (i) the Avr9 gene is regulated by a 

nitrogen factor that is similar to AREA and NIT2, implying that the TAGATA sequences are 

important for Avr9 regulation and that (ii) in planta nitrogen limitation also induces Avr9 

expression. 

As there are areA mutants (lacking the AREA protein) and gene-targeting systems 

available for A. nidulans, initially this fungus was used as a model system to test whether the 

A. nidulans AREA protein is able to regulate Avr9 expression. Experiments with single copy 

transgenic A. nidulans, containing the Avr9 promoter fused to the GUS-reporter gene, 

integrated at the argB locus, revealed that Avr9 promoter activity is indeed induced in A. 

nidulans, following nitrogen starvation. This result suggests that nitrogen regulation in both 

A. nidulans and C. fulvum is based on the same mechanism. The observation that, after 

nitrogen starvation, no Avr9 promoter activity was induced in A. nidulans areA null mutants, 
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indicated that the Avr9 promoter is fully induced by the A. nidulans AREA protein (described 

in Chapter two). 

Disruption of the C. fulvum areA/nit-2-like gene, designated Nrfl, had a drastic effect 

on Avr9 expression in planta and completely abolished Avr9 expression in vitro, indicating 

that NRF1 is a major positive regulatory factor of the Avr9 gene. However, the observation 

that there is still, although reduced, Avr9 expression in M/l-disruptants when colonising 

susceptible tomato plants, suggests that there is an additional (host)factor, which is able to 

induce Avr9 expression in planta (described in Chapter five). The low Avr9 expression of the 

Afr/1-disruptants, however, still caused avirulence of the disruptants on Cf-9 plants, suggesting 

that the AVR9 peptide is very stable and accumulates to sufficient levels in plants, even when 

influenced by strains that express Avr9 at very low levels. 

Interestingly, the virulence of the Nrfl -disruptants was not reduced compared to wild-

type C. fulvum, when inoculated onto susceptible tomato plants, implying that factors which 

are required for virulence are not under control of this global nitrogen regulator. However, 

preliminary experiments have shown that expression of Ecp5, which also contains 

AREA/NIT2-binding sites in the promoter, is regulated by the NRF1 factor in planta 

(unpublished data). 

M. grisea and C. fulvum differ from each other in their mode of infection. M. grisea 

forms appressoria, penetrating into the cells encountering a different environment in 

comparison with C. fulvum that is strictly confined to the apoplastic space. Infection studies 

revealed that pathogenicity was not affected in M. grisea nutl-disruptants, where nutl is the 

areAJnit-1-like gene of M. grisea (Froeliger and Carpenter, 1996). However, infection was 

highly reduced in M. grisea nprl- and rc/?r2-mutants. Both npr\ and npr2, which are unlinked 

genes, are thought to encode a major nitrogen regulator, suggesting that pathogenesis and 

nitrogen metabolic pathways have overlapping regulation circuits (Lau and Hamer, 1996). 

Unfortunately, DNA sequence information on nprl and nprl is still lacking. It would be 

interesting to know whether nprl and nprl homologous genes are present in C. fulvum, and 

whether disruption of those genes in C. fulvum causes simultaneous loss or down regulation 

of multiple (a)virulence/pathogenicity genes, including Avr9. 

Deletion studies on the putative binding domains present in the Avr9 promoter, 

revealed that these are important for Avr9 promoter activity in A. nidulans and C. fulvum 

(described in Chapter two). Introduction of specific point mutations in the TAGATA 

sequences showed that two TAGATA-boxes, most proximal to the start codon, both 

containing two invertedly orientated TAGATA sequences, are crucial for the inducibility of 
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Avr9 promoter activity in A. nidulans. (described in Chapter three). The mutated Avr9 

promoter sequences, which did not give any activity in A. nidulans, were fused to the coding 

sequence of Avr9 and transformed to C.fulvum strains which lack the Avr9 gene. However, C. 

fulvum transformants carrying Avr9 promoter mutant constructs are still recognised by tomato 

plants only carrying the functional Cf-9 gene, indicating that there is still sufficient AVR9 

produced by these transformants (described in Chapter three). However, the Avt9 gene was 

also induced when the transformants were grown in rich, liquid media, a condition which 

normally suppresses Avr9 gene expression. It could be that, although we lack Southern data, 

multiple integrations have caused the loss of nitrogen-dependent Avr9 regulation both in vitro 

and in planta. 

To determine subtle differences in the activity of different Avr9 promoter sequences, 

without strong effects of the chromosomal environment on expression, a gene-targeting 

system was developed to target the integration of mutated Avt9 promoters of interest to a 

specific location in the genome of C. fulvum. As there are C. fulvum pyrl mutants available 

(Marmeisse et al., 1993), we isolated the C. fulvum pyrl gene, which is coding for the enzyme 

orotidine-5'-monophosphate decarboxylase (OMPdecase). OMPdecase is involved in the 

pyrimidine biosynthetic pathway and is considered to be a versatile selection marker for 

filamentous fungi (Ballance et al, 1983; Cullen and Leong, 1986; Diez et al, 1987; Goosen et 

al., 1987). In Chapter four we have demonstrated that targeting, based on site-directed 

integration at the C. fulvum pyrl locus, is possible. For future research, this system can be 

exploited to study expression of wild-type and mutant genes of C. fulvum. 

For A. nidulans and N. crassa the accepted model for nitrogen-dependent gene 

regulation is that a negative regulator, designated NMR, complexes with AREA or NIT2, 

respectively, in the presence of sufficient primary nitrogen sources. NMR interacts both with 

residues in the DNA-binding domain and in the carboxyl terminus of AREA and NIT2. In this 

way NMR prevents AREA/NIT2 binding to DNA (Xiao et al, 1995; Piatt et al., 1996). 

Recently the putative nmr gene from C. fulvum has been isolated; amino acid sequence 

analysis of the encoded protein showed a high homology with both the NMR proteins from A. 

nidulans and N. crassa (A. Perez-Garcia et al., unpublished). Additional experiments can now 

be performed to prove whether NMR is also a negative regulator in C. fulvum and if so, 

whether it is able to influence virulence. 
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Speculations about plant-pathogen systems and future research 

The C. fitlvum AVR and ECP proteins described so far, are divergent in composition, 

although, they do share certain characteristics, such as relatively low molecular weight, an 

extracellular location and an even number of cysteine residues. 

Interestingly, the AVRs and ECPs show structural homologies to the exogenous 

proteins of the S receptor complex, which are involved in recognition and rejection of self 

pollen in Brassica stigmas (Schopfer et al., 1999). It is hypothesised that, in the case of self-

pollination, these proteins act as a stable, exogenous signal that, upon perception by a 

matching S receptor kinase present in the S receptor complex, initiates a signalling pathway in 

the stigma eventually leading to pollen rejection. This phenomenon has similarities to the 

incompatibility resulting from perception of pathogen-produced elicitors in the C. fulvum-

tomato interaction. 

Expression of all in planta-induced genes coding for C. fulvum AVRs and ECPs can 

also be induced in vitro under conditions of nutrient depletion (Lauge et al., 2000; Takken et 

al, unpublished), suggesting that an EST-library constructed from mycelium grown under 

these conditions might contain various in planta expressed genes of C. fulvum that have not 

been identified up till now (Coleman et al., 1997). One can speculate that some of these 

proteins are involved in providing the fungus with the appropriate nutrients. Hypothetically, 

these "nutrient survival proteins" are produced abundantly and are stable, and as a 

consequence, recognitional specificities have evolved towards these proteins. 

Avr9 expression is specifically induced in vitro under nitrogen starvation, suggesting 

that the AVR9 peptide might have a role in providing the fungus with sufficient nitrogen. This 

is supported by both the observation that Avr9 expression is under control of the C. fulvum 

major nitrogen regulator NRF1 (described in Chapter five) and that Avr9 expression is 

repressed when increased levels of nitrate are present in the apoplast, where the fungus resides 

(described in Chapter six). 

Nevertheless, both the AVR9 peptide (Marmeisse et al., 1993) and the NRF1 nitrogen 

regulatory protein (described in Chapter five) are not required for full virulence. However, it 

has to be emphasised that infection studies were performed under greenhouse conditions, 

which are considered optimal for the host. For reliable virulence and fitness comparisons 

between wild-type and mutant strains of C. fulvum, both should be tested in wild tomato 

species growing in their natural environment. Alternatively, AVR9 (and possibly ECP5) 

could be a secondary component derived from a global nitrogen utilisation circuit, 
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simultaneously controlled by NRF1. If the AVR9 peptide would not be beneficial for the 

fungus it is still hard to understand why such high expression levels are obtained during 

colonisation of susceptible tomato plants (described in Chapter five). How could Avr9 

survive strong selection pressure when the AVR9 peptide does not have a substantial function 

during growth of C. fulvum in plantal Possibly, in natural Avr9 mutant strains an additional 

redundant "survival protein", with an AVR9-like function, can complement the Avr9 gene. 

For bacterial pathogens of mammals it is known that a single DNA region can convert 

the micro-organism into a pathogen. For example, the determinants responsible for invasion 

and intercellular spreading of Shigella flexneri are encoded within a large virulence plasmid, 

called a pathogenicity island (Parsot, 1994). Transfer of this plasmid to a laboratory strain of 

E. coli renders it invasive (Sansonetti et al, 1982). Similarly, a 35 kb region termed the locus 

of enterocyte effacement (LEE) in enteropathogenic E. coli, mediates the production of 

attachment and effacing lesions of intestinal epithelial cells (McDaniel et al., 1995). This 

phenotype can be reproduced in a laboratory strain of E. coli upon introduction of a plasmid 

carrying LEE (McDaniel and Kaper, 1997), suggesting that a nonpathogenic E. coli, which is 

a normal member of the human intestinal flora, harbors many of the genes necessary for 

interaction with human cells. Thus, they can easily become pathogens upon acquisition of a 

particular virulence gene cluster. In further support of this notion, many of the genes 

implicated in Salmonella virulence are also present in nonpathogenic strains of E. coli. These 

genes encode enzymes responsible for the biosynthesis of nutrients that are scarce within host 

tissues, transcriptional and post-transcriptional regulatory factors, proteins necessary for the 

repair of damaged DNA, and products necessary for defence against host microbicidal 

mechanisms. The presence of these genes in nonpathogenic species suggests that they 

promote survival within nutritionally deprived and/or potentially lethal environments that 

these micro organisms encounter inside and outside mammalian hosts. 

Similarly, in nonpathogenic fungi genes could be present, which are homologous to 

avirulence genes of phytopathogenic fungi, and play a role as "survival genes" under nutrient-

limiting conditions in phytopathogenic fungi. Based on this hypothesis, Ecp or Avr 

homologues could exist in, for example, A. nidulans and N. crassa. In this respect, the 

completion of the genome sequences of A. nidulans and N. crassa might provide a new 

impuls in the study of avirulence gene(s). 

Both the isolation of a gene that is encoding a "survival protein" that is conserved 

among a broad range of (phytopathogenic) fungi and its matching resistance gene, would be a 

challenge for future research in molecular phytopathology. The matching resistance gene 
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could facilitate development of durable resistance against a broad range of phytopathogenic 

fungi, as these can not escape recognition without losing pathogenic abilities. 
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Summary 

During growth of a pathogen in host tissue, pathogenicity genes are usually highly expressed. A 

detailed understanding of how these pathogenicity genes are regulated is required to gain a better 

insight in the molecular communication between pathogen and host. Chapter one describes 

several bacterial and fungal genes, which are envisaged to be involved in pathogenicity and are 

induced in vitro during growth under nutrient-limiting conditions. Based on the data described in 

this chapter, we speculate that in plants, pathogens encounter an environment in which nutrients 

are limiting. Lack of nitrogen might be one of the key factors that induce these pathogenicity 

genes. 

The interaction between the fungus Cladosporium fulvum and its only host, tomato, is 

used as a model system to study plant-pathogen interactions. This interaction is a typical gene-

for-gene relationship, that states that for each avirulence (Avr) gene in the pathogen there is a 

corresponding resistance (R) gene in the plant. Direct or indirect interaction between the products 

of Avr and R genes leads to incompatibility. 

The object of the research performed in this thesis was to obtain a better understanding of 

the factor(s) involved in regulation of the C. fulvum avirulence gene Avr9, which is highly 

expressed in planta during colonisation of the intercellular spaces of tomato leaves. The product 

of this gene is specifically recognised by tomato plants carrying matching resistance gene Cf-9. 

After recognition, the plant mounts a hypersensitive response (HR) that eventually leads to 

resistance against the fungus. 

Before the study was initiated it was known that the Avr9 gene is induced under 

conditions of nitrogen starvation in vitro. Furthermore, several (TA)GATA sequences were found 

to be present in the Avr9 promoter. These sequences had earlier been identified as the binding 

sites for a wide-domain GATA-type regulator (AREA in Aspergillus nidulans and NIT2 in 

Neurospora crassa), involved in nitrogen utilisation. Both observations made it likely to 

hypothesise that a similar regulator would be involved in induction of Avr9 expression in C. 

fulvum and that nitrogen-limitation in the apoplast is the environmental factor that induces Avr9 

expression in planta. 

Chapter two describes the Avr9 promoter activity in A. nidulans transformants, containing 
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a single copy of an Avr9 promoter-uidA (GUS) reporter gene fusion in different are A backgrounds 

(areA wild-type, areA minus, areA constitutive), targeted at the argB locus, following nitrogen 

starvation. Induction of the Avr9 promoter was found to be similarly regulated in A. nidulans and 

C.fulvum, indicating that the AREA protein of A. nidulans is able to induce the Avr9 promoter and 

that C. fulvum contains an AREA-like regulator that can bind to (TA)GATA sequences. Chapter 

three describes a mutational analysis of these (TA)GATA sequences which reveals that two 

TAGATA-boxes, located most proximal to the start codon, both containing two invertedly 

orientated TAGATA sequences, are crucial for inducibility of Avr9 promoter activity in A. 

nidulans. 

Mutated Avr9 promoter fragments which did not show any inducibility in A. nidulans 

were fused to the Avr9 coding region and introduced (not targeted) into strains of C. fulvum 

lacking Avr9. However, in C. fulvum transformants the Avr9 gene was induced when they were 

grown in rich, liquid media, a condition which normally suppresses Avr9 gene expression. We 

have no Southern data on the transformants but it could be that multiple integrations have caused 

the loss of nitrogen-dependent Avr9 regulation both in vitro and in planta. This result emphasises 

that for reliable promoter studies in C. fulvum a gene-targeting system is required. 

The development of such a system for C. fulvum is described in Chapter four. For this 

purpose, the C. fulvum pyrl gene was isolated. The pyrl gene codes for the enzyme orotidine-5'-

monophosphate decarboxylase, which is involved in the pyrimidine biosynthetic pathway and is 

considered to be a versatile selection marker for filamentous fungi. The isolation of the C. fulvum 

pyrl gene was based on complementation of an A. nidulans pyrG-imnus mutant strain which was 

simultaneously transformed with digested genomic DNA of C. fulvum containing the wild-type 

pyrl gene and an autonomously-replicating plasmid. 

C. fulvum pyrl+ transformants were obtained by introducing a vector, containing the C. 

fulvum pyrl gene with a defined mutation, into a C. fulvum pyrl-mutant strain. Southern blot 

analysis of these transformants showed that site-directed integration of this vector at the pyrl 

locus had occurred. Thus, targeting of constructs of interest to the pyrl locus of C. fulvum is 

feasible. 

Isolation of the areAlnit-2 homologue of C. fulvum, designated Nrfl (for nitrogen 

response factor 1), is described in Chapter five. The gene encodes a protein which contains a 

putative zinc finger DNA-binding domain that is 98% identical to the zinc finger domain present 
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in the AREA and NIT2 proteins. Function equivalence of Nrfl to areA was demonstrated by 

complementation of an A. nidulans areA-minus mutant with Nrfl. Expression analysis in liquid 

media revealed that, in contrast to what occurs in wild-type C. fulvum strains, in Nrfl -deficient 

strains the Avr9 gene is not induced under conditions of nitrogen starvation. However, Nrfl-

deficient strains were still avirulent on tomato plants containing the Cf-9 resistance gene, 

indicating that in planta still sufficient quantities of the AVR9 elicitor are produced. It appears 

that, although NRF1 is a major regulator of the Avr9 gene expression, in planta at least one 

additional positive regulator of Avr9 gene expression is active. 

In Chapter six we studied the effect of elevated nitrogen levels on expression of Avr9 in 

C. fulvum grown in planta. We observed that tomato plants containing both the Cf-9 gene and 

elevated levels of nitrate in the apoplast show partial resistance against strains of C. fulvum 

containing the Avr9 gene. This implies that the elevated level of nitrate in the apoplast represses 

Avr9 expression. 

In Chapter seven the data obtained in this research project are discussed in relation to 

other known avirulence genes. It is still unknown why, in their host, pathogens would produce 

proteins that betray them. A possible role for the AVR9 elicitor as a kind of "survival protein" for 

the fungus during infection is discussed. Although, it appears that regulation of the Avr9 gene is 

associated with nitrogen circuits in C. fulvum, regulation of Avr9 by NRF1 in vitro and in planta 

is not similar. The isolation of additional plant factor(s) which are able to induce Avr9 is a 

challenge for future research. 
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Samenvatting 

Bij de interactie tussen een pathogeen en een plant worden er in het pathogeen diverse genen 

gei'nduceerd welke niet tot expressie komen wanneer het pathogeen onder 

laboratoriumcondities groeit (in vitro). Een aantal van deze specifiek in planta gei'nduceerde 

genen zijn avirulentiegenen welke coderen voor peptiden/eiwitten die herkend worden door 

de plant, mits deze het corresponderende resistentiegen heeft. Na herkenning vindt er een 

typische overgevoeligheidsreactie plaats waarbij enkele plantencellen afsterven en daarmee 

ook het pathogeen ten gronde gaat. Dit heeft tot gevolg dat de eventuele groei van het 

pathogene organisme ingeperkt blijft tot de infectieplaats. Een interactie zoals deze is meestal 

het gevolg van een gen-om-gen relatie. Dit houdt in dat voor een avirulentiegen (Avr) in de 

schimmel er een corresponderend resistentiegen (R) in de plant aanwezig is waarbij interactie 

tussen de producten van deze genen direct of indirect verantwoordelijk is voor de inductie van 

de overgevoeligheidsreactie. 

Identificatie van de factoren verantwoordelijk voor de specifieke inductie van deze 

genen van het pathogeen in de plant kan een belangrijke bijdrage leveren aan een beter inzicht 

in de moleculaire communicatie tussen plant en pathogeen tijdens het ziekteproces 

(pathogenese). Hoofdstuk een beschrijft verschillende bacteriele- en schimmelgenen die, 

naast specifieke expressie in de plant, ook gei'nduceerd kunnen worden wanneer de bacterien 

of schimmels in vitro worden gekweekt in media waarin de hoeveelheid essentiele nutrienten, 

zoals bijvoorbeeld stikstof, limiterend is. Er wordt dan ook verondersteld dat deze genen 

coderen voor eiwitten die voor het pathogen nodig zijn om te overleven in de gastheer. 

Sommige van deze eiwitten zouden een rol kunnen spelen bij het ontrekken van 

voedingsstoffen uit de plant. Aan de andere kant zouden ze betrokken kunnen zijn bij een 

snelle anticipatie van het pathogeen op de veranderde omstandigheden, met betrekking tot de 

beschikbaarheid van nutrienten in de gastheer. 

Onze onderzoeksgroep werkt met het model Cladosporium fulvum als pathogene 

schimmel en zijn enige waardplant, tomaat. Uit voorgaande studies is gebleken dat in C. 

fulvum diverse avirulentiegenen worden gei'nduceerd wanneer deze een tomatenplant 

infecteert. Een van deze avirulentiegenen is het goed gekarakteriseerde gen Avr9. Het product 

van dit gen, AVR9, wordt herkend door tomatenplanten die het corresponderende 

resistentiegen, Cf-9, bevatten en zijn als gevolg hiervan, resistent tegen de schimmel. Het doel 

van het onderzoek zoals beschreven is in dit proefschrift bestond emit om de regulatie van het 
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Avr9 gen beter te begrijpen. In het algemeen is er nog slechts zeer weinig bekend over hoe 

avirulentiegenen, afkomstig uit fytopathogene schimmels, worden gereguleerd. Het in dit 

proefschrift beschreven werk kan dan ook worden beschouwd als een van de eerste 

gedetailleerde onderzoeken naar de regulatie van dergelijke schimmelgenen. 

Het Avr9 gen komt hoog tot expressie wanneer de schimmel groeit in de bladeren van 

een vatbare tomatenplant. Het Avr9 gen kan echter ook in vitro ge'induceerd worden wanneer 

de stikstof in het medium limiterend wordt. De promoter van het Avr9 gen bevat specifieke 

(TA)GATA sequenties waaraan, in promotoren van genen afkomstig uit andere filamenteuze 

schimmels, transcriptiefactoren van het GATA-type (AREA in Aspergillus nidulans en NIT2 

in Neurospora crassd) aan kunnen binden. Deze transcriptiefactoren kunnen een breed scala 

aan genen induceren welke betrokken zijn bij het stikstofmetabolisme van de schimmel. 

Bovenstaande bevindingen hebben geleid tot de hypothese dat er in C. fulvum een soortgelijke 

AREA/NIT2 transcriptiefactor aanwezig is, welke verantwoordelijk is voor de regulatie van 

het Avr9 gen. Verder zouden de bovenstaande waarnemingen erop kunnen wijzen dat 

stikstoflimitering in de apoplast van de tomatenbladeren, waar de schimmel groeit, het signaal 

is voor de inductie van Avr9 expressie. 

De resultaten gevonden in Hoofdstuk twee steunen de eerste veronderstelling. In dit 

hoofdstuk wordt aangetoond dat de Avr9 promoter in de laboratoriumschimmel A. nidulans 

een overeenkomstig inductiepatroon vertoont als eerder gevonden voor deze promoter in C. 

fulvum. Hiertoe werd de Avr9 promoter gefuseerd aan het uidA (GUS) "reporter" gen en 

vervolgens getransformeerd naar verschillende A. nidulans are A mutanten {are A minus, are A 

constitutief) en het areA wild-type. A. nidulans transformanten met een enkele kopie van het 

construct, gericht gei'ntegreerd op een locatie in het genoom, werden vervolgens gekweekt in 

medium met en zonder stikstof, waarna de GUS activiteit werd bepaald. De resultaten wijzen 

erop dat er inderdaad ook in C. fulvum een AREA/NIT2 transcriptiefactor aanwezig moet zijn 

die kan binden aan de (TA)GATA sequenties en expressie van Avr9 kan induceren. 

Om te bepalen of deze (TA)GATA sequenties inderdaad een rol spelen bij de inductie 

van Avr9 expressie werden specifieke puntmutaties aangebracht in deze mogelijke bindings 

sequenties (beschreven in Hoofdstuk drie). Studies met gemuteerde Avr9 promoter-GUS 

fusies toonden aan dat twee blokken van twee tegenovergesteld georienteerde TAGATA 

sequenties, welke vlak voor het startcodon gelegen zijn, essentieel zijn voor de 

induceerbaarheid van Avr9 expressie in A. nidulans. De gemuteerde Avr9 promotoren, welke 

niet konden worden ge'induceerd in A. nidulans, werden gefuseerd aan het coderende gebied 

van het Avr9 gen. Vervolgens werden deze constructen getransformeerd naar C. fulvum 
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stammen die het Avr9 gen niet bevatten, met de bedoeling, de transformanten te testen op 

virulentie op Cf9-planten. Vreemd genoeg bleken transformanten waarin dergelijke 

constructen waren geintroduceerd toch avirulent te zijn op tomatenplanten met het Cf-9 gen 

en blijkbaar dus nog voldoende AVR9 produceren. Expressie studies toonden echter aan dat 

in deze transformanten, ook wanneer ze gekweekt worden in rijk medium in vitro Avr9 werd 

gei'nduceerd. Mogelijk is dit het gevolg van de aanwezigheid van meerdere kopieen van het 

construct, op diverse locaties gei'ntegreerd in het genoom van C. fulvum. De chromosomale 

omgeving lijkt dus een grote invloed op de expressie van Avr9 te hebben. Een goede 

vergelijking van de Avr9 expressie in deze transformanten is dan ook niet te maken. Gerichte 

transformatie van C. fulvum ("gene-targeting") waarbij constructen door middel van 

homologe recombinatie op een specifiek locus in het genoom kunnen worden gei'ntegreerd, is 

dus essentieel. De ontwikkeling van een dergelijk systeem voor C. fulvum wordt beschreven 

in Hoofdstuk vier. Voor dit doel werd het C. fulvum pyrl gen gei'soleerd. Dit gen codeert 

voor het enzym orotidine-5'-monofosfaat decarboxylase, dat betrokken is bij de pyrimidine 

biosynthese. De methode ter isolatie van het C. fulvum pyrl gen was gebaseerd op 

complementatie van een pyrG mutante stam van A. nidulans. Hiertoe werd deze A. nidulans 

stam gelijktijdig getransformeerd met gedigesteerd genomisch DNA van C. fulvum met het 

wild-type pyrl gen en een autonoom replicerende plasmide. 

DNA gel-blot analyse van genomisch DNA van C. fulvum pyrl* transformanten, die 

werden verkregen na transformatie met een construct met een specifieke mutatie in het pyrl 

gen, naar een C. fulvum pyrl -mutant, toonde aan dat het mogelijk is om een enkele kopie 

gericht te laten integreren in het C. fulvum pyrl locus. Op basis van deze resultaten moet het 

mogelijk zijn om in de toekomst gebruik te maken van dit systeem om onder andere 

betrouwbare promoteranalyses uit te voeren. 

Hoofdstuk vijf beschrijft de isolatie van het C. fulvum are A/nit-2-homologe gen, Nrfl 

(nitrogen response factor 1). Het Nrfl gen codeert voor een eiwit met een mogelijk DNA-

bindend "zinc finger" domein, hetgeen karakteristiek is voor een GATA-factor. Dit domein 

bleek op aminozuurniveau voor 98% identiek aan het "zinc finger" domein van respectievelijk 

AREA en NIT2. Transformatie van het Nrfl gen naar een A. nidulans areA-min stam 

resulteerde in functionele complementatie voor het A. nidulans areA gen. RNA gel-blot 

analyse liet zien dat, er bij stikstoflimitatie in vitro, geen inductie van Avr9 expressie 

plaatsvond in C. fulvum transformanten waarin het Nrfl gen was uitgeschakeld. Desondanks 

bleken Wr/l-deficiente transformanten van C. fulvum nog steeds avirulent te zijn op 

tomatenplanten die het corresponderende Cf-9 gen bevatten. Blijkbaar wordt er nog steeds 
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voldoende AVR9 geproduceerd door de TW/1-deficiente transformanten. NRF1 is dus wel een 

belangrijke regulator van het Avr9 gen, maar tijdens de kolonisatie van de plant door de 

schimmel zijn waarschijnlijk additionele (planten)factoren aanwezig die in staat zijn Avr9 

expressie te induceren. 

Om te bepalen of een stikstof-limiterende omgeving in de apoplast van 

tomatenbladeren het signaal is voor Avr9 inductie, hebben we in Hoofdstuk zes gebruik 

gemaakt van tomatenplanten die zowel het Cf-9 resistentiegen bevatten als een verhoogde 

nitraatconcentratie in de apoplast. Wanneer deze planten werden geinoculeerd met een Avr9-

bevattende C. fulvum stam, bleek dat deze planten niet een volledige, maar een partiele 

resistentie vertoonden tegen deze schimmelstam. Dit resultaat impliceert dat expressie van het 

Avr9 gen inderdaad onderdrukt wordt door een verhoogde nitraatconcentratie en dat 

voornamelijk tijdens de eerste fase van de infectie, stikstoflimiterende condities in de apoplast 

een signaal kunnen zijn voor de inductie van Avr9. 

In Hoofdstuk zeven worden alle waarnemingen nog een keer naast elkaar gezet en 

besproken. De gevonden resultaten worden in een breder perspectief geplaatst en vergeleken 

met expressie van andere bekende avirulentiegenen. Het blijft nog steeds een vraag waarom 

pathogenen tijdens de pathogenese eiwitten/peptiden produceren die hun aanwezigheid 

verraden. In dit verband wordt er een mogelijke rol voor AVR9 als "overlevingseiwit" 

gesuggereerd. 

Aan de hand van de gevonden resultaten in dit proefschrift kunnen we concluderen dat 

we iets meer weten over communicatie tussen pathogeen en plant tijdens het infectieproces. 

Stikstof heeft een effect op de Avr9 regulatie in C. fulvum. Vooral de rol van NRF1 lijkt zeer 

belangrijk. Aan de andere kant is gebleken dat de mechanismen ter regulatie van Avr9 in vitro 

en in de plant, naast enig overlap ook verschillen hebben. Er zijn nog additionele factor(en) in 

de plant die in staat zijn om Avr9 te induceren. Daarnaast zijn er, ook na de bevindingen 

beschreven in dit proefschrift, nog geen duidelijke aanwijzingen voor de rol van AVR9 voor 

C. fulvum tijdens de infectie van tomaat. 
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