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PROPOSITIONS 

1. Drainage systems are no guarantee for sustainable water management if the 

irrigation planning is not adjusted. {This thesis) 

2. The selection of drain depth is more critical than drain spacing in semi-arid 

climates. (This thesis) 

3. Adaptation of water conservation strategies is a better option than 

recommending farmers to irrigate with poor quality tubewell water. 

(This thesis) 

4. In shallow groundwater table areas, irrigation water supplies on the basis of 

potential evapotranspiration is wrong. (This thesis) 

5. Under un-restricted water supply conditions, the flexibility in irrigation water 

distribution has a considerable positive impact on the productivity of water. 

(This thesis) 

6. In the present water deficient environment of the Indus basin, introduction of 

the on-demand irrigation water distribution system is not a viable option. 

(This thesis) 

7. We never know the worth of water till the well is dry. (English proverb) 

8. Modelers and model users should have one step in the field. 

9. The scientist is not a person who gives the right answers, he is one who asks 

the right questions. (Claude Levi-Strauss) 

10. Ability will enable a man to get to the top, but it takes character to keep him 

there. 

Asad Sarwar 

"A Transient Model Approach to Improve On-Farm Irrigation and Drainage in Semi-

Arid Zones." (September 27,2000). 
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ABSTRACT 

Sarwar, A. A transient model approach to improve on-farm irrigation and drainage in 
semi-arid zones. Ph.D. thesis, Wageningen University and Research Center, Wageningen, 
The Netherlands. 

A transient model approach is introduced to improve design procedures for subsurface 
drainage systems in relation to different irrigation management strategies to increase crop 
productivity and environmental sustainability in the water scarce environment of Pakistan. 
The water flow and solute transport model, SWAP, is used to evaluate the impact of irrigation 
and drainage on crop transpiration, soil salinity and groundwater table behavior taking 15 
years of actual weather data. Model calibration improves considerably when field determined 
soil water retention curves were used. The reference evapotranspiration calculated by the 
Priestly-Taylor method appears to be physically more realistic than the Penman-Monteith 
method because the latter ignores the feed-back mechanism of vapor pressure deficit on 
stomatal closure. For the Fourth Drainage Project (FDP) conditions, a zero flux at the bottom 
of the soil profile was found to be a suitable bottom boundary for further model simulations. 

For semi-arid areas, the selection of a proper drain depth is more critical than drain spacing. A 
drain depth of 2.2 m is found to be optimal for the multiple cropping system of the FDP-area. 
This drain depth gave the best results with regard to crop yields, soil salinity and groundwater 
table control at rather low drainage intensity (q^aii/Ah), resulting from a drain spacing of 500 
m. Long-term model simulations covering a period of 15 years show that the present FDP 
drainage system has been designed at too high drainage intensity. If no operational and 
maintenance constraints are present, the FDP-area could be drained with 25 percent less 
drainage intensity. 

Under shallow groundwater table conditions, reduced irrigation applications can save up to 25 
percent of the canal water each year. This strategy will produce reasonably high crop yields 
(relative transpiration T„c/Tpo, > 0.90) and limit field percolation losses. For either conjunctive 
use or use of tubewell water alone, reduced irrigation applications will not be sufficient and 
additional supplies would be required for leaching the salts from the root zone. It must be 
recognized that during relatively dry years drainage is not a guaranteed success. In the 
absence of a drainage system, leaching of salts by means of poor quality irrigation water will 
not be suitable. For these areas other options like growing more salt tolerant crops should be 
considered. Reduced irrigation inputs is a proper short-term solution, however, in the long run 
drainage systems associated with adjusted irrigation planning seems necessary. 

Under average conditions, the effect of irrigation schedule flexibility on crop yields is 
insignificant. However, compared to a fixed schedule and when un-restricted water supplies 
would be available, the productivity of water (Y„c/Irr) for the on-demand schedule would be 
up to 30 percent higher, but at the cost of salinity build up. The average annual water use by 
the on-demand schedule is 20 percent lower than the fixed schedule, which would result in 30 
percent lower drainage volumes and 15 percent lower recharge to the groundwater. In the 
absence of sufficient canal supplies, necessary infrastructure and management facilities in the 
Indus basin, moving towards a demand-based system would neither be economically feasible 
nor socially acceptable. Therefore the emphasis should be on reducing irrigation water 
application and constructing drainage in conjunctive water use areas. 

Key-words: drainage design, irrigation, crop productivity, soil salinity, sustainability, 
integrated water management, transient modeling, semi-arid zones, Pakistan. 
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INTRODUCTION 

1.1 Water for food 

The world's population is increasing at a rate of 1.5 percent per year. According to the 

United Nations, the world population will reach eight billion by the year 2025. 

Because of this population growth, the average annual per capita availability of 

renewable water resources is projected to fall from 6600 cubic meters today to 4800 

cubic meters in 2025 (Cosgrove and Rijsberman, 2000). Current fresh water use is not 

sustainable as many countries are entering an era of severe water shortages. Given the 

uneven distribution of these resources, some 3 billion people (about 40 percent of 

total world population) will live in arid or semi-arid countries by the year 2025, 

having less than 1700 cubic meters per capita per year. This is the quantity below 

which people start to suffer from water stress (Falkenmark et al., 1989). 

Irrigated agriculture produces about 40 percent of the agricultural outputs and 60 

percent of the world's grain production. To meet the increasing demand for food, 

irrigated agriculture will have to keep pace and therefore expand by 20 to 30 percent 

in area by 2025. However, it is perceived that due to decreased investments in 

irrigation sector combined with environmental and ecological threats, the expansion 

in irrigated area will be limited to the 5 to 10 percent range only. This strong 

reduction in irrigation expansion will lead to serious food shortages and rising food 

prices. As opportunities for development of new water resources diminish and costs 

rise, increasing the productivity of existing water resources becomes a more attractive 

alternative. Therefore there is every motivation to designate more capital and efforts 

to increase the productivity of water and the sustainability of water resources 

management1. 

Increasing the productivity of existing water resources is central to produce more 

food, to fight poverty, to reduce competition for water and to ensure that there is 

enough water for nature. The productivity of irrigation water can be increased in 

essentially four ways: (i) increasing the productivity per unit of evapotranspiration (or, 

more precisely, transpiration) by reducing evaporation losses; (ii) reducing flows of 

usable waters to sinks; (iii) controlling salinity, sodicity and pollution; and (iv) 

1 Productivity of water (kg m"3) is expressed in terms of yield (kg ha"') produced per unit 
evapotranspiration (m). Sustainability refers to management of water systems which does not lead to 
environmental degradation (waterlogging, salinization and desertification). 



reallocating water from lower-valued crops to higher-valued crops (IWMI, 2000). 

Achieving the greater productivity j s possible, especially in developing countries, 

where water productivity \s far below potential. For cereal grains, for example, the 

range is between 0.2 and 1.5 kg m . Even though production depends on conditions 

of the environment, the market, the soil and other factors not equal across sites, there 

appears to be a scope to manage resources for higher productivity 

Pakistan is also one of the countries who could face severe food and water crises in 

the 21s century. Continuous population growth with limited land and water resources 

has put an enormous pressure on the economy of the country. The population is 

increasing at a rate of 3.0 percent per year and has reached about 140 million. 

Considering the reduction in present storage capacities and non-availability of 

additional storage facilities, the shortfall of water requirements would be about 50 

percent by the year 2025 (Alam and Bhutta, 1996). This shortfall of water would 

impact on the agricultural production. Because of continuous rise in population, water 

demand for domestic, industrial and non-agricultural uses will increase by about eight 

percent and is expected to reach to ten percent of the total available water resources 

by the year 2025. Water availability per capita will reduce to less than 600 cubic 

meters per capita in year 2025 (Figure 1.1). This is roughly the value below which 

water availability becomes a primary constraint to life (Engelman and Leroy, 1993). 

Availabe land per person for cultivation is also decreasing. Moreover, agriculture is 

threatened by severe waterlogging and salinity due to lack of drainage facilities and 

good quality irrigation water. Therefore a multi-dimensional approach needs to be 

applied for sustainable development of land and water resources. 

300 
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Figure 1.1. Population growth and water availability per capita per year in Pakistan (after 
Alam and Bhutta, 1996). 



1.2 Irrigation and drainage in the Indus basin 

Irrigated agriculture in Pakistan is mainly confined to the Indus plains where it has 

been developed by harnessing principal water resources available to the country. 

Without assured irrigation supplies, these arid and semi-arid areas of Pakistan can not 

support any agriculture, as the evapotranspiration demand is high and rainfall is either 

meager or unreliable. The contiguous Indus basin irrigation system irrigates an area of 

about 16 million ha, diverting annually about 131 billion m3 of surface water to 43 

main canal systems (Badruddin, 1996). Figure 1.2 shows some features of Indus basin 

irrigation system. About a century ago, the system was originally designed for an 

annual cropping intensity (i.e. yearly cropped area) of about 75 percent with the 

intention to spread the irrigation water over as large an area as possible to expand the 

settlement opportunities. The major objective of irrigation development at that time 

was to prevent crop failure and avoid famine (Jurriens and Mollinga, 1996). Another 

design feature was the low management and operational requirements, which is an 

advantage, with an inherent disadvantage of inflexibility. Increasing demand for food 

to cope with the ever-increasing population has caused the annual cropping intensities 

to rise to about 150 percent. Moreover, many canals can even no longer convey their 

official design capacity, due to siltation and erosion of banks. From the scarcity by 

design and the intensified farmer practices, over time canal water availability per unit 

of irrigated land has become even more limited. 

The irrigation system typically consists of the main canals from which the water is 

distributed to branch canals. Secondary channels, called distributaries, take off from 

the branch canals. The distributaries and their branches, called minors are the main 

arteries for releasing water through outlets to small irrigation service areas (averaging 

160 ha) called 'chaks'. The outlets are free draining structures, which have a capacity 

fixed in proportion to the service area. The outlet discharge is a function of water 

level elevation in the supply canal. Due to the variations in the main canal discharges 

and the changes in the channel regime caused by siltation, it becomes difficult to 

achieve equity in water distribution. In times of water shortage, the water has to be 

rotated between secondary canals, the distributaries and minors. 

The operation of the Indus basin irrigation system is based on a continuous water 

supply and is not related to actual crop water requirements. Irrigation canals are 

usually not allocated more than their design capacity, of which a typical value is about 

2 mm d"'. Despite significant increase in storage capacities, it is essentially a supply-

based system. Hence, it can not adequately accommodate changing water demands 

uring the crop season. The distribution of water from the canal outlets having mostly 



A F G H A N I S T A N 

Figure 1.2. Some features of the Indus basin irrigation system of Pakistan. 



a capacity of 30 to 90 1 s"1, to the group of farmers (in 'chaks') is done on a fixed 

rotational system called 'warabandV being generally a seven days cycle. This means 

that each farmer is allowed to take an entire flow of the outlet once in seven days and 

for a period proportional to the size of his land holding. The water duty is insufficient 

to irrigate the entire farm in one irrigation turn, and the farmer can decide whether to 

under-irrigate all land or leave a fraction unirrigated and bring irrigation water to a 

smaller fraction of his land holding. Due to age and poor maintenance, the delivery 

efficiency of irrigation system is low, ranging from 35 to 40 percent from canal head 

to the crop root zone (Tarar, 1995). In practical terms, therefore, much surface water 

is currently lost enroute, which, if salvaged, could be profitably used by the farmers. 

Due to the inadequacy, variability and unreliability of the surface irrigation supplies, 

the farmers have turned more and more to the use of groundwater without a full 

awareness of the hazard represented by groundwater quality. The Indus basin is 

underlain by an extensive groundwater aquifer covering about 16 million ha, of which 

6 million ha are fresh and the remaining 10 million ha are saline (Haider et al., 1999). 

The massive development of groundwater from the Indus basin aquifer started about 

30 years ago. At present, total groundwater contribution is estimated as approximately 

30 to 40 percent of the total irrigation water available at the farm gate. This source is 

exploited by the use of 20,000 public and about 450,000 private tubewells 

(Nespak/SGI, 1991). About 70 percent of the private tubewells are located in the 

canal command areas while the rest provides irrigation based on groundwater alone. 

The quality of groundwater is highly variable ranging from fresh (EC < 1.5 dS m"1) to 

extremely saline (EC > 4.5 dS m"') and is a main factor of salinity development in the 

root zone. 

The Indus plain is characterized by a lack of any well-defined natural surface drainage 

and differences in micro-relief define the pathways for surface run-off during the 

monsoon season. The surface drainage problems are further aggravated by the 

construction of infrastructures like roads, railways, flood embankments and the 

irrigation system. Due to the flat nature of the Indus basin, natural subsurface drainage 

through down-valley movement of groundwater is also restricted. Therefore, ponding of 

agricultural lands following intense rainstorms, with consequent crop and property 

damages, has become a recurrent phenomenon in many parts of the Indus plains. The 

need for surface drainage of agricultural lands has long been recognized and measures 

were taken to construct surface drains in areas prone to severe damage. Even though 

about 15,000 kilometers of surface drains have been constructed to-date, crop losses 

because of rain flooding remain excessive, especially in the Punjab and Sindh 

provinces (Afzal, 1992). 



1.3 Waterlogging and salinity in the Indus basin 

Waterlogging 

The introduction of large-scale irrigation without adequate drainage altered the 

hydrological balance in the Indus basin. At the time of construction of irrigation 

canals about a century ago, the groundwater table depth in different canal command 

areas ranged between 20 to 30 m below the soil surface. Therefore the need for 

provision of subsurface drainage as a part of irrigation system was not felt. Persistent 

seepage over the years from unlined earthen canals and from a large network of 

distributing channels and percolation losses from irrigated fields, increased the 

groundwater recharge substantially. In the absence of drainage in the canal command 

areas, the groundwater table rose rapidly in vast irrigated areas to within 1.5 m of the 

soil surface. This created waterlogging and, consequently, soil salinity. These 

problems are more serious in areas where groundwater is saline. As a typical example, 

the rise of the groundwater table after the introduction of the irrigation system in the 

Punjab is shown in Figure 1.3. 
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Figure 1.3. Rise of the groundwater table after the introduction of canal irrigation in the 
Punjab, Pakistan (after Wolters and Bhutta, 1997). The groundwater profiles are shown for 
the years 1920 and 1960. 



The groundwater table in the Indus basin fluctuates seasonally. In general, 

groundwater tables are deepest at the end of the dry season (May-June) and 

shallowest immediately after the wet season (September). It is presently estimated that 

after the monsoon season, about 4.7 million ha (30 percent of the irrigated area) have 

a groundwater table within 1.5 m of the soil surface (severely waterlogged). Prior to 

monsoon, this area is reduced to about 2 million ha i.e. 13 percent of the irrigated area 

(Tarar, 1995). The Punjab Province has about 25 percent of its irrigated area severely 

waterlogged and Sindh has about 60 percent in the same category. Due to the 

presence of this shallow and saline groundwater, about 40,000 ha are annually 

abandoned within the Indus basin due to secondary salinization (WAPDA, 1989). 

Figure 1.4 shows that about 46 percent of the irrigated land have groundwater tables 

deeper than 3 m and this proportion is not affected by the season. 

0-1.5 1.5-3.0 >3.0 
Groundwater table depth range (m) 

Figure 1.4. Seasonal effects on groundwater table depths in the Indus basin. 

Soil salinization 

The Indus basin is faced with a considerable salt balance problem. The salts are 

brought in by the rivers and their tributaries. The average annual salt inflow by the 

Indus river water, is estimated to be 33 million tons while the outflow to the sea is 

only 16.4 million tons. This means an annual average addition of some 16.6 million 

tons to the salt storage in the Indus basin. Out of this only 2.2 million tons is 

deposited in a series of evaporation ponds and the remainder of salts accumulates in 

the soil profiles in the irrigated lands and its underlying strata and aquifer 

(Nespak/MMI, 1993). This implies that, annually, an average of one ton of salts is 

added to each hectare of irrigated land. This salt accumulation is mainly causing 



salinization of the land. Therefore about 35 to 40 percent of the irrigated areas are 

affected by salinity. Out of this, eight percent is severely affected and six percent 

moderately affected by salinity. Of course, the scale of the problem of salt 

accumulation in the root zone is even greater if saline groundwater is used for 

irrigation. 

Most of the soil salinity in the Indus basin is inherent, as it was produced during the 

process of soil formation. The secondary salinization associated with the shallow 

groundwater tables and use of poor quality groundwater for irrigation has further 

compounded the problem. Therefore salt-affected soils have become an important 

ecological entity in the Indus basin of Pakistan. It is estimated that nearly six million 

ha are already afflicted with this menace, of which about half is in irrigated areas 

(WAPDA, 1989). An estimated two million ha are abandoned due to severe salinity 

(Wolters and Bhutta, 1997). The extent keeps on changing due to dynamic nature of 

the problem. 

The problems of soils in the Indus basin are not only of salinity but also of sodicity. 

About 70 percent of the tubewells in the Indus basin pump sodic water, which contain 

high concentrations of carbonate and bicarbonate. Application of this quality of water 

for irrigation turn the soils to saline-sodic affecting soil structure and infiltration rates 

thereby restricting the growth of conventional crops. Salt-affected soils of the Indus 

basin are usually classified into four types (Qureshi and Barret-Lennard, 1998). The 

area affected and the characteristics of these four soil types are given in Table 1.1. 

Table 1.1. Classification of salt-affected soils in the Indus basin (after Qureshi and Barret-

Lennard, 1998). 

Classification of Area affected Characteristics 

salt-affected soils (million ha) 

Slightly saline- 0.7 Slight salinity-sodicity problem, occurring as 

sodic patches (about 20% of the area) in cultivated fields. 

Porous saline-sodic 1.9 Saline-sodic throughout the root zone, porous and 

pervious to water. 

Severely saline- 1.1 Have high groundwater tables, dense and nearly 

sodic impervious to water. 

Soils with sodic 2.3 Severely sodic due to application of sodic tubewell 

tubewell water water. Contain high concentrations of carbonates 

and bicarbonates. Almost impervious. 



The above facts indicate that the agricultural sector suffers deeply from both 

waterlogging and salinity. About 75 percent of the population and about half of the 

Gross National Product (GNP) are directly or indirectly related to the agricultural 

sector. This shows that the problems of waterlogging and salinity are not just 

agricultural problems, but that they do affect the country as a whole and ultimately the 

social fabric of Pakistani society. Waterlogging and salinity have very adverse social 

and economical effects on communities in Pakistan, causing poor living standards in 

affected areas and health problems for humans and animals. This situation has forced 

the local population to migrate to other areas. 

In conclusion, waterlogging and salinity remain a hazard for the Indus basin and 

threaten the livelihood of farmers, especially the smaller-scale ones. Therefore, in 

future, drainage rather than additional water continue to be a top priority for the 

sustainability of the system. 

1.4 Measures taken to control waterlogging and salinity 

The threat of waterlogging was recognized soon after the introduction of irrigation in 

the Indus basin. The first observation wells to monitor the effect of irrigation on the 

groundwater table depth were installed as early as in 1870. Based on these studies, 

various remedial measures were tried. These measures were largely focused on 

controlling the groundwater table depth with the idea to contain the capillary 

salinization process. These measures included closure of canals in the monsoon 

season, construction of surface drains in waterlogged areas and lowering of full 

supply levels of canals (Ahmad and Choudhry, 1988). However, none of these 

measures provided more than a local or temporary relief and the regional problem of 

waterlogging and salinity continued to increase in severity. In 1958, the Water and 

Power Development Authority (WAPDA) was created to tackle the problems of 

waterlogging and salinity in the Indus basin, notably through large-scale vertical and 

horizontal drainage projects. These projects are briefly discussed below. 

Vertical (tubewell) drainage 

The first detailed surveys of groundwater table depth and salinity conducted in the 

1950s with the collaboration of the US Geological Survey Department formed the 

basis for the SCARP (Salinity Control And Reclamation Project) program and the 

decision to go ahead with vertical drainage (public tubewell program). As a result, in 

fresh groundwater areas, about 14,000 tubewells (covering about 2.6 million ha of 

irrigated land) with an average capacity of approximately 80 1 s"' were constructed in 

the 1960s and 1970s. The main aims of the SCARP projects were to combat 



waterlogging and salinity through lowering of the groundwater table and increase the 

irrigation supplies at the farm gate by using the pumped groundwater directly or 

mixed with canal water. This demonstration also led to a proliferation of private 

tubewells with a capacity of about 28 1 s"1 and less by farmers in the 1970s and 1980s. 

Since then number of private tubewells are increasing with an average annual growth 

rate of about 9.6 percent (Badruddin et al., 1999). Implementation of SCARPs was 

moderately successful and initially the problems of waterlogging and salinity were 

somewhat arrested and reversed. 

The exploitation of useable groundwater provided an opportunity for the farmers of 

these areas to supplement their irrigation supplies and to cope with the vagaries of the 

surface supplies. However, the present uncontrolled and unregulated use of 

groundwater is replete with serious consequences as it is depleting the fresh 

groundwater (Bhatti and Kijne, 1992). This may lead to excessive lowering of 

groundwater and intrusion of saline groundwater into fresh groundwater aquifers. 

This will not only deteriorate the quality of groundwater but also increase the 

pumping cost. This means more expensive and poor quality groundwater will have to 

be used for irrigation in future. 

Horizontal (tile) drainage 

In the mid-seventies, it was realized that circulating salt-contaminated water through 

vertical drainage only serves to aggravate the problem. Therefore thinking shifted 

towards horizontal (pipe) drainage systems particularly in saline groundwater areas. 

Under Pakistani conditions, pipe drainage systems are some 10 times more expensive 

than tubewell systems (roughly USS 1000 ha"' compared to US$ 100 ha"'). The main 

reasons to introduce pipe drains in saline groundwater areas, despite the high costs, 

were the assumptions that the long-term drainage water quality would be better with 

pipe drains than with tubewells and a small volume of saline effluent will be produced 

(Bhatti, 1987). Better drainage water quality will reduce the disposal problems and 

increase the possibility of using drainage water for irrigation. 

In Pakistan, the horizontal subsurface drainage for waterlogging and salinity control 

was first introduced in the East-Khairpur project. The project was constructed 

between 1977 and 1985. After this, pipe drains were installed in the Mardan SCARP 

project and the Fourth Drainage Project (FDP). At the time of construction of these 

projects, no guidelines were available for the planning and design of subsurface 

drainage systems for the (semi-) arid conditions of Pakistan. Therefore these projects 

were designed by applying the drainage design criteria as used for humid areas. These 

criteria are mostly based on the steady-state equations of Hooghoudt and Ernst (see 
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Ritzema, 1994), which assume steady-state moisture and solute fluxes occurring in 

the unsaturated zone i.e. the design of drain depth and drain spacing for a priori 

chosen drain discharge rate and permissible depth to groundwater table. 

The drain discharge rate for the above-mentioned drainage projects was calculated 

using simple steady-state water balance approach. For the East-Khairpur drainage 

project, recharge to the groundwater was mainly estimated from seepage of irrigation 

canals and on-farm irrigation losses, which resulted in a steady recharge to the 

groundwater of 3.5 mm d"1 (van Someren and Boers, 1978). The main objective of the 

design was to maintain an acceptable groundwater table depth rather than rapidly 

preventing excessive groundwater rises due to monsoon showers. For the Mardan 

SCARP project, recharge to the groundwater was calculated considering on-farm 

irrigation components, 5-year return period rainfall and reduced irrigation during the 

monsoon and recharge to groundwater was found to be 3.2 mm d"1. At the Fourth 

Drainage Project (FDP), the highest mean annual rainfall in the area was used while 

the root zone was considered fully saturated before the design rainfall occurred. This 

resulted in a recharge to groundwater of 2.44 mm d"1. 

These estimated drain discharge rates were then used to calculate the required lateral 

spacings using steady-state equations of Hooghoudt and Ernst. The average drain 

depths of these three projects range from 1.95 m for East-Khairpur to 2.44 m for the 

FDP and were mainly selected on the basis of minimum costs (Smedema et al., 1992). 

The comparative studies of the above three completed projects have shown that all 

three designs are rather conservative with high drainage intensities. Discussions with 

farmers at Mardan and FDP projects confirmed that in the areas already drained the 

demand for surface irrigation has increased (Vlotman et al., 1990). 

Since the completion of the East-Khairpur drainage project, nine more pipe drainage 

projects have been designed, of which several have been completed and others are in 

various stages of completion. Since the design of the first drainage project, the value 

of design drain discharge rate has gradually reduced from 3.5 mm d"' at East-Khairpur 

to 1.3 mm d"1 at Khushab Project (Figure 1.5). Although local conditions such as 

annual rainfall or seepage loss from canals influence the drain discharge rates, the 

general trend towards lower drain discharge rates can be explained by the experience 

designers have built up over the years who now feel more confident to design for 

lower drain discharge rates (Boers and Zuberi, 1995). Above discussion reveals that 

after 25-years of experience in the field of drainage, Pakistan is still struggling to find, 

through trial and error, the suitable drainage design criteria for its conditions. 

Experience has shown (Smedema, 1990) that drainage systems functioning in (semi-) 
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arid zones for salinity control typically have a drain discharge rate of 2 mm d" . From 

the Figure 1.5 it can be seen that this single value of 2 mm d' does not satisfy local 

field conditions of different drainage projects installed in Pakistan. The drain 

discharge rate used for the design has a large influence on the drain spacing and hence 

on the project costs. Therefore, it is logical to develop the best methodology for the 

design of drainage systems under the conditions prevailing in Pakistan. 

Khairpur Mardan FDP Swabi FESS Khushab 

Drainage projects 

Figure 1.5. Drain discharge rates used for different drainage projects in Pakistan, (derived 
from data of Bhutta et al., 1994). The dotted line represents the value proposed by 
Smedema (1990) for semi-arid regions. FESS represents Fordwah Eastern Sadiqia South 
drainage project. 

On-farm water management measures 

To prevent further deterioration of agricultural lands from the twin menace of 

waterlogging and salinity, a number of on-farm water management measures were 

also tried. These included lining of watercourses to reduce seepage losses, adaptation 

of proper irrigation schedules for different crops and climatic conditions. 

Considerable work was also done to develop guidelines for the safe use of different 

quality waters for irrigation and to reclaim salt-affected soils through biotic, physical 

and chemical measures (Ahmad et al. 1990). However, these efforts remained 

confined to the farm and field level, and no serious attempt was made to translate the 

implications of these findings to a larger, system level. On the other hand, farmers 

continue their efforts to reclaim large tracts of irrigated lands affected by salinity 

and/or sodicity. Their measures are mostly related to water management, crop 

choices, cultural practices and the application of chemical and biotic amendments. 

Kielen (1996) has listed a number of measures adopted by farmers to cope with the 

problems of waterlogging and soil salinity in the Indus basin of Pakistan. 
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Despite all these efforts, problems still widely persist in vast tracts of irrigated areas. 

A total of 40 percent of irrigation losses takes place in the watercourse only (Aziz et 

al., 1992). Farmers generally lack knowledge of important aspects of plant-soil-

climate relationships and proper management of different quality waters for irrigation. 

1.5 Problem statement 

Continuous population growth with limited land and water resources has put an 

enormous pressure on the economy of Pakistan. Pakistan is turning to a water scarce 

country in the near future. It is estimated that to feed the increasing population, 40 

percent more food would be required by the year 2025 (Alam and Bhutta, 1996). Due 

to lack of compatible development of water resources, water availability per capita 

per year will be reduced to 580 m3 by that time (Figure 1.1). The scope of expansion 

of irrigated area will also be limited due to shortage of good quality canal water. This 

stresses the need to increase the productivity of available limited water resources. 

The average yields in Pakistan are low for wheat and rice, being 2276 kg ha" and 

1756 kg ha"1, respectively. There is a great variability in crop yields with some 

farmers achieving yields of 3874 kg ha"1 for wheat and 3545 kg ha"1 for rice. The 

productivity of water in Pakistan is among the lowest in the world. For wheat, for 

example it is 0.5 kg m"3 as compared to 1.0 kg m3 in India (IWMI, 2000). Maize 

reveals even a factor nine between lowest in Pakistan (0.3 kg m"3) and highest (2.7 kg 

m3) in Argentina (Bastiaanssen, 2000). This reveals that there is a substantial 

potential for increasing the productivity of water. 

Large tracts of irrigated lands are already salinized or under threat. Areas with proper 

drainage facilities are rare. Due to an overall shortage of canal water to irrigate all the 

agricultural lands, use of poor quality groundwater as a supplementary source of 

irrigation has become a routine practice, which is adding huge amount of salts in the 

root zone thus aggravating the problem of soil salinity. On the other hand, losses from 

the main irrigation canals and irrigated fields are resulting in a rapid rise of the 

groundwater tables. Due to lack of drainage facilities, shallow groundwater tables are 

becoming an inevitable feature contributing to secondary salinization. 

Over the past three decades, numerous efforts have been made to solve the problems 

of waterlogging and salinity and to improve water use efficiency at the farm level. In 

spite of huge investments the success has been limited. The reasons are that the 

installed drainage systems had not been operated as intended. The research conducted 

to advise farmers on appropriate irrigation methods, water use practices with tubewell 
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waters of different qualities and methods for reclaiming salt affected soils was 

generally based on field scale experiments and was not tested for their long-term 

consequences on crop production and environmental degradation. The results were 

therefore regarded as local and short-term solutions and could not get the attention of 

farming community. Moreover, no concrete efforts were made for the dissemination 

of this knowledge. 

The above discussion revealed that problems are very complex and a straightforward 

solution seems impossible. An integrated water management approach could be useful 

to manage available surface and subsurface water resources with respect to quality 

and quantity in view of increasing demands, limited resources, rising groundwater 

tables and soil salinization. In order to increase productivity and sustainability of the 

irrigation and drainage systems, the following potential solutions can be suggested: 

• Improve irrigation efficiencies (save irrigation water); 

• Conserve water at all levels (increase productivity of water); 

• Minimize drainage requirements (improve drainage design); 

• Evacuate salts from the root zone (arrest soil salinization); 

• Manage water quality (maintain salt balance); 

• Improve irrigation water distribution (improve reliability). 

To address the above-mentioned issues, integration of irrigation and drainage is very 

necessary because irrigation management and drainage problems are closely inter­

linked through: (i) irrigation as a cause of waterlogging, and (ii) relationship between 

irrigation management and effluent disposal. In the past, no tools were available for 

these integrated analysis therefore there was no other way except to simplify the 

problem by concentrating upon the factors which have more direct bearing upon the 

system. Although increased understanding of the soil-water-crop relationships and 

concurrent development of new experimental and computational techniques provided 

more opportunities for addressing these problems, their practical utility remained 

limited due to time, money and labor constraints. 

The complexity in analyzing irrigation and drainage systems together is that there are 

many combinations of irrigation management and drainage design that could be 

investigated. The simulation models are the best tools to describe these complex soil-

water-crop-climate interactions. The simulation models provide a more direct link 

between design parameters and objectives of drainage and water management 

systems. Besides giving water and salt balance terms, simulation models can also help 
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to find the variables necessary for the calculations of crop water requirements 

(infiltration, capillary contribution, leaching requirements). This data can be used to 

study the long-term effects of different water management interventions on 

groundwater table, soil, environment and crop growth for which field data is not 

available or field trials could not be conducted. Since models answer easily and 

quickly 'what if questions, they can help in organizing thoughts and in executing 

systematic and efficient research. 

For the large projects, it is time consuming, difficult and expensive to conduct such 

detailed investigations. Therefore it is advantageous to do this research in pilot areas 

where soil and hydrological conditions are similar to the project areas. For the same 

reasons, data from Drainage Unit No. 9 (referred to as S1B9) of the Fourth Drainage 

Project (FDP), Punjab, Pakistan, has been used in this study. The S1B9 area was 

selected because its land use and intensity of cultivation is typical for the FDP-area. 

The study approach involves the use of a soil water simulation model, SWAP. This is 

a one-dimensional hydrological model, which produces daily water and salt balance 

components as an output. The model is capable of simulating long-term impacts of 

different irrigation management strategies on water and salt movement through the 

root zone to the drains, considering temporal variations in weather. 

1.6 Outline of the thesis 

The main objective of this study is to develop a transient model approach to improve 

design procedures for subsurface drainage systems in relation to adapted irrigation 

techniques for improving crop yields without further detriment to waterlogging and 

soil salinity in the (semi-) arid zones. 

The specific objectives of this study are: 

• To demonstrate a methodology for the calibration of a transient-state soil water 

simulation model in an irrigated and drained environment; 

• To improve design procedures for subsurface drainage systems for the semi-arid 

conditions of Pakistan; 

• To revise irrigation planning for the shallow groundwater table areas for both 

drained and un-drained conditions based on maximum irrigation water savings 

and to study the long-term impacts of this water conservation strategy on crop 

transpiration, soil salinity, drainage requirements and groundwater table behavior 

as influenced by different irrigation water qualities; 
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• To evaluate the impact of flexibility in irrigation water distribution on overall crop 

productivity, water savings, soil salinization, drainage requirements and 

groundwater table behavior. 

Chapter 2 describes some important features of the Fourth Drainage Project (FDP) 

and S1B9 pilot area along with the details of data collection for this study. Chapter 3 

describes the brief theory of the SWAP model including the root water uptake as a 

function of soil water pressure head and soil water electrical conductivity, top and 

bottom boundary conditions, flow to the drains, different options to calculate 

irrigation schedules and solute transport. 

Chapter 4 deals with the calibration of the SWAP model for the physical conditions 

prevailing in the FDP-area, experimental set up and methods of data collection. The 

discrepancies between laboratory and field determined soil water retention curves 

0(h) and initial and boundary conditions for SWAP will be discussed. Classical 

misconceptions about the calculations of reference evapotranspiration (ET0) for semi-

arid conditions will also be highlighted by comparing ET0 values calculated with the 

Penman-Monteith method as well as the Priestly-Taylor method. As the field sizes in 

the FDP-area are considerably smaller than the distance between the lateral drains, the 

resulting lateral discharge is the cumulative drainage from all these fields. A 

methodology to estimate the contribution of sample field to the lateral drainage in this 

heterogeneously irrigated and drained environment will be introduced. A simple but 

suitable bottom boundary condition will be determined for further applications of the 

SWAP model in the FDP-area. 

Chapter 5 deals with the re-evaluation of the existing drainage design criteria and 

determination of an optimal drainage design criteria for the FDP-area. The effects of 

twelve different drainage combinations (drain depth and drain spacing) on crop 

transpiration, soil salinization and groundwater table behavior will be evaluated using 

the calibrated SWAP model. Based on these analyses, an optimal drainage design for 

the multiple cropping system of the FDP-area is presented. The performance of this 

optimal drainage design will be compared with the present FDP design and the design 

proposed by Smedema (1990) for the semi-arid conditions of Pakistan. 

Chapter 6 presents water conservation strategies for a wheat-cotton cropping rotation 

for the shallow groundwater table conditions of the FDP-area. The conservation 

strategies will be compared with the farmers' present irrigation practices to evaluate 

their long-term (15-years) impact on crop transpiration, soil salinity, drainage 

requirements and groundwater table behavior. The FDP-area represents a conjunctive 
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use environment and only one-fourth of the project area is equipped with subsurface 

drainage system. Therefore long-term simulations will be performed for both drained 

and un-drained conditions considering three different irrigation water qualities. 

Chapter 7 evaluates the impact of flexibility in irrigation water distribution on crop 

productivity and environmental sustainability. Three water delivery schedules, 

representing different levels of flexibility, will be studied under three conditions of 

water supply. The long-term (15-year) simulations will be performed for drained, un-

drained and deep groundwater table conditions to evaluate the impact of various water 

delivery schedules on overall crop productivity, water savings, soil salinization, 

drainage requirements and groundwater table behavior. 

Finally Chapter 8 summarizes the findings of this study. 
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DESCRIPTION OF THE STUDY AREA 

2.1 Location and climate 

The study area i.e. Fourth Drainage Project (FDP) is located in the Rechna Doab, an 

alluvial plain between the rivers Ravi and Chenab. It is situated north-east of Faisalabad 

city in the Punjab Province of Pakistan. The area has a longitude of 73°E and latitude of 

31°N. The location of the FDP-area is shown in Figure 1.2. The area is sub-tropical, 

continental low-land, characterized as semi-arid with large seasonal fluctuations in 

temperature and rainfall. Summers are long and hot, lasting from April through 

September, with maximum day time temperature varying between 27 C and 43 °C, 

while in winter, it varies between 4°C and 24°C. The average annual rainfall is about 360 

mm. The monsoon, or rainy season, occurs from July to September and accounts for 

about two-third of the total annual rainfall. One-third falls in winter from January to 

March as low intensity frontal rains. A comparison of rainfall and annual potential 

evapotranspiration calculated with the Priestly-Taylor (1972) method for a period of 15 

years (1980-94) is shown in Figure 2.1. 

1400 ETpot 
Rainfall 

13 15 
Years 

Figure 2.1. Comparison of annual potential evapotranspiration (ETr,„} a m j rainfall for a 

period of 15 years (1980-94). 
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2.2 Soils and soil salinity 

The study area consists of a vast stretch of alluvial deposits, mainly unconsolidated sand 

and silt with major amounts of clay and gravel. Clay is generally found in lenses. Most 

soils in the area have a wide range of coarse to medium textured material. Surface soils 

in the area range from sandy loam to silty clay loam, with marked dominance of loam to 

silt loam soils. These surface soils are underlain by loamy sand to sandy loam sublayers. 

The soils are rapid to moderately permeable with a small water holding capacity and 

generally low in organic matter. The dry bulk density varies from 1.5 to 1.7 g cm"3. The 

area is underlain by a highly conductive and deep aquifer of loamy sand to sandy loam. 

Estimates of the depth of the aquifer range from 100 to 300 m. The depth of the 

basement rock which forms the lower boundary of the aquifer varies throughout the 

Rechna Doab. However, for the FDP design the general aquifer depth was taken as 76 m 

(USBR, 1989). 

Soil salinity in the FDP-area is highly variable. This is mainly due to inequity in the 

canal water supplies, which limit the chances of proper leaching at all fields. The 

distribution of irrigation water in the fields is also not uniform due to inadequate land 

leveling and irrigation application practices. This uneven distribution of water produces 

patches of low and high infiltration rates, which in turn produces patches of low and high 

salinity within the same field. Detailed profile salinity surveys conducted by the Soil 

Survey of Pakistan (IWASRI, 1990) show that the problem is not only of salinity but 

also of sodicity as a result of poor quality groundwater used for irrigation. About 35 to 

40 percent farmers of the FDP-area are confronted with this problem to various degrees. 

Three surface salinity surveys were conducted in the FDP-area during the period of 1983 

to 1992 with a gap of about four years (SMO, 1994). The results of these surveys show 

that there is a gradual decrease in the area affected by salinity. This can be attributed to 

the groundwater tables decline in large parts of the FDP-area as a result of surface and 

subsurface drainage improvements. This slowed down the process of soil salinization. 

Another reason is that farmers have reclaimed large tracts of land over the years. The 

results of the surveys of 1983 and 1992 are compared in Table 2.1. The salinity was 

determined by visual observations. Table 2.1 shows that despite all efforts to eliminate 

the problem of salinity, about 30 percent of the FDP-area is still suffering from different 

levels of soil salinity. 
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Table 2.1. Percentage of FDP-area in different salinity classes determined through visual 

observations during surveys of 1983 and 1992 (SMO, 1994). 

Salinity class 

SI 

S2 

S3 

S4 

Salinity level 

Non-saline 

Slightly saline 

Moderately saline 

Severely saline 

Area affected (%) 

1983 

55 

20 

15 

10 

Area affected (%) 

1992 

68 

17 

7 

7 

2.3 Groundwater table depth and groundwater quality 

The groundwater table depths in the FDP-area are generally shallow: about 70 percent of 

the total area has a groundwater table between 1.5 to 2.5 m (Moghal et al., 1992). The 

groundwater table depth varies considerably before and after the monsoon season. 

Before monsoon, about 10 percent of the area has groundwater table depth between 0-

150 cm. After the monsoon, the area with groundwater table depth between 0-150 cm 

increases to 40 percent (Table 2.2). The percentage of area with groundwater table depth 

below 300 cm remained unchanged before and after the monsoon season. The presence 

of this shallow groundwater is a continuous source of capillary salinization. 

Table 2.2. Percentage of FDP-area under different groundwater table depths before and after 

the monsoon season. 

Groundwater table depth (cm) Before monsoon (%) After monsoon (%) 

0450 TO 40 

150-300 70 40 

>300 20 20 

The groundwater quality in the area is highly variable, reflecting the heterogeneity in the 

materials of the area. Groundwater is often saline and contains relatively high amounts 

of sodium and bi-carbonates. Groundwater EC ranges from 2 to 4 dS m"1, which makes 

it generally unsuitable for irrigation. The water quality is usually categorized according 

to the standards adopted by WAPDA (Beg and Lone, 1992) as presented in Table 2.3. 

Apart from the total salt concentration, expressed by the electrical conductivity EC, the 

sodium adsorption ratio (SAR) and residual sodium carbonate (RSC) are also used as 

indicators. The SAR presents the ratio of the Na+ concentration over Ca2+ and Mg2+ 

concentration (mmol l"')05, while the RSC gives the concentration of CO3" and HCO3" 

minus those of Ca2+ and Mg +. The percentage of FDP-area under different groundwater 

quality categories is presented in Table 2.3. 
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Table 2.3. Water quality standards (Beg and Lone, 1992) and percentage of FDP-area in each 
category. 

EC 

(dS m'1) 

0-1.5 

1.5-2.7 

>2.7 

SAR 

(mmol I-1)05 

0-10 

10-18 

>18 

RSC 

(meq l ') 

0-2.5 

2.5-5.0 

>5.0 

Category 

Useable 

Marginal 

Hazardous 

Percentage of 

FDP-area 

40 

20 

40 

2.4 Irrigation system and irrigation schedules 

The irrigation water in the FDP-area is transported to the farmer fields through an 

extensive system of unlined canals and small watercourses. The delivery of water in 

the tertiary unit is based on seven day fixed rotational system called 'warabandf. The 

farmers then distribute their water turn on their fields. The amount of water applied to 

each field entirely depends on the wish of the farmer. Mostly, farmers use basin-

flooding method to spread water over their fields. Farmers usually formulate the 

roster of water rotation. The operation of this system is based on a continuous (but not 

necessarily constant) supply, which is not related to the crop water requirements. A 

considerable variability in the canal supplies occurs due to unforeseen irregularities in 

upstream water offtakes at watercourse level. 

The sanctioned water supply to the FDP-area is 0.2 1 s"' ha"1, which is equivalent to 1.7 

mm d"', almost half of the crop water requirements (WAPDA, 1988). The canal water 

quality is excellent with an EC of 0.3 dS m"'. The conveyance losses in the FDP-area 

ranged from 25 to 40 percent of the discharge at the outlet (Brussel, 1990). Due to these 

conveyance losses, the delivery rate at the fields might be even lower. Therefore not all 

fields can be cropped with this amount of water. As a result, about 12 percent of the total 

FDP-area is abandoned. In winter, an additional 13 percent of the fields are kept fallow. 

In summer, this area increases to an additional 24 percent (SMO, 1994). Due to limited 

canal water supplies, farmers are prompted to use more and more tubewell water to 

supplement their irrigation requirements. This is evident from the increasing number of 

private tubewells in the FDP-area during the period 1983-92 (Figure 2.2). The quality of 

private tubewell water ranged from marginal to hazardous (EC = 2-4 dSm" ; SAR = 13-

17; RSC = 4-7) (Table 2.2) and is considered injurious for both crops and soils. 
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Figure 2.2. Growth in number of private tubewells in the FDP-area from 1983 to 1992. 

Because of the poor quality, groundwater is usually applied in conjunction with canal 

water. By mixing tubewell water with the good quality canal water, farmers tend to 

decrease the salinity of the irrigation water in order to reduce the risk of soil salinization. 

Although evidences exist that blending of saline and non-saline irrigation water is less 

effective in keeping soil salinity levels lower than applying alternate irrigations (e.g. 

Hussain et a l , 1990; Shalhevet, 1994; Kumar, 1995), this strategy is widely practised 

in the FDP-area. 

In extreme downstream areas where canal water supplies are even more limited, 

groundwater is used as the only source of irrigation. Farmers who do not have their own 

tubewell, usually buy tubewell water from their neighbors in periods of acute water 

shortage. Trading of tubewell water is a more common practice in those areas where 

only tubewell water is available for irrigation (Vlotman et al., 1994). 

Farmers having access to groundwater in addition to canal water tend to apply more 

water compared to those who are fully dependent on canal water, which aggravates 

waterlogging conditions. The irrigation schedules in the FDP-area vary a lot. Due to 

uncertainties in the canal water supplies, farmers usually do not plan their irrigations in 

advance. Their decision to irrigate mainly depends upon the crop water need and 

availability of water in the canal system. The studies carried out in the FDP-area 

(Vlotman et a l , 1994; Raza and Choudhry, 1998) have shown that the number of 

irrigations applied to a wheat crop varies from 3 to 6, to cotton from 4 to 6, to maize 

from 4 to 7 and to sugarcane from 10 to 14. The depth of individual irrigation 

applications has been subject of many research studies in the FDP-area. According to 

Willardson (1992), the depth of water applied per irrigation is about 50 mm. Vehmeyer 

(1992) found that it ranged from 60 to 70 mm. Vlotman and Latif (1993) determined the 
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average depth applied per irrigation between 70 and 80 mm. On the basis of field 

measurements, Raza and Choudhry (1998) reached a value of 50 to 75 mm with an 

average of about 65 mm per irrigation. 

2.5 Crops and cropping patterns 

The climate of the study area allows for two cropping seasons in a year: the winter 

growing season called Rabi, which lasts from November to April, and the summer 

growing season called Kharif, which lasts from May to October. Wheat, sugarcane, 

cotton and fodder are principle crops in the area. Next in importance are maize and 

vegetables. The most dominant cropping patterns are wheat-cotton, and year long 

sugarcane crop with cropping intensity (i.e. yearly cropped area) of about 120 percent. 

The average farm size in the area is about 3.75 ha compared to the national average of 

five ha and a decrease in farm sizes is still continuing (Bhatti and Kijne, 1992). More 

than 80 percent of the farms are either owner operated or owner-cum-tenant operated. 

The crops are selected, to a small degree, to serve the farmer's own household 

consumption and for livestock. The crop yields in the area are generally below the 

national average yields in Pakistan. 

2.6 Subsurface drainage system 

The FDP-area occupies 120,000 ha of irrigated land. The area has long been suffering 

from waterlogging and salinity. The detailed survey conducted in 1983 shows that about 

77 percent of the project area is suffering from extremely high groundwater tables (less 

than 1.5 m from soil surface), while about 45 percent of the area was affected by 

salinity/sodicity (Table 2.1). Considering this alarming situation, it was decided to 

control waterlogging and salinity by improving surface drainage systems in the entire 

project area and by installing a horizontal subsurface pipe drainage system in an area of 

about 30,000 ha. 

The subsurface drainage system was designed on the recommendations of the United 

States Bureau of Reclamation (USBR, 1989). Based on their studies, the most 

economical drainage design was one with the drain pipes at an average depth of 2.44 m. 

Drain spacings vary considerably from 100 to 610 m. The corrugated PVC pipes, 

ranging in diameter from 10 to 30 cm have been used for both laterals and collectors. 

Both laterals and collectors are perforated, and are surrounded by a gravel envelope. The 

drainage water is discharged into a sump at a depth of 3 to 4 m below the soil surface. 

From the sump the water is pumped into the surface drains which convey the water to 

the rivers Ravi and Chenab. The Fourth Drainage Project includes two separate areas, 
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Schedule I and II. The total area of these two schedules was divided into 79 small 

drainage units. A typical drainage unit in the FDP-area usually covers between 200 and 

400 ha. Generally, it consists of subsurface laterals that discharge in a sump through a 

subsurface collector. Each drainage unit has its own sump-pump arrangement and access 

to the surface drain. 

2.7 Site for data collection 

The data for this study was collected from a 225 ha drainage unit (called S1B9) of the 

FDP-area. The acronym S1B9 stands for the ninth sump unit of Schedule 1-B of the 

Fourth Drainage Project. Schedule 1-B borders on the Lower Gugera Branch Canal in 

the north, on the Burala Branch Canal in the south, on the town of Satiana in the east and 

on the Maduana Branch Drain in the west. To alleviate waterlogging and salinity in the 

area, eleven sump units with collectors and field drains were installed (Figure 2.3). The 

S1B9 area was selected for this study because its land use, intensity of cultivation and 

hydro-geological conditions were found fairly representative of the FDP-area. Moreover, 

this area was extensively monitored after the completion of the Fourth Drainage Project 

and sufficient data was available for this study. 

Figure 2.3. Schedule 1-B of the Fourth Drainage Project with the location and layout of 
subsurface drainage systems at the 11 sump units. The location of the S1B9 area is also 
shown. 
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Soil investigations have shown that the S1B9 area has two distinct soil layers. The upper 

layer up to 2.5 m depth has a low permeability. The deeper layer has a relatively high 

permeability. The surface soils in the S1B9 area range from mainly loam to silt loam. 

The loamy sand to sandy loam sublayers start at about 2.5 m depth (IWASRI, 1990). 

The area is under perennial canal' irrigation and is located at the end of the Balochwala 

distributory. Canal water supplies are usually irregular and well below the design value. 

As a result, use of poor quality groundwater is a common practice to meet crop water 

requirements. The main crops in the area are wheat, cotton, sugarcane and fodder. About 

75 percent of the area is under cultivation while the remaining 25 percent is abandoned 

mainly due to lack of irrigation water and due to waterlogging and salinity. A summary 

of general characteristics of the S1B9 area is given in Table 2.4. 

Table 2.4. General characteristics of the S1B9 area of the Fourth Drainage Project (FDP). 

Total area 225 ha 

Climate 

Mean annual rainfall = 360 mm 

Mean annual evaporation = 1500 mm 

Irrigation system 

Sanctioned irrigation water supply: 0.2 1 s'1 ha"1 

= 1.7 mm d"1 

Warabandi rotation: 7 days 

Land use 

Cultivated 

Abandoned 

Fallow 

Municipal 

Kharif(%) Rabi (%) Drainage system 

45 

25 

25 

5 

61 

25 

9 

5 

Design drain discharge = 2.44 mm d'1 

Drain spacings = 460 - 515m 

Three parallel laterals depths = 1.64 - 3.2 m 

Length of each lateral = 840 m 

Perennial canals are those designed to receive water throughout the year, with exception of the annual 
maintenance period. Non-perennial canals receive water only during the kharif (monsoon season) 
period. 
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THEORY OF THE SWAP MODEL 

Feddes et al. (1978) developed the one-dimensional model SWATR to describe 

transient water flow in a heterogeneous soil-root system, which can be under the 

influence of groundwater. This model was further developed by Belmans et al. (1983), 

Wesseling et al. (1991), Van den Broek et al. (1994) and Van Dam et al. (1997) and is 

now referred to as SWAP. The model aims at simulation of unsaturated flow, solute 

transport, heat flow and crop growth in the atmosphere-plant-soil environment at field 

scale level (Figure 3.1). The model offers a wide range of possibilities to address 

practical questions in the field of agriculture, water management and environmental 

protection. Previous versions of this model have successfully been applied in many 

hydrological studies for a variety of climatic and agricultural conditions (Bastiaanssen 

et al., 1996). Options exist for irrigation scheduling, drainage design, prediction of 

depth to groundwater table, soil salinity and leaching of nitrogen and pesticides. 

Atmosphere 

interception 1" 

Plant $m 

Unsaturated 
zone 

rain/irrigation 

' transpiration 

m *$M - i - s o i l evaporation 
surface runoff 

Saturated 
zone 

seepage/ 
percolation 

drainage/ 
^ infiltration 

Deep Groundwater 

Flow / transport of: 
- soil water 
- soil heat 
- solutes 
nfluenced by: 
- hysteresis 
- soil spatial variability 
- water repellency 
- shrinkage cracks 

Figure 3.1. Processes incorporated in the SWAP model. 
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3.1 Soil water flow 

SWAP employs Richards' equation for soil water flow in the soil matrix. Richards' 

equation is a combination of Darcy's law and the classical continuity equation 

(conservation of mass). For vertical flow, the equation reads: 

C(h)^=^[K(h)(^ + V]-S(h) (3.1) 
at az az 

where h (cm) is soil water pressure head, K (cm d"1) is hydraulic conductivity, C (dO/dh) 

(cm"1) is the differential soil water capacity, S (cm3 cm" d"1) is soil water extraction rate 

by plant roots, z (cm) is the vertical coordinate positive in the upward direction and t (d) 

is time. Richards' equation is solved through an implicit finite difference scheme as 

described by Van Dam and Feddes (2000). 

Richards' equation has a clear physical basis at a scale where the soil can be considered 

as a continuum of soil, air and water. SWAP solves Eq. 3.1 numerically for both the 

unsaturated and saturated zone, subject to specified initial and boundary conditions and 

with known relations between soil water content (0), soil water pressure head (h) and 

unsaturated hydraulic conductivity (K). These relationships, which are generally called 

the soil hydraulic functions, can be measured directly in the soil, or might be obtained 

from basic soil data. The soil hydraulic functions are described by the Van Genuchten 

(1980) and Mualem (1976) model or by tabular values. Hysteresis of the water retention 

function can be taken into account with the scaling model of Scott et al. (1983). 

The analytical soil water retention, 6(h) function proposed by Van Genuchten reads: 

6 , -6 
0 = 0 +_!o, ™_ ( 3 2 ) 

(i + W Y 

where 6sa, (cm3 cm"3) is the saturated water content, 8res (cm3 cm"3) is the residual water 

content in the very dry range and a (cm"1), n (-) and m (-) are empirical shape factors. 

Without loosing much flexibility, m can be taken equal to: 

m = \-- (3.3) 
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Using the above 0(h) relation and applying the theory on unsaturated hydraulic 

conductivity by Mualem (1976), the following K(8) function results: 

K = KMSe
x 1 - 1 - 5 . (3.4) 

where Ksa, (cm d"') is the saturated hydraulic conductivity, A, is a shape parameter 

depending on AKIdh, and Se is the relative saturation defined as: 

0-9 
Se= = - (3.5) 

9sa, -8res 

3.2 Soil water extraction by roots 

The potential root water extraction rate (Spol), integrated over the rooting depth (Droot), is 

equal to the potential transpiration rate, Tpot, which is governed by atmospheric 

conditions. The potential root water extraction rate at a certain depth, Spo, (z) (d"1), may 

be determined by the root length density, lroot (z) (cm cm"3), at this depth as fraction of 

the integrated root length density (e.g. Bouten, 1992): 

£,„(*)= !'°°'{Z) Tpo, (3.6) 
\hoo\z*)dz 

- " „ „ „ 

where Droo, is the root zone depth (cm). 

SWAP can handle every distribution of root length density. In practice however precise 

data on root length density distribution is often not available. Therefore in this thesis, a 

uniform root length density distribution is assumed, which leads to a simplified form of 

the Eq. 3.6 (Feddes et al., 1978). 

S , ^ ) ~ (3-7) 

Stresses due to dry or wet conditions and/or high salinity concentrations may reduce Spot 

(z). Water stress in SWAP is described by the function proposed by Feddes et al. (1978). 
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S(h,z) = arw(h)Sfel(z) (3.8) 

where a^fh) is a dimensionless function of soil water pressure head (h) (see Figure 3.2). 

The value of «TO varies between 0 and 1. When aw is 1, water extraction by roots is 

equal to potential. If 0 < am < 1, the soil water status in the root zone becomes 

important. Above hi no water uptake takes place due to oxygen deficiency, while below 

the wilting point, h4, the plant is not able to extract water due to 'too dry' conditions. 

Between #2 and hi, water uptake remains optimal. Critical pressure head values of this 

sink term function for a variety of crops can be obtained from Taylor and Ashcroft 

(1972), Wesseling et al. (1991) and can also be derived from the soil and crop data given 

in FAO Publications (Doorenbos and Pruitt, 1977; Doorenbos and Kassam, 1979; Smith, 

1995). 

7po,= 1 mmd-1 

1.0 

a, TW 

0.0 

Figure 3.2. Dimensionless sink term variable, am, as function of soil water pressure head h and 
potential transpiration rate, T^ (after Feddes et al., 1978). 

For salinity stress the response function of Maas and Hoffman (1977) is used. They 

found that the reduction in crop yield due to salinity can be linearly related to the soil 

solution electrical conductivity. Crops can tolerate increases in soil salinity up to a 

threshold value, after which yield reduces linearly with increasing salt concentration 

(Figure 3.3a). 

= 1 

• = l-a(ECe-ECe ) 

for 0<ECe>ECe 

for ECe > ECe' 

(3.9) 

(3.10) 
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where ECe is the electrical conductivity of the soil saturation extract (dS m"1), ECe* is 

the electrical conductivity of the soil saturation extract at which yield begins to decrease 

(dS m"1) and a is the slope which equals the fraction yield decrease per unit of electrical 

conductivity increase. Salt tolerance data according to Eq. (3.9 and 3.10) have been 

listed for a number of crops by Maas (1990). 

Ysc/Y, 

ECe(dScm-1) 

711 (cm) 

Figure 3.3. a: Relative yield Yac/Yr„, versus the electrical conductivity of the soil 
saturation extract ECC. b: Root water uptake reduction function ars versus osmotic head %. 

Assuming that relative yield (Yac/Yp0,) has a one to one relationship with relative 

transpiration {Tac/Tp0i) and thus with relative root water water uptake (Sac/Spot) over the 

entire root zone, we can write that under saline conditions: 

/)„„„ 
f(ECc) = ars(7i) (3.11) 
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where ars (ri) is the root water reduction function due to salinity, written in terms of 

osmotic head. To convert the electrical conductivity based slope a into an osmotic head 

based slope, one may use a factor of 360 (US Salinity Lab., 1954): K= -360 ECe. Hence 

ocrs (fl) =1 for 0 < n< n 

<znM = l (n-n") for n> 7t 
360 

where n is the osmotic threshold value (Figure 3.3b). 

For the root water uptake at depth z the effect of salinity stress can then similar to water 

stress, be expressed as: 

S {n, z) = ars {K) S^ (z) (3.12) 

It is still not clear if under the conditions where both stresses apply, the stresses are 

additive or multiplicative (Van Genuchten, 1987; Dirksen et al., 1993; Shalhevet, 1994) 

or neither of them (Homaee, 1999). In order to simplify parameter calibration and data 

retrieval, the parametrization of water and salinity stresses in SWAP is multiplicative. 

This means that the actual root water flux, S„c, (z) (d"1), is calculated from: 

Saa (h, Tr,z) = anv (h)ars {K)Spol (z) (3.13) 

Integration of S„c, (z) over the root zone yields the actual transpiration rate, Tnc, (cm d" ). 

Tma= )s„Jz (3.14) 
-D„m 

3.3 Solute transport 

Solute transport in SWAP is calculated according to the convection-dispersion-

diffusion equation: 

J = qc-e{Ddif+Ddis)^ (3.15) 
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where J(g cm" d") is the total solute flux density, Drf,/(cm d"1) is the solute diffusion 

coefficient, Ddu (cm2 d"1) is the solute dispersion coefficient and dc/dz. is the solute 

concentration gradient. The solute diffusion coefficient is very sensitive to the actual 

water content, as it strongly affects the solute transport path and the effective cross-

sectional transport area. In SWAP, the relation proposed by Millington and Quirk 

(1961) is used to describe flow path tortuosity and A*,/is equal to: 

Ddlf=Dw^— (3.16) 

where Dw (cm d") is the solute diffusion coefficient in free water and <j>por (cm3 cm") 

is the soil porosity. Under laminar conditions, D,/is is proportional to the pore velocity 

v (cm d"1) (Bolt, 1979): 

Ddis=Ldisv (3.17) 

where L<tiS (cm) is the dispersion length, which depends on the scale over which the 

water flux and solute convection are averaged. 

By considering conservation of mass in an elementary volume, the continuity 

equation for solute transport is expressed as: 

™=-^-Ss (3.18) 
dt dz * 

where X(g cm" ) is the total solute concentration in the soil system and Ss (g cm" d ) 

is the solute sink term accounting for decomposition and uptake by roots. 

The solutes may be dissolved in the soil water and/or may be adsorbed to organic 

matter or to clay minerals: 

X = 6c + PbQ (3.19) 

where p/, (g cm"3) is the dry soil bulk density and Q (g g"') is the solute fraction 

adsorbed to soil particles. The solute sink term Ss can be written as: 

Ss=ju(ec + pbQ)+krSc (3.20) 
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where ju (d"1) is the first order rate coefficient of transformation, kr is the root water 

uptake preference factor (-) and S is the root water extraction rate (d"1). 

Combination of Eq. 3.15, 3.18, 3.19 and 3.20, yields the transport equation applied in 

SWAP which is valid for dynamic, one-dimensional, convective-dispersive mass 

transport, including non-linear first order decomposition and root water uptake 

(Boesten and Van der Linden, 1991). Eq. 3.21 permits the simulation of salt transport, 

including the effect of salinity on root water uptake. 

d-^^ = -d-^ + ^WDdlf+Ddis)
dA-M(Oc + PbQ)-krSc (3.21) 

at oz oz oz 

As initial condition, the solute concentration, c, (g cm"3) in the soil water and the 

average solute concentration in the groundwater, cgr (g cm"3) need to be specified. For 

the upper boundary condition, the solute concentrations of irrigation water, cirr (g cm"3), 

and rain water, cprec (g cm"), need to be specified. For the drainage boundary 

conditions, SWAP assumes that the lateral drainage flux leaves the soil profile laterally 

at the lowest compartment. During drainage (q<tmi„ > 0), the solute flux density, Jdmin (g 

cm"2) that leaves the one-dimensional soil profile is calculated as: 

J drain =1drai„C„ (3-22) 

where c„ is the solute concentration (g cm"3) in the lowest compartment. During 

infiltration (qdmin < 0), J drain follows from: 

J drain = 1 drain C
 Sr ( 3 - 2 3 ) 

where cgr is the average solute concentration in the groundwater (g cm"). 

From the bottom boundary condition, SWAP uses the flux through the bottom of the 

soil profile (qbot)-in c a s e of upward flow (qbot > 0), the solute flux density, Jbo, (g cm"2), 

positive upward) equals: 

4 = f c V (3-24) 

If qbot is directed downwards {qbot < 0), the solute flux density, Jbo, (g cm"2) equals: 

J bo, = <loo,Cn (3-25) 
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3.4 Boundary conditions 

The wide range of upper and lower boundary conditions being offered in SWAP is one 

of the key advantages of the model. The upper boundary conditions of the system are 

described by potential evapotranspiration rate, ETpo, (cm d"1), irrigation and 

precipitation. SWAP uses daily meteorological data to calculate daily ETpo, according to 

Penman-Monteith (Smith, 1995). If necessary meteorological data are not available, 

SWAP opts for alternative procedures and ETpol or reference evapotranspiration rate, 

ET0 (cm d"1) can directly be used as input. Precipitation may be provided either on a 

daily basis or as actual intensities. Short-term rainfall data allow the calculation of 

runoff and preferential flow. 

ETpo, is divided into potential transpiration rate, Tpo, (cm d"1) and potential soil 

evaporation rate, Epo, (cm d"') based either on the leaf area index, LAI (m2 m"2) or the 

soil cover fraction, SC (-), both as a function of crop development. Reduction of the 

potential soil evaporation rate into actual soil evaporation rate, E„c, (cm d"') depends on 

the maximum soil water flux in the top soil according to Darcy's law or is calculated by 

an empirical function following either Black et al. (1969) or Boesten and Stroosnijder 

(1986). For this study, reference evapotranspiration rate calculated by the Priestly-

Taylor (1972) method was directly used as input. Soil cover fraction was used to 

partition ETp0, into Epol and Tpol, while the empirical function of Boesten and 

Stroosnijder was used for the reduction of Epo, into E„a. 

The bottom of the flow system may be situated either in the unsaturated zone or in the 

saturated zone. At this lower boundary, one can specify a pressure head, a flux or a 

relation between the two. With the lower boundary conditions the connection with the 

saturated zone can be established. In this way effects of surface water management 

influencing the groundwater depth upon, for instance, crop transpiration can be 

simulated. The coupling between the two systems is possible by considering the 

phreatic surface as an internal moving boundary. 

At the bottom of the system, the boundary conditions can be described with various 

options. These include groundwater level as a function of time, flux to/from semi-

confined aquifers, flux to/from open surface drains, an exponential relationship 

between bottom flux and groundwater table or zero flux, free drainage and free 

outflow (Van Dam et al., 1997). In this study, for the calibration of the model daily 

measured groundwater levels were used as bottom boundary condition. For model 

simulations, zero flux at the bottom of the soil profile was applied. 
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3.5 Field drainage 

SWAP makes a distinction between lateral and vertical outflow, the former is the 

local flow to drains ('drain discharge rate'), qdrain (cm d"), and the later regional 

groundwater flux at the bottom of the simulated soil profile, qbot (cm d"). The drain 

discharge rate depends on the simulated groundwater level midway between the 

drains. In order to calculate correct residence time for solutes, SWAP assumes that 

qdrain is extracted laterally in the saturated zone of the soil profile. So the bottom flux, 

qbot, excludes the qdrain- Three options are available for the calculation of the drain 

discharge rate. These include a flux-groundwater level relationship, a tabular flux-

groundwater relationship or drainage equations of Hooghoudt and Ernst (see Ritzema, 

1994). The difference in hydraulic properties of the layered soil profile determines 

whether the Hooghoudt or Ernst equation should be chosen. For the FDP-area, the 

drainage situation is described by a homogeneous soil profile with drains above the 

impervious layer as shown in Figure 3.4. 

Infiltration 

Evapotranspiration 

ItWAWA'AW/V&A'AWA'^AWA'^M 
>• Run-off 

'MM'A'^A'A'A'A'/VAWA'^^AWMWi'A 

Figure 3.4. Schematization of flow in the SWAP column in relation to the location of the 

subsurface drains for the FDP-area. qdrain = drain discharge rate, d= equivalent depth which 

is a reduced value of the depth of impervious layer below drain level, D, &h = total 

hydraulic head difference between the drain level and the phreatic level at midpoint, L = 

drain spacing and H= groundwater table depth below the soil surface. 
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The drain discharge rate (qdram) was calculated using the Hooghoudt drainage 

equation. These equations allow studying the effect of given drain spacings and drain 

depths on drain discharge rates and groundwater table fluctuations by simulating the 

water and solute transport in the unsaturated zone. This opens the possibilities for the 

design or evaluation of drainage systems. The Hooghoudt equation reads as: 

SK^dAh +4K?a,Ah2 

1 drain = ~jj. <3-26> 

where qdram (cm d") is the drain discharge rate, Ksat (cm d" ) is the horizontal 

saturated hydraulic conductivity, d (cm) is the equivalent depth which is a reduced 

depth of the impervious layer below drain level, D (m), ̂ h (cm) is the hydraulic head 

difference between the drain level and the phreatic level at midpoint and L (cm) is the 

drain spacing. Parameter d is a function of L, D and the radius of the drain r0 and 

needs an iterative procedure to be solved. The value of d was calculated using the 

relationship of L, D and r0 as given below (see Ritzema, 1994). 

nL 

d = - £ — (3-27) 
nL D L 
—- + ln ( - ) + ln(—) 
sD L nr„ 

3.6 Irrigation scheduling 

Irrigations in SWAP may be prescribed at fixed times or scheduled according to a 

number of criteria. Also a combination of irrigation prescription and scheduling is 

possible. The scheduling criteria define the time and depth of irrigation application. 

Both depth and timing criteria may be dynamic i.e. defined as a function of crop 

development stage. The scheduling options allow the evaluation of alternative 

application strategies, which can be used to support the design of a combined irrigation 

and drainage system. 

Two irrigation depth criteria can be specified: a constant application depth, a volume 

of water needed to fill the root zone back to field capacity. According to the rate of 

depletion through evapotranspiration and percolation, timing of the next irrigation 

will be automatically calculated taking actual weather, groundwater conditions, root 

water uptake and capillary water flow into account. Five different timing criteria can 

be selected to generate an irrigation schedule. These include allowable daily stress, 

allowable depletion of readily available water in the root zone, allowable depletion of 
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totally available water in the root zone, allowable depletion amount of water in the 

root zone and critical pressure head or water content at a certain depth. 

3.7 Crop growth 

Effects of water on crop production in irrigation design and management are 

paramount. Plants consume water essentially for the process of photosynthesis and 

transpiration. Water is transported to the roots of a plant and then removed from the leaf 

surface via transpiration. Transpiration is controlled by the stomatal aperture and by the 

vapor pressure gradient from the leaf to the atmosphere. Since stomata acts as 

regulators for CO2 exchange and water loss, water stress sufficient to close stomata 

depresses photosynthesis and ultimately crop yield. 

The amount of water required by the plants for their growth depends on a number of 

factors including the type of plant, its growth stage, soil properties and meteorological 

conditions. Under water limiting conditions, it is important to know what is the 

minimum amount of irrigation water needed to ensure a maximum production of a 

certain crop. 

Doorenbos and Kassam (1979) suggested that when the full crop water requirements 

are not met, the effect of water stress on crop production can be quantified by deriving a 

relationship between relative yield decrease and relative evapotranspiration deficit 

given by the empirically-derived yield response factor (Ky): 

Y 

pot 

f E T \ 
1 on 

. " ETr« J 

(3.28) 

where Yac, (kg ha"1) is the actual crop yield, Ypo, (kg ha"1) is the potential crop yield, 

ETaa (cm d"') is the actual evapotranspiration rate and ETpot (cm d"') is the potential 

evapotranspiration rate. The value of Ky is based on a wide range of growing 

conditions. 

For the determination of water use efficiency at crop production level, a distinction 

should be made between evapotranspiration of soil and crop and transpiration. 

Evaporation is the water loss to the atmosphere from bare soil and transpiration is the 

loss of water vapor to the atmosphere through plant surfaces. Evaporation from bare 

soil should therefore be considered a loss, only transpiration reveals crop water use. 

Therefore when considering production/water use relationships one should infact not 
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consider the water use by soil plus crop i.e. evapotranspiration, but the water use by 

the crop itself i.e. transpiration. This because photosynthesis/dry matter production 

and transpiration are directly related through the processes of diffusion of carbon 

dioxide and water vapor through the stomata of leaves (Feddes, 1985; Feddes and 

Koopmans, 1997). 

De Wit (1958) pointed out that under high radiation conditions not restricting 

transpiration, the water requirements of plants are more or less proportional to the 

level of radiation expressed as evaporation from a free water surface, E0. He 

concluded that the relationship between actual crop yield (Yaa) and actual 

transpiration (Tact) for arid and semi-arid regions is linear in the following form: 

Y = f 
J act J 

± act (3.29) 

where/is a crop parameter. De Wit also indicated that this relationship is hardly 

affected by small variations in water and nutrient availability. 

For a given crop and year for which/and E0 are constant, a simplified relationship 

between relative yield Y„c,/Ypo, and relative transpiration T„c,/Tpo, applies: 

Y T 
_acL = _J1£L ( 3 3 0 ) 

Y T 
pot pot 

The validity of De Wit's linear relationship in field experiments was confirmed by 

several researchers in different climates (Hanks, 1974, 1983; Stewart et al., 1977; 

Feddes, 1985). Eq. 3.30 does not include the occurrence of drought sensitive periods, 

however the use of a more complicated expression including drought sensitive stages 

does not seem to improve the results (Stewart et al., 1977). Hanks (1983) correctly 

remarked that Eq. 3.30 is more suitable to compare treatments within a given year, 

because Ypo, may vary from year to year. Since under arid and semi-arid conditions of 

Pakistan variations in solar radiations (i.e. evapotranspiration) over the different years 

are relatively small (Figure 2.1), Eq. 3.30 can be used as a general expression for the 

estimation of actual crop yields. Other non-water factors such as nutrient availability, 

pest, weed and disease control and farm management are considered to be optimal. 

Further details of SWAP are described by Van Dam et al. (1997) and the program use is 

documented by Kroes et al. (1999). 
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CALIBRATION OF THE SWAP MODEL1 

Abstract 

This Chapter deals with the calibration and verification of the transient state water 
flow and solute transport model, SWAP, for the physical conditions prevailing in the 
Fourth Drainage Project (FDP), Punjab, Pakistan. The calibration was performed for a 
period of about 14 months using data from two sample fields located in the S1B9 
drainage unit of the FDP-area. During the calibration process, emphasis was given to 
the accurate determination of soil hydraulic parameters, reference evapotranspiration, 
drainage from sample fields, and bottom boundary condition. Laboratory determined 
soil hydraulic parameters were found non-representative of the field conditions. 
Difference between laboratory and field determined soil water retention curves were 
found significant.The pressure heads and soil water contents measured in depth 
increments of 15 cm were in good agreement with the simulated values after applying 
a field measured retention curve. A close proximity was also found between measured 
and simulated average root zone salinity at 0 to 1.0 m depth. The reference 
evapotranspiration calculated by the Priestly-Taylor (PT-^7^) method was found 
physically more realistic than the Penman-Monteith (PM-g^) method due to 
ignorance of the feed back mechanism of vapor pressure deficit on stomatal closure. 
The simulated cumulative drainage from two sample fields was comparable with the 
field determined values. The analysis of piezometer data shows that there is a 
negligible water exchange between the deep aquifer and the unsaturated zone. 
Therefore for scenario analysis, no flow conditions at the bottom of the soil profile 
can be applied as a bottom boundaiy. 

4.1 Introduction 

In semi-arid areas, the puipose of a drainage system is to keep the water table deep 

enough to allow adequate aeration in the active root zone, to meet leaching 

requirements, and to minimize capillary salinization during fallow periods. On the 

other hand, watertable should be high enough to maximize the contribution of soil 

water replenishment through capillary rise (Feddes, 1990). These objectives have 

made the drainage design more difficult and complex. In the absence of a specific 

drainage design criteria for the semi-arid conditions, the drainage systems in Pakistan 

were designed using steady-state equations of Hooghoudt and Ernst (See Ritzema, 

1994, for review). Different drainage projects installed in Pakistan have failed to 

generate enough agricultural benefits to justify their construction. One of the reasons 

of this low efficiency was that the steady-state approach does not allow to study the 

1 Adapted version of Sarwar, A., Tli.M. Boers and J.C. Van Dam, 2000. Evaluating drainage design 
parameters for the Fourth Drainage Project, Pakistan by using SWAP model: Part I-Calibration. 
Irrigation and Drainage Systems (in press). 



impact of different hydrological conditions on the necessary drainage capacity. 

Therefore, it did not yield satisfactory results to achieve a multi-objective drainage 

design criteria needed for the semi-arid conditions. 

In reality, the recharge to the groundwater varies with time according to fluctuations in 

rainfall, irrigation, evapotranspiration and seepage. In order to solve these unsteady-state 

problems, various approaches have been developed. They include Glover-Dumm (1960), 

De Zeeuw-Hellinga(1958), and Krayenhoff van der Leur-Maasland (Krayenhoff van der 

Leur, 1958, 1962; Maasland, 1959). The unsteady-state approach offers major 

advantages compared with the steady-state approach, but various assumptions restrict the 

use of these unsteady-state equations. Firstly, these equations can be applied in soils with 

a homogeneous profile only. Secondly, they do not consider moisture transfer dynamics 

in the unsaturated zone: only fluxes are made variable as a function of the depth of the 

watertable. Introducing a constant value for the drainable pore space in unsteady state 

equations could result in considerable errors (see Ritzema, 1994). 

Drain spacing and drain depth are not independent but should in combination be capable 

to discharge excess soil water and salts. The transient simulation models are powerful 

tools to describe these interactions. They provide an opportunity to capture the full 

range of all influencing parameters, many of which vary during the crop season and 

interact with each other. The greatest limitation of these models is the lack of reliable 

input data for practical applications and a standard protocol to calibrate these models. 

One such transient simulation model is SWAP (Van Dam et al., 1997). SWAP is a 

one-dimensional model, which can simulate the effects of certain drainage designs on 

soil water and salinity dynamics in the unsaturated zone. Previous versions of this 

model have been successfully applied to design criteria for drainage dimensions in 

relation to actual transpiration and crop yields (Feddes, 1988; Van Wijk and Feddes, 

1990; Skaggs, 1999) and for the interaction between irrigation, drainage and crop 

yields (Bastiaanssen et al., 1996). 

The SWAP model has also been applied in Pakistan to simulate irrigation and 

drainage conditions (Sarwar, 1993; Kelleners, 1994; Beekma et al., 1995; Van Dam 

and Feddes, 1996; Smets et al., 1997). In these studies, many assumptions regarding 

the model-input data were made. Moreover, the model was mainly calibrated for 

conditions in the unsaturated zone and no emphasis was given on the evaluation of the 

drainage component and the bottom boundary conditions. Therefore there is a need to 

perform profound analysis of the different model input parameters and their influence 

on model results. 
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The objective of this study is to demonstrate that by putting specific effort on the 

collection of required input data, the transient state models can be calibrated against 

local field data. This Chapter presents the methodology used to calibrate the model, 

and the results of model calibration. Special emphasize will be given to: 

• Compare laboratory and field measured soil hydraulic parameters. 

a Emphasize classical misconceptions about the calculations of reference 

evapotranspiration for semi-arid conditions. 

a Estimate drainage from sample fields in a heterogenously irrigated and drained 

environment. 

a Determine a suitable bottom boundary condition for further model simulations. 

4.2 Material and methods 

The data for this study was collected from drainage unit no. 9 (called S1B9) of the 

FDP-area (see Chapter 2). The S1B9 area has its own field drainage system with 

sump and pump. The schematic view of the drainage system at S1B9 area is shown in 

Figure 4.1. The spacing of laterals varies from 460 to 515 m with an average slope of 

0.05 percent. Drain depths varies from 1.64 m to 3.20 m below the soil surface. The 

depth of the collector is 3.05 m. The collector of S1B9 area is perforated to provide 

additional drainage. The design drain discharge rate was 2.44 mm d-1. Subsurface 

drainage water generally originates from excess irrigation and rainfall percolating 

below the root zone. A parallel system with a single sided entry into the collector was 

installed. Manholes have been provided at the junction of each lateral and collector. A 

subsurface interceptor drain was constructed to increase stability of side slopes of the 

surface drains and to prevent seepage from the surface drain back to the drained area. 

For the calibration of the SWAP model, two farmer fields of 0.2 ha each were 

selected and extensively monitored from December '95 to April '97 (Figure 4.1). 

Field 1 represents the silt loam terrace and belongs to the Faisalabad soil series. Field 

2 also represents a silt loam terrace but belongs to the Jaranwala soil series due to the 

presence of small stones at depths of 60 cm and below (IWASRI, 1990). The soil 

analysis of both fields shows that textural differences in horizontal direction are very 

small. In vertical direction, there is a tendency towards a somewhat coarser texture 

with increasing depth. The average dry bulk density from 0 to 1.20 m is 1.67 g cm-3 

for Field 1, and 1.55 g crrr3 for Field 2. Both fields are under basin irrigation. The 

crops grown during the calibration period were sugarcane (Field 1) and sugarcane-

wheat (Field 2) with intermittent short fallow periods. 
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Figure 4.1. Layout of the drainage system at the S1B9 area along with the location of 
the two monitoring fields. The dots represent the position of the piezometers. 

Input data relate mainly to the water and salt balance and to characterization of the 

soils. The meteorological data were collected from a weather station installed in the 

study area. The data includes daily values of maximum and minimum air 

temperatures, wind speed, rainfall, wet and dry bulb temperatures to calculate the 

relative humidity and daily sunshine hours. The meteorological data for the 

calibration period of 420 days (16.2.96 to 22.4.97) is shown in Figure 4.2. 

In each field, tensiometers were installed at eight different depths (at 15, 30, 45, 60, 

90, 120, 150, 200 cm) and were read weekly. For the determination of soil water 

content, Time Domain Reflectometery (TDR) (Topp et al., 1980) tubes were installed 

in both fields. TDR readings are sensitive to soil type, soil density, temperature and 

salinity. Therefore for accurate results, soil specific calibration is necessary (Dirksen, 

1999). TDR readings collected from two sample fields were calibrated by comparing 

them with the soil water data obtained by the gravimetric method. The soil water 

contents were also measured weekly, from the same depths as that of tensiometers, 

which allows for determination of the soil water retention characteristics under field 

conditions. 
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Figure 4.2. Meteorological measurements conducted at the S1B9 area from 16.2.96 

(Day 1) to 22.4.97 (Day 420). (Part A) Precipitation, (Part B) Air temperature (Part C) 

Relative humidity, and (Part D) Wind velocity. 

45 



The soil hydraulic parameters describing the relationship between hydraulic 

conductivity (x), soil water pressure head (/,) and soil water content (#) for the 

surface soils of the monitoring fields were also determined by taking undisturbed soil 

samples at different depths and analyzing them in the laboratory with the laboratory 

outflow method (Van Dam et al., 1990). With the laboratory outflow method, a wet 

soil sample is put on a perforated ceramic plate in a pressure cell and subjected to a 

number of increasing pressures. This induces unsaturated flow, with the ceramic plate 

remaining saturated. Cumulative outflow from the sample between successive 

pressure increments is measured at different times. The measured cumulative outflow 

was used to determine the parameters of the Van Genuchten-Mualem model (Van 

Genuchten, 1980) using an optimization model called MULSTP (Van Dam et al., 

1990). A detailed description of these experiments is given in Beekma (1993). 

Piezometers were installed in both sample fields and across the laterals to monitor the 

depth to groundwater table (Figure 4.1). The piezometers installed in the sample fields 

were read on daily basis while the others on bi-weekly basis. Drain discharges were 

measured by two methods. The first method was based on PVC sharp-crested weirs 

installed in the manholes at the end of each lateral. Stilling wells were used to 

measure the upstream heads. Drain discharges were determined by using the 

discharge-head relationships developed with the computer program FLUME (Brussel, 

1990). Drain discharges were also measured at the manholes with a bucket and a 

stopwatch. The measurements were made on daily basis except for the period when 

laterals were dry due to dry weather conditions or when no irrigation activities 

occurred. 

The depth of all irrigations applied to the sample fields was measured. The inflow to 

each sample field was measured with a cut-throat flume and the duration of each 

application was registered. From this, the depth of each irrigation application was 

calculated. Salinity measurements of the sample fields were taken at the beginning 

and end of each growing season by electromagnetic induction with EM38 equipment 

(McNeill, 1986). Measurements were taken at 40 different locations from each sample 

field. The EM38 readings were corrected for differences in soil temperature that occur 

within a year. With the EM38, apparent electrical conductivity (ECJ °f a bulk soil 

volume was measured. These £Q values were then converted into gc values using 

the equations developed by Beekma et al. (1994) for the S1B9 area. At the end of 

each growing season, eight soil samples were taken at different depths in each field 

and analyzed in the laboratory for soil texture, soil water content and EQ values. 
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Data on crop development, crop height, sowing and harvesting dates and crop yields 

was recorded on continuous basis. The data collected for the calibration of the SWAP 

model are listed in Table 4.1. 

Table 4.1. Data collected for the calibration and validation of the SWAP model in the S1B9 
drainage unit of the FDP-area. 

Type of data 

Soil characteristics 

Soil water content 

Soil water pressure head 

Meteorological data 

Soil salinity 

Irrigation regime 

Drain discharges 

Groundwater levels sample fields 

Groundwater levels in area 

Agronomic data 

Collection method 

Undisturbed samples-Laboratory 

outflow method 
Time Domain Reflectometery (TDR) 

Tensiometers 

Weather station at S1B9 area 

EM38-surveys 

Disturbed samples 

Field observations 

PVC sharp-crested weirs 

Bucket and stop watch 

Piezometers 

Piezometers 

Field surveys 

Frequency 

Unce 

Weekly 

Weekly 

Daily 

Seasonal 

Seasonal 

When applied 

Daily 

Daily 

Daily 

Bi-weekly 

Continuous 

4.3 Calibration of model input parameters 

Top boundary conditions 
The upper boundary of the soil profile was described on daily basis by potential 

evapotranspiration rate (J?T o(), actual rainfall, and irrigation, gj ot was obtained by 

multiplying the reference evapotranspiration rate (£fr) with the crop factors (^ ). The 

maximum rooting depth for sugarcane and wheat were taken as 160 and 110 cm, 

respectively. The crop factors (£c) and rooting depths for both wheat and sugarcane 

crops were taken from the studies of Pakistan Agricultural Research Council (PARC, 

1982). Root length density distribution was considered to decline linearly with depth. 

The Boesten model (Boesten and Stroosnijder, 1986) was used for the reduction of the 

potential soil evaporation rate (g rJ into actual soil evaporation rate (Eacl)- The 

calibrated value of Boesten factor was 0.63. The values of pressure heads for 

regulating root water uptake were taken from Taylor and Ashcroft (1972). These crop 

parameters are summarized in Table 4.2. 
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Table 4.2. Input parameters used in the SWAP model. The hi to h4 values refer to the sink 
term theory of Feddes et al. (1978). 
Input parameters 

Boesten parameter, p (cm"2) 

Ac-value for full crop cover 

Maximum rooting depth (cm) 

Limiting pressure heads (cm) 

Wheat 

0.63 

1.15 

110 

h,= -0.V, h2 = 

/;., =-500;/!.,' = 

-1.0; 

-900; 

h4 = -16000 

h. 

h,= 

Cotton 

0.63 

1.15 

160 

= -0.1;/i2 = 

= -500;/i.,' = 

-1.0; 

-900; 

h4= -16000 

Sugar cane 

0.63 

1.15 

160 

/i,= -15;/;2=-30; 

/i., =-325;/!.»'=-600; 

h4 = -8000 

Reference evpotranspiration rate (ET,) was determined by the Priestly-Taylor (PT) 

method (Priestly and Taylor, 1972), although FAO has recommended the use of the 

physically based Penman-Monteith (PM) surface energy balance equation (Smith et 

al., 1990; Allen et al., 1994). The PT method was preferred because it relies more on 

radiation rather than on the turbulent momentum, heat and vapor transport 

mechanisms, and the results are therefore less sensitive to non-representative relative 

humidity and temperature measurements (only the slope of the saturated vapour 

pressure deficit is affected). The famous 'well supplied by water' restriction for the 

measurement site is a pre-condition to a successful application of the PM equation. 

Paw U and Gao (1988) also stressed that the PM equation should be applied under 

conditions where the difference in surface and air temperatures is minimal i.e. when 

sensible heat flux is low and latent heat flux is high. McAneney and Itier (1996) have 

also shown that the PM is often impractical beause of uncertainities about stomatal 

behavior and turbulant transport under high saturation deficits. Using similar 

arguments, Kumar and Bastiaanssen (1993) advised the use of the PT method instead 

of the PM for the irrigated areas in Pakistan and India. 

Figure 4.3 (Part A) shows a one to one line comparison of ?T-ET„ a n^ ^^'ET„ A 

distinction has been made between the values below and above the vapor pressure 

deficit (vpd) of 20 mbar. The results show that ETrj values calculated by two methods 

are in good agreement below vpd value of 20 mbar. Above this threshold vpd, PM-

ET values are consistently higher than ?T-ETO values. Figure 4.3 (Part B) shows that 

PM-£7; values exceed the net radiation values (jin) above a vpd of 20 mbar leading to 

?M-ET /R" > 1-3, which is physically unlikely. However, a good correlation with net 

radiation is present for a vpd of less than 20 mbar. This shows that under dry and hot 

climatic conditions, ETr, values are overestimated by PM. However, ET„ values 

calculated by PT are consistent with the net radiation values for both, below and 

above the 20 mbar vpd conditions. Therefore, ET„ calculated by the PT method was 

used in the model as input. 
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Figure 4.3. Comparison of ?M-ET0 with PT-£T„ (Part A) and PM-ET„ with Net radiation 

(Part B) with one to one line. 

Soil hydraulic properties 

For both fields, a 480 cm soil profile was divided into three layers, each of them 

having different physical properties. The first layer is from 0-30 cm, the second from 

30-280 cm, and the third beyond 280 cm. The soil water retention curves 9(h) for the 

first two layers of both fields were derived from the field measurements of pressure 

heads and soil water contents and were also determined in the laboratory using a 

pressure outflow method (Van Dam et al. 1994). The comparison of laboratory and 

field measured 9(h) relationships for the first two layers of both fields is shown in 

Figure 4.4. 
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Figure 4.4. Comparison of laboratory and field measured soil water retention curves for 

Field 1 and Field 2. Dots represent field measurements. Soil water pressure head h is 

expressed in cm. 

50 



The deviations of laboratory parameters from the field determined parameters were 

substantial, which is likely to be related to the sample size and unavoidable 

disturbances during the experimental procedure. The laboratory parameters gave 

unrealistic simulation results, which shows their uncertainty to describe the soil-water 

relationship. Bastiaanssen et al. (1996) have also stressed the need to give more 

attention to the field determination of soil hydraulic properties rather than getting 

them from laboratory measurements or other sources like pedo-transfer functions. 

They obtained ill-affected water balances of the irrigated fields in Egypt and 

Argentina by applying laboratory determined soil hydraulic properties. During the 

calibration process, field-determined soil water retention parameters (9^ 9S, a, ri) were 

kept constant. The parameters to describe unsaturated hydraulic conductivity (KsaP X) 

for these two layers were taken from the studies conducted by Beekma (1993) for the 

S1B9 area. These parameters were slightly adjusted in a 'trial and error' process to 

obtain optimal calibration results against 9(z) and h(z) profiles. The calibrated 

hydraulic conductivity curves of both sample fields are shown in Figure 4.5. 

Figure 4.5. Calibrated hydraulic conductivity curves for the three different layers of 
Field 1 and Field 2. K is expressed in cm d"1 and h in cm 
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The parameters to describe 9(h) and K(h) relationships for the third layer were also 

taken from Beekma (1993) as they could not be measured in the field due to presence 

of groundwater table. The calibrated Van Genuchten-Mualem (VGM) parameters for 

Fields 1 and 2 are given in Table 4.3. 

Table 4.3. Calibrated Van Genuchten-Mualem (VGM) parameters used to describe soil 

hydraulic properties in the SWAP model. 

Parameters 

Depth of Layer (cm) 

Soil Texture 

Residual water content 0re! 

Sat. water content 0,a 

Sat. hyd. cond. K,a (cm d"1) 

Shape parameter a (cm1) 

Shape parameter n (-) 

Shape parameter A (-) 

Layer 1 

0-30 

loam 

0.0 

0.384 

60 

0.0085 

1.35 

1.0 

Field 1 

Layer 2 

30-280 

silt 

loam 

0.0 

0.509 

40 

0.0090 

1.45 

1.0 

Layer 3 

>280 

loamy 

sand 

0.028 

0.40 

72 

0.014 

2.663 

0.5 

Layer 1 

0-30 

silt 

loam 

0.0 

0.384 

60 

0.016 

1.45 

1.0 

Field 2 

Layer 2 

30-280 

silt 

loam 

0.0 

0.43 

40 

0.020 

1.50 

1.0 

Layer 3 

>280 

loamy 

sand 

0.028 

0.40 

72 

0.014 

2.663 

0.5 

Bottom boundary conditions 

The daily measured groundwater table depths and the characteristics of the drainage 

system were used to describe the bottom boundary of the soil profile. The soil 

hydraulic parameters given in Table 4.3 only describe the vertical hydraulic 

conductivity (Kv). The lateral flow to drains is mainly driven by the horizontal 

hydraulic conductivity (Kh). In alluvial deposits, the Kh is often higher than the Kv. In 

SWAP, this can be expressed as an anistropy-factor (K)JK^). The Kh for the surface 

soils of the S1B9 area was determined by WAPDA (1983) and USBR (1989). Based 

on their data, the anistropy factors for layers 1 and 2 were taken as 1 and 2, 

respectively. The anistropy factor for the third layer was calculated using the 

measured field data. The procedure used is as follows. 

The measured data on drain discharge rates and groundwater table depths midway 

between drains was used to calculate the drainage resistance for the entire area 

surrounding Lateral 2 (Figure 4.1). The average groundwater table depth mid way 

between the drains was determined using piezometers PI6, P24, P35, and P43 (Figure 

4.1). Figure 4.6 shows the relationship between drain discharge rate (</,*„,•„) and the 

total hydraulic head difference between drain level and phreatic level at mid point 

(Ah). The slope of this curve determines the drainage resistance (yamm), which can be 

calculated as being 616 days. The designed drainage resistance for this project was 

500 days. Earlier studies in the area have also shown that the actual drainage 
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resistance is higher than the designed value. This is mainly due to lower field 

permeabilities (IWASRI, 1994). As the depth of impervious layer below the drain 

level is very large, the second term in the numerator of Eq. 3.26 can be neglected. The 

horizontal hydraulic conductivity was therefore calculated by using the simplified 

relationship as given below. 

Ah 

H dram 8KL,d 
(4.1) 

The value of equivalent depth, d, was calculated using Eq. 3.27 and was found to be 

23.97 m. Putting this value in equation (1), the horizontal hydraulic conductivity was 

calculated as 188 cm d"1. The vertical hydraulic conductivity for the bottom layer was 

72 cm d"1 (Table 4.2), which yielded an anistropy factor of 2.6. 

400 

300 

a 
a 200 

100 

0 

y = 616x 

R2 = 0.90 

0.0 0.2 0.4 0.6 0.8 

Drain discharge rate (mm d" ) 

Figure 4.6. Relationship between drain discharge rate and the hydraulic head difference 

between the drain and phreatic level at mid point (Ah) for the S1B9 area based on field data. 

Salinity parameters 

The salinity parameters in the classical convection-dispersion equation that describe 

salt transport are the dispersivity, Ldis (cm), and the diffusion, Ddif (cm2 d"'). Under 

field conditions with irrigation, solute spreading due to dispersion is much more 

pronounced than solute spreading due to diffusion. The value of Ljis typically ranges 

from 0.5 cm, or less, for laboratory scale experiments involving disturbed soils, to 

about 10 cm or more for field scale experiments (Nielsen et al., 1986). The values for 

L^s and D^,/that gave best results of simulated profiles ECe(z), were 15 cm and 0.48 

cm2 d"1, respectively. 
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4.4 Verification of model input parameters 

The calibration period for Field 1 was from 16.2.96 to 22.4.97 covering two cropping 

seasons i.e. sugarcane and wheat. The calibration period for Field 2 was from 8.3.96 

to 6.3.97 covering year long sugarcane crop. Measured field data regarding soil water 

pressure heads, soil water contents and drain discharge rate were compared with 

simulated results. For these simulations, measured daily groundwater table depths 

were used as input data and both pressure heads yz\ and soil water profiles Q/Z\ and 

the fluxes qdmin and qbol were computed. Agreement between simulated and measured 

values was quantified by the root mean square error (RMSE)- The RMSE represents 

how much the simulation overestimate or underestimate the actual field 

measurements. 

RMSE = 
Z(A/,--5,.)2 

(4.2) 

where M. and $. are the measured and simulated values at the end of day / and n is the 

number of days of observation. 

Pressure heads 
As a typical example, the measured and simulated pressure heads at depths of 30 cm 

and 90 cm for both fields are illustrated in Figure 4.7. The simulated pressure heads 

match quite well with the measured data for all depths. The root mean square error for 

the pressure heads of all depths was 29 cm (n = 88) for Field 1 and 24 cm (n = 93) for 

Field 2. Some discrepancies were found in the top layer of 15 cm where the model 

simulated more dry conditions than the measured values (not shown here). This was 

mainly due to the limitation of tensiometers to read the pressure heads below -600 cm. 

Soil water content 
Figure 4.8 shows a typical example of measured and simulated soil water contents at 

two different depths for Fields 1 and 2. The graph shows that the soil water trend 

simulated by the model for both fields is in good agreement with the measured data. 

The root mean square error for the volumetric soil water content of all depths for 

Field 1 was 0.020 cm3cnv3 (n = 170) and for Field 2, it was 0.018 cm3cm-3 (n =113). 

The root mean square error values show a very good matching between measured and 

simulated values. 
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Figure 4.7. Comparison of measured and simulated pressure heads for Field 1 and Field 2 

at 30 cm and 90 cm depths. 
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Figure 4.8. Comparison of measured and simulated soil water contents for Field 1 and 

Field 2 at 30 cm and 90 cm depths. 
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Soil salinity 

The measured ECe values from the sample fields were available for a limited number 

of days. Therefore a comparison could only be accomplished for these days (Figure 

4.9). The root mean square error (RMSE) for ECe was 0.15 dS m"1 (n = 5) for Field 1, 

which shows a close proximity between measured and simulated values. The 

measured data for Field 2 was available for two days during the calibration period. 

Although not shown, measured and simulated ECe values for Field 2 were in good 

agreement for both days. 
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Figure 4.9. Comparison of measured and simulated ECe values (0-1.0 m depth) for Field 1. 

Bottom flux 

During the calibration process, daily groundwater table depths were used as bottom 

boundary and the bottom flux has been computed as the water balance residual. The 

variations in the bottom flux over the calibrated period for both fields are shown in 

Figure 4.10. The positive and negative bottom flux shows upward and downward 

movement of water at the bottom of the soil profile, respectively. The graphs show 

that there are fluctuations in the bottom flux after an irrigation or rainfall event. 

However, the cumulative bottom flux for both fields was within five percent of the 

total applied water, which means that overall effect of bottom flux was not very 

significant. This implies that at the bottom of the soil profile almost no flow 

conditions occur. 
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Figure 4.10. Fluctuations in the bottom flux at 480 cm depth during the calibration period 

for Field 1 and Field 2. 

This situation was confirmed by installing three piezometers in the S1B9 area at 

depths of 4 m, 5 m, and 6 m with a distance of 1.0 m between each. A deep 

piezometer was also installed at a depth of about 200 m. These piezometers were read 

simultaneously on daily basis for a period of about three months. The data shows that 

they all read about the same water levels, which means that changes in the hydraulic 

head due to seepage are almost negligible. This hypothesis of zero flux at the bottom 

was further verified by giving it as bottom boundary in the SWAP and model was run 

to simulate groundwater tables. The comparison of measured and simulated 

groundwater tables is shown in Figure 4.11. 
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Figure 4.11. Comparison of measured and simulated groundwater table depths using 

zero flux as a bottom boundary for Field l(Part A) and Field 2 (Part B). 

The comparison shows that the discrepancies in the measured and simulated 

groundwater table depths were small with a root mean square error (RMSE) of 15 cm 

for Field 1 and 19 cm for Field 2. Considering that piezometer observations reflect a 

larger area than that of the investigated field and the limited possibility to describe 

field heterogeneity in the theoretical simulation models, the results are encouraging. 

This means that under the prevailing aquifer conditions of the area, zero flux at the 

bottom of the soil profile could be used as bottom boundary for scenario analysis. 

However, other areas where irrigation schedules and hydrogeological conditions are 

different, may result in considerable amounts of bottom flux. In such conditions, the 

net bottom flux as calculated during the model calibration (using groundwater table 

depths as bottom boundary condition), can be used as bottom boundary condition 

during scenario analysis. 

Drain discharge rate 

As the field sizes (0.2-0.4 ha) in the S1B9 area are considerably smaller than the 

distance between the lateral drains, the measured lateral discharge is the cumulative 

drainage from all these fields. As the model could be applied on one field with one 
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crop at a time, the simulated drainage could not be compared directly with the 

measured drain discharges from the laterals. In order to compare the simulated 

drainage, the contribution of sample fields to the lateral drainage must be calculated 

separately. This was done in the following way. 

The two sample fields are not located exactly in the middle of the two lateral drains. 

Therefore drainage resistance and hence amount of drainage from these two fields 

will be different than those fields which are located in the middle of the drains. Both 

sample fields are located at a distance of 215 m from Lateral 2 (see Figure 4.1). 

Therefore this distance was considered equal to the half of drain spacing (L/2). This 

means that a drain spacing (L) of 430 m is valid for the two sample fields. This drain 

spacing was used to calculate equivalent resistance (ydram) for the sample fields. Daily 

measured groundwater levels were used to calculate drainage from the sample fields 

using Eq. (4.3). This is referred as calculated drainage. 

- Ah' 
I drain ~ T (4.3) 7 drain 

where qdram is the drain discharge rate from the sample field, Ah is the total hydraulic 

head difference between the drain and phreatic levels in the sample field, and Ydram is 

the drainage resistance of the sample field (518 days, calculated with L = 430 m and 

Ksa,
h = 1.88 m d"1 and d = 23.74). For drainage calculations, daily measured 

groundwater levels were used. 

For model simulations, a drain spacing of 430 m and zero flux as bottom boundary 

was specified to simulate groundwater levels. These simulated groundwater levels 

were then used to calculate drainage according to the Eq. 4.3. This is referred as 

simulated drainage. Figure 4.12 shows that the simulated cumulative drainage is in 

good agreement with the calculated cumulative drainage. The root mean square error 

(RMSE) was 0.009 mm d"1 (n = 430) and 0.018 mm d"' (n = 250) for Fields 1 and 2, 

respectively. 
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Figure 4.12. Comparison of calculated and simulated cumulative drainage for Field 1 and 

Field 2. For the calculated drainage, daily measured groundwater table depths were used to 

determine Ah'for Eq. 4.3. For the simulated drainage, groundwater table depths obtained 

from model simulations using zero flux as bottom boundary condition were used to 

determine Ah'. 

The simulation results also show that the drain discharge rate is not constant over 

time, but fluctuates according to the percolating moisture flux in the unsaturated zone. 

Figure 4.13 shows the fluctuations in the flux below the root zone for both the sample 

fields during the calibration period. The depth of root zone for wheat crop is taken as 

110 cm whereas for sugarcane and cotton it is 160 cm (see Table 4.2). The graphs 

show that considerable fluctutaions in the flux after an irrigation or a heavy rainfall 

event can be expected, but generally it is less than the designed value of 2.44 mm d'1. 

Earlier studies have also shown that the drain discharge rate at the S1B9 is far less 

than the design value (IWASRI, 1994). 
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Figure 4.13. Flux at the bottom of the root zone for Field 1 and Field 2 during the 
calibration period. 

4.5 Conclusions 

• The difference between laboratory and field measured soil water retention curves 

9(h) were found significant. Laboratory determined 0(h) relationships were found 

to be non-representative of field conditions for irrigation and drainage modeling. 

Therefore more efforts should be dedicated to the field determination of these 

parameters. 

• For arid and semi-arid conditions, the Priestly-Taylor method for the 

determination of reference evapotranspiration was found more realistic than the 

Penman-Monteith method due to ignorance of vapor pressure deficit feed back 

mechanism on stomatal aperture. 

• The strategy adopted to calculate drainage from sample fields in a 

heterogeneously irrigated and drained environment seems successful. A close 
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proximity in the calculated and simulated cumulative drainage shows that the 

calibrated drainage system characteristics are reliable. 

Analysis of piezometer data shows that under the prevailing aquifer conditions of 

the FDP-area, no flow conditions at the bottom of the soil profile could be applied 

as a bottom boundary for further model simulations, and this was confirmed from 

the simulated groundwater fluctuations. 

The calibration results show that the SWAP model can be applied to obtain water 

and salt balance terms to analyze water efficiency and drainage system 

performance. 
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RE-EVALUATION OF DRAINAGE DESIGN CRITERIA 

FOR THE FOURTH DRAINAGE PROJECT1 

Abstract 

This Chapter presents the results of model simulations to re-evaluate drainage design 
criteria for the Fourth Drainage Project (FDP). The SWAP model was applied to 
compute the effects of land drainage (twelve combinations of drain depth and 
spacing) on soil water conditions in the root zone and their effect on crop yield and 
soil salinization. The results indicate that the selection of drain depth in semi-arid 
areas is more important than drain spacing. Deeper drains perform technically better 
in relation to crop growth and soil salinization. The optimum drain depth for the 
multiple cropping system of the FDP-area was found to be 2.2 m. This drain depth 
produced reasonably good crop yields at rather low drainage intensity (drain spacing 
of 500 m) while keeping the root zone salinity within acceptable limits. This drainage 
design also maintained the groundwater table depth below the root zone throughout 
the growing season. The outcome of this study also revealed that the present drainage 
design criteria of the FDP is rather conservative with high drainage intensity. The 
model simulations show that the FDP-area can effectively be drained with a 25 
percent lower drainage intensity {gamin/AK) provided no operational or maintenance 
constraints are present. However, the final decision on the optimum combination of 
drain depth and drain spacing would require a thorough economic analysis. The non-
steady state approach proved successful in analyzing the complex interactions 
between irrigation and drainage components. It is a valuable tool to optimize the 
design of drainage systems against crop yields and soil salinization. 

5.1 Introduction 

The specific objective of a drainage system for (semi-) arid area is to protect crops 

from excess soil water conditions (waterlogging) and to prevent soil salinity. Since 

drainage needs of these areas are heavily dependent on the irrigation component, 

additional constraints include minimizing drainage effluent and the amount of 

irrigation water required (Skaggs, 1990). Environmental considerations also impose 

severe constraints on the design and operation of drainage and related water 

management systems (Tanji, 1990). Another factor of critical importance is the 

control of groundwater table, which should be lower than the so-called critical depth. 

In (semi-) arid areas, soil salinity caused by shallow groundwater tables is often the 

main limiting factor to crop production. The depth of the groundwater table during the 

Adapted version of Sarwar, A. and R.A. Feddes, 2000. Evaluating drainage design parameters for the 
Fourth Drainage Project, Pakistan by using SWAP model: Part II-Modeling results. Irrigation and 
Drainage Systems (in press) 
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dry spell when land is fallow is of critical importance for capillary rise and secondary 

soil salinisation (Prathapar and Sarwar, 1999). The reason for this is that, by 

maintaining a deep groundwater table, the drainage system can intercept the seepage 

water and hence reduce the capillary rise and soil salinisation. Therefore the optimum 

watertable depth will be the one, leading to maximum crop yield and reducing or 

maintaining soil salinization at an acceptable level. 

Evapotranspiration during the warm growing periods is considerable and contributes 

significantly to depletion of soil moisture, thus creating storage for subsequent 

rainfall. But at the same time, solute concentration increases due to the lesser amount 

of water available. Drainage requirements during these periods are rather small, 

except for occasional (monsoon) rains, which can create periods of excess water in the 

root zone. Under such conditions, drainage aims primarily at a rapid restoration of the 

upper root zone aeration, following a heavy rainfall. 

The depth at which drains should be installed is a design decision and the drain 

spacing is derived from it. Drains are generally placed as deep as economically 

feasible. Advantages of deeper drains are a greater watertable head and more water 

storage capacity in the soil, both resulting in a large spacing and less length of drains 

per unit area (Feddes, 1990). The drain depth affects the depth of groundwater table 

and the depth can be optimized such that the groundwater contribution to the crops 

through capillary rise is maximum, without permanently accumulating salts in the root 

zone (Hendrickx et al., 1990). Wider drains also reduce drainage volume and 

installation costs. However, higher salt concentrations may be found in drainage 

effluent as leaching occurs within a deeper soil profile. 

The success of a drainage system depends on its proper design and installation. For 

irrigated lands in (semi-) arid regions, no specific drainage design criteria are 

available. It has therefore become a common practice to apply the design criteria of 

the type used for humid areas. These criteria are mostly based on the steady-state 

equations of Hooghoudt and Ernst (see Ritzema, 1994), which assume steady-state 

moisture and solute fluxes occurring in the unsaturated zone, being independent of 

soil and crop. One such steady-state criteria usually used for drainage design in 

(semi-) arid conditions in general and for Pakistan in particular is given in Table 5.1 

(Smedema, 1990) 
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Table 5.1. Drainage design criteria (independent of soil and crop!) applied for different 

water control objectives for semi-arid regions in Pakistan (after Smedema, 1990). 

Objectives 

Aeration 

Sub-irrigation 

Capillary salinization 

Leaching 

Compromise 

Drain 

discharge 

rate 

qjmin 

(md"1) 

0.0070 

-
0.0005 

0.0020 

0.0020 

Design 

groundwater table 

depth 

H 

(m) 

0.50 

1.00 

1.75 

1.00 

1.00 

Drain 

depth 

D 

(m) 

1.2 

1.0 

2.5 

2.5 

2.0 

Groundwater 

table head 

midway drains 

Ah = D-H 

(m) 

0.70 

-
0.75 

1.50 

1.00 

Drainage 

intensity 

qdmJAh 

(d-1) 

0.010 

-
0.0007 

0.0013 

0.0020 

In Table 5.1, separate criteria for different processes are given, because in the past 

irrigation and drainage systems were mostly planned and designed separately. For 

aeration, the high criteria as used in moderate climates is used. For sub-irrigation, 

design groundwater table depth is based on the controlled field experiments 

conducted in Pakistan. For leaching and capillary salinization, the criterion is based 

on a typical case where there is a small seepage load (coming from canal leakage) and 

soil has a fine sandy/silty subsoil with high capillarity found in many alluvial river 

plains in semi-arid regions. The drain depth D has been taken as the least cost depth. 

It is clear from the Table 5.1 that highest drainage intensity is required for aeration 

control as the crops can stand only a limited period of waterlogging. For capillary 

salinization control about i 5 times lower drainage intensity is reuired. 

Different drainage projects installed in Pakistan using these steady-state design 

criteria have failed to reach the designed objectives. Because the impact of irrigation 

management on a drainage system and vice versa, has been difficult to evaluate and at 

times impossible. For practical purposes, a unique criterion needs to be developed 

taking into account the effects of all the prqcesses involved in an integrated way. For 

this purpose, determination of water and salt balances in the unsaturated zone is 

absolutely necessary. 

The strong and complex interaction between irrigation and drainage components can 

be better described by the use of simulation models, which can accurately simulate 

irrigation requirements, crop production, water and salt movement through the root 

zone and flow to the drains on a day-to-day basis, considering variations in the 

rainfall and evaporative demand of the atmosphere. This integrated irrigation and 

drainage modeling will be very useful to evaluate the impact of alternative drainage 

designs on crop growth and soil salinisation. 
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The main objective of this study is to analyze the drainage design criteria of the 

Fourth Drainage Project (FDP), and to improve the drainage design procedures for 

subsurface drainage systems in Pakistan. The effects of drainage system design on the 

yields of dominant crops grown in FDP-area are evaluated with the calibrated SWAP 

model. The basic features of the model and, the results of calibration and field 

validation are presented in Chapters 3 and 4. This Chapter presents the results of 

model simulations for obtaining an optimum drainage design for the FDP-area. It also 

includes a comparison of optimum design with the present United States Bureau of 

Reclamation (USBR) and Smedema design parameters (Table 5.1). 

5.2 Input data and model application 

Simulations were performed for a period of 15-years (1980-94) as the daily climatic 

data (rainfall, sunshine hours, wind speed, maximum and minimum temperatures) for 

this period were available from the Fourth Drainage Project (FDP). Model simulations 

were performed both for the wheat-cotton and sugarcane crop rotation. Wheat-cotton 

is by far the largest crop rotation system in the Indus basin comprising over 4.5 

million hectares (Mulk, 1993) and sugarcane is the major cash crop of the area. 

Irrigation schedules 

In the heterogenous cropped and imgation environment of the FDP-area, it was 

difficult to translate the behaviour of individual fanners into an average condition. 

Therefore, for this study, on average twelve irrigations in a growing year are assumed. 

This means five irrigations to wheat and five to cotton crop along with two pre-

sowing irrigations and twelve irrigations (including pre-sowing) to the sugarcane 

crop. The depth of each irrigation was taken as equivalent to a normal imgation of an 

upland crop in Pakistan i.e. 65 mm (OFWM, 1980). The amount and number of 

irrigations were kept constant for the years of simulation. For all iirigations in a year, 

canal water of very good quality (EC = 0.3 dS m"1) was used. The groundwater 

salinity in the FDP-area varies between 3 to 4 dS m" , therefore an average value of 

3.5 dS m" was taken for these simulations. A zero flux at the bottom of the soil profile 

was taken as bottom boundary condition (see Chapter 4). 

Drainage combinations tested 

The model was applied to compute the effect of land drainage (12 combinations of 

drain depth and drain spacing) on the yields of wheat, cotton and sugarcane. The drain 

depths chosen were 1.0. 1.5, 2.0 and 2.5 m below the soil surface. Each of these drain 

depths were combined with three different drain spacings ranging from narrow (125 

m), medium (250 m) to wide (500 m). These drain spacing correspond with high. 
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medium and low drainage intensities, respectively, in a ratio of 4:2:1. For each 

drainage combination (drain depth and drain intensity), simulations were performed 

for a period of 15-years under the prevailing climatic conditions. 

Initial conditions 

In order to achieve zero change in the water storage over the year for each drainage 

combination, initial soil profile was generated by changing the initial soil water 

contents. The initial salinity concentrations were derived from current field 

measurements. Salinity surveys conducted in the FDP-area during 1990-96 show that 

the average ECe of the soil profile up to a depth of 2.0 m varies between 1.5 and 2.6 

dS m"1 with an average value of about 2.0 dS m"1 (Raza and Choudhry, 1998). As the 

depth-wise salinity data were not available, this average value was used as an initial 

condition for salt balance simulations. For salinity stress the response function of 

Maas and Hoffman (1977) and for water stress the function proposed by Feddes et al. 

(1978) were used (see Chapters 3 and 4). 

5.3 Results and discussion 

Crop growth rate and actual crop transpiration rate (Tm:t) are linked. Transpiration and 

crop growth can be adversely influenced by the soil being either 'too wet' or 'too dry' 

(Feddes and van Wijk, 1990). Salinity also retards crop transpiration by reducing root 

water uptake. Therefore, relative transpiration (Tac/Tpo,) is a good indicator to 

evaluate the effect of different drainage designs on soil moisture and salinity and their 

effect on crop growth. TpM is the potential crop transpiration rate. Relative 

transpiration is further considered equivalent to relative crop yield (see Chapter 3). 

Effect of land drainage on crop transpiration rate 

The SWAP model simulations were carried out to compute the effects of land 

drainage (12 combinations of drain depth and spacing) on the relative transpiration 

{Tac/Tp„t) of three major crops grown in the FDP-area. In Figure 5.1, relative 

transpiration of wheat, cotton and sugarcane is shown as a function of four drain 

depths at three different drainage intensities. The values of Tac/Tpol are based on 15 

year averages. 
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Figure 5.1. Relative transpiration (Tac/Tpol) of wheat, cotton and sugarcane as a function 

of drain depth D at three drainage intensities (qdrai^'Ah) based on 15 year (1980-94) 

averages as calculated with SWAP. 1, high drainage intensity; 2, medium drainage 

intensity; 3, low drainage intensity. 
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Figure 5.1 shows that there is a clear effect of drain depth (D) and drainage intensity 

{qdmJAh) on crop yields. The values of Tac,/Tpot for wheat were optimal for all 

drainage combinations, which means that both moisture and salinity conditions 

remained favourable during the growing season. The wheat crop is usually grown in 

winter (Dec.-Apr.) when evapotranspiration demand is relatively low. Therefore water 

applied through irrigation and rainfall kept the root zone sufficiently wet to maximize 

crop transpiration and to maintain a downward flux for the leaching of salts. 

Cotton being a summer crop is usually subjected to heavy monsoon rains. Therefore 

risk of damage due to 'too wet' conditions for cotton is much higher. Figure 5.1 

shows that for all drain depths, the maximum yield of cotton is obtained at high 

drainage intensity. At 1.0 m drain depth, the relative crop yield obtained at this high 

drainage intensity is about three percent smaller than the yields obtained at the drain 

depths of 1.5, 2.0 and 2.5 m. This was due to excessive soil water conditions after 

heavy monsoon rains, which reduced the capacity of roots to extract water from the 

soil and negatively affected the crop transpiration. 

For medium drainage intensity, excessive soil water conditions persist much longer 

causing a further 15 percent reduction in the relative crop yield at a drain depth of 1.0 

m. At low drainage intensity, the cotton crop completely failed due to submerged 

conditions after the monsoon season. With drains at 1.5 m depth, the highest cotton 

yields were obtained at high and medium drainage intensities. However, at the low 

drainage intensity, considerable reduction in cotton yield occurred mainly due to 

waterlogged conditions. At deeper drain depths, 95 percent of the potential yield was 

obtained at the low drainage intensity. This yield was only three percent smaller than 

the yield obtained at the (four times) high drainage intensity. 

The maximum yield of sugarcane is obtained at high drainage intensity for all 

drainage combinations. This is due to the fast removal of excess water by closely 

spaced drainage system thereby reducing the time for which the soil conditions are 

anaerobic. At the 1.0 m drain depth, yield obtained at the medium drainage intensity 

is nine percent lower than the yield obtained at the high drainage intensity. This 

reduction is mainly due to excessive soil water conditions. For shallow drains (1.0 m) 

together with the low drainage intensity, the groundwater table reached to the soil 

surface after the first year of simulations, resulting in a complete failure of the 

sugarcane crop. At 1.5 m drain depth, sugarcane crop do survive but yields are about 

16 percent lower as compared to high and medium drainage intensity. However, this 

is not the case when drains are installed at deeper depths: reasonably good yields are 

obtained even at the low drainage intensity. 

71 



Figure 5.1 also shows that the maximum achievable yields of sugarcane under all 

drainage combinations were only up to 90 percent of the potential yield. Because of 

its longer growing season and the high demand of the atmosphere, sugarcane needs 

considerably more water than the wheat-cotton crop rotation. The average actual 

transpiration of sugarcane (1050 mm) is about 250 mm higher than wheat-cotton (800 

mm) rotation. This means that the considered irrigation regime (780 mm of irrigation 

water) was not sufficient to satisfy the transpiration demand of the sugarcane. This 

created deficit soil water conditions and hence relative yield was reduced. 

In an attempt to reduce drought stress, additional simulations were performed with an 

increased amount of irrigation water, which was obtained by maintaining the same 

irrigation frequency at twelve irrigations per year but increasing the depth of each 

irrigation from 65 mm to 90 mm. This increases the total amount of irrigation water 

from 780 to 1080 mm per year. This irrigation strategy nearly eliminated the drought 

stress at all drainage intensities and increased maximum yield of sugarcane to about 

98 percent for drain depths of 2.0 m and 2.5 m. However, this strategy raised the 

groundwater table and reduced yields due to excessive soil water conditions at 

shallow drain depths. 

In the Fourth Drainage Project (FDP), agricultural field sizes are considerably smaller 

than the average distance between two laterals. The catchment area of each lateral 

usually comprises several individual fields, each with a different crop and water 

requirement. Therefore the drainage system for this area should be able to fulfill the 

requirements of this multiple cropping system. For this puipose, effects of different 

drainage combinations on the relative transpiration of multiple crops was investigated, 

and the results are presented in Figure 5.2. 

The optimum drain depth for the soil, crop and climatic conditions prevailing in the 

FDP-area is about 2.2 m. The maximum relative yields are obtained at the high 

drainage intensity. The yield obtained at the low drainage intensity for D = 2.2 m, 

however, is only one percent smaller, despite the fourfold difference in the drainage 

intensity. At the optimum drain depth, the groundwater table remained below the root 

zone throughout the growing season, thereby eliminating the chances of any yield 

reductions due to excessive soil water conditions. Figure 5.2 shows that the drains 

shallower than D = 2.2 m can cause severe yield reductions due to excessive soil 

moisture conditions. The situation may become more worse during relatively wet 

years. Further increase in drain depth will increase the costs without any additional 

benefits. 
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Figure 5.2. Relative transpiration (Tac/Tpoi) for the multiple cropping system as a function of 

drain depth D at three different drainage intensities (qdra„/Ah) based on 15 year averages 

(1980-94) as calculated with SWAP. 1, high drainage intensity; 2, medium drainage 

intensity; 3, low drainage intensity. 

Effect of land drainage on soil salinity 

Salinity control is a major concern for the soils of the semi-arid areas, therefore to 

maintain long-term sustainability, the effect of different drainage designs on the soil 

salinization also needs serious consideration. Long-term (15-year) model simulations 

were performed to determine the effects of drainage on the root zone salinity, and the 

results are presented in Figure 5.3. The ECe values represent the average salinity 

calculated over a 2.0 m deep root zone based on 15-year averages. 

Figure 5.3 shows that soil salinization is closely related to drain depth. The salinity of 

the root zone decreases with the increasing drain depth. This is because of increased 

effective leaching of salts by deeper drains. However, for a particular drain depth, 

salinity changes are relatively independent of the drainage intensity. The average root 

zone salinity never exceeded the threshold values at which crop yield reduction starts 

e.g. for wheat at 6.0 dS m , cotton at 7.7 dS m and sugarcane at 1.7 dS m (after 

Maas, 1990). This implies that yield reductions for different drain depths were mainly 

due to either excessive or deficient soil water conditions. The low salinity values can 

be explained by the good quality canal water (EC = 0.3 dS m ) used for all 

irrigations. 
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Figure 5.3. Average root zone salinity (ECe) for the multiple cropping system as a 

function of drain depth D at three drainage intensities (q^mi/Ah) based on 15 year averages 

(1980-94) as calculated with SWAP. 1, high drainage intensity; 2, medium drainage 

intensity; 3, low drainage intensity. 

In conclusion, selection of the proper drain depth for semi-arid regions seems more 

critical than the drain spacing. For the conditions considered, deeper drains perform 

better than shallow drains with regard to crop growth and soil salinisation. 

Bastiaanssen et al. (1996) also found deeper drains more feasible for semi-arid areas. 

Their findings were based on detailed analysis of integrated on-farm water 

management in Haryana, India. However, the final decision on the optimum 

combination of drain depth and drainage intensity would require thorough economical 

analysis. 

5.4 Comparison of present USBR, Smedema and SWAP drainage design 

parameters 

The present drainage design of FDP was based on the estimates of United States 

Bureau of Reclamation (USBR, 1989). The USBR design was based on a 5 year 

return period monsoon (June-Sept.) rainfall. However, they did not mention the 

amount of design rainfall. The analysis of Boonstra (1991) shows that 5 year return 

period monsoon rainfall for the FDP-area is 347 mm. The root zone was considered 

fully saturated before the design rainfall occurred. The drain discharge rate was 

calculated considering conveyence losses from irrigation canals and watercourses, 

excess irrigation deliveries and infiltration from the excess rainfall. The drain 

discharge rate estimated by this method was further increased to account for possible 

power failures, but by how much is not mentioned. It was assumed that 16 out of 24 
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hours will be available to pump out the daily design rainfall. The designed drain 

discharge rate was 2.44 mm d-1. This drain discharge rate was also considered 

adequate to satisfy the leaching requirements and maintain a favourable salt balance 

in the root zone. The designed groundwater table depth midway between the drains 

was 1.2 m below the soil surface, which resulted in a drainage intensity (qdrair/Ah) °f 

0.0020 d-'. Drains are, on average, installed at a depths of 2.4 m with a range between 

1.8 to 3.8 m, mainly selected on low cost basis. The drain spacing varies considerably 

in the area from 100 to 750 m with an average of 495 m. A comparison of present 

USBR, Smedema and SWAP drainage design parameters is given in Table 5.2. 

Table 5.2. Comparison of the present USBR, Smedema and SWAP drainage design 
parameters. 

Drainage 

designs 

USBR 

Smedema 

SWAP 

Drain 

discharge 

qdram 

(mmd1) 

2.44 

2.0 

-

Drain 

depth 

D 

(m) 

2.44(1.8-3 

2.0 

2.2 

8) 

Groundwater table 

head midway drains 

Ah = D-H 

(m) 

1.22 

1.00 

-

Drainage 

intensity 

qdraiJAh 

(d-1) 

0.0020 

0.0020 

0.0015 

Drainage 

spacing 

L 

(m) 

495 (100-750) 

450 

525 

Table 5.2 shows that the drainage intensities of the present USBR as well as the 

Smedema design are about 25 percent higher than the SWAP design. The optimum 

drain depth determined by SWAP model is shallower than the USBR but higher than 

the Smedema design. The SWAP design also advocates a larger drain spacing. The 

present USBR and Smedema designs are rather conservative with high drainage 

intensities. From the SWAP simulations it appeals that drain discharge rate is not 

constant but fluctuates over time according to the percolating moisture flux in the 

unsaturated zone and an average value of 1.5 mm d1 is sufficient to drain the area. 

The post project (1990-97) monitoring of the FDP (Figure 5.4) shows that the actual 

drain discharge rates are far less than the SWAP value of 1.5 mm d_1, and even most 

of the maximum observed values are substantially lower than the USBR designed 

value of 2.4 mm d-'. Bhutta et al. (1992) and Kelleners and Choudhry (1998) have 

also shown that the maximum measured drain discharge rates for the FDP-area are of 

the order of 1.2 to 1.5 mm d_1. This gives confidence on the drain discharge rates as 

predicted by SWAP. The low drain discharge rates measured during 1990-97 could be 

due to the fact that the designed monsoon rainfall (347 mm) did not occur during this 

period. The monsoon rainfall during the year 1992 was 270 mm, being close to the 

designed rainfall. Even then the drain discharge rates are considerably lower than the 
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designed value (see Figure 5.4). This implies that either the USBR over-estimated 

irrigation system and field percolation losses or the margin of safety was kept too 

high. 

Jan-90 

Figure 5.4. Measured mean daily drain discharge rates of the FDP-area on monthly basis 

during 1990-97. The gaps in the graph indicate missing data. 

The performance of these three drainage designs was also evaluated by comparing 

their effects on crop transpiration, groundwater table fluctuations and root zone 

salinity. For this purpose, simulations were carried out with the SWAP model for a 

period of 15-years (1980-94) using the drainage design parameters as given in Table 

5.2. 

Relative transpiration 

Figure 5.5 shows that the relative transpiration of wheat, cotton and sugarcane 

predicted by the three sets of design parameters are comparable. The relative 

transpiration of all crops predicted by the SWAP design parameters is in good 

agreement with the other two sets of parameters. The slightly lower relative 

transpiration values of the present USBR design can be explained by the deficit soil 

water conditions due to the applied deeper drain depth. 
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Figure 5.5. Relative transpiration ('ac/'poi) of wheat, cotton and sugarcane for the present 
USBR, Smedema and SWAP drainage design parameters based on 15 year averages (1980-
94) as calculated with SWAP. 

Groundwater table fluctuations 
The groundwater table depth is the most important design parameter in the practice of 

drainage. Because of inefficient drainage systems, the groundwater table may rise into 

the root zone resulting in an increase in capillary salinization. The situation becomes 

even more critical when groundwater is of poor quality as in the FDP-area. Therefore 

the groundwater table is usually kept lower than the so-called critical depth. The 

critical groundwater table depth for most of the soils is in the range of 1.0 to 1.5 m 

and rising to 2.0 m in very fine sandy or silty profiles according to Smedema and 

Rycroft (1988). Agronomic surveys have indicated that most of the crops grown in 

Pakistan decrease their production when the groundwater table rises above 1.5 m 

below soil surface (Harza/Nespak, 1984). 

Figure 5.6 presents the relationship between the average highest groundwater table 

depth and the drainage intensity for four different drain depths based on 15-year 

averages. On a semi-logrithmic scale there is a linear relationship. The points on the 

lines refer to the drainage intensities applied in the model study. The dotted lines 

show the predicted highest groundwater table depths for three drainage designs at 

their respective drainage intensities. Figure 5.6 implies that by installing deeper 

drains, the groundwater table depth can effectively be controlled at relatively low 

drainage intensities. For shallow drains, however, considerably higher drainage 

intensities will be needed to ensure fast removal of the excess water from the root 
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Figure 5.6. Relationship between average highest Groundwater Table (GWT) depth and 

drainage intensity (qaraJAh) for four drain depths D based on 15 year averages (1980-94) 

as calculated with SWAP. 1, Smedema design; 2, SWAP design; 3, present USBR design. 

The average highest predicted groundwater table depth for the Smedema design is 

around 100 cm below the soil surface. Because of the high potential of capillary rise 

in silt loam soils, this shallow groundwater table depth might increase the salinity of 

the soil profile due to capillary rise. The highest predicted groundwater table depth 

with the SWAP design will be around 140 cm, which is roughly the depth considered 

to be optimal for Pakistani conditions. The present USBR design will maintain the 

groundwater table at deeper depths. This is favorable for both average and wet 

conditions. However, in relatively dry years, the groundwater table might drop to 

much deeper depths creating soil water deficit conditions in the root zone. This will 

then require additional surface irrigation to supplement the depleted moisture profile, 

ultimately requiring more drainage effluent to be disposed of. This situation already 

occurred during the post project monitoring of the FDP-area when the deepest 

groundwater tables during dry periods were found more than 3.0 m deep below the 

soil surface (IWASRI, 1994). 

Soil salinization 

Long-term (15-years) salinity trends for the multiple cropping system for three 

drainage designs are illustrated in Figure 5.7, where the ECe values represent the 

average root zone salinity calculated over a root zone depth of 2.0 m based on 15 year 

averages. For all three drainage designs, salinity reduces, as compared to the initial 

value of 2.0 dS m"'. The SWAP drainage design proves to be equally good in keeping 
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the root zone salinity within acceptable limits. The ECe values up to a depth of 1.5 m 

are around 1.0 dS m"1, but below that there is an increase and maximum salinity is 

found at the drain depths. This is due to the fact that the salinity concentrations near 

the drain depths do not depend on the percolation and groundwater salinity only, but 

also on the build-up of salts during wet/dry years. Therefore salinity values around 2.0 

m depth are indicative rather than conclusive. 

0.0 

£Cc(dSm') 

0.5 1.0 1.5 2.0 

Smedema 
SWAP 
USBR 

Figure 5.7. Comparison of simulated average root zone salinity (ECe) for the multiple 
cropping system for the present USBR, Smedema and SWAP drainage designs based on 
15 year averages (1980-940 as calculated with SWAP. 

5.5 Conclusions 

The premise of this study was that the drainage systems designed by using the steady-

state methods did not yield satisfactory results because the relationship between 

rainfall, irrigation and drainage are complex and dynamic in nature. Therefore these 

designs need to be re-evaluated and improved. In this study, present drainage design 

of the FDP-area has been checked using a transient modeling approach that accounts 

for soil moisture and root water uptake dynamics. The model simulations lead to the 

following conclusions. 

• In semi-arid areas, the selection of a proper drain depth is more critical than that 

of drain spacing. For the conditions considered, deeper drains perform better with 

regard to crop growth, soil salinization and groundwater table depth. 

• The optimum drain depth from an agro-hydrological perspective for the multiple 

cropping system of the FDP-area is about 2.2 m. This drain depth will produce 
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reasonably high crop yields {Jac/T ol > 0.90) at a rather low drainage intensity and 

maintains the root zone salinity within acceptable limits. Drains shallower than 

this depth can cause severe yield reductions due to excessive soil water conditions 

particularly during relatively wet years. Drains deeper than this will increase the 

costs without any additional benefits. 

The present USBR and Smedema designs are rather conservative with high 

drainage intensities. The SWAP simulations show that the FDP-area can 

effectively be drained with 25 percent less drainage intensity (fldraiJ/$) than the 

other two drainage designs provided no operational or maintenance constraints are 

present. This design may also reduce the costs considerably. 

These findings are based on a fixed irrigation schedule (12 irrigations or 780 mm 

of irrigation water per year) and the assumption that a sufficient amount of good 

quality canal water is available for irrigation. However, under the circumstances, 

when quality and/or quantity of irrigation water is not optimal, irrigation 

schedules should be adjusted accordingly. These aspects of water management 

will be discussed in detail in Chapter 6. 

Drainage needs of irrigated areas are much dependent on the irrigation 

component. Therefore drainage systems in these areas should be designed taking 

into account the interactions between irrigation and drainage. Non steady-state 

approaches like SWAP make it possible to study the complex soil-crop-climate 

interactions and to predict the effect of different drainage designs on water and 

salt movement in the root zone and their ultimate effect on crop yields. 
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EFFECTS OF IRRIGATION WATER CONSERVATION ON 

CROP PRODUCTION AND ENVIRONMENT1 

Abstract 

As water is becoming a scarcer commodity, savings in the irrigation sector could 
enhance water development in areas currently not being irrigated, and arrest the rapid 
environmental degradation due to waterlogging in arid zones. This Chapter 
investigates possible water reductions for wheat and cotton crops under shallow 
groundwater table conditions prevailing in the Fourth Drainage Project (FDP). The 
simulations are performed for both drained and un-drained conditions considering 
three different irrigation water qualities. The results indicate that as far as good 
quality canal water is available, a reduced application to wheat (195 mm) and cotton 
(260 mm) will maintain the soil sustainability under both drained and un-drained 
conditions. When fanners have no option other than conjunctive use or using tubewell 
water, they should apply more water (wheat 325 mm; cotton 325 mm). However, this 
will only be applicable to the areas where proper subsurface drainage systems are 
present. For un-drained areas, this strategy will not be suitable therefore other options 
such as growing more salt tolerant crops should be encouraged. Drainage can not 
solve the salinity build up problem under all circumstances because relatively dry 
monsoons provide insufficient leaching water, and salts added by tubewell irrigation 
can only be evacuated from the soil profile if the drainage system is very intense. 
Reduced irrigation inputs is a proper short-term solution, although the wheat 
production tends to decline in all areas without a drainage system, even when irrigated 
with the canal water. Large scale drainage investments associated with adjusted 
irrigation planning seem unavoidable in the long run. 

6.1 Introduction 

In the (semi-) arid climates, irrigation is often essential to achieve economically 

viable crop productions. Benefits from irrigation may be partially offset by 

detrimental effects of rising groundwater tables and soil salinization. Inefficient water 

delivery systems and poor on-farm irrigation techniques can waste a fair amount of 

water as deep percolation. This not only reduces the water availability to other crops 

but also increases the drainage requirements, which can be an economical burden and 

an environmental problem for disposing of effluent, especially when there is no outlet 

to the sea such as in the Punjab. A fragile equilibrium between leaching, root water 

uptake and groundwater interactions exists in (semi-) arid climates and salinized soils. 

' Adapted version of Sarwar, A. and W.G.M. Bastiaanssen, 2000. Long-term effects of irrigation water 
conservation on crop production and environment in semi-arid areas. ASCE Irrigation and Drainage 
Engineering i Submitted). 



This makes the irrigation management more complex and important than in other 

irrigation conditions. It necessitates precise calculations of irrigation and leaching 

processes to halt environmental degradation and foster crop production. 

Irrigation scheduling is one of the important tools to achieve efficient use of water on 

the farm. It is defined as the process of forecasting the optimum amount and the 

optimum time of irrigation application (Fereres, 1996). The concept of irrigation 

scheduling received widespread emphasis some three decades ago. Initially, it was 

defined as a method of measuring soil water status for deciding when to irrigate. The 

amount of water applied was generally determined by the method of irrigation and the 

soil water holding capacity. At that time, water resources availablility was high and 

groundwater tables were deep. Jensen (1969, 1975) proposed to accomplish irrigation 

scheduling by using computers. Since then considerable progress has been made to 

refine irrigation planning and investigate the role of drainage systems, as irrigation 

and drainage issues can not be separated. 

Despite all scientific progress, scheduling practices witnessed in the field are based on 

maximum water holding capacity or, worse, on the maximum amount of water a 

farmer can capture. Farmers around the world commonly use plant symptoms as an 

indicator of when to irrigate (Clyma, 1996). Hill and Allen (1995) found that farmers 

in Pakistan usually do not plan their irrigations in advance. Their decision mainly 

depends upon the visual plant stress indicators and the instant availability of water in 

the canal system being related to the reliability of the irrigation service. Trimmer 

(1990) concluded that farmers in Pakistan do not have sufficient knowledge of 

irrigation scheduling. Therefore present irrigation practices of farmers include a 

tendency to over-irrigate, whereas the opposite should be accomplished. These farm 

management practices have also been noticed in similar field conditions in Haryana, 

India (Jacobs et al., 1997). 

Recommended irrigation schedules from the educated community are mainly based 

on the guidelines recommended by FAO (Smith, 1995) and field experiments 

conducted by local Agricultural Departments. These guidelines are very generic, and 

do not take into account the groundwater contribution to crop evapotranspiration, and 

consider irrigation and precipitation as the only source of water in the calculation of 

irrigation water requirement for crops. Drainage systems are-no-doubt required to 

control rising groundwater tables, but have the drawback of being expensive to install 

and producing highly saline effluents, which must be properly disposed of. The need 

for installing drainage systems may be avoided by reducing the irrigation water 
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applications and allowing the crop to draw maximum water from the groundwater 

(Singh and Singh, 1997). 

Dynamic simulation models that can calculate soil water and solute transfer 

originating from all water resources in combination with crop growth, are useful tools 

to provide a rapid, flexible and relatively inexpensive means of estimating the effects 

of various irrigation management practices on crop production under a variety of 

climatic and physical conditions (Bradford and Letey, 1992; Teixeira et al., 1995). 

These tools can be used to derive guidelines and examples, which could be transferred 

to farmers through extension workers. The main objective of this study was to revise 

irrigation planning based on maximum irrigation water savings for wheat and cotton 

crops for the shallow groundwater table conditions prevailing in the Fourth Drainage 

Project (FDP) within the context of the present rotational irrigation system. The 

calibrated model SWAP (Chapter 4) was used to determine water conservation 

strategies. The best irrigation water conservation practices were compared with the 

fanners' present irrigation practices to evaluate the long-term consequences of water 

conservation on crop transpiration, soil salinity, depth to groundwater table and the 

drainage requirements. 

6.2 Modeling farmers present irrigation practices 

Studies conducted in the FDP-area have shown that the average number of irrigations 

for wheat ranged between three to six and four to six for cotton (Raza and Choudhry, 

1998). These irrigations are in addition to one pre-sowing irrigation, which most of 

the farmers apply to ensure favourable moisture conditions for seed germination. To 

simulate farmers irrigation practices, five irrigations for wheat as well as for cotton 

are schematized in addition to one pre-sowing irrigation for each crop. Farmers apply 

more water (80 mm) during pre-sowing irrigation to reduce root zone salinity. All 

together, twelve irrigations totalling 810 mm in a growing year are applied 

independent of water quality as to demonstrate the effects of canal and tubewell 

water. The first irrigation to wheat was applied three weeks after sowing, and to 

cotton, six weeks after sowing. As the behaviour of individual fanners is difficult to 

translate into an average condition, subsequent imgations to wheat and cotton were 

distributed uniformly over the growing season. 

SWAP offers different options for the imgation timing and application depth criteria. 

In this study a fixed interval of one week in between consecutive imgation 

applications and a fixed depth of 65 mm were taken to comply with the rotational 

warabandi system characteristics. The initial soil water profile was adapted to each 
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scenario by achieving zero annual change in water storage. The initial soil salinity 

concentrations were derived from field measurements. The average electrical 

conductivity (EC) of the soil profile was taken as 2 dS nv1 or 2700 g rrr3 (Raza and 

Choudhry, 1998). 

6.3 Performance indicators 

As our ultimate objective is to maximize crop yields with a minimum of canal water 

resources, maintaining an acceptable relative transpiration (T„C/T 0)' *s mandatory. 

Since j /j ot takes into account the effect of both soil water and salinity, it was used 

as an indicator to reflect the overall conditions in the unsaturated zone and their effect 

on crop yield. The effects of soil salinization on the relative transpiration are not 

immediately apparent because of their different time scales: Salinization is a gradual 

process whereas crop transpiration varies from day-to-day with state variables. To 

ensure long-term sustainability of irrigated agriculture, salt build up in the root zone 

should be kept within tolerable limits. To quantify the impact of different irrigation 

schedules on root zone salinity, two different indicators were identified (Bastiaanssen 

et al., 1996). The threshold values of different performance indicators used for this 

study are given below. 

• Relative transpiration (T„cl/Tpot)
 i s considered equivalent to relative crop yields 

(see Chapter 3). Because the FDP-area has a water scarce environment, a limited 

water stress may be allowed. For these simulations, it has been assumed that 

T„cl/T ot > 0-90 is acceptable for both cotton and wheat crops. It is certain that crop 

yield is not affected by the water factor alone, but inclusion of other factors (i.e. 

crop varieties, fertilisers, disease and pest management) is beyond the scope of 

this study. Therefore these non-water factors are considered to be optimal. 

• Salt Storage Change (SSC = AC/CinMal)
 h e lP s i n estimating whether the 

considered irrigation schedules are increasing or decreasing the salt storage in the 

root zone. The salt storage change over a certain period is AQ and £,,„„„/ is m e s a^ 

storage at the onset of the time frame considered. The value of §SQ is determined 

for 1.0 m soil layer below the soil surface. Ideally, $$£ should be zero, however, 

in view of saline groundwater conditions, a small build up of salts is tolerable. It is 

assumed that $SQ < 0.05 (5% increase in salt storage from the initial value) over a 

period of 15-years is acceptable. 

• Salinity Hazard Index (SHI) defined as (ECe°-'-ECe""")/(ECe
mnx-ECe

mi") i s u s e d t o 

quantify the harmful effects of different salinity levels in the root zone on crop 
yield. Where EC °~1 'S m e average salinity calculated over a 1.0 m depth of root 
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zone, ECe
m" is the permissible electrical conductivity of soil saturation extract for 

100 percent crop yield and ECe
max is the permissible electrical conductivity of soil 

saturation extract for zero percent crop yield. The value of SHI varies between 0 

to 1. Negative values are taken equal to zero. For this study, SHI < 0.10, which 

corresponds to 10% yield reduction due to build up of root zone salinity is 

considered acceptable. ECe
m" values for wheat and cotton were taken as 6.0 and 

7.7 dS m"1, respectively, whereas ECe
max values for wheat and cotton were taken 

as 20 dS m"1 and 27 dS m"1, respectively (after Doorenbos and Pruitt, 1977). 

6.4 Determining water conservation schedules 

Irrigation planning of the average year 

The irrigation schedules for reduced water application were determined first for an 

average year to comply with the rigid water application characteristic of the 

warabandi system. The average year was selected on the basis of annual rainfall data 

of 15-years (1980-94). The average annual rainfall of this series was 375 mm. 

Rainfall for 1987 with 363 mm was the closest (45 percent probability of exceedance 

with a return period of 2.5 years). The daily weather data (i.e. maximum and 

minimum temperatures, wind speed, sunshine hours) of 1987 were taken to get a 

matching reference evapotranspiration (ET0) using the Priestly and Taylor (1972) 

method. The ET0 is substantially smaller (1110 mm) and more realistic than the 2000 

mm resulting from Pan evaporation measurements. The average monthly rainfall and 

ET0 for the average year are shown in Figure 6.1. 

J F M A M J J A S O N D 

Months 

Figure 6.1. Average monthly rainfall and Priestly-Taylor ET0 for the average year of 

1987. 
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For simulations of the average year, the SWAP irrigation schedule found that three 

irrigations (195 mm) for wheat and four (260 mm) for cotton are sufficient to obtain 

Tacl/T oi values higher than 0.90. This irrigation schedule was also successful in 

maintaining the salt storage change and salinity hazard index values within acceptable 

limits. A comparison between reduced water application and the present farmers' 

irrigation practices is presented in Table 6.1. The irrigation amounts shown in Table 

6.1 are in addition to rainfall and pre-sowing irrigations. 

Table 6.1. Comparison of water conservation schedules ('reduced') and the farmers' present 

irrigation practices. 

Parameters Wheat Cotton 

Reduced 

3 

195 

396 

50 

45 

Farmers' 

practices 

5 

325 

-
30 

21 

Reduced 

4 

260 

610 

46 

40 

Farmers' 

practices 

5 

325 

-
30 

45 

No. of irrigations 

Total irrigation water applied (mm) 

Actual evapotranspiration (mm) 

Average irrigation interval (days) 

Days of first irrigation after sowing 

Table 6.1 shows that fanners in the FDP-area are applying higher irrigation amounts 

to wheat and cotton crops as compared to what is theoretically necessary to meet the 

crop and environmental conditions described before. The difference is more 

pronounced for wheat than for cotton. The conservation technique - applied to the 

warabandi context - suggests an average irrigation interval of about six weeks for 

wheat and cotton as compared to four weeks presently practised by farmers. Table 6.1 

shows that farmers are applying the first irrigation to wheat 24 days earlier and for 

cotton five days later than under the water conservation schedule. The simulation 

results show that the first irrigation to wheat crop can be delayed because the winter 

period from December to January has low evapotranspiration. In this way farmers can 

save a considerable amount of water, which is otherwise not used for root water 

uptake, but which pushes the groundwater table upwards. 

6.5 Long-term evaluation of irrigation schedules 

Long-term (1980-94) simulations were performed in order to predict the effect of 

irrigation schedules identified in Table 6.1 on crop transpiration, soil salinity, 

groundwater table behaviour and drainage requirements. Variations in water quality 

on the irrigated crops were incorporated. As farmers of the FDP-area are using 

tubewell water for irrigation, three different irrigation water qualities were 
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considered: Irrigation with the good quality canal water (EC = 0.3 dS irr1), irrigation 

with the blended canal and tubewell water (EC = 1.5 dS nv1) and irrigation with 

tubewell water only (EC = 3.0 dS nr1). Two conditions related to groundwater table 

depths prevailing in the FDP-area were considered: 

a The first condition represents the area where an adequate sub-surface drainage 

system is present, which keeps the groundwater table at desired depths. The 

characteristics of this adequate drainage design are taken as a drain depth of 2.2 m 

with a drain spacing of 500 m (see Chapter 5), which approximately coincide with 

the present drainage design of the Fourth Drainage Project i.e. a drain depth of 2.4 

m and a drain spacing of 495 m. 

a The second condition is related to the areas where no drainage system is present 

and the groundwater is shallow and saline. For this situation, the groundwater 

table was initially assumed at a depth of 2.0 m and was allowed to fluctuate over 

the growing season depending upon the amount of irrigation, the irrigation water 

quality and rainfall. The electrical conductivity (EC) of the groundwater was taken 

as3 .5dSm-ior4700gm-3. 

A summary of different water management scenarios simulated is given in Table 6.2. 

Table 6.2. Description of different water management scenarios used for the long-term 

analysis with the SWAP model. CW = Canal Water, CTW = Canal + Tubewell Water and 

TW = Tubewell Water. 

Irrigation applications 

Water conservation schedule 

Farmers irrigation practices 

With 

drainage 

• 

v 

Without 

drainage 

</ 

* 

Irrigation 

CW 

• 

V 

>/ 
• 

water qualities 

CTW TW 

v< «/ 

v • 

v </ 

<s • 
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6.6 Results and discussion 

Water conservation schedule-with drainage 

The relative transpiration of wheat and cotton as influenced by three different 

irrigation water qualities in the presence of a subsurface drainage system are 

illustrated in Figure 6.2. The simulations were performed for a continuous period of 

15 wheat-cotton crop rotations. Afterwards, the results of wheat and cotton crops were 

presented separately to quantify the effect of different irrigation management 

strategies on relative transpiration of wheat and cotton individually. 

Figure 6.2 shows that there is a clear effect of different irrigation water qualities on 

crop transpiration. When good quality canal water is used for irrigation, relative 

transpiration higher than 0.90 can often be maintained both for wheat and cotton crops 

during 15 years. However, when canal water is used in conjunction with the tubewell 

water (1.5 dS m"1), acceptable crop transpiration for cotton can be obtained, but not 

for wheat (7 out of 15 years has Tact/Tpo, < 0.90). The simulation results show that the 

use of poor quality tubewell water (3.0 dS m"1) for irrigation will lead to a 

considerable reduction in crop yield with Tact/Tp„, values as low as 0.60, both for 

wheat and cotton. 

The decrease in relative transpiration due to poor quality tubewell water is 

approximately 13 percent if good quality canal water is taken as reference. The 

reductions are more for wheat than for cotton. Two factors cause cotton crop to suffer 

less under these conditions: Firstly, cotton is more salt tolerant than wheat and 

secondly salinity levels in the wet cotton season are generally lower due to monsoon 

rains. The temporal variations in Tac,/Tpo, over the simulation period can be ascribed to 

differences in annual precipitation. The year 1985 with 217-mm precipitation 

introduced a significant drop in Tact/Tpol. This reveals that years with a below-average 

precipitation enhance soil salinization in the root zone immediately, which affects 

water uptake by roots. 

The considerable reductions in the relative transpiration for the poor quality (1.5 and 

3.0 dS m'1) imgation waters are mainly due to increases in the root zone salinity. This 

implies that less irrigation water is used for crop transpiration and indicates that salts 

are building up. The average annual amount of drainage water produced under 

optimized imgation schedules with the canal water imgation is only 20 mm, which 

did not provide enough leaching (SSC = +0.03). The simulated average annual water 

and salt balances for wheat-cotton rotation for three different irrigation water qualities 

are presented in Table 6.3. 
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Figure 6.2. Rainfall and relative transpiration (Tac/Tpot) of wheat and cotton based on the 

water conservation schedule as influenced by three different irrigation water qualities in the 

presence of a subsurface drainage system for a period of 15 years (1980-94). CW = Canal 

Water; CTW = Canal+Tubewell Water; TW = Tubewell Water. Dotted line indicates the 

acceptable threshold value. 
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Table 6.3. Simulated average annual water and salt balances for wheat-cotton rotation based 

on the water conservation schedule as influenced by three different irrigation water qualities 

in the presence of a subsurface drainage system. CW = Canal Water; CTW=Canal+Tubewell 

Water; TW = Tube well Water. The Tpo, is 901 mm and the Epo, is 367 mm. 

Treatment 

CW 

CTW 
TW 

Rainfall 

(mm) 

375 
375 
375 

Irrigation 

(mm) 

615 
615 
615 

' net 

(cm) 

851 
837 
811 

E„c, 

(mm) 

159 

162 
165 

Drainage 

(mm) 

20.0 
20.5 
30.8 

AW 

(mm) 
-52.1 
-22.9 
+9.6 

ssc 
(-) 

+0.03 

+4.53 
+6.81 

Table 6.3 shows that the solutes, supplied through the irrigation water are seen to 

suppress the crop transpiration (by 2 to 5 percent) and enhance the soil evaporation 

rate, Eact, by (2 to 4 percent) since the surface remains wet for longer periods as 

compared to the CW scenario. The change in soil water storage, AW, reflects the net 

wetting/drying effects. For TW scenarios, AW is positive due to increased soil salinity 

and reduced transpiration rates. The value of SSC for CW treatment was 0.03 (3 

percent increase in salt storage) over the simulation period of 15-years, which is 

acceptable. However, for CTW and TW treatments, SSC values are extremely high 

and show severe environmental destructions, even if a drainage system is present. 

This shows that drainage systems are no guarantee for success if the irrigation 

component is not properly adjusted. 

Figure 6.3 presents the trends of root zone salinity. The ECe values represent the 

average root zone salinity calculated over a 1.0 m deep root zone at the end of each 

simulation year. Irrigations with the canal water maintain the root zone salinity below 

a threshold value of 4.0 dS m"1 although a slightly increasing trend may be witnessed 

(SSC = +0.03). A value of 4.0 dS m"1 is usually considered for non-saline soils in 

Pakistan (Mulk, 1993). For the poor quality (1.5 and 3.0 dS m"1) irrigation waters, the 

root zone salinity increases sharply in the first six years and then this salinization 

process reaches to a certain equilibrium state with more or less a constant salt storage. 

The temporal development of salinity hazard index (SHI) for wheat-cotton rotation 

for three different irrigation water treatments is shown in Figure 6.4. As wheat and 

cotton crops respond differently to the increased root zone salinity due to their salt 

tolerance characteristics, the SHI was first calculated separately for wheat and cotton 

crops and then averaged to show the overall effect of salinity build up on crop yield. 

Although SSC for CW treatment was slightly positive (Table 6.3), SHI remained zero 

The CTW and TW treatments, will result in an increase in SHI with the superiority of 

TW. Remarkable are the step changes occurring during elongated diy spells. 
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Figure 6.3. Temporal development of average root zone salinity (ECe) based on the water 

conservation schedule as influenced by three different irrigation water qualities in the 

presence of a subsurface drainage system. CW = Canal Water; CTW = Canal+Tubewell 

Water; TW = Tubewell Water. Dotted line indicates the acceptable threshold value. 
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Figure 6.4. Temporal development of the salinity hazard index (SHI) for wheat-cotton 

rotation based on the water conservation schedule as influenced by three different 

irrigation water qualities in the presence of a subsurface drainage system. CW = Canal 

Water; CTW = Canal+Tubewell Water; TW = Tubewell Water. 

Water conservation schedule-without drainage 

Figure 6.5 illustrates the relative transpiration (Tact/Tpoi) of wheat and cotton based on 

the water conservation schedule as influenced by three different irrigation water 

qualities (Table 6.2) in the absence of a subsurface drainage system. This combination 

represents the majority in the Punjab, besides the fact that farmers irrigate more than 

the annual 615 mm applicable to water conservation. 
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Figure 6.5. Rainfall and relative transpiration (Taa/Tpoi) of wheat and cotton based on the 

water conservation schedule as influenced by three different irrigation water qualities in the 

absence of a subsurface drainage system for a period of 15 years (1980-94). CW = Canal 

Water; CTW = Canal+Tubewell Water; TW = Tubewell Water. Dotted line indicates the 

acceptable threshold value. 
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The results indicate that the relative transpiration for wheat collapsed after a few years 

with below average precipitation in the middle of the eighties. The reductions in 

Taa/Tpot values during the years six to ten are mainly due to increasing soil salinity in 

the root zone (Figure 6.6). The groundwater table started declining for CW and CTW 

(Figure 6.7) as a result of capillary rise to supplement the low precipitation. It is 

apparent that the crop productivity reduces with time, even when good quality water 

irrigations are supplied. The cotton crop seems less affected under these conditions as 

was observed under drained conditions. 
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Figure 6.6. Temporal development of average root zone salinity (ECe) based on the water 

conservation schedule as influenced by three different irrigation water qualities in the 

absence of a subsurface drainage system. CW = Canal Water; CTW = Canal+Tubewell 

Water; TW = Tubewell Water. Dotted line indicates the acceptable threshold value. 

The long-term simulations revealed that for tubewell water irrigations, the effect of a 

shallow groundwater table is very pronounced. Salts are added by capillary rise as 

well as through tubewell irrigations. As plants are constrained in their root water 

uptake under highly saline conditions, infiltrated water pushes the groundwater table 

up. This phenomenon not only increased the root zone salinity (Figure 6.6) but also 

created waterlogged conditions (Figure 6.7). For these shallow saline groundwater 

table areas, leaching of salts by means of poor quality irrigation water will not be 

suitable and the lands will go out of production even faster. Therefore, other options 

like growing more salt tolerant crops, eucalyptus or phreophytes should be adapted. 
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Figure 6.7. Temporal development of groundwater tables based on the water conservation 

schedule as influenced by three irrigation water qualities in the absence of a subsurface 

drainage system. CW= Canal Water; CTW = Canal+Tubewell Water; TW = Tubewell 

Water 

Farmers present irrigation practices-with drainage 

Figure 6.8 shows that with the farmers present irrigation practices, maximum relative 

transpiration (Tac/Tpot) for both wheat and cotton crops could be obtained irrespective 

of water quality issues. The total depth of water applied by farmers per year is 810 

mm, being 25 percent higher than the water conservation schedule with 615 mm 

including pre-sowing irrigation. 

The increased water application did not result in a proportionate increase in Tac/Tpot 

values. The relative transpiration is five percent higher for wheat and only three 

percent for cotton as compared to the values obtained by water conservation schedule. 

However, it did result in increased drainage requirements (130 mm) (Table 6.4) as 

compared to 20 mm for the water conservation strategy (Table 6.3) causing inefficient 

use of irrigation water. However, this extra amount of water provides sufficient 

leaching to maintain root zone salinity below 4.0 dS m"1 (Figure 6.9) as far as canal 

water is used for irrigation. For CTW and TW treatments, only a slight reduction in 

Tac/Tpot values occurred due to increased root zone salinity. The simulated cumulative 

average annual water and salt balances for wheat-cotton rotation for three different 

irrigation water are given in Table 6.4. 
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Figure 6.8. Relative transpiration (Tac/Tpo!) of wheat and cotton based on the farmers present 

irrigation practices as influenced by three different irrigation water qualities in the presence 

of a subsurface drainage system for a period of 15 years (1980-94). CW = Canal Water; 

CTW = Canal+Tubewell Water; TW = Tubewell Water. Dotted line indicates the acceptable 

threshold value. 

Table 6.4. Simulated average annual water and salt balances for wheat and cotton based on 

the fanners present irrigation practices as influenced by three different irrigation water 

qualities in the presence of a subsurface drainage system. CW = Canal Water; CTW = 

Canal+Tubewell Water; TW = Tubewell Water. The Tpo, is 910 and Epo, is 367 mm. 

Treatment 

CW 

CTW 

TW 

Rainfall 

(mm) 

375 

375 

375 

Irrigation 

(mm) 

810 

810 

810 

' act 

(mm) 

894 

891 

859 

p 
L^act 

(mm) 

177 

178 

180 

Drainage 

(mm) 

129 

130 

156 

AW 

(mm) 

-7.6 

-6.2 

-0.9 

SSC 

(-) 
-0.26 

+2.78 

+5.15 
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Figure 6.9. Temporal development of average root zone salinity (ECe) based on the 

farmers present irrigation practices as influenced by three different irrigation water 

qualities in the presence of a subsurface drainage system. CW = Canal Water; CTW = 

Canal+Tubewell Water; TW = Tubewell Water. Dotted line indicates the acceptable 

threshold value. 

Table 6.4 shows that tubewell water depressed the crop transpiration by about five 

percent as compared to canal water irrigation. Interesting to note is that the salt 

storage change becomes negative only in the case of CW, while for the other two 

treatments it remained positive despite about six times more leaching through 

drainage as compared to the water conservation scenario. This shows that salts added 

by poor quality irrigation water were in excess of the amount of salts removed 

through drainage. This implies that applying more frequent irrigations with saline 

water does not help in taking away the salts from the crop roots and that this scenario 

is not sustainable. The SHI for CW remained zero (not shown), while for other two 

treatments a slightly increasing trend was observed with TW leading CTW. 

Farmers present irrigation practices-without drainage 

The long-term simulations show that the farmers present irrigation practices are not 

suitable for adaptation in the areas where no drainage system is present and 

groundwater is shallow and saline. Application of five irrigations for wheat and five 

for cotton will raise the groundwater table to the surface level in just two to three 

years, making crop production very difficult. Therefore results of these simulations 

are not presented here. 

For sustainable crop production in these areas without installing a drainage system, 

irrigation applications should be substantially reduced to minimize percolation losses 

and to enhance capillary drying of the soil. The best irrigation strategy under shallow 
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water table conditions could be to irrigate at relatively high stress levels and the most 

critical growth stages that do not reduce yields. Prathapar and Sarwar (1999) have 

shown that in areas where no drainage systems are present and groundwater is 

shallow and saline, the quantities of irrigation water can be reduced to meet 80 

percent of the crop evapotranspiration without reducing crop yields and without 

increasing soil salinization. 

Productivity of water 

Where water is a constraining resource, yield per unit of water becomes more 

important. Different indicators to relate crop production per unit of water exist. Most 

commonly used are 'yield per unit of water evapotranspired (Kac/ETac,)' and 'yield 

per unit of irrigation water supply (Yact/Irr) (Molden et al., 1998). Droogers and Kite 

(1999) expressed the productivity of water per unit 1) evapotranspiration {Yact/ETact), 

2) transpiration (Yaa/Tact), 3) irrigation water supply (Yact/Irr) and 4) depletion using 

the concept of relative transpiration for estimating crop yields (Yact/(ETac, + Dr). In 

our case, depletion is defined as the sum of actual evapotranspiration (ETact) and 

amount of drainage (Dr). The maximum attainable yields in the FDP-area for wheat 

and cotton are taken as 3350 kg ha"1 and 1950 kg ha"1, respectively (Bastiaanssen and 

Ali, 2000). Table 6.5 shows the comparison of different productivities of water for 

wheat and cotton crops for water conservation schedule and farmers present irrigation 

practices. 

Table 6.5. Comparison of different productivities of water for water conservation schedule 

and farmers present irrigation practices in the presence of a subsurface drainage system. 

Precipitation (mm) 

Irrigation, /„(mm) 

Actual transpiration, T^, (mm) 

Actual evaporation, 2v, (mm) 

Actual evapotranspiration, ETac, (mm) 

Drainage, Dr (mm) 

Actual estimated yield, Yac, (kg ha"1) 

Yac/T^ (kg m3) 

L / £ r „ ( k g m J ) 

YJIrr (kg m"3) 

Yac/(ET„cl+Dr) (kgm3) 

Water conservation 

scenario 

Wheat 

106 

195 

327 

54 

381 

5 

3070 

0.94 

0.81 

1.57 

0.80 

Cotton 

270 

260 

524 

109 

633 

15 

1880 

0.36 

0.30 

0.72 

0.29 

Farmers 

irrigation 

Wheat 

106 

325 

353 

50 

403 

28 

3340 

0.95 

0.81 

1.03 

0.77 

present 

practices 

Cotton 

270 

325 

541 

177 

718 

126 

1940 

0.36 

0.30 

0.60 

0.23 
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In general, productivity of water is higher in case of water conservation schedule as 

compared to farmers present irrigation practices. Table 6.5 shows that the actual 

yields obtained under farmers present irrigation practices are 8 percent higher for 

wheat and only three percent for cotton as compared to yields obtained under the 

water conservation schedule. The yield per unit of irrigation water supply for the 

water conservation schedule is 35 percent higher for wheat and 17 percent for cotton 

as compared to farmers present irrigation practices. This reflects higher efficiency of 

canal water use under water conservation schedule. The yield per unit of depletion is 

also significantly higher (4 percent for wheat and 20 percent for cotton) for water 

conservation schedule as compared to fanners present irrigation practices under 

drained conditions. 

6.7 Conclusions 

The farmers present irrigation practices are aimed at applying maximum water for 

maximum crop production. The law of the increased benefits does not apply to 

salinized land threatened by a rising groundwater table. The opposite is true: 

Unplanned irrigation applications can ruin the land resources within a time span of 

several years. Careful management is therefor a pre-requisite to use the resources in a 

productive and sustainable way. 

Irrigations with good quality canal water shows that three post-sowing irrigations to 

wheat and four to cotton (with each irrigation application depth being 65 mm) are 

sufficient to maintain reasonably high relative transpiration (Tac,/Tpot) for shallow 

groundwater table conditions of the FDP-area under both drained and un-drained 

conditions. Such water conservation schedule will minimize deep percolation and 

keep the salt storage change (SSC) and salinity hazard index (SHI) within acceptable 

limits. Farmers of the FDP-area can save up to 25 percent of the scarce canal 

irrigation water each year, water that otherwise will be drained. This saved water can 

be used for subsequent utilization on the adjoining 24 percent of the un-irrigated FDP-

areas (SMO, 1994). For poor quality irrigation waters (mixed or tubewell only), this 

water conservation schedule will be insufficient. Hence, water savings are applicable 

to canal water irrigations only. Table 6.6 summarizes the water management 

performance indicators for different scenarios tested in this study. The values given 

are only for drained conditions and are based on 15-year averages. The SSC values, 

however, reflect the salt storage change over the entire simulation period of 15-years. 
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Table 6.6. Summary of water management performance indicators for the water conservation 

schedule and the farmers present irrigation practices as influenced by three different irrigation 

water qualities in the presence of a subsurface drainage system based on 15 year averages. 

CW = Canal Water; CTW = Canal+Tubewell Water; TW = Tubewell Water. 

Performance indicators 

Relative transpiration (TaJTpol) 

Salt Storage Change (SSQ 

Salinity Hazard Index (SHI) 

Drainage (Dr) (mm yf ) 

Water conservation 

CW 

0.94 

+0.03 

0 

20 

schedule 

CTW 

0.93 

+4.53 

0.08 

21 

TW 

0.90 
+6.81 

0.08 

31 

Farmers present 

irrig 

CW 

0.99 

-0.26 

0 

129 

ation practices 

CTW TW 

0.99 0.95 

+2.78 +5.15 

0.02 0.05 

130 156 

The model simulations have indicated that for un-drained areas, leaching of salts by 

means of poor quality irrigation water will not be feasible and the lands will go out of 

production even at a faster rate due to rising groundwater tables. Therefore, in these 

areas, other options like growing more salt tolerant crops such as eucalyptus or 

phreophytes should be considered. The construction of drainage systems is an 

economical burden for rural communities. It is nevertheless necessary, but not a 

guarantee for successful water management. The CTW and TW treatments showed an 

increasing trend in salt storage change (SSC) and salinity hazard index (SHI) despite 

a high leaching induced by drainage systems. This essentially affects wheat with 

seven out of fifteen years having a production below desired level. 

The temporal variations in relative transpiration and root zone salinity revealed that 

the deviations in annual precipitation from an average year are very critical to 

maintain fragile equilibrium between different water and salt balance components. 

Ideally, water allocation and distribution should be based on crop evapotranspiration, 

precipitation and salinity build up and reviewed yearly. However, for the present fixed 

rotational irrigation system, this will remain a constraint. 

Due to the population expansion in Pakistan there exists a need for more food, while 

the per capita irrigation water availability is diminishing. The fact of having less 

irrigation water of good quality available by the withdrawal of water resources to 

urban areas should result in a 25 percent reduction of canal supplies to farmers. Under 

these conditions, adaptation of water conservation strategies is a better option than 

recommending farmers to irrigate with tubewell water, unless the groundwater quality 

is acceptable. Drainage helps long-term solutions but success is not guaranteed and 

some deviations from the optimum should be accepted. 
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From the above conclusions, guidelines for the extension workers can be drawn for 

the safe and sustainable use of different quality irrigation waters (Table 6.7). These 

guidelines are based on the taken simulation period of 15 years considering wheat-

cotton crop rotation. The yield reductions are assumed to be affected only due to 

excessive moisture and/or salinity conditions. Other non-water factor such as nutrient 

availability, pests, weeds, disease control and cultural practices are considered as 

optimal. 

Table 6.7. Management strategies for the safe and sustainable use of different quality 

irrigation waters under different groundwater table conditions for the FDP-area based on 15 

year simulations with the SWAP model. CW = Canal Water, CTW = Canal + Tubewell 

Water, TW = Tubewell Water. Irrigation amounts to wheat and cotton crops represent post-

sowing water applications (mm) in a growing season. 

Drainage 

conditions 

Subsurface 

drainage 

No 

subsurface 

drainage 

Management strategies for different quality irrigation waters 

CW 

(EC = 0.3dSm"') 

Reduced water 

application 

Wheat =195 mm 

Cotton = 260 mm 

Reduced water 

application 

Wheat = 195 mm 

Cotton = 260 mm 

CTW 

(EC=1.5dSm"') 

Leaching feasible 

Wheat = 325 mm 

Cotton = 325 mm 

Leaching not feasible 

Grow salt tolerant crops 

Wheat =195 mm 

Cotton = 260 mm 

TW 

(EC = 3.0dSm-') 

Extra leaching not feasible 

Grow salt tolerant crops 

Wheat = 325 mm 

Cotton = 325 mm 

Install drainage systems or 

grow salt tolerant plants 

for reclamation e.g. 

eucalyptus 
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7 EFFECTS OF IRRIGATION WATER DISTRIBUTION ON 

CROP PRODUCTION AND ENVIRONMENT1 

Abstract 

This Chapter examines the response of three water delivery schedules, representing 
various levels of flexibility, on crop production, water saving, soil salinization, 
drainage requirements and groundwater table behavior. The calibrated SWAP model 
has been used as a tool. The evaluations were made for un-restricted and restricted 
water supply situations considering three different groundwater table conditions 
prevailing in the Fourth Drainage Project (FDP) of the Punjab, Pakistan. From the 
simulation results it is apparent that on average the effect of schedule flexibility on 
crop yields is not very significant. However, compared to a. fixed schedule provided 
un-restricted canal water supplies are available, the productivity of irrigation water 
supply (Yact/Irr), is up to 30 percent higher for the on-demand schedule. The on-
demand schedule capable of complying with the temporal variations in climate is also 
more effective in water saving, reducing drainage volumes and controlling rising 
groundwater tables. In the present water deficient environment of the Indus basin, the 
benefits of the on-demand schedule and a fixed schedule are comparable. In the 
absence of sufficient canal water supplies, infrastructure and a well-designed and 
effective monitoring and communication system, moving towards the on-demand 
system will be un-productive. For the long-term sustainability of the irrigation 
system, improvements in the performance of the present water allocations and on-
farm water management practices seems to be more necessary. 

7.1 Introduction 

Increasing demand and decreasing water quality has put enormous pressure on the 

agriculture sector to use its available water resources more efficiently and to improve 

the productivity of water. These pressures are a result of the increasing demand for 

food and evermore limited possibilities for extension of irrigation to other areas due to 

scarcity of land and water resources and costs of development (Shanan, 1992). The 

growing scarcity of water has also increased the inter-sectoral competition for water, 

particularly from the municipal and industrial sectors. Thus, in future, irrigation's 

contribution to food security will have to come from improving existing systems and 

expanding the area under irrigation. This requires a major effort to improve irrigation 

management, operation and maintenance, rehabilitation and modernization of existing 

schemes. 

Adapted version of Sarwar, A., W.G.M. Bastiaanssen and R.A. Feddes, 2000. Irrigation water 
distribution and long-term effects on crop and environment. Agricultural Water Management 
(Submitted). 
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The allocation and distribution of water in an irrigation system are some of the most 

important activities found in agriculture because they require an understanding of the 

complex interactions between the physical, technical, socio-economical and 

organizational factors that uniquely affect each irrigation system. The present process 

of water allocation and distribution in Pakistan is based on the assumption that 

irrigation systems are homogenous (Renault and Godaliyada, 1999). This implies that 

generic rules for operation will lead to equivalent levels of performance whatever 

systems or subsystems are considered. The characteristics of an irrigation system, 

however, vary both in time and space (Steiner and Walter, 1993). The greatest 

challenge often faced by irrigation managers is to cope with the spatial diversity and 

temporal variability of their irrigation system. The spatial diversity includes cropping 

patterns, local convective rains, topography and soils, social organizations and 

management capacity. Temporal variability encompasses short-term changes in agro-

climatic conditions, long-term changes in ecological conditions, degradation of 

hardware and management. Therefore in order to optimize productivity of water, a 

heterogeneous approach to operations is required to deal with the spatial diversity and 

temporal variability of the irrigation system. The word operation refers to both the 

manipulations of physical structures in the irrigation system to implement 

management decisions about water allocation and the schedules of delivery and 

distribution (Renault and Makin, 1999). 

The large scale, low-supply schemes of Indo-Pak (Ganga and Indus) basins are 

characterized as 'protective irrigation'. This term is more related to water rights and 

has historically influenced the system's design and canal capacities. The major 

objective of 'protective irrigation' was to distribute the little water available to the 

greatest possible number of users to prevent crop failure and avoid famine (Jurriens 

and Mollinga, 1996). The major concerns regarding performance of irrigated 

agriculture in Pakistan are low crop yields and low water use efficiency. Among 

others, inequitable, untimely and non-assured canal water supplies are usually held 

responsible for this low performance (Shanan, 1992). 

It must be realized that it is not just the volume of water delivered, but the way it is 

delivered controls the effective use of resources. It is generally argued that 

improvement in productivity primarily depends upon better matching irrigation 

supplies with crop demand. Therefore a more flexible scheduling system capable of 

distributing water in such a way that it is available in the quantities and at the times it 

is needed, is necessary for the optimization of crop production. In Pakistan, emphasis 

is also increasing for a change-over from the present fixed rotational system (based on 

proportionate division of water over available land) to a more crop demand-based 
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irrigation management to achieve equitable and timely deliveries and efficient use of 

water (World Bank, 1992). 

The discussions on the water division are usually based on the comparison of crop 

yields, development costs, management and infrastructural constraints and socio­

political conditions (Merriam, 1992; Steiner and Walter, 1993; Wolters et al., 1997). 

However, very little attention is given to the long-term impacts of these proposed 

interventions on environmental parameters such as soil salinization, drainage 

requirements and groundwater table behavior. Therefore, the debates on the 

advantages and disadvantages of this change remain ambiguous due to the lack of 

necessary data to quantify this impact. In this Chapter the consequences of water 

delivery at the farm gate on crop production and environment will be evaluated using 

the calibrated SWAP model. The results of long-term SWAP model simulations to 

include weather anomalies will be described. Some opportunities and constraints for 

the introduction of a more flexible irrigation water distribution system in the Indus 

basin will also be discussed. 

To systematically evaluate the impact of different water delivery schedules on crop 

production and environment, following performance indicators were used. 

• Relative transpiration (T„c,/Tpot) (see Chapter 6). 

• Salt Storage Change (SSC = AC/Cinmai) (see Chapter 6). 

• Net flux at 250 cm depth leaving or entering the root zone (c]2.w)- This flux was 

considered as deep percolation and capillary rise. The deep percolation is 

represented by negative values and the capillary rise by positive values. 

• Productivity of irrigation water supply (yield per unit of irrigation supply, Yact/I,r 

(kg m"3). where Yact (kg ha"1) is the estimated actual yield and /„. (m3 m"2) is the 

depth of irrigation water applied. The maximum attainable yields in the FDP-area 

for wheat and cotton are taken as 3350 kg ha"1 and 1950 kg ha"1, respectively 

(Bastiaanssen and Ali, 2000). 

7.2 Water delivery schedules studied 

A water delivery schedule during an irrigation period is a sequence of regulations 

specifying the amount of irrigation water at each point in time for all recipients or 

groups of recipients in a distribution system. The water delivery schedules differ 

mainly in time period and flow re-adjustments and are usually based on the type of 

water allocation. Water allocations to tertiary units can either be supply-based or 

demand-based. Supply-based water allocations are based on proportional division of 
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water over available land. In the case of demand-based water allocation, the actual or 

estimated crop water requirements form the basis of water distribution. 

Of crucial importance for the establishment of irrigation schedule is the specification 

of three components of water delivery at the farm outlet: the rate of water flow 

('discharge'), the duration of water delivery and the frequency of water delivery. 

Assuming that each of these components can either be constant or variable, a number 

of different types of irrigation delivery schedules can be distinguished (FAO, 1982; 

Replogle and Merriam, 1982; World Bank, 1986; Clemmens, 1987; Horst, 1998). For 

this study, the three most important categories of water delivery schedules, 

representing different levels of schedule flexibility, were studied. These schedules are 

briefly discussed below. 

• Fixed schedule: Water delivery is based on a schedule proportional to land 

holding or irrigated area. This can be attained either by dividing continuous flows 

through the system according to the areas served or by delivering the water 

intermittently on a proportional time basis (rotation system). This schedule is 

presently being practiced in many irrigated areas of India and Pakistan. 

• Flexible schedule: Crop water requirement can either be based on the requests of 

farmers for water ('on-request') or on an assessment by the Central Irrigation 

Agency of the various crops and their water requirement ('arranged'). In 'on-

request' schedule, flows are regularly adjusted (once every 1 or 2 days), for 

'arranged' schedule, re-adjustments are usually made once every 7, 10 or 14 days. 

• On-demand schedule: Individual farmers decide when and how much irrigation 

water is needed. The system is designed in such a way that each farmer is able to 

draw any quantity of water at any time he wishes. With this type of scheduling, 

some form of automatic control in which the system responds automatically to 

withdrawal of water is needed. 

To achieve desired targets, the abundance and shortage of water supplies can make a 

significant difference in the performance of an irrigation system. The selection of a 

water delivery schedule can not be made freely without testing it in terms of demand-

supply considerations. The above-mentioned three water delivery schedules were 

tested for two water supply situations: un-restricted water supplies throughout the 

year and restricted water supplies (considered equivalent to the sanctioned canal 

water supply to the FDP-area i.e. 600 mm yr"1). 
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Un-restricted water supply 

Fixed schedule: These schedules have their conditions fixed at the beginning of the 

irrigation season as to frequency, rate and duration. The behavior of individual 

farmers in the fixed schedule is difficult to translate into an average condition. 

Therefore we adapted the irrigation schedule recommended by the Punjab 

Agricultural Department (PAD) for wheat-cotton agro-climatic zone of the Punjab 

(OFWM, 1980) usually being followed by fanners. The first irrigation was applied to 

wheat, three weeks after sowing, and to cotton, five weeks after sowing. In addition to 

the pre-sowing irrigations, subsequent irrigations were applied to wheat and cotton at 

three-week intervals. Irrigations of wheat and cotton were stopped three weeks and 

five weeks before harvesting, respectively. The depth of each individual irrigation 

was taken as 65 mm whereas for pre-sowing irrigation 80 mm was taken (Sarwar and 

Bastiaanssen, 2000). This rotation represents a fixed' schedule since all three delivery 

components i.e. frequency, rate and duration of flow are fixed. 

Flexible schedule: Water is delivered by the Central Agency according to crop water 

requirements. The interval of water supply was taken as 7 days and the irrigation 

requirement for each interval was calculated by subtracting cumulative effective 

rainfall from the cumulative potential evapotranspiration (ETpol) during that period. 

Daily ETpo, values were calculated by multiplying reference evapotranspiration (ET„) 

with the crop factors (kc) for wheat and cotton crops. To obtain effective rainfall, a 

fixed factor of 0.85 (Smith, 1995) was used. The irrigation requirements were 

calculated for an average year. The average year was determined on the basis of 

annual rainfall and ETpo, data of 15 years (1980-94). The average annual rainfall of 

this series was 375 mm and average annual ETp0, 1180 mm. The net irrigation 

requirement for each week was calculated according to 0.9*(ETpor0.S5*P), where P is 

the rainfall. The factor 0.9 was used to account for the unavoidable field losses due to 

unequal water distribution within a field. This represents a more 'flexible' schedule 

since the actual crop water requirements are used to vary the depth of irrigation 

application. 

On-demand schedule: This irrigation schedule allows the fanners to control the 

frequency, rate and duration of flow at his outlet. This situation was modelled by 

filling the root zone to field capacity whenever relative transpiration ratio (Tnc/Tpo!) 

dropped below a value of 1.0. A value of 10 for Trwt/Tpo, represents maximum 

attainable crop yields. This criterion was used to optimize timing and amount of 

irrigation using SWAP model. This represents the 'on-demand' schedule since all 

three water delivery components i.e. frequency, rate and duration of flow are variable. 

105 



Restricted water supplies 

The total canal water available for crop growth in the FDP-area is about 600 mm yr"1 

(WAPDA, 1989). Irrigations were adjusted to three water delivery schedules in such a 

way that the total amount of water applied in a year does not exceed 600 mm. For a 

fixed schedule, in addition to one pre-sowing irrigation of 80 mm to each crop, 

application of this criterion resulted in three post-sowing irrigations to wheat and four 

to cotton with depth of each individual irrigation equivalent to 65 mm. For the flexible 

schedule, this amount of water could only meet 60 percent of the total irrigation water 

requirements, in addition to two pre-sowing irrigations. Irrigations were applied with 

the same 7-day interval. For the on-demand schedule, the best irrigation schedule for 

wheat and cotton crops that fits within 600 mm yr"1 of water, was optimized using the 

SWAP model. It was found that filling the soil profile back to field capacity whenever 

Tac/Tp0, value dropped below 0.85, would be the best strategy under the restricted 

water supply conditions. SWAP uses this criterion (Tac,/Tpot = 0.85) on daily basis to 

calculate irrigation requirements. However, cumulative relative transpiration at the 

end of the growing season could be higher than this value. 

The long-term (15 year) simulations were performed for three groundwater table 

conditions prevailing in the FDP-area. In addition to the 'drained' and 'un-drained' 

situations as defined in Chapter 6, simulations were also performed for the deep 

groundwater table (DWT) conditions. For this situation, a soil column of 10 m was 

considered for which an initial groundwater table depth of 10 m below soil surface 

was assumed. Zero flux at the bottom of the soil profile was used as bottom boundary 

condition. 

7.3 Results and discussion 

Un-restricted water supplies 

Figure 7.1 shows the response curve illustrating the effect of increasing schedule 

flexibility on relative crop yields and salt storage change (SSC) under drained, un-

drained and deep groundwater table (DWT) conditions for un-restricted canal water 

supplies. The presented results are based on 15 year averages considering wheat-

cotton crop rotation as calculated with the SWAP model. 
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Figure 7.1. Relative transpiration (Tac/Tpoi) and salt storage change (SSC = AC/Cinitiai) as 

influenced by a fixed, flexible and on-demand schedule for un-restricted canal water 

supplies under drained, deep groundwater table (DWT) and un-drained conditions as 

calculated with SWAP based on 15 year averages (1980-94). The values for the fixed 

schedule under DWT conditions are based on 11 year averages. Note that SSC values for un-

drained conditions are positive indicating an increase in SSC. I = standard deviations. 

Increasing the schedule flexibility by moving from a fixed application of 65 mm at 

constant intervals to filling the soil profile back to field capacity whenever relative 

transpiration dropped below 1.0, crop yields under drained conditions increased by 4 

percent. The small reduction in yields for & fixed schedule is due to constant irrigation 
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supplies without considering temporal variations in climate. Due to the restricted 

capacity of the drainage system, during high rainfall years excessive soil moisture 

conditions in the root zone persists for relatively longer periods. This reduces the 

capacity of roots to extract water and negatively affected crop transpiration. For 

relatively dry years, a fixed schedule was sufficient to maintain maximum crop yields 

under variable climatic conditions. The slightly reduced relative yields in case of a 

flexible schedule are attributed to variations in the hydrological conditions of different 

simulation years from an average year. The on-demand schedule maintained 

maximum yields under all climatic conditions as the timing and amount of irrigations 

could be adjusted according to variations in rainfall and evaporative demand of the 

atmosphere. As would be expected, the more flexible the schedule was, the lower the 

standard deviation in crop productivity. This is logical since the added flexibility in 

water delivery allows it to respond better to crop stress and thus minimize variability. 

The percolation losses under deep groundwater table conditions triggered the 

groundwater table rise, which exacerbates the damage potential of waterlogging and 

increases the need for subsurface drainage. The irrigations according to a fixed 

schedule raises the groundwater table to soil surface levels in the 11 year of 

simulations (Figure 7.2), making the crop production very difficult. Therefore relative 

transpiration values for a. fixed schedule under deep groundwater table conditions are 

based on 11 year averages rather than 15 years. 
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Figure 7.2. Groundwater table rise as influenced by a fixed, flexible and on-demand schedule 
under deep groundwater table conditions for un-restricted canal water supplies over a period 
of 15 years (1980-94). 
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The groundwater table rise for the other two schedules was less steep and follows a 

more or less similar trend (Figure 7.2). Here the groundwater table rise over the 

simulation period of 15-years was about 3.5 m. This implies that distributing canal 

water based on the temporal variable crop water requirements (flexible or on-demand 

schedules), recharge to the groundwater can be reduced and the process of 

waterlogging can be delayed if not avoided. This is advantageous for the long-term 

sustainability of crop production and environment. 

Under un-drained conditions, a fixed schedule was a complete failure as the 

groundwater table rises to the soil surface level in just two years, creating severe 

waterlogged conditions (not shown here). For these areas, the flexible and the on-

demand schedules perform better as the irrigation amounts could be matched to the 

actual crop water requirements, avoiding excessive deep percolation losses and 

consequently rising groundwater tables. 

Under drained and deep groundwater table conditions, soil desalinisation took place 

for all three water delivery schedules. For a fixed schedule, the salt storage change 

(SSC) was more negative (i.e. decreased) mainly due to high amounts of irrigation 

water application. Under drained conditions, the lower SSC values for the on-demand 

schedule indicates that applied water was efficiently used for crop transpiration 

therefore very little leaching occurred. However, leaching of salts was sufficiently 

enough to keep the SSC desirably negative The substantial amount of deep 

percolation under deep groundwater table conditions removed a significant amount of 

salts from the root zone, making SSC values considerably negative. Under un-drained 

conditions, the SSC values remained positive (i.e. increased) for all three water 

delivery schedules. This is attributed to inflow of salts from the bottom of the soil 

profile through capillary rise. 

The simulated water and salt balances for the local hydrological conditions computed 

over a period of 15-years are presented in Table 7.1. In general, a fixed schedule used 

more irrigation water than the other two schedules. Under drained conditions, the total 

average annual water used by the on-demand schedule (680 mm) was 20 percent 

lower than the total annual water used by a fixed schedule (845 mm). The less amount 

of water used by the on-demand schedule was mainly due to the presence of shallow 

groundwater table, which contributed positively to the crop transpiration. However, in 

terms of total average water used, the on-demand schedule was often comparable to 

the flexible schedule, especially when one standard deviation was taken into account. 
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Under deep groundwater table conditions, for the 15-years of model simulations, the 

total average annual water used for the on-demand schedule amounts 780 mm. This 

amount remained 13 percent higher than the total average annual water used under 

drained conditions. 

Under un-drained conditions, the total average annual water used for the on-demand 

schedule was 620 mm. This amount was 8 percent and 20 percent lower than the total 

average annual water used under drained and DWT conditions, respectively. The total 

average water used for the flexible schedule was 30 percent lower than the total 

average annual water used under drained and DWT conditions. However, the yield 

reductions due to this reduced water application were only three to five percent. This 

implies that in shallow groundwater table areas, water supplies on the basis of 

potential evapotranspiration is not feasible and corrections for capillary contribution 

should be made more effectively. 

Table 7.1. Simulated cumulative average annual water and salt balance components as 

influenced by & fixed, flexible and on-demand schedule for un-restricted canal water supplies 

under drained, deep groundwater table (DWT) and un-drained conditions. The values for the 

fixed schedule under DWT conditions are based on 11 year averages. The numbers between 

parentheses show the standarad deviation. Fxd. = Fixed schedule, Flex. = Flexible schedule, 

Odm. = On-demand schedule. The Tpol = 901 mm. 

Water balance 

components 

Irrigation (mm) 

T„cl (mm) 

Drainage (mm) 

q2so (mm) 

* ace * pot 

ssc 
Y,Jl„ (kg m°) 

Drained conditions 

Fxd. 

845 

868 

300 

-

0.96 

-0.47 

0.63 

Flex. 

760 

885 

104 

-

0.98 

-0.20 

0.71 

Odm. 

680 

(85) 

893 

20 

-

1.0 

-0.08 

0.93 

DWT conditions 

Fxd. 

845 

854 

-
-246 

0.95 

-0.30 

0.61 

Flex. 

760 

895 

-
-94 

1.0 

-0.21 

0.72 

Odm. 

780 

(83) 

900 

-
-110 

1.0 

-0.27 

0.74 

Un-drained conditions 

Fxd. 

845 

-
-
-

_ 
-
-

Flex. 

520 

858 

-
+ 18 

0.95 

+0.21 

0.88 

Odm. 

620 

(133) 

895 

-
+8 

1.0 

+0.12 

0.87 

The productivity of irrigation water supply (Y„c,/I,r) for different combinations is 

presented in Table 7.1. As the simulations were made for two crops (i.e. wheat-

cotton) in a growing year, Y,K,/lrr was first calculated for each crop separately and then 

averaged to demonstrate the overall effect of irrigation water applied in a growing 

year. In general, Y„c,/I,r values for wheat were higher than cotton (not shown here). 

Table 7.1 shows that although for the on-demand schedule, relative crop yields are 
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four to five percent higher as compared to a fixed schedule, the increase in Fac//„. is 

15 percent for DWT and 30 percent for drained conditions. The lower values of Yact/I„-

for DWT conditions are attributed to high percolation losses. However, Yac,/Irr values 

for the flexible schedule are comparable to the on-demand schedule. The lower Yact/I„-

values for a fixed schedule can be explained by the large amount of water lost through 

drainage and deep percolation. This illustrates that under un-restricted water supply 

conditions, the flexibility in irrigation scheduling has a considerable positive impact 

on the productivity of irrigation water supply. 

The average drainage requirements for the on-demand schedule were only 3 percent 

of the total canal water applied as compared to 36 percent for a fixed schedule and 14 

percent for the flexible schedule. The drainage requirements for a. fixed schedule also 

showed large fluctuations over the simulated period of 15-years. They varied from 

137 to 590 mm yr"1 (Figure 7.3). These fluctuations were primarily related to the 

variations in rainfall amounts, as the irrigation gifts were kept constant for a fixed 

schedule. The variations in drainage requirements were 20 to 280 mm yr"1 for the 

flexible schedule and 0-128 mm yr"1 for the on-demand schedule. 

The average deep percolation losses for a fixed schedule accounted for about 29 

percent of the total canal water applied as compared to 13 percent for the flexible and 

14 percent for the on-demand schedules (Table 7.1). The annual fluctuations varied 

from 47 to 550 mm yr"1 for a fixed schedule as compared to 25 to 246 mm yr"1 for the 

flexible schedule and 20 to 230 mm yr"1 for the on-demand schedule (Figure 7.3). This 

shows that with increasing schedule flexibility, water losses both through drainage as 

well as deep percolation tend to be reduced. The positive q2so values under un-drained 

conditions indicate that shallow groundwater table contributed positively to crop 

transpiration through capillary rise. 

The above discussion revealed that compared to a fixed schedule, the on-demand 

schedule is more effective not only in increasing crop yields and productivity of 

irrigation water supply but also in saving precious canal water, reducing drainage 

volumes and controlling rising groundwater tables. These are important parameters 

from the sustainability point of view and provide enough incentives to advocate a 

shift from a fixed to a more flexible water distribution system provided un-restricted 

water supplies are available. 
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Figure 7.3. Average annual amounts of drainage and deep percolation as influenced by 

fixed, flexible and on-demand schedule for un-restricted canal water supplies as calculated 

with SWAP for a period of 15 years (1980-94). Drainage and deep percolation refer to 

drained and deep groundwater table conditions, respectively. The amount of capillary rise 

under un-drained conditions is not shown. 
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While comparing the results it must be kept in mind that model simulations assume 

that the on-demand schedule can or will be perfectly carried out by the irrigation 

organization-an assumption that is often not valid. At some level of flexibility, most 

organizations will have limited capital or capacity to implement the on-demand 

schedule and ultimately the performance will suffer. Thus, instead of standard 

deviations decreasing as flexibility increases, the standard deviations will increase. 

Clearly during schedule selection, the management capacity of an irrigation 

organization must be taken into account. Due to high management capacity with 

associated high costs required for the on-demand schedule, the general practice is a 

more fixed schedule. 

Restricted water supplies 

When the same amount of irrigation water (600 mm yr"1) is applied, water distribution 

according to the on-demand schedule increases the average crop yields by two to 

three percent as compared to a. fixed and the flexible schedule under drained, DWT 

and un-drained conditions. This implies that under restricted canal water supplies, 

deviations in crop yields due to temporal variability in the climate can to some extent 

be compensated by increasing the flexibility of water distribution (Figure 7.4). 

The average yields under drained and un-drained conditions for all water delivery 

schedules were about four percent higher than DWT conditions. This increase in 

yield under shallow groundwater table conditions can be attributed to the contribution 

of capillary rise from the shallow groundwater table to crop evapotranspiration. Under 

DWT conditions, the standard deviation in relative crop yields was also larger. Under 

all conditions, the standard deviation in relative crop yields decreases with the 

increase in schedule flexibility. 

The drainage requirements and deep percolation for all three water delivery schedules 

are within three percent of the total canal water applied (Table 7.2). Under drained 

conditions, these amounts were just sufficient to keep the SSC within acceptable 

limits (< 0.05). However, this was not the case under DWT conditions and the 

leaching was insufficient to push the salts below the root zone, which makes the SSC 

values considerably positive irrespective of water delivery schedule. Under un-

drained conditions, the capillary rise from the groundwater table contributes 

positively to crop transpiration {Tac,/Tpot is higher than under DWT conditions) but 

increases the SSC for all three water delivery schedules. However, differences in SSC 

values within three water delivery schedules are comparable. Due to low percolation 

losses under DWT conditions, the recharge to the groundwater was very low and the 

rise in the groundwater table over the 15-year simulation period was only 50 cm. 
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Figure 7.4. Relative transpiration (Tac/Tpol) and salt storage change (SSC = AC/Cm„H,i) as 

influenced by a fixed, flexible and on-demand schedule for restricted canal water supplies 

under drained, deep groundwater table (DWT) and un-drained conditions as calculated with 

SWAP based on 15 year averages (1980-94). Note that SSC values for un-drained and DWT 

conditions are positive indicating an increase in salt storage change. I = standard deviations. 
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Table 7.2. Simulated cumulative average annual water and salt balance components as 
influenced by a fixed, flexible and on-demand schedule for restricted canal water supplies 
under drained, deep groundwater table (DWT) and un-drained conditions. Fxd. = Fixed 
schedule, Flex. = Flexible schedule, Odm. = On-demand schedule. The Tpo, = 901 mm. 
Water balance 

components 

Irrigation (mm) 

T„c (mm) 

Drainage (mm) 

I250 (mm) 

' (If F * pol 

ssc 
/•„,//„ (kg m'3) 

Drained conditions 

Fxd. 

600 

830 

-15 

-

0.92 

+0.04 

1.14 

Flex. 

600 

843 

7 

-

0.94 

+0.07 

1.13 

Odm. 

600 

861 

6 

-

0.96 

+0.05 

1.17 

DWT conditions 

Fxd. 

600 

810 

-
-20 

0.90 

+0.11 

1.11 

Flex. 

600 

816 

-
-5 

0.91 

+0.13 

1.09 

Odm. 

600 

824 

-
-15 

0.92 

+0.12 

1.12 

Un-drained conditions 

Fxd. 

600 

850 

-
+18 

0.94 

+0.12 

1.15 

Flex. 

600 

822 

-
+22 

0.91 

+0.14 

1.12 

Odm. 

600 

861 

-
+20 

0.95 

+0.14 

1.16 

Table 7.2 shows that productivity of irrigation water supply (Y„cl/Irr) is, as expected, 

higher for the restricted water supply as compared to un-restricted water supply 

conditions (Table 7.1). Under restricted water supply conditions, the limited amount 

of water applied was fully utilized for crop transpiration and losses through drainage 

or deep percolation were almost nil (Table 7.2). This seems to be a justification for 

applying deficit irrigation: lower irrigation inputs increase the productivity of water. 

Contrary to un-restricted canal water supplies, the Y„c/Irr values are comparable for 

all three water delivery schedules under drained, un-drained and DWT conditions. 

This implies that under restricted water supply conditions, impact of schedule 

flexibility on productivity of irrigation water supply is not very substantial. 

A close review of presented results indicate that under restricted canal water supplies, 

the advantage of shifting from a. fixed to the on-demand water distribution system is 

only a small increase in crop yields. The effects of the on-demand schedule on 

productivity of water, soil salinization, drainage requirements and groundwater table 

behaviour are comparable with the fixed and the flexible schedules. 

7.4 Constraints and opportunities for improved water distribution in the 
Indus basin 

The advantages of the on-demand schedule are obvious when un-resricted canal water 

supplies are available and the objective is to maximize crop production and minimize 

environmental degradation. However, the most basic requirement for the on-demand 

supply system is the availability of variable amounts of water during cropping 
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seasons. The cropping patterns and intensities also need to be more consistent. In the 

present circumstances, both these conditions are not fulfilled in Pakistan. The actual 

crop calendars often deviate strongly from those assumed in the design. The present 

cropping intensities are around 150 percent as compared to the design value of 75 

percent. The existing experiences show that it is not possible to control the cropping 

patterns and intensities so as to keep maximum crop water requirement within the 

water allowance and supply range (based upon the original calculations for crop water 

requirement). Farmers plan according to the maximum available water for all periods. 

Economic incentives have urged them to grow more cash crops (i.e. rice and 

sugarcane). These crops often require much more water, rendering it impossible to 

meet water delivery requirements. 

The water availability in the main irrigation network is limited and present canal 

supplies are about 50 percent of the total crop water requirements (WADPA, 1989). 

The existing capacity of the reservoirs is fully utilized and no run-off occurs from the 

Indus basin during seven months of the year. In Kharif, a substantial amount of water 

flows into the sea, which could partly be used if new storage facilities could be 

developed. The only possibility to increase water supplies is the exploitation of usable 

groundwater. This resource is being extensively used in Pakistan and presently about 

30 to 40 percent of the irrigation water available at the farm gate is provided by 

groundwater through tubewells (Nespak/SGI, 1991). However, the un-regulated 

pumping of groundwater often causes secondary salinization, land degradation, as 

well as rapid depletion and quality changes in groundwater. Hence, the surface water 

supply is the major resource base to be used for irrigation planning. 

The successful operation of the on-demand supply system requires a differentiated 

allocation and distribution of canal water, hence the present system of distribution 

based on equity has to be abandoned. Furthermore, an institutional structure and a 

large and intensive monitoring system would be required to assess and communicate 

crop water requirements for each time step or period. The necessary requirements for 

the on-demand supply system include large investments in the hardware (structures as 

regulators, spillways, etc and communication system) and software (institutions, 

management and training). This is a cumbersome and costly affair as the present 

capacity and design of canals is fixed to spread the available water on land and has no 

relationship whatsoever with the irrigation water requirements of crops. 

In a situation where periodic water shortages are experienced as in case of the Indus 

basin, the decision of which schedule to choose should not be a question of which 

schedule will maximize crop production, but rather of which one will optimize crop 
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production in a sustainable way within the available water supply and management 

capacity. The simulation results show that in the present water deficient environment 

of the Indus basin, the benefits of the on-demand schedule over & fixed schedule are 

only a small increase in crop yields. If these benefits are greater than the added 

management cost of moving to the on-demand schedule from a fixed schedule then 

the on-demand schedule is probably the most productive and cost effective. Given the 

high cost of management and infrastructure, it is unlikely, however that this the case. 

Moreover, a shift from a fixed to the on-demand schedule will imply more water 

rights to individual farmers within the same command area. This might be justified 

from an economical point of view, but is socially unacceptable. Therefore emphasize 

should be on improvement of the current water allocations and on-farm water 

management practices. 

In Chapter 6 it has already been shown that by adapting water conservation 

strategies, in shallow groundwater table areas because of supplemental irrigation 

supply through capillary rise, about 25 percent of canal water can be saved. 

Furthermore, there is still room for improvements in water supply and crop yields. For 

example, crop yields are largely influenced by sowing and planting dates. If the 

present water supplies can be made more reliable, fanners could adjust their farming 

operations and plan their irrigations in most critical stages of the crop growth thus 

ensuring maximum crop yields within the available water resources. 

7.5 Conclusions 

The process of choosing an appropriate schedule for an irrigation system must take 

into account temporal variability of its climate and water supply along with the spatial 

diversity of soils and crops. Additional improvements of water use efficiency can be 

obtained by adjusting the canal water supplies according to the temporal variability of 

the crop water requirements of the irrigated crops, provided un-restricted canal water 

supplies are available. Besides increased yields with the on-demand schedule, the 

deviations from average yields were minimal as a factor of over- or under-supply can 

be included in order to deal with variations in rainfall amounts and evaporative 

demand of the atmosphere. The productivity of irrigation water supply with the on-

demand schedule was substantially higher as compared to & fixed schedule. The on-

demand schedule was also effective in irrigation water saving, reducing drainage 

volumes, and deep percolation. Although a complete solution of the rising 

groundwater tables can not be achieved, the on-demand schedule was found effective 

in delaying the process of waterlogging and soil salinization leading to a positive 

effect on the environment. 
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The advantages of the on-demand schedule are obvious when un-restricted water 

supplies are available and the objective is to ensure maximum crop production and 

minimize environmental degradation. However, the successful operation of the on-

demand system requires variable amounts of water during cropping seasons, 

consistent cropping patterns and a well-designed and effective monitoring and 

communication system to assess and communicate crop water requirements for each 

time step or period. In the absence of these basic requirements, moving towards the 

on-demand system is beset with social and management problems. 

In the present water deficient environment, the on-demand water distribution system 

is no clear option for the Indus basin. Therefore emphasize should be on the 

improvement of the present supply-based water distribution system. There is still 

room for improvements in water supply and crop yields. The management options 

like reducing canal water supplies to areas with fresh shallow groundwater could save 

a considerable amount of canal water, which can be used in other water deficient 

areas. If the present water supplies can be made more reliable, farmers could adjust 

their operations and plan their irrigations in the most critical stages of the crop growth 

to maximize their crop yields. 
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SUMMARY AND CONCLUSIONS 

The viability of irrigated agriculture in the Indus basin is threatened by waterlogging 

and soil salinization. These problems are the result of a multitude of factors, including 

seepage from unlined earthen canals system, inadequate provision of surface and 

subsurface drainage, poor water management practices, insufficient water supplies 

and use of poor quality groundwater for irrigation. Optimal management of available 

surface and groundwater resources with respect to quantity and quality in view of 

rapidly diminishing land and water resources per capita is necessary. 

The study was conducted in the Fourth Drainage Project (FDP), Punjab, Pakistan. 

FDP covers about 120, 000 ha irrigated land, of which about 30,000 ha is equipped 

with a subsurface tile drainage system. The climate is semi-arid with annual 

evaportranspiration far exceeding the annual rainfall, which necessitates irrigation for 

crop production. Wheat and cotton are the main crops in winter and summer, 

respectively. Canal water supplies are limited by design and siltation in the canal 

system, besides cropping intensities being doubled over the past 50 years. 

Groundwater tables are generally shallow and groundwater quality is injurious to both 

crops and soils. Conjunctive use of canal and groundwater is very common. 

The problems are complex because good quality water resources are diminishing and 

the demand for food is increasing, which means that the productivity of water must go 

up. Reduced irrigation applications can increase the risk of soil salinization due to 

insufficient leaching. Drainage systems have the drawbacks of being expensive to 

install and operate and to produce highly saline effluent, which is a problem for 

downstream users. Therefore the challenge is to utilize canal water and groundwater 

(extracted from tubewells) optimally for crop production while keeping groundwater 

table fluctuations and salinity build up within the acceptable limits. Improve irrigation 

water distribution with regard to crop water requirements and restrict the installation 

of drainage systems to the most deserving areas. 

These complex interactions between the irrigation, drainage, weather, groundwater 

table and salinity can be properly described by the use of simulation models. The 

transient-state water flow and solute transport model, SWAP was used due to its 

capability to handle highly dynamic processes such as irrigation, precipitation and 

drainage. SWAP is a one-dimensional hydrological model, which produces daily 

water and salt balance components as an output, besides crop growth and 
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environmental conditions in terms of soil moisture, groundwater table and soil salinity 

fluctuations. Before its application to actual field problems, the model was calibrated 

and validated for the physical conditions of the FDP-area. During the calibration 

process, special emphasis was given to accurate determination of soil hydraulic 

parameters, reference evapotranspiration, drainage from the sample fields and a 

suitable bottom boundary condition. 

In Chapter 4 the calibration of SWAP model has been discussed. The soil water 

retention curves determined from the laboratory experiments were found to be non-

representative for field conditions. Model simulation was significantly improved after 

applying field determined soil water retention curves and calibration of soil hydraulic 

properties. The results indicate that applying soil physical laboratory measurements or 

pedo-transfer functions can cause considerable errors in the calculations of water and 

salt balance components. For successful application of simulation models in irrigation 

and drainage studies, more attention should be given to the field determination and 

calibration of soil hydraulic parameters. 

The reference evapotranspiration (ET0) values calculated by the Priestly-Taylor (PT) 

method were found to be physically more realistic than the values calculated by the 

Penman-Monteith (PM) method. The latter method assumes stomata to be open due to 

well-regulated soil moisture conditions. However, biophysical research elsewhere has 

shown that stomata close to avoid cell water depletion if vapor pressure deficit (vpd) 

increases beyond a certain level. The ET0 values calculated by the PM and PT 

methods were in good agreement below a vpd of 20 mbar. Above this threshold value, 

PM- ET0 values were consistently higher than PT- ET„ values (Figure 4.3). PM- ET„ 

values exceed the net radiation (R„) values above a vpd of 20 mbar leading to PM-

ET0IR„ > 1.3, which is physically unlikely. This implies that for hot and dry climates 

(i.e. vpd > 20 mbar), the Priestly-Taylor method is more robust to calculate reference 

evapotranspiration, because it relies on radiation fluxes rather than on turbulent 

momentum, heat and vapor transport mechanisms inside and above plants, which are 

very intricate in arid climates with irrigated lands. 

The simulated drainage from the sample fields calculated with an equivalent drainage 

resistance (/dram) pertaining to the geometry of that particular field, compares well 

with the measured drainage. The analysis of piezometer data complemented by the 

model simulations showed that there is a negligible water exchange between the deep 

aquifer and unsaturated zone. Therefore zero flow conditions at a depth of 5 m can be 

assumed for the scenario analysis. This result was further confirmed by comparing 

measured groundwater tables with simulated groundwater tables using zero flux as 
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bottom boundary in the model. A close match between measured and simulated soil 

water pressure heads, soil water contents and soil salinity gave confidence on the 

calibrated parameters. After satisfactory calibration and validation, SWAP was used 

for the determination of optimal drainage design criteria for the FDP-area. In addition 

model was used to study the impact of different irrigation management strategies on 

crop production, drainage requirements, soil salinity and groundwater table behavior 

for different hydrological conditions prevailing in the FDP-area. 

Chapter 5 deals with the re-evaluation of present drainage design criteria and 

determination of an optimal drainage design criteria for the FDP-area. In Pakistan, 

drainage systems have been designed using steady-state drainage equations of 

Hooghoudt and Emst. These equations assume steady-state moisture and solute fluxes 

occurring in the unsaturated zone. Classical steady-state drainage design criteria also 

describe the relationship between drain discharge rate (qdmin) and the hydraulic head 

difference between drain level and phreatic level at mid point (Ah), independent of 

soil and underground conditions. The ratio qdmiJAh is also called 'drainage intensity' 

and is the inverse of drainage resistance, ydrai„ (Ah/qdmm)- In reality, however, moisture 

and solute fluxes in the unstaurated zone are not steady but vary with time according 

to fluctuations in rainfall, irrigation and evapotranspiration. This implies that drainage 

systems should be designed using a transient state approach that accounts for soil 

water and root water uptake dynamics. 

To determine an optimal drainage design for the FDP-area, simulations were 

conducted for a period of 15 years to examine the long-term effects of land drainage 

(twelve combinations of drain depth and drainage spacing) on crop transpiration, soil 

salinization and groundwater table behavior. As the FDP-area represents a multiple 

cropping system, the simulations were earned out for three dominant crops of the area 

i.e. wheat, cotton and sugarcane with considering the drainage conditions of fields 

midway between two drains. As these fields have a groundwater table being likely 

more shallow than at fields located closer to the drains, the worst conditions were 

considered. The drain depths chosen were 1.0, 1.5, 2.0 and 2.5 m below the soil 

surface. Each of these drain depths was combined with three different drain spacings 

ranging from narrow (125 m), medium (250 m) and wide (500 m). These drain 

spacings correspond to high, medium and low drainage intensities, respectively. 

For the (semi-) arid zones, selection of the proper drain depth was critical than the 

drain spacing. For the conditions considered, deeper drains perform better with regard 

to crop growth, soil salinization and groundwater table control. The optimum drain 
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depth from an agro-hydrological perspective for the multiple cropping system of the 

FDP-area was found to be 2.20 m (Figure 5.2). This drain depth was successful in 

producing reasonably high crop yields (Tac,/Tpol > 0.90) at rather low drainage 

intensities (spacing of 500 m). This drainage design maintained the groundwater table 

below the root zone throughout the growing year, thereby eliminating the chances of 

any yield reductions due to excessive soil moisture conditions. Drains shallower than 

2.20 m were found to cause severe yield reductions due to excessive soil moisture 

conditions particularly during relatively wet years. Drains deeper than these were 

found to increase the costs without any additional benefits. Soil salinization was also 

more closely related to drain depth than to drain spacing. The salinity of the root zone 

decreases with increasing drain depth. This can be attributed to the increased 

effectiveness of salt leaching through deeper drains. 

The drain discharge rate was not constant but fluctuates over time according to the 

percolating moisture flux in the unsaturated zone. The present FDP design based on 

the recommendations of the United States Bureau of Reclamation (USBR) and the 

design proposed by Smedema for the (semi-) arid conditions of Pakistan (Table 5.1) 

were found to be rather conservative i.e. with high drainage intensities. The SWAP 

simulations show that the FDP-area can effectively be drained with 25 percent less 

drainage intensity than the USBR and Smedema drainage designs provided 

operational and/or maintenance constraints are not present. This implies two 

advantages: less drainage effluent volume and less canal water requirements. 

However, the final decision on the optimum combination of drain depth and drain 

intensity would require a thorough economical analysis. 

High installation, operational and maintenance costs and saline effluent disposal 

problems associated with drainage systems stress the need to find alternate solutions 

to control rising groundwater tables and soil salinization. In shallow groundwater 

table areas without subsurface drainage systems, reducing irrigation water 

applications, thereby allowing the crop to draw maximum water from the 

groundwater, could be a useful strategy to sustain agricultural production. Reduced 

water application in shallow saline groundwater table conditions has the ultimate goal 

to prevent water losses and to increase the area that can be brought under irrigation, 

using the same quantum of surface water resources. One of the objectives of this 

study was to develop guidelines for sustainable agricultural production in shallow 

groundwater table areas, avoiding soil salinity problems, under both drained and un-

drained conditions. 
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In Chapter 6 water conservation strategies for the shallow groundwater table 

conditions of the FDP-area and their long-term affects on crop production and 

environment have been discussed. To develop these guidelines, the SWAP model was 

used as a suitable surrogate for otherwise expensive and time-consuming field 

experiments. Simulations were performed for a period of 15 years to develop water 

conservation strategies for wheat-cotton crop rotation under the shallow groundwater 

table conditions of the FDP-area. Due to the fact that farmers in the FDP-area are 

using more and more groundwater for irrigation, simulations were carried out for 

three different irrigation water qualities. The developed water conservation strategies 

were compared with the farmers' present irrigation practices and long-term effects on 

crop transpiration, root zone salinity, the groundwater table behavior and drainage 

requirements were evaluated. 

A reduced irrigation supply to wheat (195 mm) and to cotton (260 mm) gave the best 

results in terms of crop production, minimum drainage requirements, soil salinity and 

groundwater table control under both drained and un-drained conditions, when canal 

water was used for irrigation. This water conservation strategy saved up to 25 percent 

of the precious canal water each year as compared to farmers' present irrigation 

practices. The present irrigation practices of farmers aim at providing maximum water 

for maximum crop production. The law of increasing benefits does not apply to 

salinized land threatened by rising groundwater tables. The opposite is true: 

unplanned irrigation applications could ruin the land resources within a time span of 

several years. Careful management is therefore a pre-requisite to use the water 

resources in a productive and sustainable way. 

For conjunctive use of canal and tubewell water with an EC value of 1.5 dS m"1 or for 

the use of tubewell water alone with an EC value of 3.0 dS m'1, the water 

conservation strategy was insufficient to maintain soil sustainablility. The average soil 

salinity, expressed to a critical value in the so-called salinity hazard index (SHI) 

increased substantially (Figure 6.4), and the relative transpiration, which gives an 

indication of relative crop yield, dropped accordingly due to salinity stress. 

Apparently, irrigation supplies should be enhanced for leaching the salts from the 

crop root zone. Additional water supply possibilities depend on the drainage system 

design capacity and on the availability of water. In the absence of a good drainage 

system, considering the trend in high groundwater tables, soil salinity and crop yield 

reductions, leaching of salts by means of poor quality irrigation water will not be 

suitable and lands will go out of production even at a faster rate. Therefore in these 

areas, other options like growing more salt tolerant crops like eucalyptus or 

phreophytes should be considered. 
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Due to decreasing availability of good quality canal water for irrigation, adaptation of 

water conservation strategies is the best option rather than recommending farmers to 

use poor quality tubewell water in an attempt to maximize crop production. The 

simulation results indicate that drainage can not solve the salinity build up problem 

under all circumstances because relatively dry monsoons provide insufficient leaching 

water, and salts added by tubewell water irrigation can only be evacuated from the 

soil profile if the drainage system is very intense and additional water supplies are 

available. Reduced irrigation applications is a proper short-term solution. However, 

large-scale drainage investments with adjusted irrigation planning would be necessary 

in the long run. 

The results emanating from the model simulations were used to formulate strategies 

for the safe and sustainable use of different quality irrigation waters under different 

groundwater table conditions and are summarized in Table 8.1. These guidelines are 

restricted to the environmental conditions prevailing in the FDP-area. 

Table 8.1. Management strategies for the safe and sustainable use of different quality 

irrigation waters under different groundwater table conditions for the FDP-area based on 15 

year simulations with the SWAP model. CW = Canal Water, CTW = Canal + Tubewell 

Water, TW = Tubewell Water. Irrigation amounts to wheat and cotton crops represent post-

sowing water applications (mm) in a growing season. 

Drainage 

conditions 

Subsurface 

drainage 

No 

subsurface 

drainage 

Management strategies for different quality irrigation waters 

CW 

(EC = 0.3 dS m'1) 

Reduced water 

application 

Wheat = 195 mm 

Cotton = 260 mm 

Reduced water 

application 

Wheat = 195 mm 

Cotton = 260 mm 

CTW 

(EC=1.5dSm"') 

Leaching feasible 

Wheat = 325 mm 

Cotton = 325 mm 

Leaching not feasible 

Grow salt tolerant crops 

Wheat = 195 mm 

Cotton = 260 mm 

TW 

(EC = 3.0dSm"') 

Extra leaching not feasible 

Grow salt tolerant crops 

Wheat = 325 mm 

Cotton = 325 mm 

Install drainage systems or 

grow salt tolerant plants 

for reclamation e.g. 

eucalyptus 

In Chapter 7 the effects of irrigation water distribution on crop production and 

environment were evaluated. In semi-arid areas, the deviations in annual precipitation 

from an average year were found to be critical to maintain a fragile equilibrium 

between different water and salt balance components (Chapter 6). This implies that 
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for sustainable water and salinity management, the water allocation and distribution 

should be based on potential evapotranspiration, precipitation as well as salinity build 

up and being reviewed yearly. This means a change-over from the present fixed 

rotational system (based on proportionate division of water over available land) to a 

more flexible irrigation management to provide canal water at the time and location 

where it is actually required for optimum and efficient field irrigation of crops. 

To test the validity of this argument, the impact of flexibility in irrigation water 

distribution on crop productivity and environmental sustainability was evaluated. For 

this purpose, the response of three water delivery schedules, representing various 

levels of flexibility, on crop production, water saving, soil salinization, drainage 

requirements and groundwater table behavior was studied. The simulations were 

carried out for un-restricted and restricted canal water supply situations considering 

three groundwater table conditions (drained, deep groundwater table and un-drained) 

prevailing in the FDP-area. Un-restricted supplies are based on ample snowfall and 

that sufficient storage facilities in Pakistan are being developed. Restricted canal 

water supplies reflects more the current situation. 

Although additional water use efficiency improvements were obtained by the on-

demand schedule, under average conditions the effect of irrigation schedule flexibility 

on crop yields was not very significant. However, compared to a fixed schedule 

provided un-restricted canal water supplies would be available, the productivity of 

irrigation water supply (Yact/I,r) for the on-demand schedule was up to 30 percent 

higher (Table 7.1). Besides increased water productivity with the on-demand 

schedule, the deviations from average yields were also minimal as the timing and 

amount of irrigations could be adjusted in order to deal with variations in rainfall 

amounts and evaporative demand of the atmosphere. 

The on-demand schedule was also effective in irrigation water saving, reducing 

drainage volumes, and deep percolation. The average annual water saving of the on-

demand schedule over a fixed schedule was 20 percent, 8 percent and 27 percent for 

drained, deep groundwater table and un-drained conditions, respectively. The average 

annual drainage requirements for a fixed schedule were more than 30 percent higher 

as compared to the on-demand schedule. The deep percolation losses were 15 percent 

higher for a fixed schedule as compared to the on-demand schedule. Although a 

complete solution for the rising groundwater tables can not be achieved, the on-

demand schedule was found effective in delaying the process of waterlogging and soil 

salinization leading to a positive effect on the environment. For the restricted canal 

water supplies, the benefits of the on-demand schedule over a fixed schedule resulted 
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in only a small increase in crop yields, while the effects on soil salinization, drainage 

requirements and groundwater table behavior were rather comparable. 

The advantages of the on-demand schedule are obvious when the un-restricted canal 

water supplies are available and the objective is to ensure maximum crop production 

and minimize environmental degradation. However, in a situation where periodic 

water shortages are experienced as is true for the Indus basin, the decision of which 

schedule to choose should not be a question of which schedule will maximize crop 

production, but rather of which one will optimize crop production in a sustainable 

way within the available water supply and management capacity. In the absence of 

sufficient canal water supplies and a well-designed and effective monitoring and 

communication system, a shift from a. fixed to the on-demand schedule in the Indus 

basin will neither be economically feasible nor socially acceptable. 

Therefore emphasis should be on improvement of the current supply-based system. 

There is still room for improvements in water supply and crop yields. Management 

options like reducing canal water supplies to areas with fresh shallow groundwater 

could save a considerable amount of canal water, which could be used in other water 

deficient areas. If the present water supplies can be made more reliable, fanners could 

adjust their operations and plan their irrigations better in the most critical stages of the 

crop growth to maximize their crop yields. 

The irrigation and drainage planning for different soil and crop conditions in different 

climatic zones is a difficult proposition and a transient model approach such as SWAP 

makes it possible to study the complex soil-crop-climate interactions and allows the 

investigation of long-term effects of a wide range of management interventions on 

crop production and environment for which experiments could not be conducted. The 

presented conclusions are based on the climatic, irrigation and agro-hydrological 

conditions of the FDP-area. However, the developed approach is equally applicable to 

other areas facing similar problems. 
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SAMENVATTING EN CONCLUSIES 

De levensvatbaarheid van de geirrigeerde landbouw in de Indus basin wordt bedreigd 

door hoog grondwater en bodemverzouting. Deze problemen zijn het gevolg van een 

veelheid van factoren, waaronder lekverliezen uit een niet-bekleed systeem van 

kanalen, onvoldoende drainage door open drains, buizen en putten, slecht 

waterbeheer, onvoldoende aanvoer van water en het gebruik van slechte kwaliteit 

grondwater voor irrigatie. Gezien de snel afnemende voorraden land en water per 

hoofd van de bevolking, is het noodzakelijk te komen tot optimaal beheer van 

oppervlaktewater en grondwater, in kwantiteit en in kwaliteit. 

Deze studie werd uitgevoerd in het Fourth Drainage Project (FDP) in de Punjab, 

Pakistan. Het Fourth Drainage Project beslaat ongeveer 120.000 ha geirrigeerd land, 

waarvan circa 30.000 ha is voorzien van een buisdrainage systeem. Het klimaat in dit 

gebied is semi-aride met een jaarlijkse evapotranspiratie die ver uitgaat boven de 

jaarlijkse neerslag, waardoor irrigatie nodig is voor de landbouw. In het winter- en 

zomerseizoen zijn respectievelijk graan en katoen de voornaamste gewassen. De 

aanvoer van irrigatiewater is beperkt door het ontwerp en door sedimentafzetting in de 

kanalen. Bovendien is de intensiteit van het landgebruik in de laatste vijftig jaar 

verdubbeld. Over het algemeen is de grondwaterstand hoog en de kwaliteit van het 

grondwater slecht voor gewas en grond. Het naast elkaar gebruiken van kanaalwater 

en grondwater komt veel voor. 

Het probleem wordt gecompliceerd doordat watervoorraden van goede kwaliteit 

afhemen en tegelijkertijd de vraag naar voedsel toeneemt. Dit betekent dat de 

productiviteit van water moet toenemen. Verminderde irrigatiegiften kunnen het risico 

doen toenemen van bodemverzouting door onvoldoende afvoer van het zout. 

Drainagesystemen zijn kostbaar in aanleg en beheer en produceren bovendien zout-

effluent, hetgeen een probleem vormt voor de gebruikers benedenstrooms. De 

uitdaging is om minder kanaalwater te gebruiken en meer grondwater voor het 

maximaliseren van de gewasopbrengst, terwijl fluctuates van de grondwaterspiegel 

en de zoutaccumulatie onder controle blijven. De verdeling van irrigatiewater moet 

verbeterd worden om te kunnen voldoen aan de waterbehoefte van gewassen en om 

de aanleg van drainagesystemen te kunnen beperken tot de meeste noodzakelijke 

gebieden. 
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De interactie tussen irrigatie, drainage, weersomstandigheden, grondwaterstand en 

zoutgehalte in de grand kan goed beschreven worden met simulatiemodellen. Het 

niet-stationaire stromings- en transportmodel Soil Water Atmosfeer Plant (SWAP) 

werd gebruikt vanwege het modelvermogen om dynamische processen zoals irrigatie, 

infiltratie en drainage goed te simuleren. SWAP is een 1-D agrohydrologisch model 

dat naast gewasgroei en milieuomstandigheden uitvoer geeft op dagbasis van de water 

en zoutbalans componenten in termen van fluctuatie in vochtgehalte, grondwaterstand 

en bodemzoutgehalte. Voor toepassing werd het model gecalibreerd en gevalideerd 

met veldgegevens uit het FDP-projectgebied. Het ijkproces werd geconcentreerd op 

een goede beschrijving van de hydraulische bodemparameters, de referentie-

evapotranspiratie, drainage van proefvelden en de meest geschikte onder-

randvoorwaarde. 

Hoofdstuk 4 beschrijft de ijking van het SWAP-model. De retentiecurven die in het 

laboratorium werden bepaald bleken niet representatief voor veldomstandigheden. 

Modelsimulatie verbeterde aanzienlijk toen retentiecurven werden gebruikt die waren 

gebaseerd op veldgegevens. De resultaten geven aan dat het gebruik van 

bodemfysische parameters uit het laboratorium of van pedo-transfer functies 

aanzienlijk fouten kunnen veroorzaken in de berekening van de componenten van de 

water- en zoutbalans. Voor het succesvol toepassen van simulatiemodellen in 

irrigatie- en drainagestudies, moet meer aandacht geschonken worden aan de 

veldbepaling en ijking van hydraulische bodemparameters. 

Waarden van de referentie-evapotranspiratie (ET„) berekend met de Priestly-Taylor 

(PT) methode bleken fysisch meer realistisch dan waarden berekend met de Penman-

Monteith (PM) methode. Deze laatste methode veronderstelt dat stomata geopend 

worden door condities van bodemvocht. Echter, biofysisch onderzoek elders heeft 

aangetoond dat stomata sluiten om verlies van celvocht te voorkomen wanneer het 

vochtspanningdeficiet (vpd) boven een bepaalde waarde stijgt. Beneden een vpd van 

20 mbar waren de £T0-waarden berekend met de PM en PT methoden in goede 

overeenstemming met elkaar. Boven deze drempelwaarde waren PM-£T„ hoger dan 

PT-£T0 waarden (Figuur 4.3) en waren de PM-£T0 waarden hoger dan de netto 

straling {R„). Dit leidt tot PM-£T0/R„ > 1.3, hetgeen fysisch onwaarschijnlijk is. Dit 

betekent dat voor hete en droge klimaten, dwz met vpd > 20 mbar, de Priestly-Taylor 

methode betrouwbaarder is voor het berekenen van de referentie evapotranspiratie. De 

voornaamste reden is dat deze methode gebaseerd is op stralingsfluxen en niet op de 

turbulente momentum-, warmte- en damptransport mechanismen in en boven de plant. 

In aride geirrigeerde gebieden zijn deze mechanismen zeer ingewikkeld. 
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De drainage van de proefvelden werd gesimuleerdmet een equivalente drainage 

weerstand (7drain), die een functie is van de geometrie van een bepaald proefveld: de 

berekende weerstand kwam goed overeen met de gemeten weerstand. Analyse van de 

piezometerdata aangevuld met modelsimulaties toonden een verwaarloosbaar 

transport tussen de diepe watervoerende laag en de onverzadigde zone aan. Om deze 

reden werd als onderrandvoorwaarde op een diepte van vijf meter aangenomen dat de 

verticale stroming nul was. Dit werd bevestigd door vergelijking tussen gemeten en 

gesimuleerde grondwaterstanden. Goede overeenstemming tussen gemeten en 

gesimuleerde drukhoogten, vochtgehalten en zoutgehalten gaf vertrouwen in de 

gecalibreerde parameterwaarden. Na calibratie en validatie werd het SWAP-model 

gebruikt voor het bepalen van optimale drainageontwerpcriteria voor het 

projectgebied. Daarnaast werd het model gebruikt om het effect te bestuderen van 

verschillende irrigatiestrategieen op gewasproductie, drainagebehoefte, 

bodemzoutgehalte en grondwaterstand voor verschillende hydrologische 

omstandigheden in het projectgebied. 

Hoofdstuk 5 behandelt de re-evaluatie van het huidige drainageontwerp en de 

bepaling van optimale ontwerpcriteria voor het projectgebied. In Pakistan zijn 

drainagesystemen ontworpen met de stationaire modellen van Hooghoudt en Ernst. 

Deze modellen veronderstellen stationaire vocht- en transportfluxen in de 

onverzadigde zone. Klassieke stationaire drainage ontwerpcriteria beschrijven de 

relatie tussen de drainafvoer (qdmin) en het hydraulische potentiaalverschil tussen 

drainniveau en phreatisch niveau midden tussen de drains (Ah) onafhankelijk van de 

condities beneden maaiveld. De verhouding qdraJAh wordt drainageintensiteit 

genoemd en is de reciproke van de drainageweerstand jdmm (Ah/qdrain)- In 

werkelijkheid echter zijn de onverzadigde vocht- en transportfluxen niet stationair, 

maar veranderen in de tijd met fluctuaties in neerslag, irrigatie en evapotranspiratie. 

Dit betekent dat drainagesystemen ontworpen moeten worden met niet-stationaire 

modellen die gebaseerd zijn op de dynamica van bodemvocht en wateropname door 

de wortels gedurende het hele jaar. 

Voor het maken van een optimaal drainageontwerp voor het projectgebied werden 

simulaties uitgevoerd over een periode van vijftien jaar om het lange termijneffect te 

bestuderen van drainage met twaalf combinaties van draindiepte en drainafstand op 

gewastranspiratie, bodemverzouting en grondwaterstand. Daar het projectgebied een 

meer-gewas-systeem heeft werden de simulaties voor de drainagecondities midden 

tussen de drains uitgevoerd voor drie dominante gewassen in het gebied, namelijk 

graan, katoen en suikerriet. Daar deze velden een grondwaterstand hebben, die 
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waarschijnlijk hoger is dan die van velden dichter bij een drain gelegen, werden in 

feite de slechtste omstandigheden bestudeerd. De gekozen draindiepten waren 1.0 m, 

1.5 m, 2.0 m en 2.5 m beneden maaiveld. Ieder van deze draindiepten werd 

gecombineerd met drie verschillende drainafstanden varierend van klein (125 m), 

middengroot (250 m) tot groot (500 m). Deze drainafstanden komen overeen met 

respectievelijk hoge, middelhoge en lage drainageintensiteiten. 

Voor de semi-aride gebieden was de keuze van draindiepte meer kritiek dan die van 

drama/stand. Voor de bestudeerde omstandigheden werken diepere drains beter voor 

de gewasgroei, bodemverzouting en beheer van de grondwaterstand. Vanuit een 

agrohydrologisch standpunt bezien is de optimum draindiepte 2.20 m voor het meer-

gewassen system in het projectgebied (Figuur 5.2). Deze draindiepte bleek succesvol 

in de productie van redelijk hoge gewasopbrengsten (Taa/Tpo, > 0.90) bij tamelijk lage 

drainage intensiteiten (drainafstand van 500 m). Dit drainageontwerp handhaafde de 

grondwaterspiegel beneden de wortelzone gedurende het gehele jaar en voorkwam 

daarbij de kans op opbrengstdalingen als gevolg van te hoge vochtgehalten. Drains 

die ondieper dan 2.20 m waren gelegd bleken ernstige opbrengstdalingen te 

veroorzaken door extreem hoge vochtgehalten, in het bijzonder gedurende relatief 

natte jaren. Dieper geinstalleerde drains bleken de aanlegkosten te verhogen, maar 

leverden geen additionele baten. Bodemverzouting had ook een nauwere relatie met 

draindiepte dan met drainafstand. Dit kan worden toegeschreven aan het grotere effect 

van diepere drains op de zoutuitspoeling. 

De drainafvoer was niet constant maar fluctueerde in de tijd als gevolg van de 

benedenwaartse vochtflux in de onverzadigde zone. Het huidige systeemontwerp in 

het projectgebied is gebaseerd op aanbevelingen van het United States Bureau of 

Reclamation (USBR). De ontwerpnormen voorgesteld door Smedema voor de aride 

en semi-aride condities in Pakistan (Table 5.1) zijn tamelijk conservatief, dwz 

resulteren in hoge drainageintensiteiten. De SWAP-simulaties laten, onder de 

aanname dat er geen beperkingen zijn in systeembeheer en onderhoud, zien dat het 

projectgebied effectief kan worden gedraineerd met een drainageintensiteit die 25 

procent lager ligt dan de ontwerpnormen van USBR en Smedema. Dit betekent twee 

voordelen: een geringer volume draineffluent en minder behoefte aan kanaalwater. 

Echter, een eindoordeel over de optimale combinatie van draindiepte en 

drainageintensiteit vereist een degelijke economische analyse. 

Hoge kosten van drainagesysteemaanleg, beheer en onderhoud en problemen van de 

afvoer van zout draineffluent onderstrepen de noodzaak tot het zoeken naar 

alternatieve oplossingen voor de stijgende grondwaterspiegel en bodemverzouting. In 
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gebieden met een ondiep grondwaterpeil waar geen drainagesysteem wordt 

geinstalleerd, zou een bruikbare strategie voor duurzame landbouwproductie kunnen 

bestaan in vermindering van de irrigatiewateraanvoer, waarbij het gewas maximaal 

grondwater kan opnemen. Verminderde wateraanvoer in gebieden met ondiep zout 

grondwater heeft tot doel om waterverliezen te voorkomen en om het geirrigeerde 

areaal te vergroten met dezelfde hoeveelheid irrigatiewater. Een van de doelstellingen 

van deze studie was het ontwikkelen van aanbevelingen voor duurzame 

landbouwproductie in gebieden met een ondiep grondwaterpeil, waarbij 

bodemverzouting wordt voorkomen onder gedraineerde en niet gedraineerde 

omstandigheden. 

Hoofdstuk 6 bevat een discussie over waterconserverende strategieen voor de ondiepe 

grondwatercondities van het projectgebied en de lange termijneffecten voor 

gewasproductie en het milieu. Om deze aanbevelingen te ontwikkelen werd het 

SWAP model gebruikt als een geschikt alternatief voor kostbare en tijdrovende 

veldproeven. Simulaties werden uitgevoerd voor een periode van vijftien jaar om 

waterconserverende strategieen te ontwikkelen voor de graan-katoen gewasrotatie bij 

de voorkomende ondiepe grondwaterstand in het projectgebied. Daar de boeren in het 

projectgebied steeds meer grondwater gebruiken voor irrigatie, werden de simulaties 

uitgevoerd voor drie verschillende kwaliteiten irrigatiewater. De resulterende 

strategieen van waterconservering werden vergeleken met de huidige praktijk van 

irrigatie door de boeren en een evaluatie werd uitgevoerd van lange termijn effecten 

op gewastranspiratie, bodemzoutgehalte, grondwaterstand en drainagebehoefte. 

Een verminderde irrigatiegift van kanaalwater voor graan van 195 mm en voor katoen 

van 260 mm gaf het beste resultaat in termen van gewasproductie, minimale 

drainagebehoefte, bodemzoutgehalte en beheer van het grondwaterpeil voor zowel 

gedraineerde als ongedraineerde condities. Vergeleken met de huidige 

irrigatiepraktijk bespaarde deze waterconserveringsstrategie tot 25 procent per jaar 

van het schaarse kanaalwater. De huidige irrigatiepraktijk is het geven van maximale 

hoeveelheden water voor maximale gewasproductie. De wet van toenemende 

meeropbrengsten is echter niet van toepassing op verzout land dat wordt bedreigd 

door stijgend grondwater. Het tegengestelde is waar. Niet goed geplande 

irrigatiegiften kunnen het land in enkele jaren ruineren. Nauwkeurig waterbeheer is 

daarom een voorwaarde voor productief en duurzaam gebruik van watervoorraden. 

Voor het gelijktijdig gebruiken van kanaalwater en grondwater met een EC waarde 

van 1.5 dS m"' of voor het gebruik van grondwater alleen met een EC waarde van 3.0 

dS m"1 bleek de waterconserveringsstrategie onvoldoende om duurzaam 
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bodemgebruik te handhaven. Het gemiddelde bodemzoutgehalte uitgedrukt in een 

kritieke waarde als de zogenaamde Salinity Hazard Index (SHI) nam substantieel toe 

(Figuur 6.4). De relatieve transpiratie, die een indicatie geeft voor de relatieve 

gewasopbrengst, nam af als gevolg van toegenomen bodemzoutgehalte. Kennelijk 

moet de aanvoer van irrigatiewater vergroot worden om zouten uit de wortelzone te 

kunnen spoelen. Mogelijkheden voor aanvullende wateraanvoer is een functie van de 

capaciteit van het drainagesysteem en van de beschikbaarheid van water. Bij een trend 

van een stijgend grondwaterpeil, toenemend bodemzoutgehalte en reducties in 

gewasopbrengst en zonder een goed drainagesysteem, is het uitspoelen van zouten 

met slechte kwaliteit irrigatiewater niet geschikt en zullen deze gronden zelfs sneller 

uit productie gaan. Daarom moeten voor zulke gebieden andere mogelijkheden 

overwogen worden zoals het verbouwen van zouttolerante gewassen als eucalyptus of 

phreatophyten. 

Bij de afnemende beschikbaarheid van goede kwaliteit kanaalwater voor irrigatie is de 

optie van een aanpassing van de waterconserveringsstrategie beter dan het alternatief 

de boeren aan te raden grondwater van slechte kwaliteit te gebruiken in een poging 

gewasproductie te maximaliseren. De simulatieresultaten geven aan dat drainage niet 

onder alle omstandigheden het probleem van zoutopbouw kan oplossen, omdat het 

relatief droge moessonseizoen niet voldoende water levert voor zoutuitspoeling. Zout 

dat wordt toegevoegd door irrigatie met zout grondwater kan alleen afgevoerd worden 

met een intensief drainagesysteem en met aanvullende watervoorraden. Vermindering 

van irrigatiegiften is een goede korte termijnoplossing. Echter, op lange termijn zullen 

dan toch grote investeringen noodzakelijk zijn met een aangepast irrigatieplan. 

De resultaten van de modelsimulaties werden gebruikt om strategieen te formuleren 

voor het duurzaam gebruik van verschillende kwaliteiten irrigatiewater bij 

verschillende omstandigheden van grondwater, zoals samengevat in Tabel 8.1. Deze 

aanbevelingen zijn beperkt tot de milieuomstandigheden van het projectgebied. 

132 



Table 8.1. Strategieen voor duurzaam beheer van verschillende kwaliteiten irrigatiewater 

onder verschillende omstandigheden van de grondwaterstand in het FDP projectgebied 

gebaseerd op vijftien jaar simulaties met het SWAP model. CW = Canal Water, CTW = Canal 

+ Tubewell Water, TW = Tubewell Water. Hoeveelheden irrigatiewater (mm) voor graan en 

katoen zijn de irrigatiegiften gedurende het groeiseizoen na het zaaien. 

Drainage 

condities 

Met 

drainage 

Zonder 

drainage 

Strategieen voor duurzaam beheer van irrigatiewaterkwaliteiten 

CW 

(EC = 0.3 dS m1) 

Verminderde 

watergiften. 

Graan =195 mm 
Katoen = 260 mm 

Verminderde 

watergiften. 

Graan = 195 mm 
Katoen = 260 mm 

CTW 

(EC=1.5dSm'') 

Zoutuitspoeling 

mogelijk 

Graan = 195 mm 
Katoen = 260 mm 

Zoutuitspoeling neit 

mogelijk. 

Verbouw van 
zouttolerante gewassen. 

Graan =195 mm 
Katoen = 260 mm 

TW 

(EC = 3 .0dSm') 

Extra zoutuitspoeling 

neit mogelijk. 

Verbouw van 
zouttolerante 
gewassen. 

Graan = 325 mm 
Katoen = 320 mm 

Installeer drainage 

systeem of verbouw 

zouttolerante gewassen 

zoals Eucalyptus. 

Hoofdstuk 7 evalueert de effecten van de verdeling van irrigatiewater op 

gewasproductie en het milieu. In semi-aride gebieden bleken de afwijkingen in 

jaarlijkse neerslag van een gemiddeld jaar kritiek om een evenwicht te handhaven 

tussen de verschillende componenten van de water- en zoutbalans (Hoofdstuk 6). Dit 

betekent dat voor een duurzaam beheer van water en zout de watertoedeling en -

verdeling gebaseerd zou moeten zijn op potentiele evapotranspiratie, neerslag en 

zoutaccumulatie. Dit zou jaarlijks moeten worden herzien. Dit zou een verandering 

betekenen van het huidige vaste rotatiesysteem, gebaseerd op een proportionele 

verdeling van water over beschikbaar land, naar een meer flexibel beheer van 

irrigatiewater om kanaalwater toe te wijzen op tijd en plaats waar het in feite 

benodigd is voor optimale en efficiente gewasirrigatie. 

Om de geldigheid van dit argument te testen, werd het effect geevalueerd van de 

irrigatiewaterverdeling op basis van gewasproductiviteit en duurzaamheid voor het 

milieu. Voor dit doel werd het effect bestudeerd van drie waterverdelingsschema's 

met drie gradaties van flexibiliteit, op gewasproductie, op waterbesparing, op 

bodemverzouting, op drainagebehoefte en op grondwaterpeil. De simulaties werden 

uitgevoerd voor een onbeperkte en voor een beperkte aanvoer van kanaalwater, 
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gecombineerd met drie condities van de grondwaterstand (gedraineerd, diep 

grondwater en ongedraineerd) die in het projectgebied voorkomen. Onbeperkte 

aanvoer zou betekenen dat er veel sneeuwval is en dat er voldoende voorraden zijn 

aangelegd. Beperkte aanvoer van kanaalwater komt overeen met de huidige situatie. 

Hoewel met het on-demand schema additionele verbeteringen werden behaald in 

efficient watergebruik, was voor gemiddelde condities het effect van irrigatieschema-

flexibiliteit op gewasopbrengst niet erg significant. Echter, vergeleken met een vast 

schema en aangenomen dat kanaalwater onbeperkt beschikbaar zou zijn, zou de 

productiviteit van water (Y„c,/Irr) tot dertig procent hoger zijn voor het on-demand 

schema (Tabel 7.1). Naast verhoogde productiviteit van water met het on-demand 

schema waren afwijkingen van de gemiddelde opbrengst minimaal, daar timing en 

hoeveelheid irrigaties konden worden aangepast afhankelijk van variaties in neerslag 

en verdampingsvraag van de atmosfeer. 

Het on-demand schema was ook effectief in de besparing van irrigatiewater, in de 

reductie van drainage volumina en diepe percolatie. De gemiddelde jaarlijkse 

waterbesparing van het on-demand schema vergeleken met een vast schema was 

twintig procent, acht procent en zeven-en-twintig procent voor respectievelijk 

gedraineerde condities, diep grondwater en ongedraineerde condities. De gemiddelde 

jaarlijkse drainagebehoefte van een vast schema was meer dan dertig procent hoger 

dan van het on-demand schema. De diepe percolatieverliezen waren vijftien procent 

hoger voor een vast schema vergeleken met het on-demand schema. Hoewel een 

volledige oplossing van de stijgende grondwaterspiegel niet kon worden bereikt, 

bleek het on-demand schema effectief in het vertragen van het proces van stijgend 

grondwater en bodemverzouting. Dit gaf een positief milieu-effect. Voor de beperkte 

aanvoer van kanaalwater waren de baten van het on-demand schema vergeleken met 

een vast schema slechts een kleine toename in gewasopbrengst. Het effect op 

bodemverzouting, drainagebehoefte en grondwaterpeil was vergelijkbaar. 

De voordelen van het on-demand schema zijn duidelijk wanneer kanaalwater 

onbeperkt beschikbaar is en wanneer de doelstelling is om maximale gewasproductie 

te bereiken met minimale milieudegradatie. Maar in een situatie van periodieke 

watertekorten, zoals in de Indus basin, kan de keuze voor een schema niet alleen een 

keuze zijn voor maximale gewasproductie. De keuze moet zijn voor een schema dat 

binnen de gegeven beschikbare wateraanvoer en beheerscapaciteit gewasproductie 

optimaliseert op een duurzame manier. Zonder voldoende aanvoer van kanaalwater en 

zonder een effectief monitoring- en communicatiesysteem is de overgang van een vast 
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schema naar een on-demand schema in de Indus basin niet economisch haalbaar en 
ook niet sociaal acceptabel. 

Om deze reden moet het accent liggen op verbetering van het huidige op aanvoer 

gebaseerde systeem. Er is nog ruimte aanwezig voor verbeteringen in wateraanvoer en 

gewasopbrengst. Opties voor een beter waterbeheer zoals reductie van kanaalwater-

aanvoer naar gebieden met hoog maar zoet grondwater, zou een aanzienlijke 

besparing van kanaalwater kunnen opleveren. Dit water zou gebruikt kunnen worden 

in andere gebieden met watertekorten. Indien de huidige wateraanvoer meer 

betrouwbaar zou kunnen worden gemaakt, zouden boeren om een maximale 

opbrengst te behalen, hun werkzaamheden kunnen aanpassen en hun irrigatie beter 

kunnen plannen in de meest kritieke fasen van gewasgroei. 

De irrigatie- en drainageplanning voor verschillende bodem- en gewascondities in 

verschillende klimaatzones is niet eenvoudig. Met een niet-stationair model zoals 

SWAP kunnen de bodem-gewas-klimaat interacties worden bestudeerd evenals lange 

termijn effecten van een groot aantal beheersopties op gewasproductie en het milieu, 

waarvoor veldproeven niet konden worden uitgevoerd. De hier gepresenteerde 

conclusies zijn gebaseerd op de condities van klimaat, irrigatie en agrohydrologie in 

het projectgebied. De ontwikkelde aanpak kan echter ook worden toegepast in andere 

gebieden waar soortgelijke problemen voorkomen. 
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