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STELLINGEN 

1. Het gebruik van niet-lineaire psychofysische nineties is af te raden als men 
zoetstofinengsels met een gelijke zoetheid wil samenstellen. 
Dit proefschrift, hoofdstuk 4. 

2. De synergie in meervoudige mengsels van zoetstoffen is een lineaire combinatie van de 
synergieen in de samenstellende tweevoudige mengsels. 
Dit proefschrift, hoofdstuk 5. 

3. Verschillen in de vluchtigheid van geurstoffen ten gevolge van de aanwezigheid van 
bepaalde zoetstoffen in een produkt zijn niet sensorisch waarneembaar voor 
panelleden/consumenten. 
Dit proefschrift, hoofdstuk 6. 

4. Het gebruik van de term 'uitzouten' is niet correct voor de toename in het vrijkomen 
van vluchtige verbindingen bij aanwezigheid van componenten anders dan zout. 

5. Smaakonderzoek is in trek. 

6. Ecotoerisme getuigt niet van veel respect voor de natuur. 

7. De doeltreffendheid van vitamines in shampoo valt te betwijfelen, gezien de contacttijd 
van de shampoo met het haar. 

8. Een snelkassa is alleen een snelle kassa wanneer je er slechts met contant geld kunt 
betalen. 

9. De beste stellingen vind je bij de bouwmarkt. 

Stellingen behorende bij het proefschrift 
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Abstract 

Nahon, D.F. (1999) Psychophysical evaluation of interactive effects between sweeteners and 

aroma compounds. Ph.D. thesis, Wageningen University and Research Centre. 

Keywords: sucrose, maltitol, aspartame, Na-cyclamate, Na-saccharinate, orange aroma, 

sweeteners, interactions, sensory analysis, flavour release 

The presence of intense sweeteners in a light soft drink influences the preferences for, and the 

flavour profiles of these drinks to various extents, depending on the aroma and sweeteners 

present. In this study equisweet mixtures of sweeteners were composed at 10% Sucrose 

Equivalent Value. The sucrose/maltitol and sucrose/aspartame mixtures were additive, 

whereas equisweet binary sucrose/Na-cyclamate mixtures and ternary sucrose/aspartame/Na-

cyclamate mixtures revealed synergistic effects. The synergy observed for the ternary 

mixture was a linear combination of the synergy of the binary mixtures. Sensory analysis 

(quantitative descriptive analysis) of different solutions containing sweetener mixtures and a 

water soluble orange aroma revealed that aspartame and Na-cyclamate both differed from 

sucrose on the attributes chemical and aftertaste. The addition of orange aroma levelled out 

the differences observed between the sweetener solutions. Instrumental analysis revealed that 

high sucrose concentrations changed the release of the volatile compounds, while Na-

cyclamate did not show this effect. Modelling of volatile release showed that the gas/solution 

partition coefficient and the mass transfer coefficient are the main factors influencing the 

release. 
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General introduction 



Chapter 1 

The taste of a classic soft drink is largely defined by its sweet taste from sucrose, while from 

a nutritional and marketing point of view there is a large and increasing demand for a reduced 

intake of sucrose. Therefore, the production of beverages containing less sucrose is of 

increasing importance to the beverage industry (O'Brien Nabors & Gelardi, 1991). Sucrose 

can be substituted by intense sweeteners to lower its content in soft drinks. Due to this 

substitution, however, the flavour of a soft drink changes. To obtain acceptable light 

beverages of optimum quality, their flavour should be similar to that of classic soft drinks. 

These drinks can be considered as flavour standards for beverages containing single 

sweeteners and combinations of them. The quality of the flavour of a beverage can be 

changed by the properties of the intense sweeteners themselves or because of interactive 

effects of the sweeteners with aroma compounds. Interactions between intense sweeteners 

and aroma-active compounds can lead to the selective release of these compounds during 

consumption. Information on this release is important for selecting the appropriate flavour 

compounds to be added to a beverage and the methods for dispersing or isolating them 

(Kinsella, 1988). 

The research described in this thesis formed part of an EC-project The mechanistic 

understanding of the sweetness response. The aim of the research was to elucidate whether 

changes in the quality of the sweet taste are due to the properties of the sweeteners 

themselves and/or to interactive effects between these sweeteners and aroma compounds. 

Besides, the effect of the use of mixtures of sweeteners was studied. In Chapter 2 two 

preliminary studies on commercial soft drinks are described. Chapters 3-5 deal with the 

sensory analysis of interactive effects between sweeteners and an orange aroma. Furthermore 

the techniques to obtain equisweet mixtures are discussed. Additive binary sucrose/maltitol 

and sucrose/aspartame mixtures were studied in Chapter 3. In Chapter 4 the synergistic 

mixture of sucrose and Na-cyclamate is investigated. Chapter 5 then describes a ternary 

mixture of sucrose, aspartame and Na-cyclamate. Chapters 6 and 7 deal with the flavour 

release from aqueous solutions containing sweeteners and an orange aroma. In Chapter 6 the 

flavour release from mixtures of sucrose, Na-cyclamate and an orange aroma is described. In 

Chapter 7 the parameters influencing the release of volatile compounds from aqueous 

sucrose solutions are revealed by modelling the release. Finally, the general discussion in 

Chapter 8 integrates the studies described in this thesis. In the next paragraphs aspects 

relevant to this thesis are discussed. 
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1.1 Flavour stimuli 

The sensory perception of foods comprises several impressions, among which the 

appearance, the texture, the taste and the smell. Flavour can be considered as being the 

sensation arising from the integration or interplay of signals produced as a consequence of 

sensations in the nose (aroma), on the tongue (taste) and in the mouth (mouthfeel and/or 

texture) (Laing and Jinks, 1996; Taylor and Linforth, 1998). 

Odorants are volatile and their molecular weight is limited to a maximum of- 400 (Beets, 

1978). When an odorant binds to a receptor protein, the chemical energy will be transduced 

into electrical energy by two pathways. Binding of an odorant to a receptor protein activates 

specific G-proteins to stimulate either an olfactory-specific adenylate cyclase, generating 

cyclic AMP (cAMP), or phospholipase C, which converts the membrane lipid phosphadityl 

inositol biphosphate into the second messenger inositol triphosphate (IP3) and diacylglycerol. 

The cAMP and IP3 open different ion channels, changing the membrane potential of the cell 

and resulting in electrical signals to the brain (Laing and Jinks, 1996). Information about the 

identity of odorants is achieved by the production of spatial maps in the olfactory bulb and 

other brain structures. The perceived intensity of an odorant is probably a function of the 

responses of the different receptor cells (Chastrette et al, 1998; Livermore and Laing, 1998). 

Generally, sweet substances stimulating the sense of taste are non-volatile and vary in 

molecular weight from 120 (erythritol) to 22000 (thaumatine) (Van der Wei et al, 1987). The 

reception and transduction of sugars and other sweeteners includes two pathways. Sugars 

bind to a receptor protein in the membrane of a taste receptor cell. Binding activates a G-

protein to stimulate the enzyme adenylate cyclase to synthesize cyclic AMP, which activates 

protein kinase A to phosphorylate K channels; this induces their closure and a change in the 

membrane potential. Although not fully demonstrated experimentally, the prevailing view is 

that synthetic sweeteners such as saccharin may bind to receptor protein(s) but, unlike sugars, 

they stimulate phospholipase C to produce diacylglycerol, which may activate protein kinase 

C to phosphorylate and close the same K+ channels as are involved in transduction of the 

binding of sugars and alters the membrane potential. For the coding of taste information two 

major theories exist: the 'across fibre' or 'pattern' theory and the 'labelled line' theory (Laing 

and Jinks, 1996). 

The model solutions studied in this thesis are made up of sweeteners and aroma 

compounds. The sweeteners used for the different studies were either bulk sweeteners or 
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intense sweeteners. Up to date sucrose is the most used sweetener, as it has a good sweet taste 

and no sidetastes. Next to the fact that sucrose is a tastant, it has a function as bulking agent, 

preservative and as fermentation substrate. However, the cariogenity of sucrose and its role as 

energy-provider causes a demand for intense sweeteners (Frijters, 1989). The taste of sucrose 

is seen as the standard for sweet taste by the consumer. Up till now no intense sweetener was 

found having all the positive properties of sucrose. The ideal intense sweetener has the taste 

and functional properties of sucrose, has a low caloric density on a sweetness equivalency 

basis, is physiologically inert, non-toxic and non-cariogenic. Furthermore it should be 

colourless, odourless, water-soluble, chemically stable and competitively priced (Bakal, 

1983; Van der Wei et ai, 1987; O'Brien Nabors and Gelardi, 1991; Verdi and Hood, 1993). 

Intense sweeteners have a sweetening power which is several times larger than that of 

sucrose. This sweetness depends on the used concentration. Besides, the price of most intense 

sweeteners based on equivalent sweetnesses is lower than the price of sucrose and other 

energy containing sweeteners (Table 1.1). 

The use of mixtures of intense sweeteners helps in approaching the optimal sucrose taste. 

Combining sweeteners offers various advantages such as an improvement of the time-

intensity profile, an improved stability, lower costs (even more in case of synergy) and a 

smaller daily consumption as compared to the use of a specific sweetener on its own (Verdi 

and Hood, 1993). Manufacturers can use combinations of sweeteners in their products. Each 

sweetener can be used in the applications for which it is best suited. Manufacturers can 

overcome limitations of individual sweeteners by using them in blends. Na-cyclamate and 

Na-saccharinate historically provided sweetness in a number of popular products. Their use 

Table 1.1 Different sweeteners with their relative sweetnesses on weight basis at 10% SEV 
(sucrose = 1) and prices per kilo. Relative sweetnesses for maltitol, aspartame and Na-
cyclamate were taken from Chapters 3, 4 and 5; - = no values possible at 10% SEV, 
because of off-tastes. 

Sweetener Relative sweetness Price (Euro/kg) 
Sucrose 1 1 
Maltitol 0.7 3 
Aspartame 100 44 
Na-cyclamate 21 2 
Na-saccharinate - 3 
Acesulfame-K - 52 
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Figure 1.1 Structures of sucrose, maltitol, aspartame, Na-cyclamate, Na-saccharinate 
and acesulfame-K. 

in combination was the first practical application of the multiple sweetener approach 

(O'Brien Nabors and Gelardi, 1991). 

To incorporate intense sweeteners in foods and beverages successfully, a thorough 

understanding of their roles in each food application is necessary. The sensory and chemical 

properties of the intense sweeteners must be understood as these frequently will restrict 

application. Attention must be paid to factors including texture, bulk and flavour quality 

(Lindley, 1983). The sweeteners used for the research described in this thesis were sucrose, 

maltitol, aspartame, Na-cyclamate, Na-saccharinate and acesulfame-K. Their structures are 

given in Figure 1.1. 

1.2 Psychophysical models for mixtures of sweeteners 

Psychophysics is the study of the relationship between what exists in the real world (the 

stimulus or stimuli) and the human experience of these events (Meiselman, 1972). Taste 

receptors are stimulated by physical interaction with tastant molecules. A stimulus molecule 

absorbs onto the surface of the receptor, which creates a disturbance of the neural response of 

the receptor. Beidler (1954) assumes a concept of receptor binding, analogous to the 

Michaelis-Menten model for the study of enzyme-substrate reactions, in which one stimulant 

combines with one receptor. The theory of taste stimulation given by Beidler (1954) relates 



Chapter 1 

the magnitude of response, R, to the concentration, C, of the applied chemical stimulus 

according to the following equation: 

R = 77kd (L1) 

in which k = association constant and 7?s = maximum response at very high concentrations. 

Monod et al. (1965) proposed a more complex model, in which the stimulants have to fit 

perfectly to the receptor. When the donor, acceptor and hydrogen atoms of a sweet molecule 

are colinear in the Shallenberg and Acree AH, B system, an optimal binding for sweetness is 

possible (Shallenberger & Acree, 1967). 

Starting from Equation 1.1, Beidler (1971) presented the total response, RT, to a mixture of 

stimuli A and B as: 

T l + kACA+kBCB 

The value of A: for Na-saccharinate may be 100 to 150 times greater than that for sucrose in 

man. Frijters and Oude Ophuis (1983) discussed three mixture models (addition, substitution 

and vector summation) predicting the intensity of a particular mixture and stated that these 

models were either internally inconsistent or lacked sufficient generality. They proposed an 

alternative model, a psychophysical equiratio mixture function: 

ABijpq abijpq 
PkA +1kB 

c c 

\ If \ 
P + q C C 

VWs '"BS J 

(1.3) 

in which i and j are the concentrations of stimuli A and B, respectively, m and n are the 

exponents in the respective psychophysical functions and p and q refer to the proportions of 

the stimuli within the mixture. The equiratio mixture model successfully predicted the 

sensory response to the sweetness intensity of complex mixtures of sugars and sugar alcohols 

(Frijters and De Graaf, 1987). Ennis (1991) distinguished the following molecular mixture 

models: 

• Common receptors, simple binding, receptor-transducer model 

• Common receptors, cooperative binding, receptor model 

• Common receptors, cooperative binding, receptor-transducer model 

• Independent receptors, simple binding, receptor model 

• Independent receptors, simple binding, receptor-transducer model 
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Ennis (1991) stated that if a common receptor for two substances exists and if simple 

binding to the receptor occurs, there will be a linear relationship between the components of 

mixtures which have equal perceptual, or other, effects. Mixture models involving a common 

receptor are a generalization of the mixture model for taste proposed by Beidler (1971) 

(Equation 1.2). In the case of independent receptor models, each substance reacts with a 

unique receptor and/or unique transducer. Ayya and Lawless (1992) explained that the 

equiratio mixture model (Equation 1.3) assumes a single receptor mechanism. As different 

sweeteners may stimulate independent or at least partially independent receptor sites 

(Schiffman et al, 1979; Faurion et al, 1980; Lawless and Stevens, 1983; Van der Wei et al, 

1987; McBride, 1988; Frank et al, 1989; Froloff et al, 1998), the model is limited to the 

study of molecularly similar sweeteners. Schifferstein (1995) modified the equiratio mixture 

model and used equi-intense units to predict the mixture intensities for aspartame/sucrose 

mixtures. Schifferstein (1996) applied this equiratio mixture model to the non-additive 

aspartame/acesulfame-K mixtures by using equi-intense units as the measure of physical 

concentration, an interaction index and a nonlinear response output transformation. 

1.3 Sweetness flavour interactions 

When sucrose is replaced by intense sweeteners, the sweetness of a soft drink is kept the 

same as much as possible, but its flavour often changes. Interactive effects of aroma-active 

compounds as well as the mechanism of sensory perception could account for this result. 

Interactions can occur in the soft drink itself (physical and chemical interaction), at the 

periphery of the sense (receptor interaction) or in the brain (perceptual interaction). 

1.3.1 Physical & chemical interaction 

Several factors determine the rate of release of a volatile compound from an aqueous food 

during consumption. Homologous series of volatile compounds in aqueous solutions were 

used for preliminary research on their behaviour in drinks (Buttery et al, 1969, 1971). A low 

solubility in these solutions increased the volatility of a compound (Buttery et al, 1971). 

Drinks are complex mixtures of water, carbohydrates, lipids, proteins and other organic 

compounds, and all of them can interact with and/or bind flavours. The release of volatile 

compounds depends on the concentration of the volatile, its disposition in the drink (free, 
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entrapped, adsorbed, complexed), the composition (components) of the drink, the amount of 

saliva in the mouth and the influence of temperature on their partition coefficients. The 

properties of the volatile compound (functional groups, molecular size, shape, volatility etc.) 

and the physical and chemical properties of the components in the drink determine the 

relative importance of these factors (Kinsella, 1988; Taylor and Linforth, 1998). 

Carbohydrates as polysaccharides contribute often to the viscosity of a beverage and 

therefore influence the diffusion of small volatile compounds. The effects of polysaccharides 

are usually of minor importance in soft drinks, because their concentrations are rather low 

(Overbosch et al, 1991). Mono- and disaccharides affect the volatility by altering the activity 

coefficients of volatile compounds (Land, 1978). At relatively high concentrations, these 

components lower the amount of bulk water by structuring water, which increases the 

effective concentration of some volatile compounds and therefore can enhance their volatility 

(Nawar, 1971; Wientjes, 1968). 

Lipids can adsorb or dissolve hydrophobic aroma compounds. In drinks these lipids are 

present in a dispersed form and mostly exist in distinct regions (for example droplets). The 

concentrations of hydrophobic volatiles in the aqueous and vapour phases are reduced, 

because of their physical partition between the lipid and aqueous phases of the drink (Buttery 

etal, 1971). 

Interactions between proteins and volatile compounds in drinks mainly depend on the 

type, amount and composition of the proteins, and temperature, pH and ionic strength of the 

medium (Kim & Min, 1988). The hydrophobicity of the protein influences the binding of 

volatile compounds. Small apolar compounds can diffuse into hydrophobic regions for 

further binding reactions (Solms et al, 1973). Some compounds, such as aldehydes, can be 

bound irreversibly in covalent bindings with free sulphide and amino groups in the protein 

(Overbosch et al, 1991). Van Ruth et al. (1995a) found a decreased release of volatile 

compounds from rehydrated bell peppers as well as from French beans, due to the presence 

of the protein mucin in saliva. The influence of pH and ionic strength of the medium is 

mainly evident from the isoelectric point, at which the protein can precipitate. Changes in 

conformation and solubility of the protein strongly alter the affinity to bind with volatile 

compounds (Dumont & Land, 1986). 

Similar to carbohydrates, salts can increase the release of volatile compounds from drinks, 

due to a 'salting out' effect (Land, 1978). Salts in saliva did not affect the flavour release of 
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some rehydrated vegetables (Van Ruth et al, 1995 a), probably because of their low 

concentrations. 

As binding of aroma molecules to receptors largely depends on its concentration in the 

vapour phase (nose) for olfaction and in the aqueous phase (saliva) for taste (Kinsella, 1988), 

the perception of these compounds will be influenced by their physical and chemical 

interactions with components of the soft drink. 

1.3.2 Receptor interaction 

The perception of the sweet taste of intense sweeteners largely depends on their binding 

affinity to the hydrophobic part of the receptor; it is also influenced by changes in the micro-

environment. The relative binding strength of sweet molecules alters because of these 

changes (Van der Wei et al., 1987). For example, Hoopman et al. (1993) noticed a decrease 

in perceived sweet taste due to an increased ethanol concentration in the solution. Kurihara 

(1992) has demonstrated taste modifications for the curculin protein due to changes in the 

micro-environment of its receptor. The protein induces a sweet taste when it binds to a sweet 

taste receptor. The sweet taste of this protein disappears in the presence of divalent cations of 

saliva and is regenerated by tasting water, probably by removing the cations. At acidic pH 

divalent cations of the saliva do not bind to the receptor and the sweetness of curculin will 

last longer in the presence of acids, as in soft drinks. 

1.3.3 Perceptual interaction 

The consumption of a food implies a simultaneous stimulation of several senses, e.g. vision, 

taste and smell. The character and acceptability of a drink is largely determined by the 

integration of percepts of these senses. Von Sydow et al. (1974) ascribed the enhancement of 

aroma perception by sucrose in beverages to psychological interactions rather than to 

receptor or chemical interactions. Frank and Byram (1988) examined the influence of 

strawberry aroma on sweetness. It was demonstrated that the modification of taste perception 

by olfactory stimuli was both tastant- and odorant-dependent. The influence of the strawberry 

aroma on sweetness seems to be more olfactory than gustatory. Murphy and Cain (1980) and 

Algom et al. (1993) proposed an additive model of taste-smell integration, in which the 

overall intensity of taste-smell mixtures is equal to the sum of the intensities of the unmixed 

components. Taste and smell behave in an independent manner, however, percepts of them 
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are often mixed up, whereby olfactory stimulation can evoke sensations of taste. The 

influence of the colour of a stimulus on its taste or smell is often reported (Maga, 1974; 

Dubose et al, 1980; Johnson & Clydesdale, 1982). It is probable that colours are associated 

with particular tastes and smells. Booth (1994) reports that indications about calorie content 

and artificial nature on the label influence the sweetness and overall preferences for a soft 

drink. 

Besides the integration of several senses, the interaction between different stimuli of one 

sense can be found on a psychological level, e.g. the interaction of sucrose and NaCl 

(McBurney & Bartoshuk, 1973; Smith, 1974). Kroeze (1978, 1979) and Lawless (1979) have 

shown that the interaction of sweet and salty or bitter tastes does not occur at the periphery, 

but at a higher level in the transduction process. 

1.4 Techniques to study molecular interaction 

The binding of flavours to components of soft drinks may be studied by sensory analysis 

and/or instrumental techniques (Kinsella, 1988). In order to obtain meaningful correlations of 

the data, sensory and instrumental measurements need to be considered together (Linforth et 

al, 1999). 

1.4.1 Sensory analysis 

In sensory analysis, the human subject is used as an instrument (Koster, 1975). People can be 

trained to adopt an analytical attitude and to use judgment procedures which are needed for 

the analysis of percepts (Kroeze, 1990). As molecular interactions would change the 

perception of a soft drink, sensory analysis can be used for their study. Sensory analysis 

comprises difference and descriptive tests (Meilgaard et al, 1991; Punter, 1991). In 

descriptive analyses, assessors assign attributes to a type of beverage and then give intensity 

scores for these attributes for different products (Punter, 1991). The amount of aroma 

compounds reaching the olfactory epithelium is different for each person. It varies with the 

adsorption along the respiration track, the flow of air and the amount of saliva in the mouth, 

the time, the temperature and the profile of the mouth (Rothe, 1988; Overbosch et al, 1991). 

Measurements of the actual profile sensed by the olfactory bulb might improve the 

correlation between instrumental and sensory measurements (Taylor & Linforth, 1994). A 

10 
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special type of sensory analysis is the time intensity measurement, which can be used to 

study aroma and taste release from soft drinks in the mouth. Assessors score the intensity of a 

particular attribute with time during consumption (Cliff & Heymann, 1993). 

1.4.2 Instrumental analysis 

The release of volatiles from a beverage can be estimated by static headspace analysis of the 

product (Buttery et al, 1969, 1971; Franzen & Kinsella, 1974). The volatile compounds of 

most beverages are present in extremely low concentrations and therefore provide a near 

ideal state of infinite dilution. Under such conditions Henry's law can be applied, which 

means that the concentration of a volatile compound in the static headspace is proportional to 

its concentration in the aqueous phase of a soft drink, at equilibrium. However, the volatile 

profile of the static headspace can be below the detection limit of gas chromatography. 

Therefore, techniques were developed for isolation and concentration of aroma compounds 

from soft drinks, which are purge-and-trap, dynamic headspace analysis, steam distillation, 

vacuum distillation and extraction with solvents (Taylor & Linforth, 1994). Oral vapour gas 

chromatography offers a possibility to analyse the release of volatiles in the mouth of human 

subjects, who had to follow instructions during eating (Legger & Roozen, 1994). In vitro 

mouth models can be used to obtain volatile profiles, which are closely related to the profiles 

of oral vapour gas chromatography, as Van Ruth et al. (1995b) found for rehydrated bell 

peppers. Oral conditions influencing the flavour release are saliva composition and volume, 

temperature, mouth volume and mastication. 

The dynamic headspace techniques imply a transport of the volatile compounds by an 

inert gas, after which the volatiles are condensed and/or adsorbed on an appropriate medium 

(Taylor & Linforth, 1994). Subsequently, the volatile compounds can be analysed by gas 

chromatography, using different detection methods (Van Ruth & Roozen, 1994). These 

methods are limited to qualitative analyses, because each adsorbance material has a different 

affinity for each volatile compound (Wyllie et al., 1978). The identity of the volatile 

compounds can be determined by gas chromatography combined with mass spectrometry, 

flame ionisation detection (retention times and peak areas) and description of odours by 

assessors at the sniffing port (Acree et al, 1984; Van Ruth & Roozen, 1994). This sensory 

technique is capable of associating flavour descriptors with chemical constituents (Acree et 

al, 1984). Human subjects are used to detect aroma-active compounds at the outlet of a gas 

11 
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chromatograph. They differ in sensitivity with chemical detectors and therefore they produce 

different chromatograms (Acree & Barnard, 1994). The number of assessors who smell an 

odour can be related to the concentration of odour-active volatile compounds at the sniffing 

port (Van Ruth et al, 1995c), although an increase in concentration could also change the 

descriptions of an odour. 
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2 
Preliminary studies on commercial products 

In the first study four types of commercial soft drinks were evaluated: a regular and a 
light version of both an orange and a cola soft drink. The aim of the tests was to 
determine the preference of the panellists being naive towards the nature of the soft 
drinks versus being aware of the presence of a light version of the soft drink. For 
orange soft drinks regular was not significantly preferred over the light version in the 
tests. Regular cola soft drinks, on the contrary, were significantly preferred over their 
light equivalents. The awareness of the presence of a light soft drink did not influence 
the preferences of the panellists in both cases. 
In the second study a quaternary model of Beidler 's mixture equation was used to 
describe the sweetness of a light blackcurrant soft drink, containing the intense 
sweeteners Na-saccharinate, Na-cyclamate, aspartame and acesulfame-K. The 
perceived sweetness of the light soft drink was lower than the sweetness of the 
original sucrose-sweetened soft drink. A proportional enhancement of the 
concentrations of the intense sweeteners was utilised to meet the sweetness of the 
classic soft drink. Consequently, the intensity of the aroma attribute strawberry 
increased, while the intensities of the currant and sour related attributes decreased. 

Part of this chapter has been published as: 

Nahon, D.F.; Roozen, J.P.; De Graaf, C. Food Chemistry 1996, 56, 283-289. 
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2.1 Preferences 

Recent data from the Dutch association of the soft drinks industry (1998) show that 17.8% of 

the consumed soft drinks in the Netherlands were light soft drinks. Cola soft drinks were the 

most popular ones, showing a market share of 51.5% in 1998. Orange soft drinks represented 

22.7% of the total consumption of soft drinks in 1998 (NFI, 1999). For soft drinks, cola is the 

number one preferred flavour all over the world and in Europe orange is, with a few 

exceptions, the second preferred flavour (Sinki, 1994). The assumption that taste differences 

between regular and light soft drinks exist inspired us to study interactive effects between 

sweeteners and aroma compounds (Nahon et ah, 1996). However, we do not know whether 

these differences are important enough to be noticed by regular consumers and to alter their 

choice for beverages. We wonder whether consumers have a marked preference for one of 

the soft drinks. Booth et ah (1987) explained that an absence of affective data in sensory 

analysis creates a risk of developing an expert gastronomy, or studying human perception, 

hereby wrongly predicting food selection in the market. In this study paired preference tests 

were used to compare four types of commercial soft drinks (of the same brand): a regular and 

a light orange soft drink and a regular and a light cola soft drink. The aim of the tests was to 

determine the preference of the panellists when naive towards the nature of the soft drinks 

and when aware of the presence of a light version of the soft drink. The habits of the 

panellists to drink regular or light soft drinks, as well as their gender and age were considered 

for their influence on the preferences. 

The regular and the light version of each soft drink were compared in two sessions: the 

orange soft drink in 1996 and the cola soft drink in 1998. Each session comprised two paired 

preference tests. In test I two coded samples were presented, containing the regular and the 

light soft drink. The panellists did not know that they were tasting different sweeteners; they 

had no sample information. The panellists were asked to choose the sample they preferred 

most. In test II two differently coded samples were presented, containing the same soft drinks 

as before. The panellists were told that one of the samples was a light soft drink and that they 

had to choose their preferred sample again. Finally the panellists were asked to write down 

their age, gender and what kind of soft drinks (regular or light) they are used to drink. The 

regular versions of the soft drinks are sweetened by sucrose, whereas the light orange soft 

drink contains the intense sweeteners Na-saccharinate and Na-cyclamate and the light cola 



119 
54 
65 
40 (age 18-27) 
79 (age 41-61) 
8 0 % * 

63 
28 
35 
25 (age 11-27) 
38 (age 41-80) 
7 3 % * 

Commercial products 

Table 2.1 Panels for the orange and cola soft drink sessions: total number of people 
participating; numbers of men, women, young adults and adults (ages); percentage of 
panellists used to drink regular soft drinks, * = significantly different from 50% in two-
tailed binomial test, P < 0.05. 

Orange soft drink session Cola soft drink session 
Total 
Men 
Women 
Young adults 
Adults 
Habit = regular 

soft drink contains aspartame and acesulfame-K. The soft drinks were presented at room 

temperature (20 °C) and had lost part of carbonation by the time of tasting. Students and their 

relatives joining the tests (Table 2.1), came from various parts of the country to visit the 

department's presentation on sensory evaluation during parent's days in 1996 (orange soft 

drink) and in 1998 (cola soft drink). The experiments were performed in an open classroom, 

imitating cafeteria conditions. In both sessions (orange and cola soft drink) significantly more 

panellists had the habit to drink regular soft drinks (Table 2.1). In the orange soft drink 

session more men than women had this habit (91 against 71%, two-tailed %2 test, df= 1, P < 

0.05). Women might be used to drink light soft drinks, however, significant differences 

between men and women were not found in the cola soft drink session. Furthermore, age 

differences did not influence the distribution of these drinking-habits over the panellists, as 

differences between young adults and adults were negligible in both sessions (two-tailed %2 

test, df=\,P< 0.05). 

2.1.1 Preferences without sample information 

The preferences of the panellists in the tests I and II are given in Tables 2.2 and 2.3 for the 

orange and the cola soft drink session, respectively. Comparing the two soft drinks (orange 

and cola) shows that the "naive" preference for the regular soft drink is much more explicit 

for the cola than for the orange soft drink (compare Tables 2.2A and 2.3A). Research 

performed with the sweeteners sucrose and Na-cyclamate in combination with orange aroma 

showed that the orange aroma levels out original taste differences between sucrose and Na-

cyclamate (Nahon et al, 1998). The latter results might give rise to an absence of a 
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Table 2.2 Percentages of panellists preferring regular over light orange soft drinks within 
the segments men, women, regular- and light-drinkers. * = significantly different from 
50% in two-tailed binomial test, P < 0.05. 

A. Test I: without sample information. 

Habit to drink 
Regular 
Light 
Total 

B. Test II: with 

Habit to drink 
Regular 
Light 
Total 

Men 
59% (29 of 49) 
60% (3 of 5) 
59% (32 of 54) 

sample information. 

Men 
61% (30 of 49) 
20% (1 of 5) 
57% (31 of 54) 

Women 
65% (30 of 46) 
37% (7 of 19) 
57% (37 of 65) 

Women 
57% (26 of 46) 
32% (6 of 19) 
49% (32 of 65) 

Total 
62% (59 of 95)* 
42% (10 of 24) 
58% (69 of 119) 

Total 
59% (56 of 95) 
29% (7 of 24) 
53% (63 of 119) 

preference for one of the orange soft drinks. The regular cola soft drink is significantly 

preferred over the light version. A cola aroma is might show different interactive effects with 

the sweeteners present in the soft drink. Besides, the sweetener combinations in the two soft 

drinks were different, which leads to different tastes of the soft drinks. 

In test I of both sessions, men and women did not differ in their preferences (two-tailed x2 

test, df= 1, P < 0.05). Panellists who have the habit to drink regular soft drinks significantly 

prefer the regular soft drink over the light version, for orange as well as for cola (Tables 2.2A 

and 2.3A). Pliner (1982) reported that the likings for unfamiliar tropical fruit juices in her 

study increased monotonically with increasing exposure. It was assumed that mere exposure 

plays a role in the acquisition of human food preferences. However, in the study of Tuorila et 

al. (1990) the most discriminating aspect between regular and light soft drinks was the 

superiority of taste, either for users of regular soft drinks or for users of light soft drinks. 

2.1.2 Preferences with sample information 

In the second test of the sessions, the panellists were aware of the fact that a light soft drink 

was present. Again a marked preference for the regular version of the cola soft drink was 

found, whereas no significant preference was pronounced for one of the orange soft drinks 

(Tables 2.2B and 2.3B). For the orange soft drink as well as for the cola soft drink a shift in 

preference can be observed for the panellists who have the habit to drink light soft drinks. 
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Table 2.3 Percentages of panellists preferring regular over light cola soft drinks within 
the segments men, women, regular- and light-drinkers. * = significantly different from 
50% in two-tailed binomial test, P < 0.05. 

A. Test I: without 

Habit to drink 
Regular 
Light 
Total 

sample information. 

Men 
55% (11 of 20) 
63% (5 of 8) 
57% (16 of 28) 

Women 
85% (22 of 26)* 
44% (4 of 9) 
74% (26 of 35)* 

Total 
72% (33 of 46)* 
53% (9 of 17) 
67% (42 of 63)* 

B. Test II: with sample information. 

Habit to drink 
Regular 
Light 
Total 

Men 
50% (10 of 20) 
13% (1 of 8) 
39% (11 of 28) 

Women 
92% (24 of 26)* 
67% (6 of 9) 
86% (30 of 35)* 

Total 
74% (34 of 46)* 
41% (7 of 17) 
65% (41 of 63)* 

Their preference for regular soft drinks is smaller in test II than in test I of the sessions. 

When comparing Tables 2.2A and B with Tables 2.3A and B, we can observe a shift from 42 

to 29%) and from 53 to 41% for respectively the orange and the cola soft drinks. The 

information of a light drink being present might help these panellists in recognising their 

"own" drink and thus adjust their preferences. However, further study of the data of the group 

of light-drinkers showed that the observed shifts were not significant. Lahteenmaki and 

Tuorila (1997) reported that their panellists rated pleasantness almost identical before and 

after getting a brief description of the drinks. However, direct hedonic comparisons between 

the two sweeteners sucrose and aspartame were not possible in their analysis. These authors 

also noticed that the short time between the ratings might diminish differences in 

pleasantness ratings if subjects feel committed to their first evaluation. As test I and test II in 

our evaluation were also performed directly after each other, we might have a similar effect. 

2.1.3 Preferences for light soft drinks 

The commercial light orange soft drink used in the present study contained the intense 

sweeteners Na-saccharinate and Na-cyclamate. A study of the consumer acceptance of 

sweeteners in tea at room temperature (Sprowl and Ehrcke, 1984) showed a significant lower 

preference for Na-saccharinate as well as for aspartame compared to sucrose. The authors 

concluded that there was no completely acceptable low-calorie substitute for sucrose 
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available to consumers. As appears from the study of Moskowitz and Klarman (1975), the 

sweetness imparted by sucrose is considered to be more acceptable than the sweetness 

imparted by the intense sweeteners. At moderate concentration Na-cyclamate was almost 

pleasant, but showed a rapid drop-off into unpleasantness with increasing concentrations. 

Schiffman et al. (1985) investigated whether several sweeteners could be discriminated from 

one another in uncarbonated soft drinks. For colas they found that sucrose, aspartame and a 

Ca-cyclamate/Na-saccharinate blend, were statistically equivalent in "goodness". 

Acesulfame-K was rated least in "goodness" in their study. The commercial light cola soft 

drink used in the present study, contained the intense sweeteners aspartame and 

acesulfame-K. 

2.2 Sweetness-flavour interactions in a light blackcurrant soft drink 

2.2.1 Known interactions performed by intense sweeteners 

Several studies report on the chemical reactions of intense sweeteners with volatile 

compounds. The data of Hussein et al. (1984) showed that aspartame reacts with aldehydes 

such as benzaldehyde, cinnamaldehyde, citral, n-decanal and vanillin. Also Le Quere et al. 

(1994) found a decrease in the concentrations of several aldehydes in diet orange soft drinks 

containing aspartame, whereas Tateo et al. (1988) proved aspartame to be reactive with 

carbonyl compounds. Le Quere et al. (1994) observed the formation of new volatile 

compounds in diet orange drinks containing cyclamate. These new volatiles were found to be 

structurally related to sodium cyclamate. 

Concerning flavour enhancement, Higginbotham (1983) mentions special properties of 

thaumatin. In soft drinks, certain flavours such as blackcurrant, would allow a replacement 

level of sucrose up to 50 % as the enhancement of flavour masks the aftertaste of thaumatin. 

Baldwin and Korschgen (1979) found a significant higher sensory intensity of fruit-flavour in 

orange- and cherry-flavoured beverages sweetened with aspartame than in their standards 

sweetened with sucrose. The intense sweetener neohesperidine dihydrochalcone (NHDC) can 

improve the overall flavour profile and mouthfeel of certain soft drinks, even at very low 

concentrations (< 5 ppm) (Borrego & Canales, 1992). Lindley et al. (1993) recorded an 

intensification of fruity flavour attributes by addition of 1-4 ppm NHDC to sweet and non-
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sweet beverages. In these cases NHDC acts as a flavour enhancer and modifier rather than as 

a sweetener. 

2.2.2 Light blackcurrant soft drink 

Substitution of sucrose by intense sweeteners demands a complete copy of taste and 

functional properties of sucrose. As none of the currently known sucrose substitutes 

possesses all of these qualities, manufacturers of soft drinks use combinations of intense 

sweeteners to solve flavour problems encountered with single sweeteners (Bakal, 1991; 

Houghton, 1988; Verdi & Hood, 1993). The sweetness of a light blackcurrant soft drink was 

evaluated as being lower than the sweetness of the classic soft drink. With the help of a 

quaternary model of Beidler's mixture equation the concentrations of the sweeteners in the 

light drink can be adjusted in order to meet the sweetness of the sucrose-sweetened soft 

drink. Descriptive sensory tests will allow a comparison of the classic and light soft drinks. 

De Graaf and Frijters (1986) showed that Beidler's mixture equation can predict the 

intensity of a mixture of two substances. Beidler's mixture model describes the peripheral 

interaction between two taste substances; therefore, it is limited to mixtures of taste 

substances of similar taste qualities. Moskowitz et al. (1978) showed that psychological rules 

of sensory perception, which predict the responses to pure aqueous systems of sweeteners, 

hold for complex beverages. According to Beidler's mixture model, the magnitude of the 

response of a mixture containing particular concentrations W, X, Y and Z (mM) of 

respectively substances A, B, C and D is given by: 

_ k„R^W + kuRKRX + krR^rY + knRvnZ 
lABCDWXYZ 
n _ "-A-"-SA" T " - B J t S B ^ T ^ C ^ S C * T J V D - I V S D ^ 

^ABCDWXYZ ~ , . , , „ i „ , T, . . r, KZ-L) 
l + kAW + kBX + kcY + kDZ 

in which RSA, RSB, RSC and RSD = maximum responses to substances A, B, C and D, 

respectively; kA, ks, kc and kD = association constants of substances A, B, C and D, 

respectively. Assuming that the responses to each mixture of a series of mixtures of 

substances A, B, C and D, containing the concentrations W (of A), X (of B), Y (of C) and Z 

(of D) (mM) are equal to the response magnitude R, the following equation can be derived (in 

analogy with the derivation by De Graaf and Frijters (1986) for a mixture of two substances): 

W + ̂ -X + ̂ -Y + ̂ -Z = CM (2.2) 
^ B / *-Ck *~DI 
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CA, (mM) is the concentration of substance A that evokes the response of magnitude R when 

substances B, C and D are not present. This is the point of subjective equality (PSE) for 

substance A. Similarly CB/, Cct and CD/ (mM) can be determined for substances B, C and D, 

respectively. 

The combination of intense sweeteners in the light blackcurrant soft drink should 

approximate the sweetness of a 10% sucrose soft drink as closely as possible. The light soft 

drink contains the sweeteners Na-saccharinate, Na-cyclamate, aspartame and acesulfame-K. 

Na-saccharinate is one of the cheapest sweeteners, however, the taste of this sweetener limits 

its use to a maximum dose (Mitchell & Pearson, 1991). Therefore the maximum 

concentration of Na-saccharinate in the light soft drink was kept at 0.18 mM. Several 

combinations of the other three sweeteners can be chosen to improve the taste and sweetness 

of the light soft drink. 

The difference in taste between the various blackcurrant soft drinks was judged using 

quantitative descriptive analysis. This analysis was performed by a sensory panel of 12 

selected and trained assessors (aged 20-23). A computer interactive interviewing system for 

composing questionnaires was used to gather survey information (Ci2 system, Sawtooth 

Software Inc., Ketchum, USA). In consultation with the panel, a vocabulary of 12 attributes 

was composed to describe the flavour of an assortment of blackcurrant soft drinks (Table 

2.4). The sucrose-sweetened, light and adjusted light blackcurrant soft drinks were evaluated 

by tasting and the intensities of the attributes were marked on a 120 mm visual analogue 

scale on a portable computer screen. 

The four axes of the quaternary model were respectively presented by Na-saccharinate 

(W), Na-cyclamate (X), aspartame (Y) and acesulfame-K (Z). PSEs were determined for the 

four sweeteners, compared to a 10% sucrose blackcurrant soft drink. The PSEs are derived 

from equisweet values reported by O'Brien Nabors and Gelardi (1991), they are presented in 

Table 2.5. Ketelsen et al. (1993) reported difficulties in determining PSEs for Na-

saccharinate and acesulfame-K, due to their inherent bitterness and metal taste at that 

concentration. The PSE of aspartame was determined according to Bock and Jones (1968), 

using the method of constant stimuli (De Graaf & Frijters, 1986). As this PSE of 2.0 mM 

approximates (sufficiently) the value calculated from O'Brien Nabors and Gelardi (1991), it 

was assumed that the other PSEs could be used as well. 
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Table 2.4 Attributes describing the aroma of blackcurrant soft drinks (Bakker, 1995). 

Attributes 
Strawberry Sharp 
Blackcurrant Watery 
Bitter Tart 
Refreshing Sour 
Metallic Aftertaste 
Musty Sweet 

Table 2.5 Points of subjective equality (PSEs) calculated from O'Brien Nabors and 
Gelardi (1991) for the intense sweeteners Na-saccharinate, Na-cyclamate, aspartame and 
acesulfame-K, related to a 10% sucrose-sweetened blackcurrant soft drink. 

Intense sweeteners PSE (mM) 
Na-saccharinate (W) 1.6 
Na-cyclamate (X) 16.6 
Aspartame (Y) 1.9 
Acesulfame-K (Z) 2.5 

The PSEs are the intercepts in the four dimensional coordinate system representing the 

quaternary model by a tetrahedon. Combinations of the intensive sweeteners, on the 

peripheral triangles of this tetrahedon predict equal sweetness to the 10% sucrose 

blackcurrant soft drink. Beidler's mixture equation for this tetrahedon was 

W + 0.096X + 0.842Y+ 0.6402 = 1.6 (2.3) 

in which W, X, Y and Z are the concentrations (mM) of Na-saccharinate, Na-cyclamate, 

aspartame and acesulfame-K, respectively. This equation represents an additive model for 

concentrations of sweeteners needed to obtain a particular sweetness. However, synergistic 

effects occurred when combinations of intense sweeteners were tried out. The average score 

was 41 on a visual analogue scale instead of 28 found for the sucrose-sweetened drink. The 

tetrahedon in the four dimensional coordinate system was uniformly reduced to reckon with 

this synergy. After a reduction of 38% the tetrahedon (Figure 2.1) approximately fits with the 

sweetness of a 10% sucrose blackcurrant soft drink. The outcome of Beidler's mixture 

equation was then 

W + 0.096X + 0.842Y + 0.6402 = 1.0 (2.4) 
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Beidler's mixture equation was found useful for sweetness prediction of binary mixtures of 

glucose and fructose by De Graaf and Frijters (1986). The response to intense sweeteners 

might be different; however, the quaternary model can provide a basis for the prediction of 

the sweetness of solutions. The sweetness of the light blackcurrant soft drink was predicted 

with the quaternary model of Beidler's mixture equation (Equation 2.4), which was 92% of 

the result for the sucrose-sweetened soft drink. A new combination of the intense sweeteners 

Na- saccharinate, Na-cyclamate, aspartame and acesulfame-K was used to meet the 

sweetness of the classic soft drink. The concentration of Na-saccharinate remained 

unchanged; the other sweeteners were increased about proportionally to their original ratios. 

In this way the limited shelf life of aspartame (Homier et al, 1991) and the bitterness of 

acesulfame-K, were taken into account. 

Figure 2.2 illustrates the evaluation of the three soft drinks. Sensory data were subjected to 

Student's t tests to determine significant differences between the three soft drinks. A 

significance level of P < 0.05 was used in this study. The light blackcurrant soft drink 

significantly differed from the classic soft drink for the attributes refreshing, sharp, tart, sour, 

Na-cyclamate 

Aspartame Acesulfame-K 

Na-saccharinate 

Figure 2.1 Tetrahedon, representing the quaternary model of Beidler's mixture equation; 
W+ 0.096X + 0.842Y + 0.640Z = 1.0. 
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strawberry* 

sweet* 

aftertaste* 

sour* *• 

tart* 

^o—ik refreshing* 

metallic 

- • - classic 

-A- light 

-•--adjusted 

Figure 2.2 Spider web diagram of scores for sensory attributes of a classic (sucrose-
sweetened), light and adjusted light blackcurrant soft drink; * = significant differences (P 
< 0.05). 

aftertaste and sweet. The flavour of the light soft drink clearly differs from the one of the 

classic soft drink. When the new combination of intense sweeteners is applied, the character 

of the flavour shifts from currant to strawberry, together with a decrease of the sour related 

attributes. 

2.3 Conclusions 

The results of the first preliminary study showed that the groups of panellists were used to 

drink regular soft drinks more than light soft drinks. There was no significant preference for 

one of the orange soft drinks, but a regular cola soft drink is significantly preferred over its 

light equivalent. Telling these panellists that a light soft drink is present does not influence 

their preferences. In the second study a quaternary model of Beidler's mixture equation was 

used to modulate the concentrations of intense sweeteners in a light blackcurrant soft drink 

and to meet the sweetness of the classic soft drink. The model needs further elaboration of 

Beidler's mixture equation for its use in the future. Changing the concentrations of the 

intense sweeteners in the soft drink affected its flavour profile. 
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Apparently, the presence of intense sweeteners in a light soft drink influences the 

preferences for and the flavour profiles of these drinks to various extents, depending on the 

flavour and sweeteners present. More research on interactive effects between sweeteners and 

aroma compounds is therefore important. 
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3 
Sensory evaluation of mixtures of maltitol or 
aspartame, sucrose and an orange aroma 

The suitability of Beidler's mixture equation for mixtures of sucrose and maltitol as 
well as for mixtures of sucrose and aspartame was examined in the presence of an 
orange aroma. The mean scores for the attribute sweet remained constant for each 
combination of sucrose and maltitol and for each combination of sucrose and 
aspartame. Therefore, Beidler 's mixture equation can be used to choose combinations 
of sucrose and maltitol and combinations of sucrose and aspartame giving the same 
sweetness. Quantitative descriptive analysis of different solutions indicated that the 
flavour profiles of sucrose and maltitol did not differ significantly at a constant 
concentration of orange aroma. However, flavour profiles of solutions with 
increasing aspartame concentrations (but constant aroma levels) showed significantly 
higher scores for the attributes sour, chemical and aftertaste. Addition of orange 
aroma provided the different solutions with a more distinct flavour. The mean scores 
for the attributes orange, sour, fruity and aftertaste increased significantly for most of 
the sucrose/maltitol mixtures. This effect of orange aroma was even more pronounced 
in solutions containing combinations of sucrose and aspartame. Further comments on 
the attribute aftertaste showed similar terms for the different solutions, the most often 
mentioned being orange, sour, fruity and chemical for solutions containing the 
orange aroma. The aftertaste of solutions containing relatively more aspartame was 
mainly described as sweet and chemical. 

This chapter has been published as: 

Nahon, D.F.; Roozen, J.P.; De Graaf, C. Chemical Senses 1998, 23, 59-66. 
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3.1 Introduction 

The application of single sweeteners in beverages causes problems which can be solved by 

using combinations of intense sweeteners. The study of sweetness flavour interactions in soft 

drinks demands a fundamental understanding of the behaviour of these intense sweeteners. 

One important question concerns the amounts of sweeteners in complex mixtures necessary 

to produce a certain sweetness level, e.g. the sweetness equivalent to 10 w/v% sucrose. Ten 

years ago De Graaf and Frijters (1986) developed a simple method to predict equisweet 

combinations of sweeteners based on Beidler's mixture equation. A preliminary study 

(Nahon et al., 1996) proposed a quaternary extension of Beidler's mixture equation to 

modulate the concentrations of intense sweeteners used in a light black currant soft drink. It 

was concluded that the model needed further investigation of the conditions in which 

Beidler's mixture equation could be used (e.g. dependency of sweet taste receptors). The 

present study investigated the applicability of Beidler's mixture equation to mixtures of 

sucrose and maltitol, and mixtures of sucrose and aspartame. In both mixtures the 

composition of the mixture solutions as well as the concentration of orange aroma was 

varied. 

Bulk sweeteners are assumed to compete for adsorption at the same receptor sites (De 

Graaf and Frijters, 1986; Ennis, 1996), which means that the sweetness of a solution of bulk 

sweeteners can be described with Beidler's mixture equation. Several authors (Rapaille and 

Van der Schueren, 1989; Sicard and Le Bot, 1990; Rapaille et al., 1995; Portmann and 

Kilcast, 1996) reported close similarities between sucrose and maltitol. Maltitol is mainly 

utilised for the production of sugarless confectionery. In experiment 1 of the present study, 

mixtures of sucrose and maltitol in water were studied in the presence of an orange aroma in 

order to examine the suitability of Beidler's model for these bulk sweeteners. Several 

combinations of sucrose and maltitol were chosen to study the sweetener contribution to the 

flavour perception. Also, the effect of different concentrations of orange aroma and 

interactions between the orange aroma and both bulk sweeteners were studied by descriptive 

analysis. The overall perception of the solutions was reflected in flavour profiles presenting 

attributes and their magnitudes. 

Several investigations of mixtures of the bulk sweetener sucrose and the intense sweetener 

aspartame in water have been published. The sweetness of a mixture of sucrose and 
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aspartame was compared with the sweetness of sucrose or aspartame. The presence of 

synergy between sucrose and aspartame (-33 to 11%) was indicated by results of Frank et al. 

(1989) and Portmann and Kilcast (ECRO XII Symposium Zurich, August 25-31, 1996, 

unpublished data). However, Ayya and Lawless (1992) and Schifferstein (1995) showed that 

the sweetness of a mixture of sucrose and aspartame lies somewhere between the intensities 

of the composing compounds. Furthermore, Lawless and Stevens (1983) observed a partial 

cross adaptation with sucrose and aspartame, suggesting that these two sweeteners may share 

receptor site mechanisms (Ayya and Lawless, 1992). Descriptive analyses of solutions 

containing aspartame were carried out by Samundsen (1985), Redlinger and Setser (1987), 

Ott et al. (1991), Ketelsen et al. (1993) and Hanger et al. (1996). All these studies, except the 

one by Ott et al. (1991), reported a sweet aftertaste as well as bitter and off-flavour 

(after)tastes. Several sweeteners were arranged by Schiffman et al. (1979) in a three-

dimensional space, which revealed that aspartame clusters with the sweet taste of sugars. 

However, at a high concentration (0.25 w/v%), a bitter component developed with time. 

DuBois and Lee (1983) demonstrated that aspartame is similar to sucrose in taste onset and 

persistence times. Wiet and Beyts (1992) noted a slight non-sweet aftertaste for aspartame in 

water compared to sucrose. Portmann and Kilcast (1996) found significantly higher scores for 

aspartame on the attributes liquorice and bitter (after)tastes, in comparison to sucrose or 

maltitol. 

In experiment 2 of the present study, Beidler's mixture equation was studied with mixtures 

of sucrose and aspartame in water and in the presence of an orange aroma. Several 

combinations of sucrose and aspartame were chosen and interactions between the orange 

aroma and both sweeteners were studied and compared, as in experiment 1. Several authors 

described the interactions between sweeteners and flavours; however, they only presented the 

intensities of one to three attributes. Baldwin and Korschgen (1979) asked the panellists to 

judge fruit-flavour and found that an orange-flavoured beverage sweetened with aspartame 

had a more intense fruit-flavour than its counterpart sweetened with sucrose. Matysiak and 

Noble (1991) investigated the time-related perception of sweetness and fruitiness in model 

systems sweetened with aspartame or sucrose and flavoured with an orange extract. Their 

results show that aspartame has a longer sweetness duration and that its sweetness was 

enhanced by the orange flavour. Fruitiness persisted longer in aspartame-sweetened samples 

than in sucrose-sweetened ones. Bonnans and Noble (1993) varied the acid-content of these 
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beverages and found the same results as in the previous experiment. Larson-Powers and 

Pangborn (1978a) found time-intensity curves for the attributes sweet, bitter, sour and flavour 

of aspartame which were comparable to those of sucrose in all media. Van der Klaauw 

(1989) demonstrated that changes in perceived taste intensity can be instruction-dependent 

and that cognitive factors may affect judgements of chemosensory attributes. It is important 

to have appropriate descriptors available. Odour-induced enhancement of sweetness depends 

on the appropriateness of the stimulus attributes that subjects are instructed to rate. As 

fruitiness and sweetness appeared to be similar attributes, the fruitiness of a taste-smell 

mixture may be included in the working concept of sweetness under those conditions in 

which subjects were not asked to pay attention to the fruitiness. The quantitative descriptive 

analysis used in this study allows subjects to generate their own appropriate descriptors. 

3.2 Experiment 1 

This experiment was designed to examine the suitability of Beidler's mixture equation for 

mixtures of the bulk sweeteners sucrose and maltitol. Interactions between the orange aroma 

and both bulk sweeteners were also analysed. 

3.2.1 Materials and methods 

Subjects 

Of the 61 applicants for the panel screened by a questionnaire, 48 candidates were further 

selected on such criteria as motivation, possession of good general perception, judgement of 

sweetness and the ability to generate and distinguish attributes and score these separately. 

From a pool of 35 available subjects, a panel of twenty-four paid subjects (4 men and 20 

women) was chosen to be trained for experiment 1. Most subjects were students of 

Wageningen Agricultural University, ranging in age from 19 to 27 years and having no prior 

experience of psychophysical experiments. Informed consents were obtained from the 

subjects and the study was approved by the Medical Ethical Commission of Wageningen 

Agricultural University. 
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Stimuli 

The stimuli were solutions of sucrose (CSM Suiker BV, Amsterdam, The Netherlands) and 

maltitol (Roquette Freres, Lestrem, France) and mixtures of these two substances in 

demineralised water. Solutions of limonene (Sigma, St. Louis, USA) and octanal (Merck, 

Hohenbrunnen, Germany) were used to generate attributes. 

According to Portmann and Kilcast (1996), the 10% SEV (Sucrose Equivalent Value) for 

maltitol is 13.5 w/v%. These concentrations, 10 w/v% sucrose and 13.5 w/v% maltitol, were 

chosen as starting concentrations for the Beidler's mixture equation. This equation should 

then predict the concentration and composition of sucrose/maltitol mixtures having a constant 

perceived taste intensity of 10% SEV. The validity of the Beidler's mixture equation was 

assessed over a series of nine sucrose/maltitol ratios (100/0; 90/10; 75/25; 60/40; 50/50; 

40/60; 25/75; 10/90 and 0/100). The overall sweetness of each mixture being equisweet at 

10% SEV. The orange aroma added was a sample of the watery vapour phase of stripped 

orange juice (Cargill juice division, Amsterdam, The Netherlands). It was used in 

concentrations of 0, 15 and 30 g/L. The standard stimuli 'not sweet' and 'very sweet' 

consisted of 0 and 16w/v% sucrose, respectively. The solutions were prepared at least 24 

hours before evaluation and stored at 4 °C overnight. A stimulus consisted of 15 mL of 

solution, presented in a glass jar, covered by a plastic lid and aluminium foil to prevent 

interactions between plastic and orange aroma. The stimuli were presented to the panel at 

room temperature (22 °C). 

Procedure 

The relative sweetness factors (10% SEV) of sucrose (10 w/v%) and maltitol (13.5 w/v%) are 

introduced in Beidler's mixture equation. Beidler's mixture equation becomes then 

W + 0.74X =10 (w/v%) (3.1) 

for mixtures of sucrose (=W) and maltitol (=X) (De Graaf and Frijters, 1986). The panel 

performed a quantitative descriptive analysis to evaluate the solutions containing nine 

different combinations of sucrose and maltitol chosen with Equation 3.1 and three 

concentrations of orange aroma. With the help of several solutions, flavour attributes were 

generated during training of the subjects, which were ranked and clustered in consultation 

with the panel (Table 3.1). The panel was calibrated by tasting sucrose references of 0 and 

16 % (w/v), which were the anchors of the visual analogue scale for sweetness. Similar scales 
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musty 

viscosity 

orange* 50% Sucrose 
50% Maltitol 

prickling 

sour* 

bitter 

fruity* 

- • - 0 g/L aroma 

mint • D- 15 g/L aroma 

chemical --A--30 g/L aroma 

Figure 3.3 Spider web diagram representing the mean scores for sensory attributes of a 

mixture solution of a 50/50 sucrose/maltitol ratio, at three concentrations of orange 

aroma: 0, 15 and 30 g/L; * = significant differences (P < 0.01 for sweetness, P < 0.05 for 

other attributes). 

The comments on aftertastes of the different solutions were similar to the attributes used. 

Solutions containing 0, 15 and 30 g/L orange aroma were compared across the nine different 

sucrose/maltitol mixtures. The number of subjects reporting the aftertastes sweet, orange, 

sour, fruity or chemical were counted and presented in Table 3.2. Solutions containing 15 or 

30 g/L orange aroma gave stronger orange, sour, fruity and chemical aftertastes. An addition 

of 30 g/L orange aroma instead of 15 g/L provided a stronger orange aftertaste. 

Table 3.2 Number of subjects reporting aftertastes sweet, orange, sour, fruity or chemical 

for solutions containing 0, 15 and 30 g/L orange aroma (experiment 1). 

Orange 
aroma (g/L) 
0 
15 
30 

Sweet 
7-16 
7-14 
7-14 

Orange 
0-2 
3-9 
6-14 

Aftertaste 
Sour 
0-3 
2-6 
3-7 

Fruity 
0-1 
1-3 
0-5 

Chemical 
0-4 
3-8 
3-9 
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3.2.3 Conclusions 

Beidler's mixture equation makes it possible to choose equisweet combinations of the bulk 

sweeteners sucrose and maltitol. The flavour profiles of the sweeteners sucrose and maltitol 

do not significantly differ at a constant concentration of orange aroma. Flavour profiles of 

different concentrations of orange aroma show significant differences for several attributes. 

3.3 Experiment 2 

The aim of this experiment was to examine the suitability of Beidler's mixture equation as in 

experiment 1, this time for mixtures of sucrose and aspartame. 

3.3.1 Materials and methods 

Subjects 

Again the panel consisted of twenty-four paid subjects (4 men and 20 women), ranging in age 

from 19 to 27 years. Nineteen subjects also participated in experiment 1, the five additional 

subjects were taken from the pool made in experiment 1. 

Stimuli 

The stimuli were solutions of sucrose (CSM Suiker BV, Amsterdam, The Netherlands) and 

aspartame (Holland Sweetener Company, Maastricht, The Netherlands) and mixtures of these 

two substances in demineralised water. 

Like in experiment 1, nine sucrose/aspartame ratios (100/0, 90/10, 75/25, 60/40, 50/50, 

40/60, 25/75, 10/90 and 0/100) were chosen to assess the validity of the Beidler's mixture 

equation, with the overall sweetness of each mixture equisweet at 10% SEV. Again the 

orange aroma added was a sample of the watery vapour phase of stripped orange juice, used 

in concentrations of 0, 15 and 30 g/L. Further preparation, storage and presentation of the 

solutions were done as in experiment 1. 
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Table 3.3 Sucrose Equivalent Values (SEVs) for aspartame, as reported by several 
authors, the standard sucrose reference, details about the preparation of the solutions and 
the number of subjects used for the determination. 

Authors 

Ayya and Lawless 
Baldwin and Korschgen 

Bornstein et al. 
Cloninger and Baldwin 
DuBois and Lee 
Faurion et al. 

Frank et al. 
Ketelsen et al. 
Larson-Powers and 
Pangborn 
Lawless and Stevens 
Matysiak and Noble 
Ott et al. 
Portmann and Kilcast 
Schifferstein and Frijters 

Theunissen and Kroeze 

Year 

1992 
1979 

1993 
1974 
1983 
1980 

1989 
1993 
1978a 

1983 
1991 
1991 
1996 
1991 

1995 

10% SEV 
(w/v %) 
0.100 
0.065 

0.053 
0.090 
0.075 
0.085 

0.080 
0.090 
0.190 

0.056 
0.085 
0.113 
0.120 
0.088 
0.094 
0.130 

Sucrose 
(w/v %) 
10 
9.5 

9 
10 
10 
9.6 

8.6 
9 
10 

10.3 
10 
10 
10 
8.6 
9.2 
10.5 

Preparation 
solutions 
24h before 
flavoured 
beverage 
fresh 
-' 
-
frozen 
samples 
24h before 
-
16h before 

informal 
48h before 
16h before 
24h before 
24h before 

24h before 

# Subjects 

10-13 
8 (lab 
panel) 
15? 
20 
12 
9 

18-20 
±30 
13 

25 
8 
12 
14 

15 

Procedure 

In several studies, the SEV of aspartame has been determined (Table 3.3). Whereas we found 

one SEV for maltitol in the literature, the values for aspartame were quite different, which 

may result from differences between panels or methods of preparation. The SEV for 

aspartame described by Nahon et al. (1996) was determined in a black currant soft drink, in 

which some additional sweetness from a fruit concentrate may be present. Therefore the 10% 

SEV of aspartame was again determined with the described panel and method of preparation. 

The 10% SEV was determined using the method of constant stimuli (Guilford, 1954) and 

weighted linear regression (Bock and Jones, 1968) as described previously (De Graaf and 

Frijters, 1986). Substituting the established 10 w/v% for sucrose and the resulting SEV of 

0.096 w/v% for aspartame to Beidler's mixture equation gives 
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W + 104.06X = 10 (w/V%) (3.2) 

for mixtures of sucrose (=W) and aspartame (=X). Similar to the first experiment, nine 

sucrose/aspartame ratios were chosen and three different concentrations of orange aroma 

were added. Again the panel performed a quantitative descriptive analysis to evaluate the 

solutions containing several combinations of sucrose and aspartame chosen with 

Equation 3.2. The experimental design was the same as in the first experiment, except that 

the solutions were only tasted once. The attributes generated and used in experiment 1 also 

involved solutions containing aspartame (Table 3.1). Therefore, the same attributes were used 

in experiment 2. To stimulate a better use of the scales, 5% and 12.5% (w/v) sucrose 

solutions were evaluated in experiment 2. These solutions were randomly given with the 

other solutions to be evaluated. 

sweet No aroma 
aftertaste*, A . orange 

sour* grassy 

musty 

viscosity 

bitter 

fruity 

prickling 

mint 

chemical* 
- • - 1 0 0 % sucrose 

o-100% aspartame 

Figure 3.4 Spider web diagram representing the mean scores for sensory attributes of a 
sucrose and an aspartame solution at 10% SEV (in the absence of orange aroma); * = 
significant differences (P < 0.01 for sweetness, P < 0.05 for other attributes). 
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50 

40 

30 -

20 -

10 -

Sweetness 

P*»fi 

- • - 0 g/L aroma 
•D- 15 g/L aroma 
-•A--30 g/L aroma 

100/0 50/50 
Ratio sucrose/aspartame 

0/100 

Figure 3.5 Mean scores for the sensory attribute sweetness for solutions containing 
mixtures of sucrose and aspartame. Three different concentrations of orange aroma (0, 15 
and 30 g/L) were used. 

3.3.2 Results 

In Figure 4.4 a sucrose solution is compared to an aspartame solution at 10% SEV, both in 

the absence of orange aroma. In comparison to sucrose, the mean scores for aspartame are 

significantly higher for the attributes sour, chemical and aftertaste. The mean scores for the 

attribute sweet (Figure 4.5) remain constant for each combination of sucrose and aspartame. 

Apparently Beidler's model can be used to compose equisweet mixtures of these two 

sweeteners. 

Almost all attributes show significant differences when different concentrations of orange 

aroma were compared for mixtures of a 50/50 sucrose/aspartame ratio (Figure 4.6). For every 

mixture solution containing sucrose and aspartame, the addition of orange aroma increases 

the mean scores for all attributes except sweetness, viscosity and musty. Addition of orange 

aroma again clearly gives the solution a more distinct flavour. In this experiment, subjects 

scaled 5 and 12.5 w/v% sucrose solutions as well. This probably introduced more variations 

in sweetness among solutions (compare Figures 4.2 and 4.5), although significant differences 

were not found. Standard deviations calculated for the attribute sweet were again low for 

each combination of sucrose and aspartame. As in experiment 1, it is difficult to find 

significant differences for the other attributes, but some tendencies may be recognised. The 
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sweet 

orange 
50% Sucrose 
50% Aspartame 

prickling 

sour 

bitter* 

fruity* 

- • - 0 g/L aroma 

mint* o- 15 g/L aroma 

chemical* - * - -30 g/L aroma 

Figure 3.6 Spider web diagram representing the mean scores for sensory attributes of a 
mixture solution of a 50/50 sucrose/aspartame ratio, at three concentrations of orange 
aroma: 0, 15 and 30 g/L; * = significant differences (P < 0.01 for sweetness, P < 0.05 for 
other attributes). 

mean scores for the attributes sour, bitter, chemical, prickling, spicy and aftertaste tend to be 

higher when more aspartame is present in the mixture (see for example Figures 4.7 and 4.8). 

The contribution of orange aroma to the mean scores of the attributes is of equal magnitude 

for every mixture solution. In case of interaction it is expected that the differences in mean 

scores of the attributes either decrease or increase when the ratio sucrose/aspartame changes. 

Therefore, interactions between aroma and sweetener are assumed to be absent. Besides, the 

mean scores for the attributes orange and fruity remain fairly constant for every possible 

combination of sucrose and aspartame. These attributes would change with the ratio 

sucrose/aspartame, if either sucrose or aspartame implied any of these tastes. 

The terms used for the comments on the aftertastes of the different solutions did not differ 

from the attributes. However, solutions containing more aspartame tended to have more 

aftertaste, which is mainly described by the attributes sweet and chemical. Similar to 

solutions in experiment 1, solutions containing 15 or 30 g/L orange aroma provided stronger 

orange, sour, fruity and chemical aftertastes in comparison to solutions without orange 

aroma. 
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Figure 3.7 Mean scores for the sensory attribute sour for solutions containing mixtures of 
sucrose and aspartame. Three different concentrations of orange aroma (0, 15 and 30 g/L) 
were used. 

3.3.3 Conclusions 

Beidler's mixture equation can be used to choose combinations of the sweeteners sucrose and 

aspartame having the same sweetness. The flavour profiles of mixtures containing more 

aspartame as compared to those containing sucrose provide significantly higher scores on the 

attributes sour, chemical and aftertaste. Different concentrations of orange aroma provide 

significantly different flavour profiles. 

3.4 Discussion 

Beidler's mixture equation seems to be suitable for mixtures of sucrose and maltitol and for 

mixtures of sucrose and aspartame. Addition of orange aroma gives the solutions a more 

distinct taste. Solutions containing maltitol did not significantly differ from solutions 

containing sucrose in this study, whether in absence or in the presence of orange aroma. The 

same results were reported in the literature (Rapaille and Van der Schueren, 1989; Sicard and 

Le Bot, 1990; Rapaille et al, 1995; Portmann and Kilcast, 1996). As expected, Beidler's 

mixture equation was appropriate for mixtures of these two sweeteners, the two bulk 

sweeteners seem to share the same receptor sites. 
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Figure 3.8 Mean scores for the sensory attribute aftertaste for solutions containing 
mixtures of sucrose and aspartame. Three different concentrations of orange aroma (0, 15 
and 30 g/L) were used. 

The 10% SEV determined for aspartame agrees with values reported in the literature 

which were determined with larger panels (panel >10). However, the sweetness values found 

for the mixtures of sucrose and aspartame were quite dissimilar. Our findings concerning the 

sweetness of mixtures of sucrose and aspartame agreed with those of both Ayya and Lawless 

(1992) and Schifferstein (1995). Beidler's mixture equation seems to be appropriate for these 

solutions. Once the use of Beidler's mixture equation for composing our equisweet mixture 

solutions had been established, the effects of added orange aroma could then be investigated. 

Larson-Powers and Pangborn (1978a), Baldwin and Korschgen (1979), Matysiak and Noble 

(1991) and Bonnans and Noble (1993) asked their subjects to judge one attribute at a time. 

Whereas we did not find any changes in the attribute orange aroma, all except Larson-Powers 

and Pangborn (1978a) found enhancement of fruitiness by aspartame. The applied 

quantitative descriptive analysis seems to be an appropriate method to avoid instruction-

dependent changes in perceived taste intensity (Van der Klaauw, 1989). 

Le Quere et al. (1994) evaluated several sweeteners in an orange soft drink by quantitative 

descriptive analysis. Comparison of aspartame with sucrose shows that synthetic and 

pineapple flavours are associated with high concentrations of aspartame. In contrast with 

their study, an unanchored descriptive analysis by Larson-Powers and Pangborn (1978b) 

showed a decrease in "fresh orange peel" and "orange-flavoured aspirin" aroma in orange 
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flavoured drinks, when comparing aspartame with sucrose. The flavour of drinks sweetened 

with sucrose or aspartame was judged as sweet-chemical and bitter. The aftertaste of samples 

containing sucrose or aspartame was described as "sweet-clean" (Larson-Powers and 

Pangborn, 1978b). In the present study, mixtures containing more aspartame were 

characterised by higher scores on attributes related to sour, bitter and chemical-related tastes. 

The aftertaste of these solutions was described as sweet-chemical. The quantitative 

descriptive analysis of the solutions did not reveal interactions between the sweeteners and 

the orange aroma. Mixtures of sweeteners showing synergistic effects might give more 

flavour effects. Orange aromas containing other flavour compounds, such as aromas based on 

peel oil, could also give different results. 

In conclusion, it was shown that Beidler's mixture equation is valid for mixtures of 

maltitol or aspartame, sucrose and an orange aroma. Equisweet mixtures of them can be 

formulated to provide a basis for studying sweetness-flavour interactions. Furthermore, a 

quantitative descriptive analysis seems to be the most appropriate method for the study of 

these interactions. 
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4.1 Introduction 

Equisweet mixtures of sweeteners can be used as a basis for studying sweetness-flavour 

interactions. In previous experiments equisweet mixtures of maltitol or aspartame, sucrose 

and an orange aroma were formulated with the help of Beidler's mixture equation (Nahon et 

al., 1998). A quantitative descriptive analysis (QDA) of the solutions did not reveal 

interactions between the sweeteners and the orange aroma. Mixtures of sweeteners showing 

synergy might affect the flavour profiles of these solutions (Nahon et al, 1996). Literature 

data showed that mixtures of sucrose and Na-cyclamate give positive synergy and thus this 

mixture would be interesting to study. 

Synergy between sucrose and cyclamate has been described before by Yamaguchi et al. 

(1970b), Hoppe (1981), Frank et al. (1989) and Portmann en Kilcast (1996b). The latter two 

determined a significant synergy; Frank et al. (1989) specified this synergy to be 15%. Hoppe 

(1981), on the contrary, reported a hindering between sucrose and Na-cyclamate, which 

would suggest a competition between sweetener molecules for receptor sites and thus an 

absence of synergy. 

Showing synergy means that Beidler's mixture equation cannot be used to compose 

equisweet mixtures of the sweeteners sucrose and Na-cyclamate. A different approach has 

been chosen to equal their sweetness to the level of a 10 w/v% sucrose solution (denoted as 

10% Sucrose Equivalent Value, SEV). Several authors reported quite different SEVs for 

Na-cyclamate (Table 4.1). The background of the panellists (e.g. age, food preferences) 

might account for different judgments in sensory evaluation. 

The results obtained with mixtures of sucrose and maltitol or aspartame showed that 

sucrose fits in the linear equation of Beidler (Nahon et al., 1998). Up to a concentration of 

10w/v% sucrose, the concentration of and response to this bulk sweetener are linearly 

related. The contribution of sucrose to the mixtures was thus fixed according to the chosen 

ratios. The next step was addition of Na-cyclamate until a sweetness equal to 10% SEV was 

reached. 

Mixtures of sucrose and Na-cyclamate equisweet at 10% SEV were composed. QDA was 

used to find possible interactive effects between an orange aroma and mixtures of both 

sweeteners. The composition of the mixture solutions as well as the concentration of orange 

aroma was varied. The overall perception of the solutions was reflected in flavour profiles 
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presenting attributes and their magnitudes. Faurion et al. (1980) and DuBois and Lee (1983) 

both described similarities between sucrose and Na-cyclamate in multidimensional analysis 

and in temporal sensory properties, respectively. Additionally, Hanger et al. (1996) found no 

differences between Na-cyclamate and sucrose for the attributes sweet (aftertaste), bitter 

(aftertaste), off-flavour, mouth coating and drying. However, Portmann and Kilcast (1996a) 

reported a strong bitter flavour and bitter and metallic non-sweet aftertastes for 

Na-cyclamate. A caramel and burnt sugar flavour was also found, although these flavours are 

normally associated with nutritive sweeteners such as sucrose. Moskowitz and Klarman 

(1975) noticed that Na-cyclamate was rather pleasant at moderate concentrations but that this 

turned into unpleasantness at higher concentrations. In a lemonade product cyclamate was 

judged as sweet as and less tart than sucrose (Inglett et al, 1969). 

In this study, mixtures of sucrose and Na-cyclamate equisweet at 10% SEV were 

composed and interactive effects between both sweeteners and an orange aroma were studied 

by QDA. 

Table 4.1 Sucrose Equivalent Values (SEVs) for Na- and Ca-cyclamate, as reported by 
several authors, the standard sucrose reference, details about the preparation of the 
solutions and the number of subjects used for the determination; Na-cycl = sodium 
cyclamate, Ca-cycl = calcium cyclamate. 

Author(s) 

DuBois and Lee 
Faurion et al. 

Frank et al. 
Hanger et al. 
Hoppe 
Ketelsen et al. 
Larson-Powers and 
Pangborn 
Portmann and 
Kilcast 
Redlinger and Setser 
Yamaguchi et al. 

Year 

1983 
1980 

1989 
1996 
1981 
1993 
1978a 

1996a 

1987 
1970a 

10% SEV 
(w/V %) 
0.5 
0.35 

0.25 
0.11 
0.6 
0.42 
0.86 

0.44 

0.14 
0.2 

Sucrose ref. 
(w/V %) 

10 
9.6 

8.6 
4 
10.4 
9 
10 

10 

5 
5.84 

Preparation / 
solutions 
Na-cycl 
frozen samples, Na-
cycl 
24h before, Na-cycl 
fresh daily, Na-cycl 
Na-cycl 
Ca-cycl 
16h before, Ca-cycl 

24h before, Na-cycl 

2.5h before, Ca-cycl 
Na-cycl 

no. of 
subjects 
12 
9 

18-20 
25 

±30 
13 

12 

7 
100 
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4.2 Materials and methods 

Sensory evaluation was used to determine relative sweetnesses and to perform descriptive 

analyses. Whereas stimuli and subjects were the same in both cases, the methods (10% SEV 

determinations and QDA) are described separately. 

4.2.1 Stimuli 

Analogous with earlier experiments (Nahon et al., 1998), the stimuli were solutions of 

sucrose (CSM SuikerBV, Amsterdam, The Netherlands) and of Na-cyclamate (Flevo chemie 

BV, Harderwijk, The Netherlands) and mixtures of these two substances in demineralized 

water. Nine sucrose/Na-cyclamate ratios (100/0, 90/10, 75/25, 60/40, 50/50, 40/60, 25/75, 

10/90 and 0/100) were chosen to study possible interactive effects between sweeteners and 

aroma compounds. The pH of these solutions was measured with a Metrohm (Herisau, 

Switzerland) pH-meter. The overall sweetness of each mixture had to meet with a constant 

perceived taste intensity of 10% SEV. The standard stimulus for the SEV determinations was 

a 10 w/v% sucrose solution. 

Solutions of sucrose, Na-cyclamate, acesulfame-K (Hoechst, Amsterdam, The 

Netherlands), orange aroma and octanal (Merck, Hohenbrunnen, Germany) were used to 

generate attributes for the QDA. The standard stimuli 'not sweet' and 'very sweet' used in 

this analysis consisted of 0 and 16 w/v% sucrose, respectively. The orange aroma added to 

evaluate interactive effects was a sample of the watery vapor phase of stripped orange juice 

(Cargill juice division, Amsterdam, The Netherlands). It was used in concentrations of 0, 15 

and 30 g/L. 

All solutions were prepared at least 24 h before evaluation and stored at 4 °C overnight. In 

all evaluations, a stimulus consisted of 15 mL of solution. These stimuli were presented in a 

glass jar, covered by a plastic lid and aluminium foil to prevent interactions between the 

plastic and the orange aroma. The stimuli were presented to the panel at room temperature 

(22 °C). 

4.2.2 Subjects 

The panel for both sensory evaluations (at least 18 subjects) was chosen from a pool of 25 

paid subjects (7 men and 18 women), ranging in age from 19 to 26 years. These subjects were 
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selected and trained for the two experiments. Most subjects were students of Wageningen 

Agricultural University, some of them having prior experience of psychophysical 

experiments. Informed consents were obtained from the subjects and the study was approved 

by the Medical Ethical Commission of Wageningen Agricultural University. Subjects were 

instructed to taste according to the sip-and-spit method, the time intervals between stimuli 

being kept at 60 s. After tasting of a solution, the subjects neutralized their mouth with water 

and crackers. Information from the survey was gathered by a computer interactive 

interviewing system (Ci2 system, Sawtooth Software Inc., Ketchum, USA). 

4.2.3 SEV determinations 

Equisweet mixtures of the sweeteners sucrose and Na-cyclamate were composed by fixing 

the contribution of sucrose to the mixtures, according to the chosen ratios. Na-cyclamate was 

added until a sweetness of 10% SEV was reached (the partial SEV of Na-cyclamate). The 

extent of this addition was determined using the method of constant stimuli (Guilford, 1954) 

and weighted linear regression analysis (Bock and Jones, 1968). The panel was presented the 

standard stimulus, which is the 10 w/v% sucrose solution and seven comparison stimuli. 

These consist of a fixed amount of sucrose and amounts of Na-cyclamate that vary 

exponentially near the expected partial SEV for Na-cyclamate. The determination of this 

partial SEV further follows the method as described by De Graaf and Frijters (1986). At least 

252 datapoints were used for the determination of the composition of one ratio mixture 

(correlation coefficients of weighted linear regressions > 0.91). This method was then 

repeated for all nine ratio mixtures, which provides the composition of mixtures matching a 

10% SEV. 
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Table 4.2 Mixtures of sucrose and Na-cyclamate matching a sweetness of 10% SEV, 
concentrations of sucrose and Na-cyclamate and pH of the solutions 

Mixture ratio 
sucrose/Na-cyclamate 

100/0 
90/10 
75/25 
60/40 
50/50 
40/60 
25/75 
10/90 
0/100 

Sucrose (w/v%) 

10 
9 
7.5 
6 
5 
4 
2.5 
1 
0 

Na-cyclamate (w/v%) 

0 
0.015 
0.043 
0.086 
0.111 
0.140 
0.236 
0.335 
0.443 

pH 

6.5 
6.2 
6.5 
6.0 
6.0 
6.2 
5.9 
6.0 
5.9 

4.2.4 Quantitative Descriptive Analysis 

The solutions containing nine different combinations of sucrose and Na-cyclamate matching 

a sweetness of 10% SEV (Table 4.2) and three concentrations of orange aroma (0, 15 and 30 

g/L) were evaluated by QDA. For this analysis, the subjects generated flavour attributes with 

the help of several solutions, which were ranked and clustered in consultation with the panel 

(Table 4.3). The panel was calibrated by tasting sucrose references of 0 and 16 w/v%, which 

were the anchors of the visual analogue scale for sweetness. Similar scales for other attributes 

were not anchored. The intensities of the attributes were marked on a 120 mm visual 

analogue scale (maximum score = 50) on a portable computer screen. Stimuli were presented 

randomly to the subjects and subjects were asked to comment on aftertastes. To monitor the 

Table 4.3 Attributes describing the flavour of several solutions containing sucrose 
(10w/v%), Na-cyclamate (0.44 w/v%), acesulfame-K (0.087w/v%), orange aroma 
(15 g/L) and/or octanal (0.05 g/L) 

Attributes 

Sweet Fruity 
Orange Watery 
Bitter Mint 
Sour Musty 
Sharp Aftertaste 
Chemical 
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use of the scales, 5 and 12.5 w/v% sucrose solutions were evaluated as well. These solutions 

were randomly given with the other solutions to be evaluated. 

Sensory data were subjected to Student's t tests to determine significant differences 

between solutions. A significance level of P< 0.01 was used for sweetness (anchored scale) 

and P < 0.05 was used for the other attributes. 

4.3 Results 

Figure 4.1 presents the results of the SEV determinations in comparison with linear 

expectations. The concentration of Na-cyclamate necessary to obtain equisweet mixtures at 

10% SEV is smaller than follows from linearity. 

The pH values measured for the mixture solutions used in the QDA are reported in 

Table 4.2. The pH values for the solutions containing orange aroma were in the same range. 

The results of the QDA show that the flavour profiles of a 100% sucrose solution compared 

with a 100% Na-cyclamate solution in the absence of orange aroma provide significant 

differences for the attributes chemical and aftertaste (Figure 4.2). A comparison between 

these two sweeteners in the presence of 30 g/L orange aroma shows similar profiles (Figure 

4.3); no significant differences were found. For the attribute sweet, the mean scores remain 
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Figure 4.1 Concentration of Na-cyclamate (w/v%) in the mixture, as a function of the 
contribution of Na-cyclamate (%) to the mixture. 
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sweet ° 9 / L a roma 

aftertaste*. . orange 

musty v. \ ••'['• / ^ ^ bitter 

mint — A^4Ark " sour 
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fruity chemical* 

•o- 100% Na-cyclamate 

Figure 4.2 Spider web diagram representing the mean scores for sensory attributes of a 
sucrose and a Na-cyclamate solution at 10% SEV (in the absence of orange aroma); * = 
significant differences (P < 0.01 for sweetness, P < 0.05 for other attributes). 

constant for each combination of sucrose and Na-cyclamate (Figure 4.4A). Figure 4.4B 

shows the mean scores for the attribute chemical. The contribution of orange aroma to the 

mean scores of this attribute is of a smaller magnitude for mixture solutions in which more 

Na-cyclamate is present. As in previous experiments (Nahon et al, 1998), standard 

deviations calculated for the attribute sweet were low for each combination of sucrose and 

Na-cyclamate. Again, it is difficult to find significant differences for the other attributes. 

The terms used for the comments on the aftertastes of the different solutions did not differ 

from the attributes. However, solutions containing more Na-cyclamate tended to have more 

aftertaste, which is mainly described by the attribute bitter. For all three concentrations of 

orange aroma, subjects mentioned a bitter aftertaste for mixtures containing more 

Na-cyclamate (Figure 4.5). Solutions containing 15 or 30 g/L orange aroma provided 

stronger orange, chemical and mint aftertastes than solutions without orange aroma. 
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30 g/L aroma 
orange 

musty ^ V• I /\\ ^, bitter 

mint 

sharp 
- • - 1 0 0 % sucrose 

chemical - o - 100% Na-cyclamate 

Figure 4.3 Spider web diagram representing the mean scores for sensory attributes of a 
sucrose and a Na-cyclamate solution at 10% SEV (in the presence of 30 g/L orange 
aroma); no significant differences. 

4.4 Discussion 

The 10% SEV determined for Na-cyclamate in this study (0.44 w/v%) perfectly agrees with 

the value given by Portmann and Kilcast (1996a). However, most values reported in the 

literature were lower (Table 4.1). It seems to be very important to determine the SEVs related 

to the panel worked with, as we noticed before (Nahon et al., 1998). Figure 4.1 illustrates the 

difference between the linear expectations from Beidler's mixture equation and the results of 

the present experiments. Upon composing equisweet mixtures of sucrose and Na-cyclamate, 

one would expect to add fractions from the 10% SEV of Na-cyclamate according to Beidler's 

method. This linearity was found before for mixtures of sucrose and maltitol or aspartame 

(Nahon et al, 1998). In case less Na-cyclamate is necessary than linearly expected, synergy 

has been found for these mixtures. Results from Table 4.2 and Figure 4.1 demonstrate a 

synergistic effect between sucrose and Na-cyclamate. 

57 



Chapter 4 

50 

40 -

30 -

20 -

10 

Sweet 

- • - 0 g/L aroma 
•A- -• 15 g/L aroma 
-a--30 g/L aroma 

1 r 

100/0 50/50 0/100 

Sweetness ratio sucrose/Na-cyclamate 

B 

o o 

OU -i 

40 • 

30 -

20 

10 -

0 -

Chemical 

0- - ' 5 - , r, .-A-.... nr.''D 

1 1 1 1 1 1 1 1 1 1 1 1 

0 g/L aroma 

A--15 g/L aroma 

-a--30 g/L aroma 

100/0 50/50 0/100 

Sweetness ratio sucrose/Na-cyclamate 

Figure 4.4 Mean scores for the sensory attributes sweetness (A) and chemical (B) for 
solutions containing mixtures of sucrose and Na-cyclamate. Three different concentrations 
of orange aroma (0, 15 and 30 g/L) were used. 

The synergy between sucrose and Na-cyclamate has been reported before by several 

authors. Yamaguchi et al. (1970b) found that a mixture of 3 w/v% sucrose and 0.2 w/v% Na-

cyclamate was equisweet to a 9.2 w/v% sucrose solution. As can be seen from Table 4.2, 

these values are just between the values found for the 25/75 and 40/60 sucrose/Na-cyclamate 

mixtures. Redlinger and Setser (1987) determined a 0.140 w/v% Ca-cyclamate solution to be 

as sweet as a 5 w/v% sucrose solution. As this concentration of Ca-cyclamate is higher than 

the concentration necessary to obtain the 50/50 sucrose/Na-cyclamate mixture at 10% SEV, 
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the presence of synergy between sucrose and (Na-)cyclamate was again confirmed. The 

synergy found by Portmann and Kilcast (1996b) was higher when less Na-cyclamate was 

present in the mixture. A look at their concentration-response relation for Na-cyclamate 

clarifies this effect, as this relation is negatively accelerated. Hoppe (1981) found a mixture 

of 75 g/L sucrose and 0.5 g/L Na-cyclamate to match the sweetness intensity of a 109.7 g/L 

sucrose solution. These values are similar to the ones reported in Table 4.2 for a 75/25 

sucrose/Na-cyclamate mixture, which would suggest the presence of synergy. However, 

Hoppe (1981) ascribed these mixtures a hindering behavior. He used equations to quantify an 

expected mixture sweetness, which can then be compared with the experimentally 

determined mixture sweetness. The use of these equations introduces the reported hinderings, 

whereas a look at the actual concentrations in his Table 6 (Hoppe, 1981) indicates synergy. 

According to McBride (1988) a separate-sites model can account for the phenomenon of 

supplemental action. The sugars from a binary sugar system are transduced at independent 

receptor sites and then integrated in a common effector system to give a taste perception. 

Hutteau et al. (1998) showed that synergy can be correlated to an increase in water mobility 

and that an increased mobility of water molecules in the medium can be related to an increase 

in sweetness. They reported an increase in water mobility for sucrose/Na-cyclamate mixtures 

compared to sucrose. Synergistic effects observed, when two components are in mixture, are 
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Figure 4.5 Number of subjects reporting a bitter aftertaste for solutions containing 
mixtures of sucrose and Na-cyclamate. Three different concentrations of orange aroma (0, 
15 and 30 g/L) were used. 
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specific and depend on the compatibility of the hydration of each component and their 

influence on water structure. 

Synergistic mixtures of sweeteners might show interactive effects with aroma compounds. 

The pH values measured for mixture solutions containing orange aroma were in the range of 

the pH values reported in Table 4.2. Apparently, the addition of orange aroma has no 

influence on the pH of the solutions. The results of the QDA are presented in Figures 4.2-4.5. 

Figure 4.2 shows a comparison between a sucrose solution and a Na-cyclamate solution at 

10% SEV, both in the absence of orange aroma. In comparison with sucrose, the mean scores 

for Na-cyclamate are significantly higher for the attributes chemical and aftertaste. The 

observed significant difference for the attribute aftertaste is quite common for intense 

sweeteners. The results agree with the findings of Portmann and Kilcast (1996a). Other 

authors (Faurion et al, 1980; DuBois and Lee, 1983; Hanger et al, 1996) reported more 

similarities between sucrose and Na-cyclamate. In the descriptive analysis by Larson-Powers 

and Pangborn (1978b) samples containing Ca-cyclamate were characterised as "sweet-

chemical" and "bitter"; they also had a cloying, "sticky-sweet" and "medicinal" aftertaste. 

Overall differences between Ca-cyclamate and sucrose were not found by Ketelsen et al. 

(1993), although Ca-cyclamate tends to have a longer aftertaste than sucrose. When a 100% 

sucrose and a 100% Na-cyclamate solution in the presence of 30 g/L orange aroma were 

compared (Figure 4.3), no significant differences were found. Apparently, the addition of 

orange aroma levels out differences mentioned for sucrose and Na-cyclamate. 

Sweetnesses for all mixtures were kept at 10% SEV, as can be deduced from Figure 4.4A. 

The mean scores for the attribute sweet remain constant for each combination of sucrose and 

Na-cyclamate. The addition of orange aroma has no effect on these mean scores, as subjects 

accurately separate the scores on the different attributes, following the applied QDA method. 

The lines representing the mean scores for the attribute chemical for the three concentrations 

of orange aroma (Figure 4.4B) converge when more Na-cyclamate is present in the mixture. 

The addition of orange aroma accounts for this effect; the significant differences between 

sucrose and Na-cyclamate were levelled out. Comparison of Figures 4.2 and 4.3 illustrates 

the effect of an addition of orange aroma. For solutions containing Na-cyclamate only three 

attributes (orange, sour and sharp) increase significantly, whereas for sucrose seven attributes 

change significantly (orange, sour, chemical, fruity, watery, mint and aftertaste). When more 

sucrose is present in the mixtures, initial scores are relatively low and an addition of orange 
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aroma substantially contributes to the mean scores. The addition of orange aroma then clearly 

gives the solutions a more distinct flavour. As Na-cyclamate gives higher mean scores on 

most of the attributes (Figure 4.2), an addition of orange aroma hardly increases these scores, 

according to the Weber ratio. For all mixture solutions, addition of orange aroma 

significantly increases the mean scores for the attribute orange. As expected, the addition of 

30 g/L orange aroma did not double the mean scores obtained with 15 g/L orange aroma 

(Nahon etal, 1998). 

Comments on the aftertaste of the different solutions show that the significantly higher 

scores of Na-cyclamate on this attribute (Figure 4.2) can be ascribed to a lingering bitterness. 

The bitter aftertaste mentioned for mixtures containing more Na-cyclamate, appears 

especially for the sweetness ratios 25/75,10/90 and 0/100 sucrose/Na-cyclamate (Figure 4.5). 

Time-intensity measurements by Larson-Powers and Pangborn (1978a) showed a greater 

sourness and a marked, persistent bitterness of Ca-cyclamate compared to sucrose. Hanger et 

al. (1996) and Portmann and Kilcast (1996a) reported bitter aftertastes as well. The mean 

scores for the attribute aftertaste decrease as soon as a slight amount of sucrose is present in 

the mixture. The presence of sucrose in the mixture solution might change the system in such 

a way that effects of Na-cyclamate are suppressed immediately. Addition of orange aroma 

increases the orange, chemical and mint aftertastes of solutions. 

In conclusion, it was shown that mixtures of sucrose and Na-cyclamate are synergistic. 

With the help of SEV determinations equisweet mixtures were composed, which form an 

optimal basis for the study of sweetener-flavour interactions. A QDA then showed a levelling 

effect of orange aroma for significant differences observed between sucrose and Na-

cyclamate. 
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5 
Sensory evaluation of ternary mixtures of sodium 
cyclamate, aspartame, sucrose and an orange 
aroma 

Ternary mixtures of sucrose, aspartame and Na-cyclamate were studied in the 
presence of an orange aroma. Equisweet mixtures of the sweeteners were composed, 
which account for the observed synergistic effects between the sweeteners. The 
sweetness contributions of sucrose and Na-cyclamate were fixed on forehand 
according to their synergy, and the matching concentration of aspartame was 
determined. The composition of the equisweet ternary mixtures was described in a 
regression equation. The mixtures of aspartame and Na-cyclamate exhibited more 
synergy than the mixtures of sucrose and Na-cyclamate. Sucrose and aspartame were 
exchangeable in the sense that the synergy observed for the ternary mixture was a 
linear combination of the synergies of the binary mixtures. 

The flavour profiles of combinations of the mixtures and an orange aroma were 
obtained with the help of quantitative descriptive analysis and indicated possible 
interactive effects between the sweeteners and the orange aroma. The sweetness 
contribution of Na-cyclamate to the ternary mixtures determined the flavour profile of 
this mixture to a large extent. The ternary mixtures containing mainly Na-cyclamate 
were described as being more chemical, bitter and musty and having more aftertaste. 
Further comments on this aftertaste revealed the descriptions bitter and chemical. 

This chapter has been submitted as: 

Nahon, D.F.; Roozen, J.P.; De Graaf, C. Chemical Senses 
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5.1 Introduction 

Observed flavour differences between regular and light beverages gave rise to various studies 

involving sweeteners and aroma compounds. Muir et al. (1998) studied the influence of 

sweetener type on the sensory profiles of commercial fruit juice drinks. Differences noticed 

between the effects of sweetener combinations provide a basis for further studies of 

sweetener-aroma interactions. Instrumental methods were also used to determine the 

interaction of aroma compounds with sweeteners. Reineccius et al. (1998) indicated in such a 

study that significant differences observed in the headspace analysis of sweetened beverages 

needed to be checked for sensory significance. A rather direct comparison between sensory 

and instrumental analysis (Nahon et al, 1998a) showed that this sensory significance was not 

found for beverages containing Na-cyclamate, sucrose and an orange aroma. In a preliminary 

experiment with a commercial light blackcurrant soft drink, a modulation of the 

concentrations of the four intense sweeteners in the drink caused shifts in the flavour 

descriptions of the drink (Nahon et al, 1996). 

Equisweet mixtures of sweeteners form an optimal basis for the study of sweetener-aroma 

interactions. It was demonstrated that Beidler's mixture equation can be used to describe the 

sweetness of the binary sucrose/maltitol and sucrose/aspartame mixtures (Nahon et al, 

1998b), which means that these mixtures behave linear: they do not show any synergistic 

effects. For mixtures of sucrose and Na-cyclamate synergy was observed and precisely 

described (Nahon et al, 1998c). To approach the effect observed with the quaternary mixture 

of sweeteners, ternary mixtures are of interest for study. A combination of sucrose, aspartame 

and Na-cyclamate will be the next step towards the study of the complexity of mixtures 

containing more than two components. In this combination, the behaviour of the mixture of 

aspartame and Na-cyclamate is unknown. The ternary mixtures studied, will be chosen in 

such a way that possible synergistic effects between aspartame and Na-cyclamate or for the 

ternary mixture as a whole, will be revealed. 

Ternary mixtures can be visualised by a plane in a three dimensional coordinate system, 

with the axes sucrose, aspartame and Na-cyclamate, respectively (Figure 5.1). The extremes 

of the triangle in this coordinate system, will be set by the 10% Sucrose Equivalent Values 

(SEVs) for the three sweeteners. The triangle between these points then indicates the linear 

expectations. As synergy between sucrose and Na-cyclamate was already shown and synergy 
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Aspartame (w/v%) 

10%SEV 
intersection curve 1 

intersection curve 2 

Sucrose (w/v%) 
10% SEV 

Na-cyclamate (w/v%) 

Figure 5.1 Linear expectations for equisweet ternary mixtures represented in a three 
dimensional coordinate system. Intersection curve 1: concentration of Na-cyclamate 
constant, intersection curve 2: ratio sucrose/aspartame constant. 

between aspartame and Na-cyclamate can be expected, a concave triangle will probably 

represent the experimental plane at a total sweetness of 10% SEV. The experimental plane 

will be defined by equisweet mixtures of sucrose, aspartame and Na-cyclamate. To determine 

these equisweet mixtures the concentrations of sucrose and Na-cyclamate will be chosen on 

forehand, deducted from the results obtained in the sucrose-Na-cyclamate experiment (Nahon 

et al, 1998c). With the help of partial SEV determinations (Nahon et al, 1998c) we will 

determine how much aspartame should be added to the sucrose/Na-cyclamate mixture to 

obtain a sweetness equivalent to the sweetness of a 10 w/v% sucrose solution. In the first part 

of the experiment, the sweetness contribution of Na-cyclamate to the mixture will be fixed at 

50%. In this way, intersection curve 1 (Figure 5.1) through the triangle plane in the three 

dimensional coordinate system will be studied. The second part of the experiment will deal 

with intersection curve 2 (Figure 5.1), which consists of increasing concentrations of Na-

cyclamate, with a constant sucrose/aspartame ratio. 

Synergy observed in ternary mixtures has been reported before (Schiffman et al, 1996), 

however, a complete set of results has never been published. Within the ternary mixture 

sucrose/aspartame/Na-cyclamate, we have studied the binary mixtures sucrose/aspartame and 

sucrose/Na-cyclamate, but not aspartame/Na-cyclamate. Bakal (1983) indicated the presence 

of synergy between aspartame and cyclamates and reported that combinations of these two 

sweeteners in aqueous solutions exhibit superior taste qualities over the single sweetener 
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solutions (Bakal, 1991). Schiffman et al. (1979) studied qualitative differences among 

sweeteners with the help of multidimensional scaling techniques and found that Ca-cyclamate 

and aspartame fell closest to and thus tasted most like the sugars. These sweeteners also 

clustered in the multidimensional analysis by Faurion et al. (1980). Frank et al. (1989) 

established the presence of significant synergy (20%) between aspartame and cyclamate. 

Schiffman et al. (1996) suggested in their abstract that the synergy observed for binary 

mixtures was larger than that for ternary mixtures of sweeteners. 

Mixtures of sweeteners were described in theoretical models (e.g. Beidler, 1971) and by 

empirical fitting equations (e.g. Moskowitz et al, 1978). Laffort (1989) applied his empirical 

models for odor mixtures to the mixtures studied by De Graaf and Frijters (1986) and 

describes models for ternary mixtures as well (Laffort and Dravnieks, 1982). Most models 

start from the intensities of the components of the mixtures, for which the individual 

concentration-response relationships should be known. For the ternary mixture studied in the 

present experiment, an empirical fitting equation was established, which is useful for the 

calculation of the composition of equisweet mixtures in practice. Furthermore, this equation 

can be used to obtain information on the aspartame/Na-cyclamate mixtures. 

The equisweet ternary mixtures obtained are essential to study the interactive effects with 

aroma compounds by quantitative descriptive analysis (QDA). Analogous to earlier 

experiments, the ternary mixtures were studied in the presence of a water soluble orange 

aroma. Sucrose/aspartame mixtures did not show interactive effects with the orange aroma 

added (Nahon et al, 1998b). However, orange aroma levelled out taste differences detected 

between sucrose and Na-cyclamate solutions (Nahon et al, 1998c). 

In this study, ternary mixtures of sucrose, aspartame and Na-cyclamate, equisweet at 10% 

SEV were composed and described in a regression equation. Interactive effects between the 

sweeteners and an orange aroma were studied by QDA. 

5.2 Materials and methods 

Equisweet ternary mixtures were determined with the help of sensory evaluation and 

afterwards descriptive analyses were performed. Subjects and stimuli were the same in both 

cases, but the methods (10% SEV determinations and QDA) differed and are therefore 

described separately. 
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5.2.1 Subjects 

The panel for both sensory evaluations (19-24 subjects) was chosen from a pool of 28 paid 

subjects (7 men and 21 women), ranging in age from 20 to 24 years. Some of these subjects 

(13) participated in earlier experiments, others were selected from a pool of 24 subjects 

participating in the selections for the present experiment. All subjects were trained for the 

two experiments. Most subjects were (former) students of Wageningen University and 

Research Centre, some of them having prior experience of psychophysical experiments. 

Informed consents were obtained from the subjects and the study was approved by the 

Medical Ethical Commission of Wageningen University and Research Centre. Subjects were 

instructed to taste according to the sip-and-spit method, the time intervals between stimuli 

were kept at 60 s. The subjects used water and crackers to neutralise their mouth after tasting 

of a solution. A computer interactive interviewing system (Ci2 system, Sawtooth Software 

Inc., Ketchum, USA) was used to gather survey information. 

5.2.2 Stimuli 

Analogous to earlier experiments (Nahon et al, 1998b and c) the stimuli were solutions of 

sucrose, aspartame (Holland Sweetener Company, Maastricht, The Netherlands) and Na-

cyclamate (Flevo Chemie BV, Harderwijk, The Netherlands) and mixtures of these three 

substances in demineralised water. Different sucrose/aspartame/Na-cyclamate ratios were 

chosen to study possible interactive effects between sweeteners and aroma compounds. The 

pH of the solutions was measured with a Metrohm (Herisau, Switzerland) pH-meter. The 

overall sweetness of each mixture had to meet with a constant perceived taste intensity of 

10% SEV. The standard stimulus for the SEV determinations was a 10 w/v% sucrose 

solution. 

Solutions of sucrose, aspartame, Na-cyclamate, orange aroma and octanal (Merck, 

Hohenbrunnen, Germany) were used to generate attributes for the QDA. The standard stimuli 

'not sweet' and 'very sweet' used in this analysis consisted of 0 and 16 w/v% sucrose, 

respectively. The orange aroma added to evaluate interactive effects was a sample of the 

watery vapor phase of stripped orange juice (Cargill juice division, Amsterdam, The 

Netherlands). It was used in concentrations of 0, 15 and 30 g/L. 

All solutions were prepared at least 24 h before evaluation and stored at 4 °C overnight. In 

all evaluations, a stimulus consisted of 15 mL of solution. These stimuli were presented in a 
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glass jar, covered by a plastic lid and aluminium foil to prevent interactions between the 

plastic and the orange aroma. The stimuli were presented to the panel at room temperature 

(22 °C). 

5.2.3 SEV determinations 

As a new panel and a new batch of Na-cyclamate was used in the present experiment, the 

10% SEV values for aspartame and Na-cyclamate were determined once more (as compared 

to Nahon et al, 1998b and c). The partial SEV for Na-cyclamate in the 50/50 sucrose/Na-

cyclamate mixture was set again as well (Nahon et al, 1998c). Next, equisweet mixtures of 

the sweeteners sucrose, aspartame and Na-cyclamate were composed by fixing the 

contributions of sucrose and Na-cyclamate to the mixtures, according to the chosen ratios. 

Aspartame was added until a sweetness of 10% SEV was reached (the partial SEV of 

aspartame). The extent of this addition was determined using the method of constant stimuli 

(Guilford, 1954) and weighted linear regression analysis (Bock and Jones, 1968). The panel 

was presented the standard stimulus, which is the 10 w/v% sucrose solution, and seven 

comparison stimuli. These consist of fixed amounts of sucrose and Na-cyclamate and 

amounts of aspartame which vary exponentially near the expected partial SEV for aspartame. 

The determination of this partial SEV further follows the method as described by De Graaf 

and Frijters (1986). According to this method, the standard and the comparison stimulus are 

tasted in both orders. McBride (1988) verified this procedure by finding a significant effect of 

order of tasting, with the first solution tasted being identified as sweeter. In this way, at least 

266 datapoints were used for the determination of the composition of one ratio mixture 

(correlation coefficients of weighted linear regressions > 0.91). This method was then 

repeated for all ratio mixtures, providing the composition of ternary mixtures matching a 

10% SEV. 

5.2.4 Quantitative Descriptive Analysis 

The solutions containing different combinations of sucrose, aspartame and Na-cyclamate 

matching a sweetness of 10% SEV (Table 5.1) and three concentrations of orange aroma (0, 

15 and 30 g/L) were evaluated by QDA. For this analysis, 23 subjects generated flavour 

attributes with the help of several solutions, which were ranked and clustered in consultation 

with the panel (Table 5.2). The panel was calibrated by tasting sucrose references of 0 and 16 
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Table 5.1 Mixtures of sucrose, aspartame and Na-cyclamate matching a sweetness of 10% 
SEV in a given ratio, concentrations of sucrose, aspartame and Na-cyclamate and pH of 
the solutions. 

Mixture ratio 
sucrose/aspartame/ 

Na-cyclamate 
0 /50 
12.5 /37.5 
25 /25 
37.5 /12.5 
50 / 0 
0 / 0 
12.5 /12.5 
37.5 /37.5 
45 /45 
50 /50 

/50 
/50 
/50 
/50 
/50 
/100 
115 
I2S 
/10 
/O 

Sucrose 
(w/v%) 

0 
1.25 
2.5 
3.75 
5 
0 
1.25 
3.75 
4.5 
5 

Aspartame 
(w/v%) 

0.024 
0.019 
0.012 
0.006 
0 
0 
0.004 
0.024 
0.033 
0.051 

Na-cyclamate 
(w/v%) 

0.114 
0.114 
0.114 
0.114 
0.114 
0.499 
0.236 
0.043 
0.015 
0 

pH 

5.5 
6.0 
5.7 
6.0 
6.2 
5.9 
5.5 
5.8 
6.1 
5.8 

Table 5.2 Attributes describing the flavour of several solutions containing sucrose (10 
w/v%), aspartame (0.101 w/v%), Na-cyclamate (0.499 w/v%), a mixture of these 
sweeteners (respectively 2.5 w/v%, 0.012 w/v% and 0.114 w/v%), orange aroma (15 g/L) 
and/or octanal (0.05 g/L). 

Attributes 

Sweet 
Orange 
Sour 
Chemical 
Bitter 

Sharp 
Musty 
Viscosity 
Fruity 
Aftertaste 

w/v%, which were the anchors of the visual analogue scale for sweetness. Similar scales for 

other attributes were not anchored. The intensities of the attributes were marked on a 120 mm 

visual analogue scale (maximum score = 50) on a portable computer screen. Stimuli were 

presented randomly to the subjects and subjects were asked to comment on aftertastes. To 

monitor the use of scales, 5 and 12.5 w/v% sucrose solutions were evaluated as well. These 

solutions were randomly given with the other solutions to be evaluated. 
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5.2.5 Data analysis 

Sensory data were subjected to Student's t tests to determine significant differences between 

solutions. A significance level of P < 0.01 was used for sweetness (anchored scale) and P < 

0.05 for the other attributes. 

The composition of the equisweet ternary mixtures was described in a regression equation 

with the help of a surface-fitting program (Tablecurve 3D, SPSS Inc., Chicago, USA). The 

equation was based on experimental data from the present experiment and on results obtained 

before (Nahon et al, 1998b and c). A comparison was made with an equation based on 

information on the binary mixtures of the components. The fit of the empirical regression 

equation to the experimental results was determined. 

5.3 Results 

The starting points of all partial SEV determinations were set by the determinations of the 

10% SEVs for aspartame and Na-cyclamate (compare Figure 5.1). For aspartame the same 

batch was used as before (Nahon et al, 1998b) and with the panel used for the present 

experiment the 10% SEV for aspartame was 0.101 w/v% instead of 0.096 w/v%. In case of 

Na-cyclamate a new batch was used and the panel used for the present experiment 

determined its 10% SEV to be 0.499 w/v% compared to 0.443 w/v% found before (Nahon et 

al, 1998c). As the partial SEV of Na-cyclamate in the 50/50 sucrose/Na-cyclamate mixture 

was the starting point for the study of ternary mixtures with a fixed sweetness contribution of 

Na-cyclamate of 50%, this partial SEV was determined once more. The value for this partial 

SEV was 0.114 w/v% instead of 0.111 w/v% (Nahon et al., 1998c). 

Given the results obtained for intersection curves 1 and 2 (Table 5.1) and the results on the 

mixtures of sucrose and aspartame (Nahon et al, 1998b) and sucrose and Na-cyclamate 

(Nahon et al, 1998c) the following ternary regression equation (Figure 5.2) was obtained: 

_ 0.10-0.34X + 0.26X2 -0.016Y + 0.00058Y2 

1 + 20.33X-79.28X2 +197.18X3 -0.058Y 
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4 6 8 

Sucrose (w/v%) 
0.6 Na-Cyclamate (w/v%) 

Figure 5.2 Representation of equisweet ternary mixtures in a three dimensional 
coordinate system. The grid plane represents Equation 1, the filled circles (*) are 
experimental results obtained from intersection curves 1 and 2 and the open circles (o) are 
obtained from Nahon et al. (1998b and c). 

in which X = Na-cyclamate (w/v%), Y = sucrose (w/v%) and Z = aspartame (w/v%). After 

fixing the concentrations of Na-cyclamate and sucrose in the ternary mixtures, the 

concentrations of aspartame in these mixtures can be calculated with the help of this 

equation. 

The outcome of each experiment can be illustrated by an intersection curve located on its 

two dimensional plane in the three dimensional coordinate system. As in earlier experiments 

(Nahon et al., 1998c), the linear expectations were then compared to the experimental results. 

Intersection curves 1, based on linear expectations and experimental results and calculated 

from Equation 5.1, are all presented in Figure 5.3. The concentration of aspartame necessary 

to obtain equisweet mixtures at 10% SEV is linearly related to the concentration of sucrose in 

the ternary mixture, but is only half its linear expectation. Similarly, intersection curves 2 are 

presented in Figure 5.4. The concentration of aspartame necessary to get these mixtures 

equisweet at 10% SEV is smaller than linearly expected. 

71 



Chapter 5 
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Linear expectations 

• Experimentally determined 

— Curve calculated from Equation 5.1 
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Sucrose (w/v%) 

Figure 5.3 Intersection curve 1. The concentration of Na-cyclamate in the ternary mixture 
was kept constant at 0.114 w/v%, its contribution to the total sweetness being 50%. 
Concentration of aspartame (w/v%) in the mixture, as a function of the concentration of 
sucrose (w/v%) in the mixture; linear expectations, experimental results and curve 
obtained from Equation 5.1. 

Linear expectations 

A Experimentally determined 

-Curve calculated from Equation 5.1 

0 20 40 60 80 100 

Sweetness contribution of Na-cyclamate (%) 

Figure 5.4 Intersection curve 2. The ratio between the sweetness contributions of 
aspartame and sucrose was kept constant at 50/50. Concentrations of aspartame (w/v%) in 
the ternary mixture, as a function of the contribution of Na-cyclamate (%) to the sweetness 
of the mixture; linear expectations, experimental results and curve obtained from Equation 
5.1. 
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• 0% Na-cyclamate 
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Figure 5.5 Linear extrapolations of intersections 1 and 2 (see Figure 5.1), which gives the 

relationships between sucrose (w/v%) and aspartame (w/v%) for various sweetness 

contributions of Na-cyclamate (0, 10, 25, 50, 75 and 100%). 

• Extrapolations aspartame 

— Aspartame curve calculated from Equation 5.1 
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Figure 5.6 The concentrations of aspartame (w/v%) and sucrose (w/v%) in binary 

mixtures, as a function of the concentration of Na-cyclamate (w/v%) in these mixtures. The 

total sweetness of these mixtures being 10% SEV. For aspartame the curve obtained from 

Equation 5.1 is given, along with the results from linear extrapolations (Figure 5.5). The 

results for the sucrose/Na-cyclamate mixture are obtained from Nahon et al. (1998c). 
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Figure 5.7 Spider web diagram representing the mean scores for sensory attributes of a 
Na-cyclamate (0/0/100) and a sucrose/aspartame (50/50/0) solution at 10% SEV. In the 
presence of A. 0 g/L and B. 30 g/L orange aroma. * = significant differences (P < 0.01 for 
sweetness, P < 0.05 for other attributes); sue = sucrose; asp = aspartame; eye = Na-
cyclamate. 
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Figure 5.8 Spider web diagram representing the mean scores for sensory attributes of an 
aspartame/Na-cyclamate (0/50/50) and a sucrose/Na-cyclamate (50/0/50) solution at 10% 
SEV. In the presence of A. 0 g/L and B. 30 g/L orange aroma. No significant differences; 
sue = sucrose; asp = aspartame; eye = Na-cyclamate. 
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Figure 5.9 Mean scores for the sensory attribute sweetness for solutions containing ternary 
mixtures of sucrose, aspartame and Na-cyclamate. Three different concentrations of orange 
aroma (0, 15 and 30 g/L) were used. A. The sweetness contributions of sucrose and 
aspartame were kept constant at a ratio of 50/50, the mean scores were plotted against the 
contribution of Na-cyclamate (%) to the sweetness of the mixture (intersection curve 2). B. 
The sweetness contribution of Na-cyclamate was kept constant at 50%, the mean scores 
were plotted against the sweetness contribution of sucrose (%) (intersection curve 1). 
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Figure 5.10 Mean scores for the sensory attribute chemical for solutions containing ternary 

mixtures of sucrose, aspartame and Na-cyclamate. Three different concentrations of orange 

aroma (0, 15 and 30 g/L) were used. A. The sweetness contributions of sucrose and 

aspartame were kept constant at a ratio of 50/50, the mean scores were plotted against the 

contribution of Na-cyclamate (%) to the sweetness of the mixture (intersection curve 2). B. 

The sweetness contribution of Na-cyclamate was kept constant at 50%, the mean scores 

were plotted against the sweetness contribution of sucrose (%) (intersection curve 1). 
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Bitter aftertaste 

- • - 0 g/L aroma 

o- 15 g/L aroma 

• - -30 g/L aroma 
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Sweetness contribution of Na-cyclamate (%) 

Figure 5.11 Number of subjects reporting a bitter aftertaste for solutions containing 
ternary mixtures of sucrose, aspartame and Na-cyclamate. Three different concentrations 
of orange aroma (0, 15 and 30 g/L) were used. 

The deviation of the calculated curves (Equation 5.1) from the experimental results varied 

from 0.8-6.0%. This largest deviation of 6.0% was found for the 45/45/10 

sucrose/aspartame/Na-cyclamate mixture. When calculating the composition of the ternary 

mixtures with the help of a regression equation based on the binary mixtures of the 

components, this deviation varied from 0.4-12.8%. Given the composition of equisweet 

mixtures of sucrose and Na-cyclamate (Nahon et ai, 1998c) and the results obtained with the 

intersections 1 and 2 (Figures 5.3 and 5.4), equisweet combinations of sucrose and aspartame 

at a given Na-cyclamate concentration, can be obtained by extrapolations (Figure 5.5). With 

the help of Equation 5.1, the (calculated) compositions of the equisweet mixtures of sucrose 

and Na-cyclamate and aspartame and Na-cyclamate can be compared (Figure 5.6). 

The flavour profiles of the equisweet ternary mixtures were obtained by QDA. The 

pH values measured for the mixture solutions used in the QDA are reported in Table 5.1. The 

pH values for the solutions containing the orange aroma were in the same range (5.4-6.1). 

The comparison between the ternary mixtures 0/0/100 and 50/50/0 sucrose/aspartame/Na-

cyclamate shown in Figure 5.7A, reveals significant differences for the attributes chemical, 

bitter, musty and aftertaste in the absence of orange aroma. When orange aroma is present 

(30 g/L) these two ternary mixtures do not differ significantly (Figure 5.7B). Comparison of 

mixtures containing relatively more sucrose or aspartame (50/0/50 and 0/50/50 
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sucrose/aspartame/Na-cyclamate) shows no significant differences between the two flavour 

profiles, either in the absence or in the presence of orange aroma (Figures 5.8A and B). For 

the attribute sweet, the mean scores are constant, for each possible mixture of sucrose, 

aspartame and Na-cyclamate (Figures 5.9A and B). Figures 5.10A and B show the mean 

scores for the attribute chemical for the ternary mixtures of sucrose, aspartame and Na-

cyclamate. Figure 5.10A, showing the results obtained for intersection curve 2, illustrates the 

effect of relatively more Na-cyclamate in the ternary mixture. The contribution of orange 

aroma to the mean scores of the attribute chemical is of a smaller magnitude for solutions in 

which only Na-cyclamate is present. The standard deviations for the attribute sweet were low 

for all mixtures of sucrose, aspartame and Na-cyclamate. Standard deviations for the other 

attributes were larger and significant differences for these attributes were hardly found. 

The comments on aftertastes of the different solutions resembled the attributes used. 

Solutions containing more Na-cyclamate tended to have more aftertaste, which is mainly 

described by the attributes bitter (Figure 5.11) and chemical. The number of subjects 

mentioning a bitter aftertaste increases when more Na-cyclamate is present in the ternary 

mixture, for all three concentrations of orange aroma. Solutions containing 15 or 30 g/L 

orange aroma provided stronger orange, chemical and bitter aftertastes than solutions without 

orange aroma. 

5.4 Discussion 

10% SEV determinations for aspartame and Na-cyclamate were repeated because of 

replacements in the sensory panel and the use of new product batches; they showed 

deviations of 5 respectively 13% compared to the determinations done before (Nahon et al, 

1998b and c). As the two determinations for aspartame were performed with the same 

sweetener batch but different panels, it is confirmed that SEV determinations performed with 

different panels can be compared to a certain extent only (Nahon et al, 1998b). As the partial 

SEV of Na-cyclamate in the 50/50 sucrose/Na-cyclamate mixture was quite close to its value 

determined before (0.114 w/v% compared to 0.111 w/v%), the partial SEVs of Na-cyclamate 

for the other mixtures were taken from the results obtained in the earlier experiment (Nahon 

etal., 1998c). 
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The linear relationship for sucrose and aspartame shown in Figure 5.3, implies an absence 

of extra synergy when comparing ternary mixtures with binary mixtures. As the contribution 

of Na-cyclamate to the ternary mixture was fixed for intersection curve 1, the synergy 

between sucrose and Na-cyclamate was already taken into account. A full exchangeability 

between sucrose and aspartame in the mixture, would result in the figure marked as 'linear 

expectations aspartame' (Figure 5.3). As a straight line was obtained, a certain amount of 

exchangeability will be present. Apparently, aspartame and Na-cyclamate show synergy as 

well and from Figure 5.6, we can conclude that aspartame and Na-cyclamate show more 

synergy than sucrose and Na-cyclamate. The difference between the linear expectations and 

the experimental results observed in Figure 5.3, can be ascribed to the extra synergy between 

aspartame and Na-cyclamate compared to the synergy between sucrose and Na-cyclamate. 

The exact figure for the synergy between aspartame and Na-cyclamate was not determined, 

but was approached by extrapolations of experimental results (Figure 5.5) and calculations 

using Equation 5.1 (Figure 5.6). Frank et al. (1989) reported more synergy for the 

aspartame/Na-cyclamate mixture (20%) as compared to the sucrose/Na-cyclamate mixture 

(15%). However, they also reported a synergy of 11% between sucrose and aspartame. Bakal 

(1983) reported synergies for the combination sucrose/Na-cyclamate and aspartame/Na-

cyclamate, but also for the combination sucrose/aspartame. The results obtained in this 

experiment indicate that the resulting synergy in a ternary mixture, is the arithmetical sum of 

the synergies of the composing binary mixtures. Schiffman et al. (1996) suggested that binary 

mixtures might reach a greater degree of synergism than ternary mixtures. The synergistic 

effect reported refers to the effect that less aspartame or Na-cyclamate is needed than linearly 

expected. Lawless (1998) indicated in his short communication that various methods used for 

the determination of the presence or absence of synergy (ours included) may under- or 

overestimate the sweetness of a mixture. The reduction of concentrations found in our 

investigation might be a logical consequence of the method, but still this does not change the 

practical advantage of the fact that smaller amounts of sweeteners are needed to obtain the 

same sweetness. 

In intersection 2, the sweetness contribution of Na-cyclamate to the mixture was varied 

and the ratio sucrose/aspartame was kept constant. The contributions of sucrose and Na-

cyclamate were fixed on forehand, according to the synergistic effects observed by Nahon et 

al. (1998c). The linear expectations for the concentration of aspartame given in Figure 5.4, 
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imply a similar synergy for aspartame/Na-cyclamate mixtures and sucrose/Na-cyclamate 

mixtures. However, as mentioned before, the synergy between aspartame and Na-cyclamate 

is larger than the synergy between sucrose and Na-cyclamate and therefore, when 

'substituting' sucrose by aspartame, less aspartame is needed than deducted from linear 

expectations. Including the results shown in Figure 5.4, we can imagine the equisweet 

concave triangle as a winding stairs with its axis the equisweet sucrose/Na-cyclamate 

mixtures (Figure 5.2). For each ternary mixture in which Na-cyclamate contributes to the 

sweetness to a certain extent, the sweetness contributions of sucrose and aspartame are 

linearly exchangeable. Given the data from intersections 1 and 2, linear regressions can be 

applied, to obtain the relationships between the concentration of sucrose and the 

concentration of aspartame, for different sweetness contributions of Na-cyclamate (Figure 

5.5). Extrapolations to the points in which no sucrose is present in the mixtures, gives the 

data for binary mixtures of aspartame and Na-cyclamate (Table 5.3). As the sweetness 

contributions of sucrose and aspartame remain linearly exchangeable, whatever the sweetness 

contribution of Na-cyclamate, it is even more explicit that sucrose and aspartame share a 

common receptor mechanism (Ennis, 1991; Ayya and Lawless, 1992). 

Using the surface-fitting program (Tablecurve 3D) it is relatively easy to calculate and 

visualise the composition of equisweet ternary mixtures (Figure 5.2). Therefore, this method 

would be a valuable tool to the industry, knowing the composition of some equisweet 

mixtures. A comparison of the range of equisweet mixtures used to establish such a fitting 

equation, reveals that the knowledge of the binary mixtures only, is not sufficient. 

Calculations based on the compositions of the binary mixtures revealed a deviation of 0.4-

Table 5.3 Mixtures of aspartame and Na-cyclamate expected to match a sweetness of 10% 
SEV; calculated concentrations of aspartame and Na-cyclamate. The concentrations of 
aspartame were obtained with the help of the linear extrapolations shown in Figure 5.5. 

Mixture ratio Aspartame (w/v%) Na-cyclamate (w/v%) 
aspartame/Na-cyclamate 

0/100 0 0.499 
25/75 0.008 0.236 
50/50 0.025 0.114 
75/25 0.048 0.043 
90/10 0.066 0.015 
100/0 0.101 0 
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12.8%, whereas calculations based on the intersections and two binary mixtures gave a 

deviation of maximal 6.0%. With the help of Equation 5.1, the composition of other 

equisweet (binary) mixtures can be found. In this way, we could directly compare 

sucrose/Na-cyclamate and aspartame/Na-cyclamate mixtures (Figure 5.6). A more important 

synergy for the aspartame/Na-cyclamate mixtures was revealed. 

Ternary mixtures of sweeteners might show interactive effects with aroma compounds, as 

we noticed similarly with quaternary mixtures (Nahon et al, 1996). Again the pH values 

measured were in the same range for all ternary mixtures, in the absence and in the presence 

of orange aroma. This pH measurement additionally offers a control considering the quality 

of the orange aroma and the sweeteners present in the mixtures. The fluctuations in the pH 

can be ascribed to the low buffering capacity of the mixtures studied near neutral pH. The 

results of the QDA are shown in Figures 5.7-5.11. In Figure 5.7A a Na-cyclamate and a 

50/50 aspartame/sucrose solution at 10% SEV are compared, both in the absence of orange 

aroma. The mean scores for the Na-cyclamate solution are significantly higher for the 

attributes chemical, bitter, musty and aftertaste. In a comparison between sucrose and Na-

cyclamate we found the same results for the attributes chemical and aftertaste (Nahon et al, 

1998c). When the Na-cyclamate and 50/50 aspartame/sucrose solution in the presence of 30 

g/L orange aroma (Figure 5.7B) were compared, no significant differences were found. As 

discussed in the same study, the addition of orange aroma levels out differences noticed for 

the solutions. An earlier comparison between sucrose and aspartame solutions (Nahon et al, 

1998b) showed significant differences for the attributes sour, chemical and aftertaste. The 

comparison between the 50/50 aspartame/Na-cyclamate and the 50/50 sucrose/Na-cyclamate 

solutions in the absence of orange aroma (Figure 5.8A) reveals no significant differences. 

Apparently the flavour profiles of these binary mixtures are dominated by the flavour profile 

of Na-cyclamate, which is after all present in the same amount in both binary mixtures. 

McBride and Finlay (1990) reported a similar effect for mixtures of sucrose and citric acid. 

The total intensity of the mixtures was determined by the intensity of the stronger, or 

dominant component alone. As expected, a comparison between the 50/50 aspartame/Na-

cyclamate and the 50/50 sucrose/Na-cyclamate in the presence of 30 g/L orange aroma did 

not show significant differences either (Figure 5.8B). 

Mixtures were prepared equisweet at 10% SEV, as can be deduced from Figures 5.9A and 

B. The mean scores for the attribute sweet remained constant for each ternary combination of 
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sucrose, aspartame and Na-cyclamate. Addition of orange aroma did not influence the mean 

scores for the attribute sweetness. Panellists were trained to accurately separate the scores on 

the different attributes, following the QDA method. The mean scores given for the attribute 

chemical (Figures 5.10A and B) illustrate a similar effect as noticed before (Nahon et al., 

1998c); the addition of orange aroma levels out the differences between the various mixture 

solutions. Again the presence of Na-cyclamate singly influences the mean scores on the 

attribute chemical to the largest extent (Figure 5.10A), whereas changes in the sweetness 

contributions of sucrose and aspartame do not influence these mean scores (Figure 5.1 OB). 

Muir et al. (1998) compared several fruit juice drinks, made up with different sweetener 

combinations. The type of sweetener influenced the perception on flavour, aftertaste, 

mouthfeel and in particular the perception of natural character. Their panellists separated the 

juice drinks mainly on the basis of sweetener type. However, the perception of aroma was not 

influenced by sweetener type, which might indicate that no sweetener-aroma interactions 

were present for these juice drinks. For solutions containing mixtures of sucrose, aspartame 

and Na-cyclamate, the addition of orange aroma increases the mean scores for all attributes 

except sweetness, musty and viscosity. The addition of orange aroma clearly gives the 

solution a more distinct flavour. 

Comments on the aftertaste of the different mixture solutions reveal that the significantly 

higher scores of Na-cyclamate solutions on this attribute (Figure 5.7A) can be ascribed to a 

lingering chemical bitterness. Figure 5.11 shows that the number of subjects mentioning a 

bitter aftertaste is high for Na-cyclamate solutions (whether orange aroma is present or not) 

and decreases as soon as a certain amount of sucrose and/or aspartame is present in the 

solutions as well. The mean scores for the attribute aftertaste also decrease as soon as a slight 

amount of sucrose and/or aspartame is present in the ternary mixtures, just as described 

before by Nahon et al. (1998c). Addition of orange aroma increases the orange, chemical and 

bitter aftertastes of mixture solutions. 

In conclusion, it was shown that equisweet ternary mixtures of sucrose, aspartame and Na-

cyclamate can be composed when the compositions of the equisweet binary mixtures of these 

sweeteners are known. Describing the composition of the ternary mixtures in a regression 

equation, opens the possibility to compose ternary mixtures, knowing (maximal) 

contributions of one or two sweeteners. The equisweet ternary mixtures were used as a basis 

for the study of sweetness-flavour interactions, for which QDA revealed a levelling effect of 
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the orange aroma for significant differences between taste attributes of mixture solutions. The 

relative sweetness contribution of Na-cyclamate to the ternary mixtures seemed to influence 

the flavour profiles of these mixtures to the largest extent. 
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6 
Flavour release from mixtures of sodium cyclamate, 
sucrose and an orange aroma 

Mixtures of sucrose and sodium cyclamate (Na-cyclamate) were studied to evaluate 
possible interactive effects between these sweeteners and orange aroma compounds. 
Equisweet mixtures (10% Sucrose Equivalent Value) of the sweeteners were prepared 
by taking into account the observed synergistic effects between sucrose and Na-
cyclamate. The release of volatile compounds from the solutions containing these 
mixtures and a water soluble orange aroma was studied. The volatile compounds 
were quantified and identified by gas chromatography combined with flame ionisation 
detection (GC/FID) and mass spectrometry (GC/MS). The presence of sucrose 
significantly changes the release of 15 selected volatile compounds from a solution 
containing the aroma compared to the aqueous control. Increasing sucrose 
concentrations in the solutions (0-60 w/v%) caused an increased release of the 
volatile compounds with short GC/FID retention times and a decreased release of the 
compounds with longer retention times. Increasing Na-cyclamate concentrations (0-
2.658 w/v%) did not change the release of volatile compounds. 

This chapter has been published as: 

Nahon, D.F.; Navarro y Koren, P.A.; Roozen, J.P.; Posthumus, M.A. Journal of Agricultural and Food 

Chemistry 1998, 46, 4963-4968. 
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6.1 Introduction 

Sweetness-flavour interactions in models for soft drinks can be studied by sensory and 

instrumental analysis. In a previous sensory experiment equisweet mixtures of sucrose and 

Na-cyclamate were evaluated (Nahon et al, 1998). As the mixtures of sucrose and Na-

cyclamate showed positive synergy, solutions containing these mixtures and a water soluble 

orange aroma were chosen to study sensory perceived properties by quantitative descriptive 

analysis (QDA). Comparison of a sucrose and a Na-cyclamate solution at 10% Sucrose 

Equivalent Value (SEV, a sweetness equivalent to a 10w/v% sucrose solution) revealed 

significant differences for the attributes bitter and aftertaste (Figure 6.1). As 15 g/L orange 

aroma was present in the solutions, differences for some other attributes were found as well. 

Interactive effects between the sweeteners and volatile compounds of the orange aroma could 

be present in these solutions. 

The possible interactive effects would change the release of volatile compounds from 

solutions made up from sweeteners and an aroma. An instrumental analysis by gas 

chromatography provides information on this release. Von Sydow et al. (1974) noted that 

adding sucrose to blueberry and cranberry juices gave only little change in the headspace 

composition and did not significantly alter the profile determined from "sniffing". According 

sweet 15 g/L aroma 

aftertaste* v fc. , orange 

musty 

mint 

watery 

bitter* 

sour 

sharp 

fruity chemical 
- • - 1 0 0 % sucrose 

-o - 100% Na-cyclamate 

Figure 6.1 Spider web diagram representing the mean scores for sensory attributes of a 
sucrose and a Na-cyclamate solution at 10% SEV (in the presence of 15 g/L of a water 
soluble orange aroma); * = significant differences (P < 0.05). 
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to them, sucrose appears to enhance aroma on a psychological level, rather than acting upon 

chemical constituents and thus modifying the vapor composition. Their semiquantitative data 

showed that an increasing sucrose level in the juices increases the peak areas for the very 

low-boiling constituents in the gas phase. However, they reported that these compounds are 

not important for the desirable aroma of a fruit juice. Wiseman and McDaniel (1991) found 

that sucrose-sweetened solutions did not significantly affect the perception of orange or 

strawberry fruitiness. Le Quere et al. (1994) observed chemical effects of intense sweeteners 

on the flavour of diet orange soft drinks. They mainly followed tendencies upon aging of the 

soft drinks. Johnson and Vora (1983) and Ohta et al. (1992) recognised the oxygen-

containing components, including aldehydes such as octanal and alcohols, as the major 

contributors to the fresh and pleasant flavour of orange essences because of their low 

threshold and their olfactory characteristics. According to Moshonas and Shaw (1984), citrus 

juice volatiles concentrated in the aqueous fraction reflect both quantitatively and 

qualitatively the flavour and aroma of the parent juice. The aqueous fraction is thus a 

desirable flavouring material. 

Mixtures of sucrose and Na-cyclamate equisweet at 10% SEV were prepared, and 

interactive effects between both sweeteners and a water soluble orange aroma were studied 

by instrumental analysis. The effect of sucrose on the flavour release was compared with the 

effect of Na-cyclamate by studying the release of the volatile compounds in solutions 

containing increasing concentrations of sucrose or Na-cyclamate. 

6.2 Materials and methods 

The release of volatile compounds from the solutions was studied by gas chromatography. 

6.2.1 Stimuli 

Stimuli were solutions of sucrose (CSM Suiker BV, Amsterdam, The Netherlands) and Na-

cyclamate (Flevo Chemie BV, Harderwijk, The Netherlands) and mixtures of these two 

substances in demineralized water. Nine sucrose/Na-cyclamate ratios (100/0, 90/10, 75/25, 

60/40, 50/50, 40/60, 25/75, 10/90 and 0/100) were chosen to study possible interactive effects 

between (mixtures of) sweeteners and aroma compounds. The overall sweetness of these 

mixtures met with a constant perceived taste intensity of 10% SEV (Nahon et al, 1998). The 
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orange aroma added was a sample of the watery vapor phase of stripped orange juice (Cargill 

Juice Division, Amsterdam, The Netherlands). It was used in a constant concentration of 15 

g/L. Increasing concentrations of sucrose (0, 5, 10, 20, 40 and 60w/v%) and Na-cyclamate 

(0, 0.222, 0.443, 0.886, 1.772 and 2.658 w/v%) were chosen to study the effect of adding 

sweeteners on the release of volatile compounds from a solution containing the aroma. 

All solutions were prepared at least 24 h before evaluation and stored at 4 °C overnight. In 

all evaluations, a sample consisted of 15 mL of solution. The samples were brought to room 

temperature (22 °C) before further analysis. 

6.2.2 Isolation of volatile compounds 

Samples consisting of 15 mL of the different mixtures mentioned (identical to the stimuli) 

were transferred in a so-called mouth model (Figure 6.2), consisting of a sample flask 

(50 mL) at a temperature of 37 °C (water bath), to which 4 mL of diluted artificial saliva 

containing salts, murine and a-amylase in water was added (Van Ruth et al, 1994). A 

purified nitrogen gas flow (20 mL/min) passed through the stirred solution for 10 min to trap 

the volatile compounds in 0.10 g of Tenax TA (poly(2,6-diphenyl-p-phenylene oxide, 0 

Ethanol(-10°C) 

Figure 6.2 Mouth model used for the purge and trap method. Nitrogen gas passes through 
the stirred solution to trap the volatile compounds in Tenax TA. 
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0.25-0.42 mm, Alltech Nederland b.v., Zwijndrecht, The Netherlands), positioned in a glass 

tube, 100 mm long and 3 mm i.d.. One measurement consists of four repetitions of this 

method. 

6.2.3 Gas Chromatography (GC) 

The volatile compounds were desorbed from Tenax by a thermal desorption/cold trap device 

(Carlo Erba TDAS 5000, Interscience b.v., Breda, The Netherlands). The compounds were 

analyzed by GC on a Carlo Erba HRGC 5300 (Interscience b.v.), equipped with a 

Supelcowax 10 capillary column (60 m x 0.25 mm x 0.25 urn) and a flame ionisation 

detector (FID) at 275 °C. The oven temperature was 40 °C for 4 min and then programmed to 

92 °C at a rate of 2 °C/min and then to 272 °C at 6 °C/min. 

The volatile compounds were identified with the help of a gas chromatograph/mass 

spectrometer (GC/MS, Varian 3400/Finnigan MAT 95, Bremen, Germany), equipped with a 

Chrompack 16200 thermal desorption/cold trap unit (Chrompack, Middelburg, The 

Netherlands). The capillary column and the temperature program were the same as described 

above. The mass spectrometer was operated in the 70 eV EI ionisation mode and scanned 

from mass 24 to 300 with a cycle time of 1.0 s. 

6.3 Results 

Flavour release from nine equisweet sucrose/Na-cyclamate mixtures was studied. Figure 6.3 

shows an example of the gas chromatograms obtained by purging 10%SEV sucrose 

solutions, containing 15 g/L orange aroma. With the help of GC/FID for quantity evaluation 

and GC/MS for identity evaluation, 15 volatile compounds were selected (Table 6.1). To 

observe possible interactive effects between sweeteners and aroma compounds, graphs of the 

average peak area versus the sweetness ratio were plotted for each volatile compound. In 

Figure 6.4 the results obtained for (E)-2-pentenal are given, which are representative for 

results obtained for the other volatile compounds. In Table 6.1, the average peak areas for the 

extremes, that is, sucrose (100/0 mixture) and Na-cyclamate (0/100 mixture) are compared. 

For six volatile compounds (peaks 1-6), the release was significantly higher from the sucrose 

solution. Afterwards, flavour release was studied, using increasing concentrations of sucrose 

or Na-cyclamate. The fifteen selected volatile compounds were divided into three groups of 
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retention times (RT), based on the results obtained in the GC/FID analysis and on the polarity 

of the volatile compound as calculated by the method of Rekker (1977) (Table 6.1; peak 1-5, 

6-13 and 14-15). Log P represents the hydrophobicity of the volatile compound; a negative 

value implies hydrophilicity. In Figure 6.5 A the relative sum of the peak areas presented was 

obtained by summing the average peak areas within one retention time group and then 

relating to the 0 w/v% solution, which is the control. Increasing the concentration of sucrose 

enlarged the release of the volatile compounds with smaller RT; it did not change the release 

of the volatile compounds with medium RT and decreased the release of the volatile 

compounds with larger RT. Increasing the concentration of Na-cyclamate did not reveal any 

differences among the three retention time groups (Figure 6.5B). 

Table 6.1 Volatile compounds of an orange aroma, released from solutions containing 
sucrose or Na-cyclamate at 10% SEV, their peak numbers, retention times (RT), 
hydrophobicity constants log P as calculated (Rekker, 1977), average areas and standard 
deviations (n=4). Short (< 15 min), medium (15-31 min) and long (> 31 min) retention 
time groups are distinguished. * = significant differences (P < 0.05), CV [%] = overall 
coefficient of variance. 

Peak 
1 

2 
3 
4 
5 

6 
7 
8 
9 
10 
11 
12 
13 

14 
15 

RT (min) 
9.1 

10.4 
10.6 
14.7 
15.0 

17.0 
18.1 
18.1 
20.9 
21.4 
24.3 
29.8 
30.8 

31.8 
35.3 

Volatile compound 
1-Ethoxy-l-
methoxyethane 
Ethyl acetate 
1,1 -Diethoxyethane 
2-Pentanone 
Methyl butanoate 

l-Penten-3-one 
Ethyl butanoate 
2-Methyl-3-buten-2-ol 
Hexanal 
2-Methyl-1 -propanol 
(£)-2-Pentenal 
3 -Methyl-1 -butanol 
(£)-2-Hexenal 

Ethyl hexanoate 
Octanal 

CV [%] 

logP 
-0.291 

0.642 
0.239 
1.033 
1.172 

0.736 
1.702 
1.123 
1.476 
0.678 
0.356 
1.208 
0.886 

2.762 
2.536 

Average areas and standard 
deviations (mVs) 

Sucrose 
103 ±11 

460 ±31 
867 + 86 
56 ±6 
20 ±2 

51 ±4 
519 ±32 
106 ±7 
220 ±18 
14 ±1 
14 ±2 
29 ±10 
67 ±11 

9 ±2 
206 ± 37 

11.9 

Na-cyclamate 
8 5 + 7 * 

396 ±22 * 
724 ±70 * 
3 9 + 4 * 
17 ±1 * 

42 ±2 * 
473 ± 25 
97 ±5 
204 ± 11 
13 ±1 
12 ±1 
27 ±8 
64 ±6 

10 ±0 
238 ±9 

8.2 
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Figure 6.3 Gas chromatogram obtained by purging a 10% SEV sucrose solution, 

containing 15 g/L of a water soluble orange aroma. Peak numbers refer to the volatile 

compounds listed in Table 6.1. 
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Figure 6.4 Average peak areas and standard deviations (n=4) for (E)-2-pentenal, 

released from solutions containing mixtures of sucrose and Na-cyclamate, for different 

sweetness ratios, all equalling to a total sweetness of 10% SEV. 
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Figure 6.5 Volatile compounds of an orange aroma, released from solutions with 
increasing concentrations of sucrose (A) or Na-cyclamate (B). Sum of average peak areas 
and mean coefficients of variance, both related to a control solution of orange aroma in 
water, for volatile compounds with short (< 15 min), medium (15 - 31 min) and long (> 31 
min) retention times (Table 6.1). 

6.4 Discussion 

The release of volatile compounds from solutions containing a water soluble orange aroma 

and sucrose and/or Na-cyclamate was studied; 15 volatile compounds were selected for the 

instrumental analysis (Table 6.1). Although ethanol is the volatile compound present in the 

largest quantity in fresh orange juice (Shaw, 1977, 1991), this compound was not selected for 
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the analysis. Ethanol is mainly used as a solvent and might enhance the fruity character of the 

aroma without contributing to a distinct aroma by itself (Williams and Rosser, 1981; Shaw, 

1991). Moshonas and Shaw (1984, 1987, 1989, 1994) and Lin et al. (1993) showed typical 

gas chromatograms of various orange aromas with peak identifications. For some volatile 

compounds the retention times were different in this study, which could be ascribed to the 

use of a stationary phase made up of 5% phenyl - 95% methyl silicone in their GC analysis. 

The chromatograms and compounds shown by Moshonas et al. (1972), Ohta et al. (1992) and 

Tander et al. (1998) gave the same sequence and similar retention times as shown in Figure 

6.3; they all used poly(ethylene glycol) as a stationary phase in the GC analysis. All volatile 

compounds found in this study were reported by other authors as well (Table 6.2). In fresh 

juice octanal, ethyl butanoate and hexanal were among the most important volatile 

compounds. Ethyl butanoate, octanal and 2-pentanone were the most odour-active 

compounds (Tonder et al., 1998). Of the 15 volatile compounds selected, methyl butanoate, 

ethyl butanoate and octanal give strong fruity or orange flavours (Ahmed et al., 1978; Shaw, 

1991). Other volatile compounds present in the orange aroma might contribute indirectly to 

the orange flavour through additive or synergistic effects with other components. Ethyl 

acetate is one of the major esters in fresh orange juice, but it is mostly present at less than its 

flavour threshold value in water and probably does not make a direct contribution to orange 

flavour. In some perfumes ethyl acetate shows an azeotropic effect to citrus notes (Shaw, 

1991). 

Six volatile compounds with short retention times give significantly higher peak areas 

when sucrose is present in the solution; they were significantly more released in solutions 

containing sucrose compared to Na-cyclamate (Table 6.1). Purging simple solutions 

containing sweeteners but no orange aroma did not release any volatile compounds. 

Apparently the presence of sweeteners, and especially sucrose, influences the release of 

volatile compounds from an orange aroma. To fully understand the effect of the addition of 

sweeteners, their concentrations were increased. 

Parts A and B of Figure 6.5 show the changes in peak area with increasing concentrations 

of sucrose and Na-cyclamate, respectively. Volatile compounds with short, medium and long 

RT are distinguished. The influence of sugars on solute volatility varies with the specific 

sugar and specific volatile as well as with their concentrations (Ebeler et al, 1988). When the 

sucrose concentration increases, the peak areas of the volatile compounds with short RT 
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Table 6.2 Volatile compounds present in orange aroma/juices, as reported by several 

authors." 

Volatile compounds 

1 -Ethoxy-1 -methoxyethane 

Ethyl acetate 
1,1 -Diethoxyethane 

2-Pentanone 

Methyl butanoate 

l-Penten-3-one 

Ethyl butanoate 

2-Methyl-3-buten-2-ol 

Hexanal 

2-Methyl-1 -propanol 

(E)-2-Pentenal 

3-Methyl-1 -butanol 

(E)-2-Hexenal 
Ethyl hexanoate 

Octanal 

(Ethanol) 

1 

X 

X 

X 

X 

X 

X 

2 

X 

X 

X 

X 

X 

X 

X 

3 

X 

X 

X 

X 

X 

X 

X 

X 

4 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

5 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

6 

X 

X 

X 

X 

X 

X 

7 

X 

X 

X 

X 

X 

X 

X 

X 

X 

8 

X 

X 

X 

X 

X 

X 

9 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

10 

X 

X 

X 

X 

X 

X 

11 

X 

X 

X 

X 

X 

X 

X 

12 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

"1 = Moshonas et al. (1972) - volatile compounds in orange, 2 = Moshonas and Shaw (1984) -

aqueous orange essence, 3 = Moshonas and Shaw (1987) -fresh orange juice, 4 = Moshonas and 

Shaw (1989) - aseptically packaged orange juice, 5 = Moshonas and Shaw (1994) -fresh-squeezed 

unpasteurized orange juice, 6 = Shaw (1991) - volatiles important to orange flavour, overview, 7 = 

Johnson and Vora (1983) - major components of orange aroma, 8 = Ohta et al. (1992) - orange 

essences, 9 = Lin et al. (1993) - typical natural orange aroma, 10 = Le Quere et al. (1994) - diet 

orange soft drinks, 11 = Tender et al. (1998) - orange juice, 12 = Shaw (1977) - aqueous essences, 

overview article 

increase significantly. Increases in the concentration of sucrose enhance the release of 

volatile compounds with short retention times. The hydrophobicity constants, log P, for these 

compounds (Table 6.1) indicate that these are rather hydrophilic and thus better soluble in 

water (Espinosa-Diaz et al., 1996). De Roos and Wolswinkel (1994) explained that the 

addition of sucrose increases the hydrophobic character of the solution. The quality of the 

solvent then changes. Wientjes (1968) reported an increase in peak height for ethyl butanoate 

upon addition of rather high concentrations of invert sugar (73.1 w/w%) and fructose (79.1 

w/w%). The headspace concentration of acetone increased by addition of sucrose to solutions 

(Nawar, 1971; Voilley et al., 1977). For one of the volatile compounds with short retention 
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times, ethyl acetate, Voilley and Bosset (1986) determined the partition and activity 

coefficients in pure water compared with a 50 w/w% glucose solution. Both partition and 

activity coefficients were larger in the 50 w/w% glucose solution. Chandrasekaran and King 

(1972) measured the activity coefficients of ethyl acetate and hexanal as a function of sucrose 

concentration. The experimentally determined activity coefficients of the volatile compounds 

increased with increasing sucrose concentration. Kieckbusch and King (1979) found the 

partition coefficients for C1-C5 acetates between air and solutions of sucrose to increase 

sharply with increasing sucrose contents. This effect could be attributed qualitatively to a loss 

of free water due to hydration of sugar molecules. Only the free water is available as a 

solvent for the acetates. Several other authors (Nawar, 1971; Darling et al, 1986) described 

this effect as "salting-out". According to Nawar (1971), the effects on the headspace 

concentration of volatiles are related to the interactions of the solids with water. Changes in 

headspace concentrations of volatiles upon addition of sucrose to aqueous volatile solutions 

do not involve a direct interaction between sugar and volatile but mostly occur via interaction 

of the sugar with the water molecules. 

The peak areas of the volatile compounds with medium RT remain constant and those of 

the volatile compounds with long RT decrease significantly. This decrease in the release of 

the volatile compounds with longer retention times might be due to an effect of an increasing 

viscosity of the solution. According to Fick's law, the release of volatile compounds is 

linearly related to their diffusion coefficients, which are inversely proportional to the 

viscosities. The diffusion of volatile compounds then decreases with increasing viscosity of 

the solution (Roberts et al, 1996). As we used a purge and trap method to analyse the release 

of volatile compounds, the viscosity of the solutions is probably less important. Nawar (1971) 

reported viscosities for 0, 20, 40 and 60 w/w% sucrose solutions to be 0.8, 1.5, 4.3 and 33.8 

cP, respectively. As we composed sucrose solutions of 0 to 60 w/v%, which is 0 to 48.75 

w/w%, the viscosities obtained will increase less. In the experiments of Nawar (1971) the 

headspace concentrations of heptanone and heptanal decreased with increasing sucrose 

concentrations in the solutions. Contradictory findings by Wientjes (1968) show an increase 

in peak height for ethyl hexanoate upon addition of invert sugar or fructose, both in rather 

high concentrations (73.1 and 79.1 w/w%, respectively). 

De Roos and Wolswinkel (1994) reported a retention of hydrophobic volatile compounds, 

such as a-ionone and naphthalene, upon addition of sucrose. The volatility did not change for 
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esters and carbonyl-compounds, such as methyl butanoate, 2-hexanone, 1-hexanol, 

methylbenzoate and methylcinnamate. Bakker et al. (1996) found a detectable decrease in 

release of rather large volatiles with high volatility when increasing viscosity and thus 

sucrose concentrations. For the less volatile flavours no detectable effect was found by them. 

According to Roberts et al. (1996), the volatility of a flavour molecule may be affected by the 

reduction of diffusion of flavour molecules, by the formation of barriers occurring in high-

viscosity matrices, or by specific binding interactions with the solute/thickening agent. 

Highly volatile compounds are most affected by a change in viscosity. Less volatile flavours 

do not show a significant decrease in volatility. Roberts et al. (1996) suggest also that 

inclusion complexes may be present in the sucrose solutions for hydrophobic molecules. 

They determined whether any decreases in aroma release were due to mass transfer alone or 

to odorant binding by the thickening agents. From a comparison between the thickening 

agents sucrose, carboxymethylcellulose and guar gum they concluded that binding 

interactions are probably present, giving a different flavour release for the various thickening 

agents. As sucrose solutions are concentrated, they become more glassy or crystalline in 

state. Trapping of volatiles in these solutions could occur due to partial crystalline formation. 

Hydrophobic complexes will be formed, which results in a greater depression of volatility by 

sucrose. Pangbom and Szczesniak (1974) investigated the effect of hydrocolloids and 

viscosity on flavour and odour intensities of flavour compounds, and also found effects that 

were specific for the gum/odorant combination. The addition of hydrocolloids generally 

decreased both odour and flavour intensities. 

Increasing concentrations of Na-cyclamate do not significantly change the peak areas for 

either of the three groups of volatile compounds (Figure 6.5B). Beck (1956) determined the 

increase of viscosity of a solution with an increasing concentration of Na-cyclamate. The 

properties found are radically different from those of a sucrose solution of comparable 

sweetness. The relative viscosity n/no at 25 °C for a 10% SEV Na-cyclamate solution (0.44 

g/L) is indistinguishable from 1. The viscosity of this solution is thus equal to the viscosity of 

water. Beck (1956) also reported Na-cyclamate to have the properties of a strong electrolyte 

salt and to act as NaCl would do. Then, at higher concentrations, Na-cyclamate could have 

the same effect as salts and salt-out volatile compounds. Bopp and Price (1991) reported 

cyclamate to enhance fruit aromas. In the results obtained in the GC analysis (Figure 6.5B) 

no specific changes could be observed by increasing the concentration of Na-cyclamate. 
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Apparently the significant differences observed within the instrumental analysis cannot be 

confirmed by the panellists in the quantitative descriptive analysis (Nahon et al., 1998), as the 

sensory analysis did not show significant differences for any of the aroma-related attributes 

when a water soluble orange aroma was present in the solutions (Figure 6.1). Ebeler et al. 

(1988) found that an addition of up to 40w/v% sucrose did increase the headspace 

concentrations but did not significantly affect the perceived aroma intensity of either 

menthone or isoamyl acetate. Their GC analysis also showed that the GC was much more 

sensitive to small changes in the headspace than the sensory panel was. As expected from 

Fechner's law, the perceived aroma intensity is logarithmically related to the concentration of 

the volatile compound. Godshall (1995) concluded that the aroma of a beverage could, 

theoretically, be intensified by increasing the volatility of its trace aroma constituents by 

increasing the sucrose content. The results obtained in the described experiment, however, 

show that increasing the sucrose content will influence the release of the volatiles differently, 

depending on the properties of the volatile compound itself. In contrast to the desired effect, a 

retention of volatile compounds might result. Besides, threshold values for odour and flavour 

may differ in such a way that a volatile compound might be detected as a flavour (e.g., 

mouthfeel) but not as an odour. In the study of Ahmed et al. (1978), octanal was found to 

have a significantly higher odour threshold when compared to the corresponding flavour 

threshold. Their panellists found octanal to possess an orange-like flavour and aroma and a 

slightly bitter taste. Shaw and Wilson III (1980) observed such significant differences 

between aroma and taste thresholds for octanal, citral, nonanal and (£)-2-hexenal. 

Apparently, the flavour of an aroma can be more important to the overall perception than the 

odour. 

In conclusion, it was shown that increasing concentrations of sucrose significantly alter 

the release of volatile compounds, but that these changes are probably not noticeable at the 

sweetness level normally found in soft drinks (i.e., 10% SEV). Increasing concentrations of 

Na-cyclamate have no influence on the release of volatile compounds from a water soluble 

orange aroma. Flavour differences observed among various sweeteners and aroma 

combinations can probably be ascribed to differences in flavour among the sweeteners. 
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7 
Modelling flavour release from aqueous sucrose 
solutions, using mass transfer and partition 
coefficients 

The penetration theory of interfacial mass transfer was used to model flavor release 
from aqueous solutions containing different concentrations of sucrose. The mass 
transfer coefficient as well as the gas/solution partition coefficient are the main 
factors of the model influencing the release in time. Parameters governing the 
isolation by a purge and trap method at mouth conditions (volume, temperature, 
artificial saliva) were used in the model description of the flavor release. Viscosities 
of the different sucrose solutions (0-60 w/V%) at 37 °C were estimated and their 
influence on the mass transfer coefficients was determined. The gas/solution partition 
coefficients for ethyl acetate, methyl butanoate, ethyl butanoate, hexanal and octanal 
were measured for the different sucrose concentrations at 37 °C. At lower sucrose 
concentrations the partition coefficient primarily controls flavor release during a 
purge time often minutes, whereas at higher sucrose concentrations the influence of 
the mass transfer coefficient is more important. 

This chapter has been submitted as: 

Nahon, D.F.; Harrison, M ; Roozen, J.P. Journal of Agricultural and Food Chemistry 
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7.1 Introduction 

The instrumental analysis of the release of volatile compounds from solutions containing 

sucrose and an orange aroma formed part of the study of sweetness-flavour interactions in 

models for soft drinks (Nahon et al, 1998). In the presence of sucrose, volatile compounds 

from a watery vapor phase of stripped orange juice (orange aroma) were isolated by a purge 

and trap method at mouth conditions (volume, temperature, artificial saliva), during ten 

minutes. The volatile compounds were trapped onto an adsorbance material (Tenax) and then 

quantified by gas chromatography coupled with flame ionisation detection (GC/FID). To 

understand the effect of the addition of sucrose (as compared with an addition of e.g. Na-

cyclamate), the release of volatile compounds was studied in solutions containing increasing 

concentrations of sucrose. The latter caused an increased release of the volatile compounds 

with short GC/FID retention times and a decreased release of the volatile compounds with 

longer retention times (Nahon et al, 1998). Modelling of these results will improve the 

understanding of the system worked with and elucidate the parameters influencing the 

flavour release. 

Harrison and Hills (1997) modelled the dynamic flavour release from liquid emulsions in 

the mouth. Their model revealed the most important parameters influencing the release. One 

important parameter is the viscosity, which determines the diffusion coefficient, D and thus 

the interfacial mass transfer coefficient, hd (Harrison et al, 1997). The mass transfer 

coefficient is a measure for the rate of release (De Roos and Wolswinkel, 1994). The other 

important parameter is the gas/solution partition coefficient, Kgs, which is influenced by the 

sucrose concentration as well and reflects the concentration ratios at equilibrium (De Roos 

and Wolswinkel, 1994). 

In the literature, several tables can be found, reporting the viscosities for different sucrose 

solutions, at different temperatures (e.g. Bates, 1942). However, these tables do not give the 

exact viscosity values for the sucrose concentrations relevant to the present study and 

moreover not for the specific temperature of 37 °C. Bretsznajder (1971) and Genotelle (1978) 

presented equations and figures reflecting relationships between temperatures and viscosities 

for various sucrose solutions. 
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Table 7.1 Authors reporting partition coefficients (xl(r ) for ethyl acetate, methyl 
butanoate, ethyl butanoate, hexanal and/or octanal. A. Specifications of the 
determinations; author number, author, volatile concentration, temperature, equilibration 
time, method. SHGC = Static headspace gas chromatography. B. Partition coefficients 
determined in water and sucrose/glucose solutions; author number between brackets. 

A. 

no. 

1 

2 
3 
4 

5 
6 

7 

8 

9 

10 

author 

Amoore and Buttery 
(1978) 
Buttery et al. (1965) 
Buttery et al. (1969) 
De Roos and 
Wolswinkel (1994) 
Guitarte/a/. (1989) 
Hall and Andersson 
(1983) 
Kieckbusch and King 
(1979b) 
YLoVoetal. (1992) 

Landy etal. (1995) 

Voilley and Bosset 
(1986) 

volatile 
concentration 

(ppm) 
solubility 
level 
5 
5-200 

20-5000 
0.25-1.2 

400 

+1000 

20-1000 

1000/10000 

temp. (°C) 

25 

25 
25 
37 

37 
40 

30 

37 

25 

25 

equilibration 
time (min) 

15 
>30 
60 

30 
60 

<30 

60 

5 

method 

calculation 

SHGC 
SHGC 
stripping 

SHGC 
SHGC 

SHGC 

extrapolated 
/calculated 
exp. dilution 
mol fractions 
SHGC 

B. 

water 

ethyl acetate 

9.2 (7) 
9.0 (5) 
9.6 (9) 
11.6 (10) 
14.8 (8) 

+ sucrose 12.0-30.3 (7) 
+ glucose 38.1 (10) 

methyl 
butanoate 
8.4 (3) 
11.0 (1) 
15.8 (4) 

<15.8 (4) 

ethyl 
butanoate 
22.4 (9) 

hexanal 

6.9 
8.7 
11.4 
36 

(2) 
(3) 
(1) 
(6) 

octanal 

5.4 (2) 
14.0 (1) 
21.0 (3) 
79 (6) 
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Table 7.1 shows an overview of the authors reporting partition coefficients for five volatile 

compounds studied in the present experiment. These volatile compounds were taken from the 

three retention time groups as distinguished by Nahon et al. (1998); ethyl acetate and methyl 

butanoate (short GC/FID retention times), ethyl butanoate and hexanal (medium retention 

times) and octanal (long retention times). Several gas/solution partition coefficients were 

reported in literature, but not for all sucrose solutions and at temperatures different from 37 

°C. The results of Kieckbusch and King (1979a) indicated that the partition coefficients are 

linearly related to the reciprocal temperature (in K). Overbosch et al. (1991) also reported 

that the partition coefficients increase with increasing temperatures. Hall and Andersson 

(1983) determined the influence of temperature on the volatility of various aldehydes. They 

reported different linear temperature dependencies of partition coefficients for different 

compounds in the media: vegetable oil, dioctyl phthalate, paraffin oil and water. These 

authors found that varying the temperature does not only change the overall concentration 

level of volatile compounds in the gas phase, but also the relative composition of the gas 

phase. In the course of time, different methods for the determination of gas/solution partition 

coefficients were given in literature. Chaintreau et al. (1995) and Chai and Zhu (1998) 

proposed indirect headspace gas chromatographic methods, for the determination of partition 

coefficients independently of the concentration of the reference. This method uses two 

sample vials filled with different volumes of an identical solution. 

In the present study, the dependency of the mass transfer coefficient on the viscosity was 

described in an equation. The gas/solution partition coefficients for ethyl acetate, methyl 

butanoate, ethyl butanoate, hexanal and octanal over the different sucrose solutions were 

determined. Then the release of these volatile compounds from sucrose solutions was 

described by a model. The mass transfer coefficient in water was used as a fitting parameter 

to approach experimental results published before (Nahon et al, 1998). Modelling these 

experimental results will reveal the parameters influencing the flavour release. 

7.2 Materials and methods 

Viscosities of different sucrose solutions were calculated, partition coefficients of volatile 

compounds over these solutions were determined and the release of the volatile compounds 

was described by a model. 
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7.2.1 Sample preparation 

Samples were solutions of sucrose (CSM Suiker BV, Amsterdam, The Netherlands) and 

volatile compounds in demineralized water. The sucrose concentrations were 0, 5, 10, 20, 40 

and 60 w/v%. The volatile compounds were ethyl acetate (E. Merck, Darmstadt, Germany), 

ethyl butanoate (Janssen Chimica, Geel, Belgium), methyl butanoate, hexanal and octanal (all 

Merck-Schuchardt, Germany). The purities of the volatile compounds were all over 98% 

(synthesis-grade). Preparation of solutions was at room temperature (22 °C), 6 to 15 hours 

before analysis at 37 °C. 

7.2.2 Viscosity 

The required viscosities at 37 °C can be determined by using equations given in literature. 

Genotelle (1978) established the following relationship between the dynamic viscosity (77), 

the sucrose concentration and the temperature of the solution; 

log 77 =22.46 AT-0.114+ 0>(l. 1 + 43.1 Nh25) (7.1) 

in which AT = (5/(1900 - 18 B) is the molar fraction of sucrose, B being °Brix and O = (30 -

7)/(91 + T), T being the temperature. The data generated with the help of Equation 7.1 

deviate maximal 1% from the data for standard solutions as published by the National Bureau 

of Standards (Bates, 1942). Given the experimental temperature of 37 °C, the weight 

fractions or °Brix for the sucrose solutions were determined to be able to calculate the 

viscosities for the different sucrose solutions with the help of Equation 7.1. An Abbe 

refractometer (Atago Type No. 302 with Power Source) was used for this determination. 

7.2.3 Gas/solution partition coefficients 

The samples for the measurements of the gas/solution partition coefficients were prepared by 

adding 14-17 ppm of volatile compound to the various sucrose solutions. Sealed volumetric 

flasks with solutions containing ethyl butanoate, hexanal or octanal were placed in a 

sonification bath (Sonicar Ultrawave CE) at room temperature for 30 min, to fully solubilize 

these more apolar volatile compounds. The homogeneity of the solutions was checked 

visually, according to the method described by Buttery et al. (1969). 

The equilibrium concentrations of the volatile compounds in the gas phase were measured 

at 37 °C using static headspace gas chromatography (SHGC). The sample solution (3 mL) 
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was transferred into a 12 mL vial, which was capped and incubated at 37 °C for 15 or 30 min 

in the headspace unit (Fisons HS800) of the gas chromatograph. The gas/solution equilibrium 

is considered to be reached when the volatile concentration in the headspace remains 

constant. For ethyl acetate and octanal an incubation time of 15 min was testified to be 

sufficient; for methyl butanoate, ethyl butanoate and hexanal an equilibrium was reached 

after an incubation time of 30 min. After incubation, 300 |aL of the sample headspace passed 

a MFA 815 cold trap (Fisons Instruments) for cryofocussing and was then injected into a 

HRGC 5300 Mega Series gas chromatograph (Carlo Erba Instruments, Interscience BV, 

Breda, The Netherlands). The GC was equipped with a DB-wax column (30 m x 0.542 mm x 

1.0 jam) and a flame ionisation detector at 220 °C. The oven temperature was 40 °C for 5 min 

and then programmed to 110 °C at a rate of 3 °C/min and further to 170 °C at 20 °C/min. One 

measurement consisted of at least three repetitions of this method. 

For calibration curves, 2 or 10 uL of a pure volatile compound were dissolved in 10 mL 

solvent and different volumes of these two solutions were manually injected on the column. 

The solvent used for ethyl acetate and methyl butanoate was demineralized water, and the 

solvent for ethyl butanoate, hexanal and octanal was hexane. The method was repeated two 

times, to obtain significant and reliable calibration curves (R2 > 0.84). 

The gas/solution partition coefficient Kgs is given by the following equation: 

Qeq 

K„=^~ (7.2) 

in which C/9 is the concentration of the volatile compound in the gas phase at equilibrium 

and Cf is the concentration of the volatile compound in the solution at equilibrium. As the 

volatile compound in the system distributes between the gas phase and the solution until 

equilibrium has been reached, the concentration in the solution can be calculated from the 

initial volatile concentration, the concentration in the gas phase and the volumes of the gas 

phase and solution; 

C,=C,(0)-C. 'O (7.3) 

in which Cs(0) is the initial volatile concentration in the solution and vg and vs are the 

volumes of the gas phase and the solution, respectively. 
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7.2.4 Flavour release model 

Parameters in the model of Harrison and Hills (1997) were adjusted to approximate the 

experimental design used in the study of Nahon et al. (1998). The ratios of release in time are 

then given by the following model: 

cg(0 = 4A 
C,(0) v* 

expr,t - expr2t 
r, -r, 

(7.4) 

in which r!t r2 = j\hd, Kgs, Q, Ags, vg, vs). Apparently, the concentration of the volatile 

compound in the headspace in time, Cg(t), is a function of the initial concentrations in the 

solution, Cs(0), the viscosity-dependent mass transfer coefficient, hd, the gas/solution 

partition coefficient, Kgs, the nitrogen gas flow rate, Q, the interface surface area, Ags, the 

volume of the headspace, vg and the volume of the solution, vs (sample + artificial saliva). 

Parameters were substituted in the model presented by Equation 7.4. Similar to the 

expressions reported by Harrison and Hills (1997), ri and r2 in Equation 7.4 are given by 

.^EUL (7.5) 
2 2 

and 

with 

and 

a__EHt (7.6) 
2 2 2 

a = i + ^ + ^ (7.7) 
v v K v 

QKK 
P= d ss (7.8) 

The following parameters, necessary for Equations 7.4, 7.5, 7.6, 7.7 and 7.8, were known 

from the set-up of the release experiments: 

Q =20mL/min vg =31mL 

vs = 19 mL 
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The partition coefficients, Kgs, were determined for the different volatile compounds, 

dissolved in the different sucrose solutions. As the volatile concentrations in and above the 

solutions {Cs and Cg) are unknown, the relative concentrations given by Cg(t)/Cs(0) will be 

studied in time. 

The mass transfer coefficient, ha, is an unknown parameter, which can be described as a 

function of the viscosity, rj. Harrison et al. (1997) and Bakker et al. (1998) reported the 

following relationship: 

A,cc-}= (7.9) 

Starting from this relationship, the mass transfer coefficient can be described as a function of 

the mass transfer coefficient in water, hd(0), the viscosity in water, rj(0) and the viscosity for 

a specific sucrose solution, with concentration, Csuc-

K(CJ_ rw: (710) 

As TJ(0) and t](CSUQ) will be calculated using Equation 7.1, the mass transfer coefficient for a 

specific volatile compound at a given sucrose concentration depends on ha(0) for that volatile 

compound. The interface area, Ags, concerns the complete interface between the gas phase 

and the solution, including the gas bubbles in the solution caused by the nitrogen flow. As Ags 

can only be approximated, it was included in the mass transfer coefficient to give hda (= hj x 

Ags). Then hda depends on the sucrose concentration and the magnitude of hj(0). The latter 

Table 7.2 Average and standard deviations (n=10 for 0 and 60 w/v% sucrose; n=3 for 5, 
10, 20 and 40 w/v% sucrose) for gas/solution partition coefficients (x JO3) of ethyl acetate, 
methyl butanoate, ethyl butanoate, hexanal and octanal for different sucrose solutions 
(w/v%) at37°C (Verset, 1998). 

sucrose 
(w/v%) 

0 
5 
10 
20 
40 
60 

ethyl acetate 

10.3±0.33 
11.210.26 
11.310.61 
13.210.78 
16.410.74 
22.811.66 

methyl 
butanoate 

11.210.35 
13.810.37 
14.910.12 
16.6 1 0.65 
21.010.08 
28.4 1 7.76 

ethyl 
butanoate 

14.8 10.67 
18.910.59 
19.710.50 
22.111.98 
28.211.18 
29.811.72 

hexanal 

12.910.99 
13.010.08 
13.5 1 0.04 
13.310.10 
13.910.15 
13.111.09 

octanal 

21.111.80 
20.010.32 
19.210.38 
17.510.99 
16.111.49 
14.313.17 
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was used as the fitting parameter, to approach the experimental results with the model 

description (Equation 7.4). 

Using a partition coefficient measured for a certain volatile compound in a sucrose 

solution (Table 7.2) and given the relationship between the mass transfer coefficient and the 

sucrose concentration, the release of this volatile compound in time can be determined with 

the use of Equation 7.4. To be able to compare this predicted release with that determined 

previously (Nahon et al, 1998), the time-release curves were integrated with the help of the 

technical computing program Mathematica (Version 3.0, Wolfram Research Inc., 

Champaign, IL, USA). For each volatile compound, the amount of volatile released from the 

sucrose solution in ten minutes (i.e. the purge time) was related to the amount of volatile 

released from water. These ratios of release predicted by the model (integration areas) were 

compared with the ratios of release obtained in the purge and trap experiment (GC/FID peak 

areas). The hd(0) was used to adjust the ratios of release predicted by the model. The optimal 

hda(0) was given by the optimal least squares solution for the fit of the model integration 

ratios to the experimental peak area ratios. 

7.3 Results & discussion 

The release of volatile compounds from aqueous solutions containing sucrose was described 

in a model (Equation 7.4). One of the parameters used in the model was the viscosity of the 

different sucrose solutions. Another parameter used in the model is the gas/solution partition 

coefficient. 

7.3.1 Viscosity 

The viscosities of the sucrose solutions were calculated from the sucrose concentrations in 

°Brix (Equation 7.1). The weight fractions or °Brix for the different sucrose solutions and the 

calculated viscosities are given in Table 7.3. These viscosities are in the same range as values 

reported in literature (Bates, 1942; Nawar, 1971; Voilley and Bosset, 1986), when 

considering the different sucrose concentrations and the different temperatures. The °Brix 

was determined at room temperature and then used for the calculation of the viscosity at 37 

°C. This temperature difference introduces a deviation in °Brix of about 0.5%, resulting in a 

deviation of maximal 2.5% for the calculated viscosity according to Genotelle (1978). 
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Table 7.3 Weight fractions / °Brix (w/w%) and dynamic viscosities TJ (cP) for different 
sucrose solutions (w/v%) at 37 °C. The dynamic viscosities were calculated from Equation 
7.1 (Genotelle, 1978). 

sucrose (w/v%) sucrose (w/w%) viscosity (cP) 
0 
5 
10 
20 
40 
60 

0 
4.50 
9.25 
18.25 
34.50 
48.75 

0.67 
0.76 
0.88 
1.20 
2.55 
6.99 

8 

7 

6 

I5 

</> 

8 
ID "J 

> J 

2 

1 

0 4,5 9,25 18,25 

Sucrose (w/w%) 

34,5 48,75 

Figure 7.1 Viscosity t] (cP) fordifferent sucrose concentrations (w/w%), calculated from 
Equation 7.1 (Genotelle, 1978). 

Richardson et al. (1987) studied the mobility of water in sucrose solutions. They 

distinguished several regions. In the first region, sucrose concentrations varying from 0 to 40 

w/w%, water mobility decreases linearly. The second concentration range of 40 to 60 w/w% 

sucrose shows a non-linear decreasing water mobility, due to the formation of a network by 

intermolecular hydrogen bonds between water and sucrose, hydrogen bond bridging of water 

between sucrose molecules and sucrose-sucrose hydrogen bonding. The calculated viscosities 

(Equation 7.1) show a near-linear increase up to a concentration of 20 w/w% and next a non

linear increase (compare Figure 7.1). 
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7.3.2 Gas/solution partition coefficients 

Figure 7.2 shows the gas/solution partition coefficients for the five volatile compounds as a 

function of the sucrose concentration in the solutions. Apart from ethyl butanoate, the 

evolution of these partition coefficients shows a grouping of volatile compounds which is 

similar to the division in retention time groups made in the results of the instrumental 

analysis reported before (Nahon et al, 1998). 

In the present experiment, we choose specific volatile concentrations (14-17 ppm) for 

measuring the partition coefficients over the different sucrose solutions. Buttery et al. (1969) 

stated for hexanal that the partition coefficient was constant up to its point of saturation, at 

5000 ppm. Land (1978) also clarified in his paper that the gas/solution partition coefficient is 

constant up to the saturated vapor pressure at the solubility limit. The equilibration time used 

for the determination of the gas/solution partition coefficients varied often from 15 to 30 min. 

(e.g. Buttery et al, 1965, 1969; Chaintreau et al, 1995; Chai and Zhu, 1998). An exception 

was the equilibration time chosen by Voilley and Bosset (1986), which was set at 5 min. 

Whereas the model describes the release of a single volatile compound, the release in the 

purge and trap system concerned a mixture of orange aroma compounds. Guitart et al. (1989) 

indicated that the composition of the mixture has very little influence on the partition of its 

constituents. Chaintreau et al. (1995) proved that the influence of other volatiles in a model 

mixture of flavours on the individual component concentrations in the gas phase was not 

s 
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A - Ethyl butanoate 
- x -Hexanal 
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. . .A"" 
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60 

Figure 7.2 Partition coefficients (x Iff) of ethyl acetate, methyl butanoate, ethyl 
butanoate, hexanal and octanal as a function of the sucrose concentration (w/v%). 

113 



Chapter 7 

noticeable. However, Bohnenstengel et al. (1993) investigated the influence of interactions 

between substances on the SHGC. They found that even small changes in the sample 

composition can cause changes in the resulting headspace composition. The determination of 

the partition coefficients of volatiles in the presence of other volatile compounds can 

therefore still be of interest for study. 

The authors mentioned in Table 7.1 determined partition coefficients which were in the 

same range as those determined by in the present experiment, especially when considering 

the temperature used for the determination (compare Tables 7.1 and 7.2). Buttery et al. 

(1969) found a gradual increase in volatility for the higher molecular weight homologs, with 

alcohols having the lowest volatilities, ketones intermediate, and esters and aldehydes 

somewhat higher. Amoore and Buttery (1978) calculated the partition coefficients for a series 

of aldehydes with the help of their vapor pressures and solubilities. They observed a clear 

increase of the partition coefficients with the carbon chain length of these aldehydes. 

Overbosch et al. (1991) also indicated that, for a polar solvent, the partition coefficient 

increases with increasing chain length of the flavour compound. Landy et al. (1995) 

determined vapor-liquid partition coefficients for ethyl acetate, ethyl butanoate and ethyl 

hexanoate as a ratio of molar fractions. They found that the natural logarithm of these 

partition coefficients, In K, increased linearly with the number of carbon atoms in the series. 

Their partition coefficient for ethyl acetate was smaller than the one determined in this study, 

whereas the partition coefficient reported for ethyl butanoate was larger. 

7.3.3 Flavour release model 

The release of ethyl acetate from solutions containing sucrose and an orange aroma, increases 

with increasing sucrose concentrations as predicted by Equation 7.4 (Figure 7.3A). For 

octanal, the release decreases with increasing sucrose concentrations (Figure 7.3B). 

Increasing the sucrose concentration, makes the solvent character of a solution more 

hydrophobic, which explains the increased and decreased partition coefficients for ethyl 

acetate and octanal, respectively. The maximal ratio of headspace and initial concentration 

reflects the evolution of the partition coefficients. As the partition coefficient in water is 

smaller for ethyl acetate than for octanal, its maximal release ratio is smaller. At 40 w/v% 

sucrose, the partition coefficients of ethyl acetate and octanal are equal (Figure 7.2 and Table 
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0.016 -, Release of ethyl acetate (hda(0) = 3E-08) 
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Figure 7.3 Predicted release (Equation 7.4) of A. ethyl acetate and B. octanal into 
headspace from solutions containing sucrose (0, 20, 40 and 60 w/v%) and an orange 
aroma, represented by the ratio of headspace and initial concentration of the volatile 
compound as a function of time. hda(0) was set at 3 x 10s (m3/s)for both compounds. 

7.2), resulting in an equal maximal release ratio for a 40 w/v% sucrose solution (compare 

Figures 7.3A and B). 
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Figure 7.4 Peak area and integration ratios representing the release of A. ethyl acetate, B. 

methyl butanoate, C. ethyl butanoate, D. hexanal and E. octanal, for different sucrose 

concentrations. The peak area ratios (M) and their standard deviations were deducted from 

experimental observations (Nahon et al., 1998); the integration ratios were obtained by 

modelling (Equation 7.4). The model predictions are given for three hda(0) 's, the middle 

providing the optimal fit. 

The mass transfer coefficient decreases with increasing sucrose concentrations. In Figures 

7.3 A and B this is demonstrated by a smaller initial slope of the time-release curve (Bakker et 

al., 1998). These authors also reported that the initial release rates for diacetyl decreased as 

the concentration of gelatin increased, i.e. as the viscosity increases. Chandrasekaran and 

King (1972) found that the activity coefficients for ethyl acetate and hexanal increased with 
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increasing sugar concentrations. The diffusion coefficients of these volatile compounds 

decreased with increasing sucrose concentrations. Darling et al. (1986) observed for isopentyl 

acetate that for higher sucrose concentrations (> 30%) the viscosity of the solution increased 

steeply and consequently the diffusion coefficient fell. 

In order to compare the release described by the model (Equation 7.4) with the release in 

the purge and trap system, the areas under the release curves were integrated. In Figures 

7.4A-E the integration ratios as obtained with the model (lines) and the peak area ratios as 

obtained in the experiments (marks) (Nahon et al, 1998) are compared. For each volatile 

compound, the model predictions for three hda(0)'s are given, the middle hda(0) being the 

optimal least squares solution for the fit of the model to the experimental results. The optimal 

values of hda(0) for ethyl acetate, methyl butanoate, ethyl butanoate, hexanal and octanal 

were 3 x 10"8, 2 x 10"8, 2 x 10"8, 5 x 10"8 and 3 x 10"8 m3/s, respectively. Figures 7.4A-E 

reflect the fit of the model to the experimental results. Figure 7.4A shows that the predicted 

and observed release of ethyl acetate increase with increasing sucrose concentration. 

Choosing a higher mass transfer coefficient (and thus hdd) increases the release of for all 

volatile compounds (Figure 7.4). Comparing Figures 7.4A-C with 7.4D-E shows that the 

influence of the mass transfer coefficient/Zirfa, is much smaller for the volatile compounds 

hexanal and octanal. Increasing the sucrose concentration and thus the mass transfer 

coefficient, hardly influences the ratios of release for these compounds. Therefore, changes in 

the fitting parameter hda will not influence these ratios either. The optimal values of hda(0) 

for the five volatile compounds are similar. Overall they vary from 2 x 10"8 to 5 x 10~8 m3/s. 

There is no special trend when looking at more polar or more apolar volatile compounds. The 

purge and trap method used for the instrumental analysis of the flavour release included 

stirring of the solution. Bakker et al. (1998) reported an effect of stirring rate on the dynamic 

release of diacetyl. Therefore, stirring is one of the factors introducing variation in the 

experimental data. As the fit of the model to the experiments is adjusted per volatile 

compound, the fitting parameter hda will vary as well. According to Overbosch et al. (1991), 

the diffusion coefficient does not vary significantly between flavour compounds. As the 

diffusion coefficient determines the mass transfer coefficient, this latter coefficient will not 

vary much with the flavour compound either. De Roos and Wolswinkel (1994) also neglected 

differences in diffusion coefficients between volatile compounds in their release study. 
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However, Harrison and Hills (1997) stated that the hd(0) will vary between volatile 

compounds. 

Knowing the hda giving the best fit of the model to the experimental results, the expected 

mass transfer coefficient ha can be deducted from an approximation of the interface surface 

area Ags. This area is composed of the surface area of the solution and the surface areas of the 

nitrogen gas bubbles purged through the solution. The diameter of the tube through which the 

nitrogen gas is let into the solution is 3 x 10"3 m, which produces bubbles with a calculated 

volume of 1.4 x 10"8 m3. Given the experimental nitrogen flow of 20 mL/min, 14147 bubbles 

will pass through the solution during the ten minutes of the analysis. This gives an interface 

area of 0.4 m2 as provided by the bubbles. The surface area of the solution can be assumed 

neglectable (= 4.8 x 10"4 m2). As the average best fitting hda was 3 x 10"8 m3/s in the present 

experiment, the best estimate of the mass transfer coefficient in this system is 7.5 x 10"8 m/s. 

When comparing the model predictions (Figure 7.4) with the evolution of the partition 

coefficients (Figure 7.2), it appears that the ratio-curves at low sucrose concentrations, are 

mainly controlled by the partition coefficient of a specific volatile compound. When the 

sucrose concentration and thus the viscosity of the solution increases, the mass transfer 

coefficient becomes smaller (as given by Equation 7.10). Then the partition coefficient looses 

impact on the release during a purge time often minutes. In accordance with the explanations 

of Richardson et al. (1987) the viscosity of the solutions increases especially for the two 

highest sucrose concentrations (40 and 60 w/v%) in Figure 7.1. A comparison of Figures 7.2 

and 7.4 demonstrates that the partition coefficient has the largest influence on the ratios of 

release up to a sucrose concentration of 40 w/v%. De Roos and Wolswinkel (1994) also 

found that the effect of the resistance to mass transfer on the relative release rate was 

relatively small and that flavour release was mainly partition-controlled for water and an 

aqueous solution of 25% sucrose. 

The model describing the flavour release from the sucrose solutions, includes the mass 

transfer coefficient as being dependent of the viscosity. It is questionable whether it is 

actually the viscosity or the sucrose concentration influencing the diffusion coefficient and 

thus the mass transfer coefficient. Roberts et al. (1996) studied flavour release for different 

thickeners at equal viscosities and found that the three thickened systems did not have the 

same flavour release profiles. Thickener-specific influence on the flavour release was 

revealed. Apparently, viscosity-dependent mass transfer does occur, but other mechanisms 
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such as changes in the water activity are also important. Darling et al. (1986) explained that 

interactions between long chain polymers will induce the 'macro' viscosity of solutions, 

while still very large pores of 'free' water are available to small molecules for diffusion. 

Diffusion in this water phase is not related to the viscosity of the bulk solution. For solutions 

thickened by large quantities of small molecules (e.g. sucrose) the 'macro' viscosity extends 

down into the 'micro' environment, which will be experienced by the diffusing aroma 

molecules. Richardson et al. (1987) reported a decreasing water mobility when the sucrose 

concentration passes 40 w/w%. In this study, the mass transfer coefficient could be better 

described as a function of the sucrose concentration instead of the viscosity. 

In conclusion, the model described the dynamic flavour release for five volatile 

compounds from aqueous sucrose solutions. By determination of the viscosities and the 

partition coefficients, the model provided an acceptable fit to the experimental data obtained 

with instrumental analysis. The model description revealed that at low sucrose concentrations 

the partition coefficient primarily controls the flavour release, whereas at higher sucrose 

concentrations the mass transfer coefficient has more influence. 
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Chapter 8 

In this thesis the presence or absence of interactive effects between sweeteners and aroma 

compounds has been studied with the help of sensory and instrumental analysis. The results 

of the sensory analysis reveal whether panellists are able to perceive differences in the 

flavour profiles of several stimuli. The results of the instrumental analysis clarify whether the 

presence of (intense) sweeteners influences the release of volatile compounds from a 

solution. Mathematical modelling of this release reveals the parameters influencing the 

release. 

The two preliminary studies on commercial products (Chapter 2) demonstrate that the 

presence of intense sweeteners in a light soft drink influences the preferences for and the 

flavour profiles of these drinks to various extents, depending on the flavour and sweeteners 

present. The results of the preference study show that regular orange soft drinks are not 

significantly preferred over their light equivalents. Regular cola soft drinks, on the contrary, 

were significantly preferred over the light version in the tests. Informing the panellists about 

the presence of a light soft drink does not influence their preferences. In the sensory study 

(quantitative descriptive analysis, QDA) a commercial light blackcurrant soft drink, 

sweetened with a combination of four intense sweeteners, has been investigated. A change in 

the sweetener composition of the soft drink causes a shift in the character of the flavour from 

blackcurrant to strawberry, together with an intensity decrease of the sour-related attributes 

(Chapter 2). 

The aim of the research described in the present thesis is to determine whether changes in 

the quality of sweet taste are due to the properties of the sweeteners themselves and/or to 

interactive effects between these sweeteners and aroma compounds. To be able to study 

possible interactions, the starting point for all investigations should be similar, i.e. the 

solutions containing the sweeteners should be equisweet. Sensory and instrumental analysis 

will elucidate interactive effects between sweeteners and an orange aroma. 

8.1 Equisweet mixtures 

The sweetness level used in the research described in this thesis, is the one commonly present 

in sucrose-sweetened soft drinks, i.e. equivalent to the sweetness of a 10 w/v% sucrose 

solution (10% SEV). In each study (Chapters 3-5) the 10% SEV for a certain sweetener is 

determined with the panel involved in that study. Differences in individual subjects' 
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sensitivities to various taste compounds can be quite pronounced and this results in very 

different responses to mixtures of compounds (Pangborn and Chrisp, 1964; Pangborn and 

Trabue, 1964). Pangborn (1960) has suggested that many of the discrepancies among 

laboratories may be due to the employment of expert panels in some studies and naive panels 

in others. Gregson and McCowen (1963) also attribute inter-laboratory differences to 

variations in the sensitivities of the different populations of panellists. In Chapter 5 SEV 

determinations are repeated because of replacements in the sensory panel and the use of new 

product batches. Comparison with the determinations reported in Chapter 3 and 4 confirm 

that SEV determinations performed with different panels can be compared to a certain extent 

only. 

When studying combinations of sweeteners in solutions, the equisweetness of 10% SEV 

can be attained in different, sweetener-specific ways. For mixtures of bulk sweeteners, 

Beidler's mixture equation can be used, as demonstrated with mixtures of sucrose and 

maltitol in Chapter 3. Given the 10% SEV of maltitol, a linear equation could be derived 

from Beidler's mixture equation. All mixtures of sucrose and maltitol meeting with this 

equation are equisweet. The mean scores on the attribute sweetness, taken from the 

quantitative descriptive analysis, are constant for all different sucrose/maltitol mixtures 

(Chapter 3, Figure 3.2). 

For additive mixtures of bulk and intense sweeteners, such as the mixtures of sucrose and 

aspartame, the validity of Beidler's mixture equation has been studied (Chapter 3). After 

determining the 10% SEV for aspartame, again a linear equation has been obtained from 

Beidler's mixture equation. Mixtures composed with the help of this equation are equisweet, 

as confirmed by their constant mean scores on the attribute sweetness from the QDA 

(Chapter 3, Figure 3.5). 

Equisweet mixtures of sweeteners showing synergy were obtained by using a new method, 

developed for mixtures of sucrose and Na-cyclamate (Chapter 4). The contribution of sucrose 

to the mixtures was fixed, according to the chosen ratios of sweetness. Next Na-cyclamate 

was added until a sweetness of 10% SEV was reached. The magnitude of this addition was 

determined with the help of the method of constant stimuli in combination with weighted 

linear regression. A comparison between the linear expectations derived from Beidler's 

mixture equation and the additions determined in this way, then illustrated the synergy which 

occurred in sucrose/Na-cyclamate mixtures during tasting. 
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For the ternary mixtures of sucrose, aspartame and Na-cyclamate, a similar method as 

mentioned for binary mixtures was applied. In Chapter 5 the concentrations of sucrose and 

Na-cyclamate were fixed and deducted from the results given in Chapter 4. Then the 

necessary concentration of aspartame for reaching 10% SEV was determined. The 

composition of the equisweet ternary mixtures demonstrated that the synergy observed in 

these mixtures is a combination of the relationships found for the composing binary mixtures. 

The method used for composing the equisweet ternary mixtures is suitable for industrial 

applications. The determination of some relevant equisweet binary and ternary sweeteners 

mixtures is sufficient for the constitution of an equation representing equisweet mixtures of 

sweeteners. An optimal sweetener-combination can be chosen with the help of such an 

equation, taking into account possible taste limitations (as mentioned for Na-saccharinate in 

Chapter 2), differences in costs and maximal doses (Allowed Daily Intake). Moskowitz et al. 

(1978) also used this approach in their study of the sweetness and acceptance optimization of 

cola flavored beverages, although they did not start from equisweet mixtures. 

8.2 Methodology in sensory analysis 

The use of QDA for the evaluation of different stimuli allows subjects to generate their own 

appropriate descriptors. Only then subjects pay attention to all aspects of a solution, which 

prevents cognitive factors affecting the judgments of chemosensory attributes (Van der 

Klaauw, 1989). The instructional set given to subjects can have a substantial impact on odor-

induced enhancement of sweetness (Frank et al., 1990). The instructions and prototypes 

offered can influence the subjects in their judgments to be in- or excluded in a particular 

sensory attribute. In the present work no changes in the scores of the attribute sweetness were 

observed, whether in the absence or in the presence of orange aroma (Chapters 3-5). Baldwin 

and Korschgen (1979), Matysiak and Noble (1991) and Bonnans and Noble (1993) found 

enhancement of fruitiness by aspartame. However, the results reported in Chapter 3 do not 

reveal any changes in the attribute orange upon the addition of aspartame. Mixture-induced 

taste quality enhancement is reduced or eliminated when appropriate attribute rating scales 

are provided. Odor- or taste-induced enhancement of specific taste qualities in mixtures of 

chemosensory stimuli is strongly influenced by the instructions given to subjects and the 

specific taste and odor qualities of a mixture. As subjects are provided with additional, 
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appropriate rating categories, either absence of interaction or mixture suppression replaces 

enhancement (Frank et ai, 1993). According to Noble (1996) the enhancement of fruitiness 

by sweetness and the enhancement of sweetness by fruitiness will occur, even after rigorous 

training and rating of separate taste and aroma attributes. However, it should not be 

concluded that mixture experiments should always use multiple, simultaneous, independent 

ratings of 'appropriate' sensory qualities in order to avoid the 'biases' observed with the 

other rating procedures. The choice of the method clearly depends on the aim of the 

experiment (Frank et al, 1993). 

8.3 Sensory analysis of interactive effects 

Starting from the equisweet mixtures of sweeteners, interactive effects of these mixtures with 

aroma compounds can be studied. Considering sensory analysis, changes in the flavour 

profiles of the different solutions containing mixtures of sweeteners and an orange aroma 

(watery vapour phase of stripped orange juice) were investigated using QDA. The 

contribution of the different sweeteners to the sweetness of the mixture was varied to 

elucidate possible effects of sweeteners and/or aroma compounds. The flavour profiles of 

sucrose and maltitol do not differ significantly at a constant concentration of orange aroma 

(Chapter 3). The intense sweeteners aspartame and Na-cyclamate both differ from sucrose on 

the attributes chemical and aftertaste (Chapters 3 and 4). In the ternary sucrose/aspartame/Na-

cyclamate mixture, the relative sweetness contribution of Na-cyclamate to this mixture 

determines the flavour profile to the largest extent (Chapter 5). 

The graphs of the mean scores for each attribute, over the different mixtures of sweeteners 

and for different concentrations of orange aroma, demonstrate whether interactions with the 

orange aroma are present. Possible interactions with orange aroma would cause these mean 

scores to either diverge or converge upon changes in the composition of the sweetener 

mixture. The contribution of orange aroma to the mean scores of the attributes is similar for 

the sucrose/maltitol and the sucrose/aspartame mixtures (Chapter 3). For these sweeteners the 

difference in taste between the sweetener/aroma solutions is due to the sweeteners themselves 

and not to a possible interaction with aroma compounds. For the binary sucrose/Na-

cyclamate mixture and the ternary sucrose/aspartame/Na-cyclamate mixture the added orange 
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aroma levels out taste differences observed between the sweetener solutions without orange 

aroma (Chapters 4 and 5). 

For all solutions, the addition of orange aroma provides a more distinct flavour profile. In 

general the addition of orange aroma increases the mean scores for the attributes orange, 

sour, chemical, fruity and aftertaste. Chastrette et al. (1998) compared the models of Fechner, 

Stevens, Beidler and Hill for their prediction of the human olfactory stimulus-response 

function. These authors concluded that the model of Hill fitted the experimental data for 20 

odorous compounds as well as, or better than, the other models. According to the latter 

model, a twofold increase of the original concentration of orange aroma increased the mean 

scores of the attributes involved only slightly, as we observed in Chapters 3-5. 

8.4 Instrumental analysis of the flavour release 

The presence or absence of interactive effects between sweeteners and an orange aroma has 

also been studied by an instrumental analysis of the flavour release. Volatile compounds were 

isolated by a purge and trap method at mouth conditions (volume, temperature, artificial 

saliva) and then quantified and identified by gas chromatography combined with different 

detection methods. A comparison of a sucrose and a Na-cyclamate solution at 10% SEV 

reveals significant differences in the release of some volatile compounds from the solution 

(Chapter 6). However, sensory analysis of these solutions (Chapter 5) shows that the scores 

for the different attributes remain constant when comparing the sweeteners in the presence of 

an orange aroma. Differences observed in the instrumental analysis are not perceived by the 

panellists. To be able to fully understand possible effects of adding sweeteners to the orange 

aroma solution, the concentrations of the sweeteners were enhanced. At high sucrose 

concentrations (60 w/v%) the release of the volatile compounds with short retention times in 

the GC/FID analysis increased and the release of the volatile compounds with large retention 

times in the GC/FID analysis decreased. The hydration of the sucrose molecules in the 

solution diminishes the availability of free water for the rather polar volatile compounds, 

therefore increasing their concentration/release. The addition of sucrose to the solutions 

changes the solvent character of these solutions, thus changing the release of the more apolar 

volatile compounds. At higher Na-cyclamate concentrations (2.658 w/v%) the release of 

volatile compounds from the orange aroma solutions does not significantly change (Chapter 
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6). Apparently, at this Na-cyclamate concentration no physical and/or chemical interactions 

with the volatile compounds of the orange aroma occur. However, in the sensory analysis 

(Chapter 5) a levelling effect of the orange aroma has been observed. 

The release of volatile compounds from aqueous solutions containing increasing sucrose 

concentrations was modelled to improve the understanding of the system worked with. The 

mass transfer coefficient as well as the gas/solution partition coefficient are the main 

parameters influencing the release. The viscosities of the different sucrose solutions were 

estimated and their influence on the mass transfer coefficients was determined. By measuring 

the gas/solution partition coefficients for five volatile compounds, the model provides an 

acceptable fit to the experimental flavour release data. The model description reveals that at 

low sucrose concentrations primarily the partition coefficient determines the release of the 

volatile compounds, whereas at higher sucrose concentrations the interfacial mass transfer 

coefficient is more important (Chapter 7). 

8.5 Concluding remarks 

The studies presented in the thesis on Psychophysical evaluation of interactive effects 

between sweeteners and aroma compounds, show that 

• sensory perceived equisweetness is an evident condition for understanding sweetness-

flavour interactions 

• composition of equisweet mixtures of synergistic sweeteners can only be obtained by 

determining the partial SEVs and not from the psychophysical concentration-response 

relationships 

• the synergy observed in sweet taste perception of ternary mixtures is a combination of the 

synergies observed in the composing binary mixtures of sweeteners 

• taste differences among sweeteners cause flavour differences found among the various 

sweetener/aroma solutions 

• modelling of the flavour release emphasises the role of partition and mass transfer 

coefficients in the release. 

Substitution of sucrose by intense sweeteners at a sweetness level commonly present in soft 

drinks (i.e. 10% SEV), will cause differences in the release of volatile compounds, which are 
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probably not noticeable by panellists/consumers. Flavour differences observed among the 

sweeteners and aroma combinations studied in this thesis can probably be ascribed to 

differences in taste among the sweeteners. However, aromas containing flavour compounds 

in micro emulsions, such as oil based aromas, could give quite different results. Sensory 

analysis revealed a levelling effect of the orange aroma. Possibly this can be ascribed to 

perceptual interaction, the specific mechanism of this is currently being unknown; it is 

extremely unlikely that taste-odour interactions occur at the receptor level. 
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Sucrose can be substituted by intense sweeteners to lower its content in soft drinks, however, 

their flavour often changes. The aim of the research described in this thesis is to elucidate 

whether these changes are due to the properties of the intense sweeteners themselves and/or 

to interactive effects between sweeteners and aroma compounds. The effect of mixtures of 

sweeteners and the presence or absence of interactive effects have been studied with the help 

of sensory and instrumental analysis. The results of the sensory analysis reveal the ability of 

panelists to perceive differences in the flavour profiles of several stimuli. The results of the 

instrumental analysis clarify whether the presence of (intense) sweeteners influences the 

release of volatile compounds from a solution. Mathematical modelling of this release 

revealed the parameters influencing the release of volatiles. 

In Chapter 1 the outline of the thesis and aspects relevant to the thesis are presented. A 

general introduction to flavour stimuli and psychophysical models for mixtures of sweeteners 

is given. Furthermore three levels of sweetness flavour interactions are discussed: 

physicochemical, receptor and perceptual interactions. Finally techniques to study molecular 

interaction are briefly presented. 

Chapter 2 deals with two preliminary studies on commercial products. In a study on 

sensory preferences the panelists did not significantly prefer regular orange soft drinks 

(sweetened with sucrose) over their light equivalents (sweetened with intense sweeteners). 

For cola soft drinks, on the contrary, the regular soft drink was significantly preferred over 

the light version. In a sensory study (quantitative descriptive analysis, QDA) the 

concentrations of intense sweeteners in a light blackcurrant soft drink were changed, which 

affected the flavour profile of this drink. It was concluded from these studies that the 

presence of intense sweeteners in a light soft drink influences the preferences for and the 

flavour profiles of these drinks to various extents, depending on the flavour and sweeteners 

present. 

In Chapter 3 Beidler's mixture equation was used to compose equisweet mixtures of 

sucrose and maltitol as well as equisweet mixtures of sucrose and aspartame at 10% Sucrose 

Equivalent Value (SEV). QDA of different solutions containing combinations of these 

sweeteners and a water soluble orange aroma revealed that the mean scores for the attribute 

sweet remained constant for each solution. The flavour profiles of sucrose and maltitol did 

not significantly differ at a constant concentration of orange aroma. Flavour profiles of 

solutions with increasing aspartame concentrations (at constant aroma levels) showed 
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significantly higher scores for the attributes sour, chemical and aftertaste. Addition of orange 

aroma provided the different solutions with a more distinct flavour. Requested comments on 

the attribute aftertaste showed similar expressions for the different solutions. The aftertaste of 

solutions containing relatively more aspartame was mainly described as sweet and chemical. 

Chapter 4 deals with mixtures of sucrose and Na-cyclamate in the presence of orange 

aroma. Equisweet mixtures at 10% SEV were composed, which accounted for the observed 

synergistic effects between sucrose and Na-cyclamate. Sensory analysis (QDA) revealed that 

the flavour profiles of a sucrose solution and a Na-cyclamate solution, both in the absence of 

orange aroma, significantly differed for the attributes chemical and aftertaste. Addition of 

orange aroma provided the solutions with a more distinct flavour and levelled out differences 

observed between sucrose and Na-cyclamate solutions. Comments on the attribute aftertaste 

showed that the aftertaste of solutions containing mainly Na-cyclamate was characterized as 

bitter. 

In Chapter 5 the results of Chapters 3 and 4 are used in the study of the ternary 

sucrose/aspartame/Na-cyclamate mixtures in the presence of an orange aroma. Equisweet 

mixtures were composed, which account for the observed synergistic effects between the 

sweeteners. The sweetness contributions of sucrose and Na-cyclamate were fixed on 

forehand according to their synergy and the matching concentration of aspartame was 

determined. The composition of the equisweet ternary mixtures was described in a regression 

equation. The binary mixtures of aspartame and Na-cyclamate exhibited more synergy than 

the mixtures of sucrose and Na-cyclamate. Sucrose and aspartame were exchangeable in the 

sense that the synergy observed for the ternary mixture was a linear combination of the 

synergy of the binary mixtures. The flavour profiles of combinations of the mixtures and an 

orange aroma were obtained with the help of QDA. In the ternary mixtures Na-cyclamate 

contributed mostly to their flavour profiles, i.e. they were described as being more chemical, 

bitter and musty and having more aftertaste. Comments on the attribute aftertaste revealed the 

descriptions bitter and chemical. 

Instrumental analysis, as described in Chapter 6, was used to evaluate possible interactive 

effects between sucrose/Na-cyclamate mixtures and orange aroma compounds. The release of 

volatile compounds from the solutions containing equisweet mixtures of these sweeteners 

(Chapter 4) and a water soluble orange aroma was studied. The volatile compounds were 

quantified and identified by gas chromatography combined with flame ionisation detection 
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(GC/FID) and mass spectrometry. The presence of sucrose significantly changed the release 

of 15 selected volatile compounds compared to the aqueous control. Increasing sucrose 

concentrations in the solutions (0-60 w/v%) caused an increased release of the volatile 

compounds with short GC/FID retention times and a decreased release of the compounds 

with longer retention times. Increasing Na-cyclamate concentrations (0-2.658 w/v%) did not 

change the release of volatile compounds. 

In Chapter 7 the flavour release from aqueous solutions containing sucrose was described 

in a mathematical model. Parameters involved in the isolation by a purge and trap method at 

mouth conditions (volume, temperature, artificial saliva) were used in the model description 

of the flavour release. The viscosities and the gas/solution partition coefficients determined 

for the volatile compounds were included in the model, which provided an acceptable fit to 

the experimental data obtained with the instrumental analysis in Chapter 6. The model 

description revealed that at low sucrose concentrations primarily the partition coefficient 

controls the flavor release, whereas at higher sucrose concentrations the mass transfer 

coefficient has more influence. 

In Chapter 8 the main results of this thesis are discussed. It can be concluded that 

substitution of sucrose by intense sweeteners at a sweetness level commonly present in soft 

drinks (i.e. 10% SEV), will influence the flavour release by changes in the partition or mass 

transfer coefficients. However, these changes in the release of volatile compounds at the 10% 

SEV level are probably not noticeable by panelists/consumers. Flavour differences observed 

among the sweeteners and aroma combinations studied in this thesis can probably be ascribed 

to differences in flavour among the sweeteners. Sensory analysis revealed a levelling effect 

of the orange aroma (Chapters 4 and 5). Possibly, this can be ascribed to perceptual 

interaction, of which the specific mechanism is currently being unknown. 
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Sucrose ofwel suiker kan in frisdranken vervangen worden door intensieve zoetstoffen om 

zijn aandeel te verlagen. Echter, ten gevolge van deze vervanging verandert het aroma van 

een frisdrank. Het doel van het onderzoek, dat beschreven is in dit proefschrift, is het 

beantwoorden van de vraag of de veranderingen in de kwaliteit van de zoete smaak toe te 

schrijven zijn aan de eigenschappen van de intensieve zoetstoffen zelf en/of aan interactieve 

effecten tussen deze zoetstoffen en aromacomponenten. Daarnaast is het effect van mengsels 

van zoetstoffen bestudeerd. De aan- of afwezigheid van interactieve effecten is bestudeerd 

met behulp van sensorische en instrumentele analyse. De resultaten van de sensorische 

analyse laten zien of panelleden in staat zijn om verschillen waar te nemen tussen de 

aromaprofielen van verscheidene combinaties van zoetstoffen. De resultaten van de 

instrumentele analyse maken duidelijk of de aanwezigheid van (intensieve) zoetstoffen 

invloed heeft op het vrijkomen van vluchtige verbindingen uit een oplossing. Dit vrijkomen 

van vluchtige verbindingen wordt in een model beschreven om te zien welke parameters het 

vrijkomen bei'nvloeden. 

In Hoofdstuk 1 worden de opbouw van het proefschrift en het doel van het onderzoek 

gepresenteerd. Er wordt een algemene inleiding gegeven over geur- en smaakwaarneming en 

psychofysische modellen voor mengsels van zoetstoffen. Bovendien worden drie niveau's 

van zoetstof-aroma interacties behandeld: fysisch-chemische, receptor en perceptuele 

interacties. Tenslotte worden technieken ter bestudering van moleculaire interacties in het 

kort besproken. 

Hoofdstuk 2 betreft twee inleidende sensorische onderzoeken met commerciele produkten. 

In een preferentie onderzoek bleken de panelleden geen significante voorkeur te hebben voor 

gewone frisdranken (gezoet met sucrose) ten opzichte van hun 'light' equivalenten (gezoet 

met intensieve zoetstoffen). Voor cola frisdranken daarentegen, werd de gewone frisdrank 

significant geprefereerd ten opzichte van de 'light' versie. In een profiel onderzoek werden 

de concentraties van de intensieve zoetstoffen in een 'light' cassis frisdrank verandert, 

hetgeen het aromaprofiel van deze drank bei'nvloedde. Er werd geconcludeerd dat de 

aanwezigheid van intensieve zoetstoffen in een 'light' frisdrank de preferenties en ook het 

aromaprofiel van deze frisdranken in verschillende mate be'invloedt. Dit is afhankelijk van 

het aanwezige aroma en de aanwezige zoetstoffen. 

In Hoofdstuk 3 is Beidler's mengvergelijking gebruikt voor het samenstellen van 

mengsels van sucrose en maltitol, evenals van sucrose en aspartaam, met een zoetheid gelijk 
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aan die van een 10 w/V% sucrose oplossing (10% SEV). Kwantitatieve beschrijvende 

sensorische analyse (QDA) van verschillende oplossingen van combinaties van deze 

zoetstoffen en een water oplosbaar sinaasappelaroma liet zien dat de gemiddelde scores voor 

het attribuut zoet gelijk bleven voor elke oplossing. De aromaprofielen van sucrose en 

maltitol verschilden niet significant van elkaar bij gelijke concentraties van het 

sinaasappelaroma. De aromaprofielen van oplossingen met toenemende concentraties 

aspartaam (maar gelijke concentraties sinaasappelaroma) lieten significant hogere scores zien 

voor de attributen zuur, chemisch en nasmaak. Een toevoeging van sinaasappelaroma gaf de 

verschillende oplossingen een meer uitgesproken aromaprofiel. Nadere omschrijvingen van 

het attribuut nasmaak waren gelijk voor de verschillende oplossingen. De nasmaak van de 

oplossingen, die relatief meer aspartaam bevatten, werd voornamelijk beschreven als zoet en 

chemisch. 

Hoofdstuk 4 behandelt mengsels van sucrose en Na-cyclamaat in de aanwezigheid van 

sinaasappelaroma. Mengsels met een gelijke zoetheid van 10% SEV werden samengesteld, 

waarbij rekening gehouden werd met de waargenomen synergistische effecten tussen sucrose 

en Na-cyclamaat. Sensorische analyse (QDA) liet zien dat de aromaprofielen van een sucrose 

oplossing en een Na-cyclamaat oplossing, beide in afwezigheid van sinaasappelaroma, 

significant van elkaar verschilden voor de attributen chemisch en nasmaak. De toevoeging 

van sinaasappelaroma gaf de oplossingen een meer uitgesproken aromaprofiel en nivelleerde 

de waargenomen verschillen tussen sucrose en Na-cyclamaat oplossingen. Nadere 

omschrijvingen van het attribuut nasmaak toonden aan dat de nasmaak van oplossingen met 

relatief meer Na-cyclamaat voornamelijk bitter was. 

In Hoofdstuk 5 werden de resultaten van de Hoofdstukken 3 en 4 gebruikt in het 

onderzoek van het tertiaire sucrose/aspartaam/Na-cyclamaat mengsel in de aanwezigheid van 

sinaasappelaroma. Mengsels met een gelijke zoetheid van 10% SEV werden samengesteld, 

waarbij rekening gehouden werd met de waargenomen synergistische effecten tussen de 

zoetstoffen. De zoetheidsbijdrages van sucrose en Na-cyclamaat werden vantevoren 

vastgelegd volgens hun synergie, en daarna is de aanvullende aspartaam concentratie 

bepaald. De samenstelling van de tertiaire mengsels met gelijke zoetheid (10% SEV) is 

beschreven in een regressievergelijking. De mengsels van aspartaam en Na-cyclamaat 

vertoonden meer synergie dan de mengsels van sucrose en Na-cyclamaat. Sucrose en 

aspartaam waren uitwisselbaar, in zoverre dat de waargenomen synergie in de tertiaire 
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mengsels een lineaire combinatie was van de synergie in de binaire mengsels. De 

aromaprofielen van combinaties van deze mengsels en een sinaasappelaroma werden 

verkregen met behulp van QDA. Het aandeel van Na-cyclamaat in de tertiaire mengsels 

bepaalde in grote mate het aromaprofiel van deze mengsels, die hoger scoorden op de 

attributen chemisch, bitter, muf en nasmaak. Verdere omschrijvingen van deze nasmaak 

waren weer bitter en chemisch. 

De instrumentele analyse, die in Hoofdstuk 6 beschreven wordt, is gebruikt om mogelijke 

interactieve effecten tussen sucrose/Na-cyclamaat mengsels en componenten van 

sinaasappelaroma te bestuderen. Het vrijkomen van vluchtige verbindingen uit de even zoete 

waterige mengsels van deze zoetstoffen (Hoofdstuk 4) en een water oplosbaar 

sinaasappelaroma is bestudeerd. De vluchtige verbindingen werden gekwantificeerd en 

geidentificeerd met behulp van gas chromatografie gecombineerd met vlamionisatie detectie 

(GC/FID) en massaspectrometrie. Het vrijkomen van 15 geselecteerde vluchtige 

verbindingen uit een sucrose oplossing met sinaasappelaroma veranderde significant ten 

opzichte van de standaard (water + sinaasappelaroma). Hoge sucrose concentraties in de 

oplossingen (60 w/V%) veroorzaakten een toename in het vrijkomen van de vluchtige 

verbindingen met korte GC/FID retentietijden en een afhame in het vrijkomen van de 

verbindingen met langere retentietijden. Hoge Na-cyclamaat concentraties (2.658 w/V%) 

veranderden het vrijkomen van vluchtige verbindingen niet. 

In Hoofdstuk 7 werd het vrijkomen van vluchtige verbindingen uit sucrose oplossingen 

beschreven in een model. De parameters, die van belang zijn voor de isolatie onder 

mondomstandigheden (volume, temperatuur, kunstspeeksel), werden gebruikt in een 

modelbeschrijving voor het vrijkomen van vluchtige verbindingen. Met viscositeiten en 

gas/oplossing verdelingscoefficienten voor de bestudeerde vluchtige verbindingen, gaf het 

model een goede benadering van de experimentele data van de instrumentele analyse in 

Hoofdstuk 6. De modelbeschrijving maakte duidelijk dat het vrijkomen van vluchtige 

verbindingen bij lagere sucrose concentraties voornamelijk bepaald wordt door de 

verdelingscoefficient, terwijl de massatransport coefficient meer invloed heeft bij hogere 

sucrose concentraties. 

In Hoofdstuk 8 worden de belangrijkste resultaten van dit proefschrift besproken. Er kan 

geconcludeerd worden dat bij het vervangen van sucrose door intensieve zoetstoffen, op een 

zoetheidsniveau zoals dat gebruikelijk is voor frisdranken (10% SEV), het vrijkomen van 

138 



Samenvatting 

vluchtige verbindingen bei'nvloed wordt door veranderingen in de verdelingscoefficient of de 

massatransport coefficient. Echter, deze veranderingen in het vrijkomen van vluchtige 

verbindingen op het 10% SEV niveau zijn niet zo zeer waarneembaar voor 

panelleden/consumenten. Verschillen in smaak, die waargenomen worden in de bestudeerde 

combinaties van zoetstoffen en aroma, kunnen waarschijnlijk geheel worden toegeschreven 

aan verschillen in de smaak van de zoetstoffen. De sensorische analyse liet een nivellerend 

effect van het sinaasappelaroma zien (Hoofdstukken 4 en 5). Waarschijnlijk kan dit 

toegeschreven worden aan een perceptuele interactie, waarvan het specifieke mechanisme 

(nog) onbekend is. 
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JA, we zijn er: het meest gelezen deel van het proefschrift vrees ik. Oh help, nu moet ik 

echt mijn best doen. Alhoewel, zo moeilijk is het niet! Fons Voragen, een fijnere promoter 

kan ik me niet indenken. Ik vond de tussentijdse evaluaties altijd erg plezierig, bedankt! 

Jacques Roozen, hartstikke bedankt voor je begeleiding de afgelopen jaren. Ik vind het toch 

echt ongelovelijk hoe je elke keer weer, in de zoveelste versie van een schrijfsel precies de 

zwakke punten weet aan te stippen! Ook je enorme kennis van de levensmiddelenchemische 

processen heeft ons door vele discussies heen geleid. Ik wil Cees de Graaf graag bedanken 

voor zijn rol als mede-begeleider. 

Dan absoluut: Aagje Legger. Je bent echt mijn grote steun en toeverlaat geweest de afgelopen 

jaren, op alle fronten. Onwijs bedankt voor dat alles. En natuurlijk gaan we door met 

overheerlijke uit-etentjes, met of zonder sigaret, wat jij (moet je toch effe plagen)! Harold 

Bult, je hebt de laatste labjaren tot een waar chaotisch feest gemaakt, thanks a million. Je zal 

de kraak- en knispergeluiden van koekjesverpakkingen nu toch echt helemaal in je eentje 

moeten gaan produceren; die koekjes dan weer op eten deed je toch al bijna geheel alleen. 

Ik heb het bepaald niet slecht getroffen met mijn studenten! Mijn eerste studente, Desiree 

Bakker, wil ik graag bedanken voor haar enorme inzet tot verder onderzoekswerk. Elodie 

Orambot, je te remercie beaucoup pour tes efforts de mettre Panalyse instrumentele sur pied 

et pour ta personnalite enormement agreable. Tu as degage la route pour Peter Navarro y 

Koren, die ondanks zijn persoonlijke omstandigheden een prachtig stukje onderzoekswerk 

afleverde, dat zelfs beloond werd door en meepubliceren en de NVVL-prijs. Te gek! 

Finalement je voudrais remercier Denis Verset qui a livre une piece de travail de benedictin 

en mesurant quelques coefficients de partage. 

Een van de motivaties om aan dit AlO-schap te beginnen was het internationale karakter van 

deze functie. En internationaal is mijn deelname aan het EG-project geworden! Engeland 

(4x), Zwitserland (2x), Frankrijk, Italie (straks) en zelfs Amerika heb ik op mijn lijstje 

kunnen zetten. I would like to thank Marcus Harrison for his help of all sorts during my stay 

in Norwich. I envy your ease of tackling mathematical problems! Nicole ter Maten, toffe 

meid, ontzettend bedankt voor je creatieve hulp bij het ontwerpen van de omslag en 

natuurlijk voor die overheerlijke babbels. Jan Cozijnsen, bedankt voor je gezelligheid, je 
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vaderlijke gevoelens (nee, ik ben niet alleen door dat bos gefietst) en je gaschromatografische 

hulp. En sorry dat ik je spoetnik niet heb gebruikt. Ik wil uiteraard mijn panelleden, zeker die 

van het eerste uur, van harte bedanken voor al hun inzet, en ook voor hun interesse in het 

onderzoek. Dini Wesselkamp van de spoelkeuken, bedankt! We klagen gewoon niet over die 

ontelbare potjes die ik telkens weer bij je afleverde, en het is fantastisch dat die standaard de 

volgende ochtend weer helemaal schoon voor me klaarstonden! 

Aan het eind van mijn promotieonderzoek weet ik weer helemaal waarom ik voor de sectie 

Levensmiddelenchemie koos: collega's bedankt voor de leuke tijd! Familie en vrienden die 

soms urenlang gezeur van mij moesten doorstaan en dat flink de kop in wisten te drukken 

door een enorme portie gezelligheid: hartstikke bedankt! 

Lieve Rene, vond je ze niet h6erlijk, die avonden en weekenden Biotechnion?! 'k Ben blij dat 

we nog jaaaaaren andere vormen van gezelligheid tegemoet gaan, nie-waar? In ieder geval 

vind ik het onbeschrijflijk dat jij er zo voor me bent; ongeloveloos bedankt! 

Lieve mama, als er iemand is die er altijd en eeuwig voor me is, dan ben jij dat wel. Het valt 

gewoon niet uit te leggen hoeveel dat voor mij betekent. Ik kan je wel vertellen dat ik 

ontzettend trots op je ben en dat ik me gewoon verheug op al die jaren die nog komen gaan. 
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