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Stellingen 

1. Uit het feit dat de oxidatiecapaciteit van Zygosaccbaromyces rouxii niet geremd wordt 

door glucose, concluderen Brown and Edgley (1980) ten onrechte dat Z. rouxii niet 

Crabtree positief is. 

(Hoofstuk 2 en 4 van dit proefschrift). 

2. Hoewel meestal alginaat wordt gebruikt voor het immobiliseren van sojasaus gisten, is 

alginaat niet geschikt voor toepassing in (langdurige) sojasaus processen. 

(Hoofstuk 6 en 7 van dit proefschrift). 

3. Het uitblijven van economisch succes in landen als Indonesie en Suriname toont aan, 

dat dit succes niet alleen bepaald wordt door de aanwezigheid van natuurlijke 

rijkdommen. 

4. Het 'messageboxje' van de mail doet een van de grote voordelen van de e-mail, dat je 

de mail leest wanneer het je goed uitkomt, teniet. 

5. Dat een samenvatting in gewone mensentaal nodig is om wetenschappelijk onderzoek 

begrijpbaar te maken voor de gewone mens, geeft bijzonder goed de gei'soleerde 

positie van de wetenschapper weer. 

(Naar aanleiding van proefschrift van L.P. Ooijkaas). 

6. De objectiviteit van het reviewen van artikelen zou verbeterd kunnen worden door de 

namen van de auteurs onbekend te laten voor de reviewers. 



7. Door industrie gefinancierde aio's moeten niet alleen het wetenschappelijk belang van 

hun onderzoek kunnen aangeven, maar tevens het industriele belang kunnen 

verdoezelen voor de buitenwereld. 

8. Voedingsmiddelen zijn per definitie functioned en daarom zou de term 'functional 

foods' beter veranderd kunnen worden in 'extrafunctional foods'. 
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General introduction 

Soy sauce 

Since ancient times soy sauce has been very popular as a food-flavouring agent in the 

Orient. Nowadays soy sauce is being used all over the world. Soy sauce is a dark brown 

liquid with an aroma suggestive of meat extracts. This liquid is prepared by hydrolysis of 

plant materials. 

For this hydrolysis a fermentation or chemical process can be used. In the fermentation 

process the plant materials are hydrolysed very slowly under mild conditions, whereas the 

chemical hydrolysis under more extreme conditions is very fast. Therefore the chemical 

soy sauce is less expensive than the fermented one, but the latter is superior in flavour 

(Lull, 1995). 

Product ion o f f ermented soy sauce 

The conventional process for production of fermented soy sauce starts with mixing the 

raw plant materials, which are soybeans and wheat (Figure 1) (Yong and Wood, 1974; 

Beuchat, 1983; Sugiyama, 1984; Fukushima, 1985; Yokotsuka, 1986; Roling, 1995). The 

ratio of soybeans to wheat used is dependent on the type of soy sauce. Basically two types 

of fermented soy sauce can be distinguished, a Japanese and a Chinese type (Roling, 

1995). For the Japanese type approximately equal amounts of soybeans and wheat are 

used, whereas wheat is hardly or not used for the Chinese type. 

After mixing, Aspergillus species are added to the raw materials in order to start a solid-

state fermentation. During the solid-state fermentation, Aspergillus grows and produces 

extracellular enzymes, such as proteases and amylases (Yong and Wood, 1977), which 

hydrolyze the protein and starch of the soybeans and wheat. In about two days Aspergillus 

is grown throughout the mixture of soybeans and wheat. 

In the following step of the production, the moulded soybeans and wheat are mixed with 

a brine solution of 17% (w/v) salt. In the brine solution the enzymes from Aspergillus go 
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on with hydrolyzing the protein and starch of the soybeans and wheat, and consequendy 

many amino acids and sugars are formed. These amino acids and sugars are used for the 

growth of salt-tolerant lactic-acid bacteria (Tetragenococcus halophild) and yeasts 

{Zygosaccharomyces rouxii and Candida versatilis) during the so-called brine fermentation. 

Unlike the growth of these desirable micro-organisms, that of undesirable ones is 

effectively inhibited by the high salt content of the brine solution (Sugiyama, 1984). 

soybeans wheat 

mixeda 

Aspergillus species 

solid-state fermentation 

brine solution 

Tetragenococcus halophila 
Zygosaccharomyces rouxiib 

Candida versatilisb 

brine fermentation 

soy sauce 

Figure 1. Process for production of fermented soy sauce. Superscript indicates: a: ratio of soybeans to wheat is 

dependent on type of soy sauce; b: fermentation by Zygosaccharomyces rouxii and Candida versatilis hardly 

occurs in the Chinese type of soy-sauce production, but is very obvious in the Japanese type of soy-sauce 

production. 

In the beginning of the brine fermentation the pH is around 7. At this pH T. halophila 

grows very fast and produces lactic acid, which decreases the pH. As the pH approaches 

5, the growth of T. halophila ceases and fermentation with the yeasts Z. rouxii and 
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C. versatilis starts. During this yeast fermentation many flavour components like ethanol, 

higher alcohols, 4-hydroxyfuranones and 4-ethylguaiacol are produced. 

The extent of the yeast fermentation is dependent on the type of soy-sauce production 

(Roling, 1995). In Japanese type of soy-sauce production the yeast fermentation is clearly 

present and has a great impact on the flavour of the final product, while it hardly or not 

takes place during the Chinese type of soy-sauce production. Instead, in the Chinese type 

spices like garlic, ginger and nutmeg are added to give the final flavour. 

The difference between the yeast fermentation for both types is caused by the fact that in 

the Japanese type a greater ratio of wheat to soybeans is used than in the Chinese type 

(Roling, 1995). Wheat is poorer in protein but much richer in starch than soybeans. 

Consequendy, the brine solution of the Japanese type contains much more sugars arisen 

from the wheat starch than that of the Chinese type. For that reason, after the growth of 

T. halophila, in Japanese type plenty of sugars are left for the growth of yeasts and their 

flavour production, while at that time no sugars are remaining for the yeast fermentation 

in the Chinese type. 

Yeast flavour formation in Japanese soy sauce 

Because the flavour components formed by the salt-tolerant yeasts give a characteristic 

flavour to Japanese soy sauce, much research has been done to understand the 

metabolism of especially Z. rouxii (Sugiyama, 1984; Aoki et al., 1991; Hecquet et al., 1996). 

Nevertheless, there is still not so much known about the yeast flavour formation, which 

makes it difficult to control. 

In addition the flavour formation by the yeasts is very slow and therefore usually more 

than 6 months are required to complete the yeast fermentation. The reason for this long 

fermentation time is the fact that the metabolic activity of the yeast is low due to the high 

salt content of the brine solution (17% (w/v)) (Yong and Wood, 1974). In order to 

shorten the fermentation time, a high concentration of yeast cells is needed. For that 

reason, much effort has been put into the application of immobilized salt-tolerant yeasts 
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(Osaki et al, 1985; Horitsu et al., 1990; Hamada et al., 1991). This resulted in the 

development of new continuous immobilized-cell process, which appeared to be 10 times 

faster than the conventional process (Iwasaki et al., 1991). In this way the process time 

was decreased from 6 months to a few weeks (Osaki et al., 1985). 

In the new process the salt-tolerant yeasts were mostly entrapped in alginate gel beads. 

However, alginate gel is mechanically very weak (Horitsu et al, 1990; Muscat et al, 1996) 

and also chemically unstable towards high salt concentrations (Martinsen et al., 1989; 

Horitsu et al., 1990). Because of the latter, it is expected that the high salt content of the 

brine solution will have a negative effect on the chemical stability of alginate. Therefore, a 

long-term operation with salt-tolerant yeasts immobilized in alginate gel is not feasible 

(Horitsu etal., 1990). 

Outline of this thesis 

In this thesis, research about the flavour formation by salt-tolerant yeasts in Japanese soy-

sauce processes is described. The aim of this research was to obtain more knowledge 

about the metabolism of the salt-tolerant yeasts in order to enhance the control of the 

flavour formation. By this, the formation of desired flavour components can be 

promoted, which offers the possibility to influence the flavour composition of the soy 

sauce or to produce specific natural flavour components instead. Another aim of this 

thesis was to replace alginate with a chemically crosslinked polyethylene-oxide gel for 

immobilizing the salt-tolerant yeasts. In this way, the long-term operation of the 

continuous immobilized-cell process with an accelerated flavour formation is feasible. 

Important yeast-derived flavour components of Japanese soy sauce are the higher 

alcohols produced by Z. rouxii. The formation of higher alcohols in Z. rouxii is closely 

related to its amino-acid metabolism, in which OC-keto acids are key intermediates. 

Therefore, the separate effects of the amino acids threonine, cystathionine and the 

branched-chain amino acids on the metabolism of Z. rouxii were investigated (Chapter 2 

of this thesis). In this chapter, the regulation of the metabolism around (X-ketobutyrate, an 

OC-keto acid, is described as well. The regulation of the aspartate-derived amino-acid 
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metabolism in Z. rouxii compared to that in Saccharomyces cerevisiae, which was used as 

reference yeast all through the thesis, is discussed in Chapter 3. Chapter 4 deals with the 

steady-state culture characteristics of Z. rouxii, which were determined with the 

acceleration-stat (A-stat) cultivation method that was recendy developed by Paalme and 

Vilu (1992). The A-stat cultivation can be much less time-consuming than the usually 

used chemostat cultivation, especially when high accelaration rates are applied. The 

determination of the highest acceleration rate for estimation of the steady-state culture 

characteristics during A-stats with yeasts is reported as well in Chapter 4. The A-stat 

cultivation was also used in Chapter 5 to study the concomitant extracellular accumulation 

of OC-keto acids and higher alcohols by Z. rouxii. In the following two chapters, the 

immobilization of the salt-tolerant yeasts Z. rouxii and C. persati/is in a new polyethylene-

oxide gel is described. First the polyethylene-oxide gel was developed and characterized 

(Chapter 6), and after that the newly developed gel was applied in a continuous stirred-

tank reactor for flavour production (Chapter 7). Finally, in the last chapter of this thesis, 

recent advances in the research about the yeast flavour formation in Japanese soy-sauce 

processes are reviewed. 
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Chapter 2 

Effect of threonine, cystathionine, and the branched-chain amino 

acids on the metabolism of Zygosaccharomyces rouxii 

Abstract 

Zygosaccharomyces rouxii is an important yeast in the formation of flavour in soy sauce. In 

this study we investigated the separate effects of exogenous threonine, cystathionine and 

the branched-chain amino acids on the metabolism of Z. rouxii. The addition of these 

amino acids had significant effects on both Z. rouxii growth and glycerol and higher-

alcohols production. It also appeared that Z. rouxii displayed the Crabtree effect, which 

was independent of the added amino acids. Furthermore, we investigated the regulation of 

the metabolism of OC-ketobutyrate, which is a key intermediate in Z. rouxii amino-acid 

metabolism. Threonine and cystathionine were introduced separately in order to stimulate 

the formation rate of (X-ketobutyrate and the branched-chain amino acids to inhibit its 

conversion rate. Enzyme activities showed that these amino acids had a significant effect 

on the formation and conversion rate of OC-ketobutyrate but that the OC-ketobutyrate pool 

size in Z. rouxii was in balance all the time. The latter was confirmed by the absence of OC-

ketobutyrate accumulation. 

This chapter has been published as: van der Sluis C, Wolken WAM, Giuseppin MLF, Tramper J, 

Wijffels RH. 2000. Effect of threonine, cystathionine, and the branched-chain amino acids on the 

metabolism of Zygosaccharomyces rouxii. Enzyme Microb Technol 26: 292-300. 
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Introduction 

Zygosacchanmyces rouxii, a salt-tolerant yeast, is important for the flavour development in 

soy sauce. In soy sauce, Z. rouxii produces ethanol, higher alcohols and 4-hydroxy-2(or 5)-

ethyl-5(or 2)-methyl-3(2H)-furanone (HEMF). HEMF is considered as one of the 

important compounds for soy-sauce flavour (Nunomura et a l , 1976). Much research has 

been done to understand the biosynthesis of these flavours by Z. rouxii (Aoki and Uchida, 

1991a; Aoki and Uchida, 1991b; Yoshikawa et al., 1995). Nevertheless, there is still a lack 

of knowledge about the metabolism of Z. rouxii. For this reason, we are studying the 

metabolism of Z. rouxii in order to gain more insight into it. To facilitate this, we assumed 

in this work, unless otherwise stated, that Z. rouxii and Saccharomyces cerevisiae share 

common metabolic pathways. The found differences and similarities between the 

metabolism of Z. rouxii and S. cerevisiae are amply discussed. 

In our research, we are especially interested in the regulation of the OC-ketobutyrate 

metabolism in Z. rouxii because OC-ketobutyrate is a key intermediate in the amino-acid 

metabolism of S. cerevisiae (Figure 1). In S. cerevisiae, some OC-ketobutyrate is needed for the 

synthesis of isoleucine but intracellularly accumulated OC-ketobutyrate might inhibit the 

growth as shown in Salmonella typhimurium (Shaw and Berg, 1980; Primerano and Burns, 

1982) and Corynebacterium glutamicum (Eggeling et a l , 1987). In this work, we studied the 

regulation of OC-ketobutyrate metabolism in Z. rouxii at the enzyme level. We did this by 

increasing the formation rate of OC-ketobutyrate or decreasing its conversion rate. 

In S. cerevisiae, OC-ketobutyrate arises in the biosynthesis of at least two amino acids, namely 

isoleucine and cysteine, as can be seen in Figure 1 (Jones and Fink, 1982). In the 

isoleucine biosynthesis, the first enzyme is threonine deaminase (L-threonine hydro-lyase 

[deaminating]; EC 4.2.1.16) which catalyzes the deamination of threonine to OC-

ketobutyrate and ammonia. In the transsulfuration pathway for synthesizing cysteine, 

cystathionine y-lyase (L-cystathionine cysteine-lyase [deaminating]; EC 4.4.1.1) catalyzes 

the deamination of cystathionine to cysteine, OC-ketobutyrate and ammonia. The enzyme 

acetohydroxy acid synthase (acetolactate pyruvate-lyase [carboxylase]; EC 4.1.3.18) 

catalyzes the flow of OC-ketobutyrate and pyruvate towards isoleucine by forming OC-aceto-
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OC-hydroxybutyrate. The same enzyme also catalyzes the flow of two molecules pyruvate 

towards valine and leucine by forming Ct-acetolactate. 

threonine 

pyruvate 

a-acetolactate 

isobutyl 
alcohol 

a-keto-
isovalerate 

It 
valine 

isoamyl 
alcohol 

cystathionine 

cysteine 
ammonia 

a-ketobutyrate- n-propanol 

pyruvate 
3 
A 

a-keto-
isocaproate 

leucine- • 

oc-aceto-
a-hydroxybutyrate 

" 
a-keto-
P-methylvalerate 

isoleucine 

active 
-»• amy I 

alcohol 

Figure 1. Biosynthetic pathways of isoleucine, valine, leucine and cysteine in S. cerevisiae (solid lines). 

Enzymes: 1: threonine deaminase; 2: cystathionine y-lyase; 3: acetohydroxy acid synthase. Regulation at the 

enzyme level (dotted lines): +: induction by threonine; -: repression by isoleucine, valine and leucine together. 

19 



Effect of amino acids on Zygosaccbaromyces rouxii 

In Figure 1, the formation of the higher alcohols n-propanol, isobutyl alcohol, active amyl 

alcohol and isoamyl alcohol is also shown (Dellweg and Ketder, 1975). These higher 

alcohols are derived either from the deamination or transamination of extracellular amino 

acids (Ehrlich pathway) or direcdy from amino-acid biosynthetic pathways. In the Ehrlich 

pathway, the uptake and transamination of isoleucine, valine and leucine results in the 

formation of respectively OC-keto-p-methylvalerate, OC-keto-isovalerate and OC-keto-

isocaproate which are converted into respectively active amyl alcohol, isobutyl alcohol and 

isoamyl alcohol. Recendy, it is suggested that the Ehrlich pathway is not the only pathway 

involved in the catabolism of the branched-chain amino acids (isoleucine, valine and 

leucine) (Dickinson and Dawes, 1992; Derrick and Large, 1993). 

A way to increase the formation rate of CC-ketobutyrate is by increasing the specific activity 

of threonine deaminase and/or cystathionine y-lyase and to decrease the conversion rate 

of OC-ketobutyrate by decreasing the specific activity of acetohydroxy acid synthase (Figure 

1). The specific activity of threonine deaminase in S. cerevisiae can be increased by 

threonine, which induces the synthesis of threonine deaminase (Ramos and Wiame, 1982). 

Whether cystathionine increases the specific activity of cystathionine y-lyase is not known, 

because a lack of knowledge about the regulation of cysteine biosynthesis exists in 

S. cerevisiae (Jones and Fink, 1982). On the other hand, it is known that the specific activity 

of acetohydroxy acid synthase in S. cerevisiae can be decreased by the branched-chain 

amino acids which are all three necessary to repress the synthesis of acetohydroxy acid 

synthase (Bussey and Umbarger, 1969; Bollon, 1975). 

In the research presented here, the separate effects of threonine, cystathionine and the 

branched-chain amino acids on the metabolism of Z rouxii were studied. For this, the 

consumption of substrates, growth and production of ethanol, glycerol and higher 

alcohols were monitored. Additionally, in order to study the regulation of (X-ketobutyrate 

metabolism, the effect of these amino acids on the specific activities of threonine 

deaminase, cystathionine y-lyase and acetohydroxy acid synthase in Z. rouxii and the 

accumulation of OC-ketobutyrate by Z. rouxii were determined. 
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Materials and me thods 

Yeast strain 

Z. rouxii CBS 4021, supplied by the Centraalbureau voor Schimmelcultures (Delft, The 

Netherlands), was used in all experiments. The cells were maintained on a mixture of 

glycerol and skimmed milk at -80°C. 

Inoculum cultures 

Inoculum cultures were made in 300 ml Erlenmeyer flasks, containing 100 ml GPY 

medium, on a rotary shaker at 28°C and 200 rpm. GPY medium has the following 

composition per liter of demineralized water: 40 g glucose. IH2O, 5 g peptone and 5 g 

yeast extract. The components were separately autoclaved at 120°C for 20 minutes. The 

cells were used for inoculation of the bioreactor when they were in the exponential 

growth phase (between 20 and 40 hours cultivation). 

Bioreactor cultures 

Batch cultures were carried out in a bench-scale autoclavable bioreactor with a maximum 

volume of 2 liter. The height and the diameter of the bioreactor were respectively 0.20 and 

0.12 m. The bioreactor was stirred using a six-blade Rushton turbine stirrer with a 

diameter of 45 mm. The exponentially growing cells from the inoculum culture were 

inoculated (about 10% (v/v)) in a defined medium with the following composition per 

liter demineralized water: 22 g g lucose.lH20, 7.65 g NH4C1, 2.81 g KH2PO4, 0.59 g 

MgS0 4 . 7H 20 , 10 ml trace metal solution, 2 ml vitamin solution. The trace metal solution 

contained per liter demineralized water: 5.5 g CaCl2 .2H20, 3.75 g FeS0 4 . 7H 20 , 1.4 g 

MnS04.1H 20, 1.35 g ZnS0 4 . 7H 2 0 , 0.4 g CuS0 4 . 5H 2 0 , 0.82 g CoCl2 .6H20, 0.29 g 

Na 2 Mo0 4 . 2H 2 0 , 0.4 g H3BO3, 0.25 g KI and 33.21 g Ci0H14N2Na2O8.2H2O. The pH of 

this solution was adjusted to 4.0 with 4 M NaOH. The composition of the vitamin 

solution was per liter demineralized water: 0.05 g D-biotin, 5.00 g thiamine hydrochloride, 
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47 g m-inositol, 1.2 g pyridoxine, 23 g hemi-calcium pantothenate. Depending on the 

batch, the following amino acids were added: 1: no additions; 2: L-threonine; 3: L-

cystathionine and 4: L-isoleucine, L-valine and L-leucine. The initial concentration of each 

amino acid in the bioreactor was 5 mM. This concentration was chosen because 5 mM of 

each of the branched-chain amino acids was necessary for the repression of acetohydroxy 

acid synthase in S. cerevisiae (Bollon, 1975). The glucose, salts and trace metals were 

separately autoclaved at 120°C for 20 minutes. The vitamins and amino acids were filter-

sterilized (0.2 urn filters). 

During the batch cultures, a Bio Controller (Applikon) controlled the cultivations and a 

Bioexpert (Applikon) acquired the on-line data which were the temperature, pH, oxygen 

tension in the broth, foam level, stirrer speed and concentration of oxygen and carbon 

dioxide in the outgoing air. The temperature was controlled at 28°C and the pH at 4.5 by 

automatic addition of 1 M HC1 or 1 M NaOH. The cells were aerobically grown with an 

air flow rate of 0.8 1/min. The oxygen tension in the broth was kept above 30% of air 

saturation by controlling the stirrer speed. The stirrer speed was at least 250 rpm. The 

concentration of oxygen and carbon dioxide in the outgoing air was measured on-line by a 

Servomex 1400 O2/CO2 Analyser. The concentration of oxygen and carbon dioxide in 

the ingoing air was measured with this analyser before the cultivation started. From these 

measurements, respiratory quotients were calculated. The foam level was controlled by 

automatically adding a diluted (50 times) Antifoam B Silicone emulsion (J.T. Baker). 

During the cultivation, samples for off-line analyses were taken from the bioreactor. A 

part of a fresh sample was immediately used for measuring optical density and cell number 

or stored at -80°C. The other part was centrifuged (Labofuge 1, Heraeus Christ) at 3700 

rpm and 5°C for 10 minutes. The supernatant was used for analysis of extracellular 

substrates (glucose, ammonia and amino acids) and metabolites (OC-ketobutyrate, ethanol, 

glycerol and higher alcohols) and the remaining pellet was used for determining the 

biomass dry weight. The cultivations were stopped after about 140 hours. 
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Analyses 

For the biomass dry weight determination, the pellet obtained as described above was 

used. This pellet was washed with demineralized water and centrifuged again and after 

this, dried overnight at 80°C in an oven. 

The optical density was measured at 610 nm (Pharmacia Biotech, Ultraspec 2000) after 

dilution of samples to obtain absorbance values less than 0.7. In this range, the 

absorbance values were linearly related to biomass dry weight. 

The cell number was measured using a cell counter (Scharfe System, CASY 1) after 

appropriate dilution in an isotonic solution (Isoton, Scharfe System). 

Glucose, ethanol and glycerol concentrations were determined by HPLC on an Aminex 

HPX-87H Ion Exclusion column (300 * 7.8 mm, BioRad) heated to 60°C. Ultrapure 

water (Milli Q, Millipore), adjusted with H2SO4 to pH 2.0, served as the mobile phase. 

The flow rate was 0.8 ml/min. Detection was done using a refractive-index detector (LKB 

differential refractometer, Pharmacia). 

Ammonia concentrations were spectrophotometrically measured by means of a modified 

Berthelot reaction with an auto-analysis system (Skalar) (Verdouw et al., 1978). 

Amino acids were analysed by reversed-phase HPLC after derivatization with 6-

aminoquinolyl-N-hydroxysuccinimidyl carbamate (Waters Chromatography, Millipore 

Corp.) (Cohen et al., 1993). 

OC-Ketobutyrate concentrations were determined by reversed-phase HPLC (Chromspher 5 

C8, Chrompack) after derivatization with 2,4-dinitrophenylhydrazine (Buslig, 1982). For 

derivatization, a 1 ml sample was mixed with a 0.5 ml solution of dinitrophenylhydrazine 

(0.40 g dinitrophenylhydrazine dissolved in 60 ml 2N HC1) and allowed to stand overnight 

at room temperature. After this, the sample was mixed with 5 ml of acetonitrile and 

centrifuged after 1 hour. The supernatant was used for analysis after filtering (0.2 urn 
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filters). Intracellular OC-ketobutyrate concentrations were determined after a mixture of 1 

ml sample from the -80°C freezer and 1 ml of 80% (v/v) ethanol had been boiled for 30 

minutes. Hereafter, the (X-ketobutyrate concentration in the mixture was determined as 

described above. 

Ethanol and higher alcohols were determined by GC. The samples were incubated at 

60°C for 10 minutes. After incubation, a head-space sample was taken and collected in a 

cold trap (liquid nitrogen at -110°C). Through subsequent heating of the cold trap 

(240°C), the compounds were injected on a DB-wax column (30 m * 0.542 mm, film 1.0 

um). A temperature profile was used from 30 to 110°C at a rate of 2.5°C/min. Helium 

was used as carrier gas (about 15 ml/min, 30 kPA) and the compounds were detected with 

a flame-ionization detector (EL 980, Fison Instruments). With this method, active amyl 

alcohol and isoamyl alcohol could not be separated from another. 

Enzyme assays 

Samples (1 ml) from the -80°C freezer were centrifuged for 10 minutes at 13,000 rpm in 

an Eppendorf centrifuge (MicroCen 13, Herolab). After the supernatant had been 

removed, the cells were washed with demineralized water and centrifuged again. The 

remaining cells were broken using glass beads with a size ranging from 0.25-0.50 mm in a 

potassium-phosphate buffer of which the composition was dependent on the enzyme 

assay used. For this, the samples were vortexed (TM01, Labotech) at maximum speed five 

times for 45 seconds, alternating with 45 seconds cooling on ice. The crude cell extract 

obtained was immediately used for determining enzyme activities. 

The activity of threonine deaminase was determined according to the method for serine 

dehydratase of Suda and Nakagawa (1971). However, here threonine was used as substrate 

instead of serine. 

The method of Flavin and Slaughter (1971) was used for determining the activity of 

cystathionine y-lyase. 
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The activity of acetohydroxy acid synthase was determined according to the method of 

Eggeling et al. (1987). 

For determining the protein content of the cells, samples (1 ml) from -80°C freezer were 

centrifuged for 5 minutes at 13,000 rpm in an Eppendorf centrifuge (MicroCen 13, 

Herolab). After the supernatant had been removed, the cells were washed with 

demineralized water and centrifuged again. Then, the remaining cells were suspended in 

0.8 ml 0.1M NaOH. This suspension was boiled for 30 minutes and subsequendy cooled. 

Afterwards, the samples were neutralized by adding 0.2 ml 0.4 M HC1. The protein 

content of the samples obtained was determined by using the BCA protein assay with 

bovine serum albumin as standard (Pierce) (Smith et al., 1985). The incubation procedure 

used was 30 minutes at 60°C. 

Specific enzyme activities were expressed in (Xmol product formed per minute per mg 

protein (U/mg). 

Results and d i s cu s s i on 

Substrate consumption and growth 

In the different batches for studying the metabolism of Z. rouxii, the separate effect of 

threonine, cystathionine and the branched-chain amino acids on the consumption of 

substrates (glucose, ammonia and different amino acids) and growth was determined. In 

Figure 2A, the consumption of glucose in the different batches is shown. Figure 2A shows 

that the glucose consumption was more or less the same in all batches except for the 

threonine batch. In the threonine batch, glucose was consumed more slowly. The 

ammonia measurements (Figure 2B) clearly show that some ammonia was consumed in all 

batches except for the threonine batch, but that most of the added ammonia was 

remaining at the end of all batches. 
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Figure 2. Effect of amino acids on substrate consumption by Z. rouxii in batch cultures (•: no additions; • : 

threonine (5 mM); • : cystathionine (5 mM); • : branched-chain amino acids (each 5 mM)). A: glucose; B: 

NH4CI. 

It appears from the amino-acid analyses (Figure 3) that, threonine and the branch-chain 

amino acids were consumed in their batches, despite the excess ammonia, which is 

preferred as nitrogen source. The consumption of cystathionine could not be confirmed 

because the results of the analyses were not clear. Figure 3 shows that threonine was only 

slightly consumed while the branched-chain amino acids were completely consumed at 

almost the same rate. 
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Figure 3. Consumption of amino acids by Z. rouxii \n batch culture with threonine (broken line) or branched-

chain amino acids (solid line) (•: threonine; • : isoleucine; A: valine; • : leucine). 

The growth was followed by measuring biomass dry weight, optical density and cell 

number. In Figure 4, the biomass dry weight measurements are shown. The optical 
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density and cell number measurements (data not shown) were comparable to the biomass 

dry weight measurements. Figure 4 shows that the growth, like the glucose consumption, 

was comparable in all batches except for the batch with added threonine. In the threonine 

batch, the growth was severely inhibited. 
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Figure 4. Effect of amino acids on growth of Z. rouxii in batch cultures (•: no additions; 

cystathionine (5 mM); • : branched-chain amino acids (each 5 mM)). 

: threonine (5 mM); A: 

This growth inhibition could have been caused by threonine itself and/or a product 

originating from threonine like OC-ketobutyrate. In S. cerevisiae, threonine seems to be the 

key compound that regulates the flow through a metabolic pathway that leads to threonine 

and methionine (Ramos and Calderon, 1992). This regulation by threonine might have 

inhibited the growth of Z. rouxii by causing a shortage of methionine. OC-Ketobutyrate can 

also inhibit the growth by causing a methionine requirement. In S. typhimurium, 

intracellularly accumulated OC-ketobutyrate causes a requirement for methionine by limiting 

the formation of pantothenate (Primerano and Burns, 1982). However, this growth 

inhibition seems not very likely because pantothenate was present in the medium used (see 

materials and methods). Another possibility is that intracellularly accumulated (X-

ketobutyrate inhibited the synthesis of OC-acetolactate catalyzed by acetohydroxy acid 

synthase (Figure 1). This inhibition results in a shortage of valine, as shown in 

S. typhimurium (Shaw and Berg, 1980) and C. glutamicum (Eggeling et al., 1987). However, 

accumulation of OC-ketobutyrate could not be detected (with a threshold level of about 5 

mg.l1) in the cells from the threonine batch, just like in the cells from the other batches 

(data not shown). 
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Production of ethanol, glycerol and higher alcohols 

The separate effect of the amino acids, which were used in the different batches, on the 

production of ethanol, glycerol and higher alcohols was also determined in order to gain 

more insight into the metabolism of Z. rouxii. Ethanol and glycerol were monitored 

because their production is important for yeasts to keep the intracellular 

NAD(P)H/NAD(P) ratio in balance (Gancedo and Serrano, 1989). Furthermore, glycerol 

is the primary osmoregulatory solute of Z. rouxii (Edgley and Brown, 1978; van Zyl and 

Prior, 1990). The production of higher alcohols by Z. rouxii was studied because the 

production of some of them is closely related to the part of the amino-acid metabolism in 

which we are interested (Figure 1). Furthermore, (X-ketobutyrate is the precursor of n-

propanol. 

The ethanol production during the different batches, which was measured by GC, is 

shown in Figure 5A. These measurements were comparable with the HPLC 

measurements (data not shown). It appears from Figure 5A that the amino acids had no 

large effect on the ethanol production. Also in the threonine batch, much ethanol was 

produced despite the poor growth. In the beginning of all batches, ethanol was produced 

when glucose was still ample present (Figure 2A). In this phase of the fermentation, the 

respiratory quotients determined (data not shown) were greater than 1.0, confirming a 

metabolism with ethanol production (Wang et al., 1977). 

The ethanol production under glucose and oxygen excess demonstrates that Z. rouxii 

showed, like S. cerevisiae, the Crabtree effect. This effect means that glucose is 

simultaneously oxidized and, to keep the intracellular N A D H / N A D ratio in balance, 

reduced to ethanol at high glucose consumption rates under aerobic conditions and seems 

to be caused by a limited oxidation capacity of the yeast (Sonnleitner and Kappeli, 1986). 

In S. cerevisiae, this limited oxidation capacity is partly due to repression of respiration by 

glucose (Gancedo and Serrano, 1989), which does not occur in Saccharomyces rouxii (Brown, 

1975), which is a synonym for Z. rouxii (Kreger-van Rij, 1984). Probably for this reason, 

Brown and Edgley concluded that S. rouxii does not show a Crabtree effect (Brown and 
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Edgley, 1980). However, based on our results, this conclusion seems not to be justified. 

Figure 2A and 5A also show that the ethanol concentration decreased in all batches, after 

glucose had completely been consumed. In this phase, the respiratory quotients 

determined were lower than 0.6, demonstrating ethanol consumption (Wang et al., 1977). 

40 80 120 160 

time (h) 

0 40 80 120 160 

time (h) 

Figure 5. Effect of amino acids on metabolites production by Z. rouxii \n batch cultures (•: no additions; • : 

threonine (5 mM); • : cystathionine (5 mM); • : branched-chain amino acids (each 5 mM)). A: ethanol; B: 

glycerol. 

Figure 5B shows the effect of the amino acids on the glycerol production. It appears that 

glycerol was only slighdy produced in all batches, except for the threonine batch. In this 

batch, much glycerol was produced. It is known that S. rouxii generally produces glycerol 

and intracellularly retains a proportion of it, dependent on the water activity (Edgley and 

Brown, 1978). However, the water activity in the threonine batch was very likely the same 

as in the other batches. For this reason, the high glycerol production in the threonine 

batch could not be explained by osmoregulation. In the threonine batch, glycerol was 

probably produced in order to keep the intracellular NADPH/NADP ratio in balance 

(Gancedo and Serrano, 1989). Due to the poor growth in this batch, NADP could 

probably not be regenerated by biosynthesis but by glycerol synthesis instead. S. rouxii 

depends, unlike S. cerevisim, for glycerol synthesis mainly on NADPH generated by the 

pentose-phosphate cycle (Brown and Edgley, 1980). 

The production of the higher alcohols n-propanol, isobutyl alcohol and active amyl 

alcohol plus isoamyl alcohol during the different batches is shown in Figure 6. From these 
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figures, it appears that the production of the higher alcohols in the cystathionine batch 

was more or less the same as in the batch with no additions. On the other hand, in the 

threonine and branched-chain amino-acids batches the production of the higher alcohols 

was significantly different than in the batch with no additions. 
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Figure 6. Effect of amino adds on higher-alcohols production by Z. rouxii in batch cultures (•: no additions; • : 

threonine (5 mM); • : cystathionine (5 mM); • : branched-chain amino acids (each 5 mM)). A: n-propanol; B: 

isobutyl alcohol; C: active amyl alcohol plus isoamyl alcohol (With the analysis used, active amyl alcohol and 

isoamyl alcohol could not be separated from another). 

In the threonine batch the production of all higher alcohols measured was decreased. In 

the branched-chain amino-acids batch the n-propanol production was slighdy decreased 

but the production of isobutyl alcohol and active amyl alcohol plus isoamyl alcohol was 

considerably increased. These results show that, like in soy sauce (Aoki and Uchida, 

1991b), isobutyl alcohol, isoamyl alcohol and active amyl alcohol are probably produced 

by Z. rouxii via the Ehrlich pathway; the uptake and transamination of isoleucine, valine 
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and leucine resulted in an increased production of respectively active amyl alcohol, 

isobutyl alcohol, and isoamyl alcohol (Figure 1). If these alcohols had been directly 

produced from amino-acid biosynthetic pathways, an increased n-propanol production in 

the branched-chain amino-acids batch would have been expected as well. 

Enzyme activities and accumulation of OC-ketobutyrate 

In this work, we studied the regulation of OC-ketobutyrate metabolism in Z. rouxii at the 

enzyme level as well. For this, threonine, cystathionine and the branched-chain amino 

acids were separately used in batch cultures in order to increase the formation rate of OC-

ketobutyrate or to decrease its conversion rate in Z. rouxii. Threonine and cystathionine 

were added to stimulate the formation rate of OC-ketobutyrate by respectively threonine 

deaminase and cystathionine y-lyase and the branched-chain amino acids were added to 

inhibit the conversion rate of OC-ketobutyrate by acetohydroxy acid synthase. The effect of 

these amino acids on the specific activities of threonine deaminase, cystathionine y-lyase 

and acetohydroxy acid synthase in Z. rouxii was determined. 

In Figure 7, the effect of the amino acids on the specific activity of threonine deaminase, 

cystathionine y-lyase and acetohydroxy acid synthase is shown. Although the specific 

enzyme activities were determined at different points of time during the whole batch 

cultivation, the activities during the growth phase were considered to be the most 

important ones because, in that phase, formation of OC-ketobutyrate, which is an 

intermediate of biosynthetic pathways for amino acids (Figure 1), was expected. 

Furthermore, during the growth phase, which lasted till about 60 hours of cultivation time 

(Figure 4), the consumption of amino acids also occurred (Figure 3). 

It appears from Figure 7 that, especially during the growth phase, the amino acids had 

much effect on the enzyme activities. During the growth phase, threonine not only 

increased the specific activity of threonine deaminase but also that of cystathionine y-lyase 

and acetohydroxy acid synthase. More or less the same holds for cystathionine; 

cystathionine not only increased the specific activity of cystathionine y-lyase but also that 

of threonine deaminase and acetohydroxy acid synthase. Furthermore, the branched-chain 
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amino acids not only decreased the specific activity of acetohydroxy acid synthase but also 

that of threonine deaminase and cystathionine y-lyase. This decrease in specific enzyme 

activities by the branched-chain amino acids appeared just to happen towards the end of 

the growth phase. 
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Figure 7. Effect of amino acids on specific enzyme activities of Z rouxii'in batch cultures (•: no additions; • : 

threonine (5 mM); A: cystathionine (5 mM); • : branched-chain amino acids (each 5 mM)). A: threonine 

deaminase; B: cystathionine •y-lyase; C: acetohydroxy acid synthase. 

These measured enzyme activities show that threonine and cystathionine increased both 

the formation and conversion rate of (X-ketobutyrate while the branched-chain amino 

acids decreased both rates. For this reason, it seems that the (X-ketobutyrate pool size in 

Z. rouxii was tightly regulated; its formation and conversion rate were balanced all the 

time. This conclusion about the tightly regulated (X-ketobutyrate pool in Z. rouxii is in 

agreement with that found in S. typhimurium (Shaw and Berg, 1980). 
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The effect of the different amino acids on the accumulation of OC-ketobutyrate by Z. rouxii 

was also determined. However, no OC-ketobutyrate was detected (with a threshold level of 

about 5 mg.l1) in final samples of both supernatant and cells. In the batch with no 

additions, we already knew from a preliminary experiment that OC-ketobutyrate would not 

be accumulated. The absence of OC-ketobutyrate accumulation in the batches with addition 

of amino acids agrees well with the measured enzyme activities and with the lower 

productivity of n-propanol, of which OC-ketobutyrate is the precursor (Figure 1), in these 

batches compared to the batch with no additions. 

Conc lus ions 

The metabolism of Z. rouxii was investigated by separately adding the amino acids 

threonine, cystathionine and the branched-chain amino acids. It appeared that the addition 

of threonine severely inhibited the growth of Z. rouxii, which resulted in the accumulation 

of significant amounts of glycerol and only small amounts of higher alcohols. On the 

other hand, the addition of the branched-chain amino acids increased the production of 

the higher alcohols isobutyl alcohol and active amyl alcohol plus isoamyl alcohol via the 

Ehrlich pathway. Furthermore, Z. rouxii showed the Crabtree effect but this was not 

dependent of the amino acids added. In addition, the added amino acids also influenced 

the specific activities of the enzymes catalyzing the formation or conversion of OC-

ketobutyrate in Z. rouxii. Despite this, it appeared that the OC-ketobutyrate pool size in 

Z. rouxii was tightly regulated all the time, resulting in no accumulation of OC-ketobutyrate 

in both the supernatant and cells. 
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Chapter 3 

Regulation of aspartate-derived amino-acid metabolism in 

Zygosaccharomyces rouxii compared to Saccharomyces cerevisiae 

Abstract 

In order to elucidate the growth inhibitory effect of threonine, the regulation of the 

aspartate-derived amino-acid metabolism in Zygosaccharomyces rouxii, an important yeast for 

the flavour development in soy sauce, was investigated. It was shown that threonine 

inhibited the growth of Z. rouxii by blocking the methionine synthesis. It appeared that 

threonine blocked this synthesis by inhibiting the conversion of aspartate. In addition, it 

was shown that the growth of Z. rouxii, unlike that of Saccharomyces cerevisiae, was not 

inhibited by the herbicide sulfometuron methyl (SMM). From enzyme assays, it was 

concluded that the acetohydroxy acid synthase in Z. rouxii, unlike that in S. cerevisiae, was 

not sensitive to SMM. Furthermore, the enzyme assays demonstrated that the activity of 

threonine deaminase in Z. rouxii, like in S. cerevisiae, was strongly inhibited by isoleucine 

and stimulated by valine. From this work, it is clear that the aspartate-derived amino-acid 

metabolism in Z. rouxii only partly resembles that in S. cerevisiae. 

This chapter has been published as: van der Sluis C, Smit BA, Hartmans S, ter Schure EG, Tramper J, 

Wijffels RH. 2000. Regulation of aspartate-derived amino-acid metabolism in Zygosaccharomyces 

rouxii compared to Saccharomyces cerevisiae. Enzyme Microb Technol 27:151-156. 
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Introduction 

In our research, we are investigating the metabolism of the salt-tolerant yeast 

Zygosaccharomyces rouxii, which is a well-known flavour producer in soy-sauce fermentations 

(Sugiyama, 1984). In the amino-acid metabolism of this yeast, OC-ketobutyrate is a key 

intermediate; some (X-ketobutyrate is needed to synthesize isoleucine, but intracellularly 

accumulated (X-ketobutyrate may inhibit the growth as found in Salmonella typhimurium 

(Shaw and Berg, 1980; Primerano and Burns, 1982; LaRossa et al., 1987) and 

Corynebacterium glutamicum (Eggeling et al., 1987). 

In Saccharomyces cerepisiae, which we use as our reference yeast, the isoleucine synthesis starts 

with the deamination of threonine (Figure 1) (Jones and Fink, 1982). The deamination of 

threonine is catalyzed by threonine deaminase (L-threonine hydro-lyase [deaminating]; EC 

4.2.1.16) and results in the formation of OC-ketobutyrate and ammonia. a-Ketobutyrate is 

converted further towards isoleucine by acetohydroxy acid synthase (acetolactate 

pyruvate-lyase [carboxylase]; E.C. 4.1.3.18]. This enzyme catalyzes the conversion of OC-

ketobutyrate and pyruvate into OC-aceto-OC-hydroxybutyrate and also the conversion of two 

molecules of pyruvate into OC-acetolactate, which is converted via OC-keto-isovalerate to 

valine and leucine. 

In previous studies, aiming at OC-ketobutyrate accumulation, we added threonine (5 mM) 

to batch cultures of Z. rouxii (van der Sluis et al., 2000). Although no OC-ketobutyrate 

accumulation was observed, growth of Z. rouxii was severely inhibited due to the addition 

of threonine. In S. cerevisiae, threonine is the key compound that regulates the flow to a 

common metabolic pathway for biosynthesis of threonine and methionine (Figure 1) 

(Jones and Fink, 1982; Ramos and Calderon, 1992). The growth inhibition of Z. rouxii due 

to threonine addition could be caused by threonine interfering with the biosynthesis of 

other amino acids. 
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Figure 1. Biosynthetic pathways of isoleucine, valine, leucine and methionine in S. cerevisiae. 
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The pathway for synthesizing threonine and methionine in S. cerevisiae starts from aspartate 

and leads to homoserine in three steps (Figure 1). Homoserine is the branching point 

from which the pathways for threonine and methionine diverge. Threonine is made in two 

steps from homoserine while the next step in the synthesis of methionine is the 

acetylation of homoserine yielding O-acetylhomoserine. O-acetylhomoserine can be 

converted to homocysteine in two ways. The first pathway is a direct sulfhydrylation of O-

acetylhomoserine to homocysteine, the precursor of methionine. The second pathway 

involves condensation of O-acetylhomoserine with cysteine that can be direcdy 

synthesized from serine. This condensation yields cystathionine, which is further 

converted to homocysteine. Methylation of homocysteine results in methionine 

formation. 

In this work, we have studied the regulation of the aspartate-derived amino-acid 

metabolism in Z. rouxii. Batch growth experiments were executed in which we determined 

whether the addition of aspartate and aspartate-derived amino acids could restore the 

growth of Z. rouxii in the presence of threonine. Furthermore, we determined the effect of 

ammonium on the growth of Z. rouxii. In addition, we investigated the effect of some 

nitrogen compounds on the activity of the enzymes threonine deaminase and 

acetohydroxy acid synthase in Z. rouxii and we studied the effect of the herbicide SMM, 

which is an inhibitor of acetohydroxy acid synthase in various plants, bacteria and yeasts 

(LaRossa and Falco, 1984; Falco and Dumas, 1985). 

Materials and m e t h o d s 

Yeast strains 

Z. rouxii CBS 4021 and S. cerevisiae CBS 6978, supplied by the Centraalbureau voor 

Schimmelcultures (Delft, The Netherlands) and maintained on a mixture of glycerol and 

skimmed milk at -80°C, were used in this work. 
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Growth experiments 

The yeasts were grown in 300 ml Erlenmeyer flasks, containing 100 ml defined medium, 

on a rotary shaker (Gallenkamp, Orbital Incubator) at 28°C and 200 rpm. The defined 

medium had the following composition per liter demineralized water: 22 g glucose. IH2O 

(Merck), 21 g citric acid.lI-hO (Merck) and 6.7 g Bacto Yeast Nitrogen Base without 

amino acids (Difco). The pH of this medium was adjusted to a value of 5 using N a O H 

and the medium was filter-sterilized (Nalgene, 0.2 |J,m filters). 

During the experiments, the effects of the following amino acids on the growth of 

Z. rouxii were determined: L-threonine (Sigma), L-methionine (Sigma), L-homocysteine 

(Sigma), L-homoserine (Sigma), L-aspartate (Sigma), L-cystathionine (Fluka), L-cysteine 

(Sigma) and L-serine (Sigma). In addition, the effect of SMM (6 |Xg/ml), that was kindly 

provided by Du Pont Agricultural Products (Wilmington), on the growth of Z. rouxii and 

S. cerevisiae was determined. SMM was, before addition to the medium, dissolved in 

acetone at a concentration of 2 mg/ml. The addition of acetone appeared to have no 

effect on the growth of Z. rouxii and S. cerevisiae. The effect of ammonium on the growth 

of Z. rouxii was determined by using the Bacto Yeast Nitrogen Base without amino acids 

and ammonium sulfate (Difco) instead of the Bacto Yeast Nitrogen Base without only 

amino acids. 

The growth of both yeasts was followed, by measuring the optical density at 610 nm 

(Pharmacia Biotech, Ultraspec). For this, samples were taken and diluted with 

demineralized water to obtain absorbance values less than 0.7. Below 0.7, the absorbance 

values were linearly related to biomass dry weight. 

Enzyme assays 

The yeast was grown as above and harvested when the mid-exponential growth phase was 

reached. For this, the cells were centrifuged for 10 minutes at 9,500 g and 4°C (Beckman 

J2-MC centrifuge, Beckman Instruments Inc., Palo Alto, California, USA). After 

centrifugation the supernatant was removed and the cells were suspended in a 50 mM 
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potassium-phosphate buffer (pH 7). The cell suspension was stored at -80°C until used 

for the enzyme assays. 

After thawing at room temperature the cell suspensions from -80°C were washed three 

times with the potassium-phosphate buffer. Then, the cells were broken using glass beads 

(Emergo, Landsmeer, The Netherlands) with a size ranging from 0.25 to 0.50 mm while 

vortexing (TM01, Labotech) at maximum speed six times for 1 minute, alternating with 1 

minute of cooling on ice. The crude cell extract obtained was used immediately for 

determining enzyme activities. 

The activity of threonine deaminase was measured by using the method for serine 

dehydratase of Suda and Nakagawa (1971), except that threonine was used as substrate 

instead of serine. The OC-ketobutyrate formed was determined colorimetrically by 

converting it to a hydrazone in the presence of 2,4-dinitrophenylhydrazine (Aldrich, 

Zwijndrecht, The Netherlands) 

The activity of acetohydroxy acid synthase was determined by measuring the acetolactate 

formed (Eggeling et al., 1987). For this, the acetolactate was decarboxylated to acetoin 

which was determined colorimetrically (Westerveld, 1945). 

Resul ts and d i s cus s i on 

Growth experiments 

In order to investigate the growth inhibition of Z rouxii by threonine, batch growth 

experiments were carried out. In these experiments, we determined whether aspartate and 

aspartate-derived amino acids could counteract the growth inhibitory effect of threonine 

on Z. rouxii. Furthermore, we also determined the effect of ammonium on the growth of 

Z rouxii. During these experiments, the growth was followed by measuring the optical 

density. 

42 



Chapter 3 

In Figure 2, the effect of some aspartate-derived amino acids and ammonium on the 

growth of Z. rouxii in batch cultures, containing excess nitrogen, is shown. This figure 

confirms that the growth of Z. rouxii in cultures with excess ammonium (75 mM) is 

inhibited by addition of threonine (5 mM) (van der Sluis et al., 2000). This figure shows 

further that addition of methionine (1 mM) to the medium with ammonium (75 mM) and 

threonine (5 mM) could fully oppose this growth inhibitory effect of threonine. In 

addition, it can be seen from this figure that ammonium was favourable for the growth of 

Z. rouxii; the growth of Z. rouxii was very poor in the cultures in which ammonium was 

replaced by threonine (75 mM) or by threonine (75 mM) and methionine (7.5 mM) 

together. Therefore, neither threonine alone nor together with methionine can be 

regarded as adequate nitrogen sources for the growth of Z. rouxii. The growth in the 

medium with threonine and methionine together was better than that in the medium with 

threonine as sole nitrogen source. This confirmed that addition of methionine can 

improve the growth of Z. rouxii in the presence of threonine. 

Q 
O 

0 50 100 150 200 

time (h) 

Figure 2. Effect of aspartate-derived amino acids and ammonium on the growth of Z rouxii'm batch cultures (•: 

ammonium (75 mM); • : ammonium (75 mM) plus threonine (5 mM); • : ammonium (75 mM) plus threonine (5 

mM) plus methionine (1 mM); • : threonine (75 mM) plus methionine (7.5 mM); T : threonine (75 mM)). 

Figure 3 shows the effect of aspartate (1 mM) and some other aspartate-derived amino 

acids (1 mM) on the growth of Z. rouxii in batch cultures with excess ammonium (75 mM) 

and threonine (5 mM). It can be seen from this figure and Figure 2 that aspartate, serine 

and cysteine could not counteract the inhibitory effect of threonine on the growth of 

Z. rouxii. The same holds for the amino acids valine and isoleucine (data not shown). 
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When all these amino acids (1 mM) were added to batch cultures of Z. rouxii with only 

ammonium (75 mM) as nitrogen source, no inhibitory effect on the growth was observed 

(data not shown). This demonstrates that these amino acids were not growth inhibitors 

themselves. On the other hand, it can be seen from Figure 2 and 3, that cystathionine and 

homocysteine clearly improved the growth of Z rouxii in the presence of threonine while 

homoserine, like methionine, could fully oppose the inhibitory effect of threonine. 

Furthermore, it appeared that the addition of methionine (5 mM) to batch cultures of 

Z. rouxii with ammonium (75 mM) did, unlike the addition of threonine (5 mM), not have 

any growth inhibitory effect on Z. rouxii (data not shown). The results obtained with these 

growth experiments show that in Z. rouxii, like in S. cerevisiae, threonine seems to be the 

key compound that regulates the flow to the common biosynthetic pathway for threonine 

and methionine (Figure 1). The results show further that this strong regulation of 

threonine in Z. rouxii resulted in a shortage of homoserine and, as a consequence, 

methionine. Due to this homoserine shortage, the amino acids aspartate, serine and 

cysteine could not counteract the growth inhibitory effect of threonine while the amino 

acids cystathionine, homocysteine and especially, homoserine and methionine could. 

From these observations, it can be concluded that threonine inhibited one of the three 

conversion steps between aspartate and homoserine. 

a 
O 

0 25 50 75 100 125 

time (h) 

Figure 3. Effect of aspartate and aspartate-derived amino acids on growth of Z rouxii'm batch cultures (•: 

homoserine (1 mM); • : homocysteine (1 mM); • : cystathionine (1 mM); • : serine (1 mM); • : aspartate (1 

mM); O: cysteine (1 mM)). All cultures contained ammonium (75 mM) plus threonine (5 mM). 
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In S. cerevisiae, the first conversion step between aspartate and homoserine, that is 

catalyzed by the enzyme aspartate kinase, is strongly feed-back inhibited and repressed by 

threonine but not so strong by methionine (Jones and Fink, 1982; Ramos et al., 1991). For 

this reason, it is most probable that threonine inhibited the growth of Z. rouxii by 

adversely affecting the activity of aspartate kinase. The measurement of the aspartate 

kinase activity in crude cell extracts of Z. rouxii, using the methods of Black (1962) and 

Theze et al. (1974), gave no clear results. For both methods, the background activity of 

the cell extract seemed too high to be able to measure the aspartate kinase activity. 

Therefore, it was impossible to determine whether the inhibition was due to repression of 

enzyme synthesis or caused by inhibition of aspartate kinase activity. 

The regulation of the aspartate-derived amino-acid metabolism was studied further with 

growth experiments in which we tested the effect of the herbicide SMM, a well-known 

inhibitor of the enzyme acetohydroxy acid synthase in S. cerevisiae. As can be seen in Figure 

4, SMM (6 |Ig/ml) inhibited the growth of S. cerevisiae, as was reported before (Falco and 

Dumas, 1985), but it did not affect the growth of Z. rouxii. This resistance of Z. rouxii to 

SMM may be due to just a single amino-acid change in the acetohydroxy acid synthase, as 

found in SMM-resistant mutants of S. typhimurium and S. cerevisiae (LaRossa and Falco, 

1984). 

D 
o 

time (h) 

Figure 4. Effect of SMM on growth of Z roux//(open symbol) and S. cerevisiae (solid symbol) in batch cultures 

(circle: no additions; square: SMM (6 ng/ml)). 
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Enzyme assays 

As acetohydroxy acid synthase is the target for SMM, the effect of SMM on the activity of 

the acetohydroxy acid synthase in crude cell extracts of Z. rouxii and S. cerevisiae was 

investigated. In Figure 5, the effect of SMM on the acetohydroxy acid synthase in both 

yeasts is shown. Figure 5 shows that SMM, al least at high concentrations (around 500 

ng/ml), inhibited the activity of acetohydroxy acid synthase in S. cerevisiae. The SMM 

concentrations needed for inhibition were higher than the ones reported by Falco and 

Dumas (1985), which might be caused by the fact that we measured acetohydroxy acid 

synthase in crude cell extracts while they used permeabilized cells. In crude cell extracts, 

acetohydroxy acid synthase is less sensitive than in permeabilized cells (Magee and de 

Robichon-Szulmajster, 1968). Figure 5 also shows that SMM did not affect at all the 

activity of acetohydroxy acid synthase in Z. rouxii. This insensitivity of acetohydroxy acid 

synthase in Z. rouxii to SMM is apparently the reason that the growth of Z. rouxii was also 

not affected by SMM. 

1.5 

1.0 

0.5 

0.0 
10 50 100 500 5000 

SMM (ng.mr1) 

Figure 5. Effect of SMM on relative activity of acetohydroxy acid synthase from Z. rouxii (solid bar) and 

S. cerevisiae (open bar). Activity without SMM is one. 

The regulation of the acetohydroxy acid synthase in Z. rouxii was investigated further by 

determining the effect of the amino acids isoleucine, valine and leucine separately (20 

mM) or mixtures of them (each 5 mM) on the activity of acetohydroxy acid synthase. The 

concentrations we used were quite high in order to compensate for the fact that we 

measured in crude cell extracts. However, we did not observe any clear effects of neither 

46 



Chapter 3 

valine nor the other amino acids on the activity of acetohydroxy acid synthase from 

Z rouxii (data not shown), while in S. cerevisiae, the activity of this enzyme is inhibited by 

valine (Magee and de Robichon-Szulmajster, 1968). 

Finally, we also investigated the regulation of the enzyme threonine deaminase from 

Z. rouxii. It is well-known that, in S. cerevisiae, the activity of this enzyme is strongly 

inhibited by isoleucine (Holzer et al., 1963; de Robichon-Szulmajster and Magee, 1968) 

and stimulated by valine (Holzer et al., 1963; Cennamo et a l , 1964; de Robichon-

Szulmajster and Magee, 1968). In addition, it is also reported that ammonium stimulates 

the activity of this enzyme in S. cerevisiae (Holzer et al., 1964) whereas leucine inhibits 

(Cennamo et al., 1964), but the biological significance of this inhibition and stimulation is 

not understood. 

In Figure 6, the effect of the amino acids isoleucine, valine and leucine, and of ammonium 

on the activity of threonine deaminase in crude cell extracts of Z. rouxii is shown. This 

figure shows that, like in S. cerevisiae, the activity of threonine deaminase in Z. rouxii was 

strongly inhibited by isoleucine and stimulated by valine. In addition, it can be seen from 

this figure that the effects of leucine and ammonium on the activity of threonine 

deaminase in Z rouxii were different from those found in S. cerevisiae; ammonium did not 

have much effect while leucine stimulated the activity slightly. 
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Figure 6. Effect of amino acids on relative activity of threonine deaminase from Z rouxii ( • : isoleucine; 

leucine; • : valine; • : ammonium). 
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Biologically, it seems reasonable that ammonium does not stimulate the activity of 

threonine deaminase because ammonium is known to regulate this enzyme, dependent on 

the ammonium need of the cell, by repressing its synthesis (Holzer et al., 1963). In 

addition, it also seems reasonable that leucine, like valine, stimulates the activity of 

threonine deaminase in order to balance the synthesis of the amino acids isoleucine, valine 

and leucine (Figure 1), dependent on how much these amino acids are needed for the 

protein synthesis. If there is an excess leucine and a shortage of isoleucine for the protein 

synthesis, leucine will stimulate threonine deaminase to synthesize more isoleucine. 

Conclusions 

The main purpose of our studies was to investigate the regulation of the aspartate-derived 

amino-acid metabolism in Z. rouxii. In this investigation, it appeared that threonine 

strongly regulated the flow of the aspartate-derived amino acid metabolism by inhibiting 

the conversion of aspartate to homoserine. When threonine was added to batch cultures 

of Z. rouxii, this inhibition resulted in a lack of methionine and by that poor growth of 

Z. rouxii. This poor growth of Z. rouxii in the presence of threonine could be improved by 

adding the amino acids cystathionine, homocysteine and homoserine but not by aspartate, 

serine and cysteine. 

In addition, it was shown that growth of Z. rouxii was stimulated by ammonium and, in 

contrast to that of S. cerevisiae, not inhibited by the herbicide sulfometuron methyl because 

of the insensitivity of the enzyme acetohydroxy acid synthase in Z. rouxii. This enzyme 

was also not sensitive to the amino acids valine, leucine and isoleucine in crude cell 

extracts of Z. rouxii. On the other hand, the enzyme threonine deaminase in Z. rouxii was 

sensitive to these amino acids but not to ammonium; the activity of this enzyme was 

inhibited by isoleucine and stimulated by valine and leucine, while ammonium did not 

affect its activity. From these observations, it was concluded that aspartate-derived amino-

acid metabolism in Z. rouxii is only partly similar to that in S. cerevisiae. 
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Chapter 4 

Estimation of steady-state culture characteristics during 

acceleration-stats with yeasts 

Abstract 

Steady-state culture characteristics are usually determined in chemostat cultivations, which 

are very time-consuming. In contrast, acceleration-stat (A-stat) cultivations in which the 

dilution rate is continuously changed with a constant acceleration rate are not so time-

consuming, especially at high acceleration rates. Therefore, the A-stat could be 

advantageous to use instead of the chemostat. However, the highest acceleration rate, 

meaning the fastest A-stat that can be applied for estimating steady-state culture 

characteristics, is not known yet. 

Experimental results obtained with Zygosaccharomyces rouxii, an important yeast in soy-sauce 

processes, showed that the culture characteristics during the A-stat with an acceleration 

rate of 0.001 h 2 were roughly comparable to those of the chemostat. For higher 

acceleration rates the deviation between the culture characteristics in the A-stat and those 

in the chemostat obtained at the same dilution rate generally started to increase. The 

source of these deviations was examined by simulation for Saccharomyces cerevisiae. The 

simulations demonstrated that this deviation was not only dependent on the metabolic 

adaptation rate of the yeast, but also on the rate of change in environmental substrate 

concentrations during A-stats. From this work, it was concluded that an A-stat with an 

acceleration rate of 0.001 h 2 is attractive to be used instead of chemostat, whenever a 

rough estimation of steady-state culture characteristics is acceptable. 

This chapter has been submitted for publication as: van der Sluis C, Westerink BH, Dijkstal MM, 

Castelein SJ, Boxtel AJB, Giuseppin MLF, Tramper J, Wijffels RH. 2000. Estimation of steady-stale 

culture characteristics during acceleration-stats with yeasts. 
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Introduct ion 

In our research we are studying the metabolism of Zygosaccharomyces rouxii, which is an 

important flavour producer in soy-sauce processes (Sugiyama, 1984). Especially we are 

focussing on the steady-state culture characteristics of Z. rouxii. For determining steady-

state characteristics the conventional chemostat is widely used. 

In chemostat cultivation a sequence of step-wise changes in dilution rate or medium 

composition is applied. After each change the cultivation needs to be stabilized for at least 

three residence times in order to obtain a new steady state. This makes chemostat 

cultivation very time-consuming, especially when a large number of steady-state points are 

needed. Less time-consuming and much more informative than the chemostat, is the 

acceleration-stat (A-stat) cultivation that was recently developed by Paalme and Vilu 

(1992). 

The A-stat was developed for a fast microbial characterization at a practically unlimited 

number of dilution rate values (Paalme and Vilu, 1992; Paalme et al., 1995; Paalme et a l , 

1997a; Paalme et al., 1997b). This was done by applying a constant smooth change of 

dilution rate (known as the acceleration rate), after starting the experiment as a chemostat. 

The higher the acceleration rate applied, the faster the A-stat cultivation becomes. Paalme 

and co-workers used acceleration rates varying between 0.01-0.05 h 2 . At these high 

acceleration rates the A-stat is very fast, but does not provide steady-state culture 

characteristics (Paalme et al., 1995). For this, in theory an indefinitely low acceleration rate 

should be applied. However, to reduce experimental times, it might in practice be possible 

to use higher acceleration rates to provide a satisfactory approximation of steady-state 

conditions. Therefore it is meaningful to find the highest acceleration rate (i.e. the fastest 

A-stat) that can be used for an estimation of the steady-state characteristics, and to 

quantify at this acceleration rate the advantage of the A-stat compared to the chemostat. 

In the study described here, we determined the highest acceleration rate at which the 

behaviour of Z. rouxii culture characteristics in the A-stat was comparable to that in the 

chemostat. For this, A-stat cultivations with different acceleration rates were carried out 
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and compared with chemostat cultivations. From these cultivations it appeared that the 

acceleration rate applied during the A-stats had a significant effect on the culture 

characteristics at a certain dilution rate. To explain this, simulations were done using 

Saccharomyces cerevisiae as a reference yeast. For this, we used the model of Sweere et al. 

(1988) which was developed in order to describe the growth of S. cerevisiae under dynamic 

conditions. The model showed that the effect of the acceleration rate on the culture 

characteristics at a certain dilution rate was not only a function of the metabolic 

adaptation rate of the yeast but also of the rate of change in environmental substrate 

concentrations during the A-stats. 

Materials and m e t h o d s 

Yeast strain 

Z. rouxii CBS 4021, supplied by the Centraalbureau voor Schimmelcultures (Delft, The 

Netherlands), was used in all experiments. The cells were maintained on a mixture of 

glycerol and skimmed milk at -80°C. 

Media 

The inoculum cultures were grown on GPY medium which has the following 

composition per liter of demineralized water: 40 g glucose.lFbO, 5 g peptone and 5 g 

yeast extract. This medium was sterilized by separately autoclaving the components at 

120°C for 20 minutes. 

The chemostat and A-stat cultivations were carried out in a defined medium, in which the 

growth was limited by glucose. This medium had the following composition per liter 

demineralized water: 10 g g lucose. lH20, 7.5 g NH4C1, 4.0 g KH2PO4, 1.0 g NaCl, 0.5 g 

MgSC>4.7H20, 10 ml trace-metal solution and 10 ml vitamin solution. The trace-metal 

solution contained per liter demineralized water: 5.5 g CaCl2.2H20, 3.8 g FeSC>4.7H20, 

1.4 g M n S 0 4 . l H 2 0 , 2.2 g ZnS0 4 . 7H 2 0 , 0.4 g CuS0 4 . 5H 2 0 , 0.5 g C0CI2.6H2O, 0.3 g 
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Na2Mc.O4.2H2O, 0.4 g H3BO3, 0.3 g KI and 30.0 g CioHi4N2Na208.2H20. The pH of 

this solution was adjusted to 4 with 4 M NaOH. The composition of the vitamin solution 

was per liter demineralized water: 0.1 g D-biotin, 5.0 g thiamine hydrochloride, 47.0 g m-

inositol, 1.2 g pyridoxine and 23.0 g hemi-calcium pantothenate. The glucose and salts of 

this medium were separately autoclaved at 120°C for 20 minutes, while the trace metals 

and vitamins were filter-sterilized (0.2 urn filters). 

Cultivations 

Starter cultures were made in 300 ml Erlenmeyer flasks containing 100 ml GPY medium, 

on a rotary shaker at 28°C and 200 rpm. The cells were used for the chemostat and A-stat 

cultivations when they were in the exponential growth phase (between 20 and 40 hours 

cultivation). 

The chemostat and A-stat cultivations were carried out in a bench-scale autoclavable 

bioreactor with a height and diameter of respectively 0.20 and 0.12 m. This bioreactor 

contained 0.75 liter cultivation medium, which was inoculated with 100 ml of a starter 

culture. After the cells had started to grow, the medium flow rate, controlled by a 

Bioexpert (Applikon), was started. 

The chemostat cultivations were conducted at the following dilution rates: 0.05, 0.075, 0.1, 

0.122, 0.150 and 0.173 h 1 . At these dilution rates the cultivations were allowed to stabilize 

for at least three residence times before samples were taken. Steady-state conditions were 

ascertained by constant carbon-dioxide production of the culture, which was continuously 

measured all the way through the cultivations. 

All A-stat cultivations were started at a dilution rate of 0.1 h-1. At this dilution rate the 

culture was stabilized for at least 50 hours and subsequently a smooth increase in dilution 

rate was started according to the following equation: 

D = D0+at 

54 

http://Na2Mc.O4.2H2O


Chapter 4 

Depending on the cultivation the following acceleration rates (a) were applied: 0.001, 0.01 

and 0.1 Lr2. The A-stat cultivations with the acceleration rate of 0.01 and 0.1 h 2 were done 

in respectively triplicate and duplicate. These replicates gave comparable results. 

During all cultivations a Bio Controller (Applikon) controlled the cultivations and a 

Bioexpert (Applikon) acquired the on-line data, which were the temperature, pH, oxygen 

tension in the broth, foam level, stirrer speed, medium flow rate and concentration of 

oxygen and carbon dioxide in the bioreactor air. The temperature was controlled at 28°C 

and the pH at 4.5 by automatic addition of 1 M HC1 or 1 M NaOH. The cells were 

aerobically grown with an air flow rate of 48.6 Lb/1. The oxygen tension in the broth was 

kept above 30% of air saturation by controlling the stirrer speed, which was at least 100 

rpm. The stirrer used was a six-blade Rushton turbine with a diameter of 45 mm. The 

concentration of oxygen in the ingoing and outgoing air was measured on-line with a 

Servomex Xentra 4100 Gas Purity Analyser. The carbon dioxide from the ingoing air was 

kept constant at zero by removing it with soda-lime pellets, and the concentration of 

carbon dioxide in the outgoing air was measured on-line with a Servomex 1440 Gas 

Analyser. From these measurements respiratory quotients were calculated. The foam level 

was controlled by automatically adding a diluted (50 times) Antifoam B Silicone emulsion 

(J.T. Baker). During the chemostat and A-stat cultivations samples for off-line analyses 

were withdrawn from the bioreactor. The samples were used for measuring optical 

density, glucose and ethanol. 

Analyses 

The optical density was measured at 610 nm using a Pharmacia Biotech, Ultraspec 2000 

spectrophotometer. Samples were diluted to obtain absorbance values less than 0.7. In this 

range, the absorbance values were linearly related to the biomass concentration. 

Glucose was measured using a GM7 analyser (Analox Instruments). This analyser 

measures the decrease in oxygen concentration during a reaction between glucose and 

oxygen catalyzed by glucose oxidase. 
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Ethanol was determined by GC. The samples were incubated at 60°C for 10 minutes. 

After incubation a head-space sample was taken and collected in a cold trap (liquid 

nitrogen at -110°C). Through subsequent heating of the cold trap (240°C), the 

compounds were injected on a DB-wax column (30 m * 0.542 mm, film 1.0 |J,m). A 

temperature profile was used from 30 to 110°C at a rate of 2.5°C/min. Helium was used 

as carrier gas (about 15 ml/min, 30 kPa) and the compounds were detected with a flame-

ionization detector (EL 980, Fison Instruments). 

Calculations 

For calculating the specific growth rate and the yield of biomass on glucose and oxygen, 

the concentrations of biomass, glucose, ethanol and oxygen are needed. During A-stat 

cultivations these concentrations change with time and therefore differential equations are 

needed (Paalme et al., 1992). To be able to differentiate, the measured discrete data points 

for the concentrations of biomass, glucose and ethanol were interpolated by using 

TableCurve™ (Jandel Scientific). 

Simulations 

Simulations of S. cerevisiae culture characteristics during A-stats were carried out in 

Simulink and Madab (The Math Works, Inc.) using the model of Sweere et al. (1988) (see 

Appendix I). 

Resul ts and d i s cus s i on 

Experimental study with 2 . rouxii 

In order to determine the highest acceleration rate for estimating steady-state culture 

characteristics with the A-stat, A-stats with acceleration rates of 0.001, 0.01 and 0.1 h 2 as 

well as chemostats at fixed dilution rates were conducted. During these cultivations the 

concentrations of glucose, biomass and ethanol were measured and the specific growth 
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rate, yield of biomass on glucose and oxygen, and respiratory coefficients determined. In 

Figure 1 the behaviour of some Z. rouxii culture characteristics during representative single 

cultivations is shown. 

All these culture characteristics except for the specific growth rate were standardised in 

order to have the same starting point for comparison of the behaviour during the different 

cultivations. For this a characteristic at a certain dilution rate was divided by that 

characteristic at the dilution rate of 0.1 h x, which was the starting point of the A-stats. 

This standardisation was needed because the steady-state characteristics for the different 

experiments at the dilution rate of 0.1 h 1 were not exactly the same (Table 1). The 

deviation seemed to be caused by experimental errors in analyses and errors in the control 

of the cultivations. Especially the analysis of glucose at the dilution rate of 0.1 h"1 appeared 

to be difficult, because the concentration of glucose was then very low. Some control 

errors occurred during the long stabilisation time that was needed to ascertain steady-state 

conditions at the dilution rate of 0.1 rr1. Although finally always a steady-state condition 

was reached the cultivation procedure and for that reason, the history of the cells was 

never exactly the same, which might have caused a deviation in steady-state characteristics 

as well. However, it was not the intention of this work to provide the exact steady-state 

characteristics at the dilution rate of 0.1 h 1 , but to show the evolution of the culture 

characteristics. 

Figure 1 shows that that the culture characteristics in the A-stat were largely influenced by 

the applied acceleration rate; an increased acceleration rate generally resulted in an 

increased deviation between the culture characteristics in the A-stat and those in the 

chemostat obtained at the same dilution rate. Furthermore, Figure 1 shows that the 

culture characteristics in the A-stat with an acceleration rate of 0.001 h 2 were roughly 

comparable to those in the chemostat. This was not observed for the ethanol 

concentrations (Figure 1C), a fact we could not explain. 
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Figure 1. Comparison between the measured characteristics of Z rouxii'm chemostat culture (•) and A-stat 

cultivations with acceleration rates of 0.001 h"2 ( • in A-C, solid line in D, E), 0.01 h2 ( • in A-C, dashed line in D, 

E) and 0.1 h"2 ( • in A-C, dotted line in D, E). All culture characteristics except for the specific growth rate were 

standardised with respect to their reference value at the dilution rate of 0.1 h'1 (starting point of the A-stats). A: 

glucose concentration (Cs); B: biomass concentration (Cx); C: ethanol concentration (Ce); D: specific growth rate 

(|x); E: yield of biomass on glucose (Yxs). The reference values for the different cultures are shown in Table 1. 
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Table 1. Measured steady-state characteristics (g.l') of Z rouxii a\ a dilution rate of 0.1 h'1 from different 

experiments as used to standardise the data in Figure 1. 

Characteristic Chemostata 

Glucose 

Biomass 

Ethanol 

0.04 

3.34 

2.53 

0.14 

3.77 

0.53 

0.04 

1.49 

2.54 

0.01 

2.92 

1.52 

' Chemostat data are from a single experiment in which steady-states were established over a range of dilution 
rates. 

' A-stat data are the initial conditions for experiments at acceleration rates of 0.001, 0.01 and 0.1 h2, each of 
which was started from a chemostat at a dilution rate of 0.1 h~\ 

On the other hand, Figure 1C clearly shows that Z. rouxii produced ethanol during all 

cultivations, which were executed with excess oxygen. This ethanol production under 

aerobic conditions confirmed that Z. rouxii, like S. cerepisiae, displays the Crabtree effect 

(van der Sluis et a l , 2000). This Crabtree effect means that the yeast shifts from a purely 

oxidative to an oxidoreductive metabolism (Sonnleitner and Kappeli, 1986). Z. rouxii 

showed this metabolic shift already at a dilution rate of 0.1 h 1 (Figure 1C) compared to 

0.3 h-1 for S. cerepisiae (Sonnleitner and Kappeli, 1986). The metabolic shift was 

accompanied for Z. rouxii, as for S. cerepisiae, by a decrease in biomass yield on glucose 

(Figure IE) , increase in biomass yield on oxygen (data not shown) and respiratory 

coefficients greater than 1.0 (data not shown). In contrast to our results, van Zyl and Prior 

(1990) did not observe any ethanol production by Z. rouxii under aerobic conditions. They 

assumed, in common with Brown and Edgley (1980), that Z. rouxii does not display the 

Crabtree effect. However, based on the results presented here and our earlier results (van 

der Sluis et al., 2000), their assumption seems not to be justified. 

It appears from Figure I D that the maximum specific growth rate observed during the 

different cultivations varied between 0.15-0.18 rr1. These maximums were slighdy lower 

than the maximum of 0.19 h 1 which we previously determined for Z. rouxii in batch 

culture (unpublished work) and significandy lower than the maximum of 0.45 tr1 for 

S. cerepisiae (Sonnleitner and Kappeli, 1986). 
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Simulation study for S. cerevisiae 

In order to explain the observed influence of the acceleration rate on the culture 

characteristics of Z. rouxii in A-stats, we sought to simulate the effect using the model of 

Sweere et al. (1988) (Appendix I). This model was developed to describe the growth of 

S. cerevisiae in a changing environment and is based on a hypothesis of Sonnleitner and 

Kappeli (1986) that the growth of S. cerevisiae is controlled by its limited oxidation capacity, 

which seems to be valid for Z. rouxii as well (van der Sluis et al., 2000). However, the 

simulations could not be done for Z. rouxii because its model parameters are not known in 

the literature and they could also not be clearly estimated from our experimental study 

(data not shown). Therefore, the simulations were done for S. cerevisiae instead. Because 

the model has not been used before for simulating S. cerevisiae culture characteristics during 

A-stats, the model was first validated for this. 

Model validation 

The validity of the model, which was programmed in Matlab, for simulating S. cerevisiae 

culture characteristics during an A-stat with an acceleration rate of 0.01 h 1 was tested by 

comparing the simulated characteristics with the ones measured by Paalme et al. (1997b). 

The model parameters and the starting values used for this simulation can be found 

respectively in Tables 2 and 3. 

Table 2. Values of model parameters for S. cerevisiae (Sweere et al. 

Parameter 

Km 

Kn 

Ko 
Ks 

Ts 

1o 

Value 

1.7*10"" mol.l"1 

3.6*10"4 mol.l"1 

3.0*10'6 mol.l"1 

5.0*10"5 mol.l"1 

2.5 h 

1.6 h 

Parameter 

Y a 

V a 

1 xs.red 

Yes 

Yos 

O a 

o a 

^o.max.p 

1988). 

Value 

3.65 C-mol.mol"1 

0.36 C-mol.mol"1 

1.88 mol.mor1 

2.17mol.mol"1 

0.50 mol.C-mol' 

0.20 mol.C-mol"1 

.h"1 

.h"1 

1 C-mol of biomass has the composition CH1.83N0.17O0.56. 
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Table 3. Values of conditions used for the simulations of A-stat cultivations with S. cerevisiae adapted from 

Paalmeetal. (1997b). 

Condition Value Condition Value 

Do 

Cs.in 

Cs,0 

Cx,0 

0.1 h"1 

6.67*10'2 mol.l"1 

4.64*10'5 mol.l'1 

0.24 mol.l"1 

Wo 
r b 

^ 0 , 0 
*Js,max,0 

Q = 
o.max.O 

0 mol.l'1 

5.4*10"5 mol.l'1 

5.7*10"2 mol.moI'Vh"1 

6.7*10"2mol.mol"1.h'1 

' Values were calculated using the model equations of Sweere et al. (1988) under steady-state conditions. 

' In the simulations the dissolved oxygen concentration was assumed to be 40% of air saturation all the time, 
while in practice (Paalme et al., 1997b) it was maintained within the range of 20-80% of air saturation. 

In Figure 2 this model validation is shown. This figure shows that the behaviour of the 

simulated results, which were the biomass and ethanol concentration (Figure 2A), and 

glucose concentration and specific growth rate (Figure 2B), corresponded very well with 

the experimental ones. 
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Figure 2. Comparison between the simulated and measured (Paalme et al., 1997b) culture characteristics of 

S. cerevisiae during an A-stat cultivation with an acceleration rate of 0.01 h"2. The symbols give the measured 

characteristics and the lines the simulated ones. A: • , dashed line: biomass concentration (Cx) and • , solid line: 

ethanol concentration (Ce); 6: • , clashed line: glucose concentration (Cs) and • , solid line: specific growth rate 

In agreement with the A-stat experiments, the model predicted that the specific growth 

rate increased proportionally to the dilution rate up to the dilution rate of 0.3 h 1 . At this 

dilution rate ethanol production starts and the increase in specific growth rate temporarily 
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declines (Paalme et al., 1997b), due to the shift from pure oxidative to oxidoreductive 

metabolism. During such a metabolic shift steady-state conditions are usually not 

approached during A-stat cultivations (Paalme et al., 1995). From this validation we 

concluded that the model of Sweere et al. (1988) simulated the behaviour of S. cerevisiae 

culture characteristics during A-stats well. 

Effect of acceleration rate on culture characteristics during A-stats 

The verified model of Sweere et al. (1988) was then used to simulate the effect of the 

acceleration rate on the behaviour of S. cerevisiae culture characteristics in A-stats. In Figure 

3 the simulated culture characteristics, which were the concentrations of glucose, biomass 

and ethanol, specific growth rate and yield of biomass on glucose, in A-stats with 

acceleration rates of 0.001, 0.01 and 0.1 h 2 and chemostats are compared. These 

simulations were carried out until the maximum specific growth rate of S. cerevisiae (0.45 

h-1) was reached. It can be seen from this figure that also for S. cerevisiae the A-stat with an 

acceleration rate of 0.001 h 2 gave more or less the same results as the chemostat, while A-

stats with higher acceleration rates showed an increased deviation from the chemostat at a 

given dilution rate. This demonstrated that the simulated behaviour of S. cerevisiae was 

affected in the same way by the applied acceleration rate as the measured behaviour of 

Z. rouxii (Figure 1). 

Figure 3 shows also that the culture characteristics during the A-stats were not only 

shifted to higher dilution rates than during the chemostat, but also the characteristics 

themselves were changed by the applied acceleration rate. For example, the applied 

acceleration rate not only affected the dilution rate at which the maximum ethanol 

concentration was reached, but also the maximum ethanol concentration itself (Figure 

3C). On the other hand, Figure 3 shows that the initial and final culture characteristics in 

the A-stat with the different acceleration rates were the same as those in the chemostat. 

This is caused by the fact that the A-stat cultivation starts as a chemostat and, if the 

cultivation lasts long enough (until wash-out), will end as a chemostat. For this reason the 

applied acceleration rates did not affect for example the simulated maximum specific 

growth rate (Figure 3D). 
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Figure 3. Comparison between the simulated behaviour of the culture characteristics of S. cerevisiae in 

chemostat and A-stat cultivations with different acceleration rates (•: chemostat characteristics; solid line, 

dashed line and dotted line: A-stat characteristics for acceleration rates of respectively 0.001,0.01 and 0.1 h"2). 

A: glucose concentration (Cs); B: biomass concentration (CJ; C: ethanol concentration (Ce); D: specific growth 

rate (n); E: overall yield of biomass on glucose (Y^). 
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Deviation between A-stats and chemostats 

The deviation between A-stat and chemostat culture characteristics at a given dilution rate 

is expected to be caused by the fact that the yeast can not adapt fast enough to its 

changing environment during A-stats (Paalme et al., 1997b). This could be the explanation 

for the observation that higher acceleration rates, which means a faster changing 

environment, resulted in larger deviations (Figures 1 and 3). According to this, the 

deviation from steady-state conditions during A-stats should decrease if the yeast is able to 

adapt faster. In the model of Sweere et al. (1988) (see Appendix I) the yeast adapts faster if 

the induction times for the synthesis of glucose and oxygen consumption capacity are 

smaller. The effect of these induction times, which are determined to be about 2 hours 

(Sweere et al., 1988) (see Table 2), on the deviation from steady-state conditions during A-

stats was simulated. For this an arbitrary tenfold change in induction times was made and 

the deviation of the specific growth rate of S. cerevisiae from steady-state conditions was 

determined by subtracting the dilution rate from the specific growth rate following the 

biomass balance during A-stats (Paalme and Vilu, 1992): 

^ = CX(H-D) 
at 

The expression (i, - D is zero under steady-state conditions but is negative during the non-

steady-state conditions in the A-stat because the specific growth rate is then smaller than 

the dilution rate. Therefore, an increased deviation from steady-state conditions during the 

A-stat is shown by larger negative values for |J. - D. 

In Table 4 the maximum deviation from steady-state conditions observed during A-stat 

simulations with different acceleration rates is shown. Larger induction times resulted in 

an increased deviation from steady state for all acceleration rates. This effect became more 

pronounced at higher acceleration rates. At a high acceleration rate, like 0.1 h-2, the yeast 

metabolic adaptation rate is too slow to follow its fast changing environment. 

Furthermore, Table 4 shows that some deviation from steady state, even at a low 

acceleration rate of 0.001 h 2 , still existed at extremely low induction times of around 0.2 
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hours, corresponding to a very rapidly adapting yeast. From this it was clear that the 

limiting metabolic adaptation rate contributes to the deviation between A-stat and 

chemostat culture characteristics obtained at the same dilution rate, but there should be 

another cause for this deviation as well. 

Table 4. Simulated effect of variations in the induction times for the synthesis of glucose (ts) and oxygen 

consumption capacity (xo) on the maximum deviation (h'1) of the specific growth rate of S. cerevisiae from 

steady-state conditions during A-stats with different acceleration rates. 

Induction times A-stat with acceleration rate 

ts;x0(h) 0.001 h"2 0.01 h"2 0.1 h"2 

0.25; 0.16 
2.5;1.6a 

25; 16 

-0.02 
-0.02 
-0.04 

-0.10 
-0.13 
-0.74 

-0.45 
-0.96 
-8.84 

a These are the induction times according to Sweere et al. (1988). 

Another cause could be the rate of environmental change during the A-stats in 

comparison with chemostats. As an example for this, the change in the glucose 

concentration in the bioreactor during A-stats was calculated by assuming the absence of 

yeast (see Appendix II). For this, an ingoing glucose concentration of 12 g.l-1 and a 

starting dilution rate of 0.1 h 1 was chosen (Paalme et al., 1997b). At this starting dilution 

rate, the initial glucose concentration in the bioreactor was calculated to be 0.008 g.l4. For 

this calculation, the model equations of Sweere et al. (1988) were used under steady-state 

conditions, as is the case at the start of the A-stat. 

In Figure 4 the calculated glucose concentration in the absence of yeast during chemostat 

and A-stat cultivations with different acceleration rates are compared. It can be seen from 

this figure that the glucose concentration in the A-stats was delayed in dilution rate 

compared to that concentration in the chemostat. This delay was increased at an increased 

acceleration rate during the A-stats. The delay of glucose concentration, which also applies 

for the other medium components in the yeast environment and the yeast itself (data not 

shown), might also contribute to the deviation between A-stat and chemostat culture 

characteristics obtained at the same dilution rate. 
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Figure 4. Comparison between the calculated glucose concentration (Cs) in the absence of yeast during 

chemostat and A-stat cultivations with different acceleration rates (• : chemostat; solid line, dashed line and 

dotted line: A-stat with acceleration rates of respectively 0.001,0.01 and 0.1 h"2). 

The influence of the delay of the concentrations of the medium components on this 

deviation can be eliminated by plotting the culture characteristics against the 

concentration of one of the medium components instead of the dilution rate. This was 

done with the simulated results for S. cerevisiae from Figure 3. As an example, Figure 5A 

shows a plot of the simulated specific growth rate of S. cerevisiae (Figure 3D) against the 

simulated glucose concentration (Figure 3A). It appears from Figure 5A that for 

acceleration rates of 0.01 and 0.1 h 2 there was still some deviation between the specific 

growth rate of S. cerevisiae in A-stats and that in the chemostat at the same substrate 

concentration. This shows that eliminating the delay of the concentrations of the medium 

components could not fully take away the deviation between the A-stat and chemostat. 

According to the above, the residual deviation should disappear if S. cerevisiae is able to 

adapt faster. 

In order to demonstrate this a rapidly adapting S. cerevisiae was simulated by using 

induction times of around 0.2 hours (Figure 5B) instead of the normal 2 hours (Figure 

5A). Figure 5B shows that in this case for all acceleration rates the deviation between the 

A-stat and chemostat completely disappeared. This proves that the deviation between the 

A-stat and chemostat culture characteristics obtained at the same dilution rate is 

dependent on both the delay of the concentrations of the medium components in the A-

66 



Chapter 4 

stat compared to the chemostat, and the limitations in the metabolic adaptation rate of 

S. cerevisiae. 
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Figure 5. Comparison between the simulated behaviour of S. cerevisiae specific growth rate (u.) as a function of 

the simulated glucose concentration (Cs) in chemostat and A-stat cultivations with different acceleration rates 

(• : chemostat; solid line, dashed line and clotted line: A-stat characteristics for acceleration rates of respectively 

0.001,0.01 and 0.1 h'2). The yeast induction times for the synthesis of glucose (t̂ ) and oxygen consumption 

capacity (to) respectively used for the simulation were in A: 2.5 and 1.6 h; B: 0.25 and 0.16 h. 

Estimation of steady-state culture characteristics during A-stats with yeasts 

From the measurements with Z. rouxii (Figure 1) and simulations for S. cerevisiae (Figure 3) 

it was clear that in order to approach chemostat conditions in the A-stat, the choice of the 

acceleration rate is very important. It was shown that there was a significant difference 

between the A-stat with an acceleration rate of 0.01 h 2 , which was applied for S. cerevisiae 

(Paalme and Vilu, 1992; Paalme et a l , 1997b), and chemostat culture. This difference 

increased when the acceleration rate was increased to 0.1 h 2 , while it was smaller at an 

acceleration rate of 0.001 h 2 . At such a slow acceleration rate, the metabolic adaptation 

rate of the yeast is not limiting (Table 4) and there is hardly any delay of environmental 

substrate concentrations (Figure 4). Therefore, the acceleration rate of 0.001 h 2 is the 

fastest rate, which can be used for approaching steady-state culture characteristics during 

A-stats with yeasts. In our experimental study with Z. rouxii, more or less the same time 

was needed for running the A-stat with an acceleration rate of 0.001 rr2 as for the 

chemostats. In this time, a practically unlimited number of data points (all data are not 
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shown) were obtained with this A-stat while the chemostats only delivered six data points. 

From this it appears that it is interesting to use the A-stat instead of the chemostat, 

whenever a rough estimation of steady-state culture characteristics is acceptable. 

Conclusions 

The main purpose of the study presented here was to determine the highest acceleration 

rate, meaning the fastest A-stat, at which steady-state culture characteristics can be 

estimated. Measurements for Z. rouxii showed that steady-state culture characteristics 

could be roughly estimated in an A-stat with an acceleration rate of 0.001 h2. Higher 

acceleration rates generally resulted in an increased difference between the A-stat and 

chemostat culture characteristics at a given dilution rate. It appeared that the A-stat with 

an acceleration rate of 0.001 h 2 provided in the same time much more information than 

the chemostat. Therefore, it is clearly attractive to use the A-stat instead of the chemostat 

for roughly estimating steady-state culture characteristics. 

The measurements with Z. rouxii were confirmed with simulations for S. cerevisiae using the 

model of Sweere et al. (1998). This model also showed that if A-stats are to be used to 

replicate chemostat conditions, both the metabolic adaptation rate of the yeast and the 

rate of change of environmental substrate concentrations should be taken into account. 

Furthermore, the measurements confirmed that Z. rouxii, like S. cerevisiae, produced 

ethanol under aerobic conditions (Crabtree effect). In contrast to S. cerevisiae, Z. rouxii 

started to produce ethanol at a dilution rate of 0.1 h 1 (versus 0.3 h1) and had a maximum 

specific growth rate around 0.17 h4 (versus 0.45 h1). 
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Appendix I 

The model presented below, which we used to describe the growth of S. cerevisiae during 

A-stat and chemostat cultivations, is according to Sweere et al. (1988). Sweere et al. based 

their model on the hypothesis of Sonnleitner and Kappeli (1986) that the growth of 

S cerevisiae is controlled by its limited respiratory capacity. Here the consumption of 

ethanol, which was assumed not to occur during the cultivations, was omitted. 

Glucose consumption follows Monod kinetics: 

Q =Q £ — 

The limited oxidation capacity is dependent on the availability of dissolved oxygen: 

C 

Q , =Q — ^ — 

The changes in maximum consumption rates of glucose and oxygen are described by first-

order transfer functions: 

dQ,m = ±.(Q £. Q ) 
dt Ts Kn+Cs 

dQ0,^ __ 1 C0 2-C.+C, 

dt xo
 W A , ~ - ' KB+C0 Km+2-Cs+Ce

 U"~} 

The limited oxidation capacity determines the amount of glucose that can be oxidized: 

S,OX y 

OS 

If not all glucose consumed can be oxidized, then the excess glucose will be reduced: 

*£s,red *£s *£s,ox 
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The reduction of glucose results in ethanol production: 

*£e,pr es x--s,red 

The specific growth rate is dependent on the oxidative and reductive glucose metabolism: 

" xs,ox *£s,ox xs,red *£s,red 

The balances for glucose, biomass and ethanol during the A-stat are respectively: 

—S- = DC -DC -Q C 

^ = -DCx+n-Cx 

dt x x 

d£ 
dt 

—e- = -DC +Q C 

The dissolved oxygen concentration was assumed to be 40% of air saturation all the time. 

Appendix II 

As an example of the effect of the rate of change of the yeast environment during A-stats, 

the glucose concentration in the bioreactor was calculated by assuming the absence of 

yeast. The glucose balance during A-stats is: 

^ = DC -DC 
dt 

The dilution rate is changed according to the following equation: 

D = D0 + a • t 

Combining the above equations results in the differential equation: 

70 



Chapter 4 

^ = (D0+a-t)-(Csin-Cs) 
at 

The solution of this differential equation is given by: 

-D01 at2 

*- s = *- s,in ~ (^ s,in ~ ^- s,0 / ' e 

N o m e n c l a t u r e 

a acceleration rate h 2 

C concentration mol.l1 

D dilution rate h 1 

K saturation constant mol.l1 

Km substrate saturation constant for the induction of the synthesis 

of oxidation capacity mol.l'1 

Kn glucose saturation constant for the induction of the synthesis 

of glucose consumption capacity mol.l4 

Q specific consumption rate mol.moF.rr1 

t time h 

Yij yield of component i on j mol.mol1 

T time constants with respect to the rate of change of the 

maximal consumption rates h 

|J, specific growth rate rr1 

Subscripts: 

e: ethanol; in: ingoing; lim: limited capacity; max: maximum; o: oxygen; ox: oxidation; p: 

plateau; pr: production; red: reduction; ref: reference value; s: glucose; x: biomass; 0: time 

zero. 
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Chapter 5 

Concomitant extracellular accumulation of OC-keto acids and 

higher alcohols by Zygosaccharomyces rouxii 

Abstract 

(X-Keto acids are key intermediates in the formation of higher alcohols, important flavour 

components in soy sauce, by the salt-tolerant yeast Zygosaccharomyces rouxii. Unlike most of 

the higher alcohols, the OC-keto acids are usually not extracellularly accumulated. In order 

to accumulate the OC-keto acids from the aspartate-derived amino-acid metabolism, the 

amino acids valine, leucine, threonine and methionine were exogenous supplied during 

batch and A-stat cultivations with (mutants of) Z. rouxii. It was shown that all OC-keto acids 

from the aspartate-derived amino-acid metabolism, except OC-ketobutyrate, could be 

extracellularly accumulated. In addition, it appeared from the concomitant extracellular 

accumulation of OC-keto acids and higher alcohols that in Z. rouxii, valine, leucine and 

methionine were converted via similar Ehrlich pathways as in Saccharomyces cerevisiae. Unlike 

these amino acids, threonine was converted via both the Ehrlich and amino-acid 

biosynthetic pathways in Z. rouxii. 

This chapter has been submitted for publication as: van der Sluis C, Rahardjo YSP, Smit BA, Kroon 

PJ, Hartmans S, ter Schure EG, Tramper J, Wijtfels RH. 2000. Concomitant extracellular accumulation 

of a-keto acids and higher alcohols by Zygosaccharomyces rouxii. 
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Introduction 

Zygosaccharomyces rouxii, a salt-tolerant yeast, is responsible for the higher-alcohols 

formation in soy sauce. The higher alcohols are important components of the soy-sauce 

flavour (Aoki and Uchida, 1991a). In order to control the production of the higher 

alcohols by Z rouxii, much research has been done in the last decade (Aoki and Uchida, 

1990; Aoki and Uchida, 1991a; Aoki and Uchida, 1991b; Yoshikawa et al., 1995). In most 

of these investigations, the biosynthetic pathways for the higher alcohols in Z rouxii were 

assumed to be the same as those in Saccharomyces cerevisiae because the pathways in Z. rouxii 

have hardly been reported so far. 

In S. cerevisiae, the biosynthesis of several higher alcohols is closely related to the aspartate-

derived amino-acid metabolism. In this metabolism, aspartate is converted via homoserine 

into threonine or methionine (Figure 1) (Jones and Fink, 1982). Consequently, the 

threonine formed can be used for the isoleucine synthesis. For this, threonine is first 

deaminated by threonine deaminase (L-threonine hydro-lyase [deaminating]; EC 4.2.1.16) 

to the OC-keto acid OC-ketobutyrate, the precursor of the higher alcohol n-propanol (Webb 

and Ingraham, 1963). Hereafter, OC-ketobutyrate is converted with pyruvate further 

towards isoleucine. This conversion is catalyzed by acetohydroxy acid synthase 

(acetolactate pyruvate-lyase [carboxylase]; EC 4.1.3.18). In a similar pathway, this enzyme 

also converts two molecules of pyruvate towards valine and leucine. The amino acids 

isoleucine, valine and leucine are finally formed by transamination of the OC-keto acids 

respectively OC-keto-P-methylvalerate, OC-keto-isovalerate and Ot-keto-isocaproate, which 

can be converted into the higher alcohols, respectively active amyl alcohol, isobutyl 

alcohol and isoamyl alcohol as well. The higher alcohols n-propanol, active amyl alcohol, 

isobutyl alcohol and isoamyl alcohol are not only derived from the amino-acid 

biosynthetic pathways but also from the deamination or transamination of the 

extracellular amino acids (Ehrlich pathway) (Webb and Ingraham, 1963). 

76 



methionol • 

isobutyl 
alcohol 

Chapter 5 

aspartate 

methionine -

4-methylthio-
a-ketobutyrate 

homoserine 

threonine 

threonine 
deaminase 

pyruvate a-ketobutyrate n-propanol 

pyruvate 

acetohydroxy acid 
synthase 

(X-

isc 

1 

V 

keto-
valerate 

A 
1 • 

aline 

1 
1 

a-keto-
isocaproate 

a-ket< 
P-met 

isol 

3-

hylvalerate 

A 
1 • 

eucine 

. . . . . . •*- alcohol 

active amyl 
alcohol 

I' 
leucine 

Figure 1. Aspartate-derived amino-acid metabolism in S. cerevisiae. Solid lines: amino-acid biosynthetic 

pathways; dotted lines: Ehrlich pathways. 
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The Ehrlich pathway is assumed to be the only pathway for producing the higher alcohol 

methionol (Aoki and Uchida, 1991b). In this pathway, methionol is produced from the 0C-

keto acid 4-methylthio-OC-ketobutyrate, which results from the uptake and transamination 

of methionine. In S. cerevisiae, also other pathways for the catabolism of valine, leucine and 

isoleucine exist (not shown) but in these pathways higher alcohols are not formed 

(Dickinson and Dawes, 1992; Derrick and Large, 1993). 

From the above-described pathways it is clear that for the formation of higher alcohols in 

the aspartate-derived amino-acid metabolism of S. cerevisiae, the (X-keto acids are key 

intermediates. These a-keto acids, unlike most of the higher alcohols, are usually not 

extracellularly accumulated. In previous studies, the extracellular accumulation of CX-

ketobutyrate with Z. rouxii failed because its formation and conversion rate was balanced 

all the time (van der Sluis et al., 2000a). In this work, we attempted to accumulate the 

other OC-keto acids with Z. rouxii as well. To accomplish the accumulation of these (X-keto 

acids their formation in Z. rouxii was increased by increasing the flow through the Ehrlich 

pathways or the amino-acid biosynthetic pathways. The flow through the Ehrlich 

pathways of Z. rouxii increases at increased concentrations of extracellular amino acids 

(Aoki and Uchida, 1991a; van der Sluis et a l , 2000a). The flow through the isoleucine-

biosynthetic pathway of the aspartate-derived amino-acid metabolism is increased in 

mutants of S. cerevisiae with resistance to thia-isoleucine, an isoleucine analogue (Fukuda et 

al., 1993). 

In the research presented here, the accumulation of (X-keto acids by Z. rouxii was studied. 

In addition, the concomitant accumulation of higher alcohols was determined in order to 

know more about the biosynthetic pathways for the higher alcohols in Z. rouxii. For this, 

batch cultivations were executed with the separate addition of valine and leucine. 

Furthermore, mutants of Z. rouxii were isolated with resistance to the growth-inhibitors 

threonine (van der Sluis et al., 2000a) and thia-isoleucine. These mutants were cultivated 

batch-wise on a medium with a mixture of threonine and methionine as only nitrogen 

sources. One of these mutants was also cultivated in an acceleration-stat (A-stat) in which 

the ratio of threonine to methionine in the medium was continuously changed. 
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Materials and m e t h o d s 

Yeast culture 

Z. rouxii CBS 4021 cells, supplied by the Centtaalbureau voor Schimmelcultures (Delft, 

The Netherlands) and maintained on a mixture of glycerol and skimmed milk at -80°C, 

were cultivated in 300 ml Erlenmeyer flasks, containing 100 ml defined medium, on a 

rotary shaker at 28°C and 200 rpm. 

Medium 

The medium used for Z. rouxii had the following composition per liter of demineralized 

water: 22 g glucose.llrbO, 21 g citric acid.ll-bO, 5 g ammonium sulphate and 6.7 g Bacto 

Yeast Nitrogen Base without amino acids and ammonium sulphate (Difco). The pH of 

this medium was adjusted to a value of 5 using NaOH and the medium was filter-

sterilized (0.2 |Xm filters). 

Mutagenesis 

Z. rouxii cells were used for mutagenesis, when they were in the exponential growth phase 

of the cultivation. Then the cells were harvested and concentrated by centrifugation for 10 

minutes at 9,500 g and 5°C. After centrifugation, the cells were washed with a sterilized 

potassium-phosphate buffer (50 mM, pH 7) and centrifuged again. Hereafter, the 

concentrated yeast suspension obtained was treated with a l-methyl-3-nitro-l-

nitrosoguanidine solution (2 mg/ml) for 5 or 15 minutes, resulting in survival rates of 

about 15 or 3%, respectively. 

Isolation of mutants 

After the nitrosoguanidine treatment, Z. rouxii cells with resistance to threonine and thia-

isoleucine were isolated on agar plates, which were supplemented with threonine (10 mM) 
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or thia-isoleucine (1 mM). For this, the plates were incubated at 25°C. The agar plates 

were made by adding 3.3 g glucose.lFfcO, 5 g ammonium sulphate, 1.1 g Bacto Yeast 

Nitrogen Base without amino acids and ammonium sulphate (Difco) and 15.6 g agar to 1 

liter of demineralized water. Before this, the agar was autoclaved for 20 minutes at 120°C 

and all other components were filter-sterilized (0.2 |Im). 

Characterization of mutants 

The isolated mutants were characterized by comparing the specific maximum growth rate 

with that of the wild-type. For this, the cells were cultivated in Erlenmeyer flasks as 

described above. The effect of additional threonine (10 mM) or thia-isoleucine (1 mM) on 

the specific maximum growth rate of both mutants and the wild-type was determined as 

well. 

Accumulation of a-keto acids and higher alcohols during batch cultivations 

The effect of amino acids on the accumulation of a-keto acids and higher alcohols by 

Z rouxii was measured during batch cultivations in Erlenmeyer flasks, as described above. 

For this, 5,10 and 20 mM valine and leucine were separately added to the medium with 

ammonium sulphate. In addition, threonine (75 mM) or a mixture of threonine (75 mM) 

and methionine (7.5 mM) were used as nitrogen source instead of ammonium sulphate. 

During all these batches, the growth was measured as well. 

Accumulation of a-keto acids and higher alcohols during A-stat cultivation 

The effect of continuously changing ratio of threonine to methionine in the medium on 

the accumulation of a-keto acids and higher alcohols by Z rouxii was measured during an 

A-stat cultivation. For the A-stat cultivation a starter culture of exponentially growing cells 

was made in Erlenmeyer flasks in which a mixture of threonine (45 mM) and methionine 

(5 mM) was used as nitrogen source instead of ammonium sulphate (see above). The 

starter culture of 100 ml was added to a bench-scale autoclavable bioreactor (height and 
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diameter of respectively 0.2 and 0.12 m) containing 0.75 liter of the medium with the 

same composition, except that citric acid was omitted. 

The cultivation in the bioreactor was controlled by a Bio Controller (Applikon) and a 

Bioexpert (Applikon) acquired the on-line data, which were the temperature, pH, oxygen 

tension in the broth, foam level, stirrer speed, medium flow rate and concentration of 

oxygen and carbon dioxide in the outgoing air. The temperature was controlled at 28°C 

and the pH at 4.5 by automatic addition of 1 M HC1 or 1 M NaOH. The cells were 

aerobically grown with an air flow rate of 48.6 1/h. The oxygen tension in the broth was 

kept above 30% of air saturation by controlling the stirrer speed, which was at least 350 

rpm. The stirrer used was a six-blade Rushton turbine stirrer with a diameter of 45 mm. 

The concentration of oxygen and carbon dioxide in the outgoing air was measured on-line 

with respectively the Xentra 4100 Gas Purity Analyser and 1440 Gas Analyser (both from 

Servomex). The foam level was controlled by automatically adding a diluted (50 times) 

Antifoam B Silicone emulsion (J.T. Baker). 

In the bioreactor, a continuous cultivation was started with a medium flow rate (F) of 

0.022 l.h-1, which was composed of two flows (Fthr and Fmet) from different medium 

vessels (Figure 2). The two medium vessels contained both a medium without ammonium 

sulphate but one contained 50 mM threonine (Cthr.ves) and the other 50 mM methionine 

(Cmct,ves) as sole nitrogen source instead. During this continuous cultivation, the flow of 

the medium with threonine was 0.02 1/h (Fthr,o) and that of the medium with methionine 

0.002 1/h (Fmet,o), resulting in a ratio of threonine to methionine of 45:5 (mM/mM) in the 

ingoing medium. On this medium, the culture was allowed to stabilize in order to obtain 

steady-state conditions, which were ascertained by constant carbon-dioxide production of 

the culture. 

After this, the cultivation was continued with the A-stat cultivation. During the A-stat 

cultivation, the same ingoing medium flow rate was applied (0.022 l.h1) but the flow rates 

from the two medium vessels were changed in time in order to change the ratio of 

threonine to methionine in the ingoing medium from 45:5 to 0:50 (mM/mM). This was 
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done by adjusting the flow rate of the medium with threonine (Fthr) and that of the 

medium with methionine (Fmet) according to the following equations, respectively: 

F,hr=F,hr,o-a-t 

Fme,=FmeUo+a-t 

For this, a constant acceleration rate (a) of 0.00075 l /h2 was applied. This corresponds to 

the acceleration rate of 0.001 h2, which was previously shown to give a good estimation 

of steady-state yeast culture characteristics (van der Sluis et al., 2000b). During the A-stat 

cultivation the growth, the consumption of amino acids and the accumulation of Ot-keto 

acids and higher alcohols was followed. 
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V = 0.75 1 
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flow out 

Figure 2. Set-up of the A-stat cultivation. Symbols are explained in nomenclature section. 

Analyses 

The growth of Z. rouxii was followed, by measuring the optical density at 610 nm 

(Pharmacia Biotech, Ultraspec). For this, samples were taken and diluted with 

demineralized water to obtain absorbance values less than 0.7. Below 0.7, the absorbance 

values were linearly related to biomass dry weight. 
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The accumulation of the OC-keto acids OC-ketobutyrate, (X-keto-(3-methylvalerate, a-keto-

isovalerate, a-keto-isocaproate and 4-methylfhio-a-ketobutyrate was determined by 

reversed-phase HPLC (Chromspher 5 C8, Chrompack) after derealization with 2,4-

dinitrophenylhydrazine (Buslig, 1982). The flow rate of the eluens, a mixture of 

demineralized water and acetonitrile (60:40), was 1.5 ml/min. For derivatization, 1 ml 

sample was mixed with a 0.5 ml solution of dinitrophenylhydrazine (0.40 g 

dinitrophenylhydrazine dissolved in 60 ml 2N HC1) and allowed to stand overnight at 

room temperature. After this, the sample was mixed with 5 ml acetonitrile and after 1 

hour, centrifuged. The supernatant was used for analysis after filtering (0.2 um). This 

HPLC method could not separate OC-ketobutyrate from 4-methylthio-a-ketobutyrate and 

(X-keto-P-methylvalerate from a-keto-isocaproate. a-Ketobutyrate appeared to be 

separated from 4-methylthio-a-ketobutyrate, when both the ratio of demineralized water 

to acetonitrile in the eluens and the eluens flow rate were changed to 40:60 and 2.0 

ml/min, respectively. 

The accumulation of the higher alcohols n-propanol, active amyl alcohol, isobutyl alcohol 

and isoamyl alcohol was determined by GC. The samples were incubated at 60°C for 10 

minutes. After incubation, a head-space sample was taken and collected in a cold trap 

(liquid nitrogen at -110°C). Through subsequent heating of the cold trap (240°C), the 

compounds were injected on a DB-wax column (30 m * 0.542 mm, film 1.0 um). A 

temperature profile was used from 30 to 110°C at a rate of 2.5°C/min. Helium was used 

as carrier gas (about 15 ml/min, 30 kPA) and the compounds were detected with a flame-

ionization detector (EL 980, Fison Instruments). With this method, active amyl alcohol 

and isoamyl alcohol could not be separated from another. 

The consumption of the amino acids threonine and methionine was determined with the 

Biochrom 20 Amino Acid Analyser (Pharmacia). With this analyser, the amino acids were 

separated on a column of cation-exchange resin and after that, the amino acids reacted 

with a ninhydrin reagent to form coloured compounds. The coloured compounds were 

detected at two wavelengths, 440 and 570 nm. 
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Resul ts and d i s cu s s i on 

Separate addition of valine and leucine to batch cultures 

In order to increase the flow through the Ehrlich pathways of the aspartate-derived 

amino-acid metabolism valine and leucine were used as additional nitrogen sources 

(Figure 1). This was done by separately adding 5, 10 and 20 mM valine and leucine to 

batch cultures of Z rouxii, which contained ammonium sulphate (5 g/1). The additions of 

these amino acids appeared to have no effect on Z rouxii growth (data not shown). The 

effect of valine and leucine on the accumulation of OC-keto acids and higher alcohols is 

shown in respectively Figure 3 and 4. 
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Figure 3. Effect of valine on the accumulation of a-keto acids and higher alcohols with Z. rouxii in batch cultures 

with ammonium sulphate (•: no addition; • : 5 mM; • : 10 mM; T : 20 mM). A: a-keto acids; B: higher alcohols. 

Figure 3 and 4 show that addition of valine and leucine (5 mM) triggered the accumulation 

of respectively OC-keto-isovalerate and a-keto-(3-methylvalerate plus (X-keto-isocaproate 

and at the same time, increased the accumulation of respectively isobutyl alcohol and 

active amyl alcohol plus isoamyl alcohol. The addition of more valine and leucine (10 and 

20 mM) resulted in more accumulation of these a-keto acids and higher alcohols. On the 

other hand, the accumulation of the other a-keto acids and higher alcohols was neither 

initiated nor affected by valine and leucine (data not shown). 
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Figure 4. Effect of leucine on the accumulation of ot-keto acids and higher alcohols with Z. rouxii'm batch 

cultures with ammonium sulphate (• : no addition; • : 5 mM; • : 10 mM; T : 20 mM). A: a-keto acids; B: higher 

alcohols. 

Although we could not separate OC-keto-P-methylvalerate from (X-keto-isocaproate and 

active amyl alcohol from isoamyl alcohol, it seemed that in Z. rouxii, like in S. cerevisiae 

(Figure 1), the exogenous supplied valine and leucine were transaminated to respectively 

OC-keto-isovalerate and OC-keto-isocaproate, which were converted into the isobutyl alcohol 

and isoamyl alcohol, respectively. The extracellular accumulation of the transaminated 

derivatives from valine and leucine by Z. rouxii was also observed for nitrogen-starved 

cells of S. cerevisiae (Woodward and Cirillo, 1977). 

Use of threonine in ba tch cultures 

Another way to increase the flow through the Ehrlich pathways of the aspartate-derived 

amino-acid metabolism is by using threonine as additional nitrogen source (Figure 1). 

However, the addition of threonine (5 mM) severely inhibits Z. rouxii growth (van der 

Sluis et al., 2000a) by inhibiting the conversion of aspartate to homoserine (van der Sluis 

et al., 2000c). Therefore, we attempted to obtain mutants of Z. rouxii with resistance to 

threonine. For this, the wild-type was treated with the mutagent nitrosoguanidine for 5 or 

15 minutes. Both treatment-times gave mutants, which could grow on agar plates in the 

presence of threonine (10 mM). Six of them were isolated and further characterized. 
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The effect of threonine on the growth of these mutants and the wild-type was determined 

during batch cultures on a medium with ammonium sulphate (5 g/1) with no additions or 

additional threonine (10 mM). In Table 1, the maximum specific growth rates of the 

mutants and wild-type during the different batches are compared. Table 1 shows that the 

specific growth rate of the mutants and the wild-type were comparable high on the 

medium without threonine, while the addition of threonine hardly affected the specific 

growth rate of the mutants but reduced that of the wild-type with 50%. This 

demonstrated that the mutants, unlike the wild-type, were resistant to the growth 

inhibition by threonine. 

Table 1. Effect of addition of threonine on the maximum specific growth rate (h") of Z. rouxii strains in a medium 

containing ammonium sulphate (5 g/l). 

Additions 

No additions 

Threonine (10 mM) 

WTa 

0.13 

0.06 

THR1b 

0.12 

0.10 

THR2b 

0.10 

0.12 

Strain 

THR3b 

0.12 

0.12 

THR4b 

0.12 

0.11 

THR5b 

0.11 

0.11 

THR6b 

0.10 

0.10 

a WT: wild-type. 

b THR: mutant with resistance to threonine. 

The effect of threonine on the accumulation of OC-keto acids and higher alcohols by these 

mutants and the wild-type was determined as well. For this, batch growth experiments 

were done on a medium with ammonium sulphate (5 g/l) or threonine (75 mM) as sole 

nitrogen source. In Figure 5, the concentrations of the OC-keto acids and higher alcohols in 

the stationary growth phase of the different batches are shown. 

Figure 5A shows that the mutants and the wild-type did not accumulate any (X-keto acids 

in the presence of ammonium and accumulated about the same amounts of n-propanol, 

isobutyl alcohol and active amyl alcohol plus isoamyl alcohol. Furthermore, the growth of 

the mutants and the wild-type on this medium were also comparable (data not shown). 

Therefore, it seemed that the mutants had more or less the same flow through the 

aspartate-derived amino-acid metabolism as the wild-type, otherwise an altered higher-
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alcohols accumulation would have been expected as well. This means that the flow 

through the arnino-acid biosynthetic pathways of the mutants was the same as that of the 

wild-type because, on this medium without amino acids, there is assumed to be no flow 

through the Ehrlich pathways. 
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WT THR1 THR2 THR3 THR4 THR5 THR6 
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isobutyl alcohol 
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Figure 5. Effect of nitrogen source on the accumulation of cc-keto acids and higher alcohols with threonine-

resistant mutants of Z. rouxii'm batch cultures. A: ammonium sulphate (5 g/l); B: threonine (75 mM). WT: wild-

type; THR1 ..THR6: threonine-resistant mutants. 

In addition, Figure 5 shows that the replacement of ammonium by threonine had an 

opposite effect on the mutants than on the wild-type. The mutants started to accumulate 

significant amounts of OC-keto-P-methylvalerate plus a-keto-isocaproate and accumulated 

many times more of n-propanol and active amyl alcohol plus isoamyl alcohol, while the 

wild-type did not accumulate these (X-keto acids and accumulated less of these higher 

alcohols. For both the mutants and the wild-type, the use of threonine did not result in 
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accumulation of OC-ketobutyrate (data not shown) and resulted in a decreased 

accumulation of isobutyl alcohol. These results suggest that in Z. rouxii threonine was 

converted not only via the Ehrlich pathway to n-propanol but also via the isoleucine-

biosynthetic pathway to OC-keto-P-methylvalerate and active amyl alcohol (Figure 1). Most 

probably both pathways were used for this conversion in order to prevent that a toxic 

endogenous level of OC-ketobutyrate is reached, as found in Salmonella typhimurium (LaRossa 

et al., 1987) and Cotynebacteriumglutamicum (Eggeling et al., 1987). This means that the flow 

through the isoleucine-biosynthetic pathway of Z. rouxii was increased in the presence of 

threonine, which is in agreement with the fact that the activity of acetohydroxy acid 

synthase increases by threonine (van der Sluis et al., 2000a). 

In addition, the use of threonine instead of ammonium decreased the growth for the 

mutants and the wild-type (data not shown), which probably is the reason for the 

decreased accumulation of isobutyl alcohol. The decrease in Z. rouxii growth confirmed 

that ammonium is favourable (van der Sluis et al., 2000c). However, the growth of the 

mutants was less decreased by threonine than that of the wild-type (data not shown) 

because of the higher resistance of the mutants towards threonine. The difference in 

growth between the mutants and wild-type in the presence of threonine explains the large 

difference in accumulated OC-keto acids and higher alcohols. 

Thia-isoleucine-resistant mutants in batch cultures 

Thia-isoleucine-resistant mutants of S. cerevisiae have an increased flow through the 

isoleucine-biosynthetic pathway of the aspartate-derived amino-acid metabolism because 

of a threonine deaminase with a decreased feed-back sensitivity to isoleucine (Figure 1) 

(Fukuda et al., 1993). This increased flow causes that these mutants accumulate three to 

four times more active amyl alcohol and a litde bit more n-propanol than the wild-type. In 

order to obtain thia-isoleucine-resistant mutants of Z. rouxii, the wild-type was treated 

with nitrosoguanidine for 5 and 15 minutes resulting in mutants, which could grow on 

agar plates in the presence of 1 mM thia-isoleucine. 
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The growth of six of these mutants and the wild-type was followed in batch cultures, 

containing ammonium sulphate (5 g/1) with no additions or additional thia-isoleucine (1 

mM). In Table 2, the effect of thia-isoleucine on the maximum specific growth rates of 

the mutants and the wild-type is shown. It appears from Table 2 that the mutants had 

more or less the same specific growth rate as the wild-type on the medium with no 

additions. As expected the addition of thia-isoleucine dramatically decreased the specific 

growth rate of the wild-type, while that of the mutants was only slighdy decreased. This 

clearly showed that the mutants were much more resistant to thia-isoleucine than the wild-

type. 

Table 2. Effect of addition of thia-isoleucine on the maximum specific growth rate (h1) of Z. rouxiistrains in a 

medium containing ammonium sulphate (5 g/l). 

Additions 

No additions 

Thia-isoleucine (1 mM) 

WTa 

0.13 

0.01 

T I1 b 

0.14 

0.11 

TI2b 

0.10 

0.09 

Strain 

TI3b 

0.11 

0.08 

TI4b 

0.10 

0.08 

TI5b 

0.10 

0.09 

TI6b 

0.11 

0.11 

1 WT: wild-type. 

The accumulation of OC-keto acids and higher alcohols by these mutants was also 

compared with that of the wild-type during batch cultures with ammonium sulphate (5 

g/l) as sole nitrogen source. In Figure 6A, the concentrations of the OC-keto acids and 

higher alcohols, measured in the stationary phase of these batches, are shown. It can be 

seen in Figure 6A that both Z. rouxii mutants and wild-type did not accumulate any OC-keto 

acids and accumulated more or less the same amounts of n-propanol and active amyl 

alcohol plus isoamyl alcohol. From this it appeared that the mutants were not really 

different from the wild-type, although some of the mutants showed an increased isobutyl-

alcohol accumulation, which we could not explain. The absence of an increased 

accumulation of n-propanol and active amyl alcohol demonstrated that our thia-

isoleucine-resistant mutants of Z rouxii reacted different from those of S. cerevisiae (Fukuda 

et al., 1993). Based on this and because the Z rouxii mutants did not have a decreased 
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feed-back sensitivity to isoleucine as well (data not shown), it seemed that the flow 

through the isoleucine-biosynthetic pathway of the Z. rouxii mutants was not increased. 

h 1 8 
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£ 1.2 1 c o 
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WT TI1 TI2 TI3 TI4 TI5 TI6 

a-keto-P-methylvalerate + ct-keto-isocaproate 
V////A 4-methylthio-a-ketobutyrate 
EHEEB n-propanol 
^m isobutyl alcohol 
ES33S active amyl alcohol + isoamyl alcohol 

Figure 6. Effect of nitrogen source on the accumulation of a-keto acids and higher alcohols with thia-isoleucine-

resistant mutants of Z. rouxiim batch cultures. A: ammonium sulphate (5 g/l); B: threonine (75 mM) plus 

methionine (7.5 mM). WT: wild-type; TI1 ..TI6: thia-isoleucine-resistant mutants. 

To increase the flow through the Ehrlich pathways of these Z. rouxii mutants and wild-

type, threonine (75 mM) and methionine (7.5 mM) were used as nitrogen source instead 

of ammonium during batch cultivations (Figure 1). The addition of methionine also 

improves the growth of Z. rouxiim the presence of threonine (van der Sluis et al., 2000c). 

In Figure 6B the a-keto acids and higher alcohols accumulated in the stationary growth 

phase of these batches, are shown. Figure 6 shows that the replacement of ammonium by 

the mixture of threonine and methionine triggered the accumulation of (X-keto-p-

90 



Chapter 5 

methylvalerate plus OC-keto-isocaproate and 4-methylthio-OC—ketobutyrate, increased the 

accumulation of n-propanol and active amyl alcohol plus isoamyl alcohol and decreased 

the accumulation of isobutyl alcohol for both the mutants and the wild-type. From these 

results and the earlier results, it seemed that threonine was converted into n-propanol, 0C-

keto-P-methylvalerate and active amyl alcohol, while methionine was transaminated via 

the Ehrlich pathway into 4-methylthio-a-ketobutyrate (Figure 1). In S. cerevisiae, the 

transaminated derivatives from methionine are also extracellularly accumulated 

(Woodward and Cirillo, 1977). Based on the Ehrlich pathway for methionine in S. cerevisiae 

(Figure 1), we expected methionol accumulation in these batches as well, but this did not 

happen. 

Furthermore, Figure 6B shows that in the presence of the mixture of threonine and 

methionine, most of the mutants accumulated significant more of the OC-keto acids and 

higher alcohols than the wild-type. This might have been caused by the fact that the 

growth of the mutants was slightly better than that of the wild-type on this medium (data 

not shown), but the reason for this remains unclear. 

Thia-isoleucine-resistant mutant in A-stat culture 

In order to investigate the Ehrlich pathway towards methionol in Z. rouxii further, the 

flow through this pathway was increased by adding more methionine to the medium 

(Figure 1) (Aoki and Uchida, 1991b). This was done by continuously changing the ratio of 

threonine to methionine in the ingoing medium (without ammonium), from 45:5 to 0:50 

(mM/mM) during an A-stat cultivation with mutant TI3 (Figure 7A). For this the A-stat 

cultivation was used because this cultivation method is much more informative than other 

methods (Paalme et al., 1995; van der Sluis et al., 2000b). In addition, mutant TI3 was 

chosen because it showed the highest accumulation of 4-methylthio-a-ketobutyrate 

(Figure 6B), the precursor of methionol (Figure 1). 

The effect of changing the concentration of threonine and methionine in the ingoing 

medium on their concentrations in the bioreactor was calculated by assuming absence of 

consumption of these amino acids by the yeast (see Appendix) (Figure 7A). Figure 7A 
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shows that for reaching a threonine to methionine ratio of 25:25 (mM/mM) in the 

bioreactor without consumption by the yeast more than 30 hours is needed, while that 

ratio was already reached in the ingoing medium within 12 hours. This shows that the 

change in threonine and methionine concentration in the bioreactor was delayed 

compared to that in the ingoing medium. 

o 
E 
E 

ns 
o 
c 

"E 
CO 

methionine 

threonine 

50 100 150 200 

time (h) 

_~ 

F 
"O 
o 
co 
o 
c 
F 
CO 

60 i 

4 0 ' 

?0 

i 

n 

B 

\r 
\ \ 
7 
A t\ 

f \ * V — £ = * - ^ ^-«-^ 
50 100 150 200 

time (h) 

o 
E 
E, 
"D 
O 
co 
o 

50 100 150 200 

time (h) 

~ 
• 

o 
b 
E, 
"5 
si o o 
CO 

CD 

D ) 
sz 

1 5 ! 

1.0 

0.5 

0 50 100 150 

time (h) 

D r 8 

6 

4 

2 

I- 0 
200 

H 
CD 
3" 
o 
o 

3 
3 
o 

^ 

Figure 7. Effect of changing ratio threonine to methionine on the accumulation of a-keto acids and higher 

alcohols by a thia-isoleucine-resistant mutant of Z rouxii during A-stat cultivation. A: calculated amino-acid 

concentrations (solid line: ingoing medium; dashed line: bioreactor without consumption by yeast). B: calculated 

amino-acid consumption (• : threonine; • : methionine). C: a-keto acids (• : a-keto-p-methylvalerate plus o 

keto-isocaproate; • : 4-methylthio-oc-ketobutyrate). D: higher alcohols (• : n-propanol; • : isobutyl alcohol; • : 

active amyl alcohol plus isoamyl alcohol; A: methionol). 

The consumption of threonine and methionine during the A-stat cultivation was 

determined by subtracting the measured concentrations from the ones calculated by 

assuming absence of consumption by the yeast (Figure 7B). From Figure 7B it appears 
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that the amino-acid consumption by this mutant TI3 during this A-stat cultivation 

followed the change from threonine to methionine in the bioreactor very well. 

The effect of the change in threonine to methionine ratio on the accumulation of OC-keto 

acids and higher alcohols by this mutant was measured as well (respectively Figure 7C and 

7D). These figures clearly show that the accumulation of some of these compounds, but 

not isobutyl alcohol, was affected by the changing ratio threonine to methionine. At a 

decreasing threonine to methionine ratio, the mutant gave a decreasing accumulation of 

(X-keto-P-methylvalerate plus OC-keto-isocaproate, n-propanol and active amyl alcohol plus 

isoamyl alcohol, and started to increasingly accumulate 4-methylthio-OC-ketobutyrate and 

methionol. From this, it appeared once again, that threonine was converted into n-

propanol, OC-keto-p-methylvalerate and active amyl alcohol, while 4-methylthio-OC-

ketobutyrate and methionol were derived from methionine (Figure 1). The fact that 

methionol was only accumulated when methionine was added, confirmed that methionol 

is formed via the Ehrlich pathway only (Aoki and Uchida, 1991b). 

Conclusions 

In this study the concomitant extracellular accumulation of OC-keto acids and higher 

alcohols by Z. rouxii was investigated. From this, it appeared that in Z rouxii, like in 

S. cerevisiae, exogenous supplied valine, leucine and methionine were converted via Ehrlich 

pathways to respectively OC-keto-isovalerate and isobutyl alcohol, OC-keto-isocaproate and 

isoamyl alcohol, and 4-methylthio-OC-ketobutyrate and methionol. It was confirmed that 

methionol is formed only via the Ehrlich pathway in Z. rouxii, while the other higher 

alcohols are formed via the amino-acid biosynthetic pathways as well. In addition, it 

appeared that exogenous supplied threonine was converted via the Ehrlich pathway in 

Z. rouxii to propanol and via the isoleucine-biosynthetic pathway to a-keto-(3-

methylvalerate and active amyl alcohol. Unlike the above-mentioned OC-keto acids, it was 

not possible to extracellularly accumulate OC-ketobutyrate, an intermediate of these 

threonine conversion pathways. 
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Appendix 

The calculation of the threonine and methionine concentrations in the bioreactor during 

the A-stat with a changing ratio of these amino acids in the ingoing medium is shown 

below. For this calculation, the A-stat set-up as given in Figure 2 was used and absence of 

consumption of these amino acids by the yeast was assumed. The amino-acid balance 

during the A-stat without consumption by yeast is: 

dC F 

dt v """•'" """ 

The medium flow rate during the A-stat is composed of a flow from a medium vessel with 

threonine and one from a medium vessel with methionine as nitrogen source: 

F = F +F 
r rihr T r met 

The threonine and methionine flow rates are changed according to the following 

equations, respectively: 

*' thr ~ ''ihr.O ~ a ' t 

F
me,=F

me,,0+a-t 

For the concentration of respectively threonine and methionine in the ingoing medium 

holds: 

clhrM 

r 
met,in 

_(F,Hr,o-a 

_CV,.o+a 

0 

•0 

r 
thr,ves 

.r 
met, ves 

Combining the above equations and applying the Laplace transformation gives the 

following equations for threonine and methionine, respectively: 
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''thr.O ' *-lhr,ves a * ' ^Hr.m 

c (s) = — £ - E- + — - c 

,hr() r-s + l s r-s + l s2
 TS + 1 'hr-° 

C (s) = — F + — F + — - C 

'"may*) „ , , „ , 1 2 „ , 1 ^metfi 

T-5 + 1 S T-S + l S T-S + l 

Based on these Laplace equations, the concentrations of respectively threonine and 

methionine in the bioreactor during the A-stat without yeast can be calculated as follows: 
Cthr =

 F,hr'° '^ves • (1 - g ̂  - ° ' ' ' 5 » - ~ • (t + x • e^ - T) + e~t • Clhr „ 
F F 

Cme, =
 Fm"'° "f"1"'"" - ( l -g V )+ Ut ' ^ " > " -if + T-e7 ~T) + e 7 -C^o 

Nomenclature 

a 

C 

F 

s 

t 

V 

X 

acceleration rate 

concentration 

flow rate 

Laplace variable 

time 

volume 

residence time 

l.h-2 

moLF 

l.h-i 

h 

1 

h 

Subscripts: 

ami: amino acid; in: ingoing; thr: threonine; met: methionine; ves: vessel with medium; 0: 

time zero. 
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Chapter 6 

Immobilized soy-sauce yeasts: development and characterization 

of a new polyethylene-oxide support 

Abstract 

Entrapment of cells in alginate gel is a widely used mild immobilization procedure. 

However, alginate gel is not very suitable for use in long-term continuous soy-sauce 

processes because alginate is sensitive to abrasion and chemically unstable towards the 

high salt content of soy-sauce medium. Therefore, a chemically crosslinked polyethylene-

oxide gel was used instead. The disadvantage of this gel was that due to the crosslinking 

reaction the viability of the cells after immobilization was poor. 

For this reason, a new mild procedure for immobilizing soy-sauce yeasts in polyethylene-

oxide gel was developed, resulting in high survival percentages of the soy-sauce yeasts 

Zygosaccharomyces rouxii and Candida versatilis. This newly developed polyethylene-oxide gel, 

unlike alginate gel, appeared not to be sensitive to abrasion, even in the presence of high 

salt concentrations. Therefore, we concluded that this newly developed polyethylene-

oxide gel is more suitable than alginate gel for use as immobilization material in long-term 

processes with a high salt content, like soy-sauce processes. 

This chapter has been published as: van der Sluis C, Mulder ANT, Grolle KCF, Engbers GHM, ter 

Schure EG, Tramper J, Wijffels RH. 2000. Immobilized soy-sauce yeasts: development and 

characterization of a new polyethylene-oxide support. J Biotechnol 80:179-188. 
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Introduct ion 

The soy-sauce yeasts, Zygosaccharvmyces rouxii and Candida versatilis, are important flavour 

producers in soy-sauce processes. In these processes, Z. rouxii produces ethanol and other 

flavour components like 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone 

(Nunomura et al., 1976), while C. versatilis produces phenolic compounds, like 4-

ethylguaiacol (Roling, 1995). These phenolic compounds give the characteristic flavour to 

soy sauce. 

In order to shorten the process time, to increase the production efficiency and to make 

continuous operation of soy-sauce processes easier, much attention has been paid in the 

last decade to the application of immobili2ed soy-sauce yeasts (Osaki et al., 1985; Hamada 

et al., 1989; Hamada et al., 1990a; Hamada et al., 1990b; Horitsu et al., 1990; Horitsu et al., 

1991; Iwasaki et al., 1991; Hamada et al., 1992; Motai et al., 1993). It was shown that the 

immobili2ation of soy-sauce yeasts considerably decreased the total time required for the 

soy-sauce process. In most of these investigations, alginate gel was used as immobilization 

material because immobilization in this gel is a mild and convenient method that can be 

scaled up. 

However, alginate gel has the disadvantage of mechanical weakness (Horitsu et al., 1990; 

Muscat et al., 1996) and furthermore, it is chemically unstable towards high salt 

concentrations (Martinsen et al., 1989; Horitsu et al., 1990). The latter is also expected for 

alginate gel beads in soy-sauce medium in which the salt content is high (Horitsu et al., 

1990). Because of these disadvantages, a continuous long-term process with soy-sauce 

yeasts immobilized in alginate gel is not feasible (Horitsu et al., 1990). For this reason, 

they developed a ceramic carrier to be used as support material instead. In this work, we 

investigated the possibility of replacing alginate with a chemically crosslinked 

polyethylene-oxide gel, that we used before for other purposes (Leenen et al., 1996). 

Leenen et al. (1996) made a polyethylene-oxide gel by adding a crosslinker to a mixture of 

a prepolymer solution and a cell suspension. This polyethylene-oxide-based gel has better 

characteristics than alginate gel. The gel does not dissolve in the presence of salt and is 
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insensitive to abrasion; therefore, the durability of this polyethylene-oxide gel is expected 

to be high (Leenen et al., 1996). However, the crosslinking reaction during the 

immobilization process is toxic which results in low survival of the cells. Leenen et al. 

(1996) estimated that 0.5% of their Nitrosomonas europaea cells survived during the 

immobilization process. Similarly low survival percentages were measured by Tanaka et al. 

(1996) for nitrifying sludge immobilized in a polyethylene-glycol gel. In a preliminary 

experiment, we did not even observe any survival of the soy-sauce yeast Z. rouxii at all, 

after immobilizing in the polyethylene-oxide gel according to the procedure as described 

by Leenen et al. (1996). 

Therefore, in the research described here, we directed our efforts to improving this 

immobilization procedure for Z. rouxii cells. We determined the effect of the 

concentration of the prepolymer solution and the crosslinker on the activity of Z. rouxii. 

The effect of the contact time with the crosslinker on the activity of Z. rouxii was 

determined as well. Subsequendy, we developed a new, mild immobilization procedure for 

the soy-sauce yeasts in polyethylene-oxide gel, which resulted in high survival percentages 

of Z. rouxii and C. versatilis. 

This new gel was investigated further in rheological studies. The formation of the 

polyethylene-oxide gel network was followed in time by measuring the storage modulus. 

This modulus is a measure for the elastic energy stored in the material (Whorlow, 1992); it 

will increase during gelation and level off when the gelation is completed (Verheul et al., 

1998). Furthermore, the sensitivity of the new polyethylene-oxide and alginate gel to 

abrasion was studied with oscillation experiments as was done before by Martins dos 

Santos et al. (1997). Oscillation experiments show the fatigue of gel materials, which is 

likely to be related to the abrasion sensitivity of these materials in bioreactors (Martins dos 

Santos et al., 1997). In addition, the salt effect on the abrasion sensitivity for both gels was 

determined. Finally, the absence of fracture during a large-deformation experiment 

showed the flexibility of the new polyethylene-oxide gel. 
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Materials and methods 

Yeast cultures 

Z rouxii CBS 4021 and C. versatilis CBS 4019 were cultivated in 300 ml Erlenmeyer flasks, 

containing 100 ml medium, on a rotary shaker (Gallenkamp, Orbital Incubator) at 28°C 

and 200 rpm. 

Media 

The medium used for Z. rouxii had the following composition per liter of demineralized 

water: 40 g glucose. IH2O, 5 g peptone and 5 g yeast extract. The components were 

separately autoclaved for 20 minutes at 120°C. For C. versatilis, a defined medium with the 

following composition per liter of demineralized water was used: 22 g glucose.IH2O, 21 g 

citric acid.lH20 and 6.7 g Bacto Yeast Nitrogen Base without amino acids (Difco). The 

pH of this medium was adjusted to 5 using NaOH and the medium was filter-sterilized 

(Nalgene, 0.2 um filters). 

Preparation of yeast suspension 

The yeast cells were concentrated by centrifugation for 15 minutes at 9,500 g and 4°C, 

when they were in the early stationary growth phase. After centrifugation, the 

concentrated cell suspension was washed with sterilized PBS-buffer (pH 7.4) of the 

following composition per liter of demineralized water: 8.2 g NaCl, 1.9 g Na2JHP04.2H20 

and 0.3 g NaH2PC>4.2H20. Hereafter, the yeast suspension was centrifuged again. The 

pellet obtained was used for the determination of the toxicity of the prepolymer solution 

and crosslinker or for immobilization, after appropriate dilution in PBS-buffer. 
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Determination of the toxicity of the prepolymer solution and crosslinker 

The toxicity of the prepolymer solution, containing carboxy-methyl-cellulose and 

polyethylene-oxide, and crosslinker (carbodiamide) was determined by separately 

incubating them for 1 hour with a Z. rouxii suspension and hereafter, estimating the 

survival percentage with the respiration-activity assay. The toxicity of the crosslinker for 

Z. rouxii was determined further as a function of the contact time with the yeast and the 

crosslinker yeast ratio. For this, both respiration-activity assay and colony count on agar 

plates were used. 

Immobilization procedure 

The procedure for making a polyethylene-oxide gel (Holland Biomaterials Group, 

Enschede, The Netherlands) as described by Leenen et al. (1996) was adapted. In this 

work, the carbodiamide (crosslinker) was added to only a carboxy-methyl-cellulose 

solution and not to a mixture of prepolymer solution, containing both carboxy-methyl-

cellulose and polyethylene-oxide, and yeast suspension. For this, 0.125 ml crosslinker 

solution (0.1 mg/ul) and 4.5 ml carboxy-methyl-cellulose solution (5 mg/ml) were mixed 

and allowed to react for 5 minutes. Then, a mixture of 0.4 ml yeast suspension and 0.475 

ml polyethylene-oxide solution (100 mg/ml) was added and thoroughly mixed. After 1 

hour of gelation, the cylindrical gel was washed with PBS-buffer in order to remove a 

possible excess of crosslinker. 

Alginate gel was made by mixing 5 ml of a 6% (w/v) alginate solution (Protanal LF 10/60, 

high guluronic acid content, Pronova Biopolymers, Norway) with 1 ml yeast suspension. 

Hereafter, 4 ml of a 12.5% (w/v) CaCb solution was added to make a cylindrical gel. 

To determine the survival percentage with the respiration-activity assay after 

immobilization, both polyethylene-oxide and alginate gels were cut into small pieces 

(about 1 mm) in order to avoid that the respiration-activity assay was controlled by 

diffusion (van Ginkel et al., 1983). For the rheological tests, the gels were made without 

yeast. 
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Alginate gel beads with a diameter of about 1 mm were made by dropwise extrusion of a 

3% (w/v) alginate solution through a hollow needle using air pressure. The droplets were 

collected in a stirred 5% (w/v) CaCb solution and left in there for at least 24 hours for 

hardening. The resulting gel beads were used to evaluate their chemical stability towards a 

soy-sauce medium. For this, 100 ml gel beads were added to 500 ml soy-sauce medium, 

containing 13% (w/v) NaCl. The medium with beads was stored at room temperature for 

three days and during that time, the force to fracture these beads was measured. 

Respiration-activity assay 

The respiration-activity assay was used in order to determine the survival percentage after 

incubating the cells with prepolymer solution and crosslinker or after immobilizing them. 

For this, the oxygen consumption rate of the incubated or immobilized cells and that of 

untreated cells was measured. From this, survival percentages were calculated. The oxygen 

consumption rate was measured at 30°C in a Biological Oxygen Monitor (BOM, Yellow 

Springs Instruments, Ohio, USA). To a 24 cm3 vessel, containing PBS-buffer, a known 

amount of cells (free or immobilized) was added and aerated for 10 minutes. After 

aeration, the vessel was sealed with an oxygen electrode (model 5331, Yellow Springs 

Instruments, Ohio, USA) and the decrease in oxygen concentration was recorded as a 

function of time. The initial oxygen consumption rate was used to calculate the respiration 

activity. 

Colony count on agar plates 

The colony count on agar plates was used to determine the survival percentage after 

incubating the cells with crosslinker. For this, the colony count from a yeast suspension 

incubated with crosslinker was divided by that from an untreated yeast suspension. For 

this, an appropriate dilution of the yeast suspension in sterilized PBS-buffer was made and 

added to agar plates. After the yeast was grown on the plates for two weeks at 25°C, the 

number of colonies was counted. The agar plates were made by adding 4.0 g 
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glucose. IH2O, 1.0 g Bacto Yeast Nitrogen Base without amino acids (Difco), 20 g agar to 

1 1 demineralized water. Before this the agar was autoclaved for 20 minutes at 120°C and 

the glucose and Bacto Yeast Nitrogen Base were filter-sterilized (Nalgene, 0.2 urn filters). 

Rheological tests 

The force to fracture beads was measured in order to evaluate the chemical stability of 

alginate gel beads towards a soy-sauce medium. For this, at different points of time during 

the incubation, a sample was taken and 12 gel beads from this sample were separately 

compressed until fracturing. This compression was done at room temperature with a 

tension-compression device (Overload Dynamics Table model SI00) fitted with a 50 N 

load cell. On the fixed bar of this device, a single gel bead was placed on a wet filter paper 

in order to prevent dehydration. The gel bead was compressed using the moving bar at a 

fixed compression speed of 60 mm/min. The force needed for fracturing the bead was 

recorded. 

The storage modulus during formation of the polyethylene-oxide gel network was 

measured with a CVO Rheometer System (Bohlin Instruments). This system was used 

with a concentric-cylinder measuring geometry, which consists of a rotating inner cylinder 

located in a fixed outer cylinder. In the annular gap between the two cylinders, the 

polyethylene-oxide gel was made according to the procedure described above. During gel 

formation, a sinusoidal oscillation was applied to the inner cylinder. The frequency of the 

oscillation applied was 0.1 Hz. Through the oscillation of the driving system, the inner 

cylinder will also oscillate sinusoidal but at a smaller amplitude and with a phase 

difference, if the gel has a linear visco-elastic behaviour. Linear visco-elastic behaviour 

means that the storage modulus is independent of the magnitude of deformation and 

deformation rate applied (Whorlow, 1992). This will be the case when the amplitude of 

the oscillation is small enough (Roefs et al., 1990; Whorlow, 1992). In our case, the 

amplitude was kept low enough to ensure linear behaviour. From the amplitude and phase 

difference, some rheological properties like the storage modulus can be calculated (Roefs 

et al., 1990; Whorlow, 1992). The storage modulus was measured at 20°C, and during the 
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measurement the gelling solution was covered with paraffin oil in order to prevent drying 

out. 

The CVO Rheometer System was also used for a large-deformation experiment, after the 

gelation was complete. During this experiment the storage modulus was measured as a 

function of the relative shear deformation in order to determine the maximum relative 

deformation at fracture. 

Oscillation compression tests, as described by Martins dos Santos et al. (1997), were 

applied to gel cylinders in order to evaluate the fatigue of the immobilization materials. 

For this, polyethylene-oxide and alginate gel samples were made according to the 

procedures as described above. After gelation the samples were cut into gel cylinders of 20 

by 20 mm. At least two cylinders of each sample were tested. The oscillation compression 

tests were done at room temperature with the same tension-compression device as we 

used to measure the force to fracture gel beads. For the compression tests this device was 

fitted with a 2000 N load cell. The gel cylinders, which were placed in a beaker containing 

PBS-buffer in order to avoid dehydration, were 6 mm compressed with the moving bar at 

a compression speed of 50 mm/min. The applied relative deformation was small (0.3) in 

order to stay within the linear region for both gels. After compression the moving bar 

returned to its original position. This oscillation was repeated 1000 times for one gel 

cylinder. During these oscillations the resistance to compression in time was determined. 

Furthermore, the salt effect on the fatigue of both polyethylene-oxide and alginate gel was 

determined by incubating the gel cylinders for at least 24 hours in a modified PBS-buffer 

containing 12.5% (w/v) NaCl and doing the compression tests with the cylinders placed 

in the same modified buffer. 
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Resul ts and d i s cus s i on 

Chemical stability of alginate gel beads towards soy-sauce medium 

Horitsu et al. (1990) expected that the high salt content of the soy-sauce medium would 

adversely affect the chemical stability of alginate gel beads. Therefore, we determined the 

chemical stability of alginate gel beads towards soy-sauce medium by following the force 

to fracture the alginate beads during incubation in this medium. If the stability of the 

alginate gel is adversely affected by the salt, the gel will start to dissolve and the force to 

fracture will decrease because of a lowered gel concentration (Martinsen et al., 1989). For 

this experiment alginate with a high guluronic acid content was used because this kind of 

alginate gel has the highest tolerance to salt (Martinsen et al., 1989; Smidsrod and Skjak-

Brak, 1990). 

In Figure 1 the effect of the incubation time in soy-sauce medium on the mean force at 

fracture of alginate gel beads is shown. It appears from this figure that, after about 24 

hours of incubation, this mean force was reduced by almost 50% and became more or less 

constant. This reduction in force was accompanied by some white colouring in the 

medium. 

10.0 

0 25 50 75 

incubation time (h) 

Figure 1. Effect of the incubation time in soy-sauce medium on the mean force at fracture of alginate gel beads. 

The soy-sauce medium contained 13% (w/v) NaCI. To 500 ml of this medium, 100 ml gel beads were added. 

Error bars show the 95% confidence interval of the measurements. 
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These observations show that alginate gel was partly dissolved in the soy-sauce medium. 

Because the soy-sauce medium we used had a lower salt content (13%) than the 

conventional one (16-18%) (Osaki et al., 1985; Roling et al., 1995), it is likely that alginate 

gel will dissolve even more in the latter. From this, we concluded that alginate is 

chemically unstable towards soy-sauce medium. 

Toxicity of prepolymer solution and crosslinker 

In a preliminary experiment, we did not observe any survival of the soy-sauce yeast 

Z. rouxii after immobilizing in the chemically crosslinked polyethylene-oxide gel that we 

used before (Leenen et a l , 1996). For this reason, we studied the toxicity of the 

crosslinking reaction of this gel. The polyethylene-oxide gel was made by mixing a 

carbodiamide (crosslinker) with a mixture of a prepolymer solution, containing carboxy-

methyl-cellulose and polyethylene-oxide, and a cell suspension (see materials and methods 

section). We separately determined the effect of the prepolymer solution and crosslinker 

on the activity of Z. rouxii. This was done by incubating Z. rouxii cells with the prepolymer 

solution or crosslinker for 1 hour. This incubation time was chosen because the contact 

time of the yeast with prepolymer solution or crosslinker during the immobilization 

process needs to be 1 hour. After incubating the survival was determined using 

respiration-activity assays. From this (data not shown), it appeared that the prepolymer 

solution was not toxic at all for Z. rouxii while the crosslinker was very toxic. This toxic 

effect of the crosslinker was not found by Leenen et al. (1996) for N. europaea cells. 

The toxicity of the crosslinker was studied further by determining the effect of the contact 

time with crosslinker and crosslinker yeast ratio on the activity of Z. rouxii. For this, both 

the respiration-activity assay and the colony count on agar plates were used. The contact 

time and crosslinker yeast ratio applied had the same order of magnitude as during the 

preliminary experiment (respectively 1 hour and 2 g.g-1). 

The effect of the contact time and crosslinker yeast ratio on the survival of Z. rouxii, as 

determined with the respiration-activity assay, can be seen in Figure 2. This figure shows 

that the survival of Z. rouxii cells strongly decreased with an increase in contact time and 
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crosslinker yeast ratio. Similar results were obtained with the colony count on agar plates 

(data not shown). It can be seen in Figure 2A that, after about 1 hour, less than 20% of 

the Z. rouxii cells did survive at a crosslinker yeast ratio of 0.4 g.g"1. Figure 2B shows that 

less than 30% of the Z. rouxii cells was still alive after incubating for 50 minutes at a 

crosslinker yeast ratio of 2 g.g"1. Hence, an even lower survival percentage can be expected 

when Z. rouxii cells are incubated for about 1 hour at a crosslinker yeast ratio of 2 g.g-1 like 

in the preliminary immobilization experiment. For this reason, the severe toxic effect of 

the crosslinker seems to be a good explanation for the absence of survival of Z. rouxii cells 

after immobilization in the polyethylene-oxide gel. 
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Figure 2. Effect of the contact time with crosslinker (A) and the crosslinker yeast ratio (B) on the survival of 

Z. rouxii. The applied conditions were a crosslinker yeast ratio of 0.4 g.g'1 (A) and a contact time of 50 minutes 

(B). 

In order to reduce the severe toxic effect of the crosslinker during the immobilization 

process, it was tried to avoid the direct contact between the crosslinker and yeast. For this, 

the immobilization process was started without yeast by using the crosslinker to activate 

carboxy-methyl-cellulose. After this, the activated carboxy-methyl-cellulose was added to a 

mixture of polyethylene-oxide and yeast suspension, as described in the materials and 

methods section. 
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Survival of soy-sauce yeasts in new polyethylene-oxide gel 

The survival of the soy-sauce yeasts Z. rouxii and C. versatilis after immobilization in the 

new polyethylene-oxide gel was determined with the respiration-activity assay in order to 

examine the toxicity of the new immobilization process. The same was done for alginate. 

In Table 1 the survival percentages of the yeasts in both gels can be found. 

Table 1. Survival percentages of the soy-sauce yeasts Z. rouxii and C. versatilis after immobilization in the new 

polyethylene-oxide and alginate gel. 

Yeast New polyethylene-oxide gel Alginate gel 

Z rouxii 86 74 

C. versatilis 90, 84 a 90, 96 a 

a The survival of C. versatilis in both gels was determined in duplicate. 

It can be seen in this table that the survival of both yeasts in the new polyethylene-oxide 

gel was excellent (more than 80%). This clearly demonstrates that the new immobilization 

process was much milder than the original process. It can also be seen in Table 1 that 

there was not a big difference between the survival percentages in both gels. This shows 

that conditions for immobilizing the soy-sauce yeasts in the new polyethylene-oxide gel 

are comparable to the conditions in alginate gel which are very mild (Smidsrod and Skjak-

Brak, 1990; Leenen et al., 1996). 

Rheological tests with new polyethylene-oxide gel 

Mechanical properties of the new polyethylene-oxide gel were investigated by using 

rheological tests. The gelation was followed and the sensitivity to abrasion and the 

maximum relative deformation at fracture were determined. 
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Gelation 

The gelation of polyethylene-oxide was followed in time by measuring the storage 

modulus, which is a measure for the elastic energy stored in the material (Whorlow, 1992). 

An increase in the storage modulus shows the formation of the gel network while the 

storage modulus becomes constant when the gelation is completed (Verheul et al., 1998). 

In Figure 3 the gelation of polyethylene-oxide is shown. 
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Figure 3. The formation of the polyethylene-oxide gel network, as shown by the storage modulus, in time. The 

timer was started after all the gel components were thoroughly mixed. 

In this figure it can be seen from the increase in storage modulus that the formation of the 

polyethylene-oxide gel network started about 20 minutes after all the gel components were 

mixed. It can also be seen in this figure that the gelation is largely completed within about 

4 hours. At that time, the storage modulus became more or less constant. During 

immobilization experiments we already started to wash the gel with PBS-buffer after 1 

hour of gelation (see materials and methods section). This was done to remove a possible 

excess of the toxic crosslinker and appeared to have no effect on the formation of the gel 

network. 

Abrasion sensitivity 

The sensitivity to abrasion of the polyethylene-oxide gel was determined by oscillation 

experiments as described by Martins dos Santos et al. (1997). They found that the 
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sensitivity to abrasion of gel materials in bioreactors is likely to be related to the fatigue of 

the gel materials. The fatigue of gel materials can be determined with oscillation 

compression experiments. In these experiments, the gel material is exposed to repetitive 

compressions and the change in resistance to compression is measured. If the resistance 

changes only slighdy, the gel material will be less liable to fatigue and for that reason, less 

sensitive to abrasion than when the resistance alters considerably (Martins dos Santos et 

a l , 1997). 

The oscillation compression experiments were done with both the new polyethylene-oxide 

and alginate gel. These experiments were also done with both gels in the presence of salt 

in order to predict their abrasion sensitivity in soy-sauce-like processes. For alginate again 

a gel with a high guluronic acid content was used, because this kind of alginate gel has not 

only the highest tolerance to salt, but also the highest mechanical stability (Smidsrod and 

Skjak-Brak, 1990). 

In Figure 4, the representative results of the oscillation compression experiments with the 

polyethylene-oxide and alginate gels can be found. This figure shows that the resistance to 

compression of the alginate gels at the start of the experiment was higher than that of the 

polyethylene-oxide gels, which reflects the difference in rheological behaviour of the two 

gels. Alginate gels are more viscous than polyethylene-oxide gels (Leenen et al., 1996). For 

this reason, alginate gels resist more against a relatively small compression, like we applied 

during these experiments, than polyethylene-oxide gels. However, a higher resistance does 

not give any information on the mechanical stability of the gel material to abrasion 

because the magnitude of the resistance measured in these experiments is much higher 

than the maximum shear stress gel materials may encounter in bioreactors (Martins dos 

Santos et al., 1997). For the information about abrasion sensitivity, the change in 

resistance during the oscillation experiment is important. 

Figure 4A shows that there was hardly any change in the resistance to compression of the 

new polyethylene-oxide gels, like the polyethylene-oxide gels made by Leenen et al. 

(1996). There was also no effect of salt on the change in resistance. Therefore, the 
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polyethylene-oxide gel will not be sensitive to abrasion in bioreactors, even in the 

presence of salt. 
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Figure 4. The effect of salt and gel material on the evolution of the resistance to compression (dashed line: 

without salt; solid line: with 12.5% (w/v) salt). A: polyethylene-oxide gel; B: alginate gel. Arrows indicate that the 

alginate gel was too much deformed and for this reason, the repetitive compression had to be stopped. 

On the other hand, Figure 4B shows that the resistance to compression of the alginate 

gels clearly decreased with the number of oscillations, like found by Vogelsang et al. 

(2000). The oscillations for the alginate gels had even to be stopped before the end of the 

experiment (1000 oscillations) was reached because the gels were too much deformed, 

which confirmed the fatigue. In the presence of salt, this already happened after 30 

oscillations while without salt around 350 oscillations could be done. These results 

confirm that alginate gel is sensitive to abrasion in bioreactors (Muscat et al., 1996), 

especially in the presence of salt. In addition, Figure 4B shows that salt also caused a lower 

resistance to compression of the alginate gel confirming the lowered strength of the gel at 

high salt concentrations, like in the soy-sauce medium. 

Our results of the oscillation compression experiments were in agreement with the 

conclusion of Leenen et al. (1996) that 'elastic' gels like polyethylene-oxide will 

accommodate stresses better and for that reason, be relatively insensitive to abrasion than 

more Viscous' gels like alginate and carrageenan. For this reason, the new polyethylene-

oxide gel will be more suitable than alginate for use in a continuous process for a long 

period of time, especially in the presence of high salt concentrations. In our laboratory, 
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the new polyethylene-oxide gel has already been successfully applied for the continuous 

processes with immobilized soy-sauce yeasts in the presence of high salt concentrations, 

which will be the subject of the next chapter. 

Maximum relative deformation at fracture 

Finally, a large-deformation experiment was done with the new polyethylene-oxide gel in 

order to determine the maximum relative deformation at fracture. This was done by 

measuring the storage modulus as a function of the relative shear deformation. The 

storage modulus, which is a measure of the elastic energy stored in the material (Whorlow, 

1992), will increase during a large deformation until fracture occurs. After that, the storage 

modulus will decrease. 

In Figure 5 the effect of deformation on the storage modulus of polyethylene-oxide gel 

can be seen. This figure shows that the storage modulus kept increasing until a large 

relative deformation of 1.0. This means that fracture did not occur and that the new 

polyethylene-oxide gel, like rubber and gelatine but unlike alginate gel, is very flexible. In a 

flexible gel colonies of growing cells can expand more easily without (locally) breaking the 

gel than in a not so flexible gel (Husken et al., 1996). Therefore, we expect that the 

polyethylene-oxide gel will suffer less from the growth of immobilized cells than alginate 

(Nussinovitch et al., 1994). 
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Figure 5. The effect of deformation on the storage modulus of polyethylene-oxide gel. 
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Conclusions 

The high toxicity during the immobilization process in a chemically crosslinked 

polyethylene-oxide gel as was used by Leenen et al. (1996) resulted in no survival of the 

soy-sauce yeast Z rouxii. This toxicity was caused by the crosslinker that we used for 

making this gel. The toxicity of this crosslinker was dependent on the contact time with 

the yeast and the crosslinker yeast ratio. A newly developed immobilization process for 

polyethylene-oxide gel, in which direct contact between the crosslinker and yeast was 

circumvented, appeared to be mild for the soy-sauce yeasts Z. rouxii and C. versatilir, the 

survival percentages of these yeasts in the polyethylene-oxide gel were high (more than 

80%) and comparable to those in alginate. 

The formation of polyethylene-oxide gel network appeared to be largely completed within 

four hours. The resulting very flexible gel was not sensitive to abrasion, even in the 

presence of salt. On the other hand, we confirmed that alginate gel is very sensitive to 

abrasion, especially in the presence of salt. Furthermore, alginate gel appeared to be 

chemically unstable towards soy-sauce medium. For this reason we concluded that the 

new polyethylene-oxide gel is better applicable than alginate gel for immobilization of 

yeast in long-term processes with a high salt content, like soy-sauce processes. 
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Chapter 7 

Immobilized salt-tolerant yeasts: application of a new 

polyethylene-oxide support in a continuous stirred-tank reactor for 

flavour production 

Abstract 

Immobilization of salt-tolerant yeasts considerably decreases the total time required for 

the flavour development in soy-sauce processes. For immobilization of cells, alginate gel 

is mostly used as support material. However, alginate is not very suitable for use in soy-

sauce processes because alginate is sensitive to abrasion and chemically unstable towards 

the high salt content of the soy-sauce medium. In contrast, a newly developed 

polyethylene-oxide gel seems to be more suitable, but this gel has not been used so far for 

flavour production in a bioreactor with a high salt content. 

Therefore, this gel was applied with immobilized salt-tolerant yeasts in a continuous 

stirred-tank reactor, containing more than 12.5% (w/v) salt. In this reactor the 

polyethylene-oxide gel particles did not show any abrasion for several days, while alginate 

gel beads were already destroyed within one day. In addition, the polyethylene-oxide gel 

particles with immobilized salt-tolerant yeasts Candida versatilis and Zygosaccharomyces rouxii 

showed a good flavour production. From this work, it was concluded that the application 

of polyethylene-oxide gel in long-term soy-sauce processes is attractive in the case the 

sticking together of polyethylene-oxide gel particles can be controlled. 

This chapter has been submitted for publication as: van der Sluis C, Stoffelen CJP, Castelein SJ, 

Engbers GHM, ter Schure EG, Tramper J, Wijffels RH. 2000. Immobilized salt-tolerant yeasts: 

application of a new polyethylene-oxide support in a continuous stirred-tank reactor for flavour 

production. 
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Introduct ion 

The salt-tolerant yeasts, Candida versatilis and Zygosaccharomyces rouxii, are important for the 

flavour development in soy-sauce processes. In these processes, C. versatilis produces 

phenolic compounds, like 4-ethylguaiacol (Yokotsuka, 1986; Hamada et al., 1990a; Roling, 

1995), while Z rouxii produces ethanol and higher alcohols, like methionol (Aoki and 

Uchida, 1991a). 4-Ethylguaiacol and methionol give, amongst other compounds, the 

characteristic flavour to soy sauce (Yokotsuka, 1986). 

Although there is not so much literature available on the 4-ethylguaiacol production by 

C. versatilis, it is known that C. versatilis synthesizes 4-ethylguaiacol from ferulic acid, which 

arises from the raw materials in the soy-sauce process (Yokotsuka, 1986; Roling, 1995). 

This synthesis involves a decarboxylation and reduction, as shown for Brettanomyces 

species (Chatonnet et al., 1992; Edlin et al., 1995) (Figure 1). 

^ -0CH-> 
NADH NAD 

V J 
CH=CHCOOH 

ferulic acid 4-ethylguaiacol 

Figure 1. Biosynthesis of 4-ethylguaiacol by C. versatilis. 

Ethanol is produced from glucose by Z. rouxii both under anaerobic and aerobic 

conditions (Hamada et al., 1989). For aerobic ethanol production, an excess glucose is 

necessary (van der Sluis et a l , 2000a; van der Sluis et al., 2000b). The higher alcohols like 

n-propanol, isobutyl alcohol, active amyl alcohol and isoamyl alcohol are derived from the 

amino-acid biosynthetic pathways in Z. rouxii, but also from the deamination or 

transamination of extracellular amino acids (Ehrlich pathway) (Aoki and Uchida, 1991b; 

van der Sluis et al., 2000c). The Ehrlich pathway is the only pathway in Z. rouxii for 

producing the higher alcohol methionol (Aoki and Uchida, 1991a; van der Sluis et al., 

2000c). In this pathway, methionol is synthesized from methionine by transamination and 
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subsequently, decarboxylation and reduction (Figure 2). In the transamination reaction 

the amino group is transferred from methionine to (X-ketoglutarate in order to form 

glutamate. 

COOH 

C — H 
a-keto-

CH, -

I 
S 

CH3 

methionine 

COOH 

C = 0 

C H glutarate glutamate C H 

CH. 

I 
S 

CH, 

CO. 

H 

C = 0 

OH 

H—C—H 

2 CH2 NADH NAD 

CH, 

I 
S 

I 
CH, 

CH, 

-*- CH, 

S 

I 
CH3 

methionol 

Figure 2. Biosynthesis of methionol by Z rouxii. 

The flavour development in the soy-sauce process normally takes a long time because the 

metabolic activity of the salt-tolerant yeasts is low due to the high salt content of the soy-

sauce medium (about 17% (w/v)) (Yong and Wood, 1974). Furthermore, the slurry state 

of the soy-sauce medium makes the substrates poorly available for the yeasts. For this 

reason, many investigations were done in the last decade to decrease the process time by 

decreasing the salt content of the medium (Yong et al., 1978; Muramatsu et al., 1993), 

applying a higher process temperature (Yong et al., 1978) or using immobilized salt-

tolerant yeasts (Osaki et al., 1985; Hamada et al., 1989; Hamada et al., 1990a; Hamada et 

al., 1990b; Horitsu et al., 1990; Horitsu et al., 1991; Iwasaki et al., 1991; Hamada et al., 

1991; Hamada et al., 1992; Motai et al., 1993). Especially, the application of immobilized 

salt-tolerant yeasts in a continuous bioreactor showed to be very effective by reducing the 

process time with about 90%. In most of these investigations with immobilized salt-

tolerant yeasts, alginate gel was used as immobilization material because immobilization in 

this gel is a mild and convenient method that can be scaled up easily. 
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However, alginate is not very suitable for use in soy-sauce processes because alginate is 

sensitive to abrasion and chemically unstable towards the high salt content of the soy-

sauce medium (Horitsu et al., 1990; van der Sluis et al., 2000d). Therefore, Horitsu et al. 

(1990, 1991) and Iwasaki et al. (1991) used a ceramic carrier and we developed a new 

chemically crosslinked polyethylene-oxide gel to be used as support material instead of 

alginate (van der Sluis et al., 2000d). 

This newly developed polyethylene-oxide gel appeared to be very mild for immobilizing 

the salt-tolerant yeasts (van der Sluis et al., 2000d). Furthermore, it appeared from 

rheological studies that this polyethylene-oxide gel, unlike alginate gel, is not sensitive to 

abrasion, even in the presence of high salt concentrations. However, the stability of the 

polyethylene-oxide gel in a bioreactor with a high salt content and the flavour producing 

ability of the salt-tolerant yeast immobilized in this gel have not been tested so far. 

In the research presented here, batch and continuous cultivations with C versatilis and 

Z. rouxii, immobilized in polyethylene-oxide gel, were done in a stirred-tank reactor in the 

presence of high salt concentrations. During these cultivations, the stability of the 

polyethylene-oxide gel in the stirred-tank reactor was determined, like the production of 

4-ethylguaiacol, ethanol and higher alcohols by the immobilized C. versatilis and Z. rouxii 

cells. The stability of the polyethylene-oxide gel was compared with that of alginate gel. In 

addition, the metabolism of free C. versatilis cells was investigated in more detail. 

Materials and me thods 

Yeast strains 

C. versatilis CBS 4019 and Z. rouxii CBS 4021, supplied by the Centraalbureau voor 

Schimmelcultures (Delft, The Netherlands), were used in this work. 
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Media 

Depending on the cultivation a defined or GPY medium was used. The defined medium 

had the following composition per liter of demineralized water: 22 g glucose.llrbO, 21 g 

citric acid.lFhO, 5 g ammonium sulphate and 6.7 g Bacto Yeast Nitrogen Base without 

amino acids and ammonium sulphate (Difco). The GPY medium contained per liter of 

demineralized water: 40 g glucose. IH2O, 5 g peptone, 5 g yeast extract. The pH of the 

defined and GPY medium was adjusted to respectively 5 and 4.5. Both media were 

sterilized by filtration (0.2 |Xm). 

Cultivation in Erlenmeyer flasks 

The yeast strains were cultivated in 300 ml Erlenmeyer flasks, containing 100 ml medium, 

on a rotary shaker at 28°C and 200 rpm. For C. versatilis, the defined medium was used 

and for Z. rouxii, the GPY medium with additional 170 gram NaCl/1. This cultivation was 

used to obtain yeast for immobilization and to investigate the metabolism of free 

C. versatilis cells. For immobilization the yeast cells were harvested in the early stationary 

growth phase and subsequently, a concentrated yeast suspension was prepared. The 

metabolism of free C. versatilis cells was investigated by determining the effect of salt (0-

15% (w/v)) on the maximum specific growth rate and the yield of 4-ethylguaiacol on 

ferulic acid (initial concentration of 20 mg.l1). The effect of the initial ferulic acid 

concentration (20-200 mg.l1) on that yield in the presence of 12.5% (w/v) salt was 

determined as well. 

Preparation of a concentrated yeast suspension 

The yeast cells were concentrated by centrifugation for 15 minutes at 9,500 g and 4°C. 

After centrifugation, the concentrated cell suspension was washed with sterilized PBS-

buffer (pH 7.4) of the following composition per liter of demineralized water: 8.2 g NaCl, 

1.9 g Na2HP04.2H20 and 0.3 g NaFbPCU^FbO. Hereafter, the yeast suspension was 

centrifuged again. The concentrated suspension obtained was used for immobilization, 

after appropriate dilution in PBS-buffer. 
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Immobilization procedure 

For making 5.5 ml polyethylene-oxide gel (Holland Biomaterials Group, Enschede, The 

Netherlands) (van der Sluis et al., 2000d), 0.125 ml crosslinker solution (0.1 mg 

carbodiamide/ul) and 4.5 ml carboxy-methyl-cellulose solution (5 mg.ml-1) were mixed 

and allowed to react for 5 minutes. Then, a mixture of 0.4 ml concentrated yeast 

suspension and 0.475 ml polyethylene-oxide solution (100 mg.ml1) was added and 

thoroughly mixed. This mixture starts to gelate after about 20 minutes (van der Sluis et al., 

2000d). Gels with different volumes were made by proportionally adjusting the amount of 

each component. 

Polyethylene-oxide gel particles with a size of approximately 0.2 mm were obtained from 

the gelling mixture in two ways. The first way was by emulsification. For this, 200 ml 

gelling mixture and 600 ml n-decane solution were poured into a cylindrical reactor 

(height and diameter of 15.5 and 9.5 cm, respectively), which was equipped with baffels 

and a four-blade Rushton turbine stirrer (diameter of 4.0 cm). A stirrer speed of around 

1000-1500 rpm was used to obtain small gelling droplets surrounded by n-decane. After 1 

hour of gelation, gel particles were removed from the n-decane solution. The second way 

was by cutting the gel after 1 hour of gelation into pieces and their size was reduced 

further by chopping with a food mixer (Braun vario 300 W). In both cases the gel 

particles obtained were washed with PBS-buffer and left in PBS-buffer to complete the 

gelation, which takes about 4 hours (van der Sluis et al., 2000d). 

Alginate gel beads with a diameter of about 1 mm were made by dropwise extrusion of a 

3 % (w/v) alginate solution (Protanal LF 10/60, high guluronic acid content, Pronova 

Biopolymers, Norway), containing 9% (v/v) yeast suspension, through a hollow needle 

using air pressure. The droplets were collected in a stirred 5% (w/v) CaCb solution and 

left in there for at least 24 hours for hardening. 
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Cultivations with immobilized salt-tolerant yeasts in a stirred-tank reactor 

Batch and continuous cultivations with salt-tolerant yeasts, immobilized in polyethylene-

oxide gel, were done in a stirred-tank reactor. The characteristics of these cultivations, 

which were dependent on the flavours to produce, can be found in Table 1. The media 

used for these cultivations were sterilized by filtration (0.2 \lm). During these cultivations, 

the concentration of the flavours 4-ethylguaiacol, ethanol and higher alcohols, and the 

substrates ferulic acid and glucose in the stirred-tank reactor were determined. In order to 

evaluate the stability of polyethylene-oxide gel, the batch cultivation was done with 

alginate gel as well. Furthermore, the size of a sample of the polyethylene-oxide gel 

particles was measured before and after a long-term continuous cultivation. 

Table 1. Characteristics of batch and continuous cultivations with salt-tolerant yeasts, immobilized in 

polyethylene-oxide gel, in a stirred-tank reactor. 

Characteristic 

Yeast 

Flavours 

Mediuma 

Additions: 

Ferulic acid (mg.l1) 

NaCI (g.r1) 

Methionine (g.r1) 

Gel volume (ml) 

Liquid volume (ml) 

Air flow (l.min"') 

PH 
Temperature (°C) 

Dilution rate (h'1) 

Batch 

C. versatilis 

4-Ethylguaiacol 

Defined 

100 

125 

-
75 

750 

0.066 

5 

30 

-

Continuous 

C. versatilis 

4-Ethylguaiacol 

Definedb 

200 

125 

-
200 

800 

0.08 

4.5-5 

30 

0.05 

Continuous 

Z. rouxii 

Ethanol 

Higher alcohols 

GPY 

-
170 

-
135 

715 

0.81 

4.5 

28 

0.1 

0.01 

Continuous 

Z. rouxii 

Ethanol 

Higher alcohols 

Definedbc 

-
170 

0.78 

74 

330 

0.81 

4.5 

28 

0 

0.1 

Composition of the medium can be found above. 

1 Citric acid was omitted. 

Ammonium sulphate concentration was reduced from 5 to 3.3 g.r1. 
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All the cultivations were done in bench-scale autoclavable bioreactors, which were stirred 

with a six-blade Rushton turbine stirrer. The stirrer speed was at least 350 rpm. During 

the continuous cultivations, the polyethylene-oxide gel particles were kept in the 

bioreactor by using a spinner filter (75 |J,m) or a sample screen (105 (J.m) at the flow 

outlet. 

Analyses 

The maximum specific growth rate of C. versatilis was calculated from optical density 

measurements at 610 nm (Pharmacia Biotech, Ultraspec). For this, samples were taken 

and diluted with demineralized water to obtain absorbance values less than 0.7. Below 0.7, 

the absorbance values were linearly related to biomass dry weight. 

Glucose was measured with a Haemo-Glukotest (Boehringer Mannheim). 

Ferulic acid and 4-ethylguaiacol were determined by HPLC. For this, samples were 

diluted with an equal volume of trichloro-acetic acid solution 2% (w/w). The resulting 

sample (10 ul) was injected on an Inertsil 5 ODS-2 column (Chrompack), which was kept 

at room temperature. An eluens flow profile of pure methanol and acetic acid solution (2 

ml acetic acid dissolved in 100 ml milli-Q water) was used to separate the components. 

After separation, the components were detected with an UV detector at 280 nm. From 

this determination, the yield of 4-ethylguaiacol on ferulic acid was calculated by dividing 

the produced 4-ethylguaiacol by the consumed ferulic acid. 

The higher alcohols n-propanol, isobutyl alcohol, active amyl alcohol, isoamyl alcohol and 

methionol were analyzed by GC. For this, the samples were incubated at 60°C for 10 

minutes. After incubation, a head-space sample was taken and collected in a cold trap 

(liquid nitrogen at -110°C). Through subsequent heating of the cold trap (240°C), the 

compounds were injected on a DB-wax column (30 m * 0.542 mm, film 1.0 urn). A 

temperature profile was used from 30 to 110°C at a rate of 2.5°C/min. Helium was used 

as carrier gas (about 15 ml/min, 30 kPA) and the compounds were detected with a flame-
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ionization detector (EL 980, Fison Instruments). With this method, active amyl alcohol 

and isoamyl alcohol could not be separated from each other. 

The size of polyethylene-oxide gel particles was measured with Magiscan using General 

Image Analysis Software. For this, a sample of around 50 gel particles was put on a Petri 

dish, containing a thin layer of PBS-buffer, to which blue dextran (1 mg.ml4) was added 

in order to obtain sufficient contrast. This measurement was done in fivefold. 

Resul ts and d i s cus s i on 

Batch cultivation with free C. versatilis 

The metabolism of free C. versatilis cells was investigated in order to determine which 

process conditions could be used for production of 4-ethylguaiacol from ferulic acid 

(Figure 1) with immobilized C. versatilis. For this, batch cultivations were done with a 

defined medium. During these cultivations, the effect of salt on the maximum specific 

growth rate and the yield of 4-ethylguaiacol on ferulic acid (initial concentration of 20 

mg.l1) (Figure 3A) was determined. The effect of the initial ferulic acid concentration on 

that yield in the presence of 12.5% (w/v) salt was determined as well (Figure 3B). 

It can be seen from Figure 3A that the salt content did affect the maximum specific 

growth rate of C. versatilis. The maximum specific growth rate reached its maximum (0.16 

h_1) at a salt content of 5% (w/v). This confirmed that C. versatilis prefers some salt, unlike 

Z. rouxii, which is only tolerant to salt (Fukushima, 1985). 

Figure 3A further shows that the salt content did affect the yield of 4-ethylguaiacol on 

ferulic acid as well. No 4-ethylguaiacol was produced when there was no salt, while the 

yield was constant around 30% (w/w) when the salt content was 5% (w/v) or higher. In 

addition, Figure 3B shows that the initial ferulic acid concentration did not have much 

effect on the yield of 4-ethylguaiacol on ferulic acid in the presence of 12.5% (w/v) salt; 

all concentrations of ferulic acid added resulted in a yield of about 35% (w/w). 
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Figure 3. Batch cultivations with free C. versatilis cells. A: Effect of salt on the yield of 4-ethylguaiacol on ferulic 

acid ( • ) and the maximum specific growth rate ( • ) ; B: Effect of initial ferulic acid concentration on the yield of 4-

ethylguaiacol on ferulic acid ( • ) . 

Batch cultivation with immobilized C. versatilis 

In order to investigate the production of 4-ethylguaiacol by C. versatilis, immobilized in 

polyethylene-oxide gel, batch cultivation was done with the defined medium. Based on 

the previous experiments, ferulic acid (100 mg.l ') and salt (12.5% (w/v)) were added to 

the medium in order to produce 4-ethylguaiacol. For this cultivation, polyethylene-oxide 

particles with a size of approximately 0.2 mm, made by emulsification, were used. This 

cultivation was done in a stirred-tank reactor in order to apply high shear forces (van 

Ginkel et a l , 1983) for testing the stability of polyethylene-oxide gel at the same time. A 

stirrer-speed of at least 350 rpm was used for this. To compare the stability of 

polyethylene-oxide gel with alginate gel, the same batch cultivation was done with alginate 

gel beads (diameter of about 1 mm), which were made by drop-wise extrusion. For 

alginate, a gel with a high guluronic acid content was used, because this kind of alginate 

gel has a high tolerance to salt and a high mechanical stability (Smidsrod and Skjak-Braek, 

1990). 

In Figure 4, the concentrations of glucose, ferulic acid and 4-ethylguaiacol during this 

cultivation with C. versatilis, immobilized in polyethylene-oxide gel, are shown. It is shown 
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that the immobilized cells were able to produce 4-ethylguaiacol (almost 25 mg.l1), for 

which they completely consumed the added ferulic acid (100 mg.l ') and glucose at the 

same time. Based on the expectation that glucose was consumed for growth, this shows 

that the conversion of ferulic acid to 4-ethylguaiacol is related to that. 

r 30.0 100 

3 

Figure 4. Batch production of 4-ethylguaiacol by C. versatilis immobilized in polyethylene-oxide gel ( • : glucose; 

• : ferulic acid; • : 4-ethylguaiacol). 

The above results with immobilized C. versatilis cells demonstrated that the yield of 4-

ethylguaiacol on ferulic acid was 25% (w/w), which was quite similar to the yield of 30-

35% that we obtained with the free cells. From this it was concluded that the 

immobilization in the polyethylene-oxide gel did not have a clear effect on the 4-

ethylguaiacol production by the C. versatilis cells. In literature it is reported that the 

immobilization in alginate gel has no effect on the 4-ethylguaiacol production by the 

C. versatilis cells as well (Hamada et al., 1990b). However, the C. versatilis cells immobilized 

in alginate showed a much higher yield (about 60%) (Hamada et al., 1990a) than the one 

in this case (25%). This difference might be due to the fact that we used a lot of citric acid 

to buffer the defined medium (see materials and methods section) and normally soy-sauce 

medium, as used by Hamada et al. (1990a), does not contain that much citric acid. Citric 

acid might, like other acids, inhibit the growth of salt-tolerant yeasts (Roling, 1995). 

During this cultivation for almost 9 days in the stirred-tank reactor with 12.5% (w/v) salt, 

we did not observe any clear abrasion of the polyethylene-oxide gel particles. In contrast, 

under the same conditions, the alginate gel beads started to abrade right from the start of 
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the cultivation, as shown by the appearance of small gel particles and white colouring of 

the medium. Within one day these beads were completely destroyed. The high abrasion 

rate of alginate gel beads in this case was not only caused by their mechanical weakness 

and low tolerance to salt (van der Sluis et al., 2000d), but also by their instability towards 

citric acid (Smidsrod and Skjak-Bra;k, 1990), which was the buffer in the medium. 

Nevertheless, the destabilizing effect of citric acid in this medium was by itself not large 

enough to destroy the alginate gel beads completely (data not shown). Therefore, these 

batches confirmed that polyethylene-oxide gel is more stable towards high shear forces 

and salt content than alginate gel (van der Sluis et a l , 2000d). 

Continuous cultivation with immobilized C. versatilis 

The polyethylene-oxide gel particles with immobilized C. versatilis were also used for 

production of 4-ethylguaiacol in a continuous cultivation with the stirred-tank reactor. 

For this, the defined medium with 12.5% (w/v) salt was used again but this time more 

ferulic acid (200 mg.F) was added and citric acid was omitted from the medium. During 

the continuous cultivation, a dilution rate of 0.05 rr1 was applied and the concentrations 

of ferulic acid and 4-ethylguaiacol were followed in the stirred-tank reactor (Figure 5). 

Figure 5. Continuous accumulation of 4-ethylguaiacol by C. versatilis immobilized in polyethylene-oxide gel (•: 

ferulic acid; • : 4-ethylguaiacol). 

In the beginning the cultivation was rather unstable, resulting in fluctuating 

concentrations, but after about 5 days more or less constant concentrations of ferulic acid 
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(30 mg.l4) and 4-ethylguaiacol (70 mg.F) were reached. This demonstrated that the yield 

of 4-ethylguaiacol on ferulic acid was around 40% (w/w). This yield was higher than the 

one of 25% (w/w) obtained with the batch cultivation. The higher yield might have been 

caused by the fact that citric acid was omitted this time, but the yield was still lower than 

the one obtained by Hamada et al. (1990a). 

Continuous cultivation with immobilized 2 . rouxii 

The ability of Z. rouxii immobilized in polyethylene-oxide gel to produce the flavours 

ethanol and higher alcohols during a continuous cultivation in a stirred-tank reactor was 

investigated as well. The polyethylene-oxide gel consisted of chopped gel particles with a 

size of about 0.2 mm. For the flavour production, an undefined rich medium (GPY), 

containing a lot of glucose and amino acids, was used and aerobic conditions were applied 

(van der Sluis et a l , 2000a). In addition, salt (170 g.F) was added to the medium. In 

Figure 6, the accumulation of ethanol and higher alcohols in the reactor during this 

cultivation is shown. 

It appears from Figure 6 that the immobilized Z rouxii could clearly produce the flavours 

ethanol, isobutyl alcohol and isoamyl alcohol plus active amyl alcohol during the 

continuous cultivation with a dilution rate of 0.1 h 1 . However, no accumulation of n-

propanol and methionol was observed under these conditions. n-Propanol appeared to be 

accumulated as well when the dilution rate was decreased to 0.01 rr1 after 2 days 

cultivation. From about 3.5 days till the end of the cultivation, rather constant 

accumulation of ethanol, n-propanol, isobutyl alcohol and isoamyl alcohol plus active 

amyl alcohol was reached in the stirred-tank reactor. 

In order to investigate whether the immobilized Z. rouxii cells could accumulate 

methionol as well, the same polyethylene-oxide gel particles were used under similar 

conditions but with a different medium. This time a defined medium was used, to which 

methionine (0.78 g.F) and ammonium sulphate (3.3 g.l1) were added in order to produce 

methionol (Figure 2) (van der Sluis et a l , 2000c) and support the growth (van der Sluis et 

al., 2000e), respectively. 
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time (day) 

Figure 6. Continuous accumulation of ethanol and higher alcohols by Z rouxii, immobilized in polyethylene-oxide 

gel, on GPY medium (•: ethanol; A: n-propanol; • : isobutyl alcohol; • : isoamyl alcohol plus active amyl 

alcohol). The applied dilution rates (D) are shown in the figure. 

During this continuous cultivation with a dilution rate of 0.1 tr1, which was started after a 

batch-period of 1 day, it was confirmed that the immobilized Z. rouxii cells could produce 

methionol as well (Figure 7). High concentrations of methionol (800 mg.l1) were 

accumulated by Z. rouxii, which accumulated ethanol, n-propanol, isobutyl alcohol and 

isoamyl alcohol plus active amyl alcohol at the same time. 
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Figure 7. Continuous accumulation of ethanol and higher alcohols by Z. rouxii, immobilized in polyethylene-oxide 

gel, on a defined medium with additional methionine (•: ethanol; A: n-propanol; T : isobutyl alcohol; • : isoamyl 

alcohol plus active amyl alcohol; • : methionol). The applied dilution rates (D) are shown in the figure. 
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Practical limitations of polyethylene-oxide gel 

From the above cultivations it was clear that the polyethylene-oxide gel shows no 

abrasion and gives flavour production with immobilized salt-tolerant yeasts. However, it 

also appeared that it was rather difficult to reach and keep steady-state conditions during 

the continuous cultivations with the polyethylene-oxide gel particles, which is clearly 

shown for example in Figure 7. This difficulty was caused by the fact that the 

polyethylene-oxide particles disturbed the outgoing flow by blocking-up the filter at the 

flow oudet. In addition, the polyethylene-oxide particles were sticking together on the 

sensors (e.g. pH sensor), which influenced the measurements and by that the process 

control. 

The stability of the polyethylene-oxide gel was evaluated by measuring the size of the 

particles before and after a continuous cultivation in a stirred-tank reactor (Table 2). It 

appears from Table 2 that the mean size of the gel particles increased from 1.4 till 3.5 

mm2 during the cultivation for 14 days. This increase of particle size confirmed the 

stickiness of the particles, which should be investigated further in order to make long-

term continuous processing feasible. 

Table 2. Analysed characteristics of the size of polyethylene-oxide particles before and after a continuous 

fermentation for 14 days in a stirred-tank reactor. 

Characteristic Before fermentation After fermentation 

Mean size (mm2) 1.37 3.51 

Standard deviation (mm2) 0.07 0.14 

Conc lus ions 

The main purpose of the study presented here was to test the stability of a newly 

developed polyethylene-oxide gel in a bioreactor with a high salt content and the flavour 

producing ability of the salt-tolerant yeasts immobilized in this gel. During batch and 
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continuous cultivations in a stirred-tank reactor with 12.5-17% (w/v) salt, no abrasion of 

the polyethylene-oxide gel particles was observed for several days, while alginate gel beads 

were completely destroyed within one day. These results confirmed that the polyethylene-

oxide gel, unlike alginate gel, has an excellent mechanical stability and tolerance towards 

salt. Despite this, long-term continuous processing with the polyethylene-oxide gel 

particles was difficult because the particles stick together. 

It also appeared during these cultivations that the salt-tolerant yeasts C. versatilis and 

Z. rouxii immobilized in the polyethylene-oxide gel were able to produce the flavours 4-

ethylguaiacol, ethanol and higher alcohols, like methionol. The immobilized C. versatilis 

cells showed a similar yield of 4-ethylguaiacol on ferulic acid as free C. versatilis cells. 
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Chapter 8 

Enhancing and accelerating flavour formation by salt-tolerant 

yeasts in Japanese soy-sauce processes 

Abstract 

In soy-sauce processes salt-tolerant yeasts are very important for the flavour formation. 

This flavour formation is, however, slow and poorly understood. In the last decades a 

concerted research effort has increased the understanding and resulted in the derivation 

of mutants with an enhanced flavour formation. In addition, a new process using 

immobilized salt-tolerant yeasts has been developed and shown to be very effective for 

accelerating the flavour formation. From this study it was, however, concluded that 

immobilizing the salt-tolerant yeasts gives only small productivity benefits to this new 

process. For increasing the productivity the continuous micro filtration membrane reactor 

seems to be a good alternative. 

This chapter is going to be submitted for publication as: van der Sluis C, Tramper J, Wijffels RH. 2000. 

Enhancing and accelerating flavour formation by salt-tolerant yeasts in soy-sauce processes. 
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Introduct ion 

Japanese soy sauce is a traditional oriental all-purpose seasoning with a salty taste and 

sharp flavour, which is becoming more and more popular all over the world. The 

conventional batch process of brewing soy sauce starts with a solid-state fermentation of 

Aspergillus species on a mixture of soybeans and wheat with a ratio of 1 to 1 (Figure 1) 

(Yong and Wood, 1974; Beuchat, 1983; Sugiyama, 1984; Fukushima, 1985; Yokotsuka, 

1986; Roling, 1995). During an aerobic fermentation for 2 days at 30°C, Aspergillus 

produces extracellular enzymes, such as proteases and amylases (Yong and Wood, 1977a), 

which start to hydrolyze the proteins and polysaccharides of the soybeans and wheat. 

soybeans wheat 

mixed (ratio 1:1) 

Aspergillus species 

solid-state fermentation 

brine solution 

Tetragenococcus halophila 
Zygosaccharomyces rouxii 
Candida versatilis 

brine fermentation 

soy sauce 

Figure 1. Process of brewing Japanese soy sauce. 

After that, the moulded soybeans and wheat are mixed with a brine solution of 17% salt. 

This brine solution is kept around 30°C and semi-anaerobic conditions are applied by 
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occasional brief aeration. In the brine solution the Aspergillus enzymes continue to 

hydrolyze the soybeans and wheat and as a result, a surplus of different kinds of sugars 

and amino acids arise (Yong and Wood, 1977b). These sugars and amino acids are 

consumed by salt-tolerant lactic-acid bacteria (Tetragenococcus halophild) and yeasts 

{Zygosaccharomyces rouxii and Candida versatilis) during the so-called brine fermentation. 

In the first stage of this brine fermentation, T. halophila decreases the initial pH of about 

7.0 by producing lactic acid. After the pH has dropped below 5.0, T. halophila is unable to 

grow and an alcoholic fermentation by Z. rouxii starts. As a result, 2% ethanol and many 

other flavour components like higher alcohols and 4-hydroxyfuranones are produced. At 

the last stage of the brine fermentation, when Z. rouxii is not active anymore, C. versatilis 

starts to grow and to produce phenolic flavour components, like 4-ethylguaiacol and 4-

ethylphenol. The flavour components formed by Z. rouxii and C. versatilis give, amongst 

other components, the characteristic flavour to soy sauce. 

Despite the fact that the yeast brine fermentation (Table 1) is known to have a great 

impact on the flavour of soy sauce, the flavour formation by the yeast is poorly 

understood and for that reason difficult to control. Furthermore, this flavour formation is 

very slow and as a result normally more than 6 months are needed to complete the entire 

yeast fermentation plus ageing. Such a long time is needed because the metabolic activity 

of the yeast is low due to the high salt content of the soy-sauce medium (about 17% 

(w/v)) (Yong and Wood, 1974). Additionally the slurry state of the medium makes the 

substrates poorly available for the yeast. 

Therefore, in the last decades many investigations have been done in order to enhance 

and accelerate the flavour formation. For this, mutants were derived and a new process 

with immobilized cells was developed. In this paper, recent advances in the research 

about the flavour formation during the yeast brine fermentation are described and 

discussed. 
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Table 1. Characteristics of the conventional and immobilized-cell process for the yeast brine fermentation. 

Characteristic Conventional process Immobilized-cell process' 

Reactor concept 

Medium composition 

Temperature (°C) 

pH 
Aeration rate (wm) 

NaCI (% (w/v)) 

Process time 

aOsakietal. (1985). 

Batch 

Slurry 

30 

5 

Low 

17 

6 months 

Continuous 

Solid-free solution 

30 

5 

0.002-0.01 
13 
Few weeks 

Flavour formation by 2 . rouxii 

Ethanol 

Ethanol is synthesized by Z. rouxii from the sugars, which are ample and in wide variety 

present during the brine fermentation. However, the kinds of sugars that can be 

fermented to ethanol by Z. rouxii is limited because of the high salt content of the brine 

solution (Table 1) (Roling, 1995). For example, in the brine solution maltose can not be 

fermented by Z. rouxii, while Z. rouxii is able to ferment maltose in a salt-free medium 

(Onishi, 1963). Without sugar fermentation Z. rouxii and also C. versatilis would not be 

able to survive during the brine fermentation because of the low availability of oxygen, 

which is caused by the low aeration rate (Table 1) and poor solubility of oxygen in the 

brine solution. Some traces of oxygen are, however, required for this fermentation (Visser 

et al., 1990). In addition, this fermentation is only possible when the pH is lower than 

about 5 (Table 1). At a higher pH, it seems that Z. rouxii can not maintain a proton 

gradient that is necessary for its salt tolerance (Watanabe and Tamai, 1992). 
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Higher alcohols 

In the formation of higher alcohols, such as isobutyl alcohol, isoamyl alcohol, methionol 

and 2-phenylethanol, in Z. rouxii the OC-keto acids are key intermediates (Figure 2) (van der 

Sluis et al., 2000a). Higher alcohols are formed through decarboxylation and subsequently 

reduction of the corresponding OC-keto acids. The (X-keto acids themselves normally arise 

in two pathways. 

COOH 

H — C - -NH, amino acid 
(extracellular) 

COOH 

-NH amino acid 
2 (intracellular) 

NH, 

a-keto 
acid 

" 
COOH 

I 
c=o 
R 
i i 

NH, 

CO, H NADH 

I 
C = 0 

I 
R 

\DH NAD OH 

V J I 
— ^ S * H C H 

R 

higher alcohol 

Figure 2. Formation of higher alcohols by Z rouxii. Metabolic pathways: 1: amino-acid biosynthetic pathway; 2: 

Ehrlich pathway. 
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One pathway is the amino-acid biosynthetic pathway and the other pathway is the so-

called Ehrlich pathway (Webb and Ingraham, 1963). In the Ehrlich pathway the (X-keto 

acids are formed through consumption and subsequently deaminatdon or transamination 

of extracellular amino acids. Since very high concentration of extracellular amino acids are 

present during the brine fermentation, it is expected that most of the higher alcohols are 

formed by Z. rouxii via the Ehrlich pathway (Aoki and Uchida, 1991a; van der Sluis et al., 

2000b). The Ehrlich pathway is shown to be the only pathway for the formation of 

methionol (Aoki and Uchida, 1991b; van der Sluis et al., 2000a). 

4-Hydroxyfuranones 

Two 4-hydroxyfuranones derivatives, 4-hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-

furanone (HEMF) (Sasaski et al., 1991) and 4-hydroxy-2,5-dimethyl-3(2H)-furanone 

(HDMF) (Hecquet et al., 1996), have been reported to be synthesized by Z. rouxii. Both 

HEMF and HDMF give rise to a sweet and caramel type of flavour. Although many 

investigations have been done to elucidate Z. rouxii 4-hydroxyfuranone biosynthesis 

(Sasaki et al., 1991; Sugawara et al., 1994; Sasaki, 1996; Hecquet et al., 1996; Hayashida et 

al., 1997; Hayashida et al., 1998; Sugawara and Sakurai, 1999; Hayashida et al., 1999) this 

biosynthesis is still poorly understood. The reason for this is that 4-hydroxyfuranones 

usually arise in foods like soy sauce by spontaneous reactions between sugars and amino 

acids (Maillard reactions) while only in some situations they are produced by yeast as well. 

For this production the yeast uses Maillard intermediates as precursors, which 

complicates the elucidation of the biosynthesis (Figure 3) (Hayashida et al., 1999). Until 

now the precursors and the yeast enzymes, which are involved in the furanones 

biosynthesis, are not known (Hayashida et al., 1999). 
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sugar 
+ — 
amino acid 

Maillard reactions 
4-hydroxyfuranone 

Maillard 
intermediate^ 

Z. rouxii 

Figure 3. Formation of 4-hydroxyfuranones in soy sauce. 

Flavour formation by C. versatilis 

C. versatilis produces the phenolic compounds 4-ethylguaiacol and 4-ethylphenol, which 

give respectively a spicy clove-like and woody, smoky flavour (Edlin et al, 1995) to soy 

sauce. 4-Ethylguaiacol and 4-ethylphenol are derived by C. versatilis from respectively 

ferulic acid and p-coumaric acid (Figure 4), which arise mainly from the wheat fraction of 

the raw materials in the soy-sauce process (Yokotsuka, 1986). This derivation involves a 

decarboxylation and reduction, as shown for Brettanomyces species (Chatonnet et al., 1992; 

Edlin et al., 1995). Z. rouxii is unable to accomplish this derivation (Yokotsuka, 1986). 

CO, 

CH=CHCOOH 

p-coumaric acid (R = H) 
ferulic acid (R = OCH3) 

CH=CH, 

NADH NAD 

S^J. 

4-ethylphenol (R = H) 
4-ethylguaiacol (R = OCH3) 

Figure 4. Formation of phenolic flavour compounds by C. versatilis. 

143 



Flavour formation in Japanese soy-sauce processes 

E n h a n c i n g and accelerat ing flavour formation 

Mutants 

In order to enhance the formation of higher alcohols via the amino-acid biosynthetic 

pathway (Figure 2), mutants of Z rouxii with an increased activity of the amino-acid 

biosynthetic enzymes were derived. A mutant was found to produce about 38 times as 

much 2-phenylethanol as the wild-type (Aoki and Uchida, 1990), while another mutant 

produced a 3-fold higher level of isoamyl alcohol (Yoshikawa et al., 1995). Also mutants 

producing about 60-fold as much of methionol as the parental strain were found (Aoki 

and Uchida, 1991b). It appeared that these mutants were able to use the amino-acid 

biosynthetic pathway to produce methionol, which is normally only formed via the 

Ehrlich pathway (Figure 2). 

In addition, mutants of Z. rouxii with a restricted consumption of amino acids were 

derived in order to control the production of higher alcohols via the Ehrlich pathway 

(Figure 2) (Aoki and Uchida, 1991a). A number of these mutants showed a remarkable 

decrease in leucine and phenylalanine consumption and as a result, their production of 

isoamyl alcohol and 2-phenylethanol was reduced to about 34 and 9% compared to that 

of the wild-type, respectively. 

Moreover a novel hybrid from Z. rouxii and C. versatilis was obtained (Kim, 1993). This 

hybrid produces the characteristic flavour components of soy sauce, which are normally 

produced by Z. rouxii and C. versatilis separately in different stages of the brine 

fermentation. Therefore, by using the hybrid instead of the two strains, it is possible to 

easily control the production of flavour components and to shorten the fermentation 

time. 

Immobilized cells 

In order to accomplish an acceleration of the flavour formation during the brine 

fermentation, a high concentration of yeast cells is indispensable. For that reason, much 
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attention has been paid in the last decades to the application of immobilized salt-tolerant 

yeasts, which resulted in the development of a new continuous immobilized-cell process 

(Table 1) (Osaki et a l , 1985; Akao et a l , 1986; Hamada et al., 1989; Hamada et al., 1990a; 

Hamada et al., 1990b; Hamada et al., 1991; Hamada et al., 1992; Motai et a l , 1993). Apart 

from using immobilized yeasts in a continuous mode, the new process also differed from 

the conventional batch process by applying a lower salt content in order to stimulate the 

metabolic activity of the yeasts (Yong et al., 1978). Furthermore a solid-free soy-sauce 

medium was used instead of the slurry medium to make the substrates better available for 

the yeasts. 

In the new process alginate gel beads were mostly used for immobilizing the salt-tolerant 

yeasts because immobilization in alginate gel is a mild and convenient method. However, 

alginate is very sensitive to abrasion and chemically unstable towards the high salt content 

of the soy-sauce medium, which makes it not very suitable for use in long-term soy-sauce 

processes (Horitsu et al., 1990; van der Sluis et al., 2000c). Therefore, more stable 

immobilization materials like ceramic carriers (Horitsu et al., 1990; Horitsu et al., 1991; 

Iwasaki et al., 1991) and polyethylene-oxide gel particles (van der Sluis et al., 2000c; van 

der Sluis et a l , 2000d) were used instead of alginate as well. 

The immobilized-cell process appeared to be very effective for the flavour production in 

a short period. Its ethanol productivity, an index of fermentation, was about 5 to 10 times 

higher than that of the conventional process (Iwasaki et al., 1991) and as a consequence, 

the process time was decreased from about 6 months to a few weeks (Osaki et al., 1985) 

(Table 1). This decrease seemed to be caused by the 10 to 100-fold higher concentration 

of yeast cells in the immobilized-cell process compared to the conventional process 

(Hamada et al., 1991). 

Although the continuous immobilized-cell process is shown to be much faster than the 

conventional batch process (Table 1), the productivity benefits of applying immobilized 

instead of free yeast cells in the continuous process are not clearly shown in literature. 

Therefore, using the data from the work of Hamada et al. (1990a) we made a comparison 

between an immobilized-cell and free-cell process for the continuous yeast brine 
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fermentation (Table 2). In this comparison, we took into account that also free cells are 

present in the immobilized-cell process and that both free and immobilized cells 

contribute to the productivity of the immobilized-cell process (Hamada et al., 1990a). 

Table 2. Comparison between the productivity of an immobilized-cell and free-cell process for the continuous 

yeast brine fermentation with Z rouxiiand C.versaVlisa. 

Productivity 

Cell concentration (cells.1"')b 

Immobilized 

Free 

Total 

Flavour production rate (g.r1.h'1) 

Ethanol 

4-Ethylguaiacol 

Z. 

Immobilized-

cell process 

1.1*10" 

2.9*1010 

5.3*1010 

(1.8)c 

0 

1.29 

(1.5)c 

-

rouxii 

Free-cell 

process 

-
2.9*1010 

2.9*1010 

0.86 

" 

C. 

Immobilized-

cell process 

2.0*1011 

3.0M010 

8.1*1010 

(2.7)c 

0.76 

(1.1)° 
1.43*10"3 

(4.5)° 

versatilis 

Free-cell 

process 

-
3.0*1010 

3.0*1010 

0.68 

0.32*10"3 

a Calculated from the data of Hamada et al. (1990a). They used an airlift reactor with a volume of 1 liter. For the 
immobilized-cell process the reactor contained 300 ml alginate gel beads with immobilized yeasts. 

b The cell concentration and flavour production rate are the averages from measurements at three different 
dilution rates. 

c Values in parentheses indicate the ratio between the immobilized-cell and free-cell process. 

From Table 2 it appears that the total concentration of Z. rouxii and C. versatilis cells in the 

immobilized-cell process was respectively, 1.8 and 2.7 times higher than in the free-cell 

process. However, the ethanol productivity of the immobilized-cell process with Z. rouxii 

and C. versatilis was only respectively, 1.5 and 1.1 higher compared to that of the free-cell 

process. This demonstrated that the immobilized cells of Z. rouxii and, especially those of 

C. versatilis have a lower specific ethanol productivity (ethanol production per hour per 

cell) than the free cells (Hamada et al., 1990a). This lower ethanol productivity of the 

immobilized cells seems to be caused by the fact that the immobilized cells are exposed to 
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higher ethanol concentrations than the free cells. Increasing ethanol concentrations 

increasingly decrease the fermentative activity of yeast cells and by that, the ethanol 

production (Hamada et al., 1990a). 

On the other hand, the 4-ethylguaiacol productivity of the immobilized-cell process with 

C. versatilis was 4.5 times higher than that of the free-cell process, showing that the 

immobilized cells of C. versatilis have a higher specific 4-ethylguaiacol productivity than 

the free cells. The reason for this higher specific 4-ethylguaiacol productivity remains 

unclear but seems to indicate that the production of ethanol and 4-ethylguaiacol are 

independent of each other (Hamada et a l , 1990a). 

From this comparison, it can be concluded that the application of immobilized yeasts 

instead of free yeasts for the continuous production of soy sauce gives only small 

productivity benefits because of the low fermentative activity of the immobilized yeasts. 

Therefore, the fact that the continuous immobilized-cell process is much faster than the 

conventional batch process (Table 1) is not caused by the benefits of applying 

immobilized cells, but seems to be caused by the benefits of applying a lower salt content 

and better available substrates in the immobilized-cell process. 

An immobilized-cell process will be more beneficial if the immobilized yeasts become less 

sensitive towards ethanol, or if they are less exposed to ethanol. The latter has already 

been successfully applied by using a continuous micro filtration membrane reactor 

(Iwasaki et al., 1991). In this reactor a high cell concentration and fermentative activity are 

maintained because of the membrane, which keeps the cells in the reactor and removes 

the harmful ethanol from the reactor. The ethanol productivity of this reactor appeared to 

be several times higher than that of the conventional and immobilized-cell process. 

Conc lud ing remarks 

From this study, it is clear that in the last decades a considerable progress has been made 

in the understanding of the flavour formation by salt-tolerant yeasts during soy-sauce 
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processes. This understanding has resulted in a better control of the flavour formation 

and derivation of mutants with an enhanced flavour formation. In this way, it is possible 

to promote the formation of desired flavour components and by that, to influence the 

flavour composition of the soy sauce or to produce specific natural flavour components 

instead. 

In addition, the flavour formation was accelerated by means of using a continuous 

process with immobilized salt-tolerant yeasts. This continuous immobilized-cell process 

showed to be ten times faster than the conventional batch process with free cells. 

However, this study clearly demonstrated that using immobilized instead of free yeasts 

only slightly increases the productivity of the continuous process for soy-sauce 

production. For productivity reasons the continuous microfiltration membrane reactor 

seems to be the most promising alternative. 
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Summary 

Summary 

The salt-tolerant yeasts Zygosaaharomyces rouxii and Candida versatilis are important for the 

formation of flavour in Japanese soy-sauce processes. In these processes Z. rouxii 

produces the flavour components ethanol, higher alcohols and 4-hydroxyfuranones, while 

C. versatilis is responsible for the production of phenolic flavour components, such as 4-

ethylguaiacol and 4-ethylphenol. These yeast-derived flavour components give, amongst 

other components, the characteristic flavour to Japanese soy sauce. 

Litde is known, however, about the flavour formation by the salt-tolerant yeasts, making 

the process difficult to control. Therefore, in this study, the metabolism of the salt-

tolerant yeasts was investigated. Especially, much attention has been paid to the 

formation of higher alcohols by Z. rouxii. The higher-alcohols formation in Z. rouxii is 

strongly related to its amino-acid metabolism, wherein a-keto acids are key intermediates. 

The separate effects of the amino acids threonine, cystathionine, and the branched-chain 

amino acids (isoleucine, valine and leucine) on the metabolism of Z. rouxii were 

determined. The exogenous addition of these amino acids appeared to have large effects 

on the higher-alcohols production by Z. rouxii. For the production of the higher alcohols 

isobutyl alcohol, active amyl alcohol and isoamyl alcohol the Ehrlich pathway appeared to 

be very important. In this pathway, uptake and transamination of amino acids results in 

the higher-alcohols formation. The added amino acids also clearly influenced the 

formation and conversion rate of the (X-keto acid (X-ketobutyrate, as appeared from 

measured enzyme activities. This influence did not result in the accumulation of (X-

ketobutyrate, because the OC-ketobutyrate pool size in Z. rouxii appeared to be tightly 

regulated. Furthermore, independent of the amino acids added, Z. rouxii produced ethanol 

under aerobic conditions (Crabtree effect), which is in contrast to what is described in the 

literature. In addition, the supply of threonine severely inhibited the growth of Z. rouxii. 

In order to clarify the growth inhibitory effect of threonine, the regulation of the 

aspartate-derived amino-acid metabolism in Z. rouxii was investigated. It was shown that 
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the poor growth of Z. rouxii in the presence of threonine was due to a lack of methionine, 

which was caused by a blocked methionine synthesis. Threonine seemed to block this 

synthesis in Z. rouxii by inhibiting the conversion of aspartate. In addition, it was shown 

that the growth of Z. rouxii was not inhibited by the herbicide sulfometuron methyl 

(SMM) that is a well-known growth inhibitor of various plants, bacteria and yeasts like 

Saccharomyces cerevisiae. The insensitivity of Z. rouxii growth to SMM appeared to be caused 

by the fact that the activity of the enzyme acetohydroxy acid synthase in Z. rouxii, unlike 

that in S. cerevisiae, was not affected by SMM. On the other hand, the activity of the 

enzyme threonine deaminase in Z. rouxii was similarly regulated as that in S. cerevisiae. 

Based on these observations it was concluded that the aspartate-derived amino-acid 

metabolism in Z. rouxii is only partly like that in S. cerevisiae. 

The steady-state culture characteristics of Z rouxii were investigated in this study as well. 

It was confirmed that Z. rouxii, like S. cerevisiae, showed the Crabtree effect. It appeared 

that Z. rouxii started to produce ethanol at a lower dilution rate than S. cerevisiae (0.1 versus 

0.3 h 4 ) , while also the maximum specific growth rate of Z. rouxii was lower than that of 

S. cerevisiae (0.17 versus 0.45 lr1). For this investigation, the acceleration-stat (A-stat) 

cultivation method in which the dilution rate is continuously changed with a constant 

acceleration rate was used. The A-stat cultivation can be much less time-consuming than 

the widely used chemostat cultivation, especially at high acceleration rates. However, at 

very high acceleration rates the A-stat does not provide steady-state culture 

characteristics. The highest acceleration rate for estimating the steady-state culture 

characteristics of Z. rouxii was determined to be 0.001 lr2. For higher acceleration rates, 

an increased difference between A-stat and chemostat culture at a given dilution rate was 

observed. This observation for Z. rouxii was confirmed with simulations for S. cerevisiae. 

Moreover these simulations showed that, for estimating the steady-state culture 

characteristics with the A-stat, both the metabolic adaptation rate of the yeast and the rate 

at which the environmental substrate concentrations change should be taken into 

consideration. At an acceleration rate of 0.001 lr2, the A-stat proved to be advantageous 

to the chemostat, because the A-stat provided much more data in the same time than the 

chemostat. 
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The A-stat cultivation was also used to study the concomitant extracellular accumulation 

of Ct-keto acids and higher alcohols by Z. rouxii. All (X-keto acids from the aspartate-

derived amino-acid metabolism, except OC-ketobutyrate, could be extracellularly 

accumulated by exogenous supplying the amino acids valine, leucine, threonine and 

methionine. From this study it was concluded that in Z. rouxii valine, leucine and 

methionine were converted via similar Ehrlich pathways as in S. cerepisiae, while for the 

conversion of threonine both the Ehrlich and amino-acid biosynthetic pathways in 

Z. rouxii were used. Additionally the Ehrlich pathway appeared to be the only pathway for 

the formation of the higher alcohol methionol in Z. rouxii. 

Another problem associated with the yeast flavour formation in Japanese soy-sauce 

processes is that the flavour formation is normally very slow. For this reason the 

conventional batch process takes about 6 months. In literature the development of a new 

continuous process using immobilized salt-tolerant yeasts resulted in a 90% reduction of 

the process time. However, the new immobilized-cell process seemed not very suitable 

for long-term operation, because alginate was used as immobilization material. The reason 

for this is that alginate is sensitive to abrasion and chemically unstable towards the high 

salt concentration in the soy-sauce medium (about 17% (w/v)). To replace alginate, a 

chemically crosslinked polyethylene-oxide gel was investigated in this study. 

The problem of the chemically crosslinked polyethylene-oxide gel was that Z. rouxii cells 

did not survive the immobilization procedure. The absence of survival appeared to be 

caused by the toxic effect of the crosslinker used for making this gel. Therefore, a new 

immobilization procedure, in which direct contact between the crosslinker and yeast was 

circumvented, was developed. For both Z. rouxii and C. versatilis the survival percentages 

in the newly developed polyethylene-oxide gel were high and comparable to those in 

alginate. Unlike alginate gel, the new polyethylene-oxide gel showed, during rheological 

studies, to be insensitive to abrasion, even in the presence of high salt concentrations. 

The insensitivity to abrasion of the new polyethylene-oxide gel was confirmed during 

cultivations in a stirred-tank reactor with varying high salt concentrations (12.5-17% 

(w/v)). In this reactor no abrasion of polyethylene-oxide gel particles was observed for 
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several days, while alginate gel beads were completely destroyed within one day. However, 

the polyethylene-oxide particles appeared to stick together, making long-term processing 

difficult. It also appeared during these cultivations that Z. rouxii and C. versatilis 

immobilized in the polyethylene-oxide particles were capable of producing characteristic 

soy-sauce flavours. Therefore, it was concluded that the application of polyethylene-oxide 

gel in long-term soy-sauce processes is attractive provided that the stickiness of the 

particles can be controlled. 

However, from a comparison of literature data it was also concluded that the application 

of immobilized salt-tolerant yeasts instead of free yeasts cells in the continuous process 

hardly accelerates the flavour formation. For accelerating the flavour formation the 

continuous microfiltration membrane reactor seems to be more promising. Finally, it was 

concluded that this study and other recent research has enhanced the understanding of 

the yeast flavour formation during Japanese soy-sauce processes, which facilitates process 

control. 
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De zouttolerante gisten Zygosaccharomyces rouxii en Candida versatilis zijn belangrijk voor de 

aromavorming tijdens de productie van Japanse sojasaus. Hierin produceert Z. rouxii de 

aromastoffen ethanol, hogere alcoholen en 4-hydroxyfuranonen, terwijl C. versatilis 

verantwoordelijk is voor de productie van fenolachtige aromastoffen zoals 4-ethylguaiacol 

and 4-ethylfenol. Deze door de gisten geproduceerde aromastoffen dragen bij aan het 

karakteristieke aroma van Japanse sojasaus. 

Er is echter weinig bekend over de aromavorming door de zouttolerante gisten en dit 

maakt het proces moeilijk beheersbaar. Daarom is in deze studie het metabolisme van de 

zouttolerante gisten bestudeerd. In het bijzonder is hierbij veel aandacht besteed aan de 

vorming van de hogere alcoholen door Z. rouxii. De vorming van hogere alcoholen in 

Z. rouxii is nauw verwant aan het aminozuur metabolisme en hierin zijn de (X-ketozuren 

essentiele metabolieten. 

De afzonderlijke effecten van de aminozuren threonine en cystathionine, en de 

aminozuren met vertakte ketens (isoleucine, valine en leucine) op het metabolisme van 

Z. rouxii is onderzocht. Toevoeging van deze aminozuren bleek grote invloed te hebben 

op de productie van hogere alcoholen door Z. rouxii. Voor de productie van de hogere 

alcoholen isobutyl alcohol, actief amyl alcohol en isoamyl alcohol bleek de Ehrlich route 

erg belangrijk. In deze metabole route vormt de gist hogere alcoholen door consumptie 

en daaropvolgend transaminatie van exogene aminozuren. De toegevoegde aminozuren 

hadden ook een grote invloed op de vorming- en afbraaksnelheid van het Ot-ketozuur (X-

ketobutyraat, wat viel af te leiden uit de meting van enzymactiviteiten. Deze invloed leidde 

niet tot de ophoping van OC-ketobutyraat, omdat de a-ketobutyraatconcentratie in de eel 

nauwkeurig gereguleerd werd. Verder bleek Z. rouxii ethanol te produceren onder aerobe 

omstandigheden (Crabtree effect). Dit was onafhankelijk van de toevoeging van 

aminozuren en in strijd met wat in de literatuur wordt beschreven. Tenslotte werd 

vastgesteld dat de toevoeging van threonine tot een drastische remming van de groei van 

Z rouxii leidde. 
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Om de oorzaak van de groeiremming door threonine te achterhalen werd de regulatie van 

het van aspartaat afgeleide aminozuur metabolisme in Z. rouxii onderzocht. Hierbij werd 

aangetoond dat de slechte groei van Z. rouxii door threonine wordt veroorzaakt door een 

tekort aan methionine, hetgeen te wijten leek aan een geremde synthese van methionine. 

Threonine leek deze synthese in Z. rouxii te remmen door het remmen van de omzetting 

van aspartaat. Ook werd aangetoond dat de groei van Z. rouxii niet geremd wordt door 

het herbicide sulfometuron methyl (SMM). Dit herbicide is een bekende groeiremmer van 

verscheidene planten, bacterien en gisten zoals Saccharomyces cerevisiae. Dat Z. rouxii niet 

gevoelig is voor SMM leek veroorzaakt te zijn door het feit dat de activiteit van het enzym 

acetohydroxy acid synthase in Z. rouxii, in tegenstelling met dat enzym in S. cerevisiae, niet 

bei'nvloed werd door SMM. Daarentegen bleek de activiteit van het enzym threonine 

deaminase in Z rouxii op dezelfde manier gereguleerd te worden als in S. cerevisiae. 

Gebaseerd op deze waarnemingen werd geconcludeerd dat het van aspartaat afgeleide 

aminozuur metabolisme in Z. rouxii slechts gedeeltelijk overeenstemt met dat in 

S. cerevisiae. 

De steady-state cultuurkarakteristieken van Z. rouxii werden ook onderzocht in deze 

studie. Hierbij werd bevestigd dat Z. rouxii evenals S. cerevisiae het Crabtree effect vertoont. 

Het bleek dat Z. rouxii ethanol begint te produceren bij een lagere verdunningssnelheid 

dan S. cerevisiae (0.1 versus 0.3 uur1) , terwijl de maximale specifieke groeisnelheid van 

Z. rouxii ook lager was dan die van S. cerevisiae (0.17 versus 0.45 uur1). Voor dit onderzoek 

werd gebruik gemaakt van een acceleratie-stat (A-stat) cultivatiemethode. Deze methode 

houdt in dat de verdunningssnelheid continu wordt veranderd met een constante 

acceleratiesnelheid. Vooral bij hoge acceleratiesnelheden kan de A-stat aanzienlijk minder 

tijd vergen dan de wijd en zijd gebruikte chemostaat cultivatie. Echter bij erg hoge 

acceleratiesnelheden zal er geen sprake zijn van steady-state condities in de A-stat. De 

hoogste acceleratiesnelheid voor het benaderen van de steady-state cultuurkarakteristieken 

van Z. rouxii werd vastgesteld op 0.001 uur2 . In het geval van hogere acceleratiesnelheden 

werd een grotere afwijking tussen de A-stat en chemostaat cultuur bij een bepaalde 

verdunningssnelheid waargenomen. Deze waarneming voor Z. rouxii werd bevestigd met 

simulaties voor S. cerevisiae. De simulaties toonden bovendien aan dat voor het schatten 
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van de steady-state cultuurkarakteristieken met de A-stat er rekening dient te worden 

gehouden met zowel de metabolische aanpassingssnelheid van de gist als de 

veranderingssnelheid van de substraatconcentraties in de omgeving. Bij een 

acceleratiesnelheid van 0.001 uur 2 bleek het voordelig te zijn om de A-stat te gebruiken in 

plaats van de chemostaat, omdat met de A-stat veel meer data in dezelfde tijd werden 

verkregen dan met de chemostaat. 

De A-stat werd ook gebruikt voor het bestuderen van de samengaande uitscheiding en 

ophoping van (X-ketozuren en hogere alcoholen door Z rouxii. AUe a-ketozuren uit het 

van aspartaat afgeleide aminozuur metabolisme, met uitzondering van OC-ketobutyraat, 

konden buiten de gistcel worden opgehoopt door het exogeen toevoegen van de 

aminozuren valine, leucine, threonine en methionine. Uit dit onderzoek werd 

geconcludeerd dat in Z rouxii valine, leucine en methionine worden omgezet via 

vergelijkbare Ehrlich routes als in S. cerevisiae, terwijl voor de omzetting van threonine 

zowel de Ehrlich als de aminozuur biosynthese routes worden gebruikt. De Ehrlich route 

bleek bovendien de enige route te zijn voor de vorming van het hogere alcohol methionol 

in Z. rouxii. 

Een ander probleem met de vorming van aromastoffen door gisten tijdens de productie 

van Japanse sojasaus is dat de aromavorming gewoonlijk erg langzaam gaat. Daarom 

duurt het conventionele batch proces ongeveer 6 maanden. Uit de literatuur blijkt dat de 

ontwikkeling van een nieuw continu proces, waarin gebruikt wordt gemaakt van 

geimmobiliseerde gistcellen, heeft geleid tot een reductie van de procestijd met 90%. 

Echter het nieuwe proces met geimmobiliseerde cellen bleek niet erg geschikt voor 

langdurende toepassingen, omdat alginaat werd gebruikt als immobilisatiemateriaal. De 

verklaring hiervoor is dat alginaat gevoelig is voor slijtage en chemisch niet stabiel is bij 

het hoge zoutgehalte van het sojasaus medium (ongeveer 17% (w/v)). Om alginaat te 

vervangen is in deze studie een synthetisch polyethyleenoxide gel onderzocht. 

Het probleem van het synthetische polyethyleenoxide gel was dat Z. rouxii cellen de 

immobilisatieprocedure niet overleefden. Dit bleek te worden veroorzaakt door het 

toxisch effect van de crosslinker die wordt gebruikt voor het maken van dit gel. Daarom 
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werd een nieuwe immobilisatieprocedure, waarbij direct contact tussen de crosslinker en 

de gist werd vermeden, ontwikkeld. Voor zowel Z rouxii en C. versatilis waren de 

overlevingspercentages in het nieuw ontwikkelde gel hoog en vergelijkbaar met die in 

alginaat. In tegenstelling tot alginaat, bleek het nieuwe polyethyleenoxide gel tijdens 

reologische metingen niet gevoelig te zijn voor slijtage, zelfs niet bij hoge 

zoutconcentraties. 

De slijtageongevoeligheid van het nieuwe polyethyleenoxide gel werd bevestigd tijdens 

cultivaties in een geroerde tank reactor met varierende hoge zoutconcentraties (12.5-17% 

(w/v)). In deze reactor werd geen slijtage van polyethyleenoxide geldeeltjes waargenomen 

gedurende verscheidene dagen, terwijl alginaat gelbolletjes al binnen een dag helemaal 

stuk waren. De polyethyleenoxide geldeeltjes bleken echter samen te plakken wat de 

langdurige toepassing bemoeilijkte. Wei bleek tijdens de cultivaties dat Z rouxii en 

C. versatilis, geimmobiliseerd in de polyethyleenoxide geldeeltjes, in staat waren om de 

voor sojasaus karakteristieke aromastoffen te produceren. Daarom werd geconcludeerd 

dat de toepassing van het polyethyleenoxide gel in langdurige sojasaus productieprocessen 

aantrekkelijk kan zijn, mits het samen plakken van de deeltjes beheerst kan worden. 

Uit een vergelijking van literatuurdata werd echter ook geconcludeerd dat het gebruik van 

geimmobiliseerde zouttolerante gisten in plaats van vrije gistcellen in het nieuwe continue 

proces nauwelijks bijdraagt aan het versnellen van de aromavorming. Voor een werkelijk 

versnelde aromavorming lijkt de continue microfiltratie membraanreactor een beter 

alternatdef. Tenslotte werd geconcludeerd dat deze studie en ander recent onderzoek heeft 

geleid tot een verbetering van het begrip van de aromavorming door de zouttolerante 

gisten tijdens de productie van Japanse sojasaus, waardoor het proces makkelijker 

beheersbaar wordt. 
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Hoe staat het met je proefschrift, werd me de afgelopen tijd veelvuldig gevraagd. Bijna af 

antwoordde ik dan maar aan dat bijna af leek maar geen einde te komen. Gelukkig hoef ik 

nu alleen nog maar dit nawoord te schrijven en is het proefschrift dus meer bijna af dan 

ooit tevoren. Nu vraag ik me zelf af waarom ik ooit aan het schrijven van een proefschrift 

over de smaakvorming door gisten tijdens het maken van Japanse sojasaus ben begonnen. 

De interesse voor de productie van levensmiddelen met behulp van micro-organismen is 

ontstaan tijdens mijn HBO studie levensmiddelentechnologie in Bolsward. Daar raakte ik 

danig onder de indruk van het boek 'Basic Bioreactor Design' van de professoren 

Tramper en van 't Riet uit het verre Wageningen. Van dit boek wou ik meer weten, 

hetgeen me er toe bracht Friesland te verlaten om een vervolgstudie en uiteindelijk dit 

promotie-onderzoek in Wageningen te gaan doen. Hierbij heb ik zowel met Hans en 

Klaas mogen samenwerken; Hans is mijn promotor en Klaas heb ik geassisteerd bij het 

geven van college uit het hierboven genoemde boek. Deze samenwerking was bijzonder 

leerzaam. Hans leerde me tijdens het schrijven kop en staart te onderscheiden, maar 

slaagde er jammer genoeg niet in mij het gevoel voor komma's en streepjes bij te brengen. 

Klaas gooide mij voor een voile collegezaal, wat me nog steeds 's nachts doet ontwaken. 

Ook heb ik nauw samengewerkt met mijn co-promotor Rene. Het was geweldig Rene dat 

je altijd een positieve kijk op de (onderzoeks)zaken behield en dat je nog tijd over had 

voor de etentjes en feestjes met lab 632. Verder zal ik het hardlopen tijdens de 

lunchpauzes waarbij je positivisme als sneeuw voor de zon verdween, niet snel vergeten. 

Veel gesport, met name gevoetbald, heb ik tijdens het onderzoek door het 

sportenthousiasme van mijn kamergenoot Marcel. Bedankt Marcel dat je mij bij het 

roemruchte GVC5 hebt gehaald en voor je bijdrage aan de gezellige sfeer in lab 632. 

Enorm belangrijk voor de gezelligheid op lab 632 en het tot stand komen van dit 

proefschrift zijn de afstudeerstudenten Wout, Arjan, Brenda, Bart, Yovita, Maikel, Arend, 

Cindy & Sipke geweest. Het uitdragen van het 'Z. rouxii rules' gevoel gaf menig 
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buitenstaander het idee dat we een sekte vormden. Leuke herinneringen bewaar ik aan 

jullie: Wout en Arjan hadden moeite om respectievelijk kroeg en werk met het 

afstudeervak te combineren, Brenda maakte wel erg veel fermentoren stuk, Bart vloog 

door zijn afstudeervak, Yovita belde me 's nachts uit bed om haar uit het lab te bevrijden, 

Maikel streefde altijd naar perfectie, Arend vond het Wageningense nachdeven wel erg 

gezellig en mogelijk daardoor kreeg hij zijn sheets niet op tijd gekopieerd voor een 

presentatie, en Cindy & Sipke begonnnen afzonderlijk van elkaar maar smolten 

uiteindelijk toch samen. Bedankt voor de leuke tijd! 

Hierbij wil ik eveneens de rest van de sectie proceskunde bedanken voor de goede 

werksfeer. Vooral de activiteiten rondom het werk, zoals labuitjes, filmavonden, aio-reis, 

proceskunde-weekend, borrelen in Rouke's Paradise en zaalvoetballen, heb ik als erg leuk 

ervaren. In het bijzonder wil ik nog de proceskundigen Pieter, Jos, Gerrit (tige tank) en 

Fred bedanken voor hun technische ondersteuning. Het is meer dan terecht Fred dat je 

door de studenten gekroond bent tot 'King Bioreactor'. 

Ook van buiten proceskunde heb ik veel steun gehad bij het onderzoek: Ton van Boxtel 

hielp me bij het modelleren, Sybe Hartmans spijkerde mijn rnicrobiologische kennis bij, 

Jan Cozijnsen liet de GC-analyses gladjes verlopen, Katja Grolle hielp bij het platdrukken 

van de gelen en Andre van Lammeren deed de gisten oplichten. Verder zou dit onderzoek 

er niet zijn geweest zonder de ondersteuning van de Holland Biomaterials Group 

(Enschede) en Unilever Research (Vlaardingen). Gerard Engbers van de Holland 

Biomaterials Group wist een polyethyleenoxide gel te maken dat mijn verwachtingen 

overtrof, en Unilever Research leverde de zouttolerante gisten, en de broodnodige 

technologische en analytische kennis vooral aan het begin van het onderzoek. Toen 

mocht ik een half jaartje een kijkje nemen in de labs van Unilever en meedraaien met het 

flavourteam (Jan Hunik, Jos Quak, Renate Jacobs, Annette Janssen, Jan Ouwehand en 

Rob van der Velden). Hoewel ik deze periode bijzonder lastig vond en daardoor niet altijd 

plezierig, is het achteraf erg nuttig gebleken. Mijn dank daarvoor. Met name wil ik Jan 

Hunik bedanken voor zijn prettige begeleiding. Het is jammer Jan dat je door je 

verandering in baan niet lang bij het onderzoek betrokken bent gebleven, maar je 
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begeleidende taken werden goed overgenomen door Marco Giuseppin en Eelko ter 

Schure. 

Tevens wil ik degene bedanken die niet rechtstreeks bij het onderzoek betrokken zijn 

geweest maar juist voor de broodnodige afleiding en ondersteuning hebben gezorgd. Mijn 

afdelingsgenoten op Haarweg 291 van wie ik al snel leerde dat je 10 uur 's avonds geen 

thee meer gaat zetten maar gewoon een biertje pakt. Het GVC5 voetbalteam dat zorgt 

voor veel vermaak op het veld en in de kantine. De Gorredijkster vrienden die het mij 

altijd bijzonder lastig maken om de kroeg tijdig te verlaten en me altijd ongelovig vragen 

of ik nog steeds studeer. De HBO vrienden Hans, Gerrit en Tjibbe Chris die jaarlijks naar 

Gorredijk komen vanwege de kieviten maar meestal meer oog hebben voor andere 

dingen. Bijzonder erkentelijk ben ik voor alles wat Tjibbe Chris de afgelopen jaren voor 

mij heeft gedaan: grote klasse dat je mij opzocht in Vlaardingen, letterlijk van de grond 

plukte na een avondje flink doorzakken in Gorredijk en ook nog eens hielp bij de lay-out 

van dit proefschrift. Verder heit, mem en broers natuurlijk. Ondanks dat ik geen ambities 

had om boer te worden hebben jullie mij altijd geweldig ondersteund. Mem die altijd 

bezorgd blijft of ik wel genoeg te eten krijg in Wageningen en mijn broers die nog altijd 

denken dat ik hun hulp nodig heb bij het repareren van mijn fiets. Helaas zagen jullie mij 

de afgelopen tijd minder frequent langskomen maar in mijn gedachten zijn jullie altijd bij 

mij. Dit geldt met name voor heit die dit jammer genoeg niet meer mee kan maken. 

Tenslotte wil ik nogmaals Yovita bedanken. Dat zij als student het lab in brand stak 

maakte een onuitwisbare warme indruk op mij. Lytske saya sayang kamu! 

Catrinus 
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Catrinus van der Sluis werd geboren op 15 oktober 1969 in Gorredijk (Friesland). Hij 

behaalde in 1988 het VWO diploma aan het Drachtster Lyceum. In dat zelfde jaar startte 

hij zijn studie levensmiddelentechnologie aan de Agrarische Hogeschool Friesland te 

Bolsward. Tijdens deze opleiding liep hij stages bij onder andere Heineken (Den Bosch) 

en Aviko (Steenderen). In 1992 rondde hij deze opleiding af met een afstudeerscriptie 

over bakkersgistfermentaties dat werd uitgevoerd in opdracht van Unilever Research 

(Vlaardingen). De studie levensmiddelentechnologie zette hij hierna voort aan de 

Landbouwuniversiteit Wageningen. Aan deze universiteit deed hij een afstudeervak in de 

richting bioprocestechnologie en liep stage bij de University of Strathclyde in Glasgow 

(Schotland). In 1995 werd de studie met lof afgerond en begon hij bij de 

Landbouwuniversiteit Wageningen (sectie Proceskunde) aan zijn promotieonderzoek dat 

beschreven staat in dit proefschrift. 
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