
Control and Identification in Activated Sludge Processes 

Leo Lukasse 



Promoter: Prof. dr. ir. G. van Straten 

hoogleraar in de meet-, regel- en systeemtechniek 

Co-promotoren: Dr. ir. K.J. Keesman 

universitair hoofddocent, leerstoelgroep Meet-, regel- en systeemtechniek 

Dr. ir. A. Klapwijk 

universitair hoofddocent, leerstoelgroep Milieutechnologie 



r "-/ 

Leo Lukasse 

Control and Identification in Activated Sludge Processes 

Regeling en Identifikatie in Aktief-Slib Processen 

PROEFSCHRIFT 

ter verkrijging van de graad van doctor 

op gezag van de rector magnificus 

van de Landbouwuniversiteit Wageningen, 

dr. CM. Karssen, 

in het openbaar te verdedigen 

op woensdag 13 januari 1999 

des namiddags te half twee in de Aula 

U ^ 



CIP-Data Koninklijke Bibliotheek, DEN HAAG 

Lukasse L.J.S. 

Control and Identification in Acivated Sludge Processes / L.J.S. Lukasse 

[S.I. : s.n.] 

Thesis Wageningen Agricultural University. - With ref. - With summary in Dutch 

ISBN 90-5485-956-3 

This dissertation has been completed in partial fulfillment of the requirements of the Dutch Institute 
of Systems and Control DISC for graduate studies. 

BI3LIOTHEEK 
LANDBOUWUNIVERSITEIT 

WAGENINGEN 



/ n 

Stellingen 

1. De term 'tijdsvariant systeem' vloeit voort uit een verkeerd begrip van de werke-
lijkheid. Er wordt een 'tijdsvariant model' van een 'tijds/ravariant systeem' mee 
bedoeld. De modellenbouwer heeft, al of niet bewust, niet alle dynamica van het 
systeem gemodelleerd; daarom geeft het model een betere beschrijving van de wer-
kelijkheid als een deel van het model als tijdsvariant wordt beschouwd. 

2. De zeer aannemelijke hypothese, dat meer onderbrekingen in de beluchting van een 
C-verwijderend Actief Slib Proces een hoger effluent Chemisch Zuurstof Verbruik 
geeft, wordt in Neiva et al. (1996) niet bevestigd door de waarnemingen. De 
daaraan verbonden conclusie dat de hypothese onjuist is, is echter incorrect. De 
strijdigheid tussen hypothese en waarnemingen zegt veeleer iets over het experi-
mentontwerp. 
Neiva M.R., Galdino L.A., Catunda P.F.C., Haandel A. van (1996). Reduction of operational costs 

by planned interruptions of aeration in activated sludge plants. Wat. Sci. Tech., 33, pp. 17-27. 

3. De conclusie in Puznava et al. (1998) dat hun feedforward regelaar superieur is aan 
hun feedback regelaar, vloeit voort uit onvoldoende waardering voor het principe 
van feedback. De grote verdienste van feedback-regelaars is nl. het vermogen om 
procesuitgangen gewenste waardes op te leggen ondanks onzekerheid in dat proces. 
Puznava N., Zeghal S. and Reddet E. (1998). Simple control strategies of methanol dosing for post-

denitrif'ication. Wat. Sci. Tech., 38(3), 1998, pp. 291-297. 

4. De bewijskracht van ervaring wordt door veel wiskundigen onvoldoende ge-
waardeerd. 

5. De meeste wetenschappers besteden veel te weinig tijd aan de vraag welk probleem 
zij moeten oplossen. Zij houden zich liever bezig met de vraag hoe ze een probleem 
moeten oplossen. 

6. Alle goede wetenschappelijke publikaties hebben een conclusie gemeen: er is ver-
der onderzoek vereist. 

7. Het is schrijnend dat veel, zgn. onbevooroordeelde, wetenschappers de talrijke ver-
slagen over wonderlijke gebeurtenissen na het aanroepen der goden glashard 
ontkennen. Op dit specifieke terrein mag de waarneming kennelijk, hoe dan ook, 
niet gedaan worden. 



8. Evolutie gedreven door natuurlijke selectie zou uiteindelijk de hele natuur zwart 
kleuren. De meest efficiente plant benut nl. al het licht voor fotosynthese en is 
daarom zwart. Dieren zullen daarna allemaal zwart als schutkleur aannemen, 24 uur 
per dag functioned. Hopelijk maak ik dit stadium der evolutie niet meer mee. 

9. 'Eerlijke (de)regulering' is een contradictio in terminis. 

10. Een goed functionerende regelaar beheerst het te besturen proces. Een slecht func-
tionerende regelaar beheerst het leven van zijn ontwerper. 

11. De beste graadmeter voor de inzet van een onderzoeker is het aantal malen dat hij 
thuis het verwijt krijgt: 'Houd nu eens op aan je werk te denken, we zitten nu gezel-
lig aan de koffie', gedeeld door het aantal malen dat hij daarop reageert. 

Stellingen behorend bij het proefschrift 'Control and Identification in Activated Sludge 
Processes' van Leo Lukasse, Wageningen, 13 januari 1999. 



Dankwoord 

Graag benut ik de mogelijkheid om aan dit proefschrift een dankwoord toe te voegen en daarin de 
mensen te bedanken, die me de afgelopen vier jaar tot bijzondere steun zijn geweest. 

In de eerste plaats wil ik mijn dagelijkse begeleider en co-promotor Dr. Karel Keesman bedanken. 
Karel, toen ik vier jaar geleden begon kende ik je niet. Ik mocht je leren kennen als een fantastisch 
persoon en wetenschapper. Je hebt me de ruimte gegeven andere keuzes te maken dan jij voor ogen 
had. De reizen die we samen maakten waren gaaf. Onze Japanse badhuizen, campings, de lifts over 
'the roof of Kyushu' en je vruchtentheeceremonies zijn kostbare herinneringen. 

Mijn collega's in het Agrotechnion, en van de sectie meet-, regel- en systeemtechniek in het bijzon-
der, wil ik bedanken voor de goede werksfeer. My room mates Frank and Tien proved valuable 
comrades. Both Frank's and Tien's attitude with respect to religion intrigued me. Frank, het was ge-
zellig en de som van al je hulp bij mijn computerprobleempjes is groot, daarom: met dank aan 
Frank. En dan die Use, sociaal hoogtepunt in onze mannencultuur. Bedankt voor alle gezellige mo-
menten. 

Michiel, zonder jou was dit proefschrift veel dunner geweest. Je hebt de proefopstelling tweeenhalf 
jaar draaiend gehouden, zelfs de ammonium en nitraat analyzers. De experimenten moest je keer op 
keer herhalen. En ondanks dat alles ken ik je enkel vrolijk! 

Van de maandelijkse discussiebijeenkomsten met promotor Prof. dr. Gerrit van Straten, Karel, Mi­
chiel, co-promotor Bram Klapwijk, Harry en Henri heb ik veel graantjes meegepikt. Niet alleen 
vakinhoudelijk. Ik leerde er zowel commentaar leveren als krijgen. Gerrit's kritische oog voor zowel 
details als grote lijnen, en zijn vermogen om discussies te starten. De rijke water-ervaring van 
Bram, met zijn nuchtere evenwichtigheid. Het aanstekelijk enthousiasme van Harry. Henri's diep-
zinnige beschouwingen over de betekenis van een ogenschijnlijk simpel woord. Van dat alles leerde 
ik. En uhm, wat is ook weer het verschil tussen actuele -, instantane -, endogene -, en maximale res-
piratie snelheid? 

Last but not least wil ik mijn familie, gezin en schoonfamilie bedanken voor alle steun tijdens de 
afgelopen vier jaar. In het bijzonder tijdens het moeilijke voorjaar van 1998 werd me duidelijk hoe 
waardevol jullie zijn voor mij. Het door pa en ma bijgebrachte plichtsbesef, de van pa geerfde 
nuchterheid en het van ma meegekregen perfectionisme: het bleken hele nuttige eigenschappen in 
mijn promotie-onderzoek. Petra, schoonpa en broer Jan leerden me om perfectionisme tegen pro-
duktiviteit af te wegen. 

Petra, Marnix, Jorinde wat fijn dat ik van jullie mag zijn. Tijdens de laatste periode heb ik veel van 
jullie gevergd. Terwijl ik tot steeds later het toetsenbord klopte, zaten jullie vaak op me te wachten. 
Hopelijk kan ik het een beetje goedmaken door dit proefschrift aan jullie op te dragen. De overge-
slagen vakantie? We halen hem echt in. 

Wageningen, 15-9-'98 
Leo 



Voor Petra, Marnix en Jorinde 



Contents 

1 General introduction 1 
1.1 The Activated Sludge Process and its new challenge: total-N removal 1 
1.2 Control and identification of Activated Sludge Processes 2 

1.2.1 General topics in Activated Sludge Process control 2 
1.2.2 Adaptive Receding Horizon Optimal Control 3 

1.3 Control of N-removal in alternating Activated Sludge Processes 4 
1.3.1 Control schemes 5 
1.3.2 Problems 6 

1.4 The use of DO-sensors and respirometers 7 
1.4.1 State of the art 7 
1.4.2 Problems 8 

1.5 Pilot scale ASP 8 
1.6 Aims of this thesis 9 
1.7 Thesis outline 10 

1.7.1 PART I, N-removal in alternating activated sludge processes 10 
1.7.2 PART II, identification on the basis of DO-measurements and respirometry 12 

1.8 References 13 

PARTI, N-removal in alternating activated sludge processes 

2 Identification for model predictive control of biotechnological processes, 
case study: nitrogen removal in an activated sludge process 19 

2.1 Abstract 19 
2.2 Introduction 19 
2.3 Modelling approach 20 

2.3.1 Prior knowledge and presumptions 20 
2.3.2 Model identification 20 
2.3.3 Parameter uncertainty 21 

2.4 Identification of ammonium/nitrate dynamics 22 
2.4.1 Prior knowledge 22 
2.4.2 Experiments 22 
2.4.3 Output error model identification 23 
2.4.4 Effect of prediction horizon on model parameters 25 

2.5 Discussion 26 
2.6 Conclusions 26 
2.7 References 27 
2.8 Appendix 1, covariance for multi-output model parameter estimates minimizing the 
(weighted) sum of squared 1,2,.., //-step ahead prediction errors. 27 



3 A recursively identified model for short-term predictions of NH4/NO3-
concentrations in alternating activated sludge processes 31 

3.1 Abstract 31 
3.2 Introduction 31 
3.3 Process model 32 
3.4 Recursive parameter estimation 34 
3.5 Application to real measurements 36 
3.6 Results & Discussion 38 
3.7 Simulation study 40 
3.8 Conclusions 42 
3.9 References 42 
3.10 App. 1, stability characteristics of the Kalman filter applied to unobservable systems. 44 

4 Optimal control of N-removal in ASP's 47 
4.1 Abstract 47 
4.2 Introduction 47 
4.3 Optimal control of nitrogen removal according to ASM no. 1 48 
4.4 Receding horizon optimal control implementation 49 
4.5 Pilot plant results 53 
4.6 Discussion 54 
4.7 Conclusions 54 
4.8 References 55 
4.9 Appendix 1, list of symbols 55 

5 Adaptive receding horizon optimal control of N-removing activated sludge 
processes 57 

5.1 Abstract 57 
5.2 Nomenclature 57 
5.3 Introduction 58 
5.4 RHOC scheme 58 
5.5 Recursive identification scheme 60 
5.6 Adaptive RHOC 61 
5.7 Simulation results 62 
5.8 Pilot plant results 63 
5.9 Discussion 64 
5.10 Conclusions 65 
5.11 References 65 

6 Li-Norm optimal control of N-removal in an activated sludge process 67 
6.1 Abstract 67 
6.2 Introduction 67 
6.3 The Li-norm optimal state feedback law 68 
6.4 Application to N-removal in activated sludge processes 72 
6.5 Conclusions 75 
6.6 References 76 
6.7 Appendix 1, list of symbols 76 
6.8 Appendix 2, counter example 77 



7.1 
7.2 
7.3 

Abstract 
Introduction 
Methodology 

7.3.1 Plant model 
7.3.2 Influent scenario 
7.3.3 Evaluation criteria 

7.4 
7.5 
7.6 
7.7 
7.8 
7.9 

Controllers to be compared 
Best feasible results 
Sensitivity analysis 
Discussion 
Conclusions 
References 

7 A comparison of NH4/NO3 control strategies for alternating activated 
sludge processes 79 

79 
79 
80 
80 
80 
81 
81 
83 
85 
87 
87 

8 Optimised operation and design of alternating activated sludge processes 
for N-removal 89 

8.1 Abstract 89 
8.2 Introduction 89 
8.3 Currently available operation strategies 90 
8.4 Simulation methodology 91 

8.4.1 The 2-reactors alternating process model 91 
8.4.2 Influent scenario 91 
8.4.3 Evaluation criteria 92 

8.5 Receding horizon optimal control of the alternating process 92 
8.6 RHOC results 95 
8.7 Simple controllers imitating RHOC 97 
8.8 Discussion 98 
8.9 Conclusions 100 
8.10 References 101 

PART II, identification on the basis of DO-measurements and respirometry 

9 Grey-box identification of dissolved oxygen dynamics in activated sludge 
processes 103 

9.1 Abstract 103 
9.2 Introduction 103 
9.3 Modelling approach 104 

9.3.1 Prior knowledge and preassumptions 104 
9.3.2 Identification of model structure and parameters 104 

9.4 Application 105 
9.4.1 Prior knowledge 106 
9.4.2 Experiment design 106 
9.4.3 Identification of model structure and parameters 106 

9.5 Conclusions 109 
9.6 References 110 
9.7 Appendix 1, list of symbols 110 
9.8 Appendix 2, parameter uncertainties in eqns. 7, 10 - 12 111 



10 Estimation of BODs„ respiration rate and kinetics of activated sludge 113 
10.1 Abstract 113 
10.2 Nomenclature 113 
10.3 Introduction 114 
10.4 Measurement strategy 115 
10.5 Respirometer model 116 
10.6 Estimation procedure 118 

10.6.1 step 1 Estimation of q and A 118 
10.6.2 step 2 Estimation of ks 119 

10.7 Results 120 
10.8 Estimation of the actual respiration rate in the aeration tank 121 
10.9 Proposals for improved measurement strategy 121 
10.10 Conclusions 123 
10.11 References 124 

11 Diagnosis and identification by excitation of the dynamics in continuous 
flow respirometers 125 

11.1 Abstract 125 
11.2 Introduction 125 
11.3 Dynamic respirometer model 127 
11.4 Identification of respirometer model parameters D, re, t and A 127 
11.5 Identification of sludge kinetics and S,-„ 129 
11.6 Measurement strategy 130 
11.7 Experimental results 131 
11.8 Discussion 134 
11.9 Conclusions 136 
11.10 Nomenclature 137 
11.11 References 137 

12 Conclusions and suggestions 139 
12.1 Conclusions for the practitioner 139 
12.2 Increased NH» concentration to meet total-N standards 140 
12.3 Control in view of time-averaged effluent standards 141 
12.4 pH-based auto-tuning of timers for N-removal 143 
12.5 Dynamic simulations: the future 144 
12.6 References 145 

Summary 147 

Samenvatting 151 

Curriculum vitae 155 



Chapter 1, General introduction 

1 General introduction 

Fig. 1, basic activated sludge process. 

1.1 The Activated Sludge Process and its new challenge: total-N removal 

The activated sludge process (ASP) is 
a widely used system for biological 
wastewater treatment. Traditionally 
the ASP mainly served to remove or-
ganics and ammonium from the 
wastewater. The basic design of an 
ASP plant is depicted in Fig. 1. In the 
reactor the organics in the influent 
flow (qin) are transformed into settle-
able biomass (activated sludge floes) 
by biomass growth. In the next step 
the sludge settles at the bottom of the 
secondary settler. The treated effluent of the plant flows over the weirs at the top of the settler, 
while the settled sludge is withdrawn from the bottom. The major part of it is recycled to the reactor 
(qr), and a small part is wasted (qw). Sludge recycling prevents the washout of biomass by decou­
pling the sludge residence time from the hydraulic residence time in the plant. The main control 
handles are the rates (1/h) of return flow qr, wastage flow qw and air flow qajr. 

During the last decade the interest in total-N removal from wastewater has risen due to increasing 
attention for the problem of eutrophication in the aquatic environment. In the Netherlands, and 
many other regions in the EU, in 1991 this resulted in a new guideline for the stepwise introduction 
of total-N removal (EU-directive 91/271/EEC). In the Netherlands this EU-directive is implemented 
in the "Lozingenbesluit Wvo stedelijk afvalwater" (Staatsblad 140, 1996). Before only an effluent 
standard of 20 mg/1 Kjeldahl-N in the summer period was applied. According to the new law every 
Dutch wastewater treatment plant has to comply with new effluent N-total standards by the end of 
1998, with the possibility to postpone this deadline as far as 31-12-2005 for specific plants. The 
new standards are a yearly averaged effluent N-total of 10 mg/1 for plants with a design capacity 
over 20,000 p.e. (population equivalents) and 15 mg/1 for plants with a design capacity less than 
20,000 p.e.. For plants over 100,000 p.e. the standard applies to the flow-proportional average, oth­
erwise the time-proportional average suffices. 

Total-N removal requires two biological processes: nitrification and denitrification. Nitrification is a 
two steps process described by 

N R . "•'""•"•""»" ) N O , """""'"" > N03 (1) 

Nitrite (NO,) only is an intermediate with usually low concentration, and therefore is usually 

grouped together with nitrate (NO"3) as NOx. The nitrifiers Nitrosomonas and Nitrobacter both are 
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autotrophic organisms. Autotrophic organisms are able to build up their biomass from inorganic 
carbon and H2O by reduction processes. Nitrification takes place when the autotrophs meet NH4 
under aerobic conditions. 

Denitrification is described by 
v r f V heterotrophs . VJT'V heterotrophs . T^ / ^ \ 

Most heterotrophic species present in ASP reactors are able to denitrify. Denitrifiers (heterotrophic 
organisms that are able to denitrify) preferably use DO as electron acceptor, but switch to NOx in­
stead if no DO is available. The denitrification process only takes place when denitrifiers meet 
RBOS (Readily Biodegradable Organic Substrate) in an anoxic environment (presence of NOx, ab­
sence of DO). Under those conditions denitrifiers consume organics, using nitrate and nitrite as oxi-
diser. 

Both amongst scientists and practitioners a reasonable consensus exists upon the statement that the 
Activated Sludge Model no. 1 (ASM no. 1) by Henze et al. (1987) is the most popular mathematical 
description of the biochemical processes in ASP reactors for N removal. The most popular model 
for the settling process probably is the double exponential model (Takacs, 1991). 

1.2 Control and identification of Activated Sludge Processes 

This thesis focuses on control and identification of ASP's. Over the last decades there has been a 
large and ongoing interest in (nonlinear) system identification {e.g. Young, 1984; Ljung, 1987) and 
its application to activated sludge processes (e.g. Busby and Andrews, 1975; Farkas et al, 1991; 
Vanrolleghem, 1994; Cote et al, 1995; Jeppsson, 1996; Tenno and Uronen, 1996; Julien et al, 
1997). The objective of identification is to reduce the uncertainty about process dynamics, such that 
designs of processes and controllers can be improved. Good control can improve the utilization of 
the reactor volume and reduce the required over-dimensioning of plant designs. 

1.2.1 General topics in Activated Sludge Process control 

The main challenge in control of the activated sludge process is disturbance attenuation in the com­
plex non-linear multivariable ASP, whose stiff dynamics contain a considerable uncertainty and are 
subject to large seasonal variations. To get a comprehensive overview of the problems involved see 
Andrews (1974), Marsili-Libelli (1989), Olsson et al (1989) and van Leeuwen (1990). 

The traditional ASP control objective is disturbance attenuation (Andrews et al, 1976; Dold et al, 
1984; Kabouris and Georgakakos, 1991; Olsson, 1992). Disturbance attenuation is just a means to 
achieve the higher level objectives of minimizing costs (e.g. avoid excessive aeration) and maxi­
mizing the conversion rates of biological processes in the reactor (e.g. reducing substrate limitation 
during the low loaded part of the day). The main source of disturbance is the influent. Large diurnal 
variations occur both in influent flow and composition, as a result of the characteristic life pattern of 
the connected households. Fortunately the large hydraulic residence time (typically > 10 h) largely 
dampens this diurnal cycle just by dilution, especially in continuously mixed reactors (Jenkins and 
Garrison, 1968). Yet there remains a significant task for active control to further dampen diurnal 
variations. 
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Rain events incidentally cause very high flow rates and changes in influent composition. Especially 
hydraulic shock loads due to storm events may cause serious overloading incidents in the secondary 
clarifier, resulting in loss of biomass in the effluent (Aspegren et al., 1996). This contributes to very 
high effluent BOD during the incident, and reduced process rates in the aftermath of the incident. 

The uncertainty in dynamics of ASP's make the use at feedback control indispensable (Fig. 2). The 
uncertainty is caused by unpredictable changes in sludge activity and composition, especially due to 
seasonal variations in temperature and rainfall. E.g. the rates of nitrification and denitrification re­
spectively decrease by about 60% and 50% if the temperature drops from 20 °C to 10 °C (Metcalf 
and Eddy, 1979). Seasonal variations in rainfall affect the influent flow and composition. That in 
turn has a long-term effect on the sludge inventory. 

Solving the overall 
multivariable control 
problem of an ASP is a 
Utopia. To keep the prob­
lem solvable it needs to be 
decomposed. Decomposi­
tion is possible by decou­
pling the control of fast 
and slow processes {e.g. 
Hiraoka and Tsumara, 
1989). The main dynamic 
processes in ASP reactors 

disturbances 

objectives 
controller actuators process 

ymeasured 
sensors «• 

Fig. 2, general feedback control loop. 

can be separated into three timescales: fast DO dynamics, slower substrate (amongst others N) dy­
namics and slow biomass (sludge) dynamics. The characteristic time constants of these three times­
cales are respectively minutes, hours and weeks. Substrate plays the keyrole as it is directly related 
to effluent quality. DO - and biomass control just serve to create an environment for efficient sub­
strate removal, where the word efficient stands for an optimized balance between effluent quality 
and operational costs. Viewed in that light it is natural that a substrate controller dictates the set-
points for both DO and sludge controllers, if necessary taking into account the realizability of these 
setpoints. 

1.2.2 Adaptive Receding Horizon Optimal Control 

Optimal control solves an objective functional subject to the modelled system dynamics and possi­
ble constraints on the model states, inputs and outputs {e.g. Lewis, 1986). As its solution is an open-
loop optimal control strategy it is unsuitable for practical implementation. Its use mainly comes 
from the increased insight when applied in simulations. Several optimal control simulation studies 
of the activated sludge process have been reported (Sincic and Bailey, 1978; Yeung et al, 1980; 
Stehfest, 1985; Kabouris and Georgakakos, 1990; Kabouris et al, 1992). 

Receding Horizon Optimal Control (RHOC) is the way to implement the theory of optimal control 
on-line, introducing feedback from the process (Fig. 2). The general digital RHOC algorithm solves 
at each sampling instant ke {0,1, 2,..} the optimization problem 
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min 7(u) = G(x(* + ff))+jF(x(i),u(i)) (3) 
UfUH-l i=*+l 

subject to the modelled system dynamics 
x * + i = / ( x * > u * ' d * > e ) x * = x * ( 4 ) 

y*=g(x*.u<,9) 

with control interval T, prediction horizon H, vector of control inputs u e W, state vector x e W, 

output vector y e W, vector of disturbance inputs d e IRV, parameter vector 8 € Ef. The term 
G(x(k+H)) in 7(u) allocates a (possibly negative) value to the state of the process at the end of the 
prediction horizon, while the term F(x(i),u(i)) allocates (possibly negative) values to the states x 
and controls u on the time interval [kT, (k+H)T\. The RHOC algorithm can be made adaptive by 
recursive estimation of parameter vector 0 (see e.g. Ljung and Soderstrom, 1983). 

Many theoretical papers on RHOC are available now (Chen and Shaw, 1982; Mayne and Michal-
ska, 1990; Genceli and Nikolaou, 1993; Michalska and Mayne, 1993; Yang and Polak, 1993; Nico-
lao et al, 1996; Ohtsuka and Fujii, 1997). Also a number of practical applications has been pub­
lished (e.g. Shinar and Glizer, 1995; Afonso et al, 1996; Chalabi et al, 1996; de Madrid et al, 
1996; Tap et al, 1996; Camacho and Berenguel, 1997; Miller and Pachter, 1997; Becerra et al, 
1998). Although no applications in wastewater treatment have been published, the interest in adap­
tive RHOC for ASP's exists. This is illustrated in e.g. Dupont and Sinkjaer (1993) and Thornberg 
and Thomsen (1994). After identifying the process dynamics and disturbance characteristics from 
the data they used the current state as initial condition to evaluate the effect of different near-future 
control input scenario's in simulation. Selection of the most suitable control inputs is left to the op­
erator. Already in Olsson et al. (1989) this procedure was indicated as a future trend. 

RHOC is the way to implement the above described procedure on-line, moreover it automatically 
selects the most suitable control input trajectory, i.e. the control input trajectory that minimizes the 
formulated objective functional (eqn. 3). In the ideal case the dynamic model (eqn. 4) equals the 
true system dynamics and the knowledge with respect to future disturbance inputs is perfect. In that 
ideal scenario eqn. 3 should merely express the economy of the process. 

The main hindrance for the on-line implementation of RHOC has always been the large computa­
tional demand for solving the RHOC's non-linear optimization problem. The fast evolution of com­
puting power rapidly invalidates this argument. Yet some problems for RHOC in general remain: 

1. The risk of getting stuck at local minima when solving nonlinear optimization prob­
lems. 

2. Models usually have serious shortcomings, that need to be accounted for by adding 
penalty terms to eqn. 3. 

3. On-line solving of the overall dynamic optimization problem for a plant is impossible 
for systems with unobservable states, like the ASP. 

4. Information with respect to future disturbance inputs is usually incomplete. 

1.3 Control of N-removal in alternating Activated Sludge Processes 

The introduction of denitrification and improved nitrification in ASP's is accompanied by some new 
control problems, in addition to the existing more general problems discussed in section 1.2.1. As 
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mentioned in the preceding section nitrification requires the combination of three factors: NH4, 
aerobic conditions and autotrophs. NH4 is the main source of total-N in the influent wastewater. It 
will just remain in the wastewater until it meets autotrophs under aerobic conditions. Aerobic con­
ditions are created by applying a sufficient air flow rate (Fig. 1) to the reactor or a part of it. The 
limiting factor in nitrification is the low maximum growth rate of the autotrophic nitrifiers (eqn. 1), 
especially during winter. In operation this requires a long sludge residence time (= sludge age) to 
prevent washout of autotrophs. Typically, for nitrification the sludge age should be over 20 days. 

The denitrification process has the attractive potential to remove organics from wastewater without 
aeration and at a reduced sludge production due to the lower anoxic yield factor. As mentioned be­
fore denitrification requires the presence of three factors: denitrifying heterotrophs, anoxic condi­
tions and RBOS. Denitrifiers are abundantly available in any ASP for total-N removal, and hence 
do not deserve special attention. Two different approaches exist for introducing anoxic conditions. 
One is to use anoxic zones (e.g. Spies and Seyfried, 1988; Londong, 1992; Nowak and Svardal, 
1996; Meyer and Hanke, 1997). This requires plug-flow-like hydraulics, i.e. the presence of a 
spacial distribution in the reactor, or multiple reactors in series. The other approach applies inter­
mittent aeration in the reactors to create anoxic periods (e.g. Sasaki et ah, 1993). Under anoxic con­
ditions the denitrification rate is mostly RBOS-limited, therefore the RBOS-rich influent is usually 
fed to the location where conditions are anoxic. To enable the feeding of all influent to locations 
with anoxic conditions the anoxic periods approach is often implemented in a plant design with two 
parallel reactors ran in counterphase (e.g. Thornberg et ah, 1993), or combined with a small anoxic 
zone preceding the alternating reactor (Wouters-Wasiak et ah, 1994; Carucci et ah, 1997). NOx ac­
cumulates under aerobic conditions (eqn. 1). Hence in case of applying anoxic zones a large internal 
recirculation flow is required to bring NOx from the end of the aerobic zone to the beginning of the 
anoxic zone. Applying anoxic periods brings the anoxic conditions to the NOx. 

1.3.1 Control schemes 

Three control handles are available in the nitrification process: waste flow rate qw, hydraulic resi­
dence time in aerobic zones or periods, and air flow rate qw in the aerobic phase (Fig. 1). Waste 
flow rate qw affects the sludge residence time, and hence the concentration of autotrophs. Settler 
design and risk avoidance put fierce constraints to the freedom to manipulate q„. Moreover the re­
sponse time of the sludge inventory to changes in qw is very long (months). Hence qw is unsuitable 
for active control of the nitrification process (Vaccari and Christodoulatos, 1989). A common active 
control handle for the nitrification process is the hydraulic residence time in aerobic zones or peri­
ods, i.e. the size of aerobic zones or the length of aerobic periods. It is very general to manipulate 
qair in the aerobic phase with the objective to control the measured Dissolved Oxygen (DO) con­
centration around a fixed setpoint DOR. Usually DOR = 2 mg/1, a sufficient value to prevent DO-
limitation of nitrification. However some cases are reported where the aeration costs are reduced by 
introducing controlled DO-limitation in the aerobic zone (Sekine et ah, 1985; Isaacs, 1996). 

In principle the anoxic zones approach for denitrification introduces two new control handles, these 
are the internal recirculation flow rate and the size of the anoxic zone. In the anoxic periods ap­
proach two new control handles occur, being the length of the anoxic periods and, if multiple hy-
draulically connected reactors are used, the flow schedule through the reactors (Andrews et ah, 
1980; Zhao et ah, 1994; Zhao et ah, 1995; Isaacs, 1996; Thomsen et ah, 1997). 
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The anoxic periods approach for alternating nitrification/denitrification offers two principal advan­
tages over the anoxic zones approach. Firstly, it does not require the large internal recirculation flow 
rate with its inherent pumping costs and continuous transport of oxygen to the anoxic phase. Sec­
ondly, excitation of dynamics is inherent to the anoxic periods approach. This offers an ideal setting 
for (recursive) identification of process dynamics, especially the rates of nitrification/denitrification 
can easily be estimated (e.g. Carstensen et al., 1995). 

In both the anoxic zones and the anoxic periods approach an external carbon source, usually etha-
nol, may be added to the anoxic phase to speed up denitrification (Sekoulov et al, 1990; Tarn et al, 
1992; Isaacs et al, 1995; Lindberg, 1997). This is an effective, but expensive, approach. Adding an 
external carbon source should be the last option as there are additional costs related to the carbon 
source addition itself, it causes extra sludge production and it does not exploit the possibility to re­
duce aeration costs by denitrification. 

Feedback control requires the use of sensors to measure the plant's state (Fig. 2). There is a wide­
spread reluctance to use the expensive, maintenance intensive, and failure sensitive measurement 
devices for NH4 and NOx. This is the driving force behind the use of indirect, incomplete, or even 
no, measurements in control of nitrification/denitrification. The most common indirect measure­
ment is ORP (Oxidation Reduction Potential) (Sekine et al, 1985; Charpentier et al, 1989; Menar-
diere et al, 1991; Wouters-Wasiak et al, 1994). Also pH is used as an indirect measurement, 
though still scantily (Al-Ghusain et al, 1994; Carucci et al, 1997; Wett et al, 1997). Recently it 
was demonstrated that OUR can be used as well (Surmacs-Gorska et al, 1995; Klapwijk et al, 
1998). Incomplete measurements are used when alternating the aeration on the basis of measure­
ments of solely NH4 (e.g. Spies and Seyfried, 1988) or solely NOx (e.g. Kayser and Ermel, 1985; 
van Dalen, 1993). No measurements are used when alternating the aeration in the anoxic periods 
approach on the basis of timeclocks. Its open loop nature makes it cheap but also increases the risk 
of gross failures. Obviously the best controller performance can be achieved if both NH4 and NOx 

are measured. 

1.3.2 Problems 

Different strategies for controlling the alternating aeration have evolved. The amazing thing is that 
all the alternative control-schemes just coexist. What is missing is a profound comparison between 
the different control-schemes, and a comparison with the best feasible result. Only when the per­
formance loss of the simpler control schemes is known, a balanced trade-off between costs of in­
strumentation (purchase, maintenance) and loss of performance is possible. A mutual comparison 
can easily be carried out in simulation. Drawback of simulations is that the dynamics of both the 
sensors and the process need to be modelled. And even the best model of the ASP is nothing but a 
poor resemblance of the real process. However, a fair experimental comparison of multiple con­
trollers is impossible, not only for financial reasons. Simultaneous experimental testing would re­
quire the availability of multiple identical plants in parallel. Sequential testing on one plant would 
disrupt the results by changes in process conditions and influent, disabling a mutual comparison. 
Hence simulation is the best way to compare different control-schemes. 

To enable comparison with the best feasible result, the best feasible result needs to be known. At 
the moment it is largely unknown. The best feasible result can be approximated by applying Re­
ceding Horizon Optimal Control. As mentioned before, RHOC has not yet been applied in waste-
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water treatment. RHOC requires the availability of a simple internal process model, which should 
yield accurate predictions over the control horizon H. Such a model is not yet available for N-
removal in ASP's. For a complicated system like the ASP a simple model is only possible by ne­
glecting large parts of the process dynamics. Large simplifications of dynamics result in time-
varying models. Recursive identification of (some of) the model parameters is required to preserve 
accurate predictions from a time-varying model in an on-line situation. 

As mentioned before, the anoxic periods approach offers an ideal setting for (recursive) identifica­
tion of the rates of nitrification/denitrification. Up to now no reports are available on the use of NH4 
and NOx sensors for on-line recursive identification of the rates of nitrification and denitrification. 
The only known exploitation of this kind of process conditions for estimating process rates is the 
use of DO sensors to estimate the respiration rate (= oxygen uptake rate) (e.g. Suescun et al., 1998). 

In particular monitoring of the nitrification rate could be useful in controlling the autotrophic bio-
mass inventory. Nowadays this control is done in an open loop manner, by just aiming at a large 
sludge age and hoping that this suffices to maintain sufficient autotrophs. Due to the lack of knowl­
edge with respect to the concentration of autotrophs it is often reasoned that effluent NH4 should be 
very low. In that way the concentration of autotrophs is maximized. In this operation strategy possi­
ble significant improvements in operational costs and effluent quality remain unutilized. 

1.4 The use of DO-sensors and respirometers 

The DO-sensor undoubtedly is the most widespread sensor in ASP's. It is generally used in a DO 
feedback control loop with a DO-setpoint DOR of usually 2 mg/1. Manipulating the air flow rate 
such that DO remains at its setpoint contributes to important costs savings as compared to the his­
torical situation of just using a constant large air flow rate (Flanagan et al, 1977; Corder and Lee, 
1984; Evans and Laughton, 1994; Neiva et al, 1996). 

1.4.1 State of the art 

The problem of just controlling DO in aerated reactors at its setpoint has been solved (Marsili-
Libelli et al., 1985; Olsson et al, 1985; Rundqwist, 1988; Haarsma and Keesman, 1995; Lindberg 
and Carlsson, 1996b). Nowadays the research challenges with respect to the use of DO-sensors con­
cern the control and estimation of variables deduced from DO readings (Olsson and Andrews, 1978; 
Tanuma et al, 1985; Chandra et al, 1987; Vargas-Lopez et al, 1989; Brouwer et al, 1998). An 
important example is estimation of the respiration rate (Holmberg, 1982; Marsili-Libelli, 1984; 
Holmberg et al, 1989), possibly in conjunction with oxygen transfer rate kia (Bocken et al, 1988; 
Carlsson and Wigren 1993; Lindberg and Carlsson, 1996a) from DO-sensor readings only. DO-
sensors also occur in respirometers (e.g. Spanjers, 1993; Spanjers et al., 1998). Even more complex 
setups are built around the respirometer to identify sludge kinetics and concentrations of individual 
influent components from DO-sensor readings (Vanrolleghem and Verstraete, 1993; Spanjers and 
Vanrolleghem, 1994; Reid et al, 1995; Vanrolleghem and Coen, 1995; Wentzel et al, 1995; Brou­
wer et al, 1998). 

Also identification of the DO-sensor dynamics itself has been applied. This is useful in monitoring 
the well-functioning of the sensor and reverse filtering of measurements before estimating the respi-
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ration rate from measured DO-transients (Spanjers and Olsson, 1992; Lindberg and Carlsson, 
1996a; Suescun et al., 1998). 

Spanjers et al. (1994) presented an estimation method for Short Term Biochemical Oxygen Demand 
(BODst) using a continuous flow respirometer. It estimates BODst at a 15 minutes sampling interval 
with a 15 minutes time-delay. This method is potentially interesting for control purposes. After all 
BODst is defined as the rapidly degradable part of BOD5. Effluent BOD5 is a sludge independent 
measure of the total amount of DO required to oxidize the effluent organics and NH4 in the receiv­
ing surface water. Active feedback control of BOD5 is impossible because of the 5-days time delay 
inherent to its measurement. When reliable estimates of BODs, are available these may be used ex­
plicitly in feedback control loops, as BODst reflects the controllable part of BOD5. 

1.4.2 Problems 

Improvement of methods for experimental identification of the non-linear function kLa(qair), i.e. the 
relationship between kLa and qair (Fig. 1), will always remain relevant. It is especially valuable in 
experimentally evaluating the relationship between kia(qai^) and the design of (newly developed) 
aeration equipment, between kLa(qair) and the use of specific carrier materials in aerated reactors 
(e.g. Morper, 1994), or between kLa(qair) and the presence of certain detergents in the influent. After 
all a higher kiji at a given qair results in a higher efficiency of energy usage for aeration, and hence 
identification of kia(qair) for newly developed equipment can yield important sales arguments. 

Identification of influent components and sludge kinetics from in-sensor experiments with continu­
ous flow respirometers has received considerable attention in recent years. Moreover, in view of the 
increased attention for respirometry in the IAWQ context (Spanjers et al., 1998), it is to be expected 
that new approaches for further exploitation of continuous flow respirometers will emerge in the 
near future. What deserves more attention is the need to assure the well-functioning of the device 
itself. 

Spanjers et al. (1994) presented an estimation procedure for BODst using a continuous flow respi­
rometer. The possible benefit of a rapid measurement strategy for BODst is clear, but their estima­
tion procedure lacks accuracy. It looks though as if some modifications on their procedure can im­
prove the accuracy of their estimates. 

1.5 Pilot scale ASP 

A large part of this thesis is based on experimental results. All experiments have been carried out at 
a pilot scale ASP, belonging to the Environmental Engineering group in our department. The pilot 
plant is schematically depicted in Fig. 3. It consists of a 475 1 aerated continuously-mixed reactor 
(reactor 2), preceded by a 40 1 anoxic continuously-mixed reactor for predenitrification (reactor 1). 
Application of the anoxic periods approach to reactor 2 by switching the air flow rate qair on/off is 
studied in-depth. Preceding the alternating reactor 2 by the anoxic reactor 1 enables the feeding of 
all influent to locations with anoxic conditions. It combines the anoxic periods approach with the 
anoxic zones approach, like in Wouters-Wasiak et al. (1994) and Carucci et al. (1997). This pilot 
plant is a simple representation of a carrousel with anoxic predenitrification zone. The main simpli-
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Fig. 3, pilot scale activated sludge process. 

fication is the absence of a spacial distribution in reactor 2, while in carrousels a clear DO-gradient 
may occur and in many cases anoxic zones may be imposed on-purpose. 

All on-line meas­
urements are 
conducted in re­
actor 2. DO is 
measured with a 
WTW DO-sensor 
EO90. The respi­
ration rate r 
(Oxygen Uptake 
Rate) is measured 
using an RA1000 
respirometer 
(Maontherm 
B.V., Holland). 
NH4 and NOx are measured using SKALAR auto-analysers type SA 9000. The continuous flow 
sludge sample fed to the analysers is preconditioned by crossflow membrane filtration. In this way 
clogging inside the analyzers is prevented. The Mixed Liquor Suspended Solids (sludge) concen­
tration MLSS is measured using a SOLITAX-probe (Dr. Lange). It has experimentally been ob­
served that the effect of air bubbles due to aeration on the MLSS-readings is at most 0.2 g/1. pH is 
measured (and controlled in some experiments) by the Liquisys CPM 240 (Endress & Hauser). The 
temperature T is measured by a PT 100. 

Presettled municipal influent is drawn off the adjacent fullscale wastewater treatment plant 
(WWTP) of the town of Bennekom and fed to the anoxic reactor 1. The influent flow rate qm is 
freely adjustable. In many experiments qin is just a downscaled version of the on-line measured in­
fluent flow rate at the adjacent fullscale WWTP. The return sludge flow rate qr is freely manipula­
t e as well, in most experiments it is equal to the average influent flow rate qin. The waste flow rate 
qw is manually adjusted such that the measured sludge concentration MLSS in reactor 2 remains 
about 3.5 g/1. The airflow rate qair (bubble aeration) in reactor 2 is manipulable between 0 and 6 
m3/h. In most experiments reactor 2 is intermittently aerated. During the aerobic periods DO is 
controlled to a setpoint of 2 mg/1 by the controller presented in Haarsma and Keesman (1995). 

1.6 Aims of this thesis 

This thesis is separated in two parts. In part I the main objective is to reduce the lack of knowledge 
with respect to (sub)optimality of N-control strategies in alternating reactors. This is done by 

1. Developing an on-line implementable close-to-optimal controller for alternating processes using 
measurements of NH4 and NOx. The controller will be tested by means of pilot-plant experi­
ments. 

2. The performance of this best feasible controller will then be compared with the most common 
existing control strategies. This comparison is conducted in simulation, as that is the only way 
to exclude erroneous conclusions due to arbitrary events. 
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3. Application of the above procedure will be repeated to a plant design with two hydraulically 
connected reactors in parallel. In this case the optimal plant design is no longer obvious. Hence 
the different operation strategies are simulated to a range of different plant designs within the 
above described class. The objective is to find the optimal combination of process design and 
operation. 

Part II of the thesis concerns identification on the basis of DO-measurements and respirometry. The 
objectives are 

4. The development of an identification procedure for the DO-dynamics in ASP reactors. This 
identification procedure must amongst others yield estimates of kLa. 

5. The development of an estimation procedure for BODst and sludge kinetics from in-sensor ex­
periments in continuous flow respirometers. The final scope is to use the estimates in ASP-
control. 

6. Improvement of the operation of continuous flow respirometers by applying diagnosis and 
identification to the DO-sensor readings collected from special-purpose in-sensor experiments. 
The benefit of such procedures is the reduced need for maintenance and the improved accuracy 
of the measured respiration rate by the device. 

1.7 Thesis outline 

All chapters in this thesis have been, or will be, published independently (except for chapter 12). 
Consequently they can be read independently, the inherent drawback is that some repetition is un­
avoidable. As a side-effect exact chronological ordering of the steps made during the research is 
impossible in the thesis. 

The chapters in this thesis are divided in two parts. Part I (chapter 2 - 8) deals with the development 
of the best feasible, close-to-optimal adaptive receding horizon optimal controller (RHOC) for N-
removal in a continuously mixed alternating activated sludge process reactor. Subsequently this 
controller and the most common existing controllers are mutually compared by means of simula­
tions. In addition the application of the close-to-optimal RHOC controller to a system of two hy­
draulically connected alternating reactors is simulated for a range of plant designs within this class. 
In this way the combination of design and operation is optimized. 

Part II (chapter 9-11) concerns identification on the basis of DO-measurements and respirometry. 
First the DO-dynamics in a continuously mixed ASP reactor are identified, including the non-linear 
relation between kLa and qair. Subsequenly the dynamics of a (DO-sensor based) continuous flow 
respirometer are identified by exciting its dynamics. 

1.7.1 PART I, N-removal in alternating activated sludge processes 

Chapters 2 till 5 present the design procedure for the adaptive RHOC for control of NH4 and NOx. 
The first step is presented in chapter 4, where it is concluded from an optimal control study that al­
ternating nitrification/denitrification may be optimal, as opposed to simultaneous nitrifica-
tion/denitrification at limiting DO-levels. 
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In chapter 2 a model for N-removal in alternating ASP's is identified. Limitation to the case of al­
ternating operation is justified by the above-mentioned conclusion in chapter 4. The model should 
be computationally efficient, as the model will serve as the internal model (eqn. 4) of the adaptive 
RHOC controller to be developed in chapter 5. Model simplicity is achieved by capturing the 
slower process dynamics in time-varying model parameters. It is taken into account that the model 
structure must be suited for recursive identification of the time-varying model parameters. RHOC, 
like any model predictive controller, computes the current controls on the basis of model predic­
tions upto horizon H. Hence the sum of squared 1, 2, .., //-step ahead prediction errors is a natural 
identification criterion. This idea is applied to NIVNOx measurements collected from reactor 2 in 
the pilot scale ASP of Fig. 3. Prediction horizon H appears to affect the parameter estimates signifi­
cantly, supporting the idea that use of this new identification criterion will improve MPC perform­
ance in general. 

RHOC with this simple model is applied to the pilot plant's alternating reactor in chapter 4. It ap­
peared that the performance of this controller is suboptimal due to inaccurate model predictions. 
This was to be expected, as the simplicity of the N-removal model in chapter 2 has been achieved 
by capturing the slower process dynamics in the model parameters, while in this stage they are not 
recursively estimated. The results of chapter 4 illustrate that recursive identification of (some of the) 
model parameters is required to keep the model uptodate. 

Chapter 3 presents the algorithm for recursive identification of those model parameters. The Kal-
man filter is used, because it has the attractive feature that the filter gain accompanying non-
identifiable parameters (e.g. the nitrification rate during anoxic periods) increases linearly in time. It 
is proven that this increase of the filter gain will not cause instability during normal process opera­
tion. The method performs excellently on real data. The recursively identified model will serve as 
the internal model of the adaptive RHOC controller developed in chapter 5. A practically relevant 
spin-off is the on-line recursive estimation of the rates of nitrification and denitrification from NH4 
and NOx measurements. 

In chapter 4 optimal control theory is applied to the ASM no.l model (Henze et al., 1987). It ap­
pears that, from an N-removal point of view, both alternating nitrification/denitrification and si­
multaneous nitrification/denitrification at limiting DO-levels might be optimal. Hence, in view of 
the risk of sludge bulking at limiting DO-levels, an alternating strategy is favoured. Subsequently an 
RHOC controller for N-removal in alternating reactors is derived, using the model identified in 
chapter 2. The controller successfully passed several tests both in simulation and in pilot plant ex­
periments, but it also appeared that the performance of this controller is suboptimal due to inaccu­
rate model predictions. 

Therefore adaptive RHOC is introduced in chapter 5, being the combination of the recursively 
identified model in chapter 3 and the RHOC controller in chapter 4. Proofs with respect to the sta­
bility of the resulting control algorithm can not be given, but only one instability scenario was en­
countered throughout many experiments. This scenario is easy to prevent and does not occur under 
normal operating conditions. 

Chapter 6 presents an lrnorm optimal state feedback controller for 2-dimensional linear time in­
variant (LTI) systems with decoupled dynamics and a single control input. The process of N-
removal in a continuously mixed reactor can be approximated by such a system description, pro-
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vided that the aeration is alternated and the process rates are not NH4/NOx-limited. The motivation 
for this research comes from the unusual observation in chapter 4 that the RHOC performance is 
nearly invariant to its prediction horizon. 

In chapter 7 the three most common control strategies for N-removal in alternating reactors and the 
close-to-optimal controller of chapter 5 are mutually compared by means of simulation. It appears 
that three totally different controllers (timer-based, NUt-bounds based and adaptive RHOC) can 
achieve a more or less equal performance, if tuned optimally. Adaptive RHOC turns out to be supe­
rior in terms of sensitivity to suboptimal tuning. The timer-based approach is attractive for its sim­
plicity, but very sensitive to suboptimal tuning. 

Chapter 8 describes a simulation study with the scope to optimise the plant design and operation 
strategy of alternating activated sludge processes for N-removal with two hydraulically connected 
reactors. The methodology is to simulate the application of RHOC to a range of different plant de­
signs within this class of systems. The RHOC algorithm is obtained by reformulating the controller 
of chapter 4 for a 2-reactors system. It appears that in the optimal process design the two reactors 
are placed in series, while the first reactor is about four times as large as the second one. A concep­
tually simple feedback controller straightforwardly implements the improved operation strategy. 

7.7.2 PARTII, identification on the basis of DO-measurements andrespirometry 

Chapter 9 presents a grey-box modelling approach for the identification of the nonlinear DO dynamics. 
Herein, singular value decomposition of the locally available Jacobian matrix, or equivalently eigen­
value decomposition of the parameter covariance matrix, as well as parameter transformation are es­
sential techniques. The use of respiration rate measurements greatly simplifies the modelling proce­
dure. The approach is amongst others capable of identifying the non-linear function kLa(qair), i.e. the 
relationship between the oxygen transfer rate kLa and the aeration input signal qair. 

Chapters 10 and 11 both deal with excitation of the respiration chamber dynamics in a continuous 
flow respirometer with the objective to extract additional information from its dissolved oxygen 
(DO) sensor readings. In chapter 10 an effort is made to improve the accuracy of the BODst-
estimation technique developed by Spanjers etal. (1994). Contrary to expectation, the estimates still 
suffer from unacceptable inaccuracy due to large parameter correlation. However, a slight modifi­
cation in the measurement strategy is proposed which is expected to enable more accurate estima­
tion. 

The results of experiments with this modified measurement strategy are reported in chapter 11. The 
estimation results convincingly discourage further efforts to identify sludge kinetics and BODst from 
this type of experiments, in which the respiration chamber dynamics are excited by alternating the 
continuous inflow between loaded and endogenous sludge. 

The two other objectives of chapter 11 are the identification of the DO-sensor dynamics and the dilu­
tion rate in a continuous flow respirometer by excitation of the respiration chamber dynamics. Two 
separate simple procedures are presented. Both procedures consist of on-purpose in-sensor experiments 
succeeded by an ordinary least squares estimation step. The feasibility of both objectives is experi­
mentally verified. Large experimental data sets are presented, which strongly advocate the on-line in-
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corporation of both procedures in the everyday operation of the respirometer as tools for autocalibra-
tion and monitoring of the device's well-functioning. 

In chapter 12 those conclusions drawn in the individual chapters which are of direct relevance to prac­
titioners are summarized. Moreover some remaining ideas, which I believe are novel and likely to be 
succesfull, are shortly expounded in chapter 12 as well. The ideas concern: 1) Meeting N-total effluent 
standards by permitting elevated effluent NH4; 2) Control explicitly aiming at meeting yearly averaged 
effluent standards; 3) The use of pH-measurements for continuous on-line tuning of timers in a timer-
based operation strategy for alternating N-removal in a continuously mixed ASP reactor. 
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