
fliNOitOl , 3V6? 

A Hierarchical Object-Based Approach 
for Urban Land-Use Classification 

from Remote Sensing Data 

Zhan, Qingming 

Thesis 

to fulfill the requirements 
for the degree of doctor 

on the authority 
of the Rector Magnificus of 

Wageningen University, 
Prof. Dr. Ir. L. Speelman, 
to be publicly defended 

on Wednesday 29 October 2003, 
at 15:00 hrs in the auditorium 

oflTC, Enschede 

/ 
S/-v ': U- : ' <(J 



CIP-DATA KONINKLIJKE BIBLIOTHEEK, DEN HAAG 

© 2003 by Zhan, Qingming 

ISBN 90-5808-917-7 

All right reserved. No part of this publication apart from bibliographic data may 
be reproduced, stored in a retrieval system or transmitted in any form or by any 
means, mechanical, photo-copying, recording, or otherwise, without the prior writ­
ten permission of the author, Hengelosestraat 99, P.O. Box 6, 7500 AA Enschede, 
The Netherlands. 

ITC Dissertation No. 103 



A Hierarchical Object-Based Approach 
for Urban Land-Use Classification 

from Remote Sensing Data 

Zhan, Qingming 

0000 



Promoter: Prof. Dr. Ir. Martien Molenaar, 
Professor in Geoinformatics and Spatial Data Acqusition 

Co-Promotor: Dr. Klaus Tempfli, 

Associate Professor in Earth Observation Science 

Examining Committee: 

Prof. Dr. Ir. Arnold Bregt Wageningen University 

Prof. Dr. -Ing. Manfred Ehlers University of Vechta, Germany 
Prof. Dr. Peter Fisher University of Leicester, UK 
Prof. Dr. Henk Ottens Utrecht University 



/MOfZOl, 3 f6? 

Propositions 

1. To extract land-use information from image data a hierarchical approach 
with three levels is required, with image objects at the elementary level, 
land-cover objects at the intermediate level and land-use objects at the 
highest level. (This thesis) 

2. We can make a correct observation only if we observe at the right scale. The 
term 'scale' used here means not only the image scale but also the distance 
between observed targets and an observer, the degree of detail of the targets, 
the spatial resolution of an image, and the required abstraction level of 
reality. (This thesis) 

3. For most types of spatial data the errors inherent in the source document are 
clearly more significant than those introduced by processing. This is 
particularly true when the source document contains objects which are 
approximate abstractions of complex and continuous spatial variation. 
(Michael F. Goodchild, 1989) 

4. The degree of error caused by forcing of spatial phenomena into possibly 
inappropriate, exact, crisply defined entities has received less attention but 
may be a major source of unseen errors and information loss. (Peter A. 
Burrough and Rachael A. McDonnell, 1998) 

5. Visual information is highly subjective because to a large extent we are only 
able to observe those things that we can place in some context. (Martien 
Molenaar, 1998) 

6. If we have a correct theory but merely talk about it and do not put it into 
practice, then that theory, however good, is of no significance. (Mao Tsetung, 
"On Practice", July 1937, Selected Works, vol. 1, page 304) 

7. H A f f ^ W f W - ? L ^ ? (When there is a group of three persons at least 
one of them can be my teacher. - Confucius, an ancient Chinese ideologist, 
educator, 551—479 BC) 

These propositions belong to the thesis of Qingming Zhan: A Hierarchical 
Object-Based Approach for Urban Land-Use Classification from Remote 
Sensing Data. Enschede, the Netherlands, 29th October 2003. 
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Summary 

Zhan, Q., 2003. A Hierarchical Object-Based Approach for Urban Land-
Use Classification from Remote Sensing Data. PhD Dissertation 

Land-cover and land-use data are essential for urban planning and man­
agement. Traditional land-use mapping by visual image-interpretation 
is expensive, time-consuming and often subjective. Researchers have 
been searching for automatic or semi-automatic approaches for many 
years. The combination of airborne LIDAR data with high spatial reso­
lution and multi-spectral images such as IKONOS, QuickBird and SPOT 
5 offers great opportunities, especially for application in urban areas. 
The second generation of airborne scanners with the capacity to acquire 
simultaneously range and multi-spectral intensity data, makes it possi­
ble to extract many meaningful features for land-use classification. The 
overall objective of this research is the development of a semi-automatic 
approach for land-cover and land-use classification, based on laser scan­
ning data and multi-spectral images and the development of methods 
for the consistent aggregation of elementary objects to composite objects 
at higher abstraction levels. 

In this research, several new sensor data have been used and exam­
ined for urban land-cover and land-use classification. We have taken the 
most popular pixel-based classifier, the maximum likelihood classifier 
(MLC), as an example of traditional classifiers and applied it to high-
resolution data. A number of problems have been observed and high­
lighted, and several remedial measures have been proposed and tested. 
Land-cover classification accuracy can be improved by modelling the de­
cision surface in the feature space and by selecting samples from both 
pure pixels and mixed pixels. Spatial partitioning of decision surfaces 
based on samples of end-member classes is the key to the proposed solu­
tions. The experimental results have confirmed the effectiveness of the 
proposed class integration method, which uses pure and mixed samples. 

Despite the improved land-cover classification accuracy of MLC, we 
consider the attainable results insufficient for a detailed urban land-use 
classification. The key features for image-interpretation (size, shape, 
colour, orientation, pattern, association) are characteristics for certain 
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types of objects and are only relevant for abstraction levels higher than 
the pixel level. These features play a key role in image analysis and 
land-use classification. Object-based image processing techniques are 
considered for image analysis at a supra pixel level. Therefore, an object-
based image analysis approach has become the main focus of this re­
search. 

This research develops a hierarchical object-based approach for ur­
ban land-use classification. The proposed method consists of three steps: 
land-cover classification, the definition and delineation of land-use units 
and land-use classification. It incorporates pixel-based image process­
ing techniques and object-based techniques at different stages. Various 
techniques have been proposed and tested for object extraction at differ­
ent aggregation levels. 

Several concepts and methods have been proposed and discussed to 
extract image objects and object properties, and to identify explicit topo­
logical relations between image objects. We have elaborated and applied 
the hybrid-raster data model to explicitly identify topological relation­
ships between image objects. We have tested these concepts and meth­
ods for urban land-cover and land-use classification on two test sites. 
The test results demonstrate the effectiveness of the proposed per-object 
approach. 

Structural information derived from hierarchical image objects plays 
an important role in land-use classification of urban areas. Delaunay 
triangulation has been successfully applied to spatially disjoint objects 
to obtain spatial adjacency relationships and proximity measures; these 
provide essential information for spatial clustering of objects that form 
spatial land-use units. Several measures have been proposed and tested 
for the evaluation of the similarity of buildings. These similarity mea­
sures in combination with the spatial adjacency relationships and prox­
imity measures provide information for spatial clustering of land-cover 
objects, which form spatial land-use units. 

Several object properties have been proposed and extracted as at­
tributes of land-use objects for our two test sites. Fuzzy membership 
functions have been designed to establish the relationships between ex­
tracted land-use object properties and designated land-use classes. A 
fuzzy classifier has been applied for per-object classification based on ex­
tracted land-use units and their object properties. The obtained results 
show that the proposed object-based land-use classification approach is 
promising. The extracted properties of land-use objects are also impor­
tant information for urban studies, planning and management. 

A united framework for quality assessment has been proposed and 
tested, based on similarity measures between classified data and refer­
ence data. This utilises per-object and per-pixel measurements. The 
proposed per-object quality measures provide possibilities for obtain­
ing additional quality assessment based on various object properties. 
The proposed uncertainty measures for extracted land-cover objects and 
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classified land-use objects have been tested, and we expect them useful 
in controlling the classification process. 

The developed concepts and methods have been implemented by pro­
gramming in Matlab. The implemented system allows different users 
to specify characteristics of information that need to be extracted from 
laser data and spectral data, in order to obtain the desired results. This 
feature offers planners and other users the opportunity to produce re­
sults according to their specific wishes and application requirements 
from a detailed data set. The multi use of such detailed data sets is 
important because of the relative high costs of acquiring high-resolution 
laser data and spectral data. The experimental results show the rel­
evance of hierarchical object modelling in combination with structural 
image analysis techniques for urban land-cover and land-use classifica­
tion. 

Buildings, green spaces, water surfaces and sealed-ground surfaces 
have been successfully extracted at the land-cover level. Spatial land-
use units have been obtained by aggregation of the extracted land-cover 
objects. The high quality of the per-object land-use classification has 
been established by comparing it with the results of visual interpreta­
tion. 

Keywords 
Remote Sensing, GIS, Image Processing, Classification, Feature Extrac­
tion, Object Modelling, Land Use, Urban Planning, LIDAR. 
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Chapter 1 

Introduction 

1.1 Overview of this research 
Land-cover and land-use information is essential for urban planning and manage­
ment. The terms 'land cover' and land use' are often confused. Land use can be 
denned as the use of land by humans, usually with an emphasis on the functional 
role of land in economic activities. Land use is an abstraction not always directly 
observable under even the closest inspection. In contrast, land cover designates the 
visible evidence of land use, or aspects of it such as roads, buildings, parking lots, 
forest, rivers. Whereas land use is abstract, land cover is concrete and therefore is 
subject to direct observation. Another distinction is that land cover lacks the empha­
sis on the economic function that is essential to the concept of land use (Campbell, 
1996, 2002). 

Many computer-aided classification methods have been developed since the early 
stages of remote sensing application in 1970s (Curran, 1985; Schowengerdt, 1997; 
Richards and Jia, 1999; Mather, 1999; Tso and Mather, 2001; Campbell, 2002). Most 
existing approaches are pixel-based, using multi-spectral data alone, and aim at 
land-cover mapping, since the spectral information contained in remote sensing im­
ages consists of electromagnetic reflections of the physical properties of terrain fea­
tures. Many existing classifiers fail to produce high-accuracy results because of the 
existence of mixed pixels caused by the limited spatial resolution of sensors. There­
fore high spatial resolution images will be tested in this research to find out if such 
data can be used for producing better land-cover maps. Please note that in this 
dissertation high spatial resolution or high resolution refers to images with a spa­
tial resolution from 0.5 m to 4 m produced by sensors such as IKONOS, QuickBird, 
TopoSys. 

Currently, urban land-use mapping is still largely based on visual interpreta­
tion using aerial photographs or satellite images, owing to the complexity of urban 
patterns and the lack of tools for automatic solutions. Human knowledge plays an 
important role in delineating different land-use units in space and identifying the 
land-use type of each spatial unit. This is a labour-intensive approach and land-use 
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classification results produced manually can be variable and inconsistent as regards 
delineating spatial units and assigning proper land-use types, because of the com­
plexity of urban environments and different understanding of individuals. Therefore 
an automatic or semi-automatic land-use mapping approach would be preferred. 
To support feature extraction and land-cover and land-use classification, an object-
based image analysis approach is developed and investigated in this research, where 
image objects are defined based on the hybrid-raster data model. Topological rela­
tions between image objects at different abstraction levels are defined and extracted 
based on image regions (representation of objects in a 2D image). In turn, structural 
analysis and spatial clustering can be implemented and spatial clusters or spatial 
units of land use can be extracted in the object-based approach, which is essential to 
accomplishing land-use classification. 

Because of the hierarchical nature of urban planning, land-cover and land-use 
mapping has to be produced with certain amounts of detail at certain abstraction 
levels. Single-product approaches may be inconsistent and expensive and should be 
avoided, a series production approach is likely to be a more efficient way of producing 
several products at different abstraction levels, based on one set of high-resolution 
image data. Since data and updating are expensive, the average costs could be re­
duced if we managed to produce or update several products based on one detailed 
data set, so that land-use data at a higher abstraction level could be extracted based 
on land-cover data extracted at a lower abstraction level. Therefore in the context 
of planning and management it is worthwhile to find out the relationships between 
different abstraction levels, in terms of scale, contents, the minimum size of spatial 
units, etc., so that consistent land-cover and land-use maps at different abstraction 
levels can be produced. In addition, consistent and comparable land-use maps are 
expected to be produced by applying the same process and rules to image data ac­
quired in the past, present or in the future, because human influences will have been 
eliminated to a great extent. This feature is crucial for change analysis, since owing 
to human influences such as diverse understanding and assorted backgrounds, dif­
ferent people often produce different land-use maps (different boundaries, different 
codes) based on visual interpretation, even when using the same set of images. 

The proposed concepts and approaches will be tested on two case study areas. 
The first test site is in Amsterdam. The data for this densely built-up urban area are 
an IKONOS image and a digital surface model (DSM) obtained from laser scanning. 
The second case considers a low-density sub-urban area, the city of Ravensburg, 
Germany, where we have laser data and high-resolution multi-spectral (MS) images 
acquired simultaneously. These two different cases were also selected with a view 
to including different land-use types and spatial patterns in the investigation and 
examining the effectiveness of different data combinations. 

1.2 Research objectives and motivation 
Land-cover and land-use data are essential for urban planning and management, 
based on the roles they play in the planning process, as shown in Figure 1.1. Land-
use data are fundamental sources for problem identification and goal formulation 
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Figure 1.1: Planning process (McLoughlin, 1969; Hall, 2002). 

at the initial stage of planning. Land-use data are key factors in planning formu­
lation and forecasting since land-use types and their spatial arrangement are the 
core business of physical planning. Land-use data play an important role in land 
suitability evaluation and demand-supply analysis. Land-cover data are fundamen­
tal sources for reasoning on land use and for detailed planning. Moreover, land-use 
planning may be the sole purpose of a planning task in hand. Therefore automatic 
or semi-automatic land-cover classification and land-use classification, based on re­
mote sensing images and consistent aggregation from lower abstraction levels to 
higher abstraction levels, are the overall objectives of this research. 

To achieve these objectives, the following technical issues are formulated in re­
lation to finding solutions to our research objectives. 

Land-cover classification based on high-resolution data 

Detailed data are essential for feature extraction, feature handling and the rep­
resentation of detailed geo-spatial information. Remote sensing technology provides 
timely available information from spaceborne earth observation systems and air­
borne laser scanning and imaging systems for a wide range of applications at differ­
ent scale levels. High-resolution (0.5 m to 4 m) images and airborne laser altimetry 
data offer exciting possibilities for feature extraction and spatial analysis in urban 
areas. A combination of IKONOS images and airborne laser scanning data can be 
one choice. An even more promising data source has become available recently from 
the second generation of airborne laser scanners combined with a multi-spectral 
scanner, e.g. TopoSys, which provides high-accuracy 3D data of the earth's surface 
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and image data simultaneously. However, there are a number of technical issues 
that have attracted the attention of researchers because of the complexity of the 
real world and the problems brought about by these newly available data sets. The 
following are some of the issues that became components of this research. 

With the use of high-resolution data the problem of mixed pixels is reduced but 
the internal variability and noise within land-cover and land-use classes is increased 
(Cushine, 1987). As a consequence, traditional classification methods such as the 
maximum likelihood classifier (MLC) method are producing too many classes or 
classes that are not well defined. Standard techniques have to be augmented for 
an appropriate analysis because the necessary pixel homogeneity can no longer be 
achieved by the integration effort of large pixel sizes (e.g., 10 m to 80 m). Because 
of their high spatial resolution the information content of the high-resolution data 
in such heterogeneous regions is very complex (Ehlers et al., 2002). In cases of 
coarse spatial resolution, each pixel may consist of different features appearing in 
the spatial coverage of a pixel, thus showing a mixed spectral value in each band. 
Spectral information is used for identifying features by comparison with parameters 
derived from samples. Comparison is carried out on a basis where sample pixels 
may be mixed. A pixel of coarse resolution contains a lot of contextual information 
associated with adjacent pixels. Spectral values between neighbouring pixels are 
often quite similar, owing to the nature of mixed pixels (smooth transition between 
neighbouring classes). Sample pixels selected to represent a class are likely to show 
similarity. With high-resolution images, a pixel will contain only one relatively pure 
terrain feature in most cases. Pixels as parts of an object may have different spec­
tral values due to the different materials they represent or their orientation toward 
sunlight. For instance, the roof of a building may be constructed of different ma­
terials, say, concrete and asphalt, or, in the case of a gable roofs, the parts of the 
roof under direct sunlight may have spectral values different from those of the parts 
on the dark side. Sample pixels selected from different parts of the same roof to 
represent the roof class may appear in several clusters for each end-member class 
in the feature space and make a pixel-based classifier such as ML biased. On the 
other hand, pixels from different objects may have the same or very similar spectral 
values. For example, as roads and roofs may contain the same or similar material 
(e.g. asphalt), a pixel from a pixel from a road and a pixel from a roof may have very 
similar spectral values. In principle, it is impossible for a pixel-based classifier to 
distinguish them explicitly by using spectral information alone. 

In addition, structural and topological information such as the adjacency rela­
tionship between buildings is important information for image understanding. Such 
information requires the detection of individual features and is unlikely to be de­
rived from adjacent pixels by pixel-based approaches, since each pixel and it adja­
cent pixels will have a relatively small spatial coverage (10 m2 to 150 m2) in these 
images. Meaningful structural and topological information will have to be derived 
based on the structural analysis of adjacent features (objects) rather than from ad­
jacent pixels. Therefore, conventional pixel-based approaches are not expected to 
produce good results for high-resolution data. What improvement can be made to 
enable existing pixel-based classifiers to work with this type of data? Can the object-
based approach do a better job here? 
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Object-based data model for handling images and raster field data 

Digital surface models acquired by a laser scanner are becoming increasingly 
available. DSM provides information on the elevation of terrain features above a 
well-defined datum, including man-made features such as roofs of buildings. Mod­
elling a surface by elevation values is referred to as 'representation by field data'. 
Multi-spectral remote sensing images are also field data. Land-cover and land-use 
classification based on remote sensing images can be treated as mapping or trans­
formation from field data to land-cover and land-use objects. Image objects are con­
ceptualised and can be represented by image regions in a 2D image space. These 
provide a better representation than individual pixels and are much closer to the 
human perception of entities such as buildings and residential areas, which we use 
in planning and many other disciplines. A field model is one of many conceptual 
models of geographical variation and a basis for much scientific and geographical 
modelling. In the field model, every location in a spatial framework is associated 
with a set of attributes measured on a variety of scales. Fields are spatially con­
tinuous by definition, but 'continuous' might also refer to the measurement scale (z 
value). Variables z can be any data type: binary, nominal, ordinal, interval or ra­
tio (Goodchild, 1992, 1997; Cova and Goodchild, 2002). A field can be viewed as a 
mapping between a locational reference frame and an attribute domain (Worboys, 
1995). Representation of fields must always be approximate, as we cannot store 
an infinite number of locations. Spatial tessellation (regular, irregular or hybrid) is 
the means most used for representing field-based models. Common operations on 
fields include interpolation, classification, filtering, spatial overlay, statistical anal­
ysis, map algebra, spread functions, corridor analysis, terrain analysis, and many 
others (Goodchild, 1997; Cova and Goodchild, 2002). 

There are many entities in geographical reality that are readily perceived as ob­
jects, such as lakes, rivers, buildings. Object representation in a database of real 
world entities such as buildings and lakes or conceptualised entities such as com­
mercial and residential is considered more natural and logical. In this thesis, we 
use 'object' to refer to object representation and 'entity* to refer to an entity in real­
ity. From an object perspective, space is viewed as a container populated by these 
entities, each with an identity, spatial embedding and attributes. Natural language 
is much more suited to describing objects than fields (Cova and Goodchild, 2002). 
Molenaar (1998) proposes a theory for spatial object modelling in GIS that provides 
a theoretical framework for object-based spatial data modelling. Couclelis (1992) 
and Worboys (1995) note that the field and object conceptual perspectives should 
not be considered mutually exclusive. The field and object perspectives can be used 
in conjunction, as well as derived from one another (Cova and Goodchild, 2002). 
Therefore, we introduce 'image object' (IO) to represent objects extracted from field 
data (images) according to their definitions and meaning in natural language (se­
mantic). Image objects are regarded as representations of real world entities or 
conceptualised entities in 2D image. An image object is a spatial container that re­
lates locations in a field space to objects in an object space similar to an object field 
as described in Cova and Goodchild (2002). The main difference between an image 
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object and an object field is that an image object emphasises the spatial extent of an 
object (image region) while an object field is defined as a continuous field in which 
locations are mapped to spatial objects (Cova and Goodchild, 2002). Both of them 
share qualities of the field and the object conceptual perspective of geographical phe­
nomena. How can we define a spatially embedded object so that topological relations 
between objects as represented in a raster can be extracted1? What are the roles for 
object extraction from images? How can image objects be mapped from a field space 
to an object space? How can we define and identify topological relationships between 
objects based on a raster data model? 

Multi-scale/multi-level aggregation 

Urban planning and management use a variety of data in their different stages 
(Le Clercq, 1990). Many are geo-spatial data. Planning products are hierarchically 
associated so that planning at a higher level will be used as a guide for planning 
at the lower levels. For instance, the regional plan will guide the master plan, the 
master plan will serve as a guide for the district plan or detailed plan, and so on. 
Planning at each level is an attempt to solve particular problems at an adequate 
scope or scale. The required degree of detail in geo-spatial data is also quite dif­
ferent at each level. The degree of detail is directly associated with the scale of 
the geo-data or maps used for analysis and planning formulation. Therefore, aggre­
gation is involved at different levels of the planning hierarchy in order to provide 
a reasonable amount of information (degree of detail) and a suitable scale at each 
level. Land-cover and land-use objects obtained from images such as buildings or 
residential areas are a better form of representation than pixels for human percep­
tion. Multi-scale/multi-level aggregation will be based on such objects. A syntax has 
to be defined to support such multi-scale/multi-level aggregation in the context of 
urban planning and management. This syntax should be able to take into account 
the geometric, thematic and semantic attributes of objects in multi-scale/multi-level 
aggregation. What rules may be relevant for such aggregation with respect to geo­
metric, thematic and semantic attributes? 

Semantic and imprecision issues 

Planning at different levels will have to look at different aspects of urban reality 
such as social aspects (e.g. population, education), economic aspects (e.g. indus­
try, employment), environmental aspects (e.g. pollution, green space). Such the­
matic differentiation of planning looks at the problems from different perspectives, 
depending on the planning task and the disciplines involved. This may lead to dif­
ferent interpretations of the same feature presented in geo-databases or maps. It 
implies the need to represent geo-spatial features differently according to different 

1Please note that we use the term 'object' to refer to a spatially embedded unit, which is 
different from the 'objects' often used in object-oriented programming in computer science. To 
avoid further confusion, we will use 'object-based' instead of 'object-oriented' in this disserta­
tion, although we may share many similar concepts developed for the object-oriented frame­
work in computer science. 
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disciplines, but based on a fundamental geo-database. Different representations of 
geo-spatial features require semantic modelling with respect to corresponding dis­
ciplines. What semantic modelling techniques can be applied in representing geo-
spatial features? 

Land-cover and land-use classification systems (see Appendix A) are denned us­
ing linguistic terms such as 'containing multi-story residential apartment buildings 
with good environment and public facilities available at close range'. Therefore we 
have to apply certain measurements in order to check whether an object belongs to 
the denned class as described in a linguistic form. This is called semantic fuzziness. 
Another issue is raised pertaining to the spatial coverage of land-use classes: when 
we have extracted a group of buildings, what are believed to belong to one land-use 
class, say residential, the question arises as to where the spatial boundaries of this 
class are, since often no such physical boundaries between different land-use classes 
can be found on the ground or in images. This is called fuzziness of conceptualised 
boundaries. These types of semantic and imprecision issues exist throughout land-
cover and land-use classification. Can fuzzy set and fuzzy logic play a role here? 
How does the fuzziness of a semantic definition influence the geometric and the­
matic components of geo-spatial objects? What kinds of measurements can be used 
for delineating land-use units? 

Based on the above discussion, the research objectives can be summarised as 
follows: 

• To examine the main problems in land-cover classification, using pixel-based 
classifiers based on high-resolution data, and provide potential solutions to 
these problems, using pixel-based classifiers, and evaluate effectiveness. 

• To provide a conceptual framework and formalism of an object-based approach 
to image analysis and land-cover and land-use classification. 

• To provide object-based methods and operations for feature (land-cover ob­
jects) extraction. 

• To provide spatial aggregation methods for structural analysis toward deter­
mining spatial units of land-use classes based on the spatial distribution of 
land-cover objects. 

• To provide land-use classification schema that can deal with different types of 
information extracted for objects such as thematic, geometric and structural 
information. 

1.3 Main technical problems and proposed so­
lutions 

Before exploring a new approach to the defined problems, we need to investigate the 
problems of using existing approaches and find out if they can cope with new types 
of data such as high-resolution images. What kind of improvement could be made 


