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Stellingen 

1. De aanwezigheid van pleiotrope eigenschappen in een bloeimutant hoeft een verdere 

analyse niet in de weg te staan. 

2. De kwaliteit van een mapping populatie is bepalend voor het succes van een map based 

cloning. 

3. Het FWA gen kan gebruikt worden om zowel vroeg als laat bloeiende transgene planten 

te produceren. 

4. Het is mogelijk dat organismen zich door middel van veranderingen in hun DNA-

methyleringsniveau kunnen aanpassen aan plotselinge wijzigingen die zich voordoen in 

de omgeving. 

5. Identificatie en isolatie van een "silencing element" in de buurt van het FWA gen kan tot 

toepassingen leiden bij het voorkomen van "silencing" in transgene planten. 

6. Een probleem bij "in-silico" analyse van genen en genfamilies is de onnauwkeurigheid in 

de voorspelling van introns en exons op basis van de genomische DNA sequentie. 

7. Het is slechts een kwestie van tijd voordat men binnen de biologische landbouw zal 

terugkomen op de afwijzing van GMO's. 

8. De veelvuldige naamwisselingen en fusies van onderzoeksinstellingen binnen 

Wageningen leiden tot verwarring naar binnen toe en onherkenbaarheid naar buiten. 

9. Het principe van gelijk inkomen voor gelijk werk gaat niet op voor personen die in 

tijdelijk dienstverband binnen de universiteit werken; hier bestaat onder meer een 

correlatie tussen land van herkomst en inkomen. 

10. Optimisme leidt tot teleurstellingen. 

11. Al te ludieke stellingen doen afbreuk aan de inhoud van een proefschrift. 

Stellingen behorende bij het proefschrift getiteld "A genetic and molecular analysis of two genes 

involved in flowering initiation of Arabidopsis" door Wim Soppe, te verdedigen op 10 oktober 2000 te 

Wageningen. 
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Chapter 1 

General introduction 

Genetic control of flowering time in Arabidopsis 

Maarten Koornneef, Carlos Alonso-Blanco, Anton J. M. Peeters and Wim Soppe 

Summary 

The timing of the transition from vegetative to reproductive development has a great fundamental and 

applied interest but is still poorly understood. Recently, molecular-genetic approaches have been used to 

dissect this process in Arabidopsis. The genetic variation present among a large number of mutants with 

an early- or late-flowering phenotype, affecting the control of both environmental and endogenous 

factors that influence the transition to flowering, is described. The genetic, molecular and 

physiological analyses have led to identification of different components involved, such as elements 

of photoperception and the circadian rhythm. Furthermore, elements involved in the signal 

transduction pathways to flowering have been identified by the cloning of some floral induction genes 

and their target genes. 

This chapter is an updated version of the review, published in 

Annual Review of Plant Physiology and Plant Molecular Biology (1998) 49, 345-370 



Chapter 1 

Introduction 

In order to achieve successful sexual reproduction, plants must be able to flower under 

favourable environmental conditions, and the proper timing of flowering is, therefore, supposed 

to have an important adaptive value for plants. The transition from vegetative to reproductive 

development is controlled by both environmental and endogenous factors. Plant physiologists 

have studied this important process by changing environmental factors and analysing the 

subsequent morphological, physiological and biochemical consequences of these treatments. 

More recently, genetics has been used to study the mechanism of flowering initiation by analysis 

of genetic variation in species, such as pea and Arabidopsis. Especially in Arabidopsis, the 

possibility to pursue the genetic analysis down to the molecular level is attractive and has 

generated the first positive results. This topic or aspects of it have been reviewed (Martinez-

Zapater et al, 1994; Okada and Shimura, 1994; Coupland, 1995; Haughn et al, 1995; Weigel, 

1995; Amasino, 1996; Koornneef and Peeters, 1997; Levy and Dean, 1998; Simpson et al, 

1999; Reeves and Coupland, 2000). In this chapter, we summarise the current progress made in 

the analysis of the transition to flowering using the genetic and molecular approaches as they 

have been applied to Arabidopsis. 

The transition to flowering - meristem fate changes 

Arabidopsis thaliana has a distinct vegetative phase during which the apical meristem produces 

lateral meristems developing into leaves subtending an axillary bud. The nodes do not elongate, 

resulting in the formation of a rosette. Flowering transition is marked by the establishment of a 

floral fate in these meristems and by the suppression of leaf production. 

A bi-directional development has been shown in this transition, with flowers being initiated 

acropetally. After floral initiation and following a basipetal direction, the axillary buds of the 

leaf primordia mostly develop into a secondary shoot (or paraclades or coflorescences) (Hempel 

and Feldman, 1994). In specific genotypes, they replicate the fate of the initial meristem by 

forming axillary rosettes. Following the fate change of these lateral meristems, internode 

elongation takes place (bolting). The elongated stem or inflorescence bears cauline leaves and 

flowers that are not subtended by leaves at higher internodes. The part of the inflorescence with 

leaves, which was called early inflorescence by Haughn et al. (1995), should be considered as 

part of the vegetative phase. As a consequence of this, total leaf number together with time to 

flowering are the best quantitative parameters to monitor flowering initiation. Although the 
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appearance of flowers is the final and most dramatic result of the change to the reproductive 

phase, other changes occur earlier. These changes are characteristic for the transition from the 

juvenile vegetative phase, in which plants are not able to respond to factors inducing flowering, 

to the adult vegetative phase, in which plants are able to do so (Poethig, 1990). The changes are 

somewhat gradual and can be observed in leaf morphology (Martinez-Zapater et al., 1995) and 

in the gradual appearance of trichomes at the abaxial side of the leaves and their gradual 

disappearance at the adaxial side (Chien and Sussex, 1996; Telfer et al, 1997; Kerstetter and 

Poethig, 1998). It has been proposed that phase changes involve a decrease of a floral repressor 

(Sung et al, 1992), called a controller of />hase switching (COPS), which at critical low levels 

leads to the activation of they7oral z'nitiation process (FLIP) (Schultz and Haughn, 1993). The 

latter is controlled by the so-called Floral Meristem Identity or FLIP genes, such as LEAFY 

(LFY), APETALA1 and 2 {API, APT), CAULIFLOWER, (CAL) and UNUSUAL FLORAL 

ORGANS (UFO) (Haughn et al, 1995). 

Environmental and endogenous control of/lowering. 

Arabidopsis is a facultative long-day (LD) plant, which means that plants flower earlier under 

LDs than under short days (SDs), but a LD treatment is not an absolute requirement for 

flowering. When plants of the common early laboratory genotypes are of sufficient age, 

indicating a certain competence for flowering, one LD is sufficient to induce flowering (Mozley 

and Thomas, 1995; Corbesier et al., 1996; Hempel et al., 1997). This treatment has been used to 

monitor the morphological (Hempel and Feldman, 1995) and molecular changes (Hempel et al., 

1997) involved. 

The photoperiodic control of flowering is thought to be mediated by the interaction of 

photoreceptors, such as phytochrome and cryptochrome, and a clock mechanism or circadian 

rhythm. Photoreceptors play a role to set the phase of the circadian rhythm, but they can also 

affect flowering directly, thereby involving light quality in the control of this process. Blue (B) 

light and far-red (FR) light are known to be more effective to promote flowering than red (R) 

light (Brown and Klein, 1971; Eskins, 1992). Besides, the sensitivity of plants to light quality 

itself depends on a circadian rhythm (Carre, 1996). The importance of light quality in flowering 

is determined by the mechanism of light perception, since the ratio red : far-red (R/FR) 

determines the phytochrome status in the plant. Nevertheless, light is not a prerequisite for 

flowering, since flowering occurs rapidly in complete darkness when sufficient carbohydrates 

are provided to the growing shoot meristem (Redei et al., 1974; Maduefio et al., 1996; Roldan et 
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al, 1999). A higher light intensity also promotes flowering probably by its effect on 

carbohydrate supply (Bagnall, 1992; King and Bagnall, 1996). 

Another important treatment promoting flowering is vernalisation, which is a transient 

exposure to low temperatures. The effectiveness of vernalisation depends on the stage of the 

plant, the length of the treatment and the temperature employed (Napp-Zinn, 1957; Napp-Zinn, 

1969). Furthermore, an increase in temperature also affects flowering as measured not only by 

flowering time but also by leaf number (Araki and Komeda, 1993), which should correct for 

differences in temperature effects on growth. 

In Arabidopsis the effect of (sensitivity for) the environmental factors strongly depends on 

the genotype (see later). These environmental factors are thought to modulate certain 

endogenous components, thus affecting and controlling flowering. Many chemical treatments 

have been shown to promote flowering (Martinez-Zapater et al, 1994) of which the application 

of gibberellins (GAs) (Bagnall, 1992; Wilson et al, 1992) and base analogues (Redei, 1970; 

Martinez-Zapater et al, 1994) has attracted most attention, because of their relatively large 

effects. 

Genes affecting flowering time 

The genetic differences present among accessions and the genetic variation induced by 

mutagenic treatments are very important for the analysis of flowering time in Arabidopsis. Many 

mutants with an early- or late-flowering phenotype have been described that affect genes 

controlling both environmental and endogenous factors that influence the transition to 

flowering. Besides, some cloned genes of unknown function are involved in flowering through 

their constitutive expression in transgenic plants. Furthermore, the regulation of gene expression 

through DNA methylation changes has been suggested to play a role in this process. 

Natural variation 

Genetic variation for flowering time has been described within and among Arabidopsis 

natural populations (accessions) since the earliest researchers (Laibach, 1951; Napp-Zinn, 

1969; Redei, 1970; Lawrence, 1976). Arabidopsis has a wide range of distribution along the 

Northern hemisphere (Redei, 1970) and the differences found when growing different 

accessions under the same laboratory conditions are supposed to reflect particular adaptations 

10 
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to different natural environments. To illustrate this genetic variation, Karlsson et al. (1993) 

analysed 32 accessions under SD and LD light conditions, with and without a vernalisation 

treatment. Interactions between the three parameters - accession, photoperiod and 

vernalisation - were found. The first genetic analyses of Arabidopsis flowering time made use 

of this natural variation to establish the minimum number of genes involved in particular 

crosses. These early studies often showed the segregation of one or two major genes (Van der 

Veen, 1965; Napp-Zinn, 1969; Karlovska, 1974). However, because different parental 

combinations were analysed it is not clear whether the same genes were segregating in those 

populations. Furthermore, segregation of genes with relatively small effects (minor genes) 

escaped to detection in such studies. Napp-Zinn (1957; 1969) studied in detail the flowering 
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Figure 1.1. Arabidopsis genetic map showing the mutant loci and polymorphic QTLs identified affecting 
flowering time. Loci in bold correspond to genes with late flowering mutant phenotype, otherwise the mutant is 
early. FLC, FRI and ART loci, identified from natural populations, are indicated with white boxes. Black and grey 
boxes correspond to the approximate position of putative QTLs identified in different crosses; DFF1-2, QTLs in a 
Hannover/Munden F2 population (73); RLN1-5, QTLs in a her x H51 F2/F3 population (31); QLN1-12 in her x 
Col RIL population (60); FDR1-2 in the same her x Col RIL population (97); QTL1-7 in a backcross to Limburg-
5, with selective genotyping , from Fl Limburg-5 x Naantali (74); EDI, FLF, FLG and FLH in a her x Cape 
Verde Island RIL population (3). 
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time differences and vernalisation requirement between the late accession Stockholm and the 

early Limburg-5 and isolated genotypes with single major flowering time gene differences. 

This analysis showed that at least four genes were involved and that alleles at the loci with 

larger effect were more or less epistatic to the alleles with smaller effect. At the locus 

FRIGIDA (FRI), the dominant allele produced a large delay in flowering time, and at the 

KRYOPHILA (KRY) and the JUVENALIS (JUV) loci the recessive alleles did so with a 

smaller effect. Vernalisation reverted most of the effect of these late alleles (Napp-Zinn, 

1962). 

The advent of molecular markers and the development of genetic maps have facilitated 

the localisation in the genome and the characterisation of some of the major loci controlling 

flowering time differences between very late and very early accessions. Napp-Zinn's FRI gene 

has been mapped on top of chromosome 4 (Clarke and Dean, 1994). It has been shown that 

the extreme lateness present in several ecotypes is due to dominant alleles at a locus mapping 

at a similar position, which is probably FRI (Napp-Zinn, 1987; Burn et al., 1993b; Lee et al., 

1993; Grbic and Bleecker, 1996; Sanda et al, 1997). The late flowering phenotype of FRI is 

very much suppressed under long-day light conditions by the Landsberg erecta (Ler) allele at 

locus Flowering Locus C (FLC) mapping on top of chromosome 5 (Koornneef et al., 1994; 

Lee et al., 1994b), likely at a different position than any of the known flowering mutant loci 

(Figure 1.1). Therefore, the flowering time differences between late and early accessions are 

largely determined by these two loci, each one by itself having a small effect and requiring 

dominant alleles at both to produce extreme lateness. So far, only the laboratory strains Ler 

and C24 (Koornneef et al., 1994; Sanda and Amasino, 1995) have been found to contain early 

FLC alleles. The late flowering phenotype of FRI and FLC, present under both LD and SD 

conditions, is reduced by FR-enriched light and eliminated by vernalisation; saturation of 

vernalisation abolishes a further effect of FR light (Lee and Amasino, 1995). The Ler early 

FLC alleles also suppress the lateness of mutant alleles at several loci (see later) such as Id 

(Koornneef et al, 1994; Lee et al., 1994b) and fid (Sanda and Amasino, 1996a), which were 

isolated in Columbia (Col) background but not in Ler. The molecular analysis of FLC 

supported these observations; FLC was cloned and encodes a MADS domain protein which 

represses flowering. The levels of FLC mRNA are positively regulated by FRI and negatively 

by Id and vernalisation (Michaels and Amasino, 1999a; Sheldon et al., 1999). Unexpectedly, 

the Ler and C24 alleles of FLC do not show any differences in their coding sequence as 

12 
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compared to the Col allele. Therefore, it is likely that they differ in some aspect of their 

regulation of FLC (Sheldon et ah, 2000). 

A third locus, Serial ^osetre (ART), located on chromosome 5, has been identified by 

analysing another very late accession, Skye (Grbic and Bleecker, 1996). The dominant ART 

allele in combination with dominant alleles at another gene located on chromosome 4, 

probably FRI, delays the transition from vegetative to reproductive in the axillary meristems, 

giving rise to aerial rosettes under LDs. ART alone seemed to produce lateness, but taking into 

account the close location to FLC, it is unclear how much of the ART late phenotype comes 

from FLC and whether late FLC alleles are also necessary to produce the aerial phenotype. 

Epistatic analysis shows that aerial rosettes are produced by combining ART not only with FRI 

but also with the late flowering mutants fca, foe, jpa, ld,fwa, co and gi (see below) (Grbic and 

Gray, 1997). Thus, ART might act downstream in the flowering pathways, and in a late 

flowering background it would produce a prolonged insensitivity to the floral evocation 

signals in the axillary meristems. 

To find other natural alleles of smaller effect has required the combination of molecular 

genetic maps with statistical methods to map quantitative trait loci (QTLs) (Jansen, 1996). 

QTL analyses have been performed using crosses between late and early accessions (Clarke et 

ah, 1995; Kuittinen et ah, 1997) and between early ones (Kowalski et ah, 1994; Jansen et ah, 

1995; Mitchell-Olds, 1996; Alonso-Blanco et ah, 1998) (Figure 1.1). Multiple QTLs have 

been found in all the crosses and therefore differences in behaviour of flowering mutant 

alleles in different genetic backgrounds cannot be directly attributed to a single gene differing 

between accessions. Further analyses are needed to detect the interacting genes in each 

particular case. Such an analysis was done for four QTLs, derived from a cross between the 

accessions Ler and Cape Verde Islands (Cvi). Different responses to vernalisation and 

photoperiod length changes and interactions between the QTLs were found (Alonso-Blanco et 

ah, 1998). Furthermore, introgression of the dominant Cvi allele of the QTL EARLY 

DAYLENGTH INSENSITIVE (EDI) into Ler caused early flowering and almost daylength 

insensitive plants (Alonso-Blanco et ah, 1998). 

The spectrum of natural variation is different from the spectrum of flowering-time 

variants obtained by mutational analyses. This is at least due to the limitations of the reduced 

number of accessions used to generate mutants, and to the possible deleterious pleiotropic 

effects of some of the induced mutations. For example, no mutant allele has been identified 

for the FRI locus. Some dominant late flowering mutants such as McKelvie's florens (F) 
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mutant (McKelvie, 1962) and the M73, L4, L5 and L6 mutants (Vetrilova, 1973) were 

reported allelic to FRI, but it was unclear whether they were mutants or contaminant natural 

variants (Koornneef et ah, 1994). Some of the putative QTLs locate at mutant gene positions 

and therefore it is expected that part of the natural variants will correspond to alleles of mutant 

flowering genes. However, there are known mutant flowering genes scattered all over the 

genome (Figure 1.1) and complex situations such as very closely linked QTLs might be 

expected. As an example, several analyses have detected QTLs on top of chromosome 5, a 

region enriched for mutant flowering genes, and at least some of these QTLs likely correspond 

to a different locus than FLC (Kuittinen et al., 1997). Therefore, the identification of the 

individual alleles controlling this variation is necessary. 

Late flowering mutants 

Late flowering mutants with a strong effect but with no other obvious pleiotropic effects were 

described for the first time by Redei (1962). He isolated the constans (co), gigantea (gi) and 

luminidependens (Id) mutants in Col background. Later on more mutant alleles at these and nine 

other loci in Ler were isolated and described by Koornneef et al. (1991) and in Wassilewskija 

(Ws) by Lee et al. (1994a). Thus, the loci LD, CO, GI, FE, FT, FD, FY, FCA, FHA, FPA, FVE, 

and FWA have been considered the classical late flowering genes (Figure 1.1). They have been 

physiologically characterised, and epistatic relationships have been examined in relation to early, 

late, and meristem identity genes (Halliday et al., 1994; Ruiz-Garcia et ah, 1997; Koornneef et 

al., 1998a; Page et al., 1999). Koornneef et al (1998a) constructed forty-two double mutants 

among ten of these loci. The epistatic interactions proved to be complex, but groups of loci 

similar to the ones established on the basis of their physiological behaviour were identified. A 

major epistatic group could be identified corresponding to the group of mutants co,fd,fe,flia, 

ft,fwa and gi. These mutants are late mainly under LD conditions, i.e. they show little or no 

response to daylength, and they have a low response to FR supplementary light and to 

vernalisation treatments. In contrast, the epistatic behaviour of the mutants that are much 

more responsive to these environmental factors (fca, fpa, Id, fve and fy) is more complex. 

Combining the FZ.C-Col allele with late flowering mutants in Ler background, Sanda and 

Amasino (1996b) showed that the mutants fca, fpa and fve, of the same group, all have very 

enhanced late phenotypes like those of Id, FRI and fid. Flowering locus D (fid) is another late 

flowering mutant without apparent pleiotropic effects (Sanda and Amasino, 1996a). This mutant 

retains its response to photoperiod, and its flowering time can be reduced by cold treatment and 

14 
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low R/FR light. A strong mutant allele of FLD, that produced aerial rosettes like ART, was 

obtained in Col by Chou and Yang (1998). 

Six of these late flowering genes, LD, FCA, CO, GI, .FT and FHA have been cloned: 

- LD was the first flowering time gene to be cloned and encodes a glutamine-rich nuclear 

protein containing a possible homeodomain (Lee et al., 1993). It is primarily expressed in 

apical proliferative regions of the shoot and root (Aukerman et al, 1999). 

- FCA encodes a protein containing two RNA-binding domains and a WW protein interaction 

domain, suggesting that it is functioning in the posttranscriptional regulation of transcripts 

involved in flowering (MacKnight et al, 1997). An interesting characteristic of this gene is 

that the transcript is alternatively spliced; four different FCA transcripts have been found, the 

full-length transcript being only one third of the total amount. The WW domain, which is only 

present in the full-length transcript, seems essential for the flowering time effect. 

- The CO gene was found to encode a protein with similarity to GATA-1 type transcription 

factors. (Putterill et al, 1995). Constitutive expression of CO leads to earliness (Simon et al, 

1996), thereby confirming that this gene has flowering promoting properties. Besides, transgenic 

plants with extra copies of CO flower earlier than wild-type, suggesting that CO activity is 

limiting flowering time (Putterill et al., 1995). The CO mRNA appears more abundant in plants 

grown under LDs than under SDs, in agreement with the role of this gene in promotion of 

flowering under LDs. It is interesting to note that two homologues of the CO gene, CONSTANS 

LIKE 1 (COL1) and COL2, have been described (Ledger et al, 1996; Putterill et al, 1997), and 

although quite similar in structure, their role in flowering has not yet been demonstrated. 

-The GI gene was isolated during the past year. The presence of several membrane-spanning 

domains in its protein predicts that it is located in the plasma membrane. The amount of GI 

transcript is regulated by the circadian clock and there are indications for a role of GI in the 

control of expression of circadian-clock regulated genes in response to light (Fowler et al, 1999; 

Parke? a/., 1999). 

- Cloning of FT showed that this gene has strong homology with the TERMINAL FLOWER 1 

(TFL1) gene which encodes a putative phosphatidylethanolamine-binding and nucleotide-

binding protein that shares sequence similarity with membrane-associated mammalian proteins 

(Bradley et al, 1997; Ohshima et al, 1997). Furthermore, expression of FT is positively 

regulated by CO (Kardailsky et al, 1999; Kobayashi et al, 1999). 

- The FHA gene encodes the CRY2 protein (Lin et al, 1996; Guo et al, 1998) and is thought to 

be involved in blue-light perception. 

15 
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Besides these "classical" late flowering mutants, also other late mutants have been 

identified. Some of these are involved in light perception or transduction. The mutants long 

hypocotyl 4 (hy4) and phytochrome A (phyA) correspond to the blue light photoreceptor CRY1 

(Ahmad and Cashmore, 1993) and phytochrome A (phyA) (Whitelam and Harberd, 1994), 

respectively. An elongated hypocotyl is also shown by the dominant, gain of function, late 

elongated hypocotyl (Ihy) mutant (Simon and Coupland, 1996). This mutant is daylength 

insensitive and lacks circadian rhythms for leaf movement. It is suggested that this Myb-like 

transcription factor might be a component of the circadian clock (Schaffer et al., 1998). 

Mutants deficient in gibberellin biosynthesis, like gal, or action, gibberellin insensitive 

(gai) show a late phenotype under short day conditions (Wilson et al., 1992). 

Late flowering mutants have also been identified as defective in starch metabolism, such as 

phosphoglucomutase (pgm) (Caspar et al, 1985) and ADP glucose pyrophosphorylase 1 (adgl) 

(Lin et al., 1988), which lack leaf starch and flower late, mainly under SD conditions. In 

contrast, starch excess 1 (sexl) (Caspar et al., 1991) and carbohydrate accumulation mutant 1 

(caml) (Eimert et al., 1995), which also flower late, have increased starch content in leaves. 

This characteristic was also observed in the late mutant gi (Araki and Komeda, 1993; Eimert et 

al., 1995). In the pgm and sexl mutants the late flowering phenotype could be suppressed by a 

vernalisation treatment (Bernier et al., 1993). The late flowering phenotype observed in these 

mutants is not due to the defect in starch accumulation and the slow growth, but more to the 

inability to mobilise the stored carbohydrates (Bernier et al., 1993; Eimert et al., 1995). 

Nevertheless, it remains unclear how carbohydrate metabolism affects flowering time in 

Arabidopsis. 

Additional mutants that show lateness either under specific conditions and/or with more 

pronounced pleiotropic effects are: de-etiolated 2 (det2), tedl (a suppressor of detl) (Pepper and 

Chory, 1997), ethylene insensitive (ein) (Ecker, 1995), ethylene responsive (etrl) (Bleecker et 

al., 1988), short integument (sin) (Ray et al., 1996), and vernalisation (vrri) (Chandler et al, 

1996). Several of these genes have been cloned and are known to encode steps in brassinosteroid 

biosynthesis (DET2) (Li et al, 1996) and ethylene action (EIN, ETR1) (Ecker, 1995). 

Early flowering mutants 

Early flowering mutants were described later than the late ones, probably due to the use of 

early accessions growing in LD conditions, which makes the effects of early mutants less 

pronounced. 
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The early flowering mutants with the most dramatic phenotypes are embryonic flower 1 

and 2 (emfl and em/2). The emf mutants do not produce a normal rosette after germination, 

but they make only a few cauline leaves followed by floral buds. In addition, their flowers are 

usually abnormal and incomplete (Sung et ah, 1992). The phenotype indicates that most of the 

normal vegetative phase is bypassed, and EMF genes are therefore likely to play a central role 

in the COPS mechanism (Haughn et ah, 1995; Yang et ah, 1995). Double mutant analyses 

indicated that emf is epistatic to both early- and late-flowering mutants (Yang et al., 1995), 

although differences have been found among double mutants of emf with several late 

flowering mutants (Haung and Yang, 1998). Interactions between EMF and genes regulating 

inflorescence meristem development and floral organ identity were revealed in the analysis of 

double mutants between emf and tfl and agamous (ag). It has been proposed that the EMF 

genes play a role during the different phase transitions of the plant by a gradual reduction in 

its activities (Yang et al., 1995). 

Several early flowering mutants are involved in light perception and light signal 

transduction pathways. Among these, long hypocotyl 1 and 2 (hyl and hy2), which are 

defective in phytochrome chromophore biosynthesis (Parks and Quail, 1991), and 

phytochrome B (hy3 = phyB), deficient in phytochrome B (Somers et al., 1991), are daylength 

sensitive (Goto et al., 1991). Overexpression of phytochrome B also leads to early flowering 

(Bagnall et ah, 1995), suggesting that the balance between different phytochromes is 

important for the proper timing of transition to flowering. Furthermore, phytochrome A and B 

are not the only phytochromes influencing this transition because phyA phyB double mutants 

still respond to increases in the proportion of FR light, by flowering early (Devlin et ah, 

1996). 

The phytochrome-signaling early-flowering (pefl) mutant shows a similar phenotype to 

hyl and hy2 but cannot be rescued by the chromophore precursor biliverdin. It has been 

suggested that pefl has a mutation in a signaling intermediate, interacting with all the 

phytochrome family members (Ahmad and Cashmore, 1996). The pef2 and pefl mutants more 

closely resemble phyB mutants. Therefore they may have lesions early in the signaling 

pathway primarily mediated by phyB and/or some of the other phytochrome gene family 

members (phyC, D, E) (Ahmad and Cashmore, 1996). 

The sucrose-uncoupled 2 (sun2) mutant has an early flowering phenotype, at least under 

LD conditions, and shows a long hypocotyl and reduced fertility (Dijkwel et ah, 1997). This 

mutant was initially isolated as showing reduced repression by sucrose of a transgenic 
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plastocyanin promoter. These phenotypes suggest an interaction between carbohydrate 

metabolism repression and light signaling in the flowering process. 

Some of the mutants influence the circadian rhythm. The early-flowering 3 (el/3) mutant 

lacks rhythmicity in circadian-regulated processes under constant light conditions (Hicks et 

al., 1996), while copl and detl show shorter circadian period lengths in constant darkness 

(Millar et al., 1995). The short-period tool mutant has a severely reduced daylength 

sensitivity and flowers equally early in LDs and SDs (Somers et al., 1998b). The elfi mutant 

shows a similar photoperiod insensitivity, and has a long hypocotyl (most noticeably in blue 

and green light). Double mutant analysis with hy4 and hy2 indicates that ELF3 is involved in 

blue light-regulated photomorphogenesis (Zagotta et al., 1996). In contrast, the copl and detl 

mutants are early flowering in SDs and also have a constitutive photomorphogenic phenotype. 

DET1 encodes for a novel nuclear-localised protein, suggesting that it controls cell type-

specific expression of light-regulated promoters (Pepper et al., 1994). COP1 encodes a 

protein with both a zinc-binding motif and a Gp homologous domain (Deng et al., 1992). 

Double mutant analysis with hyl and hy4 suggests that COP1, together with other COP and 

DET genes, acts downstream of phytochrome and the blue-light photoreceptor (Chory, 1992; 

Kwok et al., 1996). The DET/COP protein complex formed in darkness negatively regulates 

transcription of certain genes involved in photomorphogenesis (Von Arnim et al., 1997). It is 

thought that light signals mediated by multiple photoreceptors can be transduced to inactivate 

the pleiotropic COP/DET regulators and thus release the repression of seedling 

photomorphogenesis. Nevertheless, since the cop/det mutants also have a clear phenotype in 

light-grown plants, these genes may also function in other pathways that are not directly 

related to photomorphogenesis (Mayer et al., 1996). 

Cytokinins, applied to wild-type plants, result in a phenocopy of detl mutants (Chory et 

al., 1994). Consistent with this the altered meristem program 1 (ampl = pt = hpt = cop2) 

mutant, which has high levels of cytokinin, shows a constitutive photomorphogenic 

phenotype, flowers early, and is daylength insensitive, like the detl mutant (Chaudhury et al., 

1993) This suggests a role for cytokinins in the light signal transduction. Nevertheless, this 

mutant shows a strongly altered growth and leaf formation rate rather than altered flowering 

time. Other mutants like spindly (spy) and early flowering 1 (eafl) show the role of 

gibberellins in the transition to flowering. The spy mutant has the phenotype of wild-type 

plants treated with GAs and is therefore early flowering. The SPY gene is probably involved 

in the GA signal transduction pathway (Jacobsen and Olszewski, 1993). The eafl mutant 
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flowers early under both LDs and SDs and germination of its seeds shows an increased 

resistance to the GA biosynthesis inhibitor paclobutrazol. This suggests an altered GA 

metabolism and/or response in the mutant (Scott et al., 1999). 

The early flowering elongated (elg) mutant shows a pleiotropic phenotype that suggests a 

disruption of phytochrome and/or GA function. However, it has been shown that ELG acts 

independently of phytochrome and GA action (Halliday et al., 1996). 

Another group of mutants involves genes whose function in the transition to flowering 

has not yet been determined. Two of these mutants, early flowering I and 2 (elfl and el/2), do 

not show clear pleiotropic phenotypes and have a daylength response (Zagotta et ai, 1992). In 

contrast, early in short days 1 (esdl) (J.M. Martinez-Zapater, C. Gomez-Mena, L. Ruiz-

Garcia and J. Salinas, personal communication) and 4 (esd4) (Simon and Coupland, 1996; G. 

Murtas, P. Reeves, G. Coupland, personal communication) early bolting in short days (ebs = 

speedy) (J.M. Martinez-Zapater, C. Gomez-Mena, M. Pineiro and G. Coupland, personal 

communication) and early flowering in short days (efs) (Chapter 2) have a reduced daylength 

response and show pleiotropic phenotypes such as reduced fertility and/or plant size. Double 

mutant analysis indicated that these mutants interact with some of the late flowering mutants 

(Simon and Coupland, 1996; Chapter 2). The ESD4 gene has been cloned but did not show 

homology to other genes of known function, although related sequences were found in a range 

of other organisms (Reeves et ah, 1997). 

In a screen for mutations that accelerate the transition from the juvenile vegetative phase 

to the adult vegetative phase, the early flowering daylength sensitive hasty (hsi) mutant was 

identified. HASTY is suggested to promote a juvenile pattern of vegetative development and to 

inhibit flowering by reducing the competence of the shoot to respond to LFY and API (Telfer 

andPoethig, 1998). 

A number of early flowering mutants is involved in the later stages of floral transition. 

These genes are regulating the expression of floral meristem(-organ) identity genes like API, 

LFY and AG. Mutations in TFL1 result in early flowering, replacement of coflorescences by 

flowers, and determinated growth of the apical meristem, which develops into a flower 

(Shannon and Meeks-Wagner, 1991). The tfl mutation shows ectopic expression of LFY and 

API in the apical meristem (Gustafson-Brown et al., 1994; Blazquez et al., 1997) agreeing 

with overexpression in transgenic plants of LFY and API giving a phenotype reminiscent of 

tfll (Mandel and Yanofsky, 1995; Weigel and Nilsson, 1995; Blazquez et al, 1997). 

Therefore, it appears that the tfll mutant fails in negatively regulating LFY and API, thereby 
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promoting early flowering and the formation of a terminal flower (Shannon and Meeks-

Wagner, 1991). The TFL1 gene has been cloned and encodes a putative 

phosphatidylethanolamine-binding and nucleotide-binding protein (Bradley et al., 1997; 

Ohshima etal., 1997). 

Mutations in the curly leaf (CLF) gene cause a very similar phenotype to the one 

conferred by constitutive expression of the meristem-organ identity gene AG, showing narrow 

and upwardly curled leaves as well as early flowering in short days (Mizukami and Ma, 1997). 

CLF has been cloned and encodes a protein with homology to polycomb-group genes. CLF is 

required to repress AG transcription in leaves, inflorescence stems and flowers (Goodrich et 

al., 1997). 

Flowering time genes identified by constitutive expression in transgenic plants 

Constitutive expression of cloned genes is commonly used as a tool to confirm and further 

analyse the role of genes cloned on the basis of a mutant phenotype. Furthermore, when no 

mutants are available, the function of cloned genes can be inferred also by analysing transgenic 

plants that constitutively express these genes. 

For a number of genes of unknown function transgenic plants suggested their role in 

promoting flowering, although no late mutants were available. The FPF1 gene was cloned as a 

gene expressed immediately after photoperiodic induction. Constitutive expression of this gene 

leads to early flowering under LDs and SDs and to other associated changes that mimic the 

effect of GA applications (Kania et al., 1997). In a search for genes whose products bind to the 

promoter of the meristem identity gene API (and its Antirrhinum ortholog SQUAMOSA), the 

SPL3 gene was isolated. Its constitutive expression leads to earliness (Cardon et al., 1997). 

Although overexpression phenotypes show the sufficiency of these genes to promote flowering, 

they do not prove that these genes are necessary for the timing of the transition. Therefore, late 

mutants at these loci may not be found. This is because the function of these genes may be 

redundant or they may be involved in other related processes. This is illustrated with the 

meristem identity genes API (Mandel and Yanofsky, 1995), LFY (Weigel and Nilsson, 1995) 

and the meristem-organ identity gene AG (Mizukami and Ma, 1997), for which mutants are 

available without an obvious flowering-time phenotype. However, transgenic plants expressing 

these genes constitutively do flower early. 

Another way by which overexpression may indicate the function of a gene is by providing 

the endogenous gene with constitutive promoters or enhancers. A transposable element with 
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outward-directing 35S promoter has generated the dominant mutant Ihy (Simon and Coupland, 

1996; Coupland, 1997; Schaffer et ah, 1998), described above, which constitutively expresses 

this gene. A phenocopy of the Ihy mutant was obtained in transgenic plants with constitutive 

expression of a related Myb-type gene called CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) 

(Wang et ah, 1997; Wang and Tobin, 1998). Expression of this gene is transiently induced by 

phytochrome and oscillates with a circadian rhythm, indicating a link with the phytochrome-

related long hypocotyl phenotype (Wang and Tobin, 1998). 

Methylation and epigenetics 

During the past few years, it has become clear that DNA methylation plays an important role 

during development of eukaryotes. Its biological function, however, is less clear. DNA 

(de)methylation is involved in the control of gene expression during development and 

differentiation, by either negative or positive regulation (Bird, 1992; Martienssen and Richards, 

1995). Furthermore, there is evidence that DNA methylation is one of the mechanisms to silence 

foreign DNA in eukaryotes (Matzke et ah, 1996). 

In plants, like in mammals, methylation has dual functions in defence against invading 

DNA and transposable elements, and in gene regulation (Finnegan et ah, 1998b). The role of 

DNA methylation in some of these processes is becoming more clear. For instance in homology-

dependent (trans)gene silencing in plants (Kooter et al., 1999) and in the differential expression 

of maternal and paternal genes in endosperm of developing seeds (Finnegan et al, 2000). For 

other processes, like flowering, the role of DNA methylation is not yet fully understood. 

However, there are some indications that DNA methylation might be involved in the 

vernalisation response (Finnegan et al., 2000). Arabidopsis plants either cold treated or treated 

with the demethylating compound 5-azacytidine show reduced amounts of 5-methylcytosine in 

their DNA. Among the late flowering mutants there are some, like fca and fy, responsive to 

vernalisation, and others, such as gi, fd and ft, that show little response to this treatment 

(Koornneef et al., 1991). After treating these mutants with 5-azacytidine, earliness was observed 

in the responsive genotypes, but not in the nonresponsive ones, thus imitating the effect of 

vernalisation (Burn et al, 1993a). Furthermore, transcription of the FLC gene, which plays a 

central role in the vernalisation response, is downregulated by both vernalisation and a decrease 

in genomic DNA methylation (Sheldon et al., 1999). However, the role of methylation in 

vernalisation is still unclear, because substantial demethylation in antisense 

METHYLTRANSFERASE1 plants did not prevent vernalisation from accelerating flowering in 
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these lines, nor did it prevent resetting of the vernalisation requirement in its progeny 

(Finnegan et al., 1998a). 

DNA methylation has been reduced in transgenic plants. Transgenic C24 plants were 

constructed in which methylation was suppressed by the antisense methyltransferase cDNA 

MET1 from Arabidopsis thaliana (Finnegan and Dennis, 1993; Dennis et al, 1996; Finnegan et 

al., 1996). This resulted in a reduction of total genomic cytosine methylation, which induced 

several developmental effects, and correlation was found between demethylation and reduction 

in flowering time. This was particularly clear under SDs where C24 shows a pronounced 

vernalisation response (Finnegan et ah, 1998a). Surprisingly, Ronemus et al. (1996) found late 

flowering transformants under LD conditions in Col genetic background, using the same 

antisense approach. 

In addition to effects on flowering time, reduced methylation led to abnormal flowers due to 

an altered expression of genes such as AG and APETALA 3 (AP3), probably caused by changes 

in chromatin structure (Finnegan et al., 1996). These phenotypes are in some aspects similar to 

the phenotype of the early flowering mutant elf, defective in a gene encoding for a polycomb-

like protein, which is known to affect chromatin structure (Goodrich et al., 1997). Jacobsen and 

Meyerowitz (1997) showed that a superman (sup) mutant epi-allele found in antisense 

methyltransferase lines is due to highly localised hypermethylation in the SUP gene. Similar 

hypermethylation was found for the ag mutant epi-allele in the above mentioned 

hypomethylated background (Jacobsen et al., 2000). The regulation of transcription of certain 

genes that are involved in the flowering initiation process is apparently either under control or 

may be influenced by DNA methylation as a component of cell memory. 

A mutant, designated ddml (decrease in .DNA wethylation) affected in DNA methylation 

but not exhibiting a flowering time phenotype, has been isolated in Arabidopsis (Vongs et al, 

1993). Cloning of DDM1 revealed that it encodes a member of the SW12/SNF2 family of 

chromatin remodelling proteins (Jeddeloh et al., 1999). The ddml mutation causes 

hypomethylation up to 70% of the total genomic 5-methylcytosine levels, although these plants 

exhibit normal methyltransferase activity. The ddml mutation induces other heritable mutations 

after repeated selfpollination (Kakutani et al., 1996). Among them, there is a late flowering 

mutant designated^ mapped on chromosome 4 at a similar position asfwa (Kakutani, 1997). 

The latter late flowering mutant was described by Koornneef et al (1991) and both alleles, fwa-1 

and fwa-2, show strong hypomethylation in a 5 Mbase region were the gene has been mapped 

(Chapter 4). 
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It is evident that changes in the methylation level can affect the expression of genes, both 

under conditions generated in the laboratory (Finnegan et al., 1996; Kakutani et al., 1996; 

Ronemus et al., 1996; Jacobsen and Meyerowitz, 1997; Jacobsen et al., 2000), and under natural 

conditions (Cubas et al., 1999). Strikingly, these changes often affect genes that are involved in 

flowering transition or flower morphology. However, it is not clear yet whether these changes in 

expression by altered methylation levels of the plant reflect an epigenetic regulation of gene 

expression or are merely caused by random changes in the methylation status of genes, due to an 

impaired methylation machinery. 

Discussion: a working model for the control of flowering time 

The complex multigenic control of flowering as revealed by genetic analysis in Arabidopsis 

(Martinez-Zapater et al, 1994; Weigel, 1995; Peeters and Koornneef, 1996) and pea (Weller et 

al., 1997b) indicates that the process is complex and influenced by many factors. This 

observation supports physiological evidence for a multifactorial control of the transition to 

flowering (Bernier, 1988). It has been proposed that the transition to flowering is the 

developmental default state (Redei et al, 1974; Sung et al, 1992; Martinez-Zapater et al, 1994; 

Haughn et al., 1995; Weigel, 1995). This hypothesis is mainly based on two observations. First, 

Arabidopsis can flower with very few leaves in complete darkness when sufficient sucrose is 

provided to the shoot meristem (Redei et al., 1974; Madueno et al., 1996). Under these 

conditions the late mutants, as far as tested, are as early as wild-type with the exception offwa 

and ft (Roldan et al., 1999). Second, no mutants without flower-like structures have been 

described, but in contrast, the emfl and emf2 mutants with hardly any vegetative development 

have been isolated (Sung et al., 1992). The EMF genes have been suggested to play a central 

role in the repression of flowering or promotion of vegetative development by being the final 

target for the flowering time genes (Sung et al, 1992; Martinez-Zapater et al., 1994; Haughn et 

al., 1995; Weigel, 1995). However, although emfl and emfl are, respectively, epistatic to the late 

flowering mutants gi and co (Yang et al, 1995), double mutants of the em/mutations with some 

of the other late flowering mutations flower with an intermediate number of leaves (Haung and 

Yang, 1998; Page et al, 1999). This suggests that the wild-type products of these genes do not 

repress EMF function. 
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The genetical and physiological classification of several late mutants has led to group these 

genes into two different general modifying promotion pathways (Figure 1.2). The late flowering 

genes, FCA, FY, FPA, FVE, LD and FLD, are assumed to promote flowering autonomously, 

under LD and SD, and are therefore involved in the so-called autonomous promotion pathway. 

These mutants are highly daylength sensitive, presumably because when this pathway is 

defective the transition to flowering becomes very dependent on another pathway that is largely 

regulated by photoperiod. This second pathway has been called the LD promotion pathway, 

involving the late flowering genes, CO, FD, FE, FHA, FT, FWA and GI, which are believed to 

promote flowering mainly under photoperiodically inductive conditions, i.e., LDs. Nevertheless, 

since the mRNA level of CO, a gene that promotes flowering, is reduced in SD, the effect of LD 

might be the removal of a hypothetical SD repressor, and therefore this pathway could also be 

referred to as SD repression or, summarising, photoperiodic promotion pathway. 

The reduced responsiveness to vernalisation of these photoperiodic promotion mutants does 

not imply that these genes are involved in sensing the cold signal, because long vernalisation 

treatments are effective in these mutants (Chandler and Dean, 1994) and the parental genotype 

her also has a limited vernalisation responsiveness compared with mutants such as fca, even 

when it flowers late under SD (Chandler and Dean, 1994; Chandler et al., 1996). Furthermore, 

double mutants involving representative genes of the two pathways are sensitive to 

vernalisation, although the absence of the LD promotion cannot be replaced by the vernalisation 

treatment (Koornneef et al., 1998a). In contrast, the stronger vernalisation sensitivity of the 

autonomous promotion mutants suggests that this pathway and a third one, the vernalisation 

promotion pathway, might converge downstream and are able to replace each other. The 

candidate genes affecting the sensing or transduction of the cold signal are the VRN genes 

isolated on the basis of their lack of a vernalisation response in an fca mutant background 

(Chandler et al., 1996). The FLC gene is probably functioning at the converging point of the two 

pathways. "Double mutant" analyses between the early FLC-Ler allele and the late mutations 

fid, Id, fca, fve, and fpa flower relatively early in comparison to the late flowering phenotype 

observed in these late mutants in a FLC-Col background (Sanda and Amasino, 1996b). This 

suggest that these late genes antagonise inhibitors. A vernalisation treatment might have the 

same effect. Analysis of FLC expression was in agreement with these interpretations; the level 

of FLC mRNA is downregulated by vernalisation and upregulated in late flowering mutants 

from the autonomous promotion pathway, whereas late flowering mutants from the 
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Figure 1.2. A model describing the interactions of flowering time genes in Arabidopsis. Different groups of 
genes, established according to their genetic and physiological behaviour, are shown in boxes. Lines within 
boxes indicate subgroups. The arrows represent a promotive effect, the "_L" symbols represent a repressive 
effect. 
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photoperiodic promotion pathway have no effect on FLC expression (Michaels and Amasino, 

1999a; Sheldon et al., 1999; Sheldon et al, 2000). 

Analysis of double mutants places the photoperiodic promotion mutations with similar 

phenotypes in the same epistatic group. This study also indicated that the situation for the 

autonomous promotion pathway mutants is more complex, suggesting parallel sub-pathways 

within this group. Particularly the fpa mutant shows a complex behaviour and might play a role 

in the two pathways (Koornneef et al., 1998a). 

To place other flowering genes, including those for which the recessive (probably loss of 

function) phenotype is earliness, in relation to these two general pathways can be attempted. 

However, since detailed genetic analyses of double mutants are lacking in most cases, this can 

only be done in a provisional manner. Furthermore, not knowing whether mutants are true null 

alleles complicates the interpretation of any double mutant analysis (Weigel, 1995; Koornneef et 

al., 1998). In Chapter 2 it will be shown that the early flowering mutant efs can be placed in the 

autonomous promotion pathway by the analysis of double mutants with late flowering mutants. 

It has been suggested that the outcome of the autonomous promotion pathway is similar to 

that of vernalisation and GAs. In agreement with this, a detailed morphogenetic analysis of fve 

mutants indicated that they show some symptoms of reduced GA levels or reduced GA action, 

although these are far less extreme than in gal and gai mutants (Martinez-Zapater et al., 1995). 

Besides, the implication of GA synthesis in vernalisation has been strongly suggested, not only 

by the work in Thlaspi arvense (Hazebroek et al., 1993) but also in Arabidopsis by the finding 

that the gal-3 mutants do not respond to vernalisation in SDs. However, the observation that the 

fca gal-3 double mutant responds well to vernalisation under continuous light argues against the 

hypothesis that vernalisation acts through GA biosynthesis or through the FCA gene product 

(Chandler et al., 1996; 2000). Furthermore, the gal-3 mutant also responds to vernalisation in a 

late flowering FRIIFLC background (Michaels and Amasino, 1999b). Nevertheless, GAs have 

been shown to be crucial for a number of processes associated with flowering, such as internode 

elongation and the suppression of adaxial trichomes, which indicates that there is a higher GA 

activity after the transition to flowering, which might be partially due to the promotive effect of 

LDs on the GA 20-oxidase encoded by the GA5 locus (Xu et ah, 1997). It has also been shown 

that GAs stimulate flowering, both by activation of the LFY promoter and by control of the 

competence of the meristem to respond to LFY activity (Blazquez et al., 1998). The actual 

sequence in the interaction among the autonomous promotion pathway, GAs and vernalisation 

remains to be solved and further research in this area is necessary. Besides, it has been suggested 
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that the vernalisation promotion involves modulation of gene expression through changes in 

methylation, which needs further confirmation by the study of the target genes. It is possible that 

GAs, vernalisation and the autonomous promotion pathway have a similar target that leads to 

floral induction. Therefore, their functions may overlap, and different environmental conditions 

may modulate the three pathways in a different way. A candidate target gene that probably is 

specific for GAs is FPF1 (Kania et al., 1997). FPF1 is not responsible for the activation of LFY 

by GAs but probably acts to promote flowering in a parallel pathway to LFY (Melzer et al., 

1999). 

The chromophore and phyB mutations cause early flowering, indicating that this 

phytochrome has an inhibitory role in flowering, which seems independent from the daylength 

sensing mechanism. The earliness conferred by the hy mutants to the co, gi and jwa mutant 

backgrounds under both LDs and SDs (Koornneef et al, 1995) further indicates that the early 

flowering caused by the hy mutations does not act exclusively through these flowering time 

genes. However the hy mutants in \hefca mutant background are late under SDs, suggesting that 

phyB, apparently, mainly represses the FCA gene pathway under SD conditions (Koornneef et 

al., 1995). In contrast, under LDs, hy mutants in the fca background are early, suggesting that 

under these conditions another promotion pathway is repressed by phyB. Therefore, the phyB 

and other light-stable phytochromes might repress both the autonomous promotion and the 

photoperiodic promotion pathways. Reed et al. (1996) have shown that phyB decreases 

responsiveness to GAs, which suggests that this phytochrome might repress flowering through 

this mechanism. 

The effect of the light labile phytochrome A is very different and more or less opposite to 

that of the light stable phytochromes. Phytochrome A promotes flowering, since overexpression 

of this gene leads to earliness (Bagnall et al., 1995) and the mutant is late when SDs are 

extended by 8 hrs of light with a low R/FR ratio (Johnson et al., 1994). Under LDs provided by 

"normal" fluorescent lamps, no lateness is observed, probably because other photoreceptors can 

compensate for the lack of phyA. In pea, PHYA deficient mutants have a much more 

pronounced late phenotype under LDs and are photoperiod insensitive (Weller et al., 1997a). In 

this species, SDs lead to the production of a graft transmissible inhibitor which is under control 

of the pea genes Sn, Dne and Ppp . Based on grafting studies and the analysis of double mutants, 

it was concluded that phyA reduces the level of this inhibitor under LD conditions (Weller et al., 

1997a). 
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In addition to phytochromes, blue-light receptors, called cryptochromes, play a role in 

flowering. As in the case of phytochrome, the different members of this family of photoreceptor 

seem to have distinct roles in the transition to flowering. The promotive role of the 

cryptochrome I encoded by the HY4 gene seems minor since the flowering time effect of this 

mutant is limited (Bagnall et al., 1996). The effect of the cryptochrome II (CRY2) appears more 

important in LDs because these mutants (fha) are clearly late (Guo et ah, 1998). The similarity 

in phenotype of these mutants with the photoperiodic promotion pathway mutants strongly 

suggests that CRY2 and phyA are the photoreceptors for this pathway. However, cryllcryl 

double mutant analysis revealed a redundant roles for CRY1 and CRY2 in blue light in the 

promotion of floral initiation (Mockler et al., 1999). Furthermore, there are indications that 

phytochromes and cryptochromes interact with each other; CRY2 suppresses a blue-light 

inhibition of the phyB mediated red-light inhibition of floral initiation (Mockler et al., 1999). 

To measure the length of the photoperiod, apart from photoreceptors, a time measurement 

mechanism is required, which is probably provided by a circadian clock. Phytochromes and 

cryptochromes are important for the synchronisation of this clock. PHYB and CRY1 mediate 

signals for period length control under high fluence light whereas PHYA and CRY2 only seem 

to play a role under specialised conditions of low fluence light (Somers et al., 1998a). The 

relation between daylength and a circadian rhythm mechanism affecting leaf movement and 

CAB2 gene expression was studied in the Arabidopsis el/3 mutant, which is early and daylength 

insensitive (Hicks et al., 1996; Zagotta et al., 1996). The elft mutant lacks these circadian 

rhythms in continuous light but not in light/dark cycles and continuous darkness, suggesting that 

ELF3 is involved in circadian regulation, especially in the transduction of light signals to a 

component of the clock. (Carre, 1996; Hicks et al, 1996). Three other genes that may affect 

directly the clock and that show altered flowering time are LHY, CCA1 and TOC1. The 

homologous genes LHY and CCA1 are expressed rhythmically. When overexpressed, they cause 

late flowering and disrupted circadian rhythms (Schaffer et ah, 1998; Wang et al., 1998). In the 

presence of the overexpressed copy of LHY, transcription from the endogenous LHY promoter is 

repressed, indicating that LHY is part of a transcriptional feed-back loop rhythmically (Schaffer 

et al., 1998). Inactivation of CCA1 also affects the circadian expression of clock-controlled 

genes, although no effect on flowering time was reported, possibly due to redundancy with LHY 

(Green and Tobin, 1999). The mRNA abundance of the recently cloned GI gene is also regulated 

by the circadian clock. In the gi mutant, not only the circadian expression pattern of GI was 
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altered, but also that of LHY and CCA1, suggesting that GI and LHYICCA1 affect each other's 

expression (Fowler et al., 1999; Park et ah, 1999). 

The early flowering phenotype under SD of mutants such as detl (Pepper and Chory, 1997) 

and copl (Weigel, 1995), suggests that the DET1/COP1 proteins suppress flowering under SD, 

which might be done by repressing floral promoters such as CO. The simplest hypothesis to 

explain this SD inhibition would be through repression by DET1/COP1 in the absence of the LD 

signal, and this would predict that photoreceptor-deficient mutants, which would not be able to 

remove the suppression of flowering by DET1/COP1, should be late in LD. Although this might 

be the case for phyA and blue-light receptor mutants (Johnson et al., 1994; Bagnall et al., 1996), 

this is not the case for mutants affecting phyB (phyB = hyS) and the chromophore (hyl and hy2), 

which are relatively early in SD (Goto et al., 1991) due to the inhibiting effect of phyB discussed 

above. Nevertheless, analyses of double mutants involving these genes are still needed in order 

to understand the role of DET1/COP1 in this process. 

Based on grafting studies, daylength is perceived by the leaves, and the signal is then 

transported to the apical meristem (Bernier, 1988). It is not clear whether the crucial target is the 

apical shoot meristem or the lateral leaf/flower primordia itself. The latter is suggested by the 

chimeric structures observed by Hempel and Feldman (1995) after the transfer of plants from SD 

to LD. In Arabidopsis, the shoot apical or inflorescence meristem remains undetermined, and to 

maintain this state the TFL1 and TFL2 genes are required. The TFL1 gene is strongly expressed 

in a group of cells just below the apical dome of the inflorescence in accordance with a role in 

this meristem (Bradley et al., 1997). Bradley et al. (1997) suggested that TFL1 delays the 

commitment to flowering during the vegetative phase, where it is also weakly expressed. In 

contrast, its Antirrhinum ortholog CEN is not expressed during vegetative development, and cen 

mutants are not early (Bradley et al., 1997). Double mutant analysis between tjl and the late 

flowering fca, fpa,fve,fwa and co indicates that to repress flowering initiation TFL requires 

the function of the late flowering loci tested (Ruiz-Garcia et al., 1997; Page et al., 1999). 

The floral meristem identity genes LFY and API are crucial early targets of the floral 

promotion process. LFY is the earliest acting and a direct upstream regulator of other meristem 

identity or meristem-organ identity genes (Parcy et al., 1998), which has also been shown by 

its ability to induce transcription of API (Wagner et al., 1999) and the presence of a LFY 

responsive enhancer in the second intron of the AG gene (Busch et al, 1999). Both LFY and 

API can convert shoot meristems into floral meristems, as shown by the early flowering of 

transgenic plants that constitutively express these genes. However, expression of these genes 
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may only trigger floral development after the main shoot has acquired competence to respond 

to its activity, since constitutive expression of LFY still allows the formation of some leaves 

(Weigel and Nilsson, 1995). Elegant studies in which the CO function was regulated by the 

ligand-binding domain of the rat glucocorticoid receptor showed that LFY expression 

increased within 24 hours after the activation of CO (Simon et ah, 1996) and that API is 

expressed later. This sequence of gene expression was also observed in studies after the shift 

from SDs to LDs (Hempel et ah, 1997). The interaction of flowering time genes with LFY has 

shown the existence of two different classes. One class affects primarily the transcriptional 

induction of LFY and contains genes belonging to different flowering time pathways (FCA, 

FVE, LD, CO, GI, GAI) (Nilsson et ah, 1998; Aukerman et ah, 1999) . The other class of 

genes affects primarily the competence to respond to LFY expression and contains the genes 

FT and FWA (Nilsson et ah, 1998). Probably FT and FWA are involved in activation of API 

(see below). 

Two more lines of evidence suggest that FT and FWA have effects in the floral induction 

process. Double mutants of ft and fwa with Ify virtually lack floral initiation and do not show 

API mRNA in the inflorescence apex, indicating the importance of these genes for the 

initiation of API expression (Ruiz-Garcia et ah, 1997). Furthermore, in contrast to other late 

flowering mutants,/? and fwa are late in continuous darkness when sucrose was available at 

the aerial part of the plant (Madueno et ah, 1996; Roldan et ah, 1999). This indicates that 

their role is not restricted to modifying the level or effect of the light-induced floral repressor 

only, but instead these genes may work at the meristem level and may be required (also) for 

the flower initiation process itself. The normal flowers of these mutants show that genetic 

redundancy exists for the flower initiation program as well as for the control of flowering time 

(Ruiz-Garcia et ah, 1997). The cloning of FT revealed strong homology with TFL1. 

Furthermore, the transcription of FT is positively regulated by CO whereas its expression is 

not affected by the fwa mutation, suggesting a role of FWA downstream or in parallel with FT 

(Kardailsky et ah, 1999; Kobayashi et ah, 1999). The opposite effect of mutations in the 

homologous genes FT and TFL1 points to a different role, and the two genes might have in 

common their interaction with LFY and API. 

In what way the promoting flowering environmental signals interact with the flowering 

genes, how these genes interact, and how they activate their targets is still mainly unknown. 

The phenotypic and epistatic analyses indicate a complex network and suggest various 

redundant pathways. Since some of the promotive flowering time genes may act as 
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transcription factors (LD and CO) or may affect RNA stability (FCA), a sequence of gene 

activation events is a likely mechanism. The combined genetic, physiological, and molecular 

analyses will provide answers to this just-started and evolving picture of the network. 

Concluding remarks 

Recent genetic, molecular, and physiological analysis of flowering initiation in Arabidopsis 

has led to the identification of components in this important developmental process. 

Molecular elements involved in some of the initial steps such as photoreceptors and 

components of the circadian clock, in intermediate steps such as some of the cloned flowering 

genes, and in the target genes of floral induction, are now known. However, many questions 

remain: how do these elements interact and transmit the signals? Intriguing questions are, for 

example, how light and clock signals are integrated and how these interact with the flowering 

genes. The effect of vernalisation at the molecular level is not yet understood although FLC 

has been identified as a crucial target. Furthermore, a role for GAs in flowering is strongly 

indicated but its function remains unclear, as does the role of other hormones such as 

cytokinins, and factors such a carbohydrates. Besides, the sequence of events and redundancy 

suggested by the genetics and physiology is not yet understood at the molecular level. 

However, the molecular and genetic tools are available in Arabidopsis and will further refine 

and modify the model presented in this review. It will be important to relate and complement 

these studies in Arabidopsis with those in other plants to identify both the differences and 

common aspects, as it has been done for flower development between Antirrhinum and 

Arabidopsis. For flowering timing, pea is particularly important because of its similarity with 

Arabidopsis in the physiological responses and its ability for grafting studies (Weller et ah, 

1997b). This may aid in identifying the nature of the floral repressor, deduced thus far only 

from genetic and physiological studies, and in determining whether any of the flowering time 

genes encode the elusive graft-transmissible florigen. 
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Scope of this thesis 

In contrast to most animals, plants are bound to a single location. In order to grow and 

reproduce most efficiently, they have developed good systems to perceive and react to the 

environmental conditions that they encounter. Understanding these systems is a major 

challenge in developmental biology. The transition of the plant from the vegetative to the 

generative phase is an excellent model to investigate such a system. Due to the advantageous 

properties of Arabidopsis, the study of flowering transition became concentrated on this plant. 

This introduction chapter showed the progress that has been made in the understanding of this 

process in Arabidopsis. In the following chapters, an additional stone will be added to this 

building in construction. 

The thesis deals with one of the late flowering mutants, fwa that has been mentioned 

above. A particularly interesting feature of this mutant is its semi-dominant behaviour. In a 

mutagenesis experiment of fwa, a new early flowering mutant, efs, was obtained. Chapter 2 

gives a genetical and physiological characterisation of this mutant. The remaining chapters of 

this thesis are focussed on the FWA gene itself. In Chapter 3, the map based cloning procedure 

is described, which led to the molecular identification of the FWA gene. Chapter 4 gives a 

description of the molecular properties of this gene. Here it is shown that the mutant 

phenotype offwa is not caused by changes in the DNA sequence but by an altered methylation 

pattern. Finally, in Chapter 5 a summarising discussion of the work presented in this thesis 

will be given. 
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The early flowering mutant efs is involved in the autonomous 

promotion pathway of Arabidopsis thaliana 

Wim J.J. Soppe, Leonie Bentsink and Maarten Koornneef 

Summary 

The transition to flowering is a crucial moment in a plant's life cycle of which the mechanism has only 

been partly revealed. In a screen for early flowering, after mutagenesis of the late flowering fwa 

mutant of Arabidopsis thaliana, the early flowering in short days (efs) mutant was identified. Under 

long day light conditions the recessive monogenic efs mutant flowers at the same time as wild-type but 

under short day conditions the mutant flowers much earlier. In addition to its early flowering 

phenotype, efs has several pleiotropic effects such as a reduction in plant size, fertility and apical 

dominance. Double mutant analysis with several late flowering mutants from the autonomous 

promotion (fca andfve) and the photoperiod promotion (co,fwa and gi) pathways of flowering showed 

that efs reduces the flowering time of all these mutants. However, efs is completely epistatic to fca and 

fve but additive to co,fwa and gi, indicating that EFS is an inhibitor of flowering specifically involved 

in the autonomous promotion pathway. A vernalisation treatment does not further reduce the flowering 

time of the efs mutant, suggesting that vernalisation promotes flowering through EFS. By comparing 

the length of the juvenile and adult phases of vegetative growth for wild-type, efs and the double 

mutants it is apparent that efs mainly reduces the length of the adult phase. 

This chapter has been published in Development (1999) 126,4763-4770 
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Introduction 

A plant needs to flower at a suitable time of the year in order to produce a large number of 

viable seeds. Given its importance, it is not surprising that flower initiation is controlled by 

many environmental and endogenous factors. Physiological research in different plant species 

has identified numerous of these factors, leading to a multifactorial model of the control of 

flowering (Bernier, 1988). More recently, the combination of physiological and genetical 

research, especially in Arabidopsis (Koornneef et al., 1991) and pea (Weller et al., 1997b), 

has identified several of the genes that play a role in this process. In Arabidopsis, the 

interactions among these genes have been further studied by including molecular approaches 

(Levy and Dean, 1998). This has led to the identification of several pathways involved in the 

regulation of flowering time in this species. A model for flowering initiation has been 

established consisting of a photoperiodic promotion pathway that promotes flowering under 

long day (LD) light conditions, a vernalisation promotion pathway that promotes flowering at 

low temperatures and an autonomous promotion pathway that promotes flowering 

autonomously, independently of the promoting effects of the other two pathways. (Martinez-

Zapater et al., 1994; Koornneef et al., 1998b; Levy and Dean, 1998). This flowering model 

constitutes an appropriate framework for the analysis of flowering but is still far from 

complete and many questions remain. 

One way to refine the current model is to identify additional flowering time genes. The 

screening for late flowering mutants in Arabidopsis has been quite exhaustive. Few early 

flowering mutants were obtained initially because most screens were performed in early 

flowering ecotypes under LD conditions, which enhance flowering and do not allow a wide 

window for selection. However, some screens in which early flowering mutants were 

obtained have been described (Zagotta et al., 1992; Ahmad and Cashmore, 1996). In addition, 

several early flowering mutants were identified on the basis of other pleiotropic phenotypes. 

For instance some phytochrome deficient mutants (Goto et al., 1991) and mutants that are 

hypersensitive to gibberellins (Jacobsen et al., 1996) or that overproduce cytokinins 

(Chaudhury et al., 1993) also flower early. Recently, another class of early flowering mutants 

was obtained by overexpressing specific genes in transgenic plants (Cardon et al., 1997; 

Kania et al., 1997). How these early flowering mutants interact with the late flowering 

mutants of the photoperiodic promotion or the autonomous promotion pathways is very 

poorly understood, however. 
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Screens to obtain new early flowering mutants can be done more efficiently in genetic 

backgrounds or under environmental conditions where Arabidopsis flowers late. For example, 

vernalisation defective mutants have been obtained by mutagenising the late flowering and 

vernalisation responsive fca mutant (Chandler et al., 1996). 

Here, we describe a novel early flowering mutant, early flowering in short days (efs), 

which was obtained after mutagenesis of the late flowering fwa-1 mutation in the Landsberg 

erecta (Ler) background. 

During the analysis of the efs mutant, special attention was given to the different 

developmental phases during the growth of the plant. The life cycle of most plants can be 

divided into three developmental phases: a juvenile vegetative phase in which plants cannot 

respond to factors inducing flowering, an adult vegetative phase in which plants are able to do 

so and a reproductive phase in which they flower (Poethig, 1990). The change from the 

juvenile to the adult phase has been extensively studied in woody plants where it is most 

obvious. However, it is also apparent in herbaceous plants. A way to distinguish between the 

phases is by monitoring changes in several diagnostic characteristics such as leaf shape, 

thorniness and branching pattern, most of these changes occurring gradually (Hacket, 1985; 

Zimmerman et al., 1985; Poethig, 1990). In Arabidopsis the different developmental phases 

can be recognised by changes in leaf shape. However, the most useful trait to distinguish 

between the juvenile and adult phase of vegetative growth is the presence or absence of 

abaxial trichomes (Kerstetter and Poethig, 1998). Flowering time mutants affect the duration 

of these phases; for instance, most of the late flowering mutants enhance all the phases 

(Martinez-Zapater et al., 1995; Telfer et al., 1997). An early flowering mutant, hasty, 

specifically reduces the juvenile vegetative phase (Telfer and Poethig, 1998). In the present 

work, we found that in the efs mutant mainly the length of the adult vegetative phase is 

reduced. 

Results 

Isolation and mapping of the efs mutant 

The fwa mutant flowers later than wild-type plants, both under LD and SD light conditions 

(Koornneef et al, 1991). After y-irradiation of seeds from a cer2 gaSfwa abil marker line, 

five plants that flowered early under LDs were obtained in the M2 generation. These plants 

were crossed with the Ler wild-type to separate them from the mutations of the marker line. 
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Figure 2.1. The phenotypes of her, efs 

and double mutants with efs. 

A. Wild-type her (left) and efs mutant 

(right) plants, five weeks old and 

grown under LD conditions. 

B. Wild-type her (left) and efs mutant 

(right) plants, seven weeks old and 

grown under SD conditions. 

C. Wild-type her flower. 

D. efs mutant flower. 

E. co mutant (left) and efs co double 

mutant (right) plants, five weeks old 

and grown under LD conditions. 

F. fwa mutant (left) and efs fwa double 

mutant (right) plants, five weeks old 

and grown under LD conditions. 

G. fca mutant (left) and efs fca double 

mutant (right) plants, five weeks old 

and grown under LD conditions. 

H. tfll mutant (left) and efs tfll double 

mutant (right) plants, five weeks old 

and grown under LD conditions. 

For three of the plants the earliness could not be separated from the markers; these will be 

described in Chapter 4. Two other plants, derived from different Mi batches, had similar 

pleiotropic phenotypes of which the bushy habit and small flowers were most obvious (Figure 

2.1 A). Fi plants from a cross between these two mutants did not show complementation for 

both flowering time and pleiotropic traits, indicating that they are allelic. The mutant was 

named efs (early flowering in short days, see hereafter) and one of the two alleles was taken 

for further analysis. The phenotype of Fi plants from a cross between efs and wild-type her is 

indistinguishable from wild-type plants, indicating that efs is a recessive mutant. 

The EFS locus is located 7.2 cM (± 2.1) below the microsatellite ngal 11 and 3.4 cM (± 

1.8) below the CAPS marker ADH at the bottom of chromosome 1. To perform this mapping, 

F3 lines were analysed from 91 F2 plants, 12 of these were homozygous efs, 45 were 

heterozygous and 34 were homozygous wild-type. A similar deviation from the expected ratio 

has been observed before in this region for crosses between Ler and Col (Lister and Dean, 

1993) and is probably caused by gene(s), closely linked to EFS. 
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The efs phenotype 

The efs mutation reduces flowering time under SD but not under LD conditions 

The efs mutant was identified on the basis of its ability to reduce the flowering time of the late 

flowering mutant fwa under LD conditions. However, in a wild-type her background efs does 

not reduce the flowering time under LDs. Flowering time, measured as number of days until 

first flower buds are visible and as total number of leaves, was similar for her and efs (Figures 

2.1 A, 2.2A,B). Both her and efs plants flower later under SDs than under LDs. However, efs 

is less sensitive to daylength and 

flowers much earlier than her 

plants under SD conditions (Figures 

2.1B,2.2A,B). 

To determine whether the 

difference in flowering time 

between efs and wild-type Ler is 

caused by a slower rate of leaf 

initiation, the rate of leaf initiation 

was measured for both efs and her 

under SD conditions. As shown in 

Figure 2.3, the rate of leaf initiation 

in both genotypes is similar. 

Ler efs 

LD 
Ler efe 

SD 
Ler efe 

LD 
Ler efe 

SD 
Ler efe 

4 wks 
Ler efe 

7 wks 

Figure 2.2. Comparative description of wild-type Ler and the 

efs mutant. 

Plants were grown under long (LD) or short day (SD) light 

conditions. The standard errors of the means are indicated on 

each bar. 

A. The total leaf number of rosette and main shoot. 

B. The number of days until the appearance of the first flower 

buds. 

C. The length of the main stem from the rosette until the first 

silique. 

D. The length of the longest secondary inflorescence as 

percentage of the length of the primary inflorescence. 

E. The number of leaves with coflorescences or secondary 

inflorescences as percentage of the total number of leaves. 

F. The mean percentage of germinating seeds at four and 

seven weeks after harvest. 

The efs mutation mainly reduces the 

adult vegetative phase 

In the same experiment, efs mutant 

and wild-type her were compared 

for the length of the three 

developmental phases: the juvenile 

vegetative phase characterised by 

leaves without abaxial trichomes, 

the adult vegetative phase 

characterised by leaves with abaxial 

trichomes and the reproductive 

phase characterised by an 
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inflorescence with cauline leaves (Telfer et ah, 1997; Lawson and Poethig., 1995). As shown 

in Figure 2.3, efs mainly reduces the number of leaves in the adult vegetative phase; the 

length of the juvenile vegetative phase and the reproductive phase were similar to those of 

wild-type Ler. 
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Figure 2.3. The rate of leaf initiation of Ler 

and efs plants grown under short day 

conditions. 

The data points represent the mean 

accumulated number of visible leaves, 

recorded till flowering, for five plants that 

made a total of 35 (Ler, • ) or 22 (efs, • ) 

leaves. The standard error of the mean is 

indicated on each data point. 

The average number of juvenile vegetative 

( • ) , adult vegetative ( • ) , and reproductive 

leaves (!i ) for Ler and efs is indicated in the 

two bars. 

Pleiotropic traits of efs 

In addition to its effect on flowering time in SDs, efs also has pleiotropic effects on several 

other traits (Figures 2.1, 2.2). In both LDs and SDs, efs is only half the size of Ler as 

measured by the length of the stem from the rosette to the first silique (Figure 2.2C). The 

leaves, roots and flowers of efs mutants are reduced in size compared to wild-type plants. The 

secondary inflorescences of efs plants are relatively long, compared to the length of the 

primary inflorescence, indicating a reduced apical dominance (Figure 2.2D). This is also 

implied by the higher number of coflorescences and secondary inflorescences as compared to 

the total number of leaves in efs (Figure 2.2E). Although in this experiment the reduced apical 

dominance is only visible under SDs, efs plants that were grown in LDs in the greenhouse (as 

shown in Figure 2.1 A) also showed a reduced apical dominance. This difference is probably 

due to the specific conditions since LDs were provided by supplementing the light period with 

incandescent bulbs. 

Although at the macroscopic level there are several aberrations visible in the efs mutant, 

microsections through stem, hypocotyl, root and flower buds did not show any major 

structural differences. Representative photos of these microsections are shown in Figure 2.4. 
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Figure 2.4. Microscopic sections from different tissues of wild-type Ler and efs. 

(A-E) Wild-type plants; (F-J) efs mutant plants. (A,F) Transverse section of the main stem (just above the first 

internode); (B,G) a transverse section of the hypocotyl; (C,H) a transverse section of the root; (D,I) a transverse 

section of an anther; (E,J) a longitudinal section of a flower meristem. Scale bar, 1 mm in A and F; 500 um in 

B,D,E,G,I,J and 200um in C and H. 

The section through the main stem, taken just above the first intemode (Figure 2.4A,F), also 

shows a reduced diameter of the efs stem which is mainly caused by a reduction in cell size. 

Additional pleiotropic traits of the efs mutant are as follows. 

(1) Incomplete development of first flowers. The first flowers that appear on the main shoot 

never open completely and wither, which causes a delay of the moment that the first open 

flower is visible. For this reason, the opening of the first flower was not taken as a 

measurement of flowering time in efs. Later flowers develop normally, although they are 

smaller than wild-type flowers (Figure 2.1C,D). 

(2) Reduced fertility. The seed set of efs is lower than that of Ler. Reciprocal crosses using 

efs either as female or as male parent gave a low seed set, indicating that both female and 

male fertility are reduced. As shown in Figure 2.1C,D, the anthers of efs flowers release less 

pollen than anthers of wild-type flowers. Microsections through the anther show that the efs 

anther is shrunken and deformed, and contains less pollen than wild-type anthers (Figure 

2.4D.I). This could explain the reduced male fertility of efs. 

(3) Increased dormancy and reduced germination. Ler seeds that have been stored during 

four weeks germinate nearly 100% whereas efs seeds germinate 30%. Also, even after seven 

weeks of dry storage, germination of efs seeds does not reach 100% but remains at 90% 

(Figure 2.2F). Similar germination percentages were observed for efs seeds after more than 

one year of storage, indicating a reduced viability of the seeds. 
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(4) Reduced root growth. The root length of 16 Ler and 19 efs plants, grown on MS 10 

medium in vertically placed Petri dishes, was measured. After ten days, the lengths of Ler and 

efs roots were respectively 32.6 mm (± 9.1) and 14.0 mm (± 6.7). 

Is efs a specific flowering time mutant? 

The pleiotropic traits of efs suggest that the reduction of flowering time in SDs is not caused 

by a specific defect in one of the flowering pathways but by a more general defect in plant 

growth, which simultaneously leads to early flowering. If this is the case, efs could not be 

placed in one of the flowering pathways and therefore should not be called a flowering time 

mutant. To determine whether efs specifically affects one of the pathways, double mutants 

were made with several late flowering mutants. 

Double mutants of efs with three mutants, fwa, constans (co) and gigantea (gi) of the 

photoperiodic promotion pathway and two mutants, fca and/ve, of the autonomous promotion 

pathway were constructed. The vernalisation response of efs and its double mutants was tested 

in order to see whether EFS might be involved in the vernalisation promotion pathway. 

Furthermore, double mutants of efs with one other mutant involved in flowering, terminal 

flower 1 (tfll) were made. TFL1 promotes inflorescence meristem identity and the tfll mutant 

shows an early flowering phenotype (Shannon and Meeks-Wagner, 1991; Alvarez et ah, 

1992). 

Analysis of double mutants under LD conditions 

Figure 2.5A shows the leaf number of the different mutants and double mutants with efs, 

grown under LD conditions. As already shown in Figure 2.2A, the leaf number of efs in these 

conditions is identical to that of wild-type Ler. The late flowering mutants all have a higher 

leaf number than Ler, but the double mutants with efs can be divided into two groups. One 

group, consisting of late flowering mutants belonging to the photoperiod promotion pathway 

(gi, co, fwa-1 and fwa-2), has double mutants with a leaf number intermediate between the 

late flowering mutants and efs (Figures 2.1E,F, 2.5A). This indicates that efs behaves 

additively to these mutants. The other group consists of fca and fve, both belonging to the 

autonomous promotion pathway, and has double mutants with a similar leaf number as the efs 

mutant (Figures 2.1G, 2.5A). Therefore, efs is epistatic to these late flowering mutants. The 

double mutant with tfll does not have a significantly different leaf number than the single 

mutants (Figures 2.1H, 2.5A). 
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Figure 2.5. The number of 

juvenile, adult and reproductive 

leaves in different single mutants 

and double mutants with efs. 

(A) Leaf number under LD 

conditions; (B) leaf number 

under SD conditions, with (V) 

and without vernalisation. 

Juvenile vegetative ( • ), adult 

vegetative ( • ) , and 

reproductive leaves ( ) are 

shown. The standard error of the 

mean is indicated on each bar. 
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The total number of leaves was subdivided into the number of juvenile vegetative, adult 

vegetative and reproductive leaves (Figure 2.5A). In the late flowering mutants the number of 

leaves in all three phases is increased compared to the wild-type. For the double mutants of 

efs with those, the leaf number in all the phases is reduced compared to the late flowering 

mutants. However, the main reduction in leaf number is in the adult vegetative phase. As 

shown in Figure 2.6A, for the late flowering mutants, an increasing number of juvenile 

vegetative leaves correlates with an increasing number of adult vegetative leaves. However, in 

double mutants with efs an increasing number of juvenile vegetative leaves does not lead to an 

increase of the number of adult vegetative leaves. 

Analysis of double mutants under SD conditions 

In Figure 2.5B the leaf number of the different mutants and double mutants with efs, grown 

under SD conditions is shown. As described above and shown in Figure 2.3, efs has a reduced 

number of leaves in these conditions compared to the wild-type Ler. The late flowering 
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mutants can be divided into three groups. The first group, consisting of gi and co, has a 

similar number of leaves as Ler. The double mutants efs gi and efs co have the same number 

of leaves as efs . The second group, with fwa-1 and fwa-2, flowers with a few more leaves 

than Ler and the efs fwa-1 and efs fwa-2 double mutants flower with a leaf number between 

fwa and efs. The flowering time of the last group with mutants of the autonomous promotion 

pathway (fca andfve), is strongly delayed under these conditions. The double mutants efsfca 

and efsfve have a leaf number similar to efs. So, like under LD conditions efs is additive to 

fwa-1 and fwa-2 and epistatic to 

fca and fve. The efs tfll double 

mutant has a leaf number similar 

to the single efs and tfll mutants. 

A comparison of the leaf 

numbers of the different phases 

for the wild-type and the late 

flowering mutants in LDs with 

those in SDs shows that the higher 

leaf number in SDs is mainly 

caused by an increase in leaf 

number of the adult vegetative 

phase (Figure 2.5). As in LD 

conditions, efs decreases the leaf 

number in the double mutants 

mainly by reducing the adult 

vegetative phase (Figure 2.5B). 

This is especially striking for the 

efsfca and efsfve double mutants. 

An increasing number of juvenile 

vegetative leaves correlates with 
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Figure 2.6. The relation between juvenile and adult leaves for 

the late flowering mutants and the double mutants with efs. 

(A) Plants grown under LD conditions. • , wild-type Ler and late 

flowering mutants; O, efs and the double mutants of efs with the 

late flowering mutants. (B) Plants grown under SD conditions. 

• , wild-type and late flowering mutants without vernalisation; an increasing number of adult 

• , wild-type and late flowering mutants with vernalisation; O, vegetative leaves in late flowering 

efs and the double mutants of efs with the late flowering mutants mutants but not in an efs genetic 

without vernalisation; • , efs and the double mutants of efs with 

the late flowering mutants with vernalisation. 
background (Figure 2.6B). 
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Analysis of double mutants after vernalisation 

The behaviour of late flowering mutants and the corresponding doubles with efs in SD 

conditions after a vernalisation treatment is shown in Figure 2.5B. As previously described, 

Ler, gi, co,fwa-l and fwa-2 react little to vernalisation by flowering with a slightly reduced 

leaf number whereas fca an&fve react strongly. The monogenic efs and double mutants hardly 

respond to a vernalisation treatment. 

The reduction in leaf number produced by a vernalisation treatment for 'Ler and the late 

flowering mutants is mostly caused by a decrease in the number of adult vegetative leaves 

(Figure 2.5B), although the number of juvenile vegetative leaves is slightly reduced in the yea 

and fve mutants. The effect of the vernalisation treatment and the efs mutation on the ratio 

adult vegetative leaves to juvenile vegetative leaves is similar. However, the efs mutation is 

able to even further reduce the number of adult vegetative leaves in vernalised plants (Figure 

2.6B). 

Pleiotropic effects of double mutants 

The double mutants of efs with the late flowering mutants showed the same pleiotropic 

phenotypes as efs: they are smaller in size, have less apical dominance and are less fertile than 

wild-type plants. Therefore efs does not need the function of any of the late flowering genes in 

its role on these other traits. 

The double mutant of efs with the meristem identity mutant apetalal showed additivity of 

the two phenotypes, indicating that efs does not affect meristem identity as no novel 

synergistic interactions were observed (data not shown). 

Discussion 

EFS is a novel flowering time locus 

The early flowering mutant under SDs, efs, identifies a novel flowering time locus, 

controlling an inhibitor of flowering as shown by its novel phenotype and its location at a map 

position where no other flowering locus has previously been mapped. 

Although efs has several pleiotropic traits it can be considered as a flowering time mutant 

according to the double mutant analysis. Several other early flowering mutants with 

pleiotropic traits have been obtained in Arabidopsis (Levy and Dean, 1998; Koornneef et al., 

1998b). The early flowering phenotype of phyB for instance is caused by a defect in 
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phytochrome B which also causes abnormal elongation of hypocotyls, stems, petioles and root 

hairs (Reed et al., 1993). The spindly (spy) mutant is not only early flowering but also has 

pale green foliage, partial male sterility and parthenocarpic fruit development which is caused 

by a constitutive activation of GA signal transduction (Jacobsen et al., 1996). The pleiotropic 

effects of phytochrome and gibberellin mutants indicate that these factors control many 

aspects of plant development of which flowering time is one. A similar situation cannot be 

excluded for efs. 

The nature of the relationship between pleiotropic traits and flowering behaviour of efs is 

difficult to assay and might need a molecular identification of the locus. The observation that 

the efs mutant influences plant size, germination and fertility but does not change the overall 

structure of the tissues and cells (Figure 2.4) suggests that the locus may be involved in cell 

expansion. In this aspect, its effects are opposite to those of the early flowering phytochrome 

and spy mutants in which mutations result in more elongated cells in specific tissues (Reed et 

al., 1993; Jacobsen et al., 1996). Since most of the dwarf mutants in Arabidopsis do not have 

an early flowering phenotype, it is likely that the cell elongation defects of efs, leading to the 

pleiotropic phenotype, are probably independent of its early flowering effect. The 

interpretation of the dormancy phenotype of efs in relation to its flowering behaviour has 

similar complexities as the interpretation of the plant size. 

Efs reduces the adult vegetative phase 

Phase changes in Arabidopsis are affected by both environmental and genetical factors. 

Application of gibberellins for instance accelerates the onset of abaxial trichomes and 

therefore shortens the juvenile phase (Chien and Sussex, 1996). Furthermore, all three growth 

phases are decreased in LDs, compared to SDs (Chien and Sussex, 1996; Telfer et al., 1997; 

present work). Genetic factors that influence phase changes are noticed in the late flowering 

mutants that cause a delay of phase changes (Telfer et al, 1997). This has been demonstrated 

in detail for the fve mutant where trichome distribution was studied in combination with leaf 

shape changes (Martinez-Zapater et al., 1995). In agreement, under LDs gi, co,fwa,fca and 

fve mutants are all delayed in their phase changes. However, under SDs only the mutants 

belonging to the autonomous pathway, fca and fve, show this delay in accordance with the 

reduced function of the photoperiodic promotion pathway under these conditions. 

Besides the above mentioned factors that have a similar influence on the length of the 

different growth phases, there are also some factors that mainly affect one of the growth 

phases. The efs mutant is one of these because the reduction in flowering time is primarily 
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caused by a reduction of the adult vegetative phase (Figure 2.3). Apart from the efs mutation, 

another genetic factor that has been reported to reduce mainly the adult phase is the 

constitutive expression of the I FF gene by a 35S::LFY construct (Weigel and Nilsson, 1995). 

This implies that LFY only influences the meristem after the adult vegetative phase has 

started, i.e. after the plant gained the ability for flower initiation. One other early flowering 

mutant with a specific reduction of one of the growth phases is hasty which hardly affects the 

adult vegetative phase but has a reduced juvenile vegetative phase. The hasty mutant appears 

to affect flowering time primarily by an acceleration of the transition to a reproductively 

competent phase (Telfer and Poethig, 1998). Vernalisation mainly affects the length of the 

adult vegetative phase (Figures 2.5B, 2.6B). This supports the view that plants can only 

respond to factors inducing flowering when they are in the adult vegetative phase (Poethig, 

1990). However, vernalisation occurs in seedlings whereas its effect is seen later, indicating 

that the plant must store this signal. 

Despite the lack of a flowering phenotype under LDs, EFS is needed under these 

conditions in a Ler wild-type genetic background as indicated by its effect in the double 

mutants. The efs mutant does not flower early in LDs because wild-type Ler plants have 

hardly any adult vegetative leaves in these conditions, therefore the reducing effect of efs on 

the adult phase has no effect on flowering time. The fca and fve mutants have a longer 

juvenile vegetative phase than the other late flowering mutants. The doubles of efs with fca 

ami fve also show a considerable reduction of the juvenile vegetative phase (Figure 2.5). This 

points to some influence of EFS in the juvenile vegetative phase as well. It could be that this 

effect is normally completely suppressed by FCA and FVE wild-type alleles and only 

becomes apparent when one of these genes is mutated. Probably EFS influences the length of 

all developmental phases although its effect on the adult vegetative phase is most obvious. 

EFS interacts with the autonomous promotion pathway 

The interaction of efs with the late flowering mutants is similar under LD and SD conditions 

(Figure 2.5). The only exception is for efs co and efs gi, in SDs these double mutants flower 

only slightly later than the single efs mutant. This is probably a result of the low expression 

and flowering promotion of CO and GI under these conditions. In agreement with this, it has 

been shown that the expression of CO in SDs is reduced as compared to the expression in 

LDs (Putterill et al., 1995). 

The double mutant analysis indicates that EFS represses flowering in the autonomous 

promotion pathway and that FCA and FVE require the function of EFS to promote flowering; 
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Figure 2.7. A model of the possible role of EFS in floral transition. 

The genes from the LD promotion pathway (CO, Gl and FWA) promote 

flowering independently of EFS. FCA, FVE and a vernalisation treatment 

promote flowering by decreasing the repressing effect of EFS on flowering. 

The role of TFL1 could be a repression of the function of FCA and FVE. 

The horizontal arrow symbolises the transition from the vegetative to the 

reproductive meristem. The other arrow represents an enhancing influence, 

the "±" symbols represent a reducing effect. 

in other words, FCA and 

FVE counteract the 

inhibitory function of 

EFS on flowering 

transition (Figure 2.7). A 

similar repression role, 

and interactions with 

FCA and FVE, has been 

considered for two other 

genes, FRI and FLC 

(Sanda and Amasino, 

1996b; Michaels and 

Amasino, 1999a). 

Another gene that 

may negatively regulate 

flowering through this 

pathway is TFL1. Under 

both LD and SD conditions the double mutant of efs with tfll does not flower significantly 

earlier than the single mutants (Figure 2.5B). TFL1 is involved in the promotion of 

inflorescence meristem identity and has a role in the autonomous promotion pathway because 

it delays flowering by repressing the promotive function of FVE (Ruiz-Garcia et al, 1997) and 

FCA (Page et al., 1999). This means that the efs fve and efs fca double mutants behave 

opposite to the tfll fve and tfll fca double mutants. Whereas TFL1 reduces the promotive 

function of FVE and FCA on floral transition, FVE and FCA reduce the repressive function of 

EFS on floral transition (Figure 2.7). 

Two arguments indicate an epistatic relationship between the efs mutant and 

vernalisation. Firstly, a vernalisation treatment has hardly any effect on the flowering time of 

efs and the double mutants with efs in SDs (Figure 2.5B). Secondly, the effect of vernalisation 

on the relative length of the different growth phases of Arabidopsis is comparable to the effect 

of the efs mutation on these, but smaller (Figure 2.5B). A longer vernalisation treatment could 

give a stronger effect. Therefore, one can conclude that vernalisation acts on the EFS gene 

product or on its downstream components. However, the possibility that vernalisation does 

not have an effect on the efs mutant because the plants flower so early that vernalisation 

cannot further promote flowering under short days cannot be ruled out. The function of EFS 

46 



efs: an early-flowering mutant 

might be to prevent meristems that are in the adult vegetative phase, so meristems that have 

obtained the competence to flower, from flowering. Flowering stimuli like vernalisation but 

also the wild-type FCA and FVE gene products from the autonomous promotion pathway 

might reduce this function of EFS (Figure 2.7). 

The interaction of EFS with vernalisation is again rather similar to that of the other 

repressors of the autonomous promotion pathway, FRI and FLC, (Michaels and Amasino, 

1999a) suggesting that these repressors work at the same point. However, where FCA and 

FVE seem to function completely through EFS, they are suggested to work only partially 

through FLC. Further investigation of the interaction from the efs mutation with FRI and FLC 

and the role of vernalisation in this pathway will help to elucidate the role of these genes and 

stimuli on the promotion of flowering. 

Materials and methods 

Plant material 

The mutant lines that were used are all in Landsberg erecta (Ler) genetic background. The monogenic 

mutants co-3,fca-l,jve-l,jwa-l,fwa-2 and gi-3 were described by Koornneef et al. (1991) and tfll-2 

by Alvarez et al. (1992). The Ler marker line containing the mutations cer2-l ga5-l fwa-1 abil-1 was 

constructed by M. Koornneef and A.J.M. Peeters for the fine mapping oiFWA. Seeds of the Columbia 

wild-type were obtained from C. Somerville (Carnegie Institute of Washington, Stanford, USA). 

The efs mutant was obtained by y irradiation of the cer2-l ga5-l fiva-1 abil-1 multiple marker 

line with 400 Gy. Out of 5000 M2 plants, grown under LD light conditions, early flowering plants 

were selected and crossed with Ler. In the F2 generation, derived from these crosses, putative mutant 

plants that did not contain the marker genes were isolated for further analysis. 

Double mutants were constructed by crossing the monogenic efs mutant with lines carrying the 

mutations co-3, gi-3, fwa-1, fwa-2, fca-1, jve-1 and tfll-2. Double mutants were selected from the 

selfed progeny of F2 plants that either showed the efs phenotype or were late flowering and which 

segregated for the second mutation. The genotype of efs fca and efsjve double mutants was confirmed 

by crosses with monogenic fca andjve respectively, which resulted in late F] plants. 

Growth conditions and physiological characterisation 

Seeds were sown on wet filter paper (no 595, Schleicher and Schuell, Germany) in plastic Petri dishes. 

Thereafter, they were transferred to a climate room (25°C, 16 hours light for LD experiments; 24°C, 8 

hours light for short day (SD) experiments) and incubated for three days. Germinated seeds were 
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planted on potting compost in pots and grown in a greenhouse with long day light regime (at least 14 

hours daylight) or in a climate chamber with SD light conditions (24°C, 8 hours light per day). For the 

physiological comparison of the monogenic efs mutant with wild-type, both LD and SD experiments 

were carried out in similar growth chambers whereby long day conditions were created by additional 

supply of 8 hours of incandescent light, as described in Koornneef et al. (1995). 

Seeds used in the vernalisation experiments were surface sterilised with 20% bleach in 96% 

ethanol and rinsed twice with ethanol. After drying they were sown on Murashige and Skoog plates 

containing 1% sucrose and stored in dark at 4°C during four weeks before planting. 

For the physiological characterisation shown in Figure 2.2, flowering time was recorded as the 

number of days from the time that the seedlings were planted till the visualisation of the first flower 

buds by naked eye. In the rest of the experiments the total number of leaves is taken as a measurement 

of flowering time. The number of leaves within the rosette was counted shortly after the plant bolted. 

A magnifying glass was used to detect the presence of abaxial trichomes. The number of juvenile 

vegetative leaves was determined as rosette leaves without abaxial trichomes and the number of adult 

vegetative leaves as rosette leaves with abaxial trichomes. At the time of first flower opening the 

number of leaves on the main stem was counted, representing leaves from the reproductive phase. 

For the germination assay, mature seeds were harvested from ripe siliques. After storage at room 

temperature, the seeds were sown on water-saturated filter paper in plastic Petri dishes and incubated 

at 25°C under 16 hours white light. The seeds were scored for germination after 1 week. 

Mapping 

A cross was made between efs and the Columbia ecotype. The F2 and F3 populations derived from this 

cross were scored for the efs phenotype. DNA was isolated from 91 F2 lines and analysed using CAPS 

(Konieczny and Ausubel, 1993) and microsatellite (Bell and Ecker, 1994) markers. To estimate the 

recombination fractions, the RECF2 program, which produces maximum likelihood estimates with 

their standard errors, was used (Koornneef and Stam, 1992). For the construction of the linkage map, 

the JOINMAP program (Stam, 1993) was used applying the Kosambi function to convert 

recombination fractions into genetic distances. 

Microscopical characterisation 

For the preparation of microscopic sections, plant material was immersed in 4% formaldehyde for at 

least 16 hours at 4°C and subsequently dehydrated in a graded series of acetone. Thereafter, acetone 

was replaced by resin (Technovit 7100, Heraeus Kulzer GmbH, Wehrheim, Germany). After 

polymerisation of the resin the blocks were cut with a microtome (Leitz Wetzlar, Germany) and 

sections were stained with 0.05% (w/v) toluidine blue in water. 
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Map based cloning of the FWA gene 

Wim J.J. Soppe, Carlos Alonso-Blanco, Anton J.M. Peeters and Maarten Koornneef 

Summary 

Thefwa mutant was identified in Arabidopsis by its late flowering phenotype. With detailed genetic 

and physical mapping, the FWA locus could be located in a region of 60 Kb. Transformation with two 

overlapping cosmids, obtained from fiva-J mutant DNA, converted late flowering to Ler wild-type 

plants. This indicated that fwa is located in the overlap between both cosmids and that the mutant 

allele behaves as a gain of function allele, suppressing flowering. The overlap contains only one 

complete predicted gene that encodes a homeodomain containing transcription factor. 
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Introduction 

The FWA locus was identified in Arabidopsis thaliana by its mutant phenotype. In 

comparison to the wild-type, the fwa mutant is delayed in the transition from the vegetative to 

the generative phase (Chapter 4). There are two mutant alleles available; fwa-] was identified 

after treatment with ethyl methanesulphonate and fwa-2 after fast neutron irradiation 

(Koornneef et al., 1991). The FWA locus has been mapped to chromosome 4. However, 

nothing is known about the molecular function of FWA. To understand this function and the 

role of the FWA gene in the flowering process, an effort is made to clone this gene. 

There are several strategies to clone a gene, depending on the available molecular 

information (Gibson and Somerville, 1993). When the function of a gene is known, it is 

possible to isolate the gene by its ability to complement mutations in bacteria or yeast (Minet 

et al., 1992). A gene with a characterised pattern of expression can be cloned by differential 

screening (Park et al., 1998). In the case that only the mutant phenotype of a gene is known, 

other strategies have to be used. When a T-DNA or transposon is inserted in the gene, it may 

cause a mutant phenotype. In such a tagged mutant, the gene can be very effectively cloned by 

isolation of DNA fragments flanking the insertion (Aarts et al, 1995; Schaffer et al., 1998). If 

the mutant phenotype is caused by a deletion, the gene can be cloned by subtractive 

hybridisation. However, cloning by subtractive hybridisation in Arabidopsis is complicated 

and has only been proven successful for two loci (Sun et al, 1992; Silverstone et al., 1998). If 

none of the above mentioned methods is applicable, a gene can be cloned using a map-based 

approach (Putterill et al., 1995; Macknight et al, 1997). 

The gene product and function of FWA are unknown and no tagged alleles are available 

which excludes the first methods, mentioned above, as cloning strategy. Preliminary attempts 

to clone the FWA locus by subtractive hybridisation remained unsuccessful (Peeters, personal 

communication). Map-based cloning is the best way for cloning a gene like FWA of which 

only the mutant phenotype and genetic map position are known. Map-based cloning in 

Arabidopsis is facilitated by the fact that it has one of the smallest genomes among higher 

plants with very low levels of repetitive DNA. Furthermore, there are many genetic loci 

identified by mutations, it has a dense molecular marker map and at the time that the cloning 

was started, there was almost a complete yeast artificial chromosome (YAC) coverage (Dean 

and Schmidt, 1995). In addition, the complete DNA sequence of chromosome 4 has recently 
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been published (Mayer et al., 1999) and soon the DNA sequence of the complete genome will 

be available. 

The first step in map-based cloning is to locate genetically the locus of interest as accurate 

as possible with the help of linked markers, either morphological or molecular. The most 

closely linked molecular markers can be used to isolate clones that contain the region of the 

genome covering the locus. Thereafter, the gene will be identified by complementation of the 

mutant phenotype in transgenic plants containing the candidate gene. DNA sequencing of 

wild-type and mutant alleles will reveal the nature of the mutation and a comparison with 

sequences in the databases can indicate the putative molecular function of the gene. 

This chapter deals with the map-based cloning of the FWA gene. First the segregating 

population that was used for the fine mapping of FWA is described, followed by the YAC and 

cosmid contigs that were constructed. Finally the plant transformation experiments that gave 

complementation will be discussed. 

Results and Discussion 

Genetic mapping 

The mapping population 

For the genetic mapping of FWA both morphological and molecular markers have been 

employed. Morphological markers are based on differences in phenotype while molecular 

markers detect polymorphisms at the DNA level. The latter implies that a mapping population 

should be derived from a cross between two plants that do not only differ for the locus of 

interest but also for their DNA sequence. Such DNA polymorphisms can be found between 

accessions in Arabidopsis. For the mapping of FWA, the accessions Landsberg erecta (Ler) 

and Columbia (Col) were used. 

A complication of the use of accessions is that they may differ in loci affecting the trait of 

interest, in this case flowering time. An analysis of recombinant inbred lines derived from a 

cross between Ler and Col revealed genetic variation for flowering time at twelve different 

loci (Jansen et al., 1995). In this population, the effects of individual loci were relatively 

small, in contrast with the finding of large gene effects in the progeny of the cross between the 

early flowering accessions Ler and Cape Verde Islands (Alonso-Blanco et al., 1998). 

However, the accumulation of either many early or many late alleles in specific progeny plants 
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selection for F2 population with monogenic segregation 

from a Ler x Col cross may affect the phenotype for flowering time of these plants in such a 

way that their classification for the FWA gene can not be done unambiguously. 

To solve this problem a mapping population was constructed with a more uniform genetic 

background (Figure 3.1). First a cross was made between Ler and Col whereby Ler was 

homozygous (or fiva and for the recessive morphological markers cer2, ga5 and ap2. Late 

plants, homozygous for cer2, ga5, fiva and ap2 were selected in the F2 generation. This 

selection ensured that in the FWA region of chromosome 4 these plants were homozygous 

Ler, and thus fiva mutants, whereas the rest of the genome contains both Ler and Col DNA. 

Some of these F2 individuals were crossed with Col plants, heterozygous for the emb35 

mutation that is linked to FWA. This cross increased the contribution of Col in the genome of 

the resulting F2 plants, leading to less variation in flowering time. From three different F2 

populations, variation in flowering time and segregation for the emb35 mutation was analysed. 

The use of a lethal marker linked in repulsion to the semi-dominant late flowering mutant fiva 

implies that hardly any early plants are expected, unless unlinked flowering time modifiers 

segregate. This allowed a clear distinction between F2 populations where such modifiers did 

segregate and those where this was not the case. One F2 population with a clear monogenic 
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segregation for flowering time and segregating emb35 was selected as mapping population 

and further investigated. 

Figure 3.2 shows the segregation of flowering time in this mapping population. The 

plants were grown under long day light conditions in a greenhouse. In these conditions Col 

flowered between 27 and 31 days, whereas the progeny of the parental fwa mutant line that 

was selected for the cross flowered between 42 and 51 days. As fwa is a semi-dominant 

mutant, one quarter of the mapping population should flower as early as Col. However, this 

fraction does not exist in the population because, due to linkage, these plants are homozygous 

for emb35 and therefore embryo lethal. The few early plants found in the population must be 

the result of a cross-over between fwa and emb35. Therefore, the overall shape of the 

flowering time frequency distribution with two major peaks of different size can be explained 

because approximately 2/3 of these plants will be heterozygous for fwa (the heterozygous 
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Z* 

24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 

Number of days to flowering 

Figure 3.2. Segregation of flowering time in the mapping population. The different fractions of recombinant and 

parental phenotypes are shown: • = wild-type; • = heterozygous embiS; • = homozygous cert; • = 

homozygous cert, heterozygous emb35; • = homozygous ga5, heterozygous embS5; § = heterozygous emb35, 

homozygous ap2; H = homozygous ap2; El = homozygous cert, ga5, heteozygous emb35; 0 = homozygous 

cert, ga5; • = homozygous cert, ga5, ap2. Flowering time of the Col parent and progeny of the cert ga5 fiva-1 

ap2 parent is indicated in the top ( I I). 
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FWA fwa plant flowers earlier than the homozygous fwa fwa plant). The flowering time of 

most of the plants of the mapping population is between the values of the parental lines, 

although a very small fraction of transgressive phenotypes might be present due to the 

segregation of some other flowering loci of minor effect differing between Ler and Col. 

Figure 3.2 shows all recombinants that were obtained between the different morphological 

markers, classified according to their flowering time. From this mapping population the 

recombinants between ga5 and emb35 were selected for the fine mapping of FWA, using 

molecular markers. 

Mapping with morphological markers 

The different classes of recombinant F2 plants, segregating in the mapping population, were 

used to estimate the genetic distances between the morphological markers cer2, ga5, emb35 

and ap2 (Table 3.1). Because of the variation in flowering time, it was not possible to score 

the FWA phenotype of the F2 plants unambiguously. Therefore, the FWA genotype of F2 

plants was determined by analysing the flowering time of the F3 lines, derived from 

recombinant plants. These lines were only grown from the 120 recombinants between GA5 

and EMB35. F3 lines from homozygous fwa mutant F2 plants were completely late flowering; 

F3 lines from heterozygous FWA fwa F2 plants segregated flowering time while F3 lines from 

homozygous wild-type FWA F2 plants were early flowering. Out of these 120 recombinants, 

only two were recombinant between GA5 and FWA and 118 had undergone recombination 

between FWA and EMB35. This means that FWA maps 0.1 cM below GA5. 

These calculated distances are generally in agreement with the ones in the classical 

genetic map (Table 3.1; http://www.arabidopsis.org/cgi-bin/maps/Genintromap) apart from 

the distance between GAS and FWA. In the classical map this distance is 1 cM. This is 

probably due to the relatively small mapping population previously used and the fact that the 

Table 3.1. Genetic distances between the morphological markers. 

Morphological markers Accumulative genetic distance (cM) Map position on Meinke's 
according to mapping population classical genetic map 

cer2 0 52 
ga5 0.6 53 
fwa 0.7 54 
emb35 6.8 58 
ap2 16.4 68 
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distance in this map is based on an integration of distances from different mapping 

populations. 

Fine mapping with molecular markers 

The genetic fine mapping of FWA was performed with molecular markers; 15 different 

restriction fragment length polymorphism (RFLP) markers and one codominant cleaved 

amplified polymorphism (CAPS) marker were used). DNA isolated from F3 lines derived 

from the 120 F2 plants, showing recombination between GA5 and EMB35, was analysed with 

polymorphic molecular markers. From this analysis the location of the FWA locus could be 

limited to a region of 0.7 cM, between the morphological marker ga5, and the molecular 

marker pcr23 (Figure 3.3). For ga5 also a molecular marker was available (Xu et ah, 1995), 

which was used as an extra control for the scoring of this morphological marker, revealing 

that for one recombinant the ga5 phenotype was scored wrong. Further fine mapping within 

this region narrowed the location of FWA down to a small region between the markers CC128 

and pcr28. There was only one recombinant with CC128 and there were two recombinants 

with pcr28. Recombinants between these flanking markers and the FWA locus were also 

recombinant between both molecular markers. 

For the majority of the used molecular markers, RFLP's could be found between her and 

Col. However, for three markers (cos20, pcr34 and pcr23) such RFLP's were not found but 

instead, RFLP's were detected between wild-type FWA and mutant Jwa DNA. Further 

research indicated that these RFLP's were not caused by differences in DNA sequence but by 

stable differences in methylation level (Chapter 4). 

Physical mapping 

The YAC contig 

Once FWA was located within a small region between CC128 and pcr28, a YAC contig was 

constructed in order to locate FWA within a YAC. For this purpose nine YAC's were selected 

from the published YAC contig of chromosome 4 (Schmidt et al., 1995). The relative 

positions of these YAC's were refined by hybridisation with all molecular markers in this 

region that were used for the mapping. The relative position of a YAC was deduced, 

according to whether a marker hybridised completely, partially or not at all with the YAC. 

The resulting YAC contig is shown in Figure 3.3. 
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Figure 3.3. Position of the fwa locus on chromosome 4. The upper part of the figure shows the whole 
chromosome with several morphological markers. Below this the fwa region is shown with morphological and 
molecular markers that were used for the mapping of the fwa locus. The middle part of the figure shows the 
YAC contig from a small part of this region, together with the probes that were used to construct this contig. The 
number of recombinants between every marker and FWA is indicated. The cosmid contig that was generated 
after screening of the fwa-1 cosmid library with YAC EG1F12 is shown in the bottom of the figure. Cosmids in 
white were used for plant transformation experiments. 
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A comparison of this YAC contig with the contig from Schmidt et al. (1995) did not show any 

significant differences in the positions of YAC's. However, the use of more markers for the 

construction of the YAC contig for FWA improved its accuracy. For instance, EG2A5 and 

CIC12H1 are not overlapping in Schmidt's contig but they are in the FWA contig, because in 

the first contig no probe, located in the overlapping part, was used. 

Since the molecular sizes of the YAC's could be estimated, it was possible to compare 

genetic and physical distances in the FWA region. The genetic distance of 0.7 cM between ga5 

and pcr23 corresponds to a physical distance between 200 and 250 Kb. This means that the 

ratio of physical to genetic distance in this region of chromosome 4 is about 300 Kb/cM. The 

average ratio for this chromosome is 175 Kb/cM, varying from 30 Kb/cM to more than 550 

Kb/cM (Schmidt et al., 1995). Therefore the ratio in the FWA region is higher than average, 

which is not favourable for map-based cloning. 

The cosmid contig 

The^iva-mutant is semi-dominant and probably a gain of function mutation (Chapter 4). This 

raises the possibility that complementation of a mutant plant with the wild-type gene might 

not be possible. Therefore the complementation experiment should be done by transforming a 

wild-type plant with the fwa mutation. In this case a complementing transformant should 

confer later flowering to wild-type plants. 

To achieve this, a genomic library was made from fwa-1 mutant DNA. This library was 

constructed in a cosmid binary vector because of the relatively large insert size and the 

advantage of being able to use the clones directly for plant transformation. The resulting 

cosmid library consisted of 27.264 clones with an average insert size of 16 Kb. Therefore, in 

theory, the library should contain four genome equivalents. However, due to cosmids without 

a good insert, the library probably contains between two and four genome equivalents. 

YAC EG1F12 was selected from the YAC contig to screen the cosmid library (Figure 

3.3). This YAC completely covered the genomic region that contains FWA because it contains 

both markers, CC128 and pcr28, that flank the FWA locus. Hybridisation of this YAC with 

the library yielded 22 positive cosmids. Five pairs of these clones were identical, which means 

that the screen yielded in total 17 different cosmids. After hybridisation of these cosmids with 

each other and with several YAC's and molecular markers in this region, they could be 

arranged into a contig (Figure 3.3). The overlaps between the different cosmids were at least 
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five Kb, apart from the overlap between cosmids WS2/WS5 and WS120, which was only a 

few Kb. Ten of the cosmids covered the region between the markers CC128 and pcr28. 

Some cosmids were used to find RFLP's that cosegregated with FWA. Indeed such 

RFLP's were found for both WS20 and WS94. There were no recombinants left between 

these polymorphisms and FWA. However, it was not possible to further genetically limit the 

region where FWA is located. The recombination events between FWA and pcr28, detected in 

two recombinants, occurred between the left end of WS94 and the right end of pcr28. The 

recombination between FWA and CC128 occurred between the left end of CC128 and the 

right end of WS20. 

Using the molecular sizes of the cosmids, the region in which FWA is located was 

estimated to be 60 Kb. 

Plant transformation and complementation 

Nine cosmids were selected for the plant transformation experiment (indicated in white in 

Figure 3.3). These cosmids span the complete region where FWA is located, ranging from the 

left end of CC128 to the right end of pcr28. All these cosmids were introduced into wild-type 

Ler plants. The number of Tl transformants from every cosmid that was checked for 

flowering time and the flowering time behaviour of these transformants are shown in Table 

3.2. 

Table 3.2. Numbers of obtained Tl Transformants. 

Genotype of Cosmid Total number of T1 Number of late flowering Number of wild-type 
transformed plant transformants transformants flowering transformants 

Ler wild-type WS2 47 0 47 
Ler wild-type WS120 48 0 48 
Ler wild-type WS28 48 14 34 
Ler wild-type WS20 47 5 42 
Ler wild-type WS31 40 0 40 
Ler wild-type WS81 22 0 22 
Ler wild-type WS101 41 0 41 
Ler wild-type WS94 34 0 34 
Ler wild-type WS114 16 0 16 
fwa-1 WS28 44 27 17 
fwa-1 WS20 23 19 4 
fwa-1 WS31 48 48 0 
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Several Tl transformants of WS20 and WS28 were clearly flowering later than the wild-

type. However, most of the transformants with these two fwa cosmids did not show 

complementation because they flowered as early as the wild-type. For both cosmids it was 

shown by PCR analysis that all the late flowering Tl transformants contained the insert but 

several of the early flowering transformants did not. 

Complementation of the phenotype by transformation is never achieved in 100% of the 

Tl transformants because several causes might impede the right expression of inserted genes, 

leading to gene silencing. These causes can range from transgene copy number and 

arrangement to nuclear architecture and chromosomal location (Gallie, 1998). However, in the 

case of fwa, the frequency of complementing transformants was rather low compared to 

literature data for other flowering genes. For instance, the two cosmids that complemented the 

flowering time mutant cons tans showed complementation in respectively 6 out of 9 and 12 of 

13 transformants (Putterill et ah, 1995). This suggest that there might be specific reasons for 

fwa's low complementation rate. 

Cosmids WS20, WS28 and WS31 were not only transformed into Ler wild-type plants 

but also into late flowering fwa-1 mutant plants. Transformation with WS20 and WS28 

yielded several wild-type flowering Tl plants (Table 3.2). This means that these two cosmids 

are not only able to confer late flowering to wild-type plants but also to suppress the late 

flowering phenotype of fwa-1 mutant plants. This dual behaviour of WS 20 and WS28 will be 

further discussed in Chapter 4. 

The FWA gene 

The above mentioned complementation analysis indicated that the FWA locus must be located 

in the overlap of cosmids WS20 and WS28. The DNA sequence and predicted genes of this 

region could be obtained from the Arabidopis Genome Initiative (AGI) in the Arabidopsis 

Information Resource (TAIR) (http://www.arabidopsis.org/agi.html). This revealed the 

presence of only one complete predicted gene in the overlap of the two cosmids, encoding a 

homeodomain containing transcription factor, which will be further described in Chapter 4. 
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Materials and methods 

Plant material 

Seeds of the Col accession and Col containing the emb35 mutation were obtained from David Meinke 

(Oklahoma State University, Stillwater, OK, USA). The her marker line, containing the mutations 

cer2-2, ga5-l,Jwa-l and ap2-l was generated before in our laboratory. These morphological markers 

are listed in Table 3.3. 

Seeds were sown in plastic Petri dishes on a filter paper soaked with water and incubated in a 

cold room (4°C) for three days. After this they were transferred to a climate room (25°C, 16 hours 

light per day) and incubated for two days. Germinated seeds were planted on potting compost in 

individual clay pots and grown in a greenhouse with long day light conditions (at least 14 hours 

daylight). 

Table 3.3. Morphological markers, used for the genetic mapping of the FWA locus. 

Symbol Locus name Phenotype Reference 

ap2-1 apetala-2 homeotic transformation of sepals to Jofuku et al., 1994 
leaves and petals to stamens or 
stamenoid petals 

cer2-2 eceriferum-2 very bright green stems and siliques Negrukefa/., 1996 
due to altered wax composition 

emb35 embryo embryo lethal Franzmann et al., 1995 

defective-35 

fwa-1 late flowering late flowering Koornneef ef a/., 1991 

ga5-1 gibberellin dwarf Koornneef ef a/., 1980 
deficient-5 

Genetic analysis 

To estimate the recombination fraction in the mapping population the RECF2 program, which 

produces maximum likelihood estimates and standard errors, was used (Koornneef and Stam, 1992). 

For the construction of the linkage map the JOINMAP program (Stam, 1993; Stam and van Ooijen, 

1995) was used, applying the Kosambi function (Kosambi, 1944) to convert recombination fractions 

into genetic distances. 
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DNA isolation 

DNA was isolated from plants grown in the greenhouse, following basically the protocol of Bernatzky 

and Tanksley (1986). Approximately 4 g of fresh leaf material was ground in a mortar filled with 

liquid nitrogen. The powder was transferred to a tube containing 20 ml extraction buffer (0.1 M Tris 

pH7.5, 0.35 M Sorbitol, 5 mM EDTA). After centrifuging at 4000rpm for 30 min, the supernatant was 

discarded and 1.25 ml extraction buffer, 1.75 ml nuclei lysis buffer (0.2 M Tris pH7.5, 50 mM EDTA, 

2M NaCl, 2% CTAB) and 300 (il 10% sarkosyl were added, mixed with the pellet and incubated at 

65°C for 30 min. Then 7.5 ml chloroform/isoamylalcohol (24:1) was added and the tube was rotated 

for 15 min at room temperature (RT). After centrifuging at 4000 rpm for 30 min, 1 volume of 

isopropanol was added to the upperphase to precipitate the DNA. The tube was centrifuged again for 

30 min; the pellet was dried and dissolved in 400 (il sterile milli-Q water (mQ). RNAase A was added 

to an end concentration of 10 |ig/ml and the tube was incubated at 37°C for 30 min. The solution was 

extracted twice with respectively phenol/chloroform/isoamylalcohol (25:24:1) and 

chloroform/isoamylalcohol. Thereafter the DNA was precipitated with 0.1 volume of 3 M NaAc (pH 

5.2) and 2.5 volumes of 96% ethanol, washed with 70% ethanol and dissolved in an appropriate 

volume of sterile mQ. DNA concentrations were measured with a TKO 100 fluorimeter (Hoefer 

Scientific Instruments, San Francisco, CA, USA). 

Plasmid and cosmid DNA was isolated, following the "small-scale preparations of plasmid 

DNA" protocol of Sambrook et al. (1989). When the DNA was used as a probe it was purified with 

Qiagen-tip 20 columns (Qiagen, Chatsworth, CA, USA), following the manufacturers instructions. 

Phage DNA was isolated, following the "rapid analysis of bacteriophage X isolates, plate lysate 

method" protocol of Sambrook et al. (1989). 

Total genomic YAC DNA was isolated from a 5 ml culture of yeast, which was grown in YPD 

medium (10 g yeast extract, 20 g peptone and 20 g dextrose per liter) at 30°C. After centrifuging the 

culture at 4K for 5 min, the pellet was washed in 5 ml of 50 mM EDTA, then washed in 20 mM 

EDTA, 1 M sorbitol; after this it was resuspended in 150 (il of 20mM EDTA, 1M sorbitol. Thereafter, 

35 (il lyticase (5U/u.l) and 11.5 (il P-mercaptoethanol was added and the solution was incubated for 2 

hours at 37°C. After centrifuging at 1200 g for 5 min, the pellet was dissolved in 0.5 ml of 0.1 M 

EDTA, 0.15 M NaCl, then 25 (il of 20% SDS was added and the solution was incubated at 65°C for 

20 min. Next, 200 (il of 5 M KAc was added and the tube was left on ice for 30 min after which it was 

centrifuged for 3 min. The supernatant was poured in a 1.5 ml Eppendorf tube that was filled with 

96% ethanol and then centrifuged for 10 min at RT. The pellet was resuspended in 250 (il of mQ, 

after which an equal volume of 4.4 M LiCl was added and the tube was left on ice for 30 min. After 

centrifuging for 5 min the supernatant was taken and the DNA was precipitated with 96% ethanol and 

washed twice with 70% ethanol. Finally the DNA was dissolved in 50 |il mQ. 
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Complete YAC's were isolated from 100 ml cultures of yeast. Cells were pelleted and washed as 

described above. After washing, the pellet was warmed to 38°C and 14 |il lyticase (5U/|i,l), 4.6 |il p-

mercaptoethanol and 180 \i\ low melting agarose was added (amounts should be adapted, according to 

the volume of the pellet). After mixing quickly, the solution was transferred to a mould to cast plugs. 

The plugs were transferred to a small volume of LET (0.5 M EDTA, 10 mM Tris pH8.0) with 7.5 ill 

(3-mercaptoethanol and 0.1 mg/ml RNAaseA and incubated overnight at 37°C. Hereafter, they were 

washed three times in NDS buffer (0.5 M EDTA, 10 mM Tris pH8.0, 1% sodium N-Lauroylsarcosine) 

for 15 min. Then they were transferred to NDS with 2 mg/ml proteinase K and incubated overnight at 

50°C. Finally, they were washed in 50 mM EDTA pH8.0 for 15 min, left overnight in fresh 50 mM 

EDTA and washed again. The plugs were stored at 4°C in 50 mM EDTA pH 8.0. To separate 

complete YAC's, the plugs were cast in a 1% agarose gel, which was run by pulsed field gel 

electrophoresis in a CHEF-DR™II (Bio-Rad, Hercules, CA, USA) apparatus. 

Preparation of probes 

The molecular probes that were used for the fine-mapping of FWA are listed in Table 3.4. The insert 

of a cosmid or plasmid was released by digestion with the appropriate restriction enzymes. The 

resulting fragments were separated by gel electrophoresis and the fragment(s) corresponding to the 

insert were cut out of the gel. YAC's were released as described above. 

The DNA was liberated from these agarose blocks by electro-elution. An electro-elution device 

(Harvard Bio Labs Machineshop, Cambridge, MA, USA) was filled with elution buffer (lOmM Tris 

pH 7.5, 5mM NaCl and ImM EDTA) and 70iil of 20% NaAc was added to the salt bridge. Two ul of 

loading buffer was added to the agarose blocks and these were put in the reservoir. Electrophoresis 

lasted 45 minutes at 80V after which the DNA was pipetted out of the salt trap (two times \lS\i\). The 

DNA was first extracted with phenol/chloroform/IAA (25:24:1), then with chloroform/IAA (24:1) and 

finally precipitated with 2.5 volumes of absolute ethanol overnight at -20°C. The precipitate was 

washed with 70% ethanol and dissolved in mQ water. 

Southern blotting and hybridisation 

Three ng of genomic plant DNA was cut with the appropriate restriction enzymes and the DNA 

fragments were separated by agarose gel electrophoresis. Thereafter, they were transferred to a 

Hybond-N nylon membrane (Amersham Pharmacia, Uppsala, Sweden) by vacuum blotting, following 

the procedures recommended by the manufacturer (Pharmacia LKB-VacuGeneXL, Amersham 

Pharmacia, Uppsala, Sweden). The time periods for depurination, denaturation, neutralisation and 

transfer were respectively 10 min, 10 min, 10 min and 2 hours. After blotting, the blot was soaked in 2 
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Table 3.4. DNA probes, used to detect molecular polymorphisms between the accessions her and Col or between 
wild-type (FWA) and mutant (fwa) DNA. 

Name 

ve030 
sep2B 
ga5 

Description 

plasmid (cDNA) 
phage 
plasmid 

(pA17-4S2) (contains both introns of GA5) 
CC128 
cos20 
cos94 
pcr28 
pcr34 
pcr41 
pcr23 
Lambda 6.' 
m272 
mi123 
g4513 
prhA 
g8300 

cosmid 
cosmid 
cosmid 
plasmid (left end of YAC EW3H7) 
plasmid (right end of YAC EG2A5) 
plasmid (right end of YAC EW18C4 
plasmid (right end of YAC EW3H7) 
phage 
phage 
plasmid 
cosmid 
CAPS marker 
cosmid 

Enzymes that give RFLP's 

Cfol (Ler-Col) 
Mspl, Hpall (Le/"-Col) 
Dral (Ler-Col) 

Mspl (Ler-Col) 
Hhal (FWA-fwa) 
Hhal (Ler-Col) 
Hpall (Ler-Col) 
Hhal, Clal (FWA-fwa) 
EcoRI, Hhal, Hpall (Ler-Col) 
Hpall (FWA-fwa) 
EcoRI (Ler-Col) 
Clal, Pstl (Ler-Col) 
EcoRI (Ler-Col) 
Hindlll, Clal (Ler-Col) 
Ddel (Ler-Col) 
EcoRI (Ler-Col) 

Obtained from 

D. Bouchez3 

C. Dean" 
J. Zeevaart0 

C. Deanb 

cosmid contig 
cosmid contig 
J. Leung/J. Giraudat" 
J. Leung/J. Giraudatd 

J. Leung/J. Giraudatd 

J. Leung/J. Giraudatd 

J. Leung/J. Giraudatd 

ABRCe 

C. Deanb 

ABRCe 

TAIRf 

ABRC" 

INRA, Versailles, France 
b JIC, Norwich, UK 
0 Michigan State University, East Lansing, Ml, USA 
d CNRS, Gif-sur-Yvette, France 
eABRC = Arabidopsis Biological Resource Center, Ohio, USA 
fTAIR = The Arabidopsis Information Resource (www.arabidopsis.org) 

x SSC for 1 min, UV irradiated in an ultraviolet crosslinker (Ultra Lum, Paramount, CA, USA) with 

120,000 uJ/cm2 and baked at 80°C for 2 hours. 

Hybridisations were performed in a Hybaid oven (Hybaid, Teddington, UK). A blot was 

prehybridised with 10 ml of hybridisation solution (5 x SSC, 5 x Denhardt's solution and 0.5% SDS) 

for 4 hours at 65°C. [32P] Random prime labelled DNA fragments were used as probe for 

hybridisation overnight. Blots were washed at 65°C in 0.1% SDS and respectively 5 x SSC, 3 x SSC 

and 1 x SSC (every wash step took half an hour). The activity of a blot was visualised with a phosphor 

imager. 

Cosmid library 

The T-DNA cosmid vector 04541 was used to prepare the genomic library. This vector was derived 

from SLJ1711 (Jones et al., 1992) by the insertion of a fragment containing a cos site between the 

BglU sites. SLJ1711 was derived from pRK290 (Ditta et al, 1980). The vector contains the 

kanamycin resistance gene (NPTII), a cos site and a polylinker, with blue/white selection, between T-

DNA borders. Furthermore, it carries a SURE™ bacterial tetracycline resistance gene. 
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To prepare the library, genomic DNA of the fwa-l mutant was partially digested with the 

restriction enzyme Sau3AI, treated with calf intestinal phosphatase and size fractionated over a 

sucrose gradient to obtain fragments in between 15 and 25 Kb. These fragments were ligated into the 

BamHI site of the cosmid vector. After that the DNA was packaged with Gigapack II packaging 

extract (Stratagene, La Jolla, CA, USA), mixed with SURE™ cells (Stratagene, La Jolla, CA, USA) 

and plated out on LB (10 g peptone, 5 g yeast extract and 5 g NaCl per liter) plates with tetracycline 

(10(xg/ml), 0.004% Xgal and 0.2 mM IPTG for blue/white selection. Single white colonies were 

picked and put into wells of high density (384 wells) micro titer plates (Genetix, Dorset, UK) that 

were filled with freezing medium (LB, containing 36 mM K2HP04, 13.2 mM KH2P04, 1.7 mM Na 

citrate, 0.4 mM MgS04, 6.8 mM (NIL^SCXt and 4.4% glycerol). In total, 71 high density plates were 

filled and stored at -80°C. To prepare library filters, cells were transferred from the microtiter plates 

to agar plates with a replicator and grown overnight. Hybond-N filters (Amersham Pharmacia, 

Uppsala, Sweden) were placed on the plates with colonies for 1 minute, denatured and neutralised in 

trays containing these solutions and baked at 80°C for 2 hours. Hybridisation of the filters was similar 

as mentioned above (southerns, blotting and hybridisation), but the filters were hybridised in trays 

instead of bottles. 

Electroporation ofAgrobacterium tumefaciens 

Cosmids that were selected for plant transformation were transferred from Escherichia coli cells 

(SURE™) to Agrobacterium tumefaciens (AGLO strain; Lazo et al., 1991) by electroporation. To 

prepare competent cells a 50 ml liquid culture of LB with selective antibiotics was inoculated with A. 

tumefaciens and grown overnight at 28°C. The next day a 500 ml liquid culture (LB without salts) was 

inoculated with 25 ml of the overnight culture. Cells were harvested at an OD600 of 0.6 by 

centrifugation (5K, 5min, 4°C) and gently resuspended in 250 ml of ice-cold mQ water. Thereafter, 

cells were centrifuged again and resuspended in 100 ml of ice-cold mQ water. Finally, the cells were 

resuspended in 10 ml of ice-cold 15% glycerol in mQ water, aliquoted in 100 (xl portions and stored at 

-80°C. 

For electroporation, an aliquot was thawed and 1 to 5 |xl of cosmid DNA was added. The mixture 

was transferred to a cuvet, which was placed in the cuvetchamber of an electroporator set at 2.2 kV 

(E. coli pulser from Bio-Rad, Hercules, CA, USA), after which a pulse was given. Immediately after 

the pulse one ml of SOC (2% bactotrypton, 0.5% yeast extract, lOmM NaCl, 2.5 mM KC1, 10 mM 

MgCl2, 10 mM MgS04, 20 mM glucose) was added. The SOC medium with cells was transferred to a 

sterile tube and incubated for 1 to 2 hours (225 rpm, 28°C). Subsequently, the cells were plated on LB 

plates with selective antibiotics and grown for two days at 28°C. 
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Transformation of Arabidopsis plants 

For transformation of Arabidopsis the protocol of Bechtold et al. (1993) was adapted. A. tumefaciens 

cells of the strain AGLO (Lazo et al., 1991), with the appropriate cosmid, were grown in 15 ml liquid 

culture (LB with 50 (ig/ml kanamycin and 50 fig/ml rifampicin) at 28°C during 48 hours. One day 

before transformation, 4 flasks with 0.5 liter of liquid medium were inoculated with 0.5 ml of the 15 

ml culture and grown overnight. The cells were harvested at an OD600 of 0.8 by centrifugation (5K, 

15min, RT) after which the pellet was gently resuspended in 0.5 liter of infiltration medium, pH 5.8 

(0.5 X Murashige & Skoog salts, 5% sucrose, 0.05% MES, 0.02% Silwet L-77 (Lehle seeds, Round 

Rock, TX, USA). The infiltration medium with A. tumefaciens was put in two jars on top of which the 

pots with Arabidopsis were placed upside down with the flowering shoots completely submerged in 

the medium. Thereafter, the jars with pots were placed in vacuum for five minutes. Finally, the pots 

with Arabidopsis were transferred to the greenhouse. 

The seeds that were harvested from these plants were sterilised for 15 minutes with 20% bleach 

in absolute ethanol solution, after which they were rinsed two times in absolute ethanol and dried 

overnight in a flow cabinet. Seeds were sown on plates with selective medium (1 X Murashige & 

Skoog salts, 1% sucrose, 40ng/ml kanamycin, 0.8% agar, pH 5.8). The plates were kept in the cold 

room (4°C) for 4 days and then transferred to the growth room (16 hours light, 25°C). After 10 days, 

transformed seedlings were visible as green plants with several green leaves and a root, whereas 

untransformed seedlings were yellow and did not develop any true leaves. 

PCR analysis 

DNA was isolated from a few leaves of a Tl transformant and amplified through 35 cycles (10 sec 

94°C, 30 sec 54°C and 2 min 72°C) in standard PCR conditions. Presence of the cos20 insert in the 

plant was confirmed by appearance of a 1.1 Kb band after amplification with the T3 primer, (5'-

AATTAACCCTCACTAAAGGG-3') and the primer HD8F (5'-GCTTCGGAACTAAGGAACCC 

AAGC-3'). For cos28 a 0.8 band was amplified, using the T3 primer and the primer HD1F (5'-

GAGTCTTGCTTTATGCCAAGCCGC-3'). 
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The late flowering phenotype of fwa mutants is caused by gain of 

function epigenetic alleles of a homeodomain gene 

Wim J.J. Soppe, Steven E. Jacobsen, Carlos Alonso-Blanco, James P. Jackson, 

Tetsuji Kakutani, Maarten Koornneef and Anton J.M. Peeters 

Summary 

The transition to flowering in Arabidopsis thaliana is delayed in fwa mutant plants. FWA was 

identified by loss of function mutations in normally-flowering revertants of the fwa mutant, and 

encodes a homeodomain containing transcription factor. The DNA sequence of wild-type and fwa 

mutant alleles was identical in the genomic region of FWA. Furthermore, the FWA gene is ectopically 

expressed in fwa mutants and silenced in mature wild-type plants. This silencing is associated with 

extensive methylation of two direct repeats in the 5' region of the gene. The late flowering phenotype, 

ectopic FWA expression, and hypomethylation of the repeats were also induced in the ddml 

hypomethylated background. Mechanisms for establishment and maintenance of the epigenetic mark 

on FWA are discussed. 

This chapter will be published in Molecular Cell with minor modifications 
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Introduction 

Induction of flowering at the appropriate moment is essential for many plant species to 

reproduce successfully. The fine-tuning of the transition from the vegetative to the 

reproductive phase is believed to be under control of multiple factors. These are both 

endogenous, such as gibberellins and carbohydrate metabolites, and environmental, like 

daylength, temperature and light quality. To understand this process, a genetic approach is 

underway in Arabidopsis in which a multitude of mutants influencing the timing of flowering 

are being studied. The combination of physiological, genetic and molecular approaches using 

these mutants has led to a model of floral induction that consists of a photoperiodic promotion 

pathway, a vernalisation promotion pathway and an autonomous promotion pathway 

(Koornneef et al., 1998b; Levy and Dean, 1998; Simpson et al, 1999). The cloning and 

molecular characterisation of several of the involved genes are allowing a molecular 

interpretation of these pathways. However, the available information is fragmented and many 

aspects of this developmental process remain poorly understood. 

One of the factors thought to play a role in the regulation of gene expression affecting 

flowering transition is DNA methylation (Finnegan et al., 2000). The actual significance of 

DNA methylation for gene regulation in plant development remains unknown. An overall 

reduction in total genomic cytosine methylation of up to 70% has been found in transgenic 

plants with reduced amounts of DNA methyltransferase (Finnegan et al., 1996; Ronemus et 

al., 1996) and in decrease in £>NA methylation (ddml) mutant plants that are defective in a 

protein that is likely to be involved in chromatin remodelling (Jeddeloh et al., 1999). Such 

plants develop a number of phenotypic abnormalities (Vongs et al, 1993; Finnegan et al., 

1996; Kakutani et al., 1996; Ronemus et al., 1996). Furthermore, it has been observed that 

stable enhancement of the methylation level in specific genes can suppress expression of these 

genes, leading to mutant phenotypes (Jacobsen and Meyerowitz, 1997; Cubas et ah, 1999; 

Jacobsen et al, 2000). 

In relation to flowering, experimental arguments supporting a role for DNA methylation 

are largely correlative (Finnegan et al., 1998b). For instance, Arabidopsis plants that are 

exposed to low temperatures during a prolonged period (vernalisation), and plants that are 

treated with the DNA demethylating agent 5-azacytidine show reduced levels of 5-

methylcytosine and early flowering as compared to untreated plants (Burn et al., 1993a). 

Thus, it has been hypothesised that vernalisation promotes flowering through demethylation 

of the genome. Recently, it has been shown that the expression level of the flowering 
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repressing gene FLC is downregulated by a decrease in genomic DNA methylation suggesting 

that either FLC or a regulator of FLC is directly controlled by the DNA methylation status 

(Sheldon et al, 1999, 2000). Apart from early flowering plants, late flowering plants were 

derived from the hypomethylated backgrounds of antisense DNA methyltransferase (as-

MET1) (Ronemus et al., 1996) and ddml (Kakutani et al., 1996). Therefore, contrasting 

phenotypes have been caused by altering methylation, suggesting that multiple genes with 

opposite effects might be involved in the epigenetic regulation of flowering. Nevertheless, to 

prove and understand the involvement of such mechanisms awaits the identification of target 

genes that are affected directly by methylation. 

The late flowering trait induced by ddml hypomethylation background were genetically 

mapped to the chromosomal region containing FWA (Kakutani, 1997), a well-characterised 

flowering time gene. The fwa mutant is delayed in the transition to flowering and is semi-

dominant, unlike most flowering time mutants (Koornneef et al., 1991). Based on double 

mutant genetic and physiological analyses, FWA is presumed to affect flowering through the 

speculated photoperiodic promotion pathway in the current model for the control of flowering 

initiation (Koornneef et al., 1998b). In addition to its function in the transition from the 

vegetative to the reproductive meristem, several observations indicate that FWA, together with 

the recently cloned flowering promoting gene FT, also plays a role in the control of flower 

meristem identity (Ruiz-Garcia et al., 1997; Nilsson et al 1998; Roldan et al., 1999; Onouchi 

et al., 2000). It has been suggested that FWA and FT affect meristem identity in a pathway 

that operates parallel to that of the well-characterised LFY gene (Kardailsky et al., 1999; 

Kobayashi et al., 1999). 

In this work, we describe the molecular identification of the FWA gene and show that the 

late flowering phenotype of fwa mutants is caused by gain of function epi-alleles that lack 

methylation in two repeated sequences located in the 5' region of FWA. 

Results 

Characterisation of FWA mutants 

Two different fwa mutant alleles have previously been described (Koornneef et al., 1991); 

fwa-1 was induced by ethyl methanesulphonate (EMS) and fwa-2 by fast neutrons. Plants 

carrying these fwa mutations flower later than Landsberg erecta (her) wild-type plants 

(Figure 4.1). This delay in flowering is relatively stronger under long day (LD) light 
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Figure 4.1. Flowering time of the different FWA alleles. 

Mean flowering time (measured as the total number of leaves produced by the plant before flowering) of 10-

15 plants grown under LD conditions ( • ) or under SD conditions ( 58 ) is shown. The standard error of the 

mean is indicated on each bar. 

conditions than under short day (SD) light conditions. Plants heterozygous for the fwa 

mutation flower intermediate between wild-type and the homozygous fwa mutant plants, 

indicating that fwa alleles are semi-dominant (Figure 4.1). 

To determine if the dominance oifwa mutations is due to gain of function of these alleles, 

we attempted to obtain intragenic suppressor mutations of fwa that show a wild-type-like 

phenotype. Seeds of the fwa-1 marker line carrying the mutations cer2 ga5fwa-l abil were y 

irradiated and approximately 5000 M2 plants were screened under LD conditions for altered 

flowering time. Five early flowering plants were obtained and crossed with the Ler wild-type 

to try to separate the new mutation causing the early flowering from the mutations of the 

marker line. Two of the early mutants produced Fi hybrids that flowered late, indicating that 

the fwa-1 mutation was present together with a recessive extragenic/ii'a suppressor mutation 

that produced early flowering. Both mutations were allelic and have been further 

characterised (Soppe et ah, 1999; Chapter 2). The three other revertant plants were named 

fwa-lRl,fwa-lR2 andfwa-lR3 and gave rise to Fi hybrids that flowered early. In addition, no 

late flowering plants were observed in F2 progenies of 356 plants and therefore these 

revertants are likely to carry intragenic suppressor mutations in the fwa mutant gene. Figure 

4.1 shows the flowering time, under LD and SD conditions, of the revertants and the marker 
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line from which they were derived. These results strongly suggest thaifwa mutants carry gain 

of function alleles of the FWA gene, while the second site mutations fwa-lRl, fwa-lR2 and 

fwa-IRi result in loss of function alleles of FWA. 

A 
number of 
recombinants 2 2 1 

• 
2 2 

molecular 
markers 

yUP10B5 

yUP8E6 
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yUP11F11 
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yUP20H6 
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50 Kb 
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WS81 I WS105 I 
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predicted genes 

Figure 4.2. Molecular markers, YACs and cosmids in the FWA region. 

A. The YAC contig and molecular markers used to locate the FWA locus. The number of recombinants 

between every molecular marker and FWA is indicated in the top. 

B. The cosmid contig; white coloured cosmids were used for plant transformation experiments. 

C. Predicted genes in the overlap of cosmids WS20 and WS28. Arrows above the genes show the direction 

of transcription. 
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Positional cloning ofFWA 

FWA is located on chromosome 4 between the two morphological markers ga5 and emb35, 

which are 6.2 cM apart. From a mapping population of 1306 plants, 120 recombinants were 

identified between these two markers. Two of them had cross-overs between GAS and FWA, 

indicating that FWA maps only O.lcM from GAS, while 118 had cross-overs between FWA 

and EMB35. The location of FWA was further refined with molecular markers located within 

this region. The markers CC128 and pcr28 flanked the locus and had respectively one and two 

cross-overs remaining (Figure 4.2A). Several YAC's were selected from the published YAC 

contig of chromosome 4 (Schmidt et al., 1995) and their relative positions in relation to the 

molecular markers were further refined. Thus, FWA could be located in a region of about 60 

Kb between markers CC128 and pcr28. A genomic library was made fcovafwa-1 in a binary 

cosmid vector that was screened with the YAC clone EG1F12 containing both markers 

CC128 and pcr28. The positive cosmid clones from this screen were arranged into a contig 

(Figure 4.2B) and used as markers in RFLP analysis which indicated that clones WS20 and 

WS94 did not have any cross-overs left with the FWA locus. 

Nine overlapping cosmids (see Figure 4.2B), spanning the region between CC128 and 

pcr28, were used to transform wild-type plants and between 16 and 48 transformed plants 

were generated per cosmid. Late flowering was only observed in transformants with the two 

overlapping cosmids WS20 and WS28. Respectively 5 out of 47 and 14 out of 48 plants 

transformed with WS20 and WS28 flowered significantly later than Ler, indicating that FWA 

is on the overlap of these two cosmids. The DNA sequence of this region for the Columbia 

ATG fwa-1R1 fwa-1R3 fwa-1R2 TAA 

» - > - > ^ ^ | | 

fwa-1R1 

i 
H H_ > 
Ler GGG 
fwa-1R GG 

fwa-1R3 

k 
TTG 
T G 

fwa-1R2 

i 
K J 
GGA 
AGA 

1 Kb 

Figure 4.3. Schematic representation of the FWA gene. 

Open boxes represent exons. The start codon (ATG), stop codon (TAA) and the position and nature of the 

mutations in the three revertants are indicated. The arrows above the 5' region mark the two direct repeated 

sequences, while arrows within the first two exons show the position of the direct repeat in the untranslated 

leader of the mRNA. The sequence of FWA is available through the GenBank database (genomic DNA: 

accession number AF178688, cDNA: accession number AF243535) 
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(Col) accession was obtained from the Arabidopsis thaliana database and showed that the 

overlap of these two cosmids contains only one complete predicted gene which encodes a 

homeodomain (HD) transcription factor (Figures 4.2C, 4.3 and 4.4). 

A 5.3 Kb region corresponding to this HD gene was sequenced in the her wild-type, the 

two fwa and three revertant alleles to look for mutations. The three revertant alleles all 

contained different mutations within the open reading frame of this gene; fwa-lRl mdfwa-

1R3 both have a single base pair deletion causing a premature stop of translation andfwa-lR2 

has a single base pair change resulting in a glycine to arginine transition (Figure 4.3). 

However, the sequences of wild-type and both mutant alleles were identical, indicating that 

the cause of the fwa mutant phenotype cannot be due to mutations in the FWA gene itself. 

Analysis of expression of this HD gene in fwa mutants showed that this is altered in both 

fwa mutant alleles as compared to her wild-type plants. However, expression of other genes 

in the region did not show differences between fwa and wild-type plants (data not shown). 

Therefore, we conclude that the late flowering of fwa mutants is due to a direct regulation of 

this HD gene, which is considered to be the FWA gene. 

To explain the upregulation of FWA in fwa mutants we further analysed the structure and 

expression of this gene. The complete cDNA of FWA was obtained by RACE-PCR from total 

RNA of the fwa-1 mutant because we could not detect any cDNA for this gene in wild-type 

cDNA libraries, nor in EST databases. Comparison of the cDNA with the genomic sequence 

showed that FWA contains 10 exons (Figure 4.3). The predicted translation start is in the third 

exon, the first two exons being located 700 base pairs upstream of this start. The cDNA 

encodes a predicted protein of 686 amino acids. A database search with this putative FWA 

protein sequence revealed strong homology with proteins belonging to the subclass of plant 

HD-ZIP homeodomain proteins, named HD-GL2 (homeodomain Glabra2) (Rerie et ah, 1994; 

Lu et al, 1996). The highest homology of FWA was found with ANTHOCYANINLESS2 

(ANL2) (Kubo et al, 1999). FWA showed all the characteristics of HD-GL2 transcription 

factors; the presence of a homeodomain in the N terminal part followed by a leucine zipper 

(Di Cristina et al., 1996), and a StAR-related lipid-transfer (START) domain (Ponting and 

Aravind, 1999). As shown in Figure 4.4, comparison of the putative FWA protein with ANL2 

and two other members of the HD-GL2 class revealed amino acid conservation throughout the 

whole protein. Homology was especially strong in the regions of the homeodomain and the 

START domain but weaker at the amino terminus. 

An interesting feature of the FWA genomic sequence was the presence of two direct 

repeats in the 5' region, one of 38 base pairs with 100% homology and one of 198 base pairs 
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with 94% homology (Figure 4.3). The small repeat was located in the promoter region of 

FWA while the larger one covered the first two exons and part of the first two introns. 

Consequently, the cDNA contains a direct repeat of 56 base pairs (with 91% homology) in the 

5' untranslated leader. The two repeats appear to be unique in the Arabidopsis genome 

because homologous sequences could not be found in the databases. 
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Figure 4.4. The FWA protein. 

The deduced amino acid sequence of the FWA protein compared with ANL2 (GenBank accession number 

AF077335), ATML1 (U37589) and GL2 (L32873). Identical amino acids are shaded in black and 

conservative changes are shaded in grey. The homeodomain is underlined with a hatched box and the 

START domain with a blocked box. 
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Expression of the FWA gene 

The expression of FWA was analysed in different FWA genetic backgrounds by Northern blot 

hybridisation. RNA was extracted from whole plants of various ages, which were grown 

under LD and SD light conditions. The two/vva mutant alleles showed a similar expression 

pattern of FWA. Transcripts were present through the full life cycle of the plant and in 

different plant organs, including flowers (Figure 4.5A). In contrast, no expression could be 

detected in wild-type and revertant alleles. 

To detect whether the transcript might be present at a very low level in wild-type plants, 

RT-PCR was used. The transcript could not be detected in RNA isolated from whole plants at 

J? J? J? J? (? & & 
V # *f cf cf cf cf 

.£> .CS ,£> A , > J> A> <V <V °3 
£>" O" <y <y <T Q" O" , / 
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v P •& •& 

/ £ £ .*" /,*" <^ & J / .# .# 
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Figure 4.5. Expression of FWA. 

A. Northern blot analysis of FWA 

expression in fwa-1 plants. 

Plants were grown under SD or 

LD conditions and total RNA 

was extracted from flowers and 

complete plants, 10, 20, 27, 34, 

41 and 48 days after planting. 

The blot was probed with a 

fragment of the ROC5 gene as a 

loading control. 

B. Analysis of FWA expression in 

different tissues or complete 

plants of wild-type her by RT-

PCR with FWA gene specific 

primers. A fragment of the 

UBIQUITIN10 gene was 

amplified as a control. 

C. Northern blot analysis of FWA 

expression in different early and 

late flowering DDM1 lines that 

were self-fertilised for two, 

seven or eight generations. 

Plants were grown under LD 

conditions and total RNA was 

extracted three weeks after 

planting. The blot was probed 

with a fragment of the ROC5 

gene as a loading control. 
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vegetative or reproductive phases. However, it could be detected in siliques of different ages, 

from 3 days after pollination (DAP) until maturity of the seeds and in germinating seeds 

(Figure 4.5B). 

FWA expression was analysed by northern blot hybridisation in three week old plants of 

the late flowering mutants fca-1, fve-1, co-3, gi-l,ft-l and of the floral meristem identity 

mutant lfy-6. The FWA transcript could not be detected in any of these mutants (data not 

shown). Furthermore, FWA RNA could not be detected in three week old plants of different 

early flowering (Col and Wassilewskija), middle late flowering (Fukuyama and Llagostera) 

and late flowering (Canary Islands and Saint Feliu) accessions (data not shown). 

DNA hypomethylation in thejwa mutants 

During the map based cloning of FWA several RFLP's between wild-type and/wa mutant 

DNA were detected with methylation sensitive restriction enzymes. Southern hybridisation of 

genomic DNA cleaved with the isoschizomeric enzymes Hpall and Mspl was used to 

examine whether there was a difference in DNA methylation level between fwa mutants and 

wild-type. Hypomethylation in thejwa mutant was found with 14 probes that were located in 

a region of 5 Mb, surrounding the FWA locus (an example of this hypomethylation is shown 

in Figure 4.6). Five single copy probes located elsewhere in the genome did not show a 

\ q. o, ,-V > > 
Q- 0? Q- 4s & & Figure 4.6. Southern analysis of 

*•> ^ $ 1* <& Q> ^ *S~ w/~ »«/̂ " methylation patterns in different FWA 

allele backgrounds. 

Genomic DNA of plants with different 

FWA alleles and of Fl plants from crosses 

between different alleles was digested 

with Mspl or Hpall and hybridised with 

cosmid WS31 as probe. In wild-type, a 

2 _ g^m | | ^ | ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ _ DNA fragment of about 4 Kb, is cut by 

Mspl but not by Hpall. However, this 

fragment is cut by Hpall in fwa mutant 

and Jwa-IR revertant alleles, indicating a 

loss of methylation. 
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difference in DNA methylation levels. Furthermore, fwa-1 and fwa-2 do not have an identical 

methylation pattern and the three revertants show the same methylation pattern as fwa-1, from 

which they derived. In addition, plants that are heterozygous for fwa show both the 

methylated and the unmethylated restriction sites, suggesting that the wild-type FWA allele is 

normally methylated and the mutant fwa allele is hypomethylated (Figure 4.6). The genomic 

DNA methylation status was also analysed in repeated sequence regions outside the FWA 

locus using probes for the 180bp centromere repeats (Martinez-Zapater et al., 1986), rDNA 

(Ronemus et al., 1996) and the retrotransposon Ta3 (Konieczny et al., 1991; Kakutani et al., 

1999). In all cases the same methylation pattern was observed mfwa and wild-type DNA 

(data not shown). Therefore, the hypomethylation of fwa seems to be restricted to the region 

of the FWA locus. These observations prompted us to further investigate methylation as a 

possible cause for the upregulation of FWA expression mfwa mutants. 

Inverted repeats and multiple-copy sequences have been shown to be more sensitive to 

methylation and gene silencing than single-copy sequences (Jacobsen, 1999). Therefore, we 

looked in detail at the cytosine methylation status of the repeated sequences located in the 5' 

region of the FWA gene (Figure 4.3). Using bisulfite sequencing (Jacobsen et al., 2000) on 

DNA isolated from whole rosettes at the vegetative phase, we analysed a region of 

approximately 1.4 Kb containing the two direct repeats just upstream of the translation start 

site. In wild-type plants, methylation was restricted to the repeats only and found at all 20 CG 

sites. Analysis of 8 top strand and 10 bottom strand clones revealed that within the wild-type 

repeats, 89% of cytosines in symmetric CG sequences context are methylated (Figure 4.7). 

However, methylation is not restricted to these symmetric sites, cytosines in a non-symmetric 

context were also methylated 13% of the time (Figure 4.7). Furthermore, we found wide 

variation in cytosine methylation between individual clones. The pattern of non-CG 

methylation seems to be variable with little preference for sequence context. Analysis of five 

top and three bottom strand clones of fwa-1 showed complete bisulfite conversion, indicating 

that no cytosine residues in this region were methylated in the mutant plants. The methylation 

of the repeats in the fwa-2 mutant and three revertant alleles of FWA was also analysed and 

found to be completely absent, as in fwa-1 (Table 4.1). 

Methylation has been associated with repression of gene expression and gene silencing in 

Arabidopsis (Jacobsen and Meyerowitz, 1997; Jacobsen, 1999; Kooter et al., 1999; Jacobsen 

et al., 2000). Therefore, we conclude thai fwa mutants carry epi-alleles ofFWA, and that the 

dense CG methylation of the repeated sequences is associated with the prevention of FWA 

expression in wild-type plants. 
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Figure 4.7. Methylation pattern of 

the FWA direct repeats in her 

wild-type. 

Ten bottom strands and eight top 

strand clones were sequenced. 

Rows represent methylation status 

of individual clones (clone 

numbers are noted to the right side 

of the sequence). Filled boxes 

indicate a 5-methylcytosine in the 

respective clone, while open boxes 

denote an unmethylated cytosine 

residue. The direct repeats are 

underlined and numbering of the 

sequence is relative to the 

translational start site. The grey 

shaded GCGC sequences indicate 

restriction sites for the Cfol 

restriction enzyme. The table 

shows percentages of methylated 

cytosines within different 

sequence contexts, calculated from 

the first methylated cytosine to the 

last. 
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A late flowering ddml line contains an FWA epi-mutation 

DNA of the ddml mutant was shown to be hypomethylated throughout the genome (Vongs et 

ah, 1993). In the progeny of this mutant, stable dominant late flowering lines were observed 

after several generations. These late flowering traits were genetically mapped to the same 

position as FWA and named fts (Kakutani, 1997). To find whether FWA might be the cause of 

the abnormal flowering in these lines, we studied the expression and methylation of FWA in 

early and late flowering ddml lines. Northern blot hybridisation showed the presence of FWA 

expression in a late flowering ddml line whereas no expression could be detected in early 

flowering lines (Figure 4.5C). The methylation level of the FWA repeated sequences in 

different early and late flowering ddml lines was analysed by bisulfite sequencing. Because 

the ddml mutant was obtained in the Col genetic background, this genotype was also 

analysed. The repeated sequences of Col wild-type were found to be as densely methylated as 

in her. A similar level of methylation was found in early flowering ddml lines (Table 4.1). 

However, in a late flowering ddml line these sequences were not methylated, like in the fwa 

mutants. Therefore, we suggest that the late flowering of lines derived from the ddml 

background is caused by an FWA epi-mutation. 

Table 4.1. Flowering time and methylation of the FWA repeats in different wild-type and mutant plants. 

Genotype Accession Flowering time Methylation of repeats 

Ler, wild-type 
Col, wild-type 
fwa-1 
fwa-2 
fwa-1R1 
fwa-1R2 
fwa-1R3 
ddml 
ddml 

Ler 
Col 
Ler 
Ler 
Ler 
Ler 
Ler 
Col 
Col 

early 
early 
late 
late 
early 
early 
early 
early 
late 

yes 
yes 
no 
no 
no 
no 
no 
yes 
no 

The late flowering behaviour of plants transformed with FWA is unstable 

The late flowering phenotype of the fwa mutants is very stable since a screen among 4000 

plants of the fwa-1 marker line for spontaneous early flowering plants did not yield any 

revertant. In contrast, the flowering behaviour of FWA transgenic plants was rather unstable. 

Transgenic Ler wild-type plants transformed with either of the two cosmids WS20 and WS28, 

were analysed for their flowering behaviour through four subsequent generations. Only a 

small portion of these Tl plants showed a delay in flowering time. None flowered as late as 

the fwa mutant, probably because they are hemizygous for the insert (Figure 4.8). Late 
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Figure 4.8. Flowering time of her plants transformed with the FWA-containing cosmid WS20. 

Frequency distribution of the number of leaves in the T1 transformants obtained after transformation of Ler 

wild-type plants with cosmid WS20 and some of the subsequent T2, T3 and T4 populations. All the Tl plants 

contained the insert and all T2, T3 and T4 populations were either homozygous or segregating for the WS20 

insertion. The Y-axis indicates the number of plants and the X-axis the total number of leaves produced by the 

plant. The ranges of variation for leaf number of Ler wild-type and fwa-l under the growth conditions of this 

experiment are indicated as horizontal bars. 

flowering plants were never observed in the progeny of early transgenic plants. However, the 

progeny of late flowering Tl plants segregated for flowering time and included plants that 

flowered as late as the fiva mutant (Figure 4.8). In all cases tested, the segregation for 

flowering time did not fit Mendelian ratios for either one or multiple copies of the cosmid. An 

excess of early flowering plants was observed through T2, T3 and T4 generations. In contrast, 

Mendelian ratios were observed for the segregation of the cosmid insert in all tested families. 

This indicates that the distorted segregation for flowering time was not due to reduced 

transmission of chromosomes bearing the transgene. 

We analysed the expression of FWA in different T2 populations. As shown in Figure 

4.9A, the transcript could only be detected in the T2 populations that were segregating late 
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flowering plants and not in the T2 population that only contained early flowering plants. 

Thus, FWA expression correlated with the flowering phenotype. 

In addition, fwa mutant plants were transformed with cosmids WS20 and WS28. 

Surprisingly, several Tl plants that flowered as early as her wild-type were obtained (4 out of 

23 plants for WS20 and 17 out of 44 plants for WS28). As shown in Figure 4.9B, expression 

of FWA was only detected in the late flowering T2 populations and not in the early flowering 

populations. This indicated that presence of the transgene induced silencing of the 

endogenous copy of FWA. 

FWA transgenic plants were also obtained with smaller genomic inserts than those 

contained in cosmids WS20 and WS28. For that, two constructs were made; one containing a 

6.1 Kb genomic fragment from thefiva-1 mutant and another containing a 5.2 Kb fragment 

from the Ler wild-type, both spanning the complete FWA gene and promoter. Transformation 

of these constructs into Ler wild-type plants did not yield any late flowering Tl plants, and 

only a few plants were flowering slightly later than wild-type plants. However, fiva-1 mutant 

plants transformed with the same constructs, produced mostly early flowering Tl plants (32 

out of 38 for the 6.1 Kb construct and 43 out of 48 for the 5.2 Kb construct. Therefore, the 

smaller constructs are stronger inducers of silencing than the larger genomic inserts. 

A « $ * K B /> / * ?> 
J s/ sf J / / / / f J / 

FWA W^ * FWA 

t t • • t R 0 C 5 • • • • • • Rocs 

Figure 4.9. FWA expression of Ler and fwa-1 plants transformed with the FWA -containing cosmid WS20. 

A. Northern blot analysis of FWA expression in different T2 bulked populations of Ler plants, transformed 

with cosmid WS20. As shown in Figure 4.8, the T2 population Ler-15 was early flowering and Ler-20 

and Ler-13 contained both early and late flowering plants. Plants were grown under LD conditions and 

total RNA was extracted three weeks after planting. The blot was probed with a fragment of the ROC5 

gene as a control for loading. 

B. Northern blot analysis of FWA expression in different T2 bulked populations of fwa-1 plants, 

transformed with cosmid WS20. The T2 populations fiva-1-10 andfiva-1-20 were early flowering and 

fwa-1-1 aaAfwa-1-9 were late flowering. Plants were grown under LD conditions and total RNA was 

extracted three weeks after planting. The blot was probed with a fragment of the ROCS gene as a control 

for loading. 
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Southern blot analysis of the methylation pattern 

for the same T2 populations analysed in Figure 

4.9B. Genomic DNA was digested with Cfol. A 

0.95 Kb probe that completely covered the 

0 . 9 _ ^ ^ k ^ l k ^ M ^ A genomic region, containing the two direct repeats, 

p. n — ^ ^ B ^ ^ H was used for hybridisation. Three DNA fragments 

^ K of 0.9, 0.6 and 0.2 (not visible) Kb were present in 

0 . 6 ~~ : t f ) ^ ^ V *' flf the/vva-7 mutant and one fragment of 1.7 Kb in 

her. 

To test whether FWA silencing and the loss of late flowering might be caused by de novo 

methylation of the FWA repeats, we looked at the methylation of several cytosines by 

southern blot analysis. This assay was used on fwa-1 transformed plants because in this case 

FWA silencing was induced on both transgene and endogene copies. Genomic DNA was 

extracted from whole plants of T2 populations and digested with the restriction enzyme Cfol 

that cuts twice in the repeats and is sensitive for methylation (Figure 4.7). Late flowering T2 

fwa-1 populations show the same pattern as fwa-1 itself (Figure 4.10). However, T2 

populations derived from Tl plants flowering at the same time as wild-type Ler, showed both 

the Ler wild-type and^wa mutant fragments and two other additional fragments, presumably 

due to methylation of only one of the two Cfol sites. Therefore, silencing of the FWA gene 

correlates with the presence of methylation in the FWA repeated sequences. 

Discussion 

FWA encodes a homeodomain containing transcription factor 

We have identified the FWA gene by positional cloning, revealing that it encodes a protein 

that belongs to the HD-GL2 family (Figure 4.4) which is a subclass of plant HD-ZIP 

homeodomain proteins. Several arguments indicate that fwa mutants carry gain of function 

alleles while fwa-1 R revertants are loss of function mutants of this gene: i) In fwa mutants, the 

flowering delay correlated with overexpression of this gene, compared to wild-type plants, ii) 
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Similar correlation was found in transgenic plants that carry an additional copy of FWA. iii) 

Mutations in the FWA DNA sequence of fwa-lR revertants suppress the late flowering 

phenotype of the fwa-1 mutant. 

Homeodomain proteins are transcription factors that play an important role in the 

regulation of developmental decisions through cell fate specification in both animal and plant 

development. It has been shown that the homeodomain can bind to DNA in a sequence-

specific manner and activates or represses the transcription of specific target genes. The 

leucine zipper can form a dimer that is required for this DNA binding. In addition, the 

START domain can bind to lipids, which suggests that HD-GL2 proteins function in a lipid-

dependent manner (Ponting and Aravind, 1999). The only two genes of this family with a 

known function are GLABRA! (GL2), which plays a role in specification of trichome 

producing and root hair developing cells (Rerie et al., 1994; Di Cristina et al., 1996), and 

ANL2 which is involved in anthocyanin distribution and root development (Kubo et al., 

1999). Thefwa mutants are characterised by a delay in flowering initiation, and thus, HD-

GL2 proteins also appear to be involved in cell fate changes that occur during transition from 

the vegetative to the reproductive meristem. 

fwa is a gain of function epi-mutant 

FWA overexpression in fwa mutants indicates that they are gain of function alleles of this 

gene. Although none of the fwa alleles have mutations in the DNA sequence of FWA, they 

show a complete absence of cytosine methylation in two direct repeated sequences located in 

its 5' promoter and coding regions. This is opposite to the strong methylation observed in 

wild-type FWA. Methylation of coding regions has been shown to lead to a reduction of gene 

activity in plant cells (Hohn et al., 1996; Jacobsen et al., 2000). Therefore, we concluded that 

Jwa mutants are gain of function epi-alleles of the FWA gene in which hypomethylation 

activates expression and leads to late flowering. Interestingly, overexpression of the most 

homologous gene to FWA (ANL2) by activation tagging also resulted in a late flowering 

phenotype (Weigel et al., 2000). This delay in flowering could be an indirect consequence 

produced by dominant negative interference with the function of flowering time genes. 

In recent years, several loss of function epigenetic mutations have been found and studied 

in plants. As shown for SUPERMAN (SUP) and AGAMOUS (AG) epi-alleles in Arabidopsis 

(Jacobsen and Meyerowitz, 1997; Jacobsen et al., 2000) and a naturally occurring epi-allele of 

the Lcyc gene in Linaria vulgaris (Cubas et al., 1999), these mutations are characterised by 

extensive methylation of a gene, leading to silencing in the mutant. In contrast to these epi-
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mutants where the wild-type allele is expressed, fwa mutants provide the first example of an 

epigenetic mechanism that leads to ectopic expression and gain of function of an otherwise 

silenced gene. 

FWA messenger was only detected in developing and germinating seeds of wild-type 

plants indicating that FWA expression is regulated through development. The mechanism by 

which this occurs remains unknown. It is possible that changes in methylation of the repeated 

sequences in the 5' region of FWA are involved. These repeats contain both promoter and 

transcribed regions and two silencing mechanisms can be speculated: transcriptional gene 

silencing (TGS), characterised by methylation of promoter regions and post transcriptional 

gene silencing (PTGS), associated with methylation of transcribed regions (Kooter et al., 

1999). Typical for PTGS is reactivation of the silenced genes at the onset of each generation 

(Depicker and Van Montagu, 1997; Kooter et al., 1999) which we observed for FWA 

expression. Furthermore, methylation at non-symmetrical sites as we found in the FWA 

repeats is characteristic for RNA-directed DNA methylation (RdDM) which can be part of 

PTGS (Pelissier et al., 1999). In RdDM, RNA elements located in the coding region of a 

certain mRNA could induce heavy methylation of the corresponding genomic region (Jones et 

al., 1999). The direct repeat present in the FWA mRNA is a candidate for such an RNA 

element. PTGS has only been observed in the silencing of transgenes thus far. However, it has 

been speculated to constitute a form of gene regulation that is important for plant growth and 

development (Depicker and Van Montagu, 1997). Another possibility is that methylation does 

not affect gene expression equally in all tissues throughout development. Perhaps methylation 

of the repeats cannot prevent expression of FWA during seed development and germination. 

Consistent with this, the Cfol sites in the FWA repeats were methylated in 4 days old imbibed 

seeds which showed expression of FWA (data not shown). In this respect it should be noted 

that plants with a SUP epi-mutation have a wild-type SUP phenotype and expression in 

ovules, even though the gene is silenced in other tissues (unpublished observations, Hajime 

Sakai, S.EJ. and Jean Finnegan). 

fwa is locally defective in DNA methylation 

The fwa mutants are characterised by stable hypomethylation of the FWA direct repeated 

sequences and surrounding sequences. This hypomethylation must have been caused during 

the mutagenesis experiments that yielded these mutants. Several hypotheses could explain 

this. 
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The FWA hypomethylation might have originated by a wide swath of demethylation of 

chromosome 4, as a direct consequence of the mutagenesis. In this light it is interesting to 

note that one of the SUPERMAN hypermethylated epi-alleles (clk-1) was found in the same 

plants that contained fwa-l. Therefore, this mutagenised plant might have shown disruptions 

in genomic methylation due to genomic shock caused by EMS. 

Secondly, a ddml or ddml-like mutation might have occurred in the mutagenesis 

experiment, which induced hypomethylation of FWA repeats and late flowering. 

Hypomethylation in ddml is spread over the whole genome, including the 180bp centromere 

repeats, rDNA and the retrotransposon TA3 (Kakutani et al., 1999) which all have a wild-type 

methylation pattern in fwa mutants. During backcrosses with wild-type the original mutation 

and hypomethylation outside the FWA region could have been eliminated from fwa mutant 

plants. In agreement with this, hypomethylation of sequences that are segregated away from 

the ddml mutation is very stable (Kakutani et al, 1999). 

Finally, a mutation in a region containing cis-acting local information for methylation 

might be closely linked to fwa and could have caused hypomethylation. In this respect, the 

characteristics of fwa are very similar to those of the human neurogenetic disorders called the 

Angelman and Prader-Wili syndromes. In patients with these syndromes, chromosome region 

15qll-ql3 shows abnormal DNA methylation and gene expression in about 2Mb. Deletions 

in a region that contains an imprinting centre or switch element have been suggested as the 

cause (Buiting et al., 1995). It has also been shown that a fragment from this region can 

function as a silencer in transgenic flies, suggesting a link between genomic imprinting and an 

evolutionary conserved silencing mechanism (Lyko et al, 1998). It could be possible that an 

element, similar to an imprinting centre, is linked to FWA and essential for proper methylation 

in this region. A mutation in this centre could explain the local nature of the hypomethylation 

mfwa. 

Unlike the fwa mutant alleles, FWA transgene expression and phenotype is not stably 

maintained. Interestingly, the late flowering trait is lost after a few generations (Figure 4.8). 

Furthermore, silencing of both the FWA trans- and endo-genes was observed in fwa plants 

that are transformed with constructs containing the FWA gene, as shown by the early 

flowering fwa transformants. These plants showed a correlation between silencing of FWA 

and methylation of the repeats (Figure 4.9B and 4.10). Therefore, we suggest that this is at 

least partly caused by a de novo methylation of the repeats. These findings are similar to those 

reported for the inverted repeats found in the PAI1-PAI4 gene which triggers methylation of 

previously unmethylated /Wendogenes after introduction into the plant (Luff et. al., 1999). It 
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is likely that the presence of multiple copies (from both the endogene and the transgene) 

induces homology dependent gene silencing (HDGS) in the transformants (Kooter et al., 

1999). Since this silencing occurs in fwa transgenic plants, the transgene dependent silencing 

mechanism is able to overcome the factor that causes the fwa hypomethylation. 

Smaller constructs, carrying the FWA gene showed a stronger induction of silencing in 

both her wild-type plants and fwa mutants. The lack of late flowering phenotype in 

transformed wild-type plants might be caused by the absence of an upstream enhancer 

element. A stronger induction of silencing in both wild-type and fwa mutants could be 

explained by an easier concatenation of these smaller constructs, as compared to cosmids, 

which causes more copies of FWA 

The transition from the vegetative to the reproductive phase is mediated by expression of 

FWA 

Increased expression of FWA in the fwa mutants leads to late flowering. Therefore, FWA 

either represses flowering or promotes vegetative development in these mutants. The 

molecular mechanism through which this repression occurs is still unknown. Genetic analyses 

have placed FWA in the epistatic group of genes that promote flowering through the 

photoperiodic promotion pathway. In particular, FWA appeared fully epistatic to FT, since the 

double mutant fwa ft does not flower later than the single mutants (Koornneef et al., 1998a). 

In addition, double mutants fwa apl and ft apl have a strongly delayed floral initiation while 

the double mutants fwa Ify and ft Ify completely lack flowerlike structures (Ruiz-Garcia et al., 

1997). Constitutive expression of LFY cannot substitute for the late flowering of ft wad fwa 

and these mutants in their turn do not interfere with promoter activity of LFY as other late 

flowering mutants do (Nilsson et al 1998). Thus, it has been speculated that FT and FWA 

have similar roles. They control not only the transition to flowering but also floral meristem 

identity through a common pathway parallel to LFY action. The expression pattern of FT in an 

fwa mutant background and in wild-type plants is similar, suggesting that FWA functions 

downstream of FT (Kardailsky et al, 1999; Kobayashi et al., 1999). However, we could not 

detect altered expression ofFWA in theft mutant or in any of the other late flowering mutants. 

These results suggest that although the FWA and FT products might work in a common target, 

their expression is independent of each other. 

The loss of function mutations of FWA (revertant alleles) did not show a flowering 

phenotype, which makes it unlikely that FWA has a function in flowering of wild-type plants. 

However, it is possible that FWA only functions under specific environmental conditions or 
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external stresses in which plants benefit from late flowering. Such conditions might induce 

hypomethylation of the repeats, enabling expression of FWA. In this way silenced genes may 

act as a reserve of activatable genes relevant for plant adaptation. 

The availability of the FWA gene should improve our understanding of its true role in the 

control of flowering initiation and clarify the significance of the methylated repeats for gene 

regulation in the near future. 

Experimental procedures 

Plant material 

BothyWa mutants are in a Ler background; the fwa-1 mutant was identified after treatment with EMS 

and the fwa-2 mutant after fast neutron irradiation (Koornneef et al., 1991). The Ler marker line 

containing the mutations cer2-l, ga5-l, fwa-1 and abil-1 was constructed by crossing lines carrying 

these mutations and selection in subsequent generations. 

The ddml mutant lines are in a Col background. The late lines obtained after repeated self-

pollination ofddml lines were described by Kakutani (1997). 

Growth conditions and measurement of flowering time 

Plants were grown either in a greenhouse with LD light regime (at least 14 hours daylength) or in a 

climate chamber with SD light conditions (8 hours light per day) as described in Koornneef et al. 

(1995). 

Flowering time was measured by counting the total number of leaves, excluding the cotyledons, 

since there is a close correlation between leaf number and flowering time (Koornneef et al., 1991). 

Construction of the YAC and cosmid contigs 

YAC clones were obtained from C. Dean (John Innes Centre, Norwich, UK) and analysed by 

hybridisation with RFLP markers sep2B, CC128 (from C. Dean), GA5 (from J. Zeevaart, Michigan 

State University, East Lansing, MI, USA), pcr28, pcr34, pcr41, pcr23 (from J. Giraudat and J. Leung, 

CNRS, Gif-sur-Yvette, France). 

A genomic DNA fwa-1 library of 27.262 clones with inserts of 15-20 Kb was constructed using 

the binary cosmid vector pCLD 04541, which carries the Agrobacterium LB, RB sequences, and a 

35S-NPTH fusion (supplied by C. Dean and C. Lister). The YAC clone EG1F12 was gel purified and 

hybridised to filters of this library. A cosmid contig was constructed by hybridisation of the positive 

cosmids with YAC's EW18E4, yUP10B5 and yUPHFll and by hybridising the cosmids with 

themselves. 
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Transformation of Arabidopsis 

Selected cosmids for plant transformation were transferred from Escherichia coli to Agrobacterium 

tumefaciens (AGLO strain; Lazo et al., 1991) by electroporation. Plants were transformed using the 

vacuum infiltration transformation procedure (Bechtold et al., 1993). Seeds obtained after infiltration 

were sterilised for 15 minutes with 20% bleach in absolute ethanol solution after which they were 

rinsed two times in absolute ethanol and dried overnight in a flow cabinet. Seeds were sown on plates 

with selective medium (1 X Murashige & Skoog salts, 1% sucrose, 40ug/ml kanamycin, 0.8% agar, 

pH 5.8). The plates were kept in the cold room (4°C) for 4 days and then transferred to a growth room 

(16 hours light, 25°C). After 10 days, resistant seedlings were transferred to soil. 

DNA andRNA detection by gel blot hybridisation 

DNA was isolated from plants, grown in the greenhouse, following basically the protocol of Bernatzky 

and Tanksley (1986). RNA was isolated from plants grown in the greenhouse or climate chamber, 

following the protocol of Puissant and Houdebine (1990). Three (ig of genomic DNA was used for 

Southern blot analysis and 25 u,g of total RNA for Northern blot analysis. Southern and Northern blot 

analyses were performed, following the protocol supplied with the Hybond™-N nylon membranes 

(Amersham Pharmacia, Uppsala, Sweden). FWA expression was detected with a 1.1 Kb probe, 

corresponding to exons 4-8 of the FWA gene. A 0.57 Kb probe, corresponding to the constitutively 

expressed cyclophilin gene ROCS (Chou and Gasser, 1997) was used as a positive control on Northern 

blots. 

Detection ofmRNA by RT-PCR 

RNA for RT-PCR was isolated with the Rneasy plant mini kit from Qiagen (Chatsworth, CA, USA). 

For first strand cDNA synthesis, 5-10 (ig of total RNA was used and cDNA synthesis was primed by 

using the standard dT12_i8 adapter primer. The product of the first-strand synthesis reaction was then 

used for PCR with the primers FWA-E6/7 (5'-GCTCAC TCCAACAGATTCAAGCAG-3'), located at 

the junction of the sixth and seventh exon of the FWA gene, and FWA-R2 (5'-

GTTGGTAGATGAAAGGGTCGAGAG-3'), located in the eighth exon, which yielded a 0.35 Kb 

fragment. For the control reaction, a fragment of the constitutively expressed UBIQUITIN10 mRNA 

(Callis et al., 1995) was amplified, using the primers UBQ10F1 (5'-GATCTTTGC 

CGGAAAACAATTGGAGGATGGT-3') and UBQ10R1 (5'-CGACTTGTCATTAGAAAGA 

AAGAGATAACAGG-3'), which yielded a 0.5 Kb fragment. 

90 



_fwa: a late flowering epi-mutant 

Isolation of complete FWA cDNA by 5' and 3' rapid amplification ofcDNA ends (RACE) 

10 lig of total RNA was used for first strand cDNA synthesis. The cDNA was amplified and 

sequenced in three parts. The 5' part after dCTP tailing with the primers anchor (5'-

AAATGGATCCTTCTAGATGCGGGGGGGGGGGGGGGGG-3'), adapter (5'-AAATGGATCCTT 

CTAGATGC-3') and the gene specific primers fwa-5-1 (5'-ATCTG TCATGCTCTTCTCTA-3') and 

fwa-5-2 (5'-TACATTCTCAAGGTGGTCAT-3'). The middle part was amplified with the primers 

FWA-F2 (5'-ACAGAGGTACGAGCTTGGACAAAG-3') and FWA-R2. The 3' part was amplified 

with the 3' RACE system kit from Gibco BRL (Rockville, MD, USA), using adapter and amplification 

primers from the kit and the gene specific primer fwa-3-1 (5'-ACTCTACCAGCCTTTGATTGGC-3'). 

Bisulfite Sequencing 

Genomic DNA, isolated from vegetative plants of each genotype was cleaved with Ddel and Dral 

restriction enzymes. DNA was then treated with sodium bisulfite, amplified, cloned and sequenced as 

previously described (Jacobsen, 2000). Clones were derived from PCR products of bisulfite treated 

DNA using the Invitrogen Original TA Cloning Kit. Several sets of PCR primers were used to amplify 

the direct repeats and regions outside these repeats. 
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The transition from the vegetative to the reproductive phase (flowering initiation) in plants 

has a complex regulation which is affected by environmental and internal plant factors. The 

understanding of this process is not only of fundamental interest but could also lead to 

practical applications. Early investigations of this process identified the roles of a cold 

treatment (vernalisation) (Gassner, 1918) and daylength (Garner and Allard, 1920) in the 

flowering initiation of several plant species. Flowering research initially focussed on the 

identification of environmental and chemical factors regulating flowering time and the 

classification of plants according to their response to these factors. Of particular interest was 

the identification of a graft transmissible signal, called florigen, proposed to be critical for 

flowering initiation (Lang, 1965). However, the biochemical nature of this compound was 

never discovered. The observation that many factors influence flowering time led to a 

multifactorial model of flowering control (Bernier, 1988). In the meantime, a genetic 

approach was initiated in different plant species (Murfet, 1977). In Arabidopsis several late 

flowering mutants were isolated and analysed (Redei, 1962; Hussein, 1968; Vetrilova, 1973) 

and classified into several groups based on genetic and physiological characterisations 

(Martinez-Zapater and Somerville, 1990; Koornneef et al., 1991). By this time, tools became 

available which made it possible to isolate and analyse these genes at the molecular level, 

which promised more insight into their cellular functions and molecular relationships with 

each other. Due to its genetic and molecular features Arabidopsis was the most suitable 

organism for this purpose (Meinke et al., 1998) and the research on flowering initiation 

became focussed on this plant. More and more genes influencing flowering time were 

characterised and different, partially redundant and interacting pathways affecting flowering 

were identified (Martinez-Zapater et al., 1994; Haughn et al., 1995; Koornneef et al., 1998b; 

Levy and Dean, 1998; Simpson et al, 1999; Reeves and Coupland, 2000). The present state of 

knowledge about the genetic control of flowering time in Arabidopsis is described in Chapter 

1. Although several genes that play important roles in flowering initiation have now been 

identified and an increasing amount of information about their mutual interactions has been 

obtained, the picture is still far from complete. 

The aim of the work presented in this thesis is to increase our knowledge of flowering 

time regulation. It focussed on the genetic and molecular characterisation of the semi-

dominant mutant fwa which flowers late under long daylength conditions and has been 

proposed to be part of the photoperiodic promotion pathway (Chapter 1). One approach 

sought to identify additional genes that affect flowering, by mutagenesis of the fwa mutant. In 

addition to three different intragenic revertants of fwa, this screen yielded a novel early 
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flowering mutant which is described in Chapter 2. Another approach consisted of the map 

based cloning and molecular characterisation of the FWA gene, presented in Chapters 3 and 4. 

The novel early flowering mutant, obtained after mutagenesis of fwa was named early 

flowering in short days (efs). Its phenotypic characterisation has shown that the main role of 

the wild-type EFS gene is to delay flowering in plants that have entered the adult vegetative 

phase, which is considered to be the phase where plants are able to respond to environmental 

signals in order to flower (Poethig, 1990). Consistent with this, efs mutant plants do not show 

an early flowering phenotype when grown under environmental conditions that lead to a 

shortened adult vegetative phase such as long days and vernalisation. To learn more about the 

role of EFS in relation to other genes involved in flowering initiation, double mutants were 

isolated and characterised. This analysis showed that efs is epistatic to the late flowering 

mutants fca and/ve which belong to the autonomous promotion pathway, indicating that EFS 

acts downstream of these genes in the same pathway. This result, together with the lack of a 

vernalisation response, suggests that EFS is likely to represent a new element acting at a point 

close to the convergence of signals from the autonomous promotion pathway and the 

vernalisation promotion pathway (Figure 1.2). A similar position has been proposed for the 

FLC gene (Michaels and Amasino, 1999a; Sheldon et ai, 1999) and therefore, further study 

of the relationship between these two genes could provide new insights into this aspect of the 

flowering initiation process. 

The main topic of this thesis concerns the map based cloning of the FWA gene. This 

cloning was started in 1991 and proved to be a laborious and time consuming exercise. Initial 

fine mapping of the FWA locus failed because many genes with minor effects on flowering 

segregated in the original mapping population. This caused misscoring for the fwa phenotype 

and, therefore, misclassification of recombinants. As shown in Chapter 3, this problem was 

solved by using a mapping population with a more uniform genetic background, by which the 

FWA locus could be located in a region of about 60 Kb. Plant transformation experiments 

with cosmids spanning this region showed that the gene is located in the overlap of two 

cosmids. This overlap contained only one complete gene that encodes a homeodomain 

containing transcription factor. The altered expression of this gene in fwa mutants together 

with DNA mutations in the intragenic revertants of fwa-1 further proved that this gene is 

FWA. 

Analysis of FWA revealed several interesting characteristics. Surprisingly, the mutant and 

wild-type alleles had an identical DNA sequence in the FWA region, excluding DNA 

mutations in the gene as a cause for the mutant phenotype. Furthermore, two direct repeated 
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sequences were found in the 5' genomic region of FWA. In wild-type plants these repeats 

were heavily methylated, whereas in the mutant alleles the repeats were completely un-

methylated. In contrast Xofwa mutant plants, which showed a high expression of FWA at all 

developmental stages, wild-type plants showed only a low expression of FWA in siliques and 

germinating seeds. Taken together, these findings suggest that loss of methylation of the FWA 

repeats in the fwa mutant causes a high level of expression of the gene, leading to a late 

flowering phenotype. A similar correlation of late flowering, FWA overexpression and 

hypomethylation of FWA repeats was found in late flowering plants which were derived from 

the ddml hypomethylation mutant. The late flowering phenotype of these plants had 

previously been mapped to the FWA region (Kakutani, 1997). Nevertheless, the correlation 

between hypomethylation of the FWA repeats and FWA expression was not found in 

germinating seeds of wild-type plants which showed expression of FWA but methylation of 

the repeats. Although this expression might come from residual mRNA produced earlier in 

developing seeds, it is possible that methylation of the repeats does not always prevent 

expression of FWA. Perhaps a different epigenetic mechanism early in development can 

induce expression of methylated genes. In Chapter 4 three hypotheses are given as possible 

explanations for the local hypomethylation in fwa mutants: a genomic shock due to 

mutagenesis, a second site mutation that has been segregated away, and a closely linked 

mutation that still could be present. An indication that might support the last hypothesis came 

from wild-type plants that were transformed with a cosmid (WS31) carrying an fwa-1 insert 

which is closely linked to the FWA locus. In T2 and later generations of these transformants 

late flowering and other mutant phenotypes were observed. This suggested that cosmid WS31 

contains a mutation that causes hypomethylation in cis, thereby altering the expression of 

nearby genes. However, late flowering T3 transformants did not show expression of FWA nor 

hypomethylation of the FWA repeats, indicating that overexpression of the FWA gene was not 

the cause of the late flowering phenotype. 

The correlation of FWA expression with late flowering indicates that FWA is a repressor 

of flowering. This repression phenotypically and genetically mimics loss of function 

mutations in the FT gene. However, FT expression is not altered in An fwa mutant background 

(Kardailsky et al., 1999; Kobayashi et al., 1999) suggesting that FWA might act downstream 

of FT. A genetic analysis by Ruiz-Garcia et al. (1997) showed that the double mutants oifwa 

and ft with leafy (Ify) did not make any flower like structures. Also, the combination of fwa 

with a constitutively expressed flowering promoting gene (35S::C0) resulted in near-

complete loss of floral organs (Onouchi et al., 2000). This suggests a role for FWA as 
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meristem identity gene, redundant with LFY. However, we could not detect any expression of 

FWA in flowers or buds of wild-type plants indicating that FWA probably inhibits floral 

meristem identity only when ectopically expressed in the/vva mutants. 

The cloning of FWA could not further clarify the role of this gene in the flowering 

initiation process. The loss of function alleles of FWA generated in the Jwa-IR revertants did 

not show any obvious phenotype and no expression of FWA could be detected in other late 

flowering mutants, suggesting that these mutants do not flower late due to FWA expression. 

Possibly, FWA has no function in flowering initiation of wild-type plants. It might participate 

in a seed-specific process, as suggested by its expression in seeds. However, the lack of an 

obvious phenotype in the revertants suggests that this role is minor or redundant with other 

genes. 

A role for methylation in the regulation of FWA expression can be proposed. It may be 

that FWA only has a function in wild-type plants under specific environmental conditions or 

external stresses in which plants benefit from flowering late. Such conditions might induce 

hypomethylation of the repeats, enabling expression of FWA. An environmental condition 

that influences flowering time and that has been speculated to be associated with changes in 

methylation level is vernalisation. It has been suggested that low temperature treatment 

reduces the methylation status of gene(s) that promote flowering (Burn et al., 1993a; Dennis 

et al., 1996). For the recently cloned flowering repressing FLC gene it has been shown that 

both vernalisation and a reduction of the methylation status downregulate the level of its 

mRNA (Michaels and Amasino, 1999a; Sheldon et al., 1999), although no direct effect on the 

methylation status of FLC or any other gene has yet been reported. However, demethylation 

of FWA does not cause early flowering but late flowering instead. Therefore, it is unlikely that 

FWA plays a central role in the vernalisation process itself, although it may be associated with 

a similar regulation mechanism. 

The results discussed in this thesis have contributed to the existing knowledge of 

flowering initiation by the isolation of a mutant at a novel locus and the cloning of a 

previously known gene which are both involved in this process. In addition, the results 

indicate a possible role for DNA methylation in gene regulation of Arabidopsis. 
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Samenvatting 

Het is belangrijk voor een plant om op een gunstig tijdstip in het jaar tot bloei te komen 

teneinde een zo groot mogelijk aantal levensvatbare zaden te kunnen produceren. Deze bloei 

initiatie is complex gereguleerd. Hierbij spelen zowel omgevingsfactoren als interne 

plantfactoren een rol. Een goed begrip van dit proces is niet alleen van fundamenteel belang, 

maar zou ook tot praktische toepassingen kunnen leiden. Het onderzoek naar bloei initiatie 

heeft al een geschiedenis van meer dan 80 jaar. Aanvankelijk werd de nadruk gelegd op 

fysiologisch en biochemisch onderzoek dat leidde tot de identificatie van verschillende 

omgevings- en plantfactoren voor bloei. Sinds de jaren zestig kent dit onderzoek ook een 

genetische aanpak, waarbij gebruik gemaakt wordt van planten die mutaties hebben in genen 

die invloed hebben op het tijdstip van bloei. Vooral in Arabidopsis werd een groot aantal van 

dergelijke mutanten verkregen, die vervolgens genetisch en fysiologisch gekarakteriseerd zijn. 

Hieruit bleek dat de bloei initiatie in Arabidopsis via verschillende, met elkaar in verband 

staande routes gereguleerd is. Dit zijn onder andere de daglengte route, waarin bloei onder 

invloed van lange daglengtes gestimuleerd wordt, de vernalisatie route, waarin bloei 

gestimuleerd wordt na blootstelling aan lage temperaturen en de autonome route, waarin bloei 

onafhankelijk van de omgeving gestimuleerd wordt. Dankzij de gunstige eigenschappen van 

Arabidopsis concentreerde het onderzoek naar bloei initiatie zich vervolgens op deze plant. 

Sinds het begin van de jaren negentig zijn ook verschillende van de genen in deze 

reguleringsroutes gekloneerd. Dit gaf meer inzicht in de functie van deze genen in de eel en 

de relaties die ze hebben met elkaar. Hoewel door dit onderzoek nu al veel opgehelderd is, 

blijven er toch nog onduidelijkheden bestaan over de regulering van bloei initiatie. 

Het in dit proefschrift gepresenteerde onderzoek heeft als doel een bijdrage te leveren aan 

de kermis over bloei initiatie. Hierbij zijn twee verschillende strategieen gevolgd, beide 

gebaseerd op de laat bloeiende mutantfwa. Defwa mutant is gedeeltelijk dominant en behoort 

tot de daglengte route. Een strategic was om meer genen te verkrijgen welke invloed hebben 

op de bloei door middel van het mutageniseren van defwa mutant. Hierbij werden niet alleen 

drie intragene revertanten van fwa gevonden, maar ook een nieuwe vroeg bloeiende mutant 

welke is beschreven in hoofdstuk 2. De tweede strategic bestond uit het kloneren en de 

verdere moleculaire analyse van het FWA gen, wat beschreven is in de hoofdstukken 3 en 4. 

De nieuw verkregen vroeg bloeiende mutant werd efs genoemd (hetgeen staat voor early 

flowering in short days = vroege bloei in korte dag). Een fenotypische karakterisering van 
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deze mutant wees uit dat de belangrijkste rol van het normale (wildtype) EFS gen is het 

remmen van de bloei van planten in de volwassen vegetatieve fase. De volwassen vegetatieve 

fase wordt beschouwd als de fase waarin planten kunnen reageren op omgevingsfactoren om 

tot bloei te komen. In overeenstemming hiermee bleek ook dat mutante efs planten niet 

vroeger bloeiden als ze werden opgekweekt onder condities zoals lange dagen en vernalisatie 

die leiden tot een kortere volwassen vegetatieve fase. Uit een analyse van dubbelmutanten is 

gebleken dat het EFS gen een rol speelt bij de autonome regulering van bloei initiatie. Dit 

gegeven, samen met het gebrek aan een vernalisatie respons duiden erop dat EFS een rol 

speelt in het punt waar de autonome en de vernalisatie route samenkomen. 

Het belangrijkste onderwerp van dit proefschrift betreft de klonering van het FWA gen. 

Met behulp van planten die een overkruising bezitten tussen FWA en omliggende markers kon 

het gebied waarin het FWA locus moet liggen verkleind worden tot 60 Kb. Plant transformatie 

experimenten met cosmiden, die dit gebied omvatten, lieten zien dat het FWA gen op de 

overlap van twee van deze cosmiden ligt. Deze overlap bevat slechts een compleet gen, dat 

voor een homeodomein bevattende transcriptie factor codeert. Een gewijzigde expressie van 

dit gen infiva mutanten, samen met DNA mutaties in de intragene revertanten van defiva 

mutant bewezen verder dat dit gen FWA is. 

Analyse van het FWA gen onthulde verschillende interessante kenmerken. Het bleek dat 

de mutante en wildtype allelen een identieke DNA volgorde hebben in het gebied op het 

genoom waar het FWA gen ligt. Dit sluit uit dat een DNA mutatie in het gen verantwoordelijk 

is voor het mutante fenotype. In het 5' gebied van FWA werden twee repeterende DNA 

sequenties gevonden. Een van deze is gelegen in de eerste twee exons van het gen, hetgeen 

ook een kleine repeterende sequentie in het onvertaalde 5' gedeelte van het mRNA tot gevolg 

heeft. Het DNA van deze repeterende sequenties is sterk gemethyleerd in wildtype planten, 

terwijl dit in defiva mutanten in het geheel niet gemethyleerd is. In tegenstelling tot mutante 

fiva planten, waar voor alle ontwikkelingsstadia van de plant een hoge expressie van FWA 

gevonden werd, is in wildtype planten slechts een lage expressie gevonden in hauwtjes en 

kiemende zaden. Deze gegevens maken het zeer waarschijnlijk dat het verlies aan methylering 

van de repeterende sequenties in defiva mutant een hoge expressie van het gen veroorzaakt, 

hetgeen leidt tot het late bloei fenotype. Een soortgelijke correlatie tussen late bloei, 

overexpressie van FWA en hypomethylering van de repeterende FWA sequenties werd ook 

gevonden in laat bloeiende planten die verkregen zijn uit de ddml hypomethylerings mutant. 

Het laat bloeiende fenotype van deze planten was voorheen al genetisch gelokaliseerd in het 

FWA gebied. De correlatie tussen hypomethylering van de FWA repeterende sequenties en 
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FWA expressie werd echter niet gevonden in kiemende zaden van wildtype planten die FWA 

expressie vertoonden in aanwezigheid van gemethyleerde repeterende sequenties. Het is 

mogelijk dat deze expressie nog afkomstig is van eerder geproduceerd mRNA, maar het kan 

ook dat methylering niet altijd expressie van FWA kan voorkomen. 

De correlatie tussen FWA expressie en late bloei geeft aan dat FWA de bloei onderdrukt. 

Eerder onderzoek had al aangetoond dat FWA niet alleen een rol speelt bij bloei initiatie, maar 

ook in het meristeem dat tot de vorming van bloemen leidt. In wildtype planten kon echter 

geen expressie van FWA worden aangetoond in bloemknoppen of bloemen en het zou kunnen 

dat het gen alleen dit proces bei'nvloedt wanneer het een hoge expressie vertoont in dejwa 

mutant. Het is daarom mogelijk dat FWA geen rol speel bij het tot bloei komen van wildtype 

planten, maar een functie heeft in een zaad specifiek proces, gezien de gevonden expressie in 

zaden. 

Uit de klonering van FWA bleek dat de afwezigheid van methylering van de repeterende 

sequenties in het 5' gebied van het FWA gen een verhoogde expressie geeft in dejwa mutant. 

Het is echter niet duidelijk geworden of deze correlatie direct of indirect is. Ook het belang 

van deze methylering in wildtype planten is nog onduidelijk. Het is mogelijk dat het een rol 

speelt in de expressie van het gen onder bepaalde omgevingsfactoren. 

De resultaten die in dit proefschrift beschreven zijn, hebben een bijdrage geleverd aan de 

bestaande kennis over bloei initiatie, zowel door de isolatie van een mutant in een nieuw locus 

als door de klonering van een al eerder bekend gen, die beide bij dit proces betrokken zijn. 

Bovendien hebben de resultaten aanwijzingen gegeven voor een mogelijke rol van DNA 

methylering in genregulatie bij Arabidopsis. 

115 



Publications 

Articles from this thesis: 

Koornneef, M., Alonso-Blanco, C, Peeters, A.J.M. and Soppe, W. (1998). Genetic control of 

flowering time in Arabidopsis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 49, 345-370. 

Soppe, W.J.J., Bentsink, L., and Koornneef, M. (1999).The early-flowering mutant efs is 

involved in the autonomous promotion pathway of Arabidopsis thaliana. Development 126, 

4763-4770 

Soppe, W.J.J., Jacobsen, S.E., Alonso-Blanco, C, Jackson, J.P., Kakutani, T., Koornneef, M. 

and Peeters, A.J.M. (2000). The late flowering phenotype offiva mutants is caused by gain of 

function epigenetic alleles of a homeodomain gene. Molecular Cell, in press. 

Additional articles: 

Koornneef M., Bade, J., Hanhart, C, Horsman, K., Schel, J., Soppe, W., Verkerk, R. and Zabel, 

P. (1993). Characterisation and mapping of a gene controlling shoot regeneration in tomato. 

Plant J. 3,131-141. 

Kuipers, A.G.J., Soppe, W.J.J., Jacobsen, E. and Visser, R.G.F. (1994). Field evaluation of 

transgenic potato plants expressing an antisense granule-bound starch synthase gene: Increase of 

the antisense effect during tuber growth. Plant Mol. Biol. 26,1759-1773. 

Koornneef, M., Blankestijn-de Vries, H., Hanhart, C, Soppe, W., and Peeters, T. (1994). The 

phenotype of some late-flowering mutants is enhanced by a locus on chromosome 5 that is not 

effective in the Landsberg erecta wild type. Plant J. 6, 911-919. 

Kuipers, A.G.J., Soppe, W.J.J., Jacobsen, E. and Visser, R.G.F. (1995). Factors affecting the 

inhibition of granule-bound starch synthase gene expression in potato via antisense RNA. Mol. 

Gen. Genet. 246, 745-755. 

Hutten, R.C.B., Soppe, W.J.J., Hermsen, J.G.T.H. and Jacobsen, E. (1995). Evaluation of 

dihaploid populations from various potato varieties and breeding lines. Potato Res. 38, 77-86. 

117 



Publications 

Patent: 

Soppe, W.J.J., Peeters, A.J.M. and Koornneef, M. Genetic control of flowering using the FWA 

gene. Patent Cooperation Treaty, International Application PCT7NL99/00414. 2 July 1999, 

Wageningen University. 

118 



Curriculum vitae 

Wim Soppe werd op 8 juni 1967 in de Noordoostpolder geboren. Na het behalen van het 

VWO diploma in 1985 aan het Prof, ter Veenlyceum in Emmeloord, begon hij in hetzelfde 

jaar met de studie Plantenveredeling aan de Landbouwuniversiteit te Wageningen. Tijdens de 

doctoraalfase werden de afstudeervakken Plantenfysiologie, Plantenveredeling en 

Erfelijkheidsleer gevolgd, alsmede een stage Plantenveredeling bij het Scottish Crop Research 

Institute in Dundee (Schotland). Na het afstuderen in 1991 werkte hij in het kader van zijn 

vervangende dienstplicht van januari 1992 tot mei 1993 op de vakgroep Plantenveredeling 

van de Landbouwuniversiteit te Wageningen. Vervolgens was hij van juli 1993 tot September 

2000 aangesteld bij het laboratorium voor Erfelijkheidsleer van dezelfde universiteit om 

onderzoek te verrichten aan bloei initiatie mutanten bij Arabidopsis. De resultaten hiervan 

staan beschreven in dit proefschrift. Met ingang van September 2000 werkt hij als postdoc aan 

de relatie tussen DNA organisatie en genactiviteit bij het Institut fur Pflanzengenetik und 

Kulturpflanzenforschung (IPK) in Gatersleben (Duitsland). 

119 



Nawoord 

Hoewel het in dit proefschrift beschreven werk ook door anderen verricht had kunnen worden 

zonder mij, zou ik nooit in staat zijn geweest dit te doen zonder hulp van anderen. Hierbij wil 

ik graag al diegenen bedanken waarbij een aantal mensen in het bijzonder. 

Als eerste mijn promotor, Maarten Koornneef. Ik denk dat ik het getroffen heb met een 

begeleider die alles en iedereen in de Arabidopsis wereld kent. Dit samen met je 

enthousiasme en beschikbaarheid heb ik als zeer positief ervaren. Hoewel ik je eerste AIO 

was op een moleculair onderwerp en je geregeld beweerde niks van moleculair onderzoek af 

te weten, lijkt me dat niet terecht en ik denk dat het uiteindelijk tot een mooie symbiose van 

moleculair en genetisch werk is gekomen. Ik wil ook Ton Peeters bedanken; je bent als eerste 

met het FWA project begonnen, net zoals ik onwetend van de problemen die zouden komen 

en de tijd die het in beslag zou nemen. Je hebt me toch goed weten in te werken en wegwijs 

gemaakt in het lab. Than I come to Carlos who also suffered with FWA for a while. I'm sorry 
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Verder bedank ik ook de andere mensen van de botgen groep die hier langere of kortere 
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de goede sfeer en samenwerking in het lab, is het in dit geval toch zeker wel terecht. In 

volgorde van verschijnen zijn dat: Corrie, Hetty, Annemarie, Ageeth, Isabelle, Bertrand, 

Leonie, Salah, Vered, Emile en Gerda. Gerrit, die altijd mijn planten in de kas verzorgde wil 

ik hierbij zeker niet vergeten en ook bedanken. Dat geldt natuurlijk ook voor de rest van de 

vakgroep, waarbij ik nog in het bijzonder Hildo wil noemen voor advies bij verschillende 

experimenten en Hans voor hulp en gebruik van z'n computer. 

Nogmaals iedereen bedankt en mocht ik ooit weer eens een proefschrift willen schrijven 

dan zal ik het nog wel laten weten. 
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