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Stellingen 

1. Pectine uit sojabonen blijkt uit alleen hoogvertakte segmenten (hairy regions) te 

bestaan, de onvertakte homogalacturonaan segmenten (smooth regions) die tot nu 

toe in celwanden van andere onderzochte plantenweefsels van dicotylen voorkomen 

ontbreken. (dit proefschrift) 

2. Onderzoekers proberen de resultaten van onderzoek naar celwandpolysachariden 

altijd te vertalen naar universele modellen. De waarde van deze modellen is echter 

beperkt en geldt alleen voor dat specifieke weefsel van de onderzochte plantensoort. 

(dit proefschrift) 

3. Het aantal suikersubstituenten per 100 xylose-eenheden in de hoofdketen is een 

betere maat voor de substitutiegraad van arabinoxylanen dan de verhouding tussen 

de hoeveelheid arabinose en xylose, (dit proefschrift) 

4. De verzelfstandiging van scholieren dankzij het studiehuis leidt tot nieuwe 
aanpassingsproblemen in de steeds schoolser wordende universiteiten. 

5. De zoektocht naar beschikbare verloskundigen is een zware bevalling. 

6. Door het constante gebruik van de mobiele telefoon is de bereikbaarheid juist 

afgenomen. 

7. Als namen binnen een organisatie sneller veranderen dan de productietijd van het 

briefpapier met logo is er sprake van een identiteitscrisis. 

8. Als mannen ook verplicht waren verlof op te nemen na de bevalling zouden zij 
eraan gewend raken een groter deel van de zorg voor de kinderen op zich te nemen. 
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ABSTRACT 

Huisman, M.M.H. Elucidation of the chemical fine structure of polysaccharides from 
soybean and maize kernel cell walls. 

Ph.D. thesis. Wageningen University, Wageningen, The Netherlands, 2000 

Keywords: Glycine max, Zea mays, homogalacturonans, rhamnogalacturonans, 
xylogalacturonans, arabinogalactans, pectic substances, xyloglucans, 
glucuronoarabinoxylans 

In soybean cell wall material, pectic substances are the major non-starch polysaccharide. 
These pectic substances distinguish themselves from pectic substances of cell wall material 
from other plants in the absence of homogalacturonan, the presence of fucose residues in the 
xylogalacturonan, and two uncommon structural features of the pectic arabinogalactan side 
chains, namely the presence of internal (l,5)-linked arabinofuranose and terminal 
arabinopyranose. Therefore, these pectic substances are rather resistant to degradation by both 
established (like polygalacturonase) and novel (like RG-hydrolase) pectic enzymes. The 
hemicellulosic polysaccharides in the soybean cell wall appeared to be predominantly 
xyloglucans, composed of XXXG-type building units like most legume xyloglucans. 

In the cell wall material from maize kernels, glucuronoarabinoxylans are the major 
non-starch polysaccharides. The glycosidic linkage composition of the extracts and their 
resistance to endo-xylanase treatment indicated that the extracted glucuronoarabinoxylans 
were highly substituted. The same conclusion could be drawn from their degree of 
substitution (87%), defined as the number of sugar substituents per 100 xylose residues in the 
backbone. The glucuronoarabinoxylans from maize kernel cell walls appeared to be more 
complex than those from sorghum cell walls, which were the most complex 
glucuronoarabinoxylans described so far. 

The uncommon structural features of soybean cell wall pectic substances and the 
complexity of maize kernel cell wall glucuronoarabinoxylans explain their resistance to 
degradation by enzymes generally used to degrade this kind of polymers, and indicates that a 
search for new enzymes is required to enable enzymatic modification of these 
polysaccharides. 
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Chapter 1 

BACKGROUND 

This thesis forms part of a larger research project on the elucidation of the chemical fine 

structure of polysaccharides from plant cell walls directed to their functional properties, 

funded by the Dutch technology Foundation (NWO/STW). The plant cell wall 

polysaccharides play important roles in the processing of the plant materials to food and feed. 

The determination of the structure of polysaccharides usually includes the isolation of the 

polysaccharides from their original source by removal of other constituents like protein, fat, 

and starch, without modifying or removing a part of these polysaccharides. Subsequently, 

they can be characterised by determination of their sugar composition, glycosidic linkage 

composition, and establishing the presence of substituents (e.g. acetyl, methoxyl, feruloyl, and 

coumaryl groups). NMR spectroscopy and mass spectrometry are used in the analysis of not 

too complex polysaccharides or polysaccharide fragments. Chemical and specific enzymatic 

degradation is used to obtain fragments that fit within the analytical range of NMR and MS 

analyses. This strategy is shown in Figure 1.1. NMR spectroscopy and mass spectrometry 

were performed at the Bijvoet Centre of the University of Utrecht. Based on the obtained 

knowledge of polysaccharide structures, it was tried to get a better understanding of the 

digestibility and the nutritional value of soybean meal and maize polysaccharides in feed 

applications (Department of Animal Nutrition, Wageningen University). 

Raw materials 

' ' 1 

1 
Cell wall polysaccharide complex 

I 
Separation 
technology 

' 

\ 

1 
Enzyme 

technology 

/ 
NMR spectroscopy 

and mass spectrometry 

1 ' 
(hypothetical) polysaccharide structures 

1 1 \ r i r 

Food and feed applications 

Figure 1.1. Scheme of techniques and data flow within the research project. 

In this research project, attention is focussed on cell wall polysaccharides of two plant 

species, soy and maize. The two species investigated represent different taxonomic groups, 

soybean belonging to the dicotyledonous and maize to the monocotyledonous plants. Besides 
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containing two very important structures present in cell wall material, these raw materials are 
also of great importance in food and feed industry. 

Soybean meal and maize by-products from the wet milling process are important 
agricultural by-products. These by-products are enriched in proteins and cell wall 
polysaccharides and are used in livestock feeds. At present, little information is available 
about the chemical structure of the individual cell wall polysaccharides in relation to their 
digestibility/fermentability and physiological action in the gastrointestinal tract. A number of 
effects of intact cell walls are the limited accessibility of nutrients within the cellular matrix 
of the plant, the limited degradation of the cell wall itself, and physical effects (particularly 
increased viscosity) of the cell walls in the small and large intestines1. Knowledge of the 
polysaccharide structure is needed for the selection of the appropriate tools for modification 
of feed ingredients. These pre-treatments can optimise the uptake of the feed and improve the 
well-being of the animals. 

Soybean meal can also be used as a raw material for the production of soy protein 
isolate. Isolated soy protein is used in comminuted or emulsified meat products, in the baking 
industry, in (milk-free) infant formulas and food, and meat analogue products. In a number of 
cases, the purity of the protein product is desired to be above 90%. Knowledge of the 
polysaccharide structure is needed to select the enzymes able to remove polysaccharides from 
the protein fraction. 

A third reason for the interest in the structure of the polysaccharides from soybean 
meal and maize kernels is their application as novel ingredients in foodstuffs, possibly after 
(enzymatic) modification. 

In short, this research project focussed especially on the identification and 
characterisation of cell wall polysaccharides in relation to functional properties, enzymatic 
modifications to improve these properties, polysaccharide degradation by enzymes, detection 
of structural barriers limiting enzyme action and identification of enzyme activities with 
potential to overcome these limitations. 

THE SUBSTRATES: SOYBEAN MEAL AND MAIZE KERNELS 

Soybeans (Glycine max) belong to the pea family of the Leguminosae. They are the world's 
most important oilseed crop and a staple food of the Orient. World production in 1990 totalled 
107 millions metric tons. Although indigenous to the Far East, it is now cultivated elsewhere 
- particularly in the United States2. 

The soybean seed consists of three basic parts: (1) the seed coat, which protects the 
embryo from fungi and bacteria before and after planting; (2) the embryo; and (3) the 
cotyledons, which account for most of the bulk and weight (90%) of the seed and contain 
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nearly all the oil and protein. Early in the maturity of the cotyledons, starch granules are 

predominant, but they decrease to less than 1% of weight as beans mature2,3. 

HMJUM (SEED SCAR) 

COTYLEDON 

RADICLE 
HYPOCOTYL 

EPICOTYL 

SEEDCOAT 
COTYLEDON 

Figure 1.2. The soybean seed . 

Soybeans are processed primarily to obtain (1) oil for use in shortenings, margarines, 
and salad dressings; (2) soybean protein products for direct human consumption; and (3) 
soybean meal for use as a protein supplement for livestock. The protein of soybean meal is of 
better quality than other protein-rich supplements of plant origin, because of its well-balanced 
amino acid profile2. 

As a first approximation soybeans contain 20% lipid, 40% protein, 35% carbohydrate, 
and 5% ash on a dry weight basis. Considerable variability exists in these numbers, depending 
on the cultivar and the growing conditions. The carbohydrates consist of soluble and insoluble 
carbohydrates. Insoluble carbohydrate includes pectin, cellulose and hemicellulose that 
largely form the cell walls in soybean cotyledons. This fibre component is more prevalent in 
soybean seed coats (hulls) than in cotyledons. The soluble carbohydrate in soybeans 
represents about 10% by weight of the dry bean and includes about 5% sucrose, about 4% 
stachyose, and about 1% raffinose3. 

Maize (Zea mays) is a plant of the tribe Maydea of the grass family of the Gramineae. 
Maize ranks as the second most widely produced cereal crop world-wide. Only wheat is 
produced in greater quantity4. North America has always been the centre for maize 
production. In 1990 the total world production was 475 millions metric tons2. 

The maize kernel is composed of four main parts: (1) the germ; (2) the endosperm, 
which forms the major portion (82%) of the kernel, and is comprised of a protein matrix 
encapsulating granules of starch; (3) the pericarp, which is composed entirely of dead empty 
cells, and is high in cellulose and hemicellulose; and (4) the tip cap, which was the point of 
attachment to the cob and the passageway for the movement of nutrients to the developing 
kernel3. 
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Endosperm ) Aleurone 
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Germ 
!120%> 

Seed coat 

Hilar layer 

Figure 1.3. Mature maize kernel morphology3. 

Most of the corn crop goes directly into animal feed uses. Other direct uses of maize 
include sweet corn, popcorn, alkali-cooked corn to produce tortillas, breakfast cereals, and 
other foods made from whole maize or by traditional stone grinding. Other ways to utilise 
maize involve one or more levels of value-added processing. A large part of the maize 
production is wet milled, thus producing corn starch, corn sweeteners (sugar and syrup), and 
corn oil. The most valuable fractions are starch and germ. The by-products account for one-
third of the mill output. Most of the by-products, except the oil recovered from the germ, are 
utilised as livestock feed . 

As a first approximation maize kernels contain 4% lipid, 11% protein, 72% starch, 
10% other carbohydrates, 2% crude fibre and 1% minerals on a dry weight basis5. 

THE CELL WALL OF MOST FLOWERING PLANTS 

Cell walls are a major component of plant material. Although the primary wall has 
considerable mechanical and tensile strength, it is also flexible to accommodate turgor and to 
allow for cell elongation; it is permeable and yet an effective defence against micro
organisms. The cell wall is a fibre-composite material of skeletal cellulose microfibrils, which 
form the scaffolding framework of the wall, and so-called matrix polymers, which include 
xyloglucans, xylans, pectins, and proteins. Recent models of cell wall architecture have 
suggested that cell walls of dicots and non-graminaceous monocots are constructed from at 
least two independent but co-extensive and interactive networks, a cellulose/xyloglucan 
network and a pectin network, with a third interactive network of structural proteins in some 
cells (Figure 1.4)6'7'8. 
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Figure 1.4. An extremely simplified and schematic representation of the onion parenchyma cell wall7. 

The cellulose/xyloglucan network 

Cellulose ((l,4)-linked p-D-glucan) is the major component of the primary cell wall. The 

cellulose chains can associate into microfibrils by intermolecular hydrogen-bonding. The 

surfaces of these microfibrils are coated with hemicelluloses to prevent them from 

aggregating9. Two hemicelluloses - xyloglucan and arabinoxylan - are components of all 

primary cell walls, although the relative amounts of the two hemicelluloses vary from plant to 

plant. It is possible that a small amount of a third hemicellulose, a glucomannan or 

galactoglucomannan, is a component of primary cell walls10. 

In the cell wall of dicots, the principal hemicelluloses are xyloglucans6. The basic 

structure of this cell wall polymer consists of a backbone of P-(l,4)-linked-D-glucosyl 

residues, with D-xylosyl side chains ct-linked to C6 of some of the glucosyl residues. Some of 

the xylosyl side chains are extended by the addition of a P-linked-D-galactose residue, or a a-

L-fucosyl-(l,2)-P-D-galactose dimer to C2 of the xylosyl residues. Arabinosyl residues are 

occasionally linked to C2 of some of the xylosyl residues of some xyloglucans". The degree 

of backbone branching appeared to be characteristic; most xyloglucans are composed of either 

XXXG-type or XXGG-type building units'2. The letters "G" and "X" refer to an unbranched 

P-D-Glc£> residue and an ct-D-Xyl/>-(l—>6)-P-D-Glcp segment, respectively13. The poly-

XXXG class includes xyloglucans from both gymnosperms and angiosperms, xyloglucans 

from solanaceous plants belong to the poly-XXGG group12. 
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Xyloglucan is thought to form a tightly bound molecular monolayer on the surface of 
cellulose. A portion of a xyloglucan chain that is sterically prevented from binding to one 
cellulose microfibril will form, if possible, a multiple hydrogen-bond attachment to another 
cellulose microfibril, thereby cross-linking the microfibrils and creating a cellulose/ 
xyloglucan network10. 

The pectin network 

The second polysaccharide network present in primary cell walls is composed of pectic 
polysaccharides. The organisation of pectic substances is a major control element in defining 
the sieving properties of the wall14. Other functions of plant cell wall pectins are determining 
cell wall porosity; providing charged surfaces that modulate wall pH and ion balance; and 
serving as recognition molecules that signal appropriate developmental responses to 
symbiotic organisms, pathogens, and insects6. 

The pectic substances comprise a family of acidic polymers like homogalacturonans, 
and rhamnogalacturonans with several neutral polymers like arabinans, galactans and 
arabinogalactans attached to it15,16'17. A model of apple pectin molecules is presented in 
Figure 1.5. The pectin consists of smooth galacturonan regions interrupted by blocks of 
ramified rhamnogalacturonan regions, so-called hairy regions. The branches are neutral sugar 
rich side chains18. The relative amounts of the different pectic sub-units vary from plant to 
plant. 

YX \X 

Figure 1.5. Schematic structure of apple pectin19. 

The hairy regions of apple appeared to be composed of three sub-units, and a 

structural model is shown in Figure 1.6. The pectic sub-units are described below. 

Homogalacturonan is the most well known part of pectic substances (Figure 1.5). It 
consists of (l,4)-linked a-galacturonic acid residues. Methylesterification of the carboxyl 
groups is the most common modification of homogalacturonan. Another type of substitution 
is acetylation of homogalacturonan on C2, C3, or both C2 and C3 positions of the 
galacturonic acid in potato20 and bamboo21, and especially sugar beet homogalacturonan has a 
high acetyl content16. 
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Xylogalacturonan (sub-unit I) is a relatively recently discovered sub-unit of pectic 

substances. The backbone consists of (l,4)-linked a-D-galacturonic acid residues. Xylose 

residues are P-(l,3)-linked to part of the galacturonic acid residues. A part of the galacturonic 

acid residues are methyl esterified, and the methyl esters are found to be equally distributed 

among the substituted and unsubstituted galacturonic acid residues. Xyloglacturonan is 

probably associated with rhamnogalacturonan regions22,23. 

DDDI IDHDD 

tfVWWtf 
• methyl ester 

$ GalA 

m rham 

#> gal 

• xyl 

Figure 1.6. Hypothetical structure of apple pectin MHR (modified hairy regions). Sub-unit I, 

xylogalacturonan; sub-unit II, stubs of the backbone rich in arabinan side chains; sub-unit III, 

rhamnogalacturonan oligomers. The distribution of acetyl groups is not presented, but the major part is 

located within sub-unit HI24'25. No information is available on the presence of methyl esters in sub-unit 

II26. 

Rhamnogalacturonan (sub-units II and III) is the second major type of pectic 

polysaccharide. It is the collective noun for pectic fragments having a rhamnose to 

galacturonic acid ratio, varying between 0.05 and l26. Arabinosyl- and galactosyl-rich side 

chains are attached to C4 of the rhamnosyl residues, although the proportion of rhamnosyl 

residues with attached side chains varies from -20% to -80% depending on the source of the 
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polysaccharide10. The side chains can vary in size from a single glycosyl residue to 50 or 
more glycosyl residues27'28. Rhamnogalacturonans are typically highly acetylated29 at 
positions C2 and C3 of the galacturonic acid residues20'30. The rhamnogalacturonans include 
the intensively studied pectic segments which have a strictly alternating sequence of 
rhamnose and galacturonic acid, named rhamnogalacturonan I17. 

Rhamnogalacturonan II is another common pectic sub-unit in fruit and vegetable cell 
walls31'32'33. It was, however, not detected in apple pectin MHR by Schols et al.26 (due to their 
removal during ultrafiltration of the enzyme-treated apples), and therefore not present in 
Figure 1.6. This sub-unit has a highly conserved structure. The backbone is composed of 
about nine (l,4)-linked oc-D-galacturonic acid residues. Four different, complex side chains 
are attached to C2 or C3 of four of the backbone residues. These side chains contain 
rhamnose and several rare characteristic monosaccharides such as apiose, 2-O-methyl-L-
fucose, 2-0-methyl-D-xylose, aceric acid (3-C-carboxy-5-deoxy-L-xylose), KDO (3-deoxy-D-
manno-octulosonic acid), and DHA (3-deoxy-D-lyxo-heptulosaric acid) 4. 

THE CELL WALL OF GRASSES 

In Gramineae, the chemical structure of the wall differs from that of all other flowering plant 
species. This type of cell wall is composed of cellulose microfibrils similar in structure to 
those of the cell walls of flowering plants. Instead of xyloglucan, the principal polymers that 
interlock the microfibrils are (glucurono)arabinoxylans. This type of cell wall is poor in 
pectin. 

Arabinoxylans are linear chains of (3-(l,4)-linked D-xylopyranosyl residues, to which 
a-L-arabinofuranosyl residues are attached as side chains to the C2, C3 or both C2 and C3 
position35. Arabinoxylans can also be substituted with glucuronic acid or 4-O-methyl-
glucuronic acid at the C2 of the xylosyl units36'37'38'39, consequently designated 
glucuronoarabinoxylans. Additionally, branching with single unit side chains of xylose is 
suggested40. Besides these single unit substituents, a variety of di- and trimeric side chains 
have been identified as minor constituents of (glucurono)arabinoxylans. These side chains can 
be composed of arabinose only39'41'42'43, or can include xylose and galactose 
residues35'44'45'46'47. Another feature of (glucurono)arabinoxylans is the presence of acetic, 
ferulic or coumaric acid as ester groups. Xylans can carry O-acetyl ester groups at position 2 
of an arabinofuranose residue48, ferulic and coumaric acid are covalently linked via an ester 
linkage to the C5 position of arabinofuranose residues48'49'50'5'. In addition, O-acetyl ester 
groups can also be attached to C2 or C3 of the xylose residues in the backbone, but so far this 
was only found in hardwood xylans52'53'54'55'56'57. Arabinoxylans from various plants share the 
same basic chemical structure, the main differences are found in the ratio of arabinose to 
xylose, in the relative proportions and sequence of the various linkages between these two 
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sugars, and in the presence of other substituents58. As an example, the structural model of 
sorghum glucuronoarabinoxylan is shown in Figure 1.7. Sorghum glucuronoarabinoxylan is 
the most complex arabinoxylan described in literature. Neither rye, wheat endosperm, nor 
barley arabinoxylan contains glucuronic acid or short side chains, and this makes them more 
easily degradable by xylanases. 

% C-Xylp 

O a-Ara/ 

^ a-GlcA 

# — # B-Xyl/>-(l-»4)-B-Xyl/> 

% a-Ara/-(l->3)-B-Xyl/> 

I 

oc-Ara/-(l-».2)-B-Xylp 

a-GlcA-(l-»2)-B-Xyl/> 

< X > a-Ara/-(l->5)-a-Ara/ 

0> a-Ara/-(l->2)-a-Ara/' 

Figure 1.7. A structural model for sorghum glucuronoarabinoxylan5' 

Like xyloglucan, the unbrached (l,4)-linked xylans can hydrogen bond to cellulose or 
to each other60. The extend of hydrogen bond formation for glucuronoarabinoxylans is limited 
as a result of the presence of substituents61. Besides these interactions through hydrogen 
bonding, ferulic acid is capable of forming both ester and ether linkages and, therefore, it may 
participate in cross-linking reactions of cell wall macromolecules62. 

OUTLINE OF THE THESIS 

The structures of cell wall pectic substances and xyloglucan from soybean meal and of 
(glucurono)arabinoxylan from maize kernels have been studied extensively. To study the cell 
wall polysaccharides, isolation procedures were performed in which non-cell wall 
components like fat, starch, and proteins are removed. 

10 
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Specific extraction procedures were used to extract the different classes of pectins and 
hemicelluloses from soybean WUS. The obtained fractions were characterised by 
determination of their sugar composition and molecular weight distribution (chapter 2). It 
appeared that soybean WUS is hardly degraded by enzymes. It is however possible that no 
degradation can be achieved by enzymes even when the appropriate substrate is present. This 
might be caused by low cell wall porosity, adsorption of the enzyme to other cell wall 
polysaccharides, inhibition of the enzymes by cell wall components or hindrance by side 
chains, including both spatial hindrance and a high degree of substitution of the backbone. 
Although the CDTA-extractable pectic substances are no longer part of the cell wall matrix, 
they could still not be degraded by pectic enzymes, except for their arabinogalactan side 
chains (chapter 3). After incubation with pure and well-defined arabinogalactan-degrading 
enzymes an enzyme resistant pectic backbone remained. Significant degradation of this pectic 
polymer could only be achieved by acid hydrolysis. The resulting fragments of the pectic 
backbone were characterised, both chemically and enzymatically (chapter 4). The 
arabinogalactan fragments released after incubation of the CDTA-extractable pectin with the 
arabinogalactan-degrading enzymes were the subjects of research in chapter 5. The 
degradation products were separated by size-exclusion and anion-exchange chromatography, 
and subsequently characterised using mass spectrometry. Information on the structures of the 
various oligomers and mode of action of the enzymes led to more detailed knowledge on the 
structure of the intact cell wall polysaccharides. 

The pectic substances form only one network of the plant cell wall. The other network 
is the cellulose/hemicellulose network. The hemicelluloses of the soybean cell wall were 
under investigation in chapter 6. Analyses of the oligomers formed after enzymatic 
degradation showed the formation of characteristic poly-XXXG xyloglucan oligomers. 

The approach and methodology developed for the elucidation of polysaccharide 
structures in soybean meal was also successfully applied to maize kernel 
glucuronoarabinoxylan (chapter 7). These glucuronoarabinoxylans appeared to have a very 
complex structure, more complex and more resistant to enzymatic degradation than those of 
sorghum kernel cell walls. 

In the concluding remarks (chapter 8), an overview of the thesis work is given and the 
results are discussed in the context of existing polysaccharide knowledge and research aims. 
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Chapter 2 

Cell wall material was isolated as Water-Unextractable Solids (WUS) from soybean meal. The 

isolation of WUS yields a fraction that contains 92% of the polysaccharides present in 

soybean meal and only few other components. Arabinose, galactose, uronic acids and glucose 

(cellulose) were the major constituent sugars. WUS was sequentially extracted with chelating 

agent (Chelating agent Soluble Solids, ChSS), dilute alkali (Dilute Alkali Soluble Solids, 

DASS), 1 M alkali (1 M Alkali Soluble Solids, 1 MASS) and 4 M alkali (4 M Alkali Soluble 

Solids, 4 MASS) to leave a cellulose-rich residue (RES). ChSS was the major extract, yielding 

38% of the polysaccharides present in the WUS. All extracts and the residue were 

characterised by their sugar composition and their molecular weight distribution. The extracts 

ChSS and DASS were fractionated by anion exchange chromatography. They showed 

identical elution patterns: an unbound fraction, five bound fractions of which one fraction 

eluted only with alkali. Anion exchange chromatography was also performed after 

saponification of both pectin-rich extracts, again resulting in identical elution patterns. 

INTRODUCTION 

One of the basic products of the soybean is oil. The by-product of the industrial oil extraction, 

soybean meal, is enriched in proteins and cell wall polysaccharides. Soybean meal is used in 

livestock feeds and as a raw material for the production of soy protein isolates. The 

polysaccharides in soybean meal are badly utilised by monogastric animals. Partial 

degradation of these polysaccharides with enzymes could improve the utilisation by animals. 

Knowledge of the polysaccharide structure is needed to select enzymes, which are able to 

degrade the polysaccharides in a way that is optimal for the uptake by and well-being of the 

animals. In the production of soy protein isolate from dehulled and defatted soybean meal, the 

purity of the protein product is desired to be above 90%. Enzymes able to remove 

polysaccharides from the protein fraction could be of importance in protein isolation. 

Identification and selection of such enzymes requires knowledge of the polysaccharide 

structure in the soybean cell walls. 

Some structures of soybean cell wall polysaccharides have already been partly 

elucidated during the sixties. Within this group of polysaccharides, the arabinogalactans have 

been studied most intensively1'2'3'4, and showed to contain chains of (l,4)-linked f3-D-

galactopyranose residues in which some residues carry through C3 a side chain of ((1,5)-

linked) L-arabinofuranose residue(s). However, large variation is present in the degree of 

branching and in the distribution of the substituents over the main chain. Aspinall and 

Cottrell5 also isolated a highly branched arabinan, containing (1,3)- and (l,5)-linked 

arabinofuranose residues. 

Within the group of acid polysaccharides, the sugar composition has been determined 

and a number of hydrolysis products have been characterised. The results indicate a main 

16 



Chapter 2 

chain consisting of D-galacturonic acid and L-rhamnose residues and side chains containing 

mainly galactose and arabinose residues. Two noteworthy observations were firstly the 

presence of oligosaccharides containing contiguous rhamnose residues, and secondly the 

presence of xylosyl-galacturonic acid dimers, indicative for the presence of 

xylogalacturonan6. The structure of the pectin molecules as a whole has not yet been 

investigated. 

Until now no survey has been published in which fractions from soybean meal are 

characterised with respect to their (polysaccharide) composition. Moreover, isolated soybean 

polysaccharides have also not been investigated in detail, except for chelating agent extracted 

pectic substances by Brillouet and Carre . The purpose of the present investigation was to 

isolate the intact cell wall polysaccharides from soybean meal and to characterise them in 

order to perform further structural investigations of the important fractions. 

MATERIALS AND METHODS 

PLANT MATERIAL 

Solvent-extracted, untoasted soybean meal was obtained from Cargill BV (Amsterdam, The 

Netherlands). 

ISOLATION OF WATER-UNEXTRACTABLE SOLIDS (WUS) 

Dehulled, defatted, untoasted soybean meal was ground to pass a 0.5-mm sieve. This meal (800 g) was 

extracted with 3 1 distilled water containing 0.05% NaN3 during 2h at room temperature. The 

suspension was centrifuged (11000 g; 30 min). The pellet was resuspended, and this procedure was 

repeated four times. The combined supernatants were subjected to ultrafiltration using a tubular 

system (Cobe Nephross BV, Boxtel, The Netherlands), resulting in a filtrate (UFF) containing material 

smaller than 5000 Da and a retentate (UFR) containing polymers larger than 5000 Da. 

Subsequently, the protein was extracted from the residue with 3 1 1.5% (w/v) sodium 

dodecylsulphate solution containing 10 mM 1,4-dithiothreitol, during 3h at room temperature. After 

centrifugation (11000 g; 30 min), this extraction was repeated three times. The final pellet was washed 

twice with distilled water. The combined supernatants were dialysed, concentrated and freeze-dried 

(SDSS). 

The residue was then suspended in 1 1 of distilled water (pH 5.0) at 85 °C, and starch 

gelatinisation was allowed to proceed for lh. The residue obtained after centrifugation (11000 g; 30 

min) was suspended in 1 1 buffer solution (pH 6.5) containing 10 mM maleic acid, 10 mM NaCl, 1 mM 

CaCli and 0.05% NaN3. Porcine pancreatic a-amylase (2 mg; Merck art. 16312) was added and the 

mixture incubated at 30 °C for 19h. After centrifugation (11000 g; 30 min), the residue was washed 
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with 1 1 hot distilled water (65 °C) and centrifuged again. The a-amylase digestion and hot water 

washing were repeated once. The combined supernatants were dialysed, concentrated and freeze-dried 

(HWS), and the remaining unextractable residue was resuspended in distilled water and freeze-dried 

(WUS). 

SEQUENTIAL EXTRACTION OF WUS 

Soybean WUS (20 g) was sequentially extracted, based on the procedure described by Redgwell & 

Selvendran8, with 0.05 M l,2-diaminocyclohexane-Ar,A';jV',./V'-tetraacetic acid (CDTA) and 0.05 M 

NH4-oxalate in 0.05 M NaAc-buffer, pH 5.2 (8 times 600 ml) at 70 °C for lh (Chelating agent Soluble 

Solids, ChSS); washed with distilled water (two times 600 ml) and these extracts were added to the 

ChSS fraction; extracted with 0.05 M NaOH (three times 600 ml) at 2 °C for lh (Dilute Alkali Soluble 

Solids, DASS); 1.0 M KOH + 20 mM NaBH4 (5 times 600 ml) at room temperature for 2h (1 M Alkali 

Soluble Solids, 1 MASS); 4 M KOH + 20 mM NaBH4 (three times 600 ml) at room temperature for 2h 

(4 M Alkali Soluble Solids, 4 MASS). After each extraction, solubilised polymers were separated from 

the insoluble residue by centrifugation (19000 g; 30 min). All extracts were acidified to pH 5.2 (if 

necessary) by glacial acetic acid, concentrated, dialysed and freeze-dried. ChSS (including the two 

supernatants obtained after washing the residue from this extraction step) were dialysed against 0.1 M 

NH4Ac buffer (pH 5.2) before dialysing against distilled water. The final residue (RES) was 

suspended in water, acidified to pH 5.2, dialysed and freeze-dried. 

ION-EXCHANGE CHROMATOGRAPHY 

Approximately 500 mg of ChSS, saponified ChSS (sChSS), DASS and saponified DASS (sDASS) 

were fractionated on a column (550 mm x 15 mm) of DEAE Sepharose Fast Flow, which was initially 

equilibrated in 0.005 M NaAc-buffer pH 5.0, using a Hiload System (Pharmacia). 

The ChSS and DASS fractions were suspended in water, the insoluble residues were removed 

by centrifugation (5400 g; 5 min) and the supernatants were applied onto the column. Saponification 

of ChSS and DASS was performed by dissolving them in 0.1 M NaOH (0 °C, 16h) followed by 

neutralisation with 0.1 M HAc. These saponified samples were also centrifuged and the supernatants 

applied onto the column. 

Elution was carried out sequentially with 400 ml of 0.005 M NaAc-buffer pH 5.0, a linear 

gradient from 0.005 to 0.5 M NaAc buffer pH 5.0 (1200 ml), a linear gradient 0.5-2 M NaAc-buffer pH 

5.0 (1000 ml) and 400 ml 0.005 M NaAc-buffer pH 5.0. Residual bound polysaccharides were washed 

from the column with 400 ml of 0.5 M NaOH. The elution rate was 10 ml/min except for the first step, 

in which the sample was applied onto the column and the elution rate was 2.5 ml/min. Fractions (23 

ml) were collected and assayed by automated methods for neutral sugar content9 and uronic acid 

content10. The appropriate fractions were pooled, concentrated, dialysed, freeze-dried and analysed for 

neutral sugar composition and uronic acid content. 
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ANALYTICAL METHODS 

Moisture content was determined by drying at 105 °C until no further decrease in weight was 

observed. 

Starch content was determined enzymatically using a test kit (Boehringer, Mannheim, Germany). 

Non-starch polysaccharide content of soybean meal and HWS was determined according to Englyst 

and Cummings". The starch was enzymatically hydrolysed, the residue was dried and the sugar 

composition was determined. 

Neutral sugar composition was determined by gas chromatography according to Englyst and 

Cummings", using inositol as an internal standard. The samples were pre-treated with 72% w/w 

H2S04 (lh, 30 °C) followed by hydrolysis with 1 M H2S04 for 3h at 100 °C and the constituent sugars 

were analysed as their alditol acetates. Cellulosic glucose was calculated as the difference between the 

content of glucose with and without prehydrolysis. 

Uronic acid content was determined by the automated colorimetric w-hydroxydiphenyl assay9'0'12 

using an auto-analyser (Skalar Analytical BV, Breda, The Netherlands). Corrections were made for 

interference by neutral sugars present in the sample. 

Protein content was determined by a semi-automated micro-Kjeldahl method'3. The conversion factor 

used was 6.25. 

Degree of acetylation and methylation was determined by HPLC after saponification with 0.4 M 

NaOH14. Quantification was performed using acetic acid and methanol standards. 

High-Performance Size-Exclusion Chromatography (HPSEC) was performed on a SP8800 HPLC 

(Spectra Physics) equipped with three columns (each 300 x 7.5 mm) of Bio-Gel TSK in series (60XL, 

40XL and 30XL; Bio-Rad Labs.) in combination with a TSK guard column (40 x 6 mm) and elution at 

30 °C with 0.4 M NaAc buffer pH 3.0 at 0.8 ml/min. Calibration was performed using dextrans, 

ranging from 500 to 4 kDa. The eluate was monitored using a Shodex SE-61 Refractive Index 

detector. 

High-Performance Anion-Exchange Chromatography (HPAEC) was performed on a Dionex Bio-LC 

system as described by Schols et al.'5. The gradient was obtained by mixing solutions of 0.1 M NaOH 

and 1 M NaAc in 0.1 M NaOH. 

For the determination of small neutral oligomers, fructose, sucrose, raffmose and stachyose, 

the (4 x 250 mm) CarboPac PA1 column was equilibrated with 0.016 M NaOH. Twenty u,l of the 
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sample were injected, and a linear gradient to 0.1 M NaOH in 33 min was applied, followed by a linear 

gradient from 0 to 0.04 M NaAc in 0.1 M NaOH in 12 min. The column was washed for 5 min with 1 

M NaAc in 0.1 M NaOH, then 5 min with 0.1 M NaOH and then equilibrated again for 12 min with 

0.016 M NaOH. Calibration was performed with standard solutions of fructose, sucrose, raffinose and 

stachyose. 

RESULTS AND DISCUSSION 

YIELD AND COMPOSITION OF THE WUS 

The yield and the composition of the fractions of soybean meal obtained during the isolation 

of WUS are shown in Table 2.1. The recovery of this fractionation is 94%. The major part of 

the material is water soluble (UFF and UFR), namely 59%. The yield of the WUS fraction is 

16%. 

Table 2.1. Yield and composition of soybean meal and fractions thereof (percentage dry weight). 

Yield 

Protein content 

Starch content 

NSP content 

Acetic acid groups 

Methanol groups 

Fructose 

Sucrose 

Raffinose 

Stachyose 

Soybean meal 

100 

57.3 

1.0 

15.4" 

1.1 

0.3 

0.6 

5.4 

0.8 

4.9 

UFF 

19.5 

21.1 

0 

50.2 

1.2 

0.1 

6.6 

0 

0.5 

8.4 

UFR 

39.6 

87.8 

0 

13.7 

0.7 

0.2 

3.5 

0 

0.1 

1.2 

SDSS 

18.5 

84.2 

0 

3.0 

0.3 

t 

0 

0 

0 

0 

HWS 

0.4 

15.4 

8.5 

43.3a 

1.4 

1.1 

0 

0 

0 

0 

WUS 

15.7 

2.1 

0 

95.8 

2.8 

1.1 

0 

0 

0 

0 

Recovery 

93.7 

95.7 

3.4 

102.4b 

92 

92 

446 

0 

17 

43 

t = trace amount. 
a After enzymatic removal of starch. 
b In this calculation, UFF and UFR are omitted. 

The protein content of the soybean meal is very high, as expected (57%). The recovery 

of protein in this procedure is 96%. The major part of the protein present in soybean meal is 

recovered in the UFR fraction (61%); these are the water-soluble proteins. The SDS/DTT 

solution is able to extract another 27% of the proteins in the material. The amount of protein 
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recovered in the WUS fraction is 0.6% of the protein present in the soybean meal and 
represents only 2.1 % of the WUS. 

The soybean meal contains 1% of starch. Starch molecules are degraded by the use of 
a-amylase in the extraction of HWS, and degradation products are removed during dialysis. 
Only 3.4% of the starch resists degradation with a-amylase, these are limit dextrins from 
amylopectin. 

The polysaccharide content of the soybean meal (15.4%) and the HWS fraction 
(43.3%) is determined after removal of starch and oligomeric sugars. In the determination of 
the polysaccharide content of the other fractions (UFF, UFR, SDSS and WUS) this step was 
omitted, because none of these fractions contained starch anymore. Thus, the polysaccharide 
content of the soybean meal does not include the neutral oligomeric sugars, whereas the 
'polysaccharide content' of the UFF and UFR fractions includes these small sugars. 
Therefore, the calculation of the recovery of polysaccharides (102%) only includes the 
polysaccharide contents of the SDSS, HWS and WUS fractions. Of the total polysaccharides 
in these fractions, 95% is recovered in the WUS fraction. The acetic acid and methanol 
groups are believed to be present as substituents of the uronic acid residues in the 
polysaccharides. They are expected to be recovered in the WUS fraction, which is confirmed 
by the results in Table 2.1, showing 40% of the acetic acid groups and 58% of the methanol 
groups are recovered in the WUS fraction. The water-soluble polysaccharides (in the UFF and 
UFR fractions) contain 45% of the acetic acid groups and 33% of the methanol groups. 

The small sugars - fructose, sucrose, raffinose, and stachyose - are water-soluble and 
thus recovered in the UFF and UFR fraction. The soybean meal contains 0.6% fructose, 5.4% 
sucrose, 0.8% raffinose and 4.9% stachyose, which is in agreement with the figures of 
Sosulski et al.16 who found 6.35% sucrose, 1.15% raffinose and 2.85% stachyose. The 
recoveries of sucrose (0%), raffinose (17%), and stachyose (43%) detected in the fractions are 
very low. For fructose, however, the recovery is unrealistically high (446%). A possible 
explanation for this observation is that the di-, tri-, and tetrasaccharide are degraded by 
endogenous enzymes, which would lead to the formation of glucose, fructose and galactose 
containing oligomers and monomers. If all oligomers that had not been recovered had been 
degraded, the recovery of fructose would have been 600%. The lacking 150% can be 
explained by the new unidentified oligomers appearing in the HPAEC patterns of the UFF 
and UFR fractions. This enzymatic degradation of oligosaccharides takes place during 
ultrafiltration of the cold water-soluble fraction, because so far, no heat treatment has been 
given to inactivate enzymes present in the soybean meal. Enzyme activities that might be 
present in the residue are inactivated by SDS and DTT during the next extraction step and will 
not degrade the polysaccharides present in the residue. Since 95% of the polysaccharides were 
recovered in the WUS fraction and no indications for polysaccharide degrading activities 
were found, it is believed that degradation of polysaccharides did not occur, and research 
directed towards the WUS was continued. 
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Table 2.2. Sugar composition of soybean meal and fractions thereof (mol%). 

Fraction 

Soybean mealb 

UFF 

UFR 

SDSS 

HWSb 

WUS 

t = trace amount 

Sugar 

rha 

2 

0 

1 

7 

1 

2 

a Expressed as % w/w. 

composition 

fuc 

3 

0 

t 

1 

1 

3 

ara 

19 

2 

4 

11 

23 

19 

b After enzymatic removal of starch. 

xyl 

8 

1 

1 

4 

4 

8 

man 

3 

6 

13 

19 

2 

2 

gal 

28 

29 

26 

14 

33 

29 

glc 

21 

58 

49 

18 

10 

21 

galA 

18 

3 

6 

25 

26 

17 

Carbohydrate content2 

14.5 

40.7 

12.4 

2.9 

40.7 

89.3 

The sugar composition of all fractions from soybean meal was determined and is 

shown in Table 2.2. The polysaccharides in the meal and in the WUS fraction consist mainly 

of galactose, glucose (mainly cellulose), arabinose, and uronic acids. The kind of uronic acid 

was not determined, but Aspinall et al.3'6 have shown that the uronic acids present in soybean 

cotyledon meal are primarily galacturonic acids. The cellulose content of soybean meal and 

the WUS fraction is 2.7 and 17.7% w/w, respectively. 

In the determination of the polysaccharide content of the UFF and UFR fractions, 

starch and oligomeric sugars were not removed prior to hydrolysis. Fructose, raffinose (gal-

glc-fru) and stachyose (gal-gal-glc-fru) interfere with the analysis of the sugar composition of 

these fractions. In this analysis fructose is partly determined as mannose and glucose. The 

major sugars in both the UFF and the UFR fraction are glucose, galactose, and mannose. The 

amount of mannose residues in the UFR fraction (13%) is higher than the mannose content of 

the UFF fraction (6%), whereas the amount of fructose (present as monomer and in raffinose 

and stachyose) in the UFR fraction is slightly lower than in the UFF fraction. This is an 

indication of the presence of mannose containing polysaccharides. This can be a result of 

incomplete removal of the hulls from the soybean meal, since soybean hulls consist, to a large 

extend, of galactomannans, which are isolated by extraction with cold water ' . 

The SDSS and HWS fraction are not of importance in our study, because the amounts 

of polysaccharides extracted in these two steps are very low. The WUS fraction, however, is 

really enriched in polysaccharides. The most important constituent sugars are galactose, 

glucose (cellulose), arabinose, and uronic acids. This is an indication of the presence of a 

considerable amount of pectins in the WUS. These results are in agreement with Brillouet and 

Carre7, who also found galactose to be the major sugar constituent, followed by galacturonic 

acid, arabinose, and glucose in soybean cotyledon cell walls. 

From the data in Table 2.2, it can be concluded that this isolation procedure yields a 

WUS fraction in which almost all cell wall polysaccharides are recovered and which is almost 
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free of other components. The sugar composition of the WUS fraction is very similar to that 

of the soybean meal, which indicates that no sugar residues were specifically removed during 

the isolation procedure. Surprisingly, over 90% of the uronic acids present in the soybean 

meal were recovered in the WUS fraction. In the isolation procedure of cell wall material 

from for instance onions , apples'9, and olives20, a significant amount of the pectins is water-

or buffer-soluble. This could be an indication of more complex pectic molecules or greater 

diversity within the architecture of the soybean cell walls compared with other plant cell 

walls. 

SEQUENTIAL EXTRACTION OF THE WUS 

CDTA and NKt-oxalate are most generally used to abstract Ca2+ from the cell walls, and most 
of the pectic polysaccharides held in the walls by ionic cross-links will be solubilised. The 
ChSS fraction, which is the main fraction (38%), is rich in arabinose, galactose, and uronic 
acids. The remaining pectic polysaccharides are probably ester cross-linked within the wall 
matrix and are (partially) extracted with dilute alkali and recovered in the DASS fraction. The 
sugar composition of this extract is identical with the composition found for the ChSS 
fraction. The galactose:arabinose ratio found in both the ChSS and DASS fraction is 1.5:1, 
and the uronic acid:rhamnose ratio is 14:1. The sugar composition of the ChSS and DASS 
fractions is quite similar to that of the EDTA-soluble pectic substances extracted by Brillouet 
& Carre7, their extract also contains pectic substances rich in galactose and arabinose with a 
molar ratio of 1.5:1 and has a uronic acid:rhamnose ratio of 13:1. 

Further extraction of the residue with stronger alkali (1 and 4 M KOH) solubilises 
small amounts of additional pectic material along with the hemicelluloses. Besides arabinose, 
galactose, and uronic acids, the 1 MASS fraction contains also 11 mol% of xylose. Xylose 
and glucose are the predominant sugars in the 4 MASS fraction, which may indicate the 
presence of xyloglucan in this extract. The final a-cellulose residue (RES) still contains a 
small amount of uronic acids, representing 11% of the uronic acids present in the WUS. 
These uronic acids can be galacturonic acids as well as glucuronic acids. The galacturonic 
acids might be present as pectic molecules tightly bound to or firmly entangled in the 
cellulose/hemicellulose network. The glucuronic acids will probably be present as 
hemicellulose substituents. The yields and sugar compositions of the extracts from WUS are 
shown in Table 2.3. 

The degree of acetylation and methylation in the WUS are, respectively, 49 and 36%. 
The ChSS fraction has a degree of methylation of 35% and a remarkably high degree of 
acetylation of 36%. The low recoveries of the acetyl groups and methyl esters after sequential 
extraction (30% and 41%, respectively) are caused by the fact that part of these groups are 
saponified during extraction with alkali, and as a result of that can not be determined. 
Although extraction of the DASS fraction was performed using NaOH, part of the methyl and 
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acetyl groups were still present (DA = 22% and DM = 29%). This phenomenon was also 

found by Ros et al21 extracting a diluted sodium hydroxide soluble pectin fraction from the 

albedo of lemons. Assuming that these substituents will be partially saponified during the 

extraction of DASS, the degree of acetylation and methylation of this extract will be 

underestimated. 

26 36 

Retention time (min) 

a 

26 36 

Retention time (min) 

<* 

16 26 36 

Retention time (min) 

a 

Retention time (min) 

10° \0> 104 V0 
Mw 

10° 10J 104 Vo Mw 

Figure 2.1. HPSEC elution patterns of (a) ChSS, (b) DASS, (c) 1 MASS, and (d) 4 MASS extracted 

from soybean WUS. 

The extracts were further characterised by the determination of their molecular weight 

distributions, which are shown in Figure 2.1. The ChSS and DASS fractions show almost 

identical symmetrical peaks, with an average molecular weight of about 106 Da based on 

calibration with dextrans. Since uronide-containing polymers have a larger hydrodynamic 

volume than dextrans, due to intramolecular electrostatic repulsion by charge effects and 

therefore elute faster than expected on the basis of their molecular weight22, the molecular 

weight of these two fractions containing pectin-rich polysaccharides, will be smaller than 
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mentioned above. The average molecular weight of the 1 MASS is similar to that of the first 
two fractions, but the distribution tails to lower molecular weights. The molecular weight 
distribution of the 4 MASS fraction is much broader, and the average molecular weight is 
lower than the preceding three extracts. For each extract, a standardised amount was 
solubilised as much as possible. The differences in the areas under the peaks are partly caused 
by differences in the sugar contents of the extracts, which depends on the amount of residual 
salt and water in the fractions. The ChSS fraction has the lowest sugar content (52.7%), due to 
the fact that the CDTA is difficult to dialyse away from pectins23. The differences in the 
solubility of the extracts are also partly responsible for the differences in the areas under the 
peaks. This mainly concerns the elution pattern of the 4 MASS fraction, because this fraction 
is not completely soluble, whereas the others are. 

ANION-EXCHANGE CHROMATOGRAPHY OF CHSS AND DASS 

The polysaccharides present in the pectin-rich extracts ChSS and DASS are very similar with 
respect to their sugar compositions and molecular weight distributions. For further 
characterisation, these polysaccharides were fractionated, based on their charge density. The 
soluble parts of these extracts, representing over 90% of the polysaccharides of the extracts, 
are applied onto the column. The elution pattern of ChSS and saponified ChSS (sChSS) are 
shown in Figure 2.2a and 2.2b, respectively. The residues contain less than 10% of the 
polysaccharides present in the different extracts, and are enriched in glucose. 

The elution patterns of DASS and saponified DASS (sDASS) are identical with those 
of ChSS and sChSS, and therefore not shown here. The unbound fractions are pooled as pool 
I and the bound fractions are pooled to give pool II-V as indicated in Figure 2.2. The sugar 
composition and the uronic acid content of these pools, the residue remaining after 
centrifugation of the suspensions (residue), and the strongly bound polysaccharides washed 
from the column with 0.5 M NaOH (alkali wash), are presented in Table 2.4. The data 
obtained for DASS and sDASS are again analogous and are not shown. 

The recovery of the fractionations is high. All the pools are rich in arabinose, 
galactose, and uronic acids. As can be seen from Figure 2.2, the relative uronic acid content of 
the fractions increased with increasing salt concentration of the eluent. This is confirmed by 
the ratio neutral sugars to uronic acids, which decreases with increasing retention time of the 
fraction. At the same time a shift from galactose to arabinose takes place, the 
arabinose:galactose ratio increased from 0.52 (pool II) to 0.70 (pool V) for ChSS, from 0.55 
to 0.72 for sChSS, from 0.53 to 0.75 for DASS, and from 0.53 to 0.76 for sDASS. 

Pool I consists of the unbound polysaccharides, and is therefore expected to have a 
low uronic acid content. However, this pool contains about 20 mol% uronic acids. A possible 
explanation for not binding is that the neutral sugar containing side chains prevent the 
interaction of the uronic acids with the column material, and the polysaccharides will be 
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eluted in the void. Alternatively, these unbound uronic acid-containing polysaccharides could 

represent methyl esterified (neutral) pectic material. This later possibility is in contradiction 

with the fact that this unbound fraction is also found in the elution pattern of the saponified 

extracts. 

250 

o 
O 

1000 1500 2000 2500 

Elution volume (ml) 

3000 3500 

250 

200 

500 1000 1500 2000 2500 

Elution volume (ml) 

3000 3500 

Figure 2.2. Elution profile of (a) ChSS and (b) sChSS on anion-exchange chromatography. 
Uronic acid content (—), neutral sugar content (—). 

The bound polysaccharides from the saponified extract are slightly lower in their 
uronic acid content than those from the unsaponified extract, except for the alkali wash. 
Furthermore, a shift in the amount of polysaccharides from pool II and III to pool IV and V 
can be detected. By saponification of the methanol groups, the pectins will possess more 
charged groups and will therefore need a higher ionic strength of the buffer to be eluted. 
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Table 2.4. Yield on sugar basis (%) and sugar composition (mol%) of fractions obtained after anion-

exchange chromatography of ChSS and saponified ChSS. 

Sugar composition 

Yield rha fuc ara xyl man gal glc uronic acids 

ChSS 25 1 37 26 

Residue 

Pool I 

Pool II 

Pool III 

Pool IV 

IV 

Alkali wash 

Recovery 

8.2 

24.8 

14.7 

13.2 

11.2 

19.0 

7.4 

98.4 

2 

2 

2 

2 

2 

2 

2 

104 

2 

3 

3 

4 

3 

2 

2 

97 

21 

29 

24 

22 

23 

21 

21 

98 

8 

6 

6 

8 

8 

7 

7 

114 

2 

100 

34 

41 

45 

39 

35 

29 

32 

103 

9 

1 

1 

1 

2 

1 

2 

263 

24 

19 

19 

24 

27 

37 

32 

88 

sChSS 

Residue 

Pool I 

Pool II 

Pool III 

Pool IV 

PoolV 

Alkali wash 

Recovery 

t = trace amoun 

4.9 

27.8 

6.1 

5.0 

21.2 

22.8 

8.0 

95.7 

. 

CONCLUSIONS 

2 

2 

2 

1 

2 

2 

2 

97 

2 

3 

2 

2 

3 

4 

2 

96 

21 

27 

26 

24 

24 

22 

21 

98 

8 

6 

4 

5 

6 

9 

7 

107 

2 

2 

128 

33 

44 

48 

47 

44 

31 

25 

105 

13 

1 

3 

4 

1 

1 

3 

292 

21 

18 

13 

16 

19 

30 

40 

77 

Isolation of the cell wall polysaccharides from soybean meal, which contains 57% of proteins, 

yields a fraction containing almost all polysaccharides present in the meal and few other 

components. A complete mass balance for both proteins and polysaccharides of the recovered 

fractions during the isolation of the WUS is given. The sugar compositions of the soybean 

meal and the isolated WUS fraction are quite similar, indicating that no polysaccharides were 

specifically removed during the isolation procedure. 
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Sequential extraction of the isolated cell walls with solutions, which selectively 

solubilise particular polysaccharides, results in two pectin-rich extracts (ChSS and DASS), an 

extract which contains pectins as well as hemicelluloses (1 MASS), an extract mainly 

containing hemicelluloses (4 MASS) and a cellulose-rich residue. The pectin-rich extracts 

have identical sugar compositions and contain predominantly galactose, arabinose, and uronic 

acids. The 1 MASS fraction contains xylose in addition to the former three sugars, and the 

hemicellulose-rich fraction contains mainly xylose and glucose. 

Besides having identical sugar compositions, ChSS and DASS also exhibit similar 

molecular weight distributions and behaviour in anion-exchange chromatography. The sugar 

composition of the pools obtained by ion-exchange chromatography of ChSS and DASS were 

also the same. So far no indications have been found to state that ChSS and DASS are 

structurally different, although it is obvious that their arrangement in the cell wall was not 

identical because they were obtained with different extractants. 

Further research will be directed towards more detailed characterisation of the extracts 

by methylation analysis and degradation with specific enzymes. Another item of interest is to 

obtain information about physical properties of the isolated polysaccharides. From the sugar 

composition of the ChSS and DASS extracts, and the pools thereof obtained by anion-

exchange chromatography, the presence of xylogalacturonan in these extracts is expected. 

Isolation and characterisation of a xylogalacturonan-containing fraction will also be one of the 

objects of further research. 
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Soybean meal, soybean water-unextractable solids (WUS) and extracts thereof, which contain 

particular cell wall polysaccharides, were incubated with a number of cell wall degrading 

enzymes. The intact cell wall polysaccharides in the meal and WUS were hardly degradable, 

while the extracts from WUS were well degraded. The arabinogalactan side chains in the 

pectin-rich ChSS fraction (Chelating agent Soluble Solids) could to a large extent be removed 

from the pectins by the combined action of endo-galactanase, exo-galactanase, endo-

arabinanase, and arabinofuranosidase B. The remaining polymer was isolated and represented 

30% of the polysaccharides in the ChSS fraction. Determination of the sugar composition 

showed these polymers to be very highly substituted pectic structures. It still contained 5 

mol% of arabinose and 12 mol% of galactose, representing 7% and 12% respectively, of the 

arabinose and galactose present in the ChSS fraction before degradation. Further, the presence 

of uronic acid (50 mol%) and of xylose (18 mol%) indicated the presence of a 

xylogalacturonan. 

INTRODUCTION 

The structure of the cell wall polysaccharides from soybean was the subject of a number of 

investigations in the sixties. A first determination of the constituent sugars of the fractionated 

soybean polysaccharides is described by Kawamura and Narasaki'. Morita and co-workers2'3'4 

determined the structure of an arabinogalactan in the "hot-water-extract" from defatted 

soybean flour. They concluded that the backbone of the polysaccharide is a P-(l,4)-linked 

polygalactopyranose chain with little branching. The arabinofuranosyl residues are attached as 

(l,5)-linked side chains, with an average length of two sugar units, to galactose residues in the 

(l,4)-linked main chain by (l,3)-linkages. Aspinall et als describe the same structure to be 

present in an extract from soybean meal, obtained with a 2% ethylene diaminetetra-acetic acid 

disodium salt solution. 

A different picture is provided by Labavitch et alb. A soybean fraction containing 

mainly arabinose and galactose was degraded by a purified endo-galactanase, and their results 

indicate that the arabinose in this soybean fraction is organised primarily in rather large oligo-

or polyarabinosides. 

The soybean arabinan-galactan described by Labavitch et alb was obtained by alkaline 

extraction, by which neutral sugar containing side chains might be detached from branched 

pectic polysaccharides. Bacic et al.1 and O'Neill et a/.8 already reported neutral 

polysaccharides like arabinans, galactans, and arabinogalactans to be attached to 

rhamnogalacturonan in pectic polysaccharides from other sources. In all the other previously 

mentioned investigations, the defatted soybean meal had also been in contact with a sodium 

hydroxide solution before extraction of polysaccharides. Aspinall et al.5 themselves already 

raise the possibility that the neutral polysaccharide might have arisen as a degradation product 
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from the acidic polysaccharide, which is also present in the extract, by inadvertent cleavage of 

glycosidic bonds of uronyl residues by base-catalysed P-elimination. 

To confirm these findings, we deproteinated soybean meal under milder conditions, to 

prevent the occurrence of P-elimination, by using SDS (sodium dodecylsulphate) and DTT 

((l,4)-dithiothreitol). A CDTA (1,2-diaminocyclohexane-AfAfN'.Af'-tetraacetic acid) extract 

of soybean meal pre-treated this way contained 25 mol% of arabinose and 37 mol% of 

galactose. This extract showed only one symmetrical peak on size-exclusion chromatography, 

and no neutral fraction was obtained by anion-exchange chromatography9. This indicated that 

the arabinose and galactose residues present in this extract are part of the pectins. 

Information about the structure of polysaccharides can be obtained by both chemical 

and enzymatic degradation of polysaccharide fractions, followed by the identification of the 

formed degradation products. However, chemical hydrolysis with dilute acid cleaves the 

glycosidic bonds in a rather unspecific way, which prevents the conversion of the obtained 

knowledge into a hypothetical structure of the polymer. Pure enzymes have high substrate 

specificity and form characteristic oligomers; therefore they are a valuable tool in structure 

elucidation10. We now report on the enzymatic degradation of soybean cell wall 

polysaccharides and the first steps in the structural elucidation of a pectin-rich extract from 

soybean cell wall polysaccharides. 

MATERIALS AND METHODS 

MATERIALS 

Water-unextractable solids (WUS) were isolated from solvent-extracted, untoasted soybean meal and 

sequentially extracted as described by Huisman et al9. 

ENZYMATIC DEGRADATION OF SOYBEAN POLYSACCHARIDES 

Solutions (0.25% (w/w)) in 0.05 M sodium acetate buffer (pH 5.0) containing 0.01% NaN3 were 

incubated with a number of enzymes or enzyme combinations at 30 °C rotating 'head over tail'. 

Soybean meal, WUS, ChSS, DASS (Dilute Alkali Soluble Solids), and 1 MASS (1 M Alkali Soluble 

Solids) were used as substrates in the degradation studies with cloned enzymes. Incubations with 

purified enzymes were performed with the ChSS extract. Between two subsequent enzyme incubations 

and at the end of all incubations the enzymes were inactivated by heating at 100 °C for 10 min. 

Polysaccharides degrading activities were determined by HPSEC and HPAEC analyses of the digests. 

Endo-galactanase, endo-arabinanase, rhamnogalacturonan hydrolase (RG hydrolase), 

rhamnogalacturonan acetyl esterase (RGAE), and Polygalacturonase-1 (PG-1), an endo-

polygalacturonase, were cloned from Aspergillus aculeatus" and were kindly provided by Novo 
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Nordisk A/S (Bagsvaerd, Denmark). The cloned microorganisms produce low amounts of their own 

enzymes in addition to the genetically introduced enzyme, so the cloned enzymes are not completely 

pure. Pectin methyl esterase (PE) was purified from a culture medium of Aspergillus niger'2. 

The arabinogalactan degrading enzymes used to degrade the ChSS extracts were purified from culture 

filtrates of fungi. Endo-arabinanase originated from Aspergillus aculeatus and arabinofuranosidase B 

from Aspergillus niger1. Exo-galactanase was purified from Aspergillus niger]A. The endo-galactanase 

is purified from Pectinex Ultra-SP-L; a technical enzyme preparation derived from Aspergillus 

aculeatus (Novo-Nordisk Ferment (Switzerland) Ltd., Dittingen, Switzerland)15. The amount of 

enzymes used was 0.13 ug protein/ml substrate solution for endo-arabinanase and arabinofuranosidase 

B, 0.5 ug protein/ml substrate solution for exo-galactanase and 0.05 ug protein/ml substrate solution 

for endo-galactanase. 

ISOLATION OF THE POLYMERIC RESIDUE REMAINING AFTER ENZYMATIC DEGRADATION OF 

THE ARABINOGALACTAN SIDE CHAINS FROM SOYBEAN PECTINS 

A 1% ChSS solution (250 mg/25 ml) in 0.05 M sodium acetate buffer (pH 5.0) containing 0.01% NaN3 

was incubated with endo-galactanase, exo-galactanase, endo-arabinanase, and arabinofuranosidase B 

at 30 °C for 48h, rotating 'head over tail'. After incubation the enzymes were inactivated (10 min, 100 

°C) and the supernatant was applied onto a Sephacryl S-100 HR column, which was initially 

equilibrated in 0.05 M sodium acetate buffer pH 5.0, using a Hiload System (Amersham Pharmacia 

Biotech AB, Uppsala, Sweden). Elution was carried out using the same buffer and the elution rate was 

2.5 ml/min. Fractions (10 ml) were collected and assayed by automated methods for neutral sugar 

content16 and uronic acid content". The appropriate fractions were pooled, concentrated, dialysed, 

freeze-dried and analysed for neutral sugar composition and uronic acid content. 

ANALYTICAL METHODS 

Neutral sugar composition was determined by gas chromatography according to Englyst and 

Cummings18, using inositol as an internal standard. The samples were pre-treated with 72% (w/w) 

H2S04 (lh, 30 °C) followed by hydrolysis with 1 M H2S04 for 3h at 100 °C and the constituent sugars 

were analysed as their alditol acetates. 

Uronic acid content was determined by the automated colorimetric m-hydroxydiphenyl assay17'1 using 

an auto-analyser (Skalar Analytical BV, Breda, The Netherlands). Corrections were made for 

interference by neutral sugars present in the sample as measured by the orcinol-sulfuric acid method . 

High-Performance Size-Exclusion Chromatography (HPSEC) was performed on a SP8800 HPLC 

(Spectra Physics, San Jose, CA, USA) equipped with three columns (each 300 x 7.5 mm) of Bio-Gel 

TSK in series (60XL, 40XL and 30XL; Bio-Rad Labs., Richmond, CA USA) in combination with a 
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TSK guard column (40 x 6 mm) and elution at 30 °C with 0.4 M sodium acetate buffer pH 3.0 at 0.8 

ml/min. Calibration was performed using dextrans. The eluate was monitored using a Shodex SE-61 

Refractive Index detector (Showa Denko K.K., Tokyo, Japan). 

High-Performance Anion-Exchange Chromatography (HPAEC) was performed on a Dionex Bio-LC 

system (Sunnyvale, CA, USA)20. The gradient was obtained by mixing solutions of 0.1 M NaOH and 1 

M sodium acetate in 0.1 M NaOH. 

For the determination of arabinogalactan oligomers, the (4 x 250 mm) CarboPac PA100 

column (Dionex) was equilibrated with 0.1 M NaOH. Twenty ul of the sample was injected and a 

linear gradient to 0.4 M sodium acetate in 0.1 M NaOH in 40 min was applied. The column was 

washed for 5 min with 1 M sodium acetate in 0.1 M NaOH and equilibrated again for 15 min with 0.1 

M NaOH. Calibration was performed with standard solutions of arabinose, galactose and a series of 

arabinan oligomers. 

RESULTS AND DISCUSSION 

DEGRADATION OF SOYBEAN POLYSACCHARIDES WITH CLONED ENZYMES 

A first screening of the degradability of soybean meal, WUS and extracts thereof was 

performed with cloned enzymes, because purified enzymes are available in only very small 

amounts. Incubation is performed with endo-galactanase, endo-arabinanase, RG hydrolase, a 

combination of RG hydrolase and RGAE or a combination of PG-1 and PE. Since RG 

hydrolase is hindered by the presence of O-acetyl groups21 RGAE was added to remove these 

groups. Similar reasons underlie the addition of PE to PG-1, to remove methylester groups. 

Hydrolysis by PG-1 preferably takes place next to a free carboxyl group and PE is able to 

remove the methoxyl groups from methylated galacturonic acid residues. 

Table 3.1. Sugar composition of soybean polysaccharides fractions expressed as mol%. 

Sugar composition 
Fraction 

WUS 

ChSS 

Polymeric residue (P) 

rha 

2 

2 

6 

fuc 

3 

3 

7 

ara 

19 

25 

4 

xyl 

8 

6 

18 

man 

2 

1 

2 

gal 

29 

37 

12 

glc 

21 

1 

1 

galA 

17 

26 

50 

Carb 

89.3 

52.7 

69.7 
a Expressed as % w/w 

The digests obtained from soybean meal and WUS contained some arabinose and 

galactose, probably because of side-activities in the enzyme preparations. Endo-arabinanase 
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was able to solubilise an amount of arabinan oligomers, which was relatively small 

considering the high arabinose content (Table 3.1). Although the sugar composition of 

soybean WUS indicates the presence of rhamnogalacturonan regions, RG hydrolase - whether 

combined with RGAE or not - did not release the characteristic RGase oligomers described by 

Schols et al.2 . The combination of PG-1 and PE was able to release some galacturonic acid 

monomers in addition to the neutral sugar residues, but did not release galacturonan oligomers 

in spite of the high galacturonic acid content of the WUS. Analysis with HPSEC showed that 

none of these enzyme preparations were able to solubilise polysaccharides from both the 

soybean meal and WUS (elution patterns are not shown). So none of these enzymes were able 

to degrade the cell wall as present in soybean meal and soybean WUS, only some small 

neutral degradation products and some galacturonic acid residues were released. The network 

of the cell wall polysaccharides present in soybean appears to be too complex or too dense to 

be penetrated by the applied enzymes. Removal of the protein, which accounts for about 60% 

of the soybean meal, from the cell wall material did not increase the susceptibility of the 

polysaccharides for enzymatic degradation, as the degradability of the WUS is not improved 

compared to the degradability of the soybean meal. 

Disruption of this cell wall polysaccharide network by sequential extraction can 

possibly increase the degradability by enzymes. Therefore, the degradability of the pectin-rich 

extracts - ChSS, DASS and 1 MASS - from soybean WUS was determined by incubation of 

the extracts with the cloned enzymes mentioned previously. 

Analyses of the digests with HPSEC (only the digests of ChSS are shown in Figure 

3.1) exhibit large decreases of the molecular weight of the polysaccharides in these extracts, 

except for the PG-1 and PE digests of ChSS and DASS. HPAEC analyses of the digests show 

the release of galactose and arabinose monomers in addition to small amounts of arabinan, 

galactan and arabinogalactan oligomers. RG hydrolase and PG-1 are also able to release 

galacturonic acid residues. The amounts and diversity of oligomers formed with the various 

enzyme preparations and from the three substrates are different. 

Extraction of the pectic polysaccharides did indeed increase their degradability, 

although this mainly concerned the degradability of the (arabino)galactan side chains. All the 

enzymes used seem only to be able to degrade part of the (arabino)galactan side chains 

present in the pectin-rich extracts from soybean WUS. RG hydrolase and PG-1 preparations, 

which are theoretically able to degrade the pectin backbone, do not release their typical 

degradation products. The only degradation detected is that of the (arabino)galactan side 

chains because of side activities of the preparation. Even after enzymatic removal of O-acetyl 

and methoxyl groups from the uronic acid residues, degradation of the pectin backbone could 

not be determined. 

These results indicate that soybean pectic polysaccharides differ from pectic 

polysaccharides from other sources in that they are not degraded by the enzymes as used in 

this experiment. The fact that the backbone could not be degraded indicates that the 
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galacturonic acid residues are presumably highly substituted or that they are not present in 

extended galacturonan chains. 

18 23 28 33 
Retention time (min) 

8. 
to 
<L> 

2 J 
B 

1 1 
18 23 28 33 

Retention time (min) 

75000 25000 7500 2500 

Mw (Da) 

75000 25000 7500 2500 

Mw (Da) 

Figure 3.1. HPSEC elution patterns of the soybean ChSS fraction after incubation with cloned 

enzymes for 24h. A: (a) before; and (b) after incubation with endo-galactanase; (c) endo-arabinanase; 

(d) RG hydrolase and RGAE. B: (a) before; and (b) after incubation with PG-1 and PE. 

Screening of the degradability of soybean polysaccharides as described previously was 

performed with cloned enzymes. However, these enzyme preparations still contain some side-

activities. Therefore we continued our studies on the characterisation of the cell wall 

polysaccharides with highly purified enzymes. They allow better conclusions about which 

parts of the polysaccharides are degraded. The next step in the characterisation of the 

polysaccharides will use these purified enzymes to investigate which parts of the 

polysaccharides in the pectin-rich ChSS fraction are degraded, to determine which 

degradation products are formed, and to obtain the part of the polymers which is not 

degraded. 

DEGRADATION OF THE C H S S FRACTION WITH (COMBINATIONS OF) ARABINAN/GALACTAN 

DEGRADING ENZYMES 

The galacturonic acid-rich ChSS fraction is rich in arabinose and galactose residues (Table 

3.1). This indicates the presence of pectins with a considerable amount of arabinan, galactan 

or arabinogalactan side chains. Incubation with enzymes, able to (partially) degrade these side 
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chains, can provide information about their structure. Therefore incubations with endo-
galactanase, exo-galactanase, endo-arabinanase, and arabinofuranosidase B are performed. 

First, the ChSS fraction was incubated with all enzymes separately. The elution 
patterns of the endo-galactanase digest and of the endo-arabinanase digest (24h incubation) 
after HPSEC and HPAEC are shown in Figures 3.2(A) and 3.3(A). In addition, incubations 
with combinations of the enzymes were performed, both simultaneously and subsequently 
after inactivation of the first enzyme. Figures 3.2(B),(C) and 3.3(B),(C), show only the elution 
patterns of the most interesting digests, because a number of digests are (almost) identical. 

The molecular weight distributions shown in Figure 3.2(A) demonstrate that endo-
galactanase is the only tested enzyme which is able to reduce the hydrodynamic volume of the 
polymers. Endo-galactanase causes a small shift of the molecular weight and a simultaneous 
decrease of the amount of polymeric material (70% of the original area of the high molecular 
weight peak remains after 90 min and 65% after 24h). A small peak of intermediate molecular 
weight with a retention time of 26 min is formed after 90 min of incubation (not shown). 
These rather large degradation products are further degraded after prolonged incubation 
(Figure 3.2(Ab)). Since endo-galactanase is only able to degrade the (arabino)galactan side 
chains of the pectins in the ChSS fraction, the release of the intermediate products indicates 
that these side chains can be of considerable length. Endo-arabinanase is not able to cause any 
change in the molecular weight distribution of the ChSS fraction. Van de Vis 22 also found 
that endo-arabinanases showed very little activity on soybean arabinogalactan. Exo-
galactanase and arabinofuranosidase B (not shown), do not influence the HPSEC elution 
pattern. Although the exo-enzymes do release monomelic sugar residues from the 
polysaccharide, the effect of these enzymes on the hydrodynamic volume of heterogeneous 
polysaccharides is usually negligible. 

To determine whether the presence of branches on the galactan chain influence the 
degradation by endo-galactanase, the ChSS fraction was incubated with combinations of 
endo- and exo-galactanase and of endo-galactanase and arabinofuranosidase B. Combined 
action of endo-galactanase and exo-galactanase, both simultaneously (Figure 3.2(Bb)) and 
subsequently (not shown), brings about a shift in the molecular weight distribution which is 
identical to the action of endo-galactanase alone. The amount of remaining polymeric material 
decreased further to 60% of the polymers in the ChSS blank, suggesting that exo-galactanase 
is able to release galactose from the polymers, and enhances endo-galactanase action. This 
additional degradation does not effect the hydrodynamic volume of the remaining polymers. 
Incubation of the ChSS fraction with the combination of endo-galactanase and 
arabinofuranosidase B causes a shift to lower molecular weight, which is slightly larger than 
the shift caused by endo-galactanase alone (Figure 3.2(Bd)). The amount of the remaining 
polymer in the digest is also a little smaller, approximately 60% of the polymers in the blank. 
The resulting elution pattern is quite similar to the profile of the digest obtained by endo- and 
exo-galactanase. The sequence in which the enzymes are added to the ChSS fraction does not 
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influence the HPSEC elution pattern, suggesting that arabinofuranosidase B is able to remove 
arabinofuranosyl groups from arabinogalactan side chains, but this does not increase the 
susceptibility of these chains for endo-galactanase. 

Labavitch et al.6 demonstrated that rather large arabinan chains are present in a 
fraction from soybean meal, which are expected to be degraded by endo-arabinanase. The 
absence of a shift in the molecular weight distribution in Figure 3.2(Ac) and the absence of 
large amounts of arabinan oligomers in Figure 3.3(Ab) shows that endo-arabinanase alone is 
not able to degrade the arabinan chains of the ChSS fraction. A linear (l,5)-a-L-arabinan is a 
better substrate for endo-arabinanase than a branched arabinan, and since the degree of 
branching of pectic arabinans from various plant tissues is found to be relatively high23, it 
might be necessary to linearise the arabinan chain before degradation by endo-arabinanase 
can take place. To rule out the hindrance of arabinofuranosyl side chains, the ChSS fraction 
was incubated with endo-arabinanase and arabinofuranosidase B, simultaneously. However, 
this also did not result in a change of the molecular weight distribution of ChSS (Figure 
3.2(Bc)). 

The combination of endo-galactanase, exo-galactanase, endo-arabinanase, and 
arabinofuranosidase B is very effective in degrading the ChSS fraction. This digest shows the 
largest decrease of the hydrodynamic volume and the smallest peak of remaining polymeric 
material (Figure 3.2(Cb)). About 45% of polymeric material remained. Arabinose and 
galactose represent over 60 mol% of the polysaccharides in the ChSS fraction (Table 3.1). 
This indicates that this combination of enzymes can remove almost all arabinogalactan side 
chains and that the enzymes act in synergism, because the total effect of the combination of 
enzymes is greater than the sum of the individual effects. 

The HPAEC elution patterns of the digests obtained after incubation of the ChSS fraction 
with endo-galactanase, endo-arabinanase and arabinofuranosidase B is shown in Figure 
3.3(A). Degradation with endo-galactanase releases relatively large (arabino)galactan 
oligomers, and after incubation for 90 min, the main oligomer seems to be a tetraose (not 
shown). After prolonged incubation (24h), this series of oligomers is further degraded by the 
endo-galactanase to mainly mono, di and trimers (Figure 3.3(Aa)). Endo-arabinanase was not 
able to degrade the ChSS fraction (Figure 3.3(Ab)), the digest contains very few oligomeric 
degradation products. Exo-galactanase releases galactose monomers, as expected (not shown), 
although it could not be concluded whether the galactose residues were released from the non-
reducing end of galactan chains or from galactose branches. Arabinofuranosidase B releases 
mainly arabinose monomers and some arabinan oligomers from the ChSS fraction (Figure 
3.3(Ac)). 

When endo-galactanase is combined with exo-galactanase (Figure 3.3(Ba)), the 
amount of galactose increases compared with the amount of galactose in the endo-galactanase 
digest. 
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The elution patterns show a decrease of the amount of galactan and/or arabinogalactan 
oligomers, although some larger oligomers seem still to be present in the digest. The 
oligomers formed by endo-galactanase are probably further degraded by the exo-galactanase 
activity. The endo-galactanase and arabinofuranosidase B digest of the ChSS fraction (not 
shown) contains the same oligomers as the endo-galactanase digest. The amount of arabinose 
monomers is much higher than in the endo-galactanase digest and identical to the amount of 
arabinose monomers in the arabinofuranosidase B digest. Thus, arabinofuranosidase B 
appears to be unable to further degrade the oligomers formed by endo-galactanase; the 
enzyme is only able to release arabinose residues from the arabinans present in the polymeric 
material. 

Combined action of endo-arabinanase and arabinofuranosidase B releases a 
considerable amount of arabinose residues and small amounts of arabinose oligomers, 
oligomers with a degree of polymerisation up to 5 can be detected in Figure 3.3(Bb). 
Rombouts et a/.13 and Beldman et al23 showed that arabinofuranosidase B releases arabinose 
as the sole product, resulting in linearised arabinan chains, which are better substrates for the 
endo-enzyme. The release of larger arabinan oligomers may have taken place, but the 
arabinofuranosidase B present in the incubation mixture is able to degrade these oligomers. 
This synergism between endo-arabinanase and arabinofuranosidase B on soybean 
polysaccharides was also found by van de Vis22. 

The combination of endo-galactanase, exo-galactanase, endo-arabinanase, and 
arabinofuranosidase B, which showed the largest decrease of the molecular weight and the 
smallest peak of remaining polymeric material in the HPSEC elution pattern, shows the 
release of high amounts of arabinose and galactose residues and a large number of different 
oligosaccharides: arabinan oligomers, galactan oligomers as well as arabinogalactan 
oligomers (Figure 3.3(C)). 

Enzymatic degradation of the neutral side chains of soybean pectin shows that these 
side chains can be of considerable length. Combined action of endo-galactanase, endo-
arabinanase, exo-galactanase, and arabinofuranosidase B is required to remove the larger part 
of these side chains and this indicates that arabinogalactan side chains are present in addition 
to arabinan and galactan side chains. 

CHARACTERISATION OF THE RESIDUAL POLYSACCHARIDE AFTER REMOVAL OF THE 

ARABINOGALACTAN SIDE CHAINS FROM SOYBEAN CHSS 

The incubation of the ChSS fraction with endo-galactanase, exo-galactanase, endo-
arabinanase, and arabinofuranosidase B is performed on larger scale to enable isolation and 
further characterisation of the remaining polymeric residue. The elution pattern of the 
Sephacryl S-100 HR column shows two peaks; the first peak originates from the remaining 
polymeric part of the pectin (P) and the second from the oligomeric degradation products 
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(Figure 3.4). This polymeric residue yields 30% of the polysaccharides present in the ChSS 

fraction, representing 12% of the polysaccharides present in soybean WUS. 

1800 

100 200 300 400 

Elution volume (ml) 

500 600 

Figure 3.4. Elution profile of the digest of soybean ChSS, after incubation with endo-

galactanase, exo-galactanase, endo-arabinanase, and arabinofuranosidase B, on Sephacryl S-

100 HR. Uronic acid concentration (—), neutral sugar concentration (—). 

Table 3.1 shows the sugar composition of the polymeric residue (P) and allows 
comparison with the sugar compositions of the WUS and the ChSS fraction from which it 
originates. The combined activities of the enzymes used were able to remove almost all 
arabinose, only 7% of the arabinose present in the ChSS fraction remained. The amount of 
remaining galactose residues was higher and represents 12% of the galactose present in the 
ChSS fraction before degradation. Additional incubation of a small sample of residue (P) with 
the same set of enzymes was performed to determine if more arabinose and galactose residues 
could be removed with an excess of enzymes. Both, HPSEC and HPAEC analysis of the 
digest, did not show any change of the molecular weight distribution or the release of any 
degradation product, so further removal of the arabinogalactan side chains was not possible 
using these enzymes. 

The main constituent sugar of the polymeric residue P was uronic acid (50 mol%). 
Striking is the presence of 18 mol% xylose, which may indicate the presence of a 
xylogalacturonan. Preliminary results obtained in enzymatic degradation of this polymeric 
residue after acid hydrolysis with an exo-galacturonase showed the release of the 
characteristic dimer of xylose and galacturonic acid, thus, confirming the presence of a 
xylogalacturonan. In addition, the polymer contains 6 mol% rhamnose, which is very likely to 
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be present in rhamnogalacturonan regions in the remaining pectin. In the ChSS fraction, on 
average 36% of the uronic acid residues carry an acetic acid group and 35% carries a 
methoxyl group. The degree of methylation and acetylation in the polymeric residue P could 
not be determined, because the available amount of this polymer was too small. However, the 
acetyl and methoxyl substituents are probably still present in the remaining polymer, because 
the incubation and isolation conditions are not likely to have removed any of these groups. 
Thus, the polymeric residue (P) of ChSS appears to be a highly substituted pectic structure. 

CONCLUSIONS 

It appears that rather pure cloned enzymes, having only one major activity, can not or hardly 
degrade the polysaccharides in the intact soybean cell wall. Previous research showed purified 
enzymes also to be rather limited in the degradation of soybean cell wall material25. Even 
incubation with very powerful commercial enzyme mixtures did not lead to the degradation of 
the intact cell wall polysaccharides. However, polysaccharides extracted from soybean WUS 
can be degraded by enzymes more easily. Extraction of part of the polysaccharides from the 
cell wall network might enlarge the pores present in this network and enable enzymes to 
penetrate and reach the available hydrolysis sites. This indicates that it is necessary to disrupt 
the network of the cell wall polysaccharides to enable the enzymes to degrade them. Still, it is 
not yet clear whether the proper enzymes are missing or that the inaccessibility of the 
substrate is the main reason. 

The combination of endo-galactanase, exo-galactanase, endo-arabinanase, and 
arabinofuranosidase B is very effective in degrading the arabinogalactan side chains in the 
ChSS fraction. Analysis of the degradation products and the observed synergistic action of 
some enzyme combinations indicate that rather large branched arabinogalactan side chains are 
present in soybean pectic structures. About 30% of the sugars present in the ChSS fraction are 
recovered as the undegradable remaining polymer (P) in the digest after this incubation. This 
polymer still contains 4 mol% of arabinose and 12 mol% of galactose, which could not be 
removed by these enzymes. This polymer appears to be a very highly substituted pectic 
structure, containing rhamnogalacturonan regions and presumably xylogalacturonan. From an 
unfractionated soybean polysaccharide preparation, various acidic xylose-containing 
oligosaccharides were obtained by partial hydrolysis, by Aspinall et al2b. However, this is the 
first time that indications for the presence of polymeric xylogalacturonan regions in a pectic 
polysaccharide fraction from soybean meal were obtained. The presence of xylogalacturonan 
regions has been indicated in pectins extracted from pea hulls27, apple28, watermelon and 
cotton29. 

Further research will focus on the elucidation of the structure of both the remaining 
polymer (P) and the (arabino)galactan oligomers which are formed after degradation of the 
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soybean ChSS fraction with endo-galactanase, exo-galactanase, endo-arabinanase, and 

arabinofuranosidase B. This will include chromatography techniques, degradation with 

specific enzymes, and MS and NMR analyses. Knowledge of the structures of these 

oligosaccharides and of the mode of action of the enzymes can lead to the elucidation of the 

structure of the (arabino)galactan side chains from soybean cell wall pectin. The structure of 

the other cell wall polysaccharides of soybean will be another topic of investigation. 
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Structural characteristics of pectic substances extracted from soybean meal WUS with a 

CDTA-containing buffer were studied. The arabinogalactans present as side chains to the 

rhamnogalacturonan backbone were largely removed by enzymatic hydrolysis using endo-

galactanase, exo-galactanase, endo-arabinanase, and arabinofuranosidase B. The remaining 

pectic backbone appeared to be resistant to enzymatic degradation by pectolytic enzymes. 

After partial acid hydrolysis of the isolated pectic backbone (fraction P), one oligomeric and 

two polymeric populations were obtained by size-exclusion chromatography. Monosaccharide 

and linkage analyses, enzymatic degradation, and NMR spectroscopy of these populations 

showed that the pectic substances in the original extract contain both rhamnogalacturonan and 

xylogalacturonan regions, while homogalacturonan is absent. 

INTRODUCTION 

Pectic substances are the major group of polysaccharides in the primary cell wall of 

dicotyledonous plants. These pectic substances consist of a number of structurally different 

regions. Pectins from apple consist of highly methyl esterified linear homogalacturonan 

regions which alternate with "hairy" regions that comprise highly branched 

rhamnogalacturonan'. In addition, these hairy regions appeared to contain xylogalacturonan2. 

This concept of the appearance of pectic substances proved to be applicable to pectic 

substances from other sources, like for example cotton suspension-cultured cell walls, 

watermelon3, and pea hulls4'5. However, differences in the relative amounts of the subunits 

may exist. 

Another type of pectic polysaccharide in the plant cell wall is RG-II. RG-II is a small, 

structurally well defined, complex pectic polysaccharide. It consists of a homogalacturonan 

backbone to which side chains, containing rhamnose and several rare "diagnostic" 

monosaccharides, are attached6. 

Studies on the structure of soybean pectic substances go back to 1967. An acidic 

polysaccharide complex was extracted from soybean meal7'8, which showed to possess a 

highly branched structure composed of galacturonic acid, galactose, arabinose, xylose, fucose, 

and rhamnose. The interior chains were found to comprise 4-substituted galacturonic acid and 

2-substituted rhamnose residues, and exterior chains were composed mainly of neutral sugar 

residues. Some of the rhamnose residues were branched at C4, and some galacturonic acid 

residues were branched with xylose residues through C3. Most of the fucose and a substantial 

proportion of the xylose residues were present as non-reducing end groups. These results 

indicated that soybean pectic substances contain both rhamnogalacturonan and 

xylogalacturonan regions. However, only the formulation of partial structures for the soybean 

acidic polysaccharide complex was permitted, because the data were obtained after partial 
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acid hydrolysis. This is an a-specific way of hydrolysis, and resulted in rather small 

fragments. 

In the preceding paper9 we showed that the pectic backbone from CDTA-extractable 

pectins (CDTA, l,2-diaminocyclohexane-Af,Ar,Ar,Ar'-tetraacetic acid) could be isolated after 

enzymatic removal of the arabinogalactan side chains. In this study we report on both the 

enzymatic and acid hydrolysis of the remaining pectic backbone. Furthermore, structural 

analyses of this backbone and fractions thereof will be described. 

EXPERIMENTAL 

MATERIALS 

Water unextractable solids (WUS) were isolated from solvent-extracted, untoasted soybean meal and 

sequentially extracted10. The arabinogalactan side chains from the pectins in the chelating agent 

soluble solids (ChSS) extract were removed by enzymatic degradation and the remaining polymer was 

isolated and designated fraction P9. 

WEAK ACID HYDROLYSIS OF FRACTION P 

A 8 mg/ml solution of fraction P was hydrolysed in 0.1 M HC1 at 80 °C. During hydrolysis samples 

were taken after various time intervals, and the reaction was stopped by neutralisation of the solution 

with an equal amount of 0.1 M NaOH. The hydrolysates were analysed with HPSEC and HPAEC. 

ENZYMATIC DEGRADATION 

Solutions (0.25% (w/w)) of fraction P in 50 mM NaOAc buffer (pH 5.0) containing 0.01% NaN3 were 

incubated with a number of purified enzymes at 30 °C rotating 'head over tail', during 24h. The 

purified enzymes used were endo-galactanase (0.34 |ig protein/ml substrate solution), exo-galactanase 

(0.52 u.g protein/ml substrate solution), PG (0.49 ug protein/ml substrate solution), PL (9.76 ug 

protein/ml substrate solution), RG hydrolase (0.53 ug protein/ml substrate solution), and exo-

galacturonase (1.03 ug protein/ml substrate solution). Endo-galactanase was purified from Aspergillus 

aculeatus". Exo-galactanase was purified from Aspergillus niger'2. Polygalacturonase (PG; E.C. 

3.2.1.15) was purified from Kluyveromyces fragilis"'. Pectin lyase (PL; E.C. 4.2.2.10) was purified 

from Aspergillus niger'4. Rhamnogalacturonan hydrolase (RG hydrolase) was purified from 

Aspergillus aculeatus'5''6. Exo-galacturonase was purified from Aspergillus aculeatus' . 

Solutions (0.5% (w/w)) of fraction P were also incubated with technical multienzyme preparations 

under the conditions described above. The technical enzyme preparations used were Pectinex Ultra-

SP-L derived from Aspergillus aculeatus, Viscozyme derived from Aspergillus aculeatus (Novo-

49 



Chapter 4 

Nordisk Ferment (Switzerland) Ltd., Dittingen, Switzerland), Rapidase liq+ derived from Aspergillus 

niger/Trichoderma sp. (Gist-brocades, Delft, The Netherlands), and Driselase derived from Irpex 

lacteus (Sigma, St Louis, MO, USA). The enzyme preparations were dialysed against 50 mM NaOAc 

buffer (pH 5.0) and diluted 100 times. Fifty (J.1 of the enzyme solution was added to 0.5 ml of the 

substrate solution. 

Solutions (0.1% (w/w)) in 0.05 M NaOAc buffer (pH 5.0) containing 0.01% NaN3 of the 

populations obtained after fractionation of the acid hydrolysate of fraction P (PI, PII and PIIIA) were 

incubated with PG (2.4 u.g protein/ml substrate solution), RG hydrolase (0.18 u.g protein/ml substrate 

solution), and exo-galacturonase (1.03 ug protein/ml substrate solution). In addition, these substrates 

were also incubated with xylogalacturonan hydrolase (XGH; 16 ug protein/ml substrate solution) 

purified from the culture filtrate of Aspergillus tubigensis cDNA library expression cloned in 

Kluyveromyces lactis'* for lh at 30 °C. 

All enzymes were inactivated by heating at 100 °C for 10 min. Polysaccharide-degrading activities 

were determined by HPSEC and HPAEC analyses of the digests. 

NEUTRAL SUGAR COMPOSITION 

The neutral sugar composition was determined by methanolysis combined with TFA hydrolysis'9. 

Samples were first dissolved in distilled water (1 mg/ml). An aliquot of 20 u.1 of this solution was 

dried by a stream of air followed by methanolysis with 0.5 ml anhydrous 2 M HC1 in absolute 

methanol for 16h at 80 °C. After cooling, the liquid was evaporated by a stream of air and 0.5 ml of 2 

M TFA solution was added and heated for lh at 121 °C. The samples were dried and 100 u,l of distilled 

water was added. Analysis of the liberated products was performed using HPAEC. 

URONIC ACID CONTENT 

The uronic acid content was determined by the automated colorimetric m-hydroxydiphenyl assay20'21 

using an auto-analyser (Skalar Analytical BV, Breda, The Netherlands). Corrections were made for 

interference by uronic acids present in the sample as measured by the orcinol-sulfuric acid method22. 

ABSOLUTE CONFIGURATION DETERMINATION 

The absolute configuration of the monosaccharides was performed for ChSS only2*", since all other 

polymers were obtained from this material. The trimethylsilylated 2-butyl glycosides were analysed by 

GLC on a Chrompack CP9002 gas chromatograph, equipped with a CP-Sil 5 CB DFc.25 (Chrompack) 

capillary column (25 m x 0.32 mm), using a temperature program of 140-240 °C at 4 °C/min. 
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METHYLATION ANALYSIS 

Methylation analysis was carried out essentially as described25. Briefly, freshly ground NaOH pellets 

(250 mg) were added to solutions of samples in Me2SO (200 ul). After the material had dissolved, 

samples were cooled to 0 °C and Mel (0.5 ml) was added, followed by sonication at room temperature. 

The reaction was stopped after 45 min by adding aq Na2S203 (1 ml, 100 mg/ml) and CHC13 (1 ml). 

The chloroform layer was washed with water (3 x 0.5 ml), then concentrated. After hydrolysis of the 

residues with 2 M TFA (0.3 ml; 120 °C, lh), samples were dissolved in 0.5 M NH4OH (250 p.1) 

containing NaBD4 (10 mg/ml) and kept for lh, then neutralised with aq 99% HO Ac and concentrated. 

Boric acid was removed by repetitive co-evaporation with 9:1 MeOH-HOAc and MeOH. After 

acetylation with Ac20 (0.5 ml; 120 °C, 3h), quenching with water (0.5 ml), and neutralisation with 

NaHC03, the mixtures of partially methylated alditol acetates were extracted with CH2C12 (3 x 0.5 ml). 

The solutions were concentrated to about 20 jul (N2), and analysed by GLC (see above) and GLC-

EIMS. GLC-EIMS analyses were carried out on a Fisons MD800/8060 system (electron energy, 70 

eV; carrier gas, He) equipped with a DB-1 fused-silica capillary column (30 m x 0.32 mm, J&W 

Scientific). Samples were injected using a split injector (split flow 1/10), and a temperature program of 

140-240 °C at 4 °C/min. 

For the determination of the substitution pattern of galacturonic acid the permethylated polysaccharide 

was reduced with superdeuteride (Aldrich Chemicals, 0.5 ml, 3 h). After quenching with 1:1 MeOH-

H20, desalting (Dowex H+, 2 ml)26, and concentration, the sample was hydrolysed, reduced, acetylated 

and analysed as described above. 

NMR SPECTROSCOPY 

NMR spectroscopy was performed on samples which were deuterium exchanged twice in D20 (99.9 

atom % D, Cambridge Isotope Laboratories, USA) preceding NMR analyses and then dissolved in 

D20 (99.96 atom % D, Isotec, USA). If necessary, the pD of the NMR sample was adjusted to 6.5-7.5. 

1D/2D high resolution NMR spectra were recorded on a Bruker AMX-500 or a AMX-600 

spectrometer (Bijvoet Center, Utrecht University), or a Bruker DRX-600 instrument (NSR Center, 

University of Nijmegen) at a probe temperature of 300, 333, or 353 K. Chemical shifts (5) are 

expressed in ppm relative to external glucose (8 G\cp Hlcc 5.227 and Oct 92.9, in D20 at all 

temperatures). 2D NMR experiments were performed essentially as described27. 

SIZE-EXCLUSION CHROMATOGRAPHY 

The acid hydrolysate of fraction P (40 mg) was applied onto a Sephacryl S-500 HR column (110 x 0.5 

cm), which was initially equilibrated in 0.05 M NaOAc buffer pH 5.0, using a Hiload System 

(Amersham Pharmacia Biotech AB, Uppsala, Sweden). Elution was carried out using the same buffer 

and the elution rate was 0.4 ml/min. Fractions (1.2 ml) were collected and assayed by automated 
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methods for neutral sugar content22 and uronic acid content21. The appropriate fractions were pooled, 

concentrated, dialysed, freeze dried and analysed for neutral sugar composition and uronic acid 

content. 

The low molecular mass material (population PHI) was fractionated further on a Bio-Gel P-2 

column (100 x 2.6 cm; Bio-Rad Labs., Richmond, CA, USA), which was initially equilibrated in 

water at 60 °C using a Hiload System. Elution was carried out using water and the elution rate was 0.5 

ml/min. Fractions (7.5 ml) were collected and assayed as described above for the Sephacryl S-500 HR 

fractions. 

HIGH-PERFORMANCE SIZE-EXCLUSION CHROMATOGRAPHY (HPSEC) 

HPSEC was performed on a SP8800 HPLC (ThermoQuest Corporation, San Jose, CA, USA) equipped 

with three columns (each 300 x 7.5 mm) of Bio-Gel TSK in series (40XL, 30XL and 20XL; Bio-Rad 

Labs., Richmond, CA USA) in combination with a TSK guard column (40 x 6 mm) and elution at 30 

°C with 0.4 M NaOAc buffer pH 3.0 at 0.8 ml/min. Calibration was performed using pectins in the 

range 10-82 kDa. The eluate was monitored using a Shodex SE-61 Refractive Index detector (Showa 

Denko K.K., Tokyo, Japan). 

HIGH-PERFORMANCE ANION-EXCHANGE CHROMATOGRAPHY (HPAEC) 

HPAEC was performed on a Dionex Bio-LC system (Sunnyvale, CA, USA)28 using a (4 x 250 mm) 

CarboPac PA1 column (Dionex). Twenty-ul aliquots were injected and the gradient was obtained by 

mixing solutions of 100 mM NaOH, 1 MNaOAc in 0.1 M NaOH, and distilled water, at a flow rate of 

1 ml/min. Different gradients were used for the sugar composition after methanolysis combined with 

TFA hydrolysis, the release of monomers during acid hydrolysis19, rhamnogalacturonan oligomers29, 

and XGH digests'8. 

For the determination of galacturonan oligomers, the column was equilibrated with 0.2 M NaOAc in 

0.1 M NaOH. Elution was performed with a linear gradient to 0.6 M NaOAc in 0.1 M NaOH in 35 min, 

and a linear gradient to 1 M NaOAc in 0.1 M NaOH in 5 min. The column was washed for 5 min with 

1 M NaOAc in 0.1 M NaOH, and equilibrated again for 15 min with 0.2 M NaOAc in 0.1 M NaOH. 

Exo-galacturonase digests were analysed by equilibrating the column with 0.1 M NaOH. Elution was 

performed with a linear gradient to 0.31 M NaOAc in 0.1 M NaOH in 25 min, and a linear gradient to 1 

M NaOAc in 0.1 M NaOH in 5 min. The column was washed for 5 min with 1 M NaOAc in 0.1 M 

NaOH, and equilibrated again for 15 min with 0.1 M NaOH. 
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RESULTS AND DISCUSSION 

Fraction P is the polymeric residue, remaining after enzymatic removal of the arabinose and 

galactose-containing side chains from soybean ChSS. The sugar composition of both ChSS 

and fraction P are presented in Table 4.1. Determination of the absolute configuration of the 

starting material ChSS reveals the presence of L-arabinose, L-fucose, D-galactose, D-

galacturonic acid, L-rhamnose, and D-xylose. Fraction P yields 30% of the polysaccharides 

present in the ChSS extract, and represents 12% of the polysaccharides present in soybean 

WUS. The residual amount of arabinose plus galactose in fraction P represents 8% of the 

amount in the ChSS extract. Thus, the side chains containing arabinose and galactose are 

largely removed. Based on the general structural features of pectic substances, the sugar 

composition of fraction P indicated that it contains very highly substituted pectic structures, 

amongst which are rhamnogalacturonan and presumably xylogalacturonan regions9. Further 

characterisation of fraction P is performed by enzymatic degradation studies. 

Table 4.1. Monosaccharide composition of soybean polysaccharide fractions expressed as mol%. 

Fraction 

ChSS 

P 

PI 

PII 

PIIIA 

Rha 

4 

11 

9 

16 

24 

Fuc 

4 

9 

tr 

3 

3 

Ara 

25 

7 

2 

0 

2 

Xyl 

7 

18 

26 

20 

12 

Gal 

40 

12 

6 

9 

13 

GalA 

21 

43 

58 

55 

46 

tr, trace amount 

ENZYMATIC DEGRADATION OF FRACTION P 

The galactose content in fraction P (12 mol%, Table 4.1) is high and represents 12% of the 

galactose present in the ChSS extract before degradation of the pectic arabinogalactan side 

chains. Re-incubation of fraction P with endo-galactanase and exo-galactanase did not show a 

further release of galactose. 

Galacturonic acid represents 43 mol% of the constituent sugars of fraction P. Both PG 

and PL could not bring about changes in the molecular mass distribution of the polymers in 

this fraction and galacturonic acid oligomers could not be detected in the HPAEC elution 

patterns. Saponification of the methyl esters with 0.1 M NaOH did not enable the degradation 

byPG. 

The presence of rhamnose residues (11 mol%) in fraction P suggests the presence of 

rhamnogalacturonan regions. The enzyme RG hydrolase is able to cleave 
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galactopyranosyluronic acid-rhamnopyranosyl linkages within the rhamnogalacturonan 

backbone when acetyl esters on C2 and/or C3 on the galacturonic acid residues are absent and 

the rhamnose residue is unbranched or substituted through C4 with a single galactose 

residue28. Only after saponification of fraction P, the HPAEC elution pattern of the digest 

shows the release of small amounts of rhamnogalacturonan oligomers. HPSEC however, does 

not show changes in the elution pattern in the polymeric region, irrespective of saponification. 

Thus, acetyl-containing rhamnogalacturonan regions occur in the extremities of fraction P and 

become susceptible for RG hydrolase after saponification. 

Table 4.2. Linkage analysis of soybean polysaccharide fractions.2 

Glycosyl residue D 

t-Ara/ 

5-Ara/ 

2,5-Ara/ 

3,5-Ara/ 

t-Fucp 

t-Galp 

4-Galp 

4,6-Galp 

2,3,4,6-Gal/7 

t-Rhap 

2-Rhap 

2,4-Rhap 

t-Xylp 

2-Xy\p 

4-Xylp 

2,3-Xyl/? 

ChSS 

13 

11 

2 

3 

4 

4 

49 

1 

1 

-
1 

2 

3 

4 

1 

1 

P 

4 

6 

tr 

tr 

12 

19 

7 

tr 

9 

-

10 

6 

13 

10 

1 

3 

PI 

17 

-

-

-

tr 

1 

5 

-
65 

-
1 

1 

10 

-

tr 

-

PII 

-

-

-

-

-
12 

6 

-
12 

-
32 

12 

26 

-

-

-

PIIIA 

tr 

-

-

-

tr 

34 

17 

-

tr 

8 

8 

17 

8 

8 

-

-

a Expressed as relative peak areas of corresponding partially methylated alditol acetates; 

Galacturonic acid is determined in separate experiments, which revealed the presence of t-GalpA in 

ChSS, P, and PI, 4-GalpA in every polysaccharide fraction, 3,4-GalpA in ChSS, P, PI, and PII; 

tr, trace amount; -, not detected. 
b Numbers preceding residues indicate positions of attachment of other glycosyl residues in the intact 

polysaccharide (e.g. 5-Ara/= 5-substituted arabinofuranose); 

t, nonreducing terminal residue. 

54 



Chapter 4 

The high xylose content (18 mol%) suggests the presence of xylogalacturonan regions 
in fraction P. Linkage analysis shows that part of the galacturonic acid residues is branched at 
C3, and that most of the xylose is non-reducing terminal xylose (Table 4.2). Single unit side 
chains of xylose do not hinder exo-galacturonase and this enzyme should be able to release 
galacturonic acid residues and xylosyl galacturonic acid dimers (P-Xyl/>-(l-»3)-Gal;?A) from 
the polymer 7. The HPAEC elution pattern shows the release of small amounts of galacturonic 
acid and the characteristic xylosyl galacturonic acid dimer by exo-galacturonase, particularly 
after alkaline saponification. However, the HPSEC elution pattern does not show changes. 
This is explained by the fact that exo-galacturonase is an exo-enzyme and therefore not able 
to change the hydrodynamic volume of polymers to a large extent. This is in agreement with 
Beldman et al.17, who were also able to release the xylosyl galacturonic acid dimer (p-Xyl/?-
(1—»3)-Galjt?A) from a soluble pectic polysaccharide from soy (SPS)30 using exo-
galacturonase. Approximately 0.7% of the galacturonic acid present in fraction P is released 
from the non-reducing chain end by exo-galacturonase. After saponification, there was an 
increase of the amount of galacturonic acid released (x 4.5) to 3.6%. 

None of the enzymes used in these experiments were able to cause a large shift in the 
molecular mass distribution of the pectic structures in fraction P. To check if there are any 
enzymes at all which are able to degrade fraction P, some technical multienzyme preparations 
were tested. Ultra SP-L and Viscozyme are able to remove an additional amount of galactose 
from fraction P, which was not removed by purified endo-galactanase and exo-galactanase. 
Presumably, these enzyme preparations contain a very specific galactose-releasing enzyme or 
accessory enzymes enabling other enzymes (such as endo-galactanase, exo-galactanase, or 
galactosidase) to act. However, none of the enzymes in Pectinex Ultra-SP-L, Viscozyme, 
Rapidase liq+, and Driselase was able to degrade the pectic backbone of CDTA-extractable 
soybean pectins. 

WEAK ACID HYDROLYSIS OF FRACTION P 

Since enzymatic degradation of fraction P was not possible with the available enzymes, the 
polymers were degraded by weak acid hydrolysis. During acid-catalysed hydrolysis of 
glycosides, linkages between two uronic acids or between an uronic acid and a neutral sugar 
are more stable than linkages between two neutral sugars5'. These differences in susceptibility 
of the glycosidic linkages to acid hydrolysis were used to remove the (neutral) side chains as 
much as possible without seriously degrading the pectic backbone. Very weak hydrolysis 
conditions were used, 0.1 M HC1, 80 °C. Acid hydrolysis of demethylated pectins (apple, 
beet, and citrus) under these conditions showed that neutral side chains were rapidly split 
off32. The hydrolysis of fraction P with HC1 was followed in time by analysis of the 
hydrolysates using HPSEC and HPAEC. 
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Figure 4.1. Release of sugar residues during acid hydrolysis of fraction P as followed with HPAEC 

analysis. 

The HPAEC elution patterns show a rapid release of arabinose, fucose, galactose and 

xylose from fraction P during acid hydrolysis. In figure 4.1 the amounts of specific, 

monomeric sugar residues are shown as a percentage of the amount of this residue originally 

present in the polymer that is released during acid hydrolysis. The amount of arabinose 

released exceeds 100%. This unrealistic number is caused by comparing sugar compositions 

determined in two different ways, as the sugar composition of fraction P was determined by 

gas chromatography33. Galacturonic acid residues were not released during the first 8h of 

hydrolysis, and after 24h still only 1% of the galacturonic acid residues was released as 

monomers. 
Line a in Figure 4.2 represents two populations containing high molecular mass 

polymers. The first population probably originates from aggregation, which results in 
accumulation of molecules in the void volume. These aggregates are not observed at low 
concentrations of P. The increase of the total RJ-area after hydrolysis was caused by the 
solubilisation of polymers that were not completely soluble in 0.1 M HC1 without heat 
treatment. The intensity of the peak of high molecular mass material decreases during acid 
hydrolysis and the formation of degradation products can be observed in the HPSEC elution 
patterns. The largest shift of the molecular mass distribution occurs between 8 and 24h of 
hydrolysis (Figure 4.2, lines e and f). Prolonged acid hydrolysis causes almost complete 
degradation of the high molecular mass polymers, including degradation of the pectic 
backbone (Figure 4.2, line f). 
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a o a. 

2 

Retention time (min) 

Figure 4.2. HPSEC elution patterns of fraction P during acid hydrolysis; (a) blank, after (b) lh, (c) 

2h, (d) 4h, (e) 8h, and (f) 24h of acid hydrolysis. 

It appears that the pectic backbone is hardly affected during the first 8h of acid 

hydrolysis. The elution pattern of this hydrolysate still shows a peak with high molecular 

mass (retention time 22.5 min; molecular mass > 82 kDa), a peak representing material with 

an intermediate molecular mass (retention time 27.1 min; molecular mass » 11 kDa) and some 

oligomers (Figure 4.2, line e). The ratio of the areas under these peaks is 4:6:1. 

Characterisation of the polymeric residue after 8h of hydrolysis can provide information about 

the structure of fraction P, and consequently about the structure of the CDTA-extractable 

pectins. 

FRACTIONATION OF THE ACID HYDROLYSATE OF FRACTION P 

Fraction P was hydrolysed with 0.1 M HC1 for 8h on a large scale and the hydrolysate 

fractionated by size-exclusion chromatography. The elution profile (Figure 4.3) shows three 

populations. In the first two populations galacturonic acid prevails, whereas in the third 

population, containing low-molecular-mass degradation products, neutral sugars predominate. 

The recovery of the hydrolysate after fractionation on Sephacryl S-500 HR is almost 100%. 

The desalting and further fractionation of the third population (PHI) was performed by 

Bio-Gel P-2 chromatography. The elution profile (Figure 4.4) shows a peak eluting in the 
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void volume of the column (PIIIA), containing oligomeric pectic material with a ratio of 

neutral sugars to galacturonic acid of 1:2.1. The second population (PIIIB) contains neutral 

sugars only. 

400 

£ 300 t 
a. 

40 50 60 70 80 

Elution volume (ml) 

90 100 

Figure 4.3. Elution profile of the acid hydrolysate of fraction P on Sephacryl S-500 HR. Uronic acid 

concentration ( ), neutral sugar concentration ( ). 

100 200 300 400 

Elution volume (ml) 

500 

Figure 4.4. Elution profile of fraction PHI on Bio-Gel P-2. Uronic acid concentration ( ), neutral 

sugar concentration ( ). 
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CHARACTERISATION OF THE POPULATIONS OF THE ACID HYDROLYSATE 

The sugar compositions of the parental fraction and the populations obtained after enzymatic 
and acid hydrolysis are shown in Table 4.1. The ratio neutral sugars to galacturonic acid in the 
ChSS extract is relatively high (3.8:1), because all the arabinogalactan side chains of the 
pectins are still present. Fraction P still contains a large amount of neutral sugars (ratio is 
1.4:1), although the major part of the arabinose and galactose residues was removed by 
enzymatic digestion. Acid hydrolysis causes a further decrease of the relative amounts of 
neutral sugars in PI, PII and PIIIA. 

The high xylose content in fraction PI (26 mol%), which is terminally-linked (Table 
4.2), suggests the presence of xylogalacturonan regions. The PI population has the highest 
ratio of xylose to galacturonic acid (1:2.2), similar to the value determined in fraction P 
(1:2.3), in spite of the fact that part of the xylose is removed during acid hydrolysis. 
Rhamnogalacturonan regions are indicated by the presence of rhamnose (9 mol%), which is 
both 2- and 2,4-linked (Table 4.2). The presence of these two structural units is also suggested 
in the PII population by the high xylose and rhamnose contents (20 and 16 mol%, 
respectively), and the occurrence of the same linkages (Table 4.2) as in the PI population. 

Population PIIIA contains only small pectic fragments, as can be concluded from the 
elution behaviour on size-exclusion chromatography. The high rhamnose content in fraction 
PIIIA (24 mol%) and the galacturonic acid content (46 mol%) suggest that this population is 
very rich in rhamnogalacturonan structures, substituted with (arabino)galactan side chains. 
These structures exceed 63% of this population. The ratio of arabinose plus galactose to 
rhamnose is 1:1.6; therefore not all the rhamnose residues are substituted with neutral sugar 
residues. This population may contain some xylogalacturonan sequences, as indicated by the 
presence of 12 mol% xylose. 

Generally, NMR analysis of small fragments is easier than of polymers. Due to the 
presence of a dominating non-carbohydrate contaminant in the minor fraction PIIIA, being 
available in low amounts only, this fraction was not analysed by NMR spectroscopy. As the 
signals in the ID *H NMR spectrum of PI are broader than in that of PII, the latter will be 
described first. Fraction PII was converted into its acidic form by treatment with Dowex H+ 

yielding fraction PII-H. Inspection of the ID ]H NMR spectra of PII and PII-H (data not 
shown) showed a better resolution for PII-H. The absence of a methyl-ester signal of 
galacturonic acid ('H, 6 3.85/3.83; 13C, 5 53.4) in the HSQC spectrum of PII-H (Figure 4.5C) 
indicated de-esterification during the Dowex H+ treatment. In view of the quality of the NMR 
spectra, fraction PII-H was chosen for a detailed structural analysis. 

The anomeric region (8 4.5-5.5) in the ID 'H NMR spectrum of PII-H (Figure 
4.5A) shows several Hloc and Hip signals. Using TOCSY (Figure 4.5B) measurements and 
HSQC (Figure 4.5C) and HMBC experiments, most of the 'H and 13C signals could be 
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Figure 4.5. ID 'H NMR spectrum (A), TOCSY spectrum, mixing time 124 ms (B), and HSQC 

spectrum (C) of PII-H, recorded at 600 MHz and 333 K. Peak labels in A represent different residues, 

which are explained in the text. For an overview, see Tables 4.5 and 4.6. B 2 means a cross-peak 

between H2 and C2 of residue B. Xylose H5 equatorial and axial are indicated with eq and ax, 

respectively. Not assigned to a methyl ester as the chemical shift is too low (8 50 instead of 53.4). 
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Table 4.3. 'H Chemical shifts of PII-H, recorded at 333 K 

Residue 

Fuc A 

Rha B 

C 

GalA D 

E 

F 

G 

H 

Gal I 

J 

Xyl K 

L 

Type 

oc-Fuc-(l-> 

->2,4)-a-Rha-(l-> 

->2)-a-Rha-(l-» 

->3,4)-a-GalA-(l-> 

->3,4)-oc-GalA-(l-s. 

->4)-a-GalA-(l-> 

->4)-a-GalA-(l-> 

P-Gal-(l-> 

->4)-P-Gal-(l-> 

P-Xyl-(l-> 

P-Xyl-(l-> 

HI 

5.37 

5.235 

5.24 

5.07 

5.06 

5.02 

5.01 

4.99 

4.59 

4.60/4 

4.54 

4.54 

H2 

3.80 a 

4.10 

4.08 

3.70 

3.73 

3.67 

3.89-3.87 

3.89-3.87 

3.49 

3.53/3.57 

3.27 

3.27 

H3 

4.00' 

4.06 

3.86 

3.98 

3.98 

3.85 

4.06 

4.03 

3.63 

3.72/3 

3.35 

3.35 

H4 

3.90 a 

3.62 

3.36 

4.38 

4.38 

4.24 

4.38 

4.38 

3.89 

4.13 

3.61 

3.61 

H5(ax) 
b 

3.84 

3.77 

4.54 

4.65 

4.64 

4.56 

4.56 

3.65 

3.68 

3.22 

3.22 

H5eq/H6a/H6b 

-

1.276 

1.217 

3.76/3.71 

3.76/3.71 

3.92 

3.90 

a Values may have to be interchanged. 
b -, not determined. 

assigned (Tables 4.3 and 4.4, respectively). The low-intensity down-field HI signal for 
residue A was assigned to a-fucose HI; its TOCSY track (Figure 4.5B) showed a clear o> 
fucose HI,2,3,4 spin system34. 

The HI TOCSY tracks for residues B and C show complete spin systems up to signals 
in the methyl region at 8 1.276 and 1.217, respectively, thereby indicating that B and C are 6-
deoxysugars. Based on the monosaccharide analysis data and the typical NMR positions for 
the B/C H2 protons (8 ~ 4.10, 02 substituted a-manno-hexoses35) both residues were 
assigned as 2-substituted a-rhamnose residues. Moreover, inspection of the two sets suggests 
an additional substitution at 04 of rhamnose B, whereby the ratio of 2- to 2,4-substituted 
rhamnose as deduced from the H6 signals in the ID ]H NMR spectrum is 2.6:1. This is 
confirmed by linkage analysis data (Table 4.2), although linkage analysis results in qualitative 
rather than quantitative information. It should be noted that a a-rhamnose residue usually 
does not give a TOCSY signal between HI and H2, as a result of the equatorial H atom at 
C2. Therefore, the observed transfer of magnetisation is probably caused by spin diffusion. A 
further support for the 2- or 2,4-substitution of rhamnose are the 8-values of the rhamnose 
B/C C2 and C4 atoms in the 13C NMR spectra (Table 4.4; methyl a-L-rhamnopyranoside: 8c2, 
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71.0; 8C4, 73.136). The ' Jci,m coupling constant value of 173 Hz for both rhamnose residues 
point to a a-configuration37. 

The HI signals of the residues D-H in the a-anomeric region were all correlated with 
oc-galacturonic acid residues ('Jci.m ~ 173 Hz). Making use of the HSQC and HMBC spectra, 
in nearly all cases the typical spin systems Hl,2,3,4,5 and Cl,2,3,4,5 for a galacto-hexose 

could be derived (Tables 4.3 and 4.4, respectively). The downfield chemical shift value of H5 
(8 ~ 4.5-4.6) is indicative for the differentiation between galacturonic acid and galactose. 
Presumably, spin diffusion is responsible for the observation of the H5 cross-peaks on the HI 
TOCSY tracks. According to their 'H and 13C chemical shifts, at least two different 
substitution patterns for a-galacturonic acid exist. Residues G and H represent 4-substituted 
galacturonic acid residues and D, E and F 3,4-substituted ones2 (oc-D-galactopyranosyluronic 
acid: 5C3, 69.5; Sot, 70.936); the assignment of residue F as 3,4-substituted galacturonic acid is 
ambiguous. The deduced substitution patterns fit the linkage analysis data. 

Table 4.4. 13C Chemical shifts of PII-H, recorded at 333 K 

Residue 

Fuc A 

Rha B 

C 

GalA D 

E 

F 

G 

H 

Gal I 

J 

Xyl K/L 

Type 

a-Fuc-(l-» 

->2,4-a-Rha-(l-» 

->2-a-Rha-(l-» 

-»3,4)-a-GalA-(l-> 

-»3,4)-cx-GalA-(l-» 

->4)-a-GalA-(l-» 

-»4)-oc-GalA-(l-> 

P-Gal-(l-> 

->4)-P-Gal-(l-> 

p-Xyl-(l-> 

CI 

99.7 

99.4 

99.2 

98.97 

99.94 

99.46 

98.9 

98.5 

104.2 

104.3/105.1 

105.53 

C2 

68.8 a 

77.9 

77.4 

69.14 

69.14 

-
68.84 

68.84 

72.6 

72.9/74.2 

74.22 

C3 

75.4 a 

70.3 

70.47 

78.3 

78.3 

-
71.28 

71.28 

73.7 

73.3/74.2 

76.92 

C4 

69 

81.57 

73.1 

77.0/77.7 c 

77.9 c 

78.5 c 

79.0 c 

79.4c 

69.6 

78.1 

70.11 

C5 
b 

68.4 

69.7 

78.1 

72.3 

72.5 

77.8 

72.3 

76.0 

75.4 

65.89 

C6 

20.8 

17.45 

17.69 

176.3 d 

176.1 d 

175.9 d 

175.4 d 

61.7 

61.4 

a Values may have to be interchanged. 
b -, not determined. 
c Values for GalA C4 may have to be interchanged. 
d Values for GalA C6 may have to be interchanged. 
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Monosaccharide and methylation analysis combined with NMR spectroscopy 
demonstrated the presence of terminal galactopyranose (I) and 4-substituted galactopyranose 
(J) in the molar ratio 2.2:1. Both TOCSY Hip (8 4.59 and 4.60/4.61, respectively; Table 4.3) 
tracks show the typical cross-peak pattern of HI,2,3,4 of a ga/acfo-hexose. Downfield shifts 
of H4 and C4 of residue J prove a 4-substitution. The P-configurations of both galactose 
residues are supported by xJc\,m values of 163 Hz, as determined from a HSQC experiment 
(Figure 4.5C). 

NOE cross-peaks were observed for galacturonic acid G/H Hl,rhamnose B/C H2 
(strong), galacturonic acid G/H Hl,rhamnose B/C HI (strong), galacturonic acid G/H 
Hl,rhamnose B/C H3 (weak), rhamnose B/C HI,galacturonic acid G/H H4 (strong), and 
rhamnose B/C HI,galacturonic acid G/H H5 (weak). These data imply the presence of 
rhamnogalacturonan regions. The NMR spectra do not give any indication for an irregular 
distribution of 2- (residue C) and 2,4-substituted (residue B) rhamnose. Therefore, it was 
concluded that these residues are distributed regularly in the rhamnogalacturonan chain. An 
additional cross-peak between galactose I/J HI and rhamnose B H4 connects residues I/J with 
the rhamnogalacturonan backbone. Elongation of the galactose residue J at 04 is evidenced 
by a cross-peak between galactose I HI and galactose J H4. In summary this building block 
can be depicted as follows: 

(R)28% 

I 
4 

->2)-a-L-Rhap-( 1 ->4)-a-D-Gak? A-( 1 -> 

(B,C) (G,H) 

R=P-D-Gal/7-(l or P-D-Galp-(l->4)-p-D-Galp-(l (ratio: 55:45). 

(I) (I) (J) 

Clear NMR indications for xylose were found in the HSQC spectrum of PII-H (Figure 
4.5C), showing cross-peaks between C5 and H5ax and between C5 and H5eq. Further 
assignments followed from TOCSY and COSY experiments, as well as from literature NMR 
data for terminal p-xylose residues2'38

 ('/CI.HI 163 Hz). Based on the presence of two different 
8-values for xylose H5eq (5 3.92 and 3.90), two xylose residues, K and L, were established. 

As the NOESY spectrum shows a weak interresidual xylose K/L HI,galacturonic acid 
D/E H3 cross-peak, a p-Xyl/>-(l—»3)-a-Galjt?A D/E element is indicated. For galacturonic acid 
D/E HI several NOE cross-peaks are observed, namely with galacturonic acid D/E H2,3,4,5. 
Taking into account the (l-»3) linkage between xylose and galacturonic acid, the NOE cross-
peak galacturonic acid D/E HI,galacturonic acid D/E H4 can be interpreted as an interresidual 
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cross-peak reflecting l->4 linkages between neighbouring galacturonic acid D/E 
residues. In this reasoning the cross-peak galacturonic acid D/E HI,galacturonic acid D/E H3 
can be explained as a second interresidual and/or an intraresidual (spin diffusion) cross-peak. 
It should be noted that the cross-peaks galacturonic acid G/H HI .galacturonic acid G/H H2,3 
(rhamnogalacturonan backbone, see above) can only be interpreted as intraresidual cross-
peaks, whereby the galacturonic acid G/H HI,galacturonic acid G/H H3 cross-peak is 
probably caused by spin diffusion, which stops at H3. In summary this building block can be 
depicted as follows: 

(K,L) 
(3-D-Xylp-(l 

I 
3 

->4)-oc-D-GalpA-(l-> 
(D,E) 

For the assignment of the NMR spectra of PII, the same rationale was used as 
described for PII-H. Similar 'H and 13C chemical shifts were found for the different residues 
in fraction PII. Galacturonic acid appeared to be methyl-esterified (8 3.85/3.83 and 35.4 for 
*H and 13C, respectively). In the xylogalacturonan part of PII approximately 85% of the 
galacturonic acid residues is methyl-esterified. This was concluded from the intensities of the 
xylose H1,H2 cross-peaks in a COSY spectrum of PII, as the chemical shift of xylose H2 
strongly depends on galacturonic acid being methyl-esterified or not (xylose H2, 8 
3.056/3.038 and 3.280/3.272 for methyl-esterified and non-esterified galacturonic acid, 
respectively)2. 

Like for PII-H, several spin systems were identified for fraction PI using TOCSY and 
HSQC (Figure 4.6) spectra (Table 4.5 and 4.6). The presence of xylogalacturonan was 
indicated by the chemical shift values of xylose, assigned in a similar way as described for 
fraction PII-H. Rhamnogalacturonan was identified by the spin system of rhamnose (Figure 
4.6). The ratio of (l,2)-linked rhamnose to (l,2,4)-linked rhamnose in fraction PI is 1.4:1 (H6 
rhamnose 8 1.24 and 1.30, respectively). The HSQC spectrum (Figure 4.6) contains a clear 
signal for a methyl ester ('H, 3.84-3.76; 13C, 53.4), indicating methyl-esterification of 
galacturonic acid, and acetyl signals ('H, 2.06; l3C, 21.2), presumable belonging to 0-acetyl 
groups linked to galacturonic acid. 

All three populations in the acid hydrolysate from fraction P appear to contain 
xylogalacturonan, rhamnogalacturonan, and some remaining (arabino)galactan side chains. 
Assuming that the rhamnose to galacturonic acid ratio in the rhamnogalacturonan regions can 
vary from 1:1 to 1:2039, the amount of rhamnogalacturonan (including arabinogalactan 
substituents) is estimated to exceed 26% of the PI population and 41% of PII. Combination of 
the results described above shows that the average length of the remaining arabinogalactan 
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side chains in the PI population is 2.1 residues. The average length of the remaining galactan 
side chains in fraction PII is 1.4 residues. Based on the contents of xylose and galacturonic 
acid (26 and 58 mol%, respectively) and a xylose to galacturonic acid ratio in 
xylogalacturonan varying between 1:1 and 1:2, xylogalacturonan accounts for 52 to 78% of 
the PI fraction, and for 40 to 60% of the PII fraction. In addition, the polymeric populations 
(PI and PII) still contain methyl-esterified galacturonic acid residues. Acetylation of 
galacturonic acid residues occurs at position 2 or 3. The degree of acetylation decreases from 
47% in fraction P to 16% in fraction PI, as determined by NMR spectroscopy. Removal of 
acetyl groups must have occurred during acid hydrolysis. Labile groups such as ester-linked 
components are likely to be removed under acidic conditions40. 

Table 4.5. 'H Chemical shifts of PI, recorded at 353 K. 

Residue 

Fuc 

Rha 

GalA 

GalA6Me 

Acetyl 

Gal 

Xyl 

Type 

a-Fuc-(l-> 

-»2,4)-a-Rha-(l-» 

-»2)-a-Rha-(l-» 

P-Gal-(l-> 

->4)-P-Gal-(l-> 

P-Xyl-(l-> 

P-Xyl-(l-> 

Me/Ac 

3.84-3.76 

2.06 

HI 
a 

5.26 

5.26 

-

4.57 

4.59 

4.58 

4.45 

4.49 

H2 

-

-

-

-

3.50 

3.56 

3.31 

2.99 

3.01 

H3 

-

4.00 

3.82 

-

3.63 

3.73 

3.74 

3.39 

3.39 

H4 

-

3.60 

3.36 

. 

3.96 

4.13 

-

3.44 

3.44 

H5(ax) 

3.77 

3.81 

3.74 

5.05-5.00 

-

-

-

3.24 

3.24 

H5eq/H6a/H6b 

1.46 

1.30 

1.24 

3.75 

3.75 

-

3.84 

3.84 

a -, not determined. 

The presence of homogalacturonan in populations PI and PII is not necessary to 
explain the high galacturonic acid content; it can be accounted for by the rhamnogalacturonan 
and xylogalacturonan regions in these populations. The amount of galacturonic acid in the 
rhamnogalacturonan regions in populations PI and PII will exceed 9 and 16 mol%, 
respectively. In addition, at most 52 mol% of galacturonic acid in population PI and 40 mol% 
of galacturonic acid in population PII can be present in xylogalacturonan regions. The NMR 
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spectra of PII-H confirms the absence of a (al-»4)-linked homogalacturonan. The absence of 

homogalacturonan regions in pectic substances has never been reported before. 

Table 4.6. I3C Chemical shifts of PI recorded at 333 K. 

Residue Type Me/Ac CI C2 C3 C4 C5 C6 

Fuc a-Fuc-(l-

Rha ->2,4)-a-Rha-(l-> 

->2)-ct-Rha-(l->-

99.6 

99.6 

17.5 

17.3 

GalA 

GalA6Me 

Acetyl 

Gal 

Xyl 

P-Gal-(l-» 

->4)-P-Gal-(l-> 

P-Xyl-(1-* 

53.4 

21.2 

-

105.0 

105.0 

105.8 

-

72 

72 

74.3 

-

73.4 

76.4 

-

69.4 

78.1 

70.0 

71.4 

-

-

65.7 

-

61.5 

61.5 

a -, not determined. 

ENZYMATIC DEGRADATION OF THE POPULATIONS FROM THE ACID HYDROLYSATE OF 

FRACTION P 

To obtain additional information about the structure of the pectic backbone in soybean meal, 

the populations PI, PII, and PIIIA were incubated with PG, RG hydrolase, exo-galacturonase, 

and XGH. The digests were analysed with both HPSEC (Figure 4.7) and HPAEC (Figure 

4.8). 

Although PI is obtained after fractionation on Sephacryl S-500 HR, it contains 

two polymeric populations on HPSEC analysis (Figure 4.7Aa). Incubation with PG (Figure 

4.7Ab) results in a small shift of the maximum of the first peak and the minimum between 

these two peaks is less deep than in the blank. PG is not able to release galacturonic acid 

oligomers from PI (Figure 4.8Aa). RG hydrolase does not change the molecular mass of the 

first peak, and the molecular mass of the second peak decreases only slightly (Figure 4.7Ac). 

The amount of polymeric material in both populations decreases, while a shoulder with lower 

molecular mass arises (as indicated by the arrow). Analysis of the digest on HPAEC (Figure 
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4.8Ba) shows the release of very small amounts of characteristic RG hydrolase oligomers28. 
XGH and exo-galacturonase have less effect than PG, both cause only slight changes in the 
elution pattern of PI (Figure 4.7Ad and e). The HPAEC elution pattern of the XGH digest 
(Figure 4.8Ca) does not show the release of oligomeric degradation products. XGH was 
expected to cause degradation, because this polygalacturonase is specific for xylose-
substituted galacturonan and the PI is thought to be rich in xylogalacturonan. The HPAEC 
elution pattern of the exo-galacturonase digest (Figure 4.8Da) shows the release of both 
galacturonic acid and xylosyl galacturonic acid dimer. The PII population shows one 
polymeric population on HPSEC analysis (Figure 4.7Ba). HPSEC (Figure 4.7Bb) and 
HPAEC analyses (Figure 4.8Ab) show that PG is not able to degrade this fraction. Removal 
of the methyl-ester groups from PII (PII-H) did not increase the susceptibility for PG. RG 
hydrolase does degrade fraction PII very well (Figure 4.7Bc). The shape of the HPSEC 
elution pattern changes, it now shows two populations of which the retention time of the first 
population is lower than in the blank. This indicates that the broad peak in the blank 
represents two populations: one with a high molecular mass which is not degraded and one 
with lower molecular mass which is degraded by RG hydrolase. The oligomers released by 
RG hydrolase (Figure 4.8Bb) can be assigned by comparison with the rhamnogalacturonan 
oligomers from apple MHR28. These oligomers have a backbone of alternating rhamnose and 
galacturonic acid residues, partly substituted with galactose residues to C4 of the rhamnose 
moiety. XGH hardly affects the molecular mass distribution of PII (Figure 4.7Bd). In figure 
4.8Cb the release of small amounts of xylosyl galacturonic acid dimer is shown in addition to 
very small amounts of unknown oligomers. The exo-galacturonase digest (Figure 4.7Be) 
shows the same small shift of the peak as the XGH digest, but now the amount of polymeric 
material also decreases slightly. The amounts of galacturonic acid and the xylosyl 
galacturonic acid dimer released from PII (Figure 4.8Db) are higher than the amounts released 
from PI. The amount of monomelic galacturonic acid in the PI digest is approximately 29 
ug/ml and in the PII digest 47 ug/ml, which means that 8.0% of the galacturonic acids present 
in PI and 10.5% of the galacturonic acids present in PII is released by exo-galacturonase. 
From Figure 4.8D, it can be seen that the xylosyl galacturonic acid dimer content in the PII 
digest is slightly higher than in the PI digest. The content of the dimer can not be quantified 
properly, because a standard is absent. When the response factor of galacturonic acid is used 
to quantify the amount of dimer in the digests, the content in the digest of PI is 23 M g/ml and 
the content in the digest of PII is 24 ng/ml. This means that 3.8% of the galacturonic acid 
present in PI and 3.2% of the galacturonic acid present in PII is released as the xylosyl 
galacturonic acid dimer. This indicates that the degree of substitution of galacturonic acid 
with xylose (remaining after weak acid hydrolysis) in the extremities of the pectic substances 
in PI is higher than in PII. The total amount of material released from PII is higher than from 
PI, which can be explained by the number of potential degradation sites for exo-
galacturonase. The molecular mass of the pectins in population PII is lower than in population 
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PI. Starting with the same substrate concentration, the number of molecules (and accordingly 

the number of non-reducing chain ends) in the PII solution is higher than in the PI solution. 
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Figure 4.8. HPAEC elution patterns of the digests of PI (a), PII (b), and PIIIA (c) after enzymatic 

degradation with PG (A), RGase (B), XGH (C), and exo-galacturonase (D). In figure A, the elution 

times of galacturonic acid and galacturonan oligomers are marked with a roman number 

corresponding to their degree of polymerisation. In figure B, the elution times of galacturonic acid and 

structures 1, 2, 3, 4, 5, 6, 8, and 9 as described by Schols et al.28 are marked. In figure D, the elution 

times of galacturonic acid and the xylosyl galacturonic acid dimer are marked with 1 and 2. 

The PIIIA blank contains predominantly oligomeric material in addition to a low 

amount of polymeric material (Figure 4.7Ca). PG is not able to degrade fraction PIIIA. The 

HPSEC elution pattern shows a change in the relative amounts of the peaks of the oligomers 
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(Figure 4.7Cb). However, the HPAEC elution pattern does not show changes with regard to 
untreated PIIIA (Figure 4.8Ac). RG hydrolase is also not able to degrade the oligomers in this 
fraction, but it is able to degrade the small peak of polymeric material. Release of RG 
hydrolase oligomers can not be detected using HPAEC (Figure 4.8Bc). XGH degrades a large 
part of the polymeric material (Figure 4.7Cd). However, this does not result in a change of the 
HPAEC elution pattern when compared to the elution pattern of the blank (Figure 4.8Cc). 
Exo-galacturonase degrades the peak of polymeric material, and it changes the relative 
amounts of the oligomers present in this fraction (Figure 4.7Ce). This is confirmed by the 
elution pattern on HPAEC, which shows the release of monomeric galacturonic acid and the 
xylosyl galacturonic acid dimer (Figure 4.8Dc). 

The high galacturonic acid content of PI and PII could give the impression that a 
homogalacturonan is present in these populations. However, enzymatic degradation with PG 
confirms our earlier statement that none of the fractions contains homogalacturonan. 

Most of the rhamnogalacturonan oligomers released from apple MHR28 can also be 
released from PI and PII, but not from PIIIA. The PII fraction appears to contain a relatively 
large amount of rhamnogalacturonan. Judging from the ratio of rhamnose to galacturonic acid 
in fraction PIIIA, which is relatively high (0.53), RG hydrolase treatment is expected to result 
in some degradation. It has been demonstrated before that a suitable ratio of rhamnose to 
galacturonic acid is no guarantee for degradation by RG hydrolase41. The structures present in 
PIIIA already have low molecular masses, which can explain the inactivity of RG hydrolase 
on PIIIA. The smallest oligomer that can be cleaved by RG hydrolase is a 
rhamnogalacturonan nonamer, while the possible influence of galactose side chains is 
neglected42. Thus PIIIA presumably contains some rhamnogalacturonan oligomers, which are 
too small or contain too many substituents to be further degraded. 

Xylogalacturonan appears to be present in all populations from fraction P as shown by 
the release of galacturonic acid and the xylosyl galacturonic acid dimer and changes in the 
HPSEC elution pattern. However, exo-galacturonase is much more effective in the 
degradation of soybean xylogalacturonan than XGH. 

CONCLUSIONS 

A large part of the arabinogalactan side chains can be removed from CDTA-soluble pectins 
from soybean meal by the combined action of endo-galactanase, exo-galactanase, endo-
arabinanase, and arabinofuranosidase B. It appears that the remaining polymeric structure 
(fraction P) can not be degraded by the purified enzymes tested here. Moreover, even crude 
commercial multienzyme preparations - containing a wide range of pectin-degrading 
enzymes - were not able to degrade the pectic backbone present in fraction P. Therefore, 
resort had to be taken to weak acid hydrolysis, which is less specific. Monitoring the release 
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of sugar residues and the molecular mass distribution in time showed that the pectic backbone 
was hardly affected during the first 8h of hydrolysis. Prolonged incubation resulted in the 
release of galacturonic acid residues and disappearance of the high molecular mass material. 

The acid hydrolysate of fraction P was fractionated into two polymeric populations (PI 
and PII), one oligomeric fraction (PIIIA), and monomeric sugars (PIIIB). The oligomeric 
fraction (PIIIA) can not be degraded further and probably contains rhamnogalacturonan 
oligomers and some xylogalacturonan oligomers. This study showed that PI and PII contain 
xylogalacturonan and rhamnogalacturonan regions, and all analyses agreed on the absence of 
homogalacturonan regions. The NMR analyses of PII-H clearly demonstrate that this 
technique is suitable for the characterisation of complex plant polysaccharides. 

The absence of homogalacturonan in population PI and PII indicates the absence of 
homogalacturonan in fraction P, because it is unlikely that these regions are degraded by acid 
hydrolysis. This is in agreement with the undegradability of fraction P by PG (after 
saponification) and PL. Fraction P was obtained from the ChSS fraction by enzymatic 
removal of a large part of the arabinogalactan side chains, not changing the pectic backbone. 
So, the CDTA-extractable pectin from soybean is composed of both xylogalacturonan and 
rhamnogalacturonan (hairy regions), and homogalacturonan is absent. It is remarkable that 
these pectic substances are extracted by CDTA, because it has been suggested that pectins 
extractable with hot chelating agents originate from the middle lamella, where they are 
presumed to be present in the form of calcium pectate gels43. This gelation is due to the 
formation of intermolecular junction zones between homogalacturonan regions of different 
chains. Since homogalacturonan appears to be absent in the ChSS extract from soybean meal, 
the presence of a calcium pectate gel must be excluded. It was verified that only a small part 
of these CDTA-extractable pectic substances could be extracted from the WUS with a (hot) 
buffer solution. Probably a specific effect of CDTA, other than the chelating effects, can 
solubilise pectic substances. Renard & Thibault44 suggested this earlier. 

The enzymatic degradation of fraction P showed that CDTA-extractable pectic 
polysaccharides from soybean are different from pectic polysaccharides extracted from other 
sources, like apple29'45'46, carrot47, kiwifruit48'49, onion50, pea5, pear51, potato52'53, suspension-
cultured sycamore cells26'54'55 and sugar beet56. All these pectins contain homogalacturonan 
and rhamnogalacturonan regions, which can be degraded (possibly after saponification) with 
polygalacturonase and rhamnogalacturonase, respectively. CDTA-extractable pectins from 
soybean meal could not be degraded by these enzymes. Acid hydrolysis improves the 
susceptibility of the remaining polymers for RG hydrolase and exo-galacturonase. 

Further studies will focus on the structural reasons for the resistance of the 
rhamnogalacturonan and xylogalacturonan regions in fraction P to degradation. Furthermore, 
attempts will be made to elucidate the unresolved pectic structure in CDTA-soluble pectin 
from soybean meal. In addition, the residual pectic substances present in the 1 MASS10 

extract will be studied and characterised. 
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CDTA-extractable soybean pectic substances were subjected to enzymatic digestion with 

arabinogalactan degrading enzymes that yielded a resistant polymeric pectic backbone and 

arabino-, galacto-, and arabinogalacto-oligomers. The complex digest was fractionated using 

size-exclusion chromatography. Monosaccharide composition analysis, HPAEC fractionation 

and MALDI-TOF MS analysis of the resulting fractions showed that each contains a mixture 

of oligosaccharides of essentially the same degree of polymerisation, composed of only 

arabinose and galactose. MALDI-TOF MS analysis was used for molecular mass screening of 

oligosaccharides in underivatised HPAEC fractions. The monosaccharide sequence and the 

branching pattern of oligosaccharides (degree of polymerisation from 4 to 8) were determined 

using linkage analysis and ES CID tandem MS analysis of the per-O-methylated 

oligosaccharides in each of the HPAEC fractions. These analyses indicated the presence of 

common linear (l,4)-linked galacto-oligosaccharides, and both linear and branched arabino-

oligosaccharides. In addition, the results unambiguously showed the presence of 

oligosaccharides containing (l,4)-linked galactose residues bearing an arabinqpyrcwo.se 

residue as the non-reducing terminal residue, and a mixture of linear oligosaccharides 

constructed of (l,4)-linked galactose residues interspersed with an internal (l,5)-linked 

arabinqfuranose residue. The consequences of these two new structural features of pectic 

arabinogalactan side chains are discussed. 

INTRODUCTION 

Arabinose- or galactose- containing homoglycans are known to occur in nature, but 

heteropolysaccharides containing both types of monosaccharide residue are much more 

abundant. Arabinogalactans are often linked covalently to protein, or to pectic substances'. 

They can be subdivided into two main structural types: the arabino-4-galactans (type I), and 

the heavily branched arabino-3,6-galactans (type II). 

Type I pectic L-arabino-D-galactans are arabinose-substituted derivatives of linear 

(l,4)-linked (3-D-galactan. Ara/and Gab? groups form stubs linked via C3 along the main 

chains. No association with protein has been reported for this group1'2'3. 

The second group of arabinogalactans, the type II L-arabinosyl-substituted branched 

3,6-D-galactans, are widespread in plant tissues, tissue cultures, and exudate gums. They 

comprise a highly branched polysaccharide with ramified chains of [3-D-Gab? residues joined 

by (1,3)- and (l,6)-linkages, the former predominantly in the interior and the latter in the 

exterior chains. (J-D-Gal/? residues terminate the bulk of the exterior chains containing L-Aiaf, 

with, to a lesser extent, L-Arap residues terminating some of the chains. In addition to Ara and 

Gal, type II arabino-3,6-galactans contain a range of other monosaccharides, including D-

GlcAp and its 4-0-methyl ether and D-GalAp1'2'3'4. The type II arabinogalactans can also 

occur as pectic side chains, consisting of a (l,3)-linked galactan backbone to which (1,6)-
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linked galactosyl side chains are attached to carbon 6 of the backbone. These side chains 

possess Ara/" side chains attached to carbon 35. 

The pectic substances present in the soybean cell wall contain arabinan, galactan, 

and/or arabinogalactan side chains. The study of the fine chemical structure of the neutral 

pectic side chains requires their isolation. Cell wall material was isolated from soybean meal 

and sequentially extracted. The chelating agent soluble solids (ChSS fraction) contained the 

major part of the cell wall pectic substances . The neutral side chains of these pectic 

substances may be successfully degraded by the combined activity of endo-galactanase, exo-

galactanase, endo-arabinanase and arabinofuranosidase B7. In the literature, the 

arabinogalactan is described as a p-(l,4)-linked Galp chain with little branching. Ara/"residues 

are present as (l,5)-linked side chains with an average length of two monosaccharide units 

attached to C3 of the Gal residues8'9,10,11. However, research carried out by Labavitch and co

workers12 indicates that the Ara residues are primarily present in large oligo- or 

polyarabinosides. 

Structural details of the neutral side chains of soybean pectic substances have not yet 

been determined. Therefore, the present study of oligomers released during enzymatic 

degradation of soybean pectic arabinogalactan side chains has been performed. Arabino-, 

galacto-, and arabinogalacto-oligosaccharides were isolated by size-exclusion and anion-

exchange chromatography and analysed by monosaccharide and linkage analyses, mass 

spectrometry, and enzymatic degradation studies. 

MATERIALS AND METHODS 

ENZYMATIC DEGRADATION OF PECTIC ARABINOGALACTAN SIDE CHAINS FROM SOYBEAN 

A solution of soybean CDTA-extractable pectic substances (250 mg) in 0.05 M sodium acetate buffer 

(25 ml) was digested with a combination of endo-galactanase, exo-galactanase, endo-arabinanase and 

arabinofuranosidase B for lOh at 30 CC, continuously mixed 'head over tail'. The incubation was 

stopped by heating for 10 minutes at 100 °C . 

SIZE-EXCLUSION CHROMATOGRAPHY 

The arabinogalacto-oligomers were separated from the polymeric pectic residue by fractionation on a 

Sephacryl S-100 HR column using a Hiload System (Amersham Pharmacia Biotech AB, Uppsala, 

Sweden)7. The oligomers were pooled and concentrated, and further fractionated based on their size on 

a column (100 x 2.6 cm) of Bio-Gel P-2 (200-400 mesh, Bio-Rad, Richmond, CA, USA) using a 

Hiload System. Components were eluted with distilled water at 60 CC (flow rate was 0.5 ml/min) and 
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monitored by refractive index detection using a Shodex RI-72 detector. Fractions (7.5 ml) were 

collected and fractions arising from individual peaks were pooled. 

OFF-LINE HPAEC-MALDI-TOF MS 

Bio-Gel pools 4 to 8 were further fractionated by HPAEC performed on a Dionex Bio-LC system13. 

The gradients were obtained by mixing solutions of 0.1 M NaOH and 1 M sodium acetate in 0.1 M 

NaOH. The gradient was optimised for each pool (Table 5.1). The (4 x 250 mm) CarboPac PA1 

column was always equilibrated for 15 minutes before 20 microlitres of the sample were injected. 

After a run the column was washed for 5 minutes with 1 M NaAc in 0.1 M NaOH. 

Table 5.1. Gradients used for fractionation of pools 4 to 8 by HPAEC. 

Time (min) 

0 

40 

45 

0 

5 

40 

45 

0 

5 

40 

50 

Cone. NaAc (M) 

dp 4 and 5 

0 

0.4 

1 

dp 6 

0.07 

0.07 

0.14 

1 

dp 7 and 8 

0.07 

0.07 

0.11 

1 

Cone. NaOH (M) 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

0.1 

After passing a Dionex PED detector operated in the pulsed amperometric detection (PAD) 

mode, the eluate of the CarboPac PA1 column was desalted on-line using a self-regenerating anion 

suppressor 4 mm-unit (Dionex ASRS-ULTRA), and fractions (167 ul) were collected. The HPAEC 

fractions were then directly analysed using MALDI-TOF MS. 

ENZYMATIC DEGRADATION 

Bio-Gel P-2 pool 6 was incubated with endo-galactanase. The incubations were performed in 50 mM 

NaAc buffer (pH 5.0) containing 0.01% NaN3 at 30 °C for 7h. Carbohydrate-degrading activities were 
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determined by HPAEC analysis of the digest, using the optimised gradient for pools 6 (as described 

above). 

PER-0-METHYLATION OF OLIGOSACCHARIDES 

Per-O-methylation14 of the lyophilised oligosaccharides was performed by adding freshly-ground 

sodium hydroxide to the lyophilised oligosaccharide fractions dissolved in 200 ul dimethyl sulfoxide. 

Aliquots of 250 ul methyl iodide were added after 0, 10, and 30 minutes. The reaction was stopped 20 

minutes after the final addition of methyl iodide by adding 1 ml sodium thiosulphate solution (100 

mg/ml) and 1 ml chloroform. The chloroform layer was washed six times with water, after which the 

organic layer was evaporated to dryness under nitrogen. 

ANALYTICAL METHODS 

The neutral monosaccharide composition of the Bio-Gel P-2 pools was determined following release 

of the monosaccharides using methanolysis combined with TFA hydrolysis15. Samples were first 

dissolved in distilled water (1 mg/ml). An aliquot of 20 ul of this solution was dried under a stream of 

air. The dried sample was then submitted to methanolysis in 0.5 ml anhydrous 2 M HC1 in absolute 

methanol for 16h at 80 °C. After cooling, the liquid was evaporated under a stream of air and 0.5 ml of 

2 M TFA solution was added and heated for lh at 121 CC. The samples were dried and 100 ul of 

distilled water was added. Analysis of the liberated monosaccharides was performed using HPAEC 

fractionation and PAD detection". 

Glycosidic linkage analysis was performed following hydrolysis, reduction and O-acetylation of the 

per-O-methylated oligosaccharides16. GC/MS analyses were performed using a Fisons MD800 mass 

spectrometer fitted with a Carlo Erba GC8060 gas chromatograph and an on-column injector and 

using helium as the carrier gas. Monosaccharide derivatives were separated on a DB-5MS column 

(30m x 0.32 mm i.d.; J&W Scientific). Partially methylated alditol acetates (PMAAs) were injected in 

solution in dichloromethane (1 ul injected) and separated using the following temperature program: 50 

°C for 2 min, 50->130 °C at 40 °C/min, held for 2 min, 130->230 °C at 4 °C/min and 230 °C 

isothermal for 15 min. Mass spectra were recorded under electron impact conditions in the positive ion 

mode with an electron energy of 70 eV and were recorded using linear scanning from m/z 55 to 400 

over 0.9 s. 

High-Performance Anion-Exchange Chromatography (HPAEC) was performed on a Dionex Bio-LC 

system (as described above). Different gradients were used for determination of the monosaccharide 

composition after methanolysis combined with TFA hydrolysis", and for the elution of 

arabinogalacto-oligomers. 
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For the determination of the arabinogalacto-oligomers, the CarboPac PA1 column was 

equilibrated with 0.1 M NaOH. Twenty microlitres of the sample were injected, and a linear gradient 

from 0 to 0.4 M NaAc in 40 minutes was applied. The column was washed for 5 minutes with 1 M 

NaAc, and then equilibrated again for 15 minutes with 0.1 M NaOH. Calibration was performed with 

series of Gal- and Ara-oligomers, obtained on enzymatic degradation of linear galactan by endo-

galactanase and enzymically-debranched arabinan17 by endo-arabinanase. 

Matrix-Assisted Laser-Desorption/Ionisation Time-of-Flight Mass Spectrometry (MALDI-TOF MS). 

The matrix solution was prepared by dissolving 9 mg 2,5-dihydroxybenzoic acid and 3 mg 1-hydroxy 

isoquinoline in 700 p.1 distilled water and 300 ul acetonitrile. A 1 ul volume of this solution was 

placed on the sample plate together with 1 JJ.1 of the sample solution and allowed to dry at room 

temperature. The sample plate was then placed in the instrument. 

MALDI-TOF mass spectra were recorded on a Voyager-DE RP Biospectrometry Workstation 

(PerSeptive Biosystems, Inc., Framingham, MA, USA) (Department of Food Technology and 

Nutritional Sciences, Wageningen University) equipped with a nitrogen laser operating at 337 nm (3-

ns pulse duration), a single stage reflector, and delayed extraction. The accelerating voltage used was 

12 kV and the delay time setting was 200 ns. Each spectrum was produced by accumulating data from 

100-256 laser shots. Mass spectra were calibrated with an external standard containing GalA-

oligomers (degree of polymerisation 2-9). 

Tandem Mass Spectrometry. Collision induced dissociation (CID) tandem mass (MS-MS) spectra 

were obtained using a Micromass Q-TOF hybrid tandem mass spectrometer (Department of Mass 

Spectrometry, Utrecht University) equipped with a Z-Spray sample introduction system and gold 

coated glass capillaries in a nanoelectrospray ionisation source. Argon was used as collision gas and a 

collision energy of 60 eV was employed. Cone voltage and skimmer off-set were set at approximately 

75 V and 5 V respectively with a capillary voltage of 2100 V. Ten percent of the native sample was 

used for methylation. The native and per-O-methylated products were dissolved in 100 uj 

methanol:water (1:1) and 1 ul of the sample was introduced into the glass capillary. Spectra were 

acquired with the TOF analyser over a mass range that is dependent on the molecular mass of the 

analyte, data were integrated every 2.3 s, and processed using the MassLynx software, version 3.0. 

RESULTS AND DISCUSSION 

ENZYMATIC DEGRADATION OF PECTIC ARABINOGALACTAN SIDE CHAINS FROM SOYBEAN 

Soybean pectic substances obtained by CDTA extraction of water-unextractable cell wall 

material (ChSS fraction), were digested with endo-galactanase, exo-galactanase, endo-

arabinanase and arabinofuranosidase B, as described by Huisman et al.1. However, in the 
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current experiments, the objective of the incubation was to obtain oligosaccharides large 
enough to provide information about the structure of the arabinogalactan side chains. This 
was achieved by incubating for only lOh. It should be pointed out that the oligosaccharides in 
the digest are not necessarily limit-digest products. The first step in isolating the 
oligosaccharides was the removal of the remaining polymeric material by fractionation on a 
Sephacryl S-100 HR column. The oligosaccharide-containing pool, on fractionation using 
HPAEC with PAD detection yielded a very complex chromatogram, indicating that this pool 
contains a wide variety of different oligomers (Figure 5.1). 

10 15 20 25 30 

Retention time (min) 

35 40 45 

Figure 5.1. HPAE chromatogram for the oligosaccharide-containing pool from the ChSS digest 
obtained after incubation of the soybean ChSS fraction with endo-galactanase, exo-galactanase, endo-
arabinanase, and arabinofuranosidase B. 

The oligomers in the oligosaccharide pool fraction were fractionated by Bio-Gel P-2 
chromatography (Figure 5.2A). The peaks corresponding to oligomers with a degree of 
polymerisation exceeding 4 were not resolved in the chromatogram because they are masked 
by the enormous signal caused by eluting salt. Consequently the fractions corresponding to 
these oligomers were desalted and re-applied to the Bio-Gel P-2 column (Figure 5.2B). Pool 
12 eluted in the void volume and contained oligomers with a degree of polymerisation of 12 
and higher. The numbers of the pools (1 to 11) correspond to the degree of polymerisation of 
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the oligosaccharides, as determined by MALDI-TOF MS analysis of the oligosaccharides (see 

below). 
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Figure 5.2. Chromatogram of (A) the polymeric fraction from the ChSS digest and (B) the desalted 
oligosaccharides with a degree of polymerisation exceeding four on Bio-Gel P-2. 

CHARACTERISATION OF THE BIO-GEL P-2 POOLS 

The Bio-Gel P-2 pools were subjected to HPAEC and MALDI-TOF MS analyses. 
Both techniques showed that the pools contain mixtures of oligosaccharides. The MALDI-
TOF mass spectra indicated that the oligosaccharides have essentially the same degree of 
polymerisation (n). In addition, as n increases the presence of homologues with a degree of 
polymerisation of n+1 and n-1 is also detected. This is a direct result of the decreasing 
resolution of the Bio-Gel P-2 column with increasing n, and of the differences in 
hydrodynamic volume of Ara and Gal residues. 
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The HPAE chromatograms obtained from the Bio-Gel P-2 pools are shown in Figure 
5.3. Pool 1 contains Ara and Gal monomers only (trace a). The presence of four compounds is 
suggested by the HPAE chromatogram obtained from pool 2 (trace b). The first eluting 
compound represents the Gal monomer, the second eluting compound represents the dimer(s) 
AraiGali, the third eluting compound represents Gab, and the last eluting compound 
represents Ara2. This was concluded from the retention times of the compounds in the HPAE 
chromatogram which were identical to the retention times of the series of standard Ara- and 
Gal-oligosaccharides used to calibrate the column. 
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Figure 5.3. HPAE chromatogram for arabinogalacto-oligomers in Bio-Gel P-2 pools 1 to 8 (traces a 

to h, respectively). 

As the degree of polymerisation of the pool increases, the number of oligomers in the 

pool increases and the chromatogram becomes more complex (Figure 5.3). Traces c to h in 

Figure 5.3 show first a cluster of components eluting within 20 minutes, co-eluting with Galn-

oligomers, followed by one or two components co-eluting with Aran-oligosaccharides. 

Monosaccharide composition analyses of pools 3 to 8 revealed that Ara and Gal are the only 

neutral monosaccharide residues present in these pools. 

The HPAE chromatograms suggest a large diversity of oligomers within the pools, but 

do not give information about their composition. The molecular masses of the compounds in 

the pools analysed by MALDI-TOF MS are indicative of the compositions of the different 

oligomers with respect to the number of Ara and Gal residues present. As an example, the 
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MALDI-TOF mass spectrum of the arabinogalacto-hexamers is shown in Figure 5.4. The 
sodium-cationised [M + Na]+ ions are the dominant species observed in the spectra of the Bio-
Gel P-2 pools, although some ions are accompanied by the potassium-cationised [M + K]+ 

species. MALDI-MS analysis of Bio-Gel P-2 pool 6 yielded a spectrum containing ions for all 
possible GalxAray hexasaccharide compositions. The most abundant ion in the MALDI-TOF 
mass spectrum obtained from Bio-Gel P-2 pool 6 is observed at m/z 1013 and corresponds to 
sodium-cationised Ga^. In addition to compounds with n=6, the spectrum shows the presence 
of two different pentamers (Gals and Gal4Ara) and one heptamer (Ara7). The occurrence of 
the pentasaccharides in Bio-Gel P-2 pool 6 is a result of the reduced resolution of the Bio-Gel 
P-2 column in this mass range. The presence of Ara7 in pool 6 is a logical consequence of its 
molecular mass, which is similar to the molecular masses of most of the arabinogalacto-
hexasaccharides. 
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Figure 5.4. MALDI-TOF mass spectrum of Bio-Gel P-2 pool 6 containing oligomers released from 
soybean pectic substances by arabinogalactan-degrading enzymes. 

The other Bio-Gel P-2 pools were also analysed by MALDI-TOF MS. Pools 3 to 5 
also contain the whole range of possible GalxAray compositions for that particular degree of 
polymerisation. The pools containing oligomers with higher values for n do not contain the 
whole range of possible oligomer compositions, but only those in which the majority of 
monosaccharide residues is Gal. As stated before in this publication, the results of MALDI-
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TOF analysis show the reduced resolution of the Bio-Gel P-2 column in the higher mass 
range, i.e. as the relative amounts of (n + l)-oligomers increase. 

CHARACTERISATION OF THE ARABINOGALACTO-OLIGOMERS BY OFF-LINE HPAEC 
MALDI-TOF MS ANALYSIS 

HPAEC separation and MALDI-TOF MS analysis of the Bio-Gel P-2 pools showed that these 
pools contain mixtures of oligosaccharides. The elution order of the oligosaccharides from 
HPAEC can not be predicted, and little structural information can therefore be deduced from 
these experiments. Pools 4 to 8 were fractionated using an analytical Carbopac PA1 column 
to allow structural studies of the oligosaccharides to be carried out. The high sodium 
concentration in the mobile phase eluting from the column was reduced on-line using a self-
regenerating anion suppressor 4 mm-unit (Dionex ASRS-ULTRA). The 'desalted' HPAEC 
fractions were then directly analysed using MALDI-TOF MS. 

As an example the HPAE chromatogram obtained from Bio-Gel P-2 pool 6 using an 
optimised gradient for this mixture is shown in Figure 5.5. The most abundant component in 
the HPAE chromatogram (fraction 6.4; retention time 12.5 min) yielded an ion at m/z 1013 on 
MALDI-TOF MS analysis, corresponding to sodium-cationised Ga^. This is consisitent with 
its elution behaviour, which suggested a (3-(l,4)-linked Gal6 based on its co-elution with the 
linear P-(l,4)-linked galacto-hexasaccharide in the standard. Fraction 6.1 contains Gal5 (m/z 

851); fractions 6.2 and 6.3 contain hexasaccharides composed of one Ara and five Gal 
residues (m/z 983). The MALDI-TOF mass spectrum of fraction 6.5 is identical to the 
spectrum of fraction 6.4, indicating Gal6. Fractions 6.6 and 6.7 both show ions at m/z 833, 
corresponding to sodium-cationised Arae. Their retention times are consistent with the elution 
behaviour of a linear a-(l,5)-linked Ara6 standard. 

The HPAE chromatograms of the other Bio-Gel P-2 pools resemble that of pool 6 in 
the order of elution of analogous compounds, but the retention times increase with increasing 
degree of polymerisation. The general elution order is: Galn.i, Galn_iAra, Galn, followed by 
the arabino-oligosaccharides. With increasing degree of polymerisation of the pool, the 
number of peaks in the HPAE chromatogram increases and the chromatogram becomes more 
complex. The HPAE chromatogram of Bio-Gel P-2 pool 4 thus has only four peaks 
corresponding to compounds with n=4: one Ga^Ara, two GaU isomers and one AraV8. The 
HPAE chromatogram of Bio-Gel P-2 pool 8, in contrast, contains ten peaks corresponding to 
compounds with n=8 (not shown): three Ga^Ara, two Galg, and five Aras isomers. 

In the MALDI-TOF mass spectra of the Bio-Gel P-2 pools (dp=n) every possible 
oligosaccharide composition from AraoGaln up to GaloAran was present (Figure 5.4). On 
HPAEC fractionation, however, only Gal„, Gal„_iAra, Galn.i, and Ara„ were detected. This can 
be explained by the fact that the peaks from the higher Ara-containing species in the MALDI-
TOF mass spectrum are less intense than those from Galn, Gal„.|Ara, Gal„-i, and Aran, and 
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MALDI-TOF MS is much more sensitive than the pulsed amperometric detector. The 
possibility that the ions assigned as corresponding to the higher Ara-containing species could 
actually correspond to fragment ions derived from the higher mass species (i.e. those with 
more Gal in them) crossring-cleavage can be ruled out, since ions arising by crossring-
cleavage would then also be expected in the MALDI-TOF mass spectra of the isolated 
components (HPAEC fractions) and they are not. 
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Figure 5.5. HPAE chromatogram for Bio-Gel P-2 pool 6 from the soybean ChSS digest. 

The different behaviour of oligosaccharides of identical composition on HPAEC 

indicates that their structures are not identical; they might differ in their reducing terminal 

residue, in the type of glycosidic linkages, or in branching pattern19. To determine the 

structural details of these oligosaccharides, additional types of analysis are required, such as 

linkage analysis, tandem mass spectrometry, NMR spectroscopy, and digestion of the 

oligosaccharides by specific enzymes. Fractions 6.2 to 6.7 were purified, but the amounts 

available were insufficient for analysis by NMR spectroscopy. The results of linkage analysis 

and tandem mass spectrometry are described below. 

LINKAGE ANALYSIS 

Analysis of the partially methylated alditol acetates (PMAAs) from fractions 6.4 and 6.5 
resulted in derivatives indicative of terminal and (l,4)-substituted galactose residues, 
indicating the presence of linear (l,4)-linked Gal6 in both fractions. To explain their different 
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elution behaviours on HPAEC, additional structural information about these galacto-
hexasaccharides is required. 

Linkage analysis of permethylated fraction 6.2 (AraGals) indicates the presence of 
(l,4)-substituted and terminal Gal, and (l,5)-substituted Ara/ A small peak that was observed 
corresponding to a PMAA derived from (l,4,6)-substituted galactose could be indicative of 
the presence of branched galactose residues, but is more likely to be the result of 
undermethylation, since tandem mass spectrometry of fraction 6.2 shows the presence of 
linear oligosaccharides only (see below). 

Fraction 6.3, having the same monosaccharide composition as fraction 6.2, yielded 
different linkage analysis data. It gave PMAA derivatives indicative of (l,4)-substituted Gal, 
terminal Gal, terminal arabinopyranose, and (l,5)-substituted arabinofuranose residues. Since 
only Gal5Ara was demonstrated in this fraction, it must contain a mixture of at least two 
compounds. 

TANDEM MASS SPECTROMETRY 
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Figure 5.6. Positive ES CID tandem mass spectrum of per-O-methylated [Gal6+Na]+ from HPAEC 

fraction 6.4, released from soybean pectic substances by arabinogalactan-degrading enzymes. 

Per-O-methylated fraction 6.4 was analysed using tandem mass spectrometry. In the 

tandem mass spectrum obtained from the sodium-cationised pseudomolecular ion of Hex6, at 
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m/z 1293 [Hex6 + Na]+ (Figure 5.6), a complete series of Yn ions and the absence of Y„-14 

ions are indicative of a linear hexasaccharide. If the oligosaccharide were branched, one os 

more Y„ ions would be absent, depending on where the oligosaccharide is branched and one 

or more ions at m/z Y„-14 would be expected to be observed. Neither the absence of Y„ ions 

nor the presence of additional Y„-14 ions is observed. It is theoretically possible that a 

mixture of differently branched isomeric structures could together yield a complete series of 

Y„ ions, however, such a mixture would also yield Yn-14 ions from each of the branch points 

and these are not observed. 

Ions at m/z 227, 431 and 635 are the result of double cleavage events. The Z„ ions at 

m/z 445, 649, 853 and 1057 are the result of the loss of water from the Y„ ions, which 

according to the nomenclature of Domon and Costello are Zn ions. A series of cross-ring 

cleavage ions, observed at m/z 315, 329, 519, 533, 723, 737, and 941, is indicative of (1,4)-

substitution of the monosaccharide residues. Since the only hexose present in pool 6 is 

galactose, the tandem mass spectrum of the per-O-methylated [Hex6 + Na]+ indicates a linear 

(l,4)-linked galacto-hexasaccharide, which is consistent with the results from linkage 

composition analysis of fraction 6.4. 
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Figure 5.7. Positive ES CID tandem mass spectrum of per-O-methylated [Hex5Pent + Na]+ from 

fraction HPAEC 6.2, released from soybean pectic substances by arabinogalactan-degrading enzymes. 

The tandem mass spectrum obtained from the [Hex6 + Na]+ ion in fraction 6.5 (not 

shown) does not significantly differ from the spectrum obtained from fraction 6.4. This 
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indicates that fraction 6.5 also contains a linear (l,4)-linked galacto-hexasaccharide, as was 
already suggested by its linkage composition. Separation on HPAEC suggests the presence of 
different anomers19. 

In the CID tandem mass spectrum of per-O-methylated [Hex5Pent + Na]+ in fraction 
6.2, an intense series of Y„ ions is observed at m/z 259, 463, 667, 827, and 1031 (Figure 5.7). 
These ions are indicative of a linear oligosaccharide corresponding to structure II (Figure 5.8). 
The ion observed at m/z 827 is a Y4 ion indicative of a structure containing three hexose and 
one pentose residues. If this ion derives from a sodiated Hex3Pent structure with a core of 
hexoses and a terminal pentose, then either a Yi ion at m/z 215 indicative of a reducing 
pentose or a Y5 ion at m/z 1075 indicative of a non-reducing terminal pentose might be 
expected. Neither of these ions is present so that the compound that yields this Y4 ion must 
therefore have an internal pentose. In the tandem mass spectrum of [HexsPent + Na]+ further 
Yn ions for structures that bear a pentose are also present: at m/z 419 (PentHex) and 623 
(PentHex2) and 1031 (PentHex4). The absence of the Y„ ions at m/z 215 and 1075, in 
combination with the pentose-bearing Y„ ions m/z 1031, 827, 623 and 419, means that none 
of the oligosaccharide structures I to IV (Figure 5.8) can be ruled out as being present in 
fraction 6.2. 
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Figure 5.8. Possible structures for Hex5Pent isomers with an internal pentose present in fraction 6.2, 
based on results from tandem mass spectrometry. 

Other ion series as indicated in the spectrum (Figure 5.7) result from double cleavage 
or cross-ring cleavage events and corroborate the interpretation given above. They indicate 
the presence of either (1,4) or (1,6) linkages. Since the ion observed at m/z 489 is composed 
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of a Hex, a Pent, and the remainder of the next Hex residue the internal Pent is substituted to 
the C6 or C4 of the cleaved Hex. 

From these data, taken together with the monosaccharide composition of pool 6 and 
the linkage analysis results for fraction 6.2, it can be deduced that fraction 6.2 contains a 
mixture of (l,4)-linked galacto-hexasaccharide isomers with an internal (l,5)-linked 
arabinofuranose residue. 

The tandem mass spectrum of per-Omethylated [Hex5Pent + Na]+ in fraction 6.3 
(Figure 5.9) is significantly different from that obtained from the ion at the same m/z in 
fraction 6.2 (Figure 5.7). The most noticeable difference between the spectra is found in the 
presence of an ion at m/z 1075 in the spectrum obtained from fraction 6.3. This ion 
corresponds to a Y5 ion composed of five hexose residues. Since this Y5 ion can only result 
from the loss of a pentose from the parent ion and since 'internal residue loss' has not been 
observed from sodium-cationised oligosaccharides21 the Pent residue in this oligosaccharide 
has to be in a terminal position. 
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Figure 5.9. Positive ES CID tandem mass spectrum of per-O-methylated [Hex5Pent + Na]+ from 
fraction HPAEC 6.3, released from soybean pectic substances by arabinogalactan-degrading enzymes. 

The Yn ion series in the spectrum obtained from [Hex5Pent + Na]+ from HPAEC 
fraction 6.3 present at m/z 259, 463, 667, 871, and 1075 is not accompanied by corresponding 
Y„-14 fragment ions, indicating linear oligosaccharides. The most plausible structural 
explanation for the ion at m/z 1249 in fraction 6.3 is a linear hexasaccharide bearing the 
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pentose on the non-reducing terminus. The remainder of the spectrum is very similar to that 
from fraction 6.2, consistent with fraction 6.3 also containing a mixture of isomeric structures 
with an internal pentose. This is consistent with the results of linkage analysis, showing both a 
terminal pentopyranose and (l,5)-linked pentofuranose. The hexoses are present as either 
(l,4)-linked or as terminal hexoses, as in fraction 6.2. 

The presence of isomers with an internal arabinose residue is most probably caused by 
the fact that fractions 6.2 and 6.3 are not fully resolved, and the relative amount of fraction 
6.2 in the mixture is much larger than of fraction 6.3. 

In the linear arabinogalacto-oligosaccharide bearing the arabinopyranose residue on 
the non-reducing terminus, this arabinose is most probably not the remainder of a side chain, 
because side chains are usually linked to C3 along the main chain and not to C4. This 
oligomer can also not originate from a galactan chain interspersed with an arabinopyranose 
residue, because none of the enzymes used in the degradation of soybean ChSS is able to 
hydrolyse the glycosidic linkage between a galactose and an arabinopyranose residue, and 
oligomers with an internal arabinopyranose residue would also have been present in the 
digest. This terminal arabinopyranose was probably present as a terminal arabinose in the 
polymer. Other arabinofuranose residues might have been attached to it, but it is uncertain 
whether endo-(l,5)-oc-L-arabinanase or arabinofuranosidase B are able to hydrolyse the 
glycosidic linkage between an arabinofuranose and an arabinopyranose. 

The mass spectra obtained from fractions 6.6 and 6.7 (not shown), contain ions at m/z 

1029, which correspond to per-O-methylated sodium-cationised Pent^. In the tandem mass 
spectra obtained from m/z 1029 from both fractions (not shown), a complete series of Yn ions 
is present (m/z 215, 375, 535, 695, and 885), indicative of a linear Pent6 oligosaccharide. Ions 
observed at m/z 361, 521, and 681 can be described as Y„-14 ions, which are the result of two 
glycosidic bond cleavages both accompanied by proton transfer and which are indicative of 
cleavage at a branched residue. The ion observed at m/z 507 is indicative of a triply 
substituted residue. So these fractions contain mixtures of linear and various branched 
arabinohexasaccharides. The characterisation of two co-eluting branched 
arabinotetrasaccharides was described previously by Briill et a/.18. 

Similar fractionation and tandem mass spectrometric analyses of the fractions from 
pools 4 to 8 were performed. All these pools were shown to contain linear (l,4)-linked 
galacto-oligosaccharides, (l,4)-linked galacto-oligosaccharides bearing an arabinopvrarco.se 
residue at the non-reducing terminus, a mixture of linear oligosaccharides constructed of 
(l,4)-linked galactose residues interspersed with one internal (l,5)-linked arabinq/i/ranose 
residue, and both linear and branched arabino-oligosaccharides. This indicates that the length 
of the galactan chain between two internal arabinose residues can vary. The presence of linear 
p-(l,4)-linked galacto-oligosaccharides is consistent with published structures of soybean 
(arabino)galactan". Arabinose-containing side chains might have been present, but could 
have been removed during enzymatic degradation by arabinofuranosidase B. Prior to this 
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analysis it had been anticipated that arabinogalacto-oligosaccharides with a galactan main 
chain and (residual) arabinofuranose residues as side chains would be isolated. The presence 
of arabino-oligosaccharides (which can be degraded further by arabinofuranosidase B) 
demonstrates that arabinofuranosidase B had not digested the mixture to completion. 
Therefore, it is remarkable that all arabinose-containing side chains appear to have been 
removed from the galactan main chain. A possible explanation is that arabinose-containing 
side chains were not present in the original arabinogalactan pectic side chains in the ChSS 
extract. Another possible explanation, that arabinose substituents attached to a galactan main 
chain might somehow be more accessible to the enzyme than arabinose substituents attached 
to an arabinan main chain, is not very likely. 

Labavitch et al.n have described the presence of large arabinan chains in soybean cell 
walls. The present research extends the knowledge of the structures of the arabinan side 
chains as being heavily branched. However the presence of an internal arabinofuranose 
residue and a terminal arabinopyranose residue in a pectic galactan chain of cell wall 
polysaccharides has not been reported previously, either in soybean, or in other fruit or 
vegetable cell walls. 

FURTHER ENZYMATIC DEGRADATION OF THE ARABINOGALACTO-OLIGOSACCHARIDES 

Confirmation of the structures of the oligosaccharides identified by ES tandem MS, using 
enzymatic digestion is difficult. The main reason is that suitable pure enzymes are not 
available. In theory, arabinofuranosidase A and B should only be able to degrade the 
oligomers in the pools that consist only of arabinose. These enzymes are unable to release the 
internal arabinofuranose from the compounds in fraction 6.2 and are also unable to release the 
terminal arabinopyranose residue from the oligosaccharides in fraction 6.3. Incubation of pool 
6 with arabinofuranosidase B, indeed showed the further degradation of the compounds in 6.6 
and 6.7. The enzyme that is required for the degradation of compound 6.3 would be an 
arabinopyranosidase. Such an enzyme, P-L-arabinopyranosidase, is poorly described in the 
literature22'23. The enzyme described by Dey is a true P-L-arabinopyranosidase isolated from 
Cajanus indicus seeds, and is unable to hydrolyse p-nitrophenyl a-D-galactoside, p-

nitrophenyl a-D-fucoside or p-nitrophenyl P-D-galactoside22'23. This enzyme would probably 
be able to release the terminal arabinopyranose from the Ara£>-(l-»4)-Gal/?n oligomers. 

Further characterisation of the arabinogalacto-oligosaccharides using endo-
galactanase, exo-galactanase or P-galactosidase is complicated. A major complication is the 
presence of mixtures of compounds in the Bio-Gel P-2 pools and of different isomers in the 
HPAEC fractions (particularly fraction 6.2). Due to the incomplete resolution of fractions 6.2 
and 6.3 on HPAEC it is impossible to obtain the arabinopyranose-containing oligosaccharides 
in a pure form. A further difficulty is that the degree of polymerisation of the oligosaccharides 
influences the ability of the enzymes to hydrolyse the glycosidic linkages, so it would be 
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difficult to distinguish whether the reason for the inability of the enzyme to hydrolyse the 
structure is its degree of polymerisation or the structure of the oligomers. 

To illustrate the difficulty of carrying out enzymatic degradation studies on these 
mixtures, Bio-Gel P-2 Pool 6 was incubated with endo-galactanase. The resulting HPAE 
chromatogram obtained from the digest was indeed very complex. Peaks corresponding to 
fractions 6.3, 6.4 and 6.5 were completely and very rapidly lost, whereas peak 6.2 was 
removed more slowly. This may indicate that the enzyme has different affinities for the 
isomers in the mixture or that all these isomers are slowly degraded because of the presence 
of the internal Ara/ The reaction products are very diverse and it is impossible to determine 
from which oligosaccharide in the pool a specific product peak is derived. It is therefore not 
possible to draw any conclusions concerning the structures of the components giving rise to 
the product peaks or to identify from which parental oligosaccharides they were produced. 

CONCLUSIONS 

The pectic arabinogalactan side chains present in soybean pectic substances have been shown 
to be more complex than had been suggested by previous studies8'9'10'11. Prior to this study, 
the structures of the neutral arabinogalactan side chains of soybean pectin had been described 
as P-(l,4)-linked polygalactopyranose chains with Ara/residues present as (l,5)-linked side 
chains with an average length of two monosaccharide units attached to Gal residues in the 
main chain by (l,3)-linkages. In this study we have shown that arabinose residues are not only 
present as external substituents of the galactan main chain, but that they also occur as internal 
residues in the main chain. Internal arabinose has been described once before in 
arabinogalactan type II from larch, where arabinose was shown to be present in the side 
chains as well as in the backbone of the molecule2'24'25. The presence of an internal 
arabinofuranose residue in a pectic arabinogalactan chain in cell wall polysaccharides has not 
been reported previously, either in soybean, or in other fruit or vegetable cell walls. 

Another feature that attracts attention is that the linkage analysis of the arabinogalacto-
oligomer showed the presence of arabinose residues in both the furanose and pyranose ring 
form, the arabinofuranose residues being (l,5)-linked and the arabinopyranoses terminal 
residues. The ring forms of these terminal arabinoses explains their resistance to the applied 
enzymes, since arabmofuranosidase B was used. Both ring forms of arabinose also occur in 
arabinogalactan type II, in which L-arabinofuranosyl, and to a lesser extent L-
arabinopyranosyl residues, terminate some of the side chains4. However, in soybean 
arabinogalactan we are dealing with linear (l,4)-linked P-D-galactan isolated from the pectic 
substances, which is type I arabinogalactan. The existence of arabinopyranose residues in 
pectic arabinogalactan is uncommon, since the presence of only arabinofuranose residues is 
generally reported. Only pectic substances isolated from the roots of Angelica acutiloba 

Kitagawa were shown to contain a small proportion of arabinopyranose26. 
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In spite of the use of size-exclusion and anion-exchange chromatography most 

fractions remained mixtures of isomeric compounds. This is a handicap in the analysis of the 

constituent oligosaccharides and further fractionation is needed for determination of all 

detailed structures. However, options for further fractionation are very limited. A possibility 

would be immobilised lectin affinity chromatography, if lectins interacting with 

arabinopyranose residues were available. Further fractionation of the arabinogalacto-isomers 

could alternatively be attempted using normal or reversed phase HPLC, possibly after 

derivatisation of the oligosaccharide mixture. A drawback of derivatisation would be that the 

isolated oligomers are modified. 

The difference in elution behaviour of the two linear galacto-hexasaccharides (also 

true for galacto-oligosaccharides with a degree of polymerisation of 4 to 8) is intriguing. 

Using both linkage analysis and tandem mass spectrometry, we were unable to differentiate 

between these two compounds. The difference in elution behaviour, however, may well point 

to differences in their anomeric linkages. 

JM (l,2)-linkedRhap 

/ • \ (l,2,4)-linkedRhap 

T t-Arap 

<> (l,4)-linkedGalp 

<"> t-Galp 

\ Y (l,4)-linkedGalAp 

# (l,5)-linkedAra/ 

~M (l,2,3,5)-linkedAra/ 

"lX (l,3,5)-linkedAra/ 

^ t-Ara/ 

Figure 5.10. Hypothetical structure of the rhamnogalacturonan regions of CDTA-extractable soybean 

pectic substances. The distribution of the acetyl groups is not shown. A strictly alternating sequence of 

Rha and GalA, termed RG-I27, is presented here, but the structure of the rhamnogalacturonan 

backbone is as yet unknown. Only short (arabino)galactan side chains are presented in this figure, but 

the true average length of the side chains is 45 to 50 residues. 
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Based on our results, a hypothetical structure of the pectic arabinogalactan side chains 
is proposed (Figure 5.10). The ratio of (1,2)- to (l,2,4)-linked Rha in the ChSS extract is 
1:228. From the monosaccharide composition of the ChSS fraction6, it can be concluded that 
the average length of the (arabino)galactan side chains is in the range of 45 to 50 residues. 
This was confirmed by the length of the arabinan/galactan/arabinogalactan oligomers released 
from the ChSS extract on brief incubation with endo-galactanase, exo-galactanase, endo-
arabinanase, and arabinofuranosidase B. HPAEC analysis of this digest showed the presence 
of galactan and arabinogalactan oligomers with a degree of polymerisation up to about 15 and 
arabinan oligomers with a degree of polymerisation up to 30-35. It is not clear how the 
arabinan side chains were attached to the rhamnogalacturonan backbone. Although side 
chains commencing with an arabinosyl residue might be present in soybean, all side chains in 
Figure 5.10 start with a galactosyl residue. This is mainly based on the results of previous 
studies, in which NMR analysis showed that terminal or (l,4)-linked Gal was attached to the 
rhamnose residues after enzymatic and chemical removal of large stretches of the chains 
leaving a short stub behind28. 

In this study, enzymes were used to degrade pectic arabinan, galactan, and 
arabinogalactan side chains in the ChSS extract to fragments, which fit very readily within the 
mass range of HPAEC and mass spectrometric methods. However, these enzymes failed to be 
helpful in the elucidation of the structures of these fragments, as can easily be understood 
from Figure 5.10. This study shows the need to isolate enzymes able to hydrolyse the 
glycosidic linkage between a (terminal or (l,4)-linked) galactose residue and a (l,5)-linked 
arabinose residue, to hydrolyse the glycosidic linkage between a (terminal or (l,5)-linked) 
arabinose residue and a (l,4)-linked galactose residue, together with the need for 
arabinopyranosidases. These enzymes could be helpful in the determination of the structure of 
the purified oligosaccharides, and they could be helpful in the elucidation of the structure of 
the polymeric pectic arabinogalactan side chains from soybean meal. 
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Soybean cell wall material was depectinated by extraction with hot chelating agent and cold 

dilute alkali. The hemicelluloses were solubilised from the residue with 1 and 4 M KOH 

solutions, resulting in a 1 MASS (1 M Alkali Soluble Solids) and a 4 MASS (4 M Alkali 

Soluble Solids) fraction. The polysaccharides extracted with 1 M KOH were fractionated by 

ion-exchange chromatography, yielding a neutral and a pectic population. The sugar 

composition of the neutral population indicated the presence of xyloglucans and possibly 

xylans. Enzymatic degradation with endo-xylanases and endo-glucanases showed the presence 

of xyloglucans only. Analysis of the digest formed after incubation of the neutral population 

with endo-glucanase V using both HPAEC and MALDI-TOF MS showed the formation of the 

characteristic poly-XXXG xyloglucan oligomers (XXG, XXXG, XXFG, XLXG, and XLFG). 

INTRODUCTION 

Soybeans {Glycine max) belongs to the pea family of the Leguminosae. Their primary 

cell wall is built up of skeletal cellulose microfibrils and so-called matrix polymers, which 

include xyloglucans, xylans, pectins, and proteins. The cell walls of dicots consist of two 

main interpenetrating networks, one of cellulose and hemicellulose and one of pectin1. 

Hemicelluloses are non-cellulosic wall polysaccharides other than pectins1, which can 

be extracted from the walls with alkaline solutions, typically 1-4 M. The requirement for 

relatively strong alkali for their extraction from the wall is due to strong hydrogen bonding 

between the hemicellulose and cellulose microfibrils. The hemicelluloses vary greatly in 

different cell types and in different species. In most cell types, one hemicellulose 

predominates, with others present in smaller amounts2. 

In the cell walls of most Dicotyledonae, the principal hemicelluloses are xyloglucans. Other 

hemicelluloses, such as gluco- and galactoglucomannans, galactomannans, (1 ->3)- (3-D-

glucans, and glucuronoarabinoxylans are found in much lower amounts3. Xyloglucans are 

linear chains of (l->4)-P-D-glucan with xylosyl residues added at regular sites to the 0-6 

position of the glucosyl units. Additional sugar residues, like galactose, fucose, and arabinose, 

are added to the 0-2 of some xylosyl residues '4'5'6. The galactose residues can be O-

acetylated7. 

In previous publications, the structure of the pectic substances in the pectin network of 

the cell wall has been described extensively8'9'10. In the current study we will describe the 

structural elucidation of the most prominent hemicellulose in soybean cell wall material. 
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MATERIALS AND METHODS 

MATERIAL 

Polysaccharides have been sequentially extracted from water unextractable solids (WUS) isolated 

from solvent-extracted, untoasted soybean meal8. The 1 MASS and 4 MASS fraction were obtained by 

extraction with 1 and 4 M KOH, respectively. 

ION-EXCHANGE CHROMATOGRAPHY 

Approximately 250 mg of 1 MASS was fractionated on a column (100 x 2.6 cm) of DEAE Sepharose 

Fast Flow, which was initially equilibrated in 0.005 M NaAc-buffer pH 5.0, using a Hiload System 

(Amersham Pharmacia Biotech AB, Uppsala, Sweden). 

Elution was carried out sequentially with 530 ml of 0.005 M NaAc-buffer pH 5.0, a linear 

gradient from 0.005 to 1 M NaAc buffer pH 5.0 (1060 ml), a linear gradient 1-2 M NaAc-buffer pH 5.0 

(530 ml) and 265 ml 2 M NaAc-buffer pH 5.0. Residual bound polysaccharides were washed from the 

column with 530 ml of 0.5 M NaOH. The elution rate was 10 ml/min except for the first step, in which 

the sample was applied onto the column and the elution rate was 5 ml/min. Fractions (20 ml) were 

collected and assayed by automated methods for neutral sugar content" and uronic acid content12. The 

appropriate fractions were pooled, concentrated, dialysed, freeze dried and analysed for neutral sugar 

composition and uronic acid content. 

ENZYMATIC DEGRADATION 

The unbound, neutral population from anion-exchange chromatography (1 MASS Neutral) was treated 

with pure and well-defined enzymes, endo-xylananse I13'14 and endo-glucanase I and V15. Solutions 

(0.25% w/w)) of 1 MASS Neutral in 50 mM NaAc buffer (pH 5.0) containing 0.01% NaN3 were 

incubated at 30 °C rotating 'head over tail', during 24h. The enzyme concentration used in these 

experiments was 1 (xg/ml. The enzymes were inactivated by heating at 100 °C for 10 minutes. The 

digests were analysed by HPSEC and HPAEC. 

ANALYTICAL METHODS 

Neutral sugar composition was determined by gas chromatography according to Englyst & 

Cummings16, using inositol as an internal standard. The samples were pre-treated with 72% w/w 

H2S04 (lh, 30 °C) followed by hydrolysis with 1 M H2S04 for 3 h at 100 °C and the constituent sugars 

were analysed as their alditol acetates. 
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Uronic acid content was determined by the automated colorimetric m-hydroxydiphenyl assay12'16'17 

using an auto-analyser (Skalar Analytical BV, Breda, The Netherlands). Corrections were made for 

interference by neutral sugars present in the sample. 

High-Performance Size-Exclusion Chromatography (HPSEC) was performed on a SP8800 HPLC 

(Spectra Physics) equipped with three columns (each 300 x 7.5 mm) of Bio-Gel TSK in series (40XL, 

30XL and 20XL; Bio-Rad Labs.) in combination with a TSK guard column (40 x 6 mm) and elution at 

30 °C with 0.4 M NaAc buffer pH 3.0 at 0.8 ml/min. Calibration was performed using dextrans, 

ranging from 500 to 4 kDa. The eluate was monitored using a Shodex SE-61 Refractive Index 

detector. 

High-Performance Anion-Exchange Chromatography (HPAEC) was performed on a Dionex Bio-LC 

system18. The gradient was obtained by mixing solutions of 0.1 M NaOH and 1 M NaAc in 0.1 M 

NaOH. 

For the determination of xylan oligomers the gradient described by Verbruggen et al.19 was 

used. Calibration was performed with a standard xylan digest. For the determination of xyloglucan 

oligomers the gradient described by Vincken et al.20 for the CarboPac PA-100 column was used. 

Xyloglucan oligomers prepared from apple cell wall polysaccharides20 were used as standards. 

MALDI-TOF MS. The matrix solution was prepared by dissolving 9 mg 2,5-dihydroxybenzoic acid 

and 3 mg 1-hydroxy isoquinoline in 700 ul distilled water and 300 ul acetonitril. A 1 ul volume of this 

solution was placed on the sample plate together with 1 ul of the sample solution and allowed to dry at 

room temperature. The sample plate was then placed in the instrument. 

MALDI-TOF mass spectra were recorded with a Voyager-DE RP Biospectrometry Workstation 

(PerSeptive Biosystems, Inc., Framingham, MA, USA) equipped with a nitrogen laser operating at 337 

nm (3-ns pulse duration), a single stage reflector, and delayed extraction. The accelerating voltage 

used was 12 kV and the delay time setting was 200 ns. Each spectrum was produced by accumulating 

data from 100-256 laser shots. Mass spectra were calibrated with an external standard containing 

galacturonic acid oligomers (degree of polymerisation 2-9). 

RESULTS AND DISCUSSION 

FRACTIONATION OF THE 1 MASS EXTRACT 

In a previous paper we described the sequential extraction of soybean meal WUS8. The WUS 

were first extracted with CDTA and 0.05 M NaOH, to remove the pectic substances. The 

residue was extracted with 1 M KOH to yield the 1 MASS extract. This extract contains 16% 

of the polysaccharides in the WUS. The sugar composition (Table 6.1) indicates the presence 
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of both pectic substances and hemicelluloses, and these hemicelluloses might be xyloglucans 

and xylans. 

Table 6.1. Sugar composition of soybean meal fractions as mol%. 

Fraction 

WUS 

1 MASS 

1 MASS Neutral 

1 MASS Charged 

Rha 

2 

2 

2 

2 

Fuc 

3 

3 

4 

3 

Ara 

19 

23 

8 

22 

Xvl 

8 

11 

24 

10 

Man 

2 

1 

1 

tr 

Gal 

29 

35 

19 

34 

Gic 

21 

5 

40 

6 

Uronic acids 

17 

20 

3 

25 

tr = trace amount. 

The 1 MASS extract was fractionated using anion-exchange chromatography. The 
elution profile (Figure 6.1) shows that the 1 MASS extract contains both a neutral (1 MASS 
Neutral) and a charged (1 MASS Charged) population. The sugar compositions of both 
populations are shown in Table 6.1. The recovery per individual sugar residue is satisfactory, 
varying between 90 and 114%. Except for glucose, which has a recovery of 190%. This is 
caused by a pollution of the column with glucose-rich material, which was washed from the 
column with 0.5 M NaOH. This is of no concern during this research, because this late-eluting 
material was not further studied. 
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Figure. 6.1. Elution profile of soybean 1 MASS on anion-exchange chromatography. Uronic 

acid concentration (—), neutral sugar concentration (—). 
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The neutral population yields 10.2% of the recovered polysaccharide material. The 

high contents of xylose and glucose are an indication for the presence of xyloglucans, and the 

presence of fucose suggests that the xyloglucans are fucosylated. Both, galactose (19 mol%) 

and arabinose (8 mol%) can also occur in xyloglucans. In addition, the arabinose residues 

might also be present as substituents of xylans in arabinoxylans. 

ENZYMATIC DEGRADATION OF THE HEMICELLULOSES FROM 1 MASS 

The specificity of enzymes can be used to show the presence of particular polysaccharides21. 
In this study endo-glucanase I and V, and endo-xylanase I are used demonstrate the presence 
of (xylo)glucans and arabinoxylans, respectively. Endo-glucanase I is known to have a high 
activity towards glucans and a much lower activity towards xyloglucan, and endo-glucanase 
V has a high activity towards xyloglucan22. 

The elution profile of the endo-xylanase I digest on HPSEC is similar to the elution 
pattern of the blank 1 MASS Neutral (Figure 6.2, lines d, and a). Also, the elution profile on 
HPAEC does not show the release of any (arabino)xylan oligomers (Figure 6.3A). So, endo-
xylanase I appears to be unable to degrade any polysaccharides in this fraction, demonstrating 
that the presence of arabinoxylans in the 1 MASS Neutral fraction is not very likely. Although 
the presence of a heavily branched arabinoxylan, which is resistant to degradation with endo-
xylanase I, can not be ruled out completely. 

o o-

& 

15 25 30 35 

Retention time (min) 

Figure. 6.2. HPSEC elution profiles of (a) 1 MASS Neutral, (b) endo-glucanase I digest, (c) 

endo-glucanase V digest, and (d) endo-xylanase I digest. 
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Endo-glucanases (I and V), on the other hand, are able to degrade the neutral 
polymers. Incubation of the 1 MASS Neutral fraction with endo-glucanase I results in a small 
decrease of the molecular masses of the polysaccharides. Endo-glucanase V causes almost 
complete degradation of the polymers in the 1 MASS Neutral fraction (Figure 6.2, line c) to 
products that elute at 31 and 32.5 minutes. So the neutral population of the 1 MASS fraction 
most probably contains xyloglucans, and no linear glucans. 

The HPAEC profiles of these two digests (Figure 6.3B) confirm these results. Endo-
glucanase I is not able to release oligomeric degradation products (line b). Endo-glucanase V, 
on the other hand, releases large amounts of oligomeric degradation products (line c). The 
retention times of the oligomers in HPAEC analysis are identical to those formed from apple20 

and sugar beet xyloglucan23 by endo-glucanase V. The structures of the oligomers in the apple 
xyloglucan endo-glucanase V digest are known, and it can be assumed in all probability that 
the structure of the oligomers in the digest from soybean xyloglucan are identical. Small 
changes in the substitution pattern of the xyloglucan oligomers result in considerable changes 
in their retention time24, and their occurrence in this digest could consequently be ruled out. 
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Figure 6.3. HPAEC elution profiles of (Aa) 1 MASS Neutral, (Ab) endo-xylanase I digest, obtained 

with a gradient for xylan oligomers19, and of (Ba) 1 MASS Neutral, (Bb) endo-glucanase I digest, and 

(Be) endo-glucanase V digest obtained with a gradient for xyloglucan oligomers20. 

The digest is also analysed by MALDI-TOF MS (Figure 6.4). The signal with 

mass 1085 is caused by a sodium-cationised oligomer composed of four hexoses and three 

pentoses. The signal with mass 1101 is caused by the potassium-cationised oligomer 
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composed of the same residues. Signals 1247 and 1263 corresponds to the sodium- and 
potassium-cationised oligomer with an additional hexose, hexosespentoses. The signal 1393 
(and 1409) is indicative for hexose5pentose3deoxyhexose. The last two signals, 1555 and 
1571, correspond to a decamer containing an additional hexose. 

From both HPAEC and MALDI-TOF MS it can be concluded that the oligomers 
obtained after incubation with endo-glucanase V were; XXG, XXXG, XXFG, XLXG, and 
XLFG, named according to the nomenclature of Fry et al.25, and shown in Table 6.2. 

The presence of these (already known) xyloglucan oligomers in the digest shows that 
three out of four glucose residues carry a side chain; it is composed of XXXG-type building 
units6. This was also seen for xyloglucans from many species such as apple, sycamore, 
tamarind and sugar beet5,20'23. This is in contrast with xyloglucans from potato and tomato, 
both belonging to the Solanaceae, for which the presence of two adjacent unbranched glucose 
residues is characteristic24. The presence of XXFG and XLFG also indicates that the 
xyloglucans from soybean are fucosylated, similar to xyloglucans from other sources5'26. The 
fucose residue is substituted to the 0-2 of a galactosyl unit, resulting in a trisaccharide side 
chain attached to the glucan backbone. 
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Figure. 6.4. MALDI-TOF mass spectrum of the endo-glucanase V digest of 1 MASS Neutral. 

Information about the structure of the xyloglucan from soybean seeds was not 
published before, unlike that of the hypocotyl. The xyloglucan from suspension-cultured 
soybean cells, started from callus tissue derived from a hypocotyl of a seedling of soybean, 
was mainly constructed of two kinds of oligosaccharide repeating units, a heptasaccharide 
(XXXG) and a nonasaccharide (XXFG)27. These structures also correspond with a xyloglucan 
ofthepoly-XXXGtype. 
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Table 6.2. The structure of oligomers obtained after incubation of 1 MASS Neutral by endo-

glucanase V. 

Code 

XXXG 

XXFG 

XLFG 

XLXG 

Structure 

Glc-Glc-Glc-Glc 
! 1 1 

XylXyl Xyl 

Glc-Glc-Glc-Glc 
1 1 1 

XylXyl Xyl 
1 

Gal 
1 

Fuc 

Glc-Glc-Glc-Glc 
1 1 1 

Xyl Xyl Xyl 
1 1 

Gal Gal 
1 

Fuc 

Glc-Glc-Glc-Glc 

1 1 1 
XylXyl Xyl 

1 
Gal 

[M+Na]+ 

1085 

1393 

1555 

1247 

The sugar composition of the 4 MASS fraction from soybean WUS also indicates the 
presence of xyloglucan. Degradation of the 4 MASS fraction with endo-glucanase I and V 
showed that this fraction contains a small amount of glucan and that the major constituent is 
xyloglucan. HPAEC and MALDI-TOF MS of the digests showed that these xyloglucans are 
also composed of XXXG-type building units, resembling the structure of the xyloglucans 
extracted by the 1 M KOH solution. They distinguish themselves from the xyloglucans in the 
1 MASS fraction only in the effort needed to extract them from the cell wall material, which 
is expressed in the higher concentration of alkali used. The xyloglucans in the 4 MASS 
fraction are probably tighter hydrogen-bonded to the cellulosic microfibrils or enclosed in 
these microfibrils and were released due to the swelling of cellulose caused by the high 
concentration of alkali2 . 
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CONCLUSIONS 

The polysaccharides in the 1 MASS extract from soybean WUS contain both pectic 

substances and neutral polysaccharides, which can be separated by ion-exchange 

chromatography. The neutral population represents 1.6% of the polysaccharides of soybean 

WUS. The sugar composition and the formation of specific xyloglucan oligomers after 

degradation of the neutral polysaccharides in the 1 MASS extract with endo-glucanase V 

proves that this fraction consists of xyloglucans. The structure of the xyloglucan oligomers 

was determined by comparison of their elution behaviour on anion-exchange chromatography 

(HPAEC) with that of well-known references, and by molecular mass analysis by MALDI-

TOF MS. It can be concluded that the xyloglucans are fucosylated and are composed of 

XXXG-type building units, similar to xyloglucans from many other plants. The structure of 

xyloglucan from soybean seeds has not been described before. 

Combination of the specificity of enzymatic degradation with HPAEC and mass 

spectrometry proves to be very efficient in characterising polysaccharide isolated from any 

plant material. This applies to among others xyloglucans, as was shown in this research. 

The sugar composition of the 1 MASS Charged fraction obtained after anion-

exchange chromatography indicates that it is rich in pectic substances. Further research will 

focus on the structure of these pectins, and comparison of their structure with the pectic 

substances in the ChSS and DASS fractions from soybean meal. 
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Water-Unextractable Solids (WUS) were isolated from maize kernels. They contained 7% of 

protein, 8% of starch and 57% of non-starch polysaccharides (NSP). These NSP were 

composed mainly of glucose, xylose, arabinose, and glucuronic acid. Sequential extractions 

with a saturated Ba(OH)2-solution (BE1 extract), and distilled water (BE2 extract) were used 

to solubilise glucuronoarabinoxylans from maize WUS. Cellulose remained in the insoluble 

residue. The glycosidic linkage composition of the extracts and their resistance to endo-

xylanase treatment indicated that the extracted glucuronoarabinoxylans were highly 

substituted. In the maize BE1 extract 25% of the xylose was unsubstituted, 38% was 

monosubstituted and 15% was disubstituted. A new measure for the degree of substitution is 

defined. The resulting degree of substitution for maize BE1 arabinoxylan (87%) is higher than 

for sorghum BE1 arabinoxylan (70%). The glucuronoarabinoxylans in maize BE1 can be 

degraded by a sub-fraction of Ultraflo, a commercial enzyme preparation from Humicola 

insolens. The digest contains a number of series of oligomers: pentose,,, pentose„GlcA, 

pentose„hexose, and pentose„GlcA2. 

INTRODUCTION 

Cell walls of Gramineae consist predominantly of (glucurono)arabinoxylans and (1,3),(1,4)-P-

D-glucans, with smaller amounts of cellulose, heteromannans, protein, and esterified phenolic 

acids'. The glucuronoarabinoxylans consist of a (3-D-(l,4)-linked xylopyranoside backbone 

and can be substituted with oc-L-arabinofuranose on C2 and/or C3, ct-D-glucopyranosyl uronic 

acid, or its 4-O-methyl derivative on C2, acetyl on C2 or C3 of some xylose residues2,3'4. 

Ferulic acid and p-coumarica acid can occur esterified to the C5 of arabinosyl units of 

(glucurono)arabinoxylans5,6. The degree and pattern of substitution of the 

(glucurono)arabinoxylans appears to vary with the source from which they are extracted. 

These differences are reflected in the ratio of arabinose to xylose, in the relative amounts of 

the various linkage types of arabinose and xylose, in the presence of other substituents such as 

(4-0-methyl-)glucuronic acid, and the presence of small side chains such as xylopyranosyl-

arabinose7 and dimeric side-chains of arabinose8. 

The arabinoxylans from maize kernels have a highly branched structure, as was shown 

by linkage analysis data9,10. They were shown to meet a lot of the structural characteristics 

which were described above, like substitution by single units of arabinose or glucuronic acid. 

In addition, they comprise side-chains containing arabinose, xylose and galactose 

residues11,12'13. Some feruloylated oligosaccharides, obtained after acid hydrolysis, were 
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identified13 and are suggested to be present as side-chain constituents of the heteroxylans in 

maize bran. 

Most of the information about the structure of maize kernel glucuronoarabinoxylan 

described so far, is obtained by identification of oligosaccharides formed after acid hydrolysis 

of the heteroxylans. A schematic structure, which takes into account the monosaccharide 

composition, the linkage profile and the structures of some oligosaccharides obtained by acid 

hydrolysis, is presented by Saulnier et a/.14. However, due to the low specificity of acid 

hydrolysis, much of the structural information of the polymer is of limited value. The use of 

specific enzymes can overcome this problem and provide more information about the 

structure of the polymer, in particular about the distribution of the substituents over the main 

chain. In this study, we describe the isolation of water-unextractable solids from maize 

kernels. The WUS is characterised and extracted with bariumhydroxide to obtain rather pure 

glucuronoarabinoxylans15. The extracts and their digests obtained after enzymatic degradation 

are chemically characterised to obtain information about the structure of the maize 

glucuronoarabinoxylans. 

MATERIALS AND METHODS 

MATERIALS 

In this research whole maize kernels {Zea mays L.) harvested in the Alsace region (France) were used 

for the isolation of maize WUS. Sorghum WUS was isolated by Verbruggen et al.16 

ISOLATION OF THE WATER-UNEXTRACTABLE SOLIDS (WUS) 

The isolation of water-unextractable cell wall material from maize kernels was based on the procedure 

described by Verbruggen et al.16. Maize kernels were ground to pass a 0.5-mm sieve. This meal (500 

g) was defatted by Soxhlet extraction with 3 1 of petroleumether, refluxing for 6h. The air-dried 

residue was extracted with 2 1 distilled water containing 0.05% NaN3 during 2h at room temperature. 

The suspension was centrifuged (11000 g; 30 min). The pellet was resuspended and this procedure 

was repeated three times. 

Subsequently, the protein was extracted from the residue with 1.5 1 of 1.5% (w/v) sodium 

dodecylsulphate solution containing 10 raM 1,4-dithiothreitol, during 3h at room temperature. After 
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centrifugation (11000 g; 30 min) this extraction was repeated twice. The final pellet was washed twice 

with distilled water. 

The residue was filtered over a 45 um sieve by washing with distilled water (6.5 1). The 

residue, which retained on the sieve, was suspended in 1 1 distilled water (pH 5.0) at 85 °C and starch 

gelatinisation was allowed to proceed for 1 hour. The residue obtained after centrifugation (11000 g; 

30 min) was suspended in 1 1 buffer solution (pH 6.5) containing 10 mM maleic acid, 10 mM NaCl, 1 

mM CaCl2 and 0.05% NaN3. Porcine pancreatic oc-amylase (2 mg; Merck art 16312) was added and 

the mixture incubated at 30 °C for 18h. After centrifugation (11000 g; 30 min) the residue was washed 

with 1 1 hot distilled water (65 °C) and centrifuged again. The cc-amylase digestion and hot water 

washing were repeated once. The remaining unextractable residue was resuspended in distilled water 

and freeze-dried (WUS). 

EXTRACTION OF WUS 

Glucuronoarabinoxylans were obtained by the procedure described by Gruppen et al.15. Maize WUS (3 

g) was extracted with saturated Ba(OH)2 solution containing 260 mM NaBEL, (500 ml for 16 h; 250 ml 

for 1 h) at room temperature with continuous stirring (BE1). The residue was acidified to pH 5 (acetic 

acid) and subsequently extracted with distilled water (4x300 ml; 1 h) (BE2). After each extraction, 

solubilised polymers were separated from the insoluble residue by centrifugation (18900 g; 45 min), 

and the pH of the extracts was adjusted to 5 with glacial acetic acid before dialysis. 

The final residue from the water extraction step was freeze dried (RES). All extracts were kept 

at -18 °C and aliquots were thawed or freeze dried as needed. 

ENZYMATIC DEGRADATION 

Solutions (1.6 mg/ml) of maize BE1 were incubated with a number of purified enzymes. The purified 

enzymes used were endo-(l,4)-(3-xylanase (E.C. 3.2.1.8, endo-xylanase I; 0.1 ug protein/ml substrate 

solution), AXH-m (0.05 u.g protein/ml substrate solution), and AXH-d3 (an excess amount of 

enzyme). Endo-xylanase I17 and AXH-m1 were purified from Aspergillus awamori. AXH-d3 was 

purified from Bifidobacterium adolescentis19. 

A solution (1.5 mg/ml) of maize BE1 was also incubated with Ultraflo, a commercial enzyme 

preparation derived from Humicola insolens (Novo Nordisk, Bagsvaerd, Denmark). Before adding to 

the substrate solution, the enzyme preparation was dialysed against a 50 mM NaAc buffer (pH 5.0) 

containing 0.01% NaN3 at 4 °C during 2h. Solutions (1.4 mg/ml) of maize BE1 were incubated with 

'Ultraflo-arabinoxylan degrader', a sub-fraction of Ultraflo obtained during the fractionation of the 

preparation20. 
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The incubations were performed in 50 mM NaAc buffer (pH 5.0) containing 0.01% NaN3 at 30 

°C rotating 'head over tail'. Incubations with AXH-d3 were performed in 25 mM NaP04 buffer (pH 

6.5) containing 0.01% NaN3. All enzymes were inactivated by heating at 100 °C for 10 minutes. 

Polysaccharide-degrading activities were determined by HPSEC and HPAEC analyses of the digests. 

ION-EXCHANGE CHROMATOGRAPHY 

An amount of the extracts which contains 20 mg of polysaccharides was applied on a column (400 

mm x 16 mm) of DEAE Sepharose Fast Flow, which was initially equilibrated in 0.005 M NaAc buffer 

pH 5.0, using a Hiload System (Amersham Pharmacia Biotech AB, Uppsala, Sweden). 

Elution was carried out sequentially with 80 ml of 0.005 M NaAc-buffer pH 5.0, a linear 

gradient from 0.005 M to 1 M NaAc-buffer pH 5.0 (160 ml), a linear gradient from 1 M to 2 M NaAc-

buffer pH 5.0 (80 ml) and 40 ml 2 M NaAc-buffer pH 5.0. Residual bound polysaccharides were 

washed from the column with 80 ml of 0.5 M NaOH. The elution rate was 5 ml/min except for the first 

step, in which the sample was applied onto the column using an elution rate of 1 ml/min. Fractions (5 

ml) were collected and assayed by automated methods for uronic acid21 and neutral sugar content22. 

ANALYTICAL METHODS 

Neutral sugar composition was determined by gas chromatography according to Englyst & 

Cummings23 (1984), using inositol as an internal standard. The samples were pre-treated with 72% 

w/w H2S04 (lh, 30 °C) followed by hydrolysis with 1 M H2S04 for 3h at 100 °C and the constituent 

sugars were analysed as their alditol acetates. 

Uronic acid content was determined by the automated colorimetric m-hydroxydiphenyl assay21,24 using 

an auto-analyser (Skalar Analytical BV, Breda, The Netherlands). Corrections were made for 

interference by neutral sugars present in the sample as measured by the orcinol-sulfuric acid method22. 

Starch was determined enzymatically using a test kit (Boehringer). 

Glycosidic linkage analysis Carboxyl groups in all fractions were reduced according to Taylor and 

Conrad25 using NaBH4, and the reduced fractions were subsequently methylated using a modification 

of the Hakomori method26, dialysed and dried in a stream of air. The reduction and methylation steps 

were repeated in order to improve the extent of both reactions. Partially methylated alditol acetates 

were prepared and analysed as described by Verbruggen et al.27. The derivatives were quantified 

according to their effective carbon response (ECR) factors28. The identity of the compounds was 
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confirmed by gas chromatography-mass spectrometry (GC-MS, Hewlett Packard, USA) using a mass 

selective detector (MSD) 5973 coupled to a HP 6890 gas chromatograph equipped with a fused silica 

column (CPSIL 19CB, 25m x 0.25mm; 0.2 urn; Chrompack). The temperature program was 160—>185 

°C at 0.5 °C/min, 185->230 °C at 10 °C/min and 230 °C isothermal for 5.5 min. 

High-Performance Size-Exclusion Chromatography (HPSEC) was performed on a SP8800 HPLC 

(Spectra Physics) equipped with three columns (each 300 x 7.5 mm) of Bio-Gel TSK in series (60XL, 

40XL and 30XL; Bio-Rad Labs., Richmond, CA, USA) in combination with a TSK guard column (40 

x 6 mm) and elution at 30 °C with 0.4 M sodium acetate buffer pH 3.0 at 0.8 ml/min. The eluate was 

monitored using a combined RI detector and viscometer (model 250, Viscotek Corporation, Houston, 

Texas, USA), and a Right Angle Laser Light-Scattering detector (RALLS, Viscotek, LD 600). 

Molecular masses were calculated using the light scattering and universal calibration modules of the 

Trisec software (Viscotek). Calibration was performed using pullulans, ranging from 6 to 788 kDa 

(Polymer Laboratories, Amherst, MA, USA). 

High-Performance Anion-Exchange Chromatography (HPAEC) was performed on a Dionex Bio-LC 

system as described by Schols et al.29. The gradient was obtained by mixing solutions of 0.1 M NaOH 

and 1 M sodium acetate in 0.1 M NaOH. 

For the determination of arabinoxylan oligomers, the (4 x 250 mm) CarboPac PA-1 column 

was equilibrated with 0.1 M NaOH. Twenty ul of the sample was injected and a linear gradient to 0.2 

M sodium acetate in 0.1 M NaOH in 30 minutes, and a linear gradient from 0.2 to 0.6 M sodium acetate 

in 0.1 M NaOH in the next 10 minutes was applied. The column was washed for 5 minutes with 1 M 

sodium acetate in 0.1 M NaOH and equilibrated again for 15 minutes with 0.1 M NaOH. Calibration 

was performed with standard solutions of arabinose, xylose, glucuronic acid, and a series of xylan 

oligomers. 

Matrix-Assisted Laser-Desorption/Ionisation Time-of-Flight Mass Spectrometry (MALDI-TOF MS). 

The matrix solution was prepared by dissolving 9 mg 2,5-dihydroxybenzoic acid and 3 mg 1-hydroxy 

isoquinoline in 700 ul distilled water and 300 ul acetonitril. A 1 ul volume of this solution was placed 

on the sample plate together with 1 ul of the sample solution and allowed to dry at room temperature. 

The sample plate was then placed in the instrument. 

MALDI-TOF mass spectra were recorded on a Voyager-DE RP Biospectrometry Workstation 

(PerSeptive Biosystems, Inc., Framingham, MA, USA) equipped with a nitrogen laser operating at 337 

nm (3-ns pulse duration), a single stage reflector, and delayed extraction. The accelerating voltage 

used was 12 kV and the delay time setting was 200 ns. Each spectrum was produced by accumulating 
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data from 100-256 laser shots. Mass spectra were calibrated with an external standard containing 

galacturonic acid oligomers (degree of polymerisation 2-9). 

RESULTS AND DISCUSSION 

YIELD AND COMPOSITION OF THE WUS 

The first step in the isolation of maize WUS from whole maize meal was the removal of 

lipids. Extraction with petroleumether removed 8.1% of the original material. Table 7.1 

presents the composition of defatted whole maize meal and isolated maize WUS. 

Table 7.1. Composition of whole maize meal and maize WUS (percentage dry weight). 

Whole defatted maize meal Maize WUS 

Yield 100 8.7 

7.0 

8.1 

56.5 

The protein content of the defatted meal (10.8%) agrees well with results published by 

Watson30, who found the protein content to vary from 8 to 12%. The starch content of the 

meal (62.3%) is lower than the average value found by Watson30 (71.7%). The defatted whole 

maize meal contained 5.5% non-starch polysaccharides. The analyses performed here account 

for only 78% of the maize meal. Another component, which is very likely to be present, is 

lignin. The lignin content is not determined, but lignin is a common component of secondary 

thickening in the pericarp of all cereal grains1. In addition, maize kernels also contain phytate, 

tannins, mineral elements, vitamins, and other chemical compounds in low concentrations1'30. 

The WUS fraction still contained 7% of protein, this might be present as structural 

proteins, glycoproteins or intracellular proteins . Only 5.6% of the protein originally present 

in the meal was found in the WUS fraction. Starch could not be removed completely. The 

WUS fraction contained 8% of starch, representing approximately 1% of the starch in the 

meal. This might be due to certain physical changes in the starch component introduced by 
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the isolation procedure which may cause resistance to degradation by a-amylases32 or due to 

the presence of resistant starch which can not be degraded by cc-amylase33. The WUS contains 

57% of NSP, representing 89% of the NSP originally present in the WUS fraction. A small 

part of the residual 28% consists of acetyl, ferulic acid, and coumaric acid groups, the 

remainder can not be explained. 

A substantial proportion of the polysaccharides in the cell walls of maize kernels 

consists of arabinoxylans and cellulose, as can be concluded from the high contents of 

arabinose, xylose and glucose in maize WUS (Table 7.2). In addition, phenolic acids were 

determined in the maize WUS; coumaric acid (0.1% w/w) and ferulic acid (1.6% w/w) may 

be involved in oxidative cross-linking of polysaccharides and other cell wall components. 

Acetyl groups have also been determined in maize WUS (4.9% w/w), indicating the presence 

of 36 acetyl groups per 100 xylose residues. 

EXTRACTION OF GLUCURONOARABINOXYLANS FROM MAIZE WUS 

Glucuronoarabinoxylans can be selectively extracted from cell wall material with saturated 

barium hydroxide solutions'5'34. Extraction of maize and sorghum WUS with a Ba(OH)2 

solution resulted in two fractions for each starting-material, BE1 and BE2, both containing 

hemicellulosic material. Verbruggen et al.27 also extracted glucuronoarabinoxylan from 

sorghum WUS, but they used a more extensive extraction procedure. Gruppen et a/.15 

followed the same extraction procedure for wheat flour WUS. The BE1 fraction was released 

from the WUS directly, being extractable in Ba(OH)2. The BE2 fraction was only released 

from the WUS-residue after lowering the pH and washing with distilled water. A cellulose-

enriched residue (RES) remains. The sugar composition of the fractions is shown in Table 

7.2. Saturated Ba(OH)2 extracted 37% of the arabinose and xylose from maize WUS. In the 

event of wheat flour WUS, saturated Ba(OH)2 extracted the bulk (80%) of the arabinose and 

xylose15, while only 50% of the arabinose and xylose could be extracted from sorghum WUS 

(this research). BE1 from maize, sorghum, and wheat flour contained a rather pure 

(glucurono)arabinoxylan population, only minor amounts of other neutral sugars were present 

in these extracts. 
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The structures of the arabinoxylans in both maize and sorghum are much more 

complex than those found in other cereals. The degree of substitution in maize and sorghum 

(molar arabinose: xylose ratio is 0.80 and 1.12, respectively) is higher than in wheat flour 

(0.54)35, barley (0.72)36, and wheat bran (0.71)34 arabinoxylans. Moreover the arabinoxylans 

in maize and sorghum are additionally substituted with uronic acid (8.3 mol% and 9.8 mol%, 

respectively). HPAEC of H2SO4 hydrolysed samples of both maize and sorghum showed that 

the only uronic acid present in the samples was glucuronic acid 7. Uronic acids are almost 

absent in wheat flour35 and barley36 arabinoxylans, wheat bran arabinoxylan contains 2.6 

mol% uronic acid34. 

The BE2 extracts of maize and sorghum also contained predominantly arabinoxylan, 

but glucose-containing polysaccharides were co-extracted, especially in sorghum BE2. This 

co-extracted glucose in sorghum and wheat flour BE2 was present mainly in the form of 

(l,3),(l,4)-P-D-glucans27'35. The yields of these fractions for maize, sorghum and wheat flour, 

(18.1%, 14.5%, and 10.7%, respectively) were lower than the yield of the BE1 extracts. 

Glucose was by far the most important sugar in the residues, presumably present as cellulose 

and (l,3),(l,4)-p-D-glucans. 

GLYCOSIDIC LINKAGE COMPOSITION 

The results of linkage analysis of the extracted polysaccharides from maize and sorghum are 

presented in Table 7.3. The barium hydroxide extracts of maize appeared to comprise highly 

substituted arabinoxylans. Assuming that the backbone consists of only (1,4)-, (1,2,4)-, 

(1,3,4)-, and (l,2,3,4)-linked xylopyranosyl residues, 32% of the xylopyranosyl residues in 

the (l,4)-xylan backbone in maize BE1 was unsubstituted, and 49% was monosubstituted, 

with branch points mainly at the C3 position. In addition, the xylan backbone contained a 

large amount (19%) of C2,C3-disubstituted xylopyranosyl residues. The amount of 

unsubstituted xylose in maize BE1 (32%) is lower than in sorghum BE1 (40%) and wheat 

flour BE1 (63%)35. 

The degree of substitution of the xylan backbone can be expressed as the number of 

sugar substituents per 100 xylose residues in the backbone, by calculating the ratio of the 

number of branches attached to xylose residues to the total number of xylose residues in the 

backbone. It turns out that the degree of substitution in maize BE1 is much higher (87%) than 

in sorghum (70%) and wheat flour BE1 (56%). This is a better measure for the degree of 

substitution than the arabinose:xylose ratio, which is highest for sorghum BE1. This can be 
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explained by terminally-linked xylose residues being present in side chains"'13'37, and the 

existence of oligomeric side chains of arabinose8'38. However, this measure does not give any 

information about the distribution of the substituents over the main chain. 

Table 7.3. Linkage composition (mol%) of NaBH4 reduced barium hydroxide extracts of maize and 

sorghum WUS. 

Component 

2,3,5-Me3-Ara 

3,5-Me2-Ara 

2,3-Me2-Ara 

2,3,4-Me3-Xyl 

2,3-Me2-Xyl 

2,4-Me2-Xyl 

2-Me-Xyl 

3-Me-Xyl 

Xyl 

2,3,4,6-Me4-Glc 

2,3,6-Me3-Glc 

2,4,6-Me3-Glc 

2,3,4,6-Me4-Gal 

2,3,6-Me3-Gal 

ratio 

terminal/branching 

Linkage type 

(Ara/)l-> 

->2(Ara/)l-> 

->5(Ara/)l-> 

(Xylp)l^ 

->4(Xylp)l-> 

->3(Xyl/>)l-> 

->4(Xylp)l-> 

3t 
->4(Xylp)l-> 

T2 

->4(Xylp)l-> 

3 t t 2 

(Glcp)l-> 

->4(Glcp)l-> 

->3(Glcp)l-> 

(Galp)l-> 

->4(Galp)l-> 

maize BE1 

24.7 

3.9 

3.9 

9.6 

15.4 

3.6 

18.6 

5.2 

9.5 

2.0a 

3.1 

0.5 

0.92 

maize BE2 

24.3 

4.8 

4.3 

11.2 

7.6 

4.1 

17.0 

4.0 

9.9 

2.9" 

5.6 

4.2 

1.08 

sorghum BE1 

32.9 

2.7 

5.2 

1.6 

21.1 

19.2 

6.4 

6.0 

2.0a 

0.6 

1.1 

1.0 

1.00 

sorghum BE2 

24.2 

1.9 

5.6 

1.2 

12.0 

3.0 

14.0 

4.7 

4.6 

3.6a 

20.6 

3.4 

1.4 

1.09 

a (Partially) originating from terminally-linked glucuronic acid 

In addition to terminally-linked arabinofuranosyl residues, the arabinoxylans in maize 

BEland BE2 also contain (1,2)-, (l,5)-linked arabinofuranosyl residues, indicating 
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complicated structural features of its side chains. Short side chains containing these sugar 

linkages have been isolated from enzymatic and acid hydrolysates of some 

arabinoxylans4'8'11,13,37'38. The above results indicate that similar structural units are also 

present in maize BE1. 

In these studies, uronic acids were reduced with NaBFLt prior to methylation, 

hydrolysis and derivatisation, and therefore, were determined as glucose. The originally 

extracted polysaccharides (not reduced with NaBH4) from maize did not contain any terminal 

glucose residues, the content of terminal glucose residues in the originally extracted sorghum 

polysaccharides was very low. This indicates the presence of terminal glucuronic acid 

residues in the original polysaccharide. Previously isolated and identified glucuronic acid-

containing oligomers from glucuronoarabinoxylan hydrolysates showed that glucuronic acid 

is linked to the (l,4)-xylan backbone at the C2 position of xylose8'39. The linkage composition 

of the glucose in the sorghum BE2 extract confirms the presence of a (l,3),(l,4)-(3-D-glucan, 

as shown before27. Comparison of the linkage analysis data with the sugar composition shows 

that the amounts of terminal glucose (after reduction) were lower than the amounts of uronic 

acids determined directly in the extracts. This discrepancy between sugar and linkage 

composition suggest an incomplete reduction of the uronic acids resulting in a substantial 

underestimation of the glucose originating from glucuronic acid content in the linkage 

composition. 

Comparison of the linkage compositions of the BE2 to those of the BE1 extracts 

shows that the glucuronoarabinoxylans in BE2 have a higher degree of substitution than those 

in BE1 for both maize and sorghum. The portion of unsubstituted xylose in the backbone of 

the BE2 extracts of maize and sorghum (20% and 34%, respectively) is lower than that in the 

backbone of the BE 1 extracts (32% and 40%, respectively). The degree of substitution 

(calculated as described above) is 107% for maize BE2 and 79% for sorghum BE2. 

HOMOGENEITY OF THE BARIUM HYDROXIDE EXTRACTS 

The homogeneity of the extracts was studied by high-performance size-exclusion 

chromatography (HPSEC). As can be seen from the elution patterns in Figure 7.1, all extracts 

contained polysaccharides varying widely in hydrodynamic volume. The weight-averaged 

molecular masses of the extracts of maize are slightly higher than those of the extracts of 

sorghum, as is shown in Table 7.4. The PJ-elution patterns of all extracts showed no distinct 

peaks, although the extracted polymers were clearly polydispers. This was confirmed by their 
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Mw to Mn ratio (Table 7.4), which is a measure for the heterodispersity. The BE1 fraction of 

both sorghum and maize is more homogeneous than the BE2 fraction, which was already 

found by Verbruggen et al.27 for the sorghum extracts. The maize BE1 fraction is the most 

homogeneous extract. The intrinsic viscosity of all extracts, from both maize and sorghum, 

are in the same order of magnitude, varying between 2.33 and 2.61 dl/g. 

a o 

2 

15 25 30 

Retention time (min) 

Figure 7.1. HPSEC elution profiles of (a) maize BE1, (b) maize BE2, (c) sorghum BE1, and (d) 

sorghum BE2. 

Table 7.4. Average molecular weight, polydispersity, and intrinsic viscosity of the barium hydroxide 

extracts of maize and sorghum WUS. 

Extract Mw (kDa) Polydispersity (MJM„) M (dl/g) 

maize BE1 

maize BE2 

sorghum BE 1 

sorghum BE2 

171 

400 

132 

326 

1.41 

4.23 

2.13 

3.89 

2.33 

2.61 

2.36 

2.34 

The extracts from both maize WUS and sorghum WUS were further studied for 

homogenei ty based on their charge density. The results of anion-exchange chromatography 

(not shown) suggest that all extracts are very homogeneous. Almost all material was bound to 
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the column, due to the presence of glucuronic acids in all the arabinoxylan molecules. The 

glucuronic acids are probably evenly distributed over the arabinoxylan molecules, since the 

material eluted in one peak with similar uronic acid:neutral sugar ratios throughout the whole 

peak. Only a small proportion (2% for sorghum BE1, 7% for sorghum BE2, <1% for maize 

BE1 and 2% for maize BE2) of the recovered material was not bound. Another small 

proportion (3% for sorghum BE1, 10% for sorghum BE2, 1% for maize BE1 and 5% for 

maize BE2) was eluted with 0.5 M NaOH. The high homogeneity of the sorghum BE1 

fraction was in good agreement with the results found by Verbruggen et al.27. Chanliaud et 

al.10 also found that a major fraction of alkali extracted heteroxylans from maize bran, 

containing all the uronic acid, was bound to the column and was eluted in a gradient with 

sodium acetate buffer. 

ENZYMATIC DEGRADATION OF ARABINOXYLANS FROM MAIZE 

The BE1 fraction of maize was digested with pure and well-defined enzymes, and compared 

with the degradation of sorghum glucuronoarabinoxylan8. Degradation of maize BE1 by 

endo-xylanase I only, resulted in a small shift in molecular weight distribution on HPSEC 

(results not shown). Supplementation of the reaction mixture with AXH-m did not change the 

molecular weight distribution of the maize arabinoxylans in fraction BEL However, 

degradation of sorghum arabinoxylan with endo-xylanase I and AXH-m showed a reasonable 

shift in the molecular weight distribution of the sorghum arabinoxylans, as was shown by 

Verbruggen et al.8. The arabinoxylans in the maize BE1 fraction appear to be more resistant 

to enzymatic degradation than those in the sorghum BE1 extract, probably due to the 

relatively low amount of unsubstituted xylose residues and the relatively high amount of 

disubstituted xylose residues, which are expressed in their higher degree of substitution (87% 

for maize BE1 and 70% for sorghum BE1). In addition, the distribution of the substituents 

can also play an important role in the resistance to enzymatic degradation. 

Since the combined action of endo-xylanase I and AXH-m was not able to degrade 

maize BE1 to oligomeric degradation products, and the relatively high amount of 

disubstituted xylose is mentioned as a possible cause, incubation of maize BE1 with an 

arabinofuranohydrolase (AXH-d319'40) was performed. It was expected that the removal of 

some arabinofuranosyl groups could increase the susceptibility of the substrate for AXH-m 

and endo-xylanase I. However, this enzyme showed no activity towards the maize BE1 

extract. 
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The search for more powerful arabinoxylan degrading enzymes leads to a commercial 

enzyme preparation derived from the thermophilic fungus H. insolens. The degradation of the 

maize BE1 extract by Ultraflo goes fast and is almost complete. The main degradation 

products are arabinose, xylose and glucuronic acid. The amounts of arabinose and xylose 

monomers released after 20h of incubation are about 85% and 100% of the arabinose and 

xylose present in the substrate. As is shown in Figure 7.2, the larger part of the arabinose is 

released within the first hour of the incubation. The release of xylose is more moderate; 

indicating that arabinose has to be removed first before xylose can be released. 

C 
D 
O 
E 
< 

5 10 15 

Incubation time (h) 

20 25 

Figure 7.2. Release of arabinose (—) and xylose (—) monomers during incubation of maize BE1 

with Ultraflo. 

Probably because of the large variety of enzymes present in Ultraflo, the maize BE1 

extract is almost completely degraded to monomers, by which all the information about the 

structure of the substrate is lost. Therefore, maize BE1 was incubated with a number of sub-
20 

fractions of Ultraflo, obtained during the isolation of two xylanases by Dusterhoft et al. . One 

of these sub-fractions, designated 'Ultraflo-arabinoxylan degrader' here, is able to degrade 

maize BE1 and form a large variety of oligomeric degradation products. Although the 
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'Ultraflo-arabinoxylan degrader' is still a mixture of enzymes, it can be used as a tool for the 

production of oligosaccharides. 

c o c 

28 33 

Retention time (min) 

43 

Figure 7.3. HPSEC elution profiles of (a) maize BE1 blank, (b) digest of maize BE1 after incubation 

with 'Ultraflo-arabinoxylan degrader' for 24h, and (c) digest of maize BE1 after sequential 

degradation with 'Ultraflo-arabinoxylan degrader' for 24h and endo-xylanase I for 24h. 

Incubation of maize BE1 with 'Ultraflo-arabinoxylan degrader' degrades all 

polymeric material in the extract (Figure 7.3). Incubation of this digest with endo-xylanase I 

did not result in further degradation of the digest. After incubation, arabinose is released as 

the main degradation product (Figure 7.4). After 20h of incubation, about 40% of the 

arabinose, about 3% of the xylose, and only about 7% of the glucuronic acid originally 

present in the substrate is released as monomeric degradation products. Furthermore, a peak 

of xylobiose, xylotriose, and a lot of peaks representing unknown compound can also be seen 

in the elution profile of the digest. 

In an earlier study, it was determined that this sub-fraction was able to degrade both 

wheat arabinoxylan and the disubstituted oligomer P-Xyk?-(l->4)[a-Ara/"-(l —»2)][a-Ara/"-

(l-»3)] P-Xylp-(l->4) P-Xyk7-(l->4) Xylp. So it contains an arabinofuranohydrolase which 

can release arabinose from disubstituted xylose residues (Dusterhoft; unpublished results). It 
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Figure 7.4. HPAEC elution profile of the digest of maize BE1 after incubation with 'Ultraflo-
arabinoxylan degrader' for 20h. 

is not sure whether this enzyme resembles the AXH-d319'40. AXH-d3 was unable to release 

arabinose from maize BE1, possibly because it is hindered by the (4-0-methyl)glucuronic 

acid substituents or the high degree of branching40. The presence of a-glucuronidase 

(glcAase)41, exo-glucuronase or other accessory enzymes in the 'arabinoxylan degrader' could 

possibly enable AXH-d3 to work. About 7% of the glucuronic acid was released as a 

monomeric degradation product, thus this possibility can not be ruled out. Another possibility 

is the existence of for example an AXH-d2, which would enable other enzymes to work. In 

addition to this, the presence of (5-xylosidases, endo-xylanases and oc-L-arabinofuranosidases 

able to remove arabinose substituents at C2 and/or C3 in the arabinoxylan degrader is 

demonstrated (Dusterhoft; unpublished results). 

To obtain more information about the composition of the oligomers formed after 

incubation with 'Ultraflo-arabinoxylan degrader', the digest was analysed by MALDI-TOF 

MS. Although the spectrum, shown in Figure 7.5, appears to be rather complex, a few series 

of analogous oligomers can be distinguished. Firstly, oligomers containing only pentoses 

(xylose or arabinose; indicated with #) are present with a degree of polymerisation up to 11. 

Secondly, oligomers containing one hexuronic acid (glucuronic acid) in addition to pentoses 

(signals marked with +). The number of pentoses in these oligomers ranges from 3 to 10. In 
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the MALDI-TOF mass spectrum a signal of equivalent oligomers containing an additional 

methoxyl group was also shown (also marked with +). This methoxyl group is linked to C4 of 

the glucuronic acid residue. Thirdly, a series of oligomers containing pentoses and two 

glucuronic acids was present (signals marked with $). The number of pentose residues in 

these oligomers ranges from 5 to 8. A number of these oligomers are also present in which 

one or both glucuronic acid residues contain an additional methoxyl group. Finally, a series of 

oligomers can be detected, which consist of one hexose in addition to the pentoses (signals 

marked with *). The number of pentoses in these oligomers ranges from 2 to 6. 

The presence of oligosaccharides containing pentoses of which the non-reducing 

terminal xylose unit is substituted with a-D-glucuronopyranosyl at C2 was previously shown 

in a sorghum GAX digest , and a hexose-containing pentosan oligomer (Gah>(l—>4) Xyl/>-

(1—»2) [5-0-(trans-kruloy\)] ara/) was already found in an acid hydrolysate of maize bran13. 

Further analysis of the larger oligomers in this series could show whether this oligomer is 

present as a side-chain directly attached to the xylan backbone as suggested by Saulnier et 

al.13 or not. However, we will only be able to detect the oligomer without the ferulic acid 

substituent, because the ester linkage was saponified during the extraction of the 

arabinoxylans. 

This is the first time that the presence of arabinoxylan oligomers containing two 

glucuronic acids is indicated. The presence of these oligomers, but also of oligomers 

containing one glucuronic acid shows that the glucuronic acid substituents were evenly 

distributed over the xylan backbone. This is in agreement with the fact that fractionation 

based on differences in charge density was not possible. Blockwise distribution of the 

glucuronic acid substituents over the xylan backbone and the fact that only 7% of the 

glucuronic acid was removed during the enzymatic degradation, would give a large amount of 

oligomers containing pentose only and probably some remaining glucuronic acid-rich 

polymeric material. In addition, it is shown that MALDI-TOF MS is an adequate tool to show 

the presence of methoxyl ethers of glucuronic acid residues. HPAEC analysis of a digest 

cannot directly show the presence of these methoxyl groups, since it is not known how the 

retention time of a component is affected by the presence of an additional methoxyl group, 

and the elution pattern of an enzymatically obtained digest is very complex. 
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RESEARCH MOTIVES 

Plant cell wall polysaccharides are widely studied for various reasons. Cell walls form 

the skeleton of plant tissues, control the growth of plant cells, and form a structural barrier to 

invading pathogens. Plant cell walls represent the bulk of all plant biomass and they are 

exploited in a number of ways, as textiles, live-stock feed, paper, and food ingredients. The 

plant cell wall can also end up in large amounts of by-products and wastes enriched in fibres, 

e.g. soybean meal and maize by-products from the wet milling process. 

The objective of the project was the elucidation of the chemical structure of 

polysaccharides directed to their functional properties. In the elucidation of the structure, the 

use of modern spectrometric techniques was emphasised. The use of these techniques in 

polysaccharide analysis is optimised by using these methods in combination with (enzymatic) 

degradation of the polysaccharides to obtain fragments fitting within the analytical range of 

these methods. The structure-function relationship was exemplified in the utilisation of the 

polysaccharides in livestock feed. The polysaccharides in livestock feed can be represented by 

the polysaccharides from soybean meal (pectic substances and xyloglucans) and maize 

kernels (glucuronoarabinoxylans). Accordingly, the aims of the investigations were to 

determine the chemical structure of the cell wall polysaccharides present in these plant 

materials in view of their processing and food quality functions in general, and their 

microbial/enzymatic degradability in particular. 

This thesis adds information about the primary structure of both pectic substances, 

including their arabinogalactan side chains, and xyloglucans from soybean, and of 

glucuronoarabinoxylans from maize kernels to the data present in the literature. The exact 

structural features of these different classes of cell wall polysaccharides vary from plant to 

plant. Both soybean and maize kernel cell wall polysaccharides distinguish themselves in a 

number of respects from other plant cell walls polysaccharides. These differences will be 

discussed in this chapter. 

SOYBEAN XYLOGLYCAN 

In the cell wall of most Dicotyledonae, the principal hemicelluloses are xyloglucans. 

They can be extracted from the cell wall with alkaline solutions, typically 1-4 M. Xyloglucans 

are linear chains of (l,4)-(5-D-glucan with xylosyl residues added at regular sites to the 0-6 

position of the glucosyl units. Additional sugar residues, like galactose, fucose, and arabinose, 

are added to the 0-2 of some xylosyl residues1'2,3'4. The galactose residues can be O-

acetylated5. An important characteristic of xyloglucans is the degree of backbone branching. 

Most xyloglucans are composed of either XXXG-type or XXGG-type building units (Figure 

8.1). 
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In chapter 6, it is demonstrated that soybean xyloglucans extracted with 1 and 4 M 
alkali are composed of XXXG-type building units, similar to xyloglucans from many other 
plants. Some of the xylose residues are substituted at C2 with P-D-galactopyranose residues. 
The xyloglucans from soybean cell walls are fucosylated. In oligosaccharides XXFG and 
XLFG, position Q is substituted with an <x-L-Fucp-(l-»2)- residue. During extraction of the 
soybean xyloglucans with alkali, possibly present acetyl groups will be lost and therefor no 
conclusions can be drawn with respect to their presence or ablsence. Xyloglucans isolated 
from various other legumes (e.g. pea and common bean) do bear acetyl substituents4. The 
structure of the soybean xyloglucan comes up to our expectations, since up to now 
xyloglucans isolated from other legume seeds also belong to the poly-XXXG type 
xyloglucans6'7. 

XXXG 

Q Q 

xxaa ^^oo^^Ao^o^pp^ 

• 
O 

l)-D-Glcp-(l->4)-

a-D-Xylp-(l->6)-

A B-D-Galp-(l->2)-

a-L-Ara/-(l->2)-

O-acetyl group 

Figure 8.1. An overview of different branching patterns of xyloglucan. Position Q can be substituted 
with an a-L-Fucp-(l-»2)-residue or an a-L-Gal/?-(l->2)-. Position Y can be substituted with a (3-D-
Xylj5-(l->2)-, an a-L-Ara/-(l->2)-, or an a-L-Ara/-(l-»3)-P-D-Xylp-(l-»2)- side chain. Z can be 
substituted with p-D-Xylp-(l-»2)-residue4. 

SOYBEAN PECTIC SUBSTANCES 

In general, pectic polysaccharides are major components of the primary cell wall of 
dicotyledons (e.g. sycamore, citrus and legumes) and gymnosperms (e.g. Douglas fir)8. This is 
also true for soybean. The ChSS fraction (38% of the WUS), the DASS fraction (7% of the 
WUS), and about 90% of the 1 MASS fraction (16% of the WUS) consist of pectic 
substances. This implies that at least 60% of soybean WUS consist of pectic polysaccharides. 
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If we let go of the classification of pectic polysaccharides in smooth and hairy regions 
as suggested by Schols et al.9, and choose for a classification based on the structure of the 
backbone, we end up with two categories of pectic polysaccharides. 

The first group contains those parts of the pectin with exclusively (l,4)-linked 
galacturonic acid in the backbone. According to this definition, homogalacturonan, 
rhamnogalacturonan II, and xylogalacturonan belong to this group. The biosynthesis of the 
backbone of this category of pectic polymers requires a polygalacturonate 4-oc-
galacturonosyltransferase capable of transferring UDP-galacturonic acid residue to the non-
reducing end of a pre-existing chain of galacturonic acid residues. The homogalacturonan is 
first synthesised as an unesterified chain and subsequently at least partially methylesterified 
by an enzyme that transfers methyl groups to the carboxyl groups of polygalacturonic 
acid10'11'12. It seems likely that other substituents (e.g. acetyl esters and neutral sugar residues, 
like xylose) can be attached to the backbone in like manner. 

The second group contains those parts of the pectin with a rhamnogalacturonan 
backbone. The biosynthesis of the backbone of this category of pectic polymers requires two 
glycosyl transferases, a galacturonic acid transferase capable of adding galacturonic acid 
residues to rhamnose and a rhamnose transferase capable of adding rhamnose residues to 
galacturonic acid in a rhamnogalacturonan chain10. Possibly followed by the attachment of 
arabinan, galactan, or arabinogalactan side chains. A rhamnogalacturonan I 
galactosyltransferase able to transfer a galactose residue to short pectic (l,4)-P-D-galactan 
chains was recently isolated . 

Homogalacturonan 

Homogalacturonans are chains of (l,4)-linked a-galacturonic acid, which may be partly 
methyl esterified. So far, pectic substances from plant cell walls were always found to consist 
of smooth galacturonan regions interrupted by blocks of ramified rhamnogalacturonan 
regions, so-called hairy regions (Figure 1.4). These smooth galacturonan regions were 
predominantly present in the fractions extracted with aqueous solvents, often containing 
chelating agents. It is shown in chapter 4 that CDTA-extractable pectins from soybean (38% 
of the WUS) do not contain homogalacturonans. 

In an additional experiment, monoclonal antibodies to low ester pectin (JIM514), high 
ester pectin (JIM714), and de-esterified homogalacturonan (PAM1l5) were used to characterise 
the CDTA-extractable pectic substances. In immuno-dot assays, JIM5 was found to bind to 
both native and saponified pectic substances in the ChSS extract. JIM 7 is only able to bind to 
the native pectins in the ChSS extract, being specific for high ester pectin. The epitopes 
recognised by these two anti-homogalacturonan monoclonal antibodies are however not 
defined15. The epitopes recognised by PAM1 are, however, well defined. PAM1 binds 
specifically to de-esterified and unsubstituted homogalacturonan, optimal binding requires in 
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the region of 30 de-esterified galacturonic acid residues15. PAM1 does not bind to saponified 
ChSS, again indicating that blocks of pectic homogalacturonan are absent. The absence of 
homogalacturonan explains the resistance of (saponified) CDTA-extractable pectic substances 
towards degradation with polygalacturonase, but makes their extraction by CDTA 
remarkable. 

The absence of homogalacturonan in CDTA extractable pectic substances has a 
number of consequences. A first step in the elucidation of the structure of the pectic 
substances usually is the solibilisation of the pectic polysaccharides in the cell wall by using 
highly purified polygalacturonase16'17'18'19, or a fractionation of isolated pectic substances after 
digestion with highly purified homogalacturonan-degrading enzymes20'21'22. 
Rhamnogalacturonan I and II are the major polysaccharides solubilised from various plant 
tissues using this approach. Due to the absence of homogalacturonan, this first step is not 
applicable. This implies that other routes had to be followed in this research, as is described in 
chapters 3 and 4. 

A second consequence of the absence of homogalacturonan is the inability of soybean 
pectic substances to participate in calcium cross-linking and gel formation. This is not only 
important in the cell wall itself, but also indicates that extraction of soybean meal yields 
pectins unable to form the typical gels as known for other pectins (e.g. from apples and 
citrus). Jam and jelly manufacture is one of the main uses of industrially extracted pectins23 

and soybean pectic substances are most likely unsuitable for this purpose. 

Another consequence is that the absence of homogalacturonan effects the physiology 
of the cell wall, since pectins are mediators of wall porosity. A mild treatment with pectinase 
can enlarge the channels (for macromolecular transport across plant cell walls), without 
adversely affecting cell viability, enabling significantly larger molecules to pass through the 
wall24. 

Rhamnogalacturonan II 

Rhamnogalacturonan II is structurally very different from the previously discussed 
rhamnogalacturonans. It is covalently linked in the primary cell wall through 
homogalacturonans. It consists of approximately 60 glycosyl residues, many of which are 
very unusual and are described in chapter 1. The functions of rhamnogalacturonan II are not 
known. However, the discovery that the rhamnogalacturonan II occurs as dimers covalently 
cross-linked by borate diesters25'26 suggest that these parts of the pectin are of importance in 
the interconnection of the pectic polysaccharides27. It is suggested that these boron cross-links 
are the "load-bearing", acid-labile linkages that are hydrolysed by a decrease in cell wall pH 
during auxin-induced cell expansion28. 
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The ChSS fraction was analysed for its apiose content, a glycosyl residue diagnostic of 
rhamnogalacturonan II. The CDTA-extractable pectic substances appeared to be free of 
apiose, and consequently of rhamnogalacturonan II. 

Xylogalacturonan 

The presence of xylogalacturonan regions, in which terminal xylose is linked directly to the 
galacturonosyl residues, has been suggested before in soybean20,29. Xylogalacturonans also 
occur in apple30, cotton suspension-cultured cell walls31, watermelon31, and pea hulls32,33. The 
xylogalacturonans take up 12 to 18% of the soybean CDTA-extractable pectic substances. 
The xylogalacturonans from different sources vary in the degree of xylose substitution, the 
degree of methyl esterification, and the distribution of the substituents over the backbone9. 

So far, two enzymes are known, which are able to hydrolyse xylogalacturonan. Firstly, 
an exo-galacturonase, which is not hindered in its action by single branches of xylose. It 
releases galacturonic acid and the p-Xyk>(l,3)-GalA/? dimer from apple hairy regions34 and 
from soybean pectic substances (chapter 4). Secondly, xylogalacturonan hydrolase (XGH), a 
polygalacturonase which is specific for xylose-substituted galacturonan35. This enzyme is able 
to degrade xylogalacturonan derived from acid-hydrolysed gum tragacanth and apple hairy 
regions. Soybean pectic substances are resistant to degradation by XGH even after acid 
hydrolysis. The structure of soybean xylogalacturonan is obviously not identical to apple and 
gum tragacanth xylogalacturonan. The resistance to XGH can be caused by a different degree 
of xylose substitution or by an altered distribution of the substituents over the backbone. A 
third possibility is further substitution of the xylose substituents, as suggested by the presence 
of (1,2)-, (1,4)-, and (l,2,3)-linked xylose (chapter 4). 

The most obvious possibility is further substitution of the xylose residues with fucose. 
The fucose content of the PI fraction (chapter 4) is relatively high (7 mol%), compared to 
pectic substances originating from other sources, and has not been reported before except by 
Beldman et al.34 a soluble pectic polysaccharide also from soy (11 mol% of fucose). In 
addition, the disaccharide Fucp-(1,2)-Xyl was found to be present in the digest obtained after 
partial hydrolysis of soybean cotyledon polysaccharides29. This dimer cannot originate from 
other polysaccharides, because in the only hemicellulose containing both xylose and fucose 
(xyloglucans) they are not covalently linked to each other, but occur in the trimeric side chain 
a-L-Fucp-(l->2)-a-L-Gal/?-(l—»2)-a-D-Xyk>(l->. However, this disaccharide might be 
present as a side chain of polygalacturonic acid, since the linkage analysis composition of the 
ChSS fraction and fraction P (chapter 4) shows the presence of (l,2)-linked xylopyranose 
residues. The NMR analyses described in chapter 4 do not provide any information about the 
sugar residue to which the terminal fucose residue is attached. 

To investigate the substitution of xylose residues with fucose, (saponified) soybean 
fraction P was incubated with a-fucosidase36. This enzyme released 5.5% of the total amount 
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of fucose in the fraction, and this increased the susceptibility of fraction P for exo-
galacturonase, releasing3.6% of the galacturonic acid residues from saponified fraction P and 
6.4% after pre-incubation with a-fucosidase. Due to the lack of a proper standard, the content 
of the characteristic dimer (Xyl-GalA) could not be quantified properly, however, it is clear 
that the amount released from saponified fraction P increased after pre-incubation with cc-
fucosidase. This proves that a part of the xylose substituents in the soybean xylogalacturonan 
are substituted with fucose residues, which would explain the resistance of this 
xylogalacturonan to XGH. However, XGH is still unable to degrade the saponified fraction P 
after pre-incubation with a-fucosidase. Substitution of the xylose residues with other sugar 
residues, like xylose33, galactose or arabinose cannot be excluded. The structure of soybean 
xylogalacturonan is more complex than just a polygalacturonic acid chain substituted with 
single terminal xylose residues. 

The a-fucosidase releases only 5.5% of the fucose from saponified fraction P. The 
amount of a-fucosidase added to the incubation mixture was abundant, so the remaining 
fucose can not be released by this enzyme. These fucose residues might be unavailable for the 
enzymes due to (1) small alterations in the structure of the fucosyl-containing side chain, (2) 
steric hindrance of other parts of the molecule, or (3) the fucose residues might be present in 
the rhamnogalacturonan regions, as in sycamore RG-I8'37. It was not determined if the a-
fucosidase would be able to release these fucose residues. 

The presence of xylogalacturonan could not be confirmed by the immuno-dot assay 
using antibodies to xylogalacturonan. Two xylogalacturonan monoclonal antibodies (7G3 and 
5A10), developed using a pea xylogalacturonan, were used. The antibodies are likely to 
recognise more densely xylose-substituted homogalacturonan. No defined oligosaccharide 
inhibitor of antibody binding has been found (personal communication Dr. Bill Willats). 
Neither of the antibodies is able to bind to the native or saponified pectins in the ChSS extract 
and the P fraction. Based on the release of galacturonic acid and the characteristic dimer (Xyl-
GalA) by exo-galacturonase we are convinced of the presence of xylogalacturonan in the 
CDTA-extractable soybean pectic substances. It is plausible that the distribution of the xylose 
residues over the galacturonan chain or the presence of fucose residues in the 
xylogalacturonan hinders binding of the antibodies. 

Rhamnogalacturonan 

The rhamnogalacturonan regions are substituted with neutral polymers like arabinans, 
galactans, and arabinogalactans23'38'39. The rhamnose to galacturonic acid ratio of these pectic 
substances varies between 0.05 and l9. All the arabinose and galactose present in CDTA- and 
dilute alkali-extractable pectin is present in rhamnogalacturonan side chains (chapter 2). The 
rhamnogalacturonans (including the (arabino)galactan side chains) represent over 60% of the 
CDTA-extractable pectic substances. The arabinosyl- and galactosyl-rich side chains are 
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attached to C4 of the rhamnosyl residues. The ratio of (1,2)- to (l,2,4)-linked rhamnose in the 
ChSS extract is 1:2 (chapter 4). It can be concluded that the average length of the 
(arabino)galactan side chains would be in the range of 45 to 50 residues. This was confirmed 
by the length of the arabinan/galactan/arabinogalactan oligomers released from the ChSS 
extract by short incubation with endo-galactanase, exo-galactanase, endo-arabinanase, and 
arabinofuranosidase B. HPAEC analysis of this digest showed the presence of galactan and 
arabinogalactan oligomers with a degree of polymerisation up to about 15 and arabinan 
oligomers with a degree of polymerisation up to 30-35. The length of the (arabino)galactan 
side chains in soybean pectic substances exceeds the length of those in sycamore RG-I, 
ranging in size from one to fourteen glycosyl residues37. 

RG hydrolase is unable to degrade the rhamnogalacturonans in the ChSS extract. The 
enzyme is probably hindered by these long (arabino)galactan side chains. RG hydrolase is 
only able to hydrolyse the glycosidic linkage between a galacturonic acid and a rhamnose if 
the rhamnose residue is unbranched or substituted through C4 with only a single galactose 
residue40. Only few unbranched rhamnose residue are available in the ChSS extract (chapter 
4) and based on the high arabinose and galactose content it is expected that none or only very 
few of the (l,2,4)-linked rhamnose residues will carry a single galactose residue. Besides, the 
long neutral side chains will sterically prevent the enzyme to approach the potential 
glycosidic bond to be hydrolysed. Enzymatic removal of a large number of the neutral side 
chains and reduction of the length of the remaining side chains increased the susceptibility of 
the rhamnogalacturonan for RG hydrolase, but only after saponification (chapter 4). 

After enzymatic removal of a large part of the arabinogalactan side chains, NMR 
analysis showed that terminal and 4-linked galactose were attached to the rhamnose residues 
in the rhamnogalacturonan of the PI and PII population. In sycamore RG-I, terminal and 4-
linked galactose were also found to be attached to rhamnose. In addition, terminal arabinosyl 
and 3-, 6-, 2,6-, and 3,6-linked galactosyl residues were attached to C4 of the 2-linked 
rhamnosyl residues in sycamore41. These results showed that at least seven different side 
chains, most commencing with a galactosyl residue, were attached to the RG-I backbone in 
sycamore. In the soybean ChSS fraction, 3-, 6-, 2,6- and 3,6-linked galactosyl residues do not 
occur (chapter 4). However, side chains beginning with an arabinosyl residue might be 
present in soybean. NMR analysis of PI and PII (chapter 4) did not show the presence of such 
side chains, but they might have been removed during acid hydrolysis. In sycamore, 
arabinosyl residues glycosidically linked to rhamnose were observed, and always further 
substituted with arabinosyl residues. Maize RG-I also contains arabinogalactan side chains, 
which consist of a single arabinosyl residue attached to a rhamnosyl residue, which is 
substituted with one or more galactosyl residues . 

So far, soybean pectic side chains were described as galactan backbones with 
arabinose side chains of one or two residues. The results of our studies show that soybean 
pectin contains rather long arabinan side chains in addition to (arabino)galactan side chains. 
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The arabinan side chains are presumably of considerable length (up to dp 30-35). And more 
important arabinose was found to occur interspersed in the galactan chain as an internal (1,5)-
linked arabinofuranose residue or as a terminal arabinopyranose residue (chapter 5). In this 
view it distinguishes itself from other arabinogalactans, described so far. Internal arabinose 
was detected once before, but from a very different source, namely arabinogalactan type II 
from larch43'44'45. The presence of an internal arabinofuranose residue in a pectic 
arabinogalactan chain in cell wall polysaccharides has not been reported previously, not in 
soybean, nor in other fruit or vegetable cell walls. Both ring forms of arabinose also occur in 
arabinogalactan type II, in which L-arabinofuranosyl, and to a lesser extent L-
arabinopyranosyl residues, terminate some of the side chains46. However, in soybean 
arabinogalactan we are dealing with linear (l,4)-linked |3-D-galactan, which is type I 
arabinogalactan. The existence of arabinopyranose residues in pectic arabinogalactan is rarely 
reported. Only pectic substances isolated from the roots of Angelica acutiloba Kitagawa were 
shown to contain a small proportion of arabinopyranose47. 

The presence of internal (l,5)-linked arabinofuranose and terminal arabinopyranose 
residues in the galactan chains has far-reaching consequences for amongst others the 
enzymatic degradation of these arabinogalactan side chains. It (partly) explains their 
resistance to enzymes like endo-galactanase. It is shown in chapter 3 that a combination of 
endo-galactanase, exo-galactanase, endo-arabinanase, and arabinofuranosidase B is required 
for optimal removal of the (arabino)galactan side chains. However, after incubation with this 
combination of enzymes 8% of the arabinose and galactose residues present in the ChSS 
extract still remained attached to the pectin, probably due to the complexity of the remaining 
part of the side chains. Arabinofuranosidase B is unable to release the non-reducing terminal 
arabinopyranose residue due to its ring form; an arabinopyranosidase would bring help here. 
An enzyme able to hydrolyse the glycosidic linkage between a (terminal or (l,4)-linked) 
galactose residue and a (l,5)-linked arabinofuranose residue is yet unknown. It is also 
unknown how the presence of an interspersed arabinose residue in a galactan chain effects the 
activity of the endo-galactanase. This could not be deduced from the structure of the 
degradation products, because complete degradation was not established and it is not known 
whether the resulting arabinogalacto-oligosaccharides can be degraded further by endo-
galactanase. However, it is likely that the endo-galactanase is unable to degrade 
arabinogalactan chains in the vicinity of an internal arabinose residue. 

So far, the incomplete removal of the arabinogalactan side chains from pectic 
polymers by enzymes remained unexplained. Now we have some potential causes in the 
presence of (l,5)-linked arabinofuranose and terminal arabinopyranose. With this knowledge 
and the constantly improving techniques we can focus further research on the complete 
removal of the pectic arabinogalactan side chains. 
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MAIZE KERNEL ARABINOXYLAN 

The extract obtained with a saturated Ba(OH)2-solution (BE1) of maize WUS contains 

predominantly glucuronoarabinoxylans (chapter 7). The BE1 extract from other cereals 

usually contains a considerable amount of (l,3),(l»4)-P-D-glucan. This extract from maize, 

however, contained only 0.7% of glucose. The glucuronoarabinoxylans were highly 

substituted with mainly terminal arabinose residues. A new measure for the degree of 

substitution was defined, and turned out to be higher for maize (87%) than for sorghum 

(70%>). So, although sorghum glucuronoarabinoxylans were described as being very complex, 

those from maize kernels appeared to be even more complex. Not only the degree of 

substitution is higher, but the glucuronoarabinoxylan from maize also contains more complex 

sidechains48'49'50. 

This causes a high resistance towards enzymatic degradation. Endo-xylanase I was not 

able to degrade the glucuronoarabinoxylans in the maize BE1 extract, also not when different 

arabinofuranohydrolases were added to introduce cleaving sites by removing arabinose 

residues. A sub-fraction of the commercial enzyme preparation Ultraflo from Humicola 

insolens was required for degradation of the polysaccharides in maize BEL Analysis of the 

digest showed a wide diversity of degradation products to be present. One series of 

arabinoxylan oligomers had not been isolated or described before, and was distinctive in that 

they contained two glucuronic acid residues. MALDI-TOF MS of the digest showed the 

presence of both glucuronic acid and 4-O-methyl glucuronic acid residues. From the size of 

these oligomers (dp 7 to 10), it could be deduced that the glucuronic acids can be very close 

to each other in the xylan polymer, but are not distributed blockwise. 

A tentative model for maize glucuronoarabinoxylan is shown in Figure 8.2. This 

model is based on the sugar and linkage composition, the degradation products after 

incubation with "Ultraflo arabinoxylan-degrader", the resistance to endo-xylanase I (chapter 

7), and knowledge about the composition of the oligomeric side chains from 

literature48'49'50'51. Some structural features are, however, still unknown. In this model, 

disubstituted xylose residues containing two single-unit arabinose residues are present. It 

might be possible that these xylose residues carry a glucuronic acid residue at the C2 position 

and an arabinose residue or a short side chain at the C3 position, as suggested in the schematic 

structure of the sugar moiety of heteroxylans from maize bran by Saulnier et a/.52, but there is 

no proof for the existence of these structures yet. Other differences between this model 

(Figure 8.2) and the model for maize bran arabinoxylan52 are the distribution of the 

glucuronic acid residues over the xylan chain, the degree of substitution of the schematic 

structure (0.94 versus 1.19), and the presence of dimeric side chains of arabinose in our 

model. 

The linkage composition of maize BE1 shows the presence of equal amounts of (1,5)-

and (l,2)-linked arabinose residues (chapter 7). The heterogeneous side chains (gal-xyl-ara) 
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described by Saulnier et al.50 contain (l,2)-linked arabinose. The amount of (l,2)-linked 

arabinose corresponds to the amount of terminally-linked galactose, analysed in the maize 

BE1 fraction. The short arabinose side chains are consequently made of only (l,5)-linked 

arabinose residues. This is in agreement with the results of Nishitani and Nevins53, who show 

that a-L-arabinofuranosyl-[(l-»5)-0-a-L-arabinofuranosyl]n-side chains are present in the 

arabinoxylans from maize coleoptile cell walls. The short side chains in sorghum, however, 

contain (l,2)-linked arabinose residues51. 
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Figure 8.2. A tentative model for Ba(OH)2-extractable glucuronoarabinoxylan from the maize kernel 

WUS based on their sugar and linkage composition, their resistance to degradation by endo-xylanase I, 

and the occurrence of small side chains described in literature50,53. 

The model for Ba(OH)2-extractable glucuronoarabinoxylan from maize kernel WUS 
differs from the structural model for glucuronoarabinoxylan54 from sorghum in a number of 
respects. Firstly, the model for sorghum describes the more substituted, endo-xylanase I-
resistant 4 M KOH-extactable glucuronoarabinoxylans. Secondly, in sorghum 
glucuronoarabinoxylan, short heterogeneous side chains do not occur. Another important 
difference is the occurrence of xylose in monomelic or oligomeric side groups in 
glucuronoarabinoxylan from maize kernels, this was not detected in sorghum 
glucuronoarabinoxylan. 

The degree of substitution of the xylan backbone determines to a considerable degree 

the solubility of the xylan and its ability to bind to cellulose55. The glucuronoarabinoxylans 

from maize have a high degree of side-chain substitution and will therefore be more soluble, 

will bind less tightly to cellulose, and are more resistant to enzymatic digestion. 
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CONCLUSIONS 

From the discussion in this chapter, it can be concluded that many of the problems raised in 

chapter 1 are still unanswered. However, we did gain much knowledge about the different 

polysaccharides in the soybean and maize kernel cell wall. We now know that the pectins 

from soybean differ significantly from all pectins described so far. Not only the absence of 

homogalacturonan, but also the presence of internal (l,5)-linked arabinofuranose and terminal 

arabinopyranose in the pectic arabinogalactan side chains has never before been described for 

parenchymatous tissues of plants. The Ba(OH)2-extractable glucuronoarabinoxylan from 

maize kernel cell walls appeared to be very highly substituted, more complex than any other 

glucuronoarabinoxylan described so far. 

Soybean pectic substances and maize kernel glucuronoarabinoxylans appeared to be 

rather resistant to degradation by enzymes, which are generally used in our group to degrade 

this kind of polymers. Their structural features, as we know them now, explain this 

phenomenon. Their complexity appeared, however, to be of no concern during their 

degradation in the gastrointestinal tract of livestock56'57. So it is very likely that enzymes able 

to degrade these polysaccharides do exist. For maize kernel glucuronoarabinoxylan such an 

enzyme preparation was already found during this research. Due to the large number of 

enzymes present in this preparation some information about the structure of the 

glucuronoarabinoxylan was lost during digestion. Preservation of this information would 

require further fractionation and isolation of the enzymes in the commercial preparation. 

Our approach to investigation of the chemical structure of cell wall polysaccharides 

proved to be successful. Extraction of the polysaccharides from their original source always 

has to be the first step in their characterisation. Chemical characterisation and enzymatic 

degradation studies already reveal the main lines of their chemical structure. The use of 

MALDI-TOF MS, MS/MS, and NMR spectroscopy provided valuable and detailed 

information on the structure of the polysaccharide fragments obtained after enzymatic or 

chemical degradation. Although a lot of pure and well-characterised enzymes are available 

nowadays, this research showed the need for additional enzymes, like for example 

arabinopyranosidase, RG hydrolases active on side chain-containing rhamnogalacturonan, etc. 

In general, carbohydrate researchers try to translate their findings into universal 

models. Our investigations show that such models are limited in their value, knowledge about 

the structure of plant cell wall polysaccharides is only valid for that particular tissue of that 

plant species. 
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Summary 

SUMMARY 

The subject of this thesis was the elucidation of the chemical fine structure of polysaccharides 

from cell walls of soybean and maize kernel. The two species investigated represent different 

taxonomic groups, soybean belonging to the dicotyledonous and maize to the 

monocotyledonous plants. Besides representing the most important structures present in cell 

wall material, these raw materials are of great importance in food and feed industry. 

The characterisation of the soybean cell wall polysaccharides started with the isolation 

of the cell wall material as Water-Unextractable Solids (WUS) from soybean meal (chapter 

2). The isolation procedure yielded a WUS fraction containing almost all polysaccharides 

present in the meal and only few other components. WUS was sequentially extracted with 

chelating agent (Chelating agent Soluble Solids, ChSS), dilute alkali (Dilute Alkali Soluble 

Solids, DASS), 1 M alkali (1 M Alkali Soluble Solids, 1 MASS) and 4 M alkali (4 M Alkali 

Soluble Solids, 4 MASS) to leave a cellulose-rich residue (RES). The pectin-rich extracts 

(ChSS and DASS) were found to have identical sugar compositions and contained 

predominantly galactose, arabinose, and uronic acid residues. The 1 MASS fraction contained 

xylose in addition to the former three sugars. The hemicellulose-rich fraction (4 MASS) 

contained mainly xylose and glucose. No indications were found that ChSS and DASS were 

structurally different, although it is obvious that their arrangement in the cell wall was not 

identical. 

The intact cell wall polysaccharides in the meal and WUS were hardly degradable by 

enzymes. Once extracted, the polysaccharides from WUS were degraded more easily (chapter 

3). The arabinogalactan side chains in the pectin-rich ChSS fraction could to a large extent be 

removed by the combined action of endo-galactanase, exo-galactanase, endo-arabinanase, and 

arabinofuranosidase B. The remaining polymer (fraction P) was isolated and represented 30% 

of the polysaccharides in the ChSS fraction (12% of the polysaccharides in the WUS). This 

polymer still contained some remaining arabinose and galactose residues, which could not be 

removed by the enzyme mixture used. 

The pectic backbone (fraction P) appeared to be resistant to enzymatic degradation by 

both established (like polygalacturonase) and novel pectic enzymes (like RG-hydrolase). 

After partial acid hydrolysis of the isolated pectic backbone, one oligomeric and two 

polymeric populations were obtained by size-exclusion chromatography. Monosaccharide and 

linkage analyses, enzymatic degradation, and NMR spectroscopy of these two polymeric 

populations showed that the pectic substances in the original extract (ChSS) contained both 

rhamnogalacturonan and xylogalacturonan regions, while homogalacturonan was absent 

(chapter 4). The absence of homogalacturonan distinguishes the pectic substances from 

soybean from pectic polysaccharides extracted from other sources, which contain 

homogalacturonan and rhamnogalacturonan regions and can be degraded with 
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polygalacturonase and RG-hydrolase, respectively. Acid hydrolysis of fraction P improves the 
susceptibility of the remaining polymers for R.G hydrolase and exo-galacturonase. 

The xylogalacturonan present in the ChSS fraction distinguishes itself from 
xylogalacturonan from other sources known so far. A part of the xylose residues in the 
xylogalacturonan is substituted with fucose and the xylogalacturonan is resistant to 
degradation with XGH. 

The arabinogalactan side chains, which were removed from the ChSS fraction to 
obtain fraction P, were the subjects of investigation in chapter 5. Fractionation, 
monosaccharide and linkage analyses, enzymatic degradation, and mass spectrometry of the 
oligosaccharides in the digest of ChSS after enzymatic digestion with arabinogalactan 
degrading enzymes indicated the presence of common linear (l,4)-linked galacto-
oligosaccharides, and both linear and branched arabino-oligosaccharides. In addition, the 
results unambiguously showed the presence of oligosaccharides containing (l,4)-linked 
galactose residues bearing an arabmopyranose residue at the non-reducing terminus, and a 
mixture of linear oligosaccharides constructed of (l,4)-linked galactose residues interspersed 
with one internal (l,5)-linked arabinofuranose residue. The presence of an internal 
arabinofuranose residue in a pectic arabinogalactan chain in cell wall polysacchairdes has not 
been reported previously, not in soybean, nor in other fruit or vegetable cell walls. Another 
uncommon feature is the presence of arabinopyranose residues in pectic arabinogalactan. 

The pectic substances form only one network of the plant cell wall, the other is the 
cellulose/hemicellulose network. The hemicelluloses were solubilised from the residue with 1 
and 4 M KOH solutions (chapter 6). The polysaccharides extracted with 1 M KOH were 
fractionated by ion-exchange chromatography, yielding a neutral and a pectic population. The 
sugar composition of the neutral population indicated the presence of xyloglucans and 
possibly xylans. Enzymatic degradation with endo-xylanases and endo-glucanases showed the 
presence of xyloglucan fragments only. Analysis of the digest formed after incubation of the 
neutral population with endo-glucanase V showed the formation of the characteristic poly-
XXXG xyloglucan oligomers (XXG, XXXG, XXFG, XLXG, and XLFG), so three out of four 
glucose residues carry a side chain. 

In chapter 7, the structural features of glucuronoarabinoxylans from maize kernels are 
described. First of all, maize kernel cell wall material was isolated as Water-Unextractable 
Solids (WUS). As expected the non-starch polysaccharides (NSP) had concentrated in the 
WUS (57%). These NSP were composed mainly of glucose, xylose, arabinose, and glucuronic 
acid. Sequential extractions with a saturated Ba(OH)2-solution (BE1 extract), and distilled 
water (BE2 extract) were used to solubilise glucuronoarabinoxylans from maize WUS. The 
glycosidic linkage composition of the extracts and their resistance to endo-xylanase treatment 
indicated that the extracted glucuronoarabinoxylans were highly substituted. In the maize BE1 
extract 25% of the xylose was unsubstituted, 38% was monosubstituted and 15% was 
disubstituted. The glucuronoarabinoxylans in maize BE1 appeared to be resistant to endo-
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xylanase treatment, but could be degraded by a sub-fraction of Ultraflo, a commercial enzyme 
preparation from Humicola insolens. The digest contained a number of series of oligomers: 
pentose,,, pentose„GlcA, pentosenhexose, and pentosenGlcA2. The presence of these 
glucuronic acid-containing series of oligomers showed that the glucuronic acids in the 
glucuronoarabinoxylancan can be very close to each other, but are not distributed blockwise. 
Finally, a new measure for the degree of substitution of glucuronoarabinoxylans was defined. 
It turned out that the degree of substitution in maize BE1 is much higher (87%) than in 
sorghum (70%) and wheat flour BE1 (56%). This indicates that the glucuronoarabinoxylans 
in maize BE1 are more complex than those in sorghum BE1 and explains their resistance to 
endo-xylanase treatment. 

From this research, it can be concluded that both soybean and maize kernel cell wall 
polysaccharides distinguish themselves in a number of respects from other plant cell walls 
polysaccharides. The absence of homogalacturonan, but also the presence of internal (1,5)-
linked arabinofuranose and terminal arabinopyranose in the pectic arabinogalactan side chains 
from soybean cell walls and the complexity of the glucuronoarabinoxylan from maize kernel 
cell walls are discussed in chapter 8. In addition, it was shown that techniques like mass 
spectrometry and NMR spectroscopy are powerfull techniques to be used after (enzymatic) 
fragmentation, for chemical characterisation of the original polysaccharides. 
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SAMENVATTING 

Het in dit proefschrift beschreven onderzoek betrof de opheldering van de chemische 

structuur van polysachariden uit de celwanden van sojabonen en maiskorrels. De twee 

onderzochte soorten vertegenwoordigen verschillende taxonomische groepen, sojabonen 

behoren tot de dicotyle en maiskorrels behoren tot de monocotyle planten. Naast het 

vertegenwoordigen van de belangrijkste structuren in de celwand, zijn deze twee grondstoffen 

van groot belang in zowel de levensmiddelen- als de veevoederindustrie. 

De karakterisering van de celwandpolysachariden uit sojabonen ving aan met de 

isolatie van het celwandmateriaal (WUS) uit sojameel (hoofdstuk 2). De isolatiemethode 

leverde een WUS fractie op die bijna alle polysachariden en nauwelijks andere bestanddelen 

uit het meel bevatte. De WUS werd sequentieel geextraheerd met CDTA (Chelating agent 

Soluble Solids, ChSS), verdunde loog (Dilute Alkali Soluble Solids, DASS), 1 M loog (1 M 

Alkali Soluble Solids, 1 MASS) and 4 M loog (4 M Alkali Soluble Solids, 4 MASS) en 

uiteindelijk resteerde een celluloserijke fractie (RES). De pectinerijke fracties (ChSS en 

DASS) bleken dezelfde suikersamenstelling te hebben, ze bevatten voornamelijk galactose, 

arabinose en uronzuur residuen. De 1 MASS fractie bevatte naast deze drie suikers ook nog 

xylose. De hemicelluloserijke fractie (4 MASS) bevatte vooral xylose en glucose. Niets 

duidde erop dat er verschillen waren in de chemische structuur van ChSS en DASS, maar het 

is duidelijk dat de manier waarop ze in de celwand hebben gezeten wel anders was. 

De intacte celwandpolysachariden in het meel en in de WUS konden nauwelijks 

afgebroken worden met enzymen. Wanneer ze eenmaal waren geextraheerd werden de 

polysachariden uit de WUS makkelijker gedegradeerd (hoofdstuk 3). De 

arabinogalactaanzijketens in de pectinerijke ChSS fractie konden voor een groot deel 

verwijderd worden door incubatie met endo-galactanase, exo-galactanase, endo-arabinanase 

en arabinofuranosidase B. Het overblijvende polymeer (fractie P) werd ge'isoleerd en 

vertegenwoordigde 30% van de polysachariden in de ChSS fractie (12% van de 

polysachariden in de WUS). Dit polymeer bevatte nog steeds wat arbinose en galactose 

residuen die niet door de gebruikte enzymmengsels verwijderd konden worden. 

De hoofdketen van de pectines (fractie P) bleek resistent te zijn tegen enzymatische 

degradatie door zowel bekende (zoals polygalacturonase) als relatief nieuwe pectolytische 

enzymen (zolas RG-hydrolase). Na zure hydrolyse van de gei'soleerde hoofdketen van de 

pectines werden een oligomere en twee polymere populaties verkregen na gelpermeatie 

chromatografie. Bepaling van de suiker- en bindingstype-samenstelling, enzymatische 

degradatie en NMR spectroscopic van de twee polymere populaties toonde aan dat de 

pectines in het originele ChSS extract zowel rhamnogalacturonaan als xylogalacturonaan 

bevatte en dat homogalacturonaan afwezig was (hoofdstuk 4). De afwezigheid van 

homogalacturonaan onderscheidt de pectines uit sojabonen van pectines uit andere bronnen. 

De meeste pectines bevatten zowel homogalacturonaan en rhamnogalacturonaan en kunnen 
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gedegradeerd worden met respectievelijk polygalacturonase en RG-hydrolase. Zure hydrolyse 
van fractie P verhoogt de gevoeligheid van de resterende polymeren voor RG hydrolase en 
exo-galacturonase. 

Het xylogalacturonaan aanwezig in de ChSS fractie onderscheid zich van tot dusver 
bekend xylogalacturonaan uit andere bronnen. Een deel van de xylose residuen in het 
xylogalacturonaan is gesubstitueerd met fiicose en het xylogalacturonaan is resistent tegen 
degradatie met XGH. 

De arabinogalactaanzijketens, die werden verwijderd uit de ChSS fractie om zo fractie 
P te verkrijgen, werden onderzocht in hoofdstuk 5. Fractionering, bepaling van de suiker- en 
bindingstype-samnestelling, enzymatische degradatie en massa spectrometrie van de 
oligosachariden in het digest van ChSS na incubatie met arabinogalactaan-afbrekende 
enzymen, indiceerde de aanwezigheid van de veelvoorkomende lineaire (l,4)-gebonden 
galacto-oligosachariden en zowel lineaire als vertakte arabino-oligosachariden. Daarnaast 
lieten de resultaten zeer duidelijk de aanwezigheid zien van oligosachariden bestaande uit 
(l,4)-gebonden galactose residuen met een arabinqpyraw0.se residu aan het niet-reducerende 
einde en van een mengsel van lineaire oligosachariden bestaande uit (l,4)-gebonden galactose 
residuen met een intern (l,5)-gebonden arabinofuranose residu. Het bestaan van een intern 
arabinofuranose residu in een arabinogalactaanzijketen van een pectine uit de celwand werd 
niet eerder gerapporteerd, niet in sojabonen, maar 00k niet in andere celwanden uit groente of 
fruit. Een ander ongewoon fenomeen is de aanwezigheid van arabinopyranose residuen in 
arabinogalactanen uit pectine. 

De pectines vormen een netwerk van de plantencelwand, het andere is het 
cellulose/hemicellulose netwerk. De hemicelluloses werden uit de WUS geextraheerd met 1 
en 4 M K.OH oplossingen (hoofdstuk 6). De polysachariden die werden geextraheerd met 1 M 
KOH konden verder gefractioneerd worden met ionenwisselingschromatografie, resulterend 
in een neutrale en een geladen populatie (pectine). De suikersamenstelling van de neutrale 
populatie toont dat xyloglucanen en mogelijk 00k xylanen aanwezig zijn. Enzymatische 
degradatie met endo-xylanases en endo-glucanases bevestigt alleen de aanwezigheid van 
xyloglucaan fragmenten. Analyse van het digest gevormd na incubatie van de neutrale 
populatie met endo-glucanase V toont de vorming van karakteristieke poly-XXXG 
xyloglucaan oligomeren (XXG, XXXG, XXFG, XLXG, and XLFG), dus drie van de vier 
glucose residuen dragen een zijketen. 

In hoofdstuk 7 wordt de structuur van de glucuronoarabinoxylanen uit mai'skorrels 
beschreven. Allereerst werd het celwandmateriaal uit de mai'skorrels geisoleerd (WUS). Zoals 
verwacht hadden de niet-zetmeel polysachariden (NSP) zich in de WUS geconcentreerd 
(57%). Deze NSP bestonden voornamelijk uit glucose, xylose, arabinose en glucuronzuur. 
Sequentiele extracties met een verzadigde Ba(OH)2-oplossing (BE1 extract) en gedestilleerd 
water (BE2 extract) werden gebruikt om de glucuronoarabinoxylanen uit de mai's WUS in 
oplossing te brengen. De bindingstype-samenstelling van de extracten en hun resistentie tegen 
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degradatie met endo-xylanase geeft aanwijzingen voor het feit dat de geextraheerde 
glucuronoarabinoxylanen hoog vertakt zijn. In het mai's BE1 extract was 25% van het xylose 
ongesubstitueerd, 38% was enkel gesubstitueerd en 15% was dubbel gesubstitueerd. De 
glucuronoarabinoxylanen in mai's BE1 waren resistent tegen behandeling met endo-xylanase, 
maar konden wel afgebroken worden met een sub-fractie van Ultraflo, een commercieel 
enzympreparaat van Humicola insolens. Het digest bevatte een aantal series van oligomeren: 
pentose,,, pentosepGlcA, pentosenhexose, and pentoser,GlcA2. De aanwezigheid van deze 
glucuronzuurbevattende series laat zien dat de glucuronzuren in het glucuronoarabinoxylaan 
zeer dicht bij elkaar kunnen zitten maar niet bloksgewijs over de keten verdeeld zijn. Een 
nieuwe maat voor de substitutiegraad van glucuronoarabinoxylanen werd gedefinieerd. 
Hieruit bleek dat de substitutiegraad in mai's BE1 veel hoger(87%) is dan in sorghum (70%) 
and tarwemeel BE1 (56%). Dit toont nog eens dat de glucuronoarabinoxylanen in mai's 
complexer zijn dan die in BE1 en verklaart hun resistentie tegen endo-xylanase. 

Uit dit onderzoek kan worden geconcludeerd dat celwandpolysachariden uit zowel 
sojabonen als maiskorrels zich in een aantal aspecten onderscheiden van 
celwandpolysachariden uit andere planten. De afwezigheid van homogalacturonaan, maar ook 
de aanwezigheid van intern (l,5)-gebonden arabinofuranose en terminaal arabinopyranose in 
de arabinogalactaanzijketens van pectine en de complexheid van de glucuronoarabinoxylanen 
uit de celwanden van maiskorrels worden bediscussieerd in hoofdstuk 8. Verder laten de 
resultaten in dit proefschrift zien dat massa spectrometrie en NMR spectroscopic krachtige 
technieken zijn die na (enzymatische) fragmentatie kunnen worden gebruikt voor de 
chemische karakterisatie van de originele celwandpolysachariden. 
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