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Propositions 

Khaemba, W. M. (2000). Development and Application of Spatial and Temporal Statistical 
Methods for Improved Sampling of Wildlife. PhD Thesis, Wageningen University and ITC. 

1. 
Sampling of wildlife populations is improved by using appropriate sampling schemes and 

analysis methods, as well as modelling of space-time dependence. 
This Thesis 

2. 
Full understanding of factors that influence wildlife abundance and distribution requires an 

interdisciplinary approach involving ecologists, statisticians and social scientists. 
This Thesis 

3. 
Extension of current spatial statistical techniques is necessary for a full and thorough 

analysis of data collected through aerial surveys of wildlife populations. 
This Thesis 

4. 
Consistent procedures to obtain wildlife population parameter estimates are preferable to 

accurate but expensive alternatives. 
This Thesis 

5. 
Low precision and accuracy associated with parameter estimates from wildlife data can be 

improved by considering spatial dependence in observations. 
This Thesis 

6. 
Statistics does not provide explanation for what has been observed, but rather induces 

clarity in the numerical reasoning leading to conclusions. 
This Thesis 

7. 
Data are not just numbers, but numbers that carry information about a specific setting. 

This Thesis 



The concept of superior sampling designs is a fallacy often propagated by inappropriate 
application of perfectly good designs. 

9. 
Discoveries are often made by not following instructions. 

10. 
Many researchers erroneously place more importance on statistical significance, leaving 

almost no room for fair reporting or what was truly observed. 

11. 
If one is a master of one thing and understands one thing well, one has at the same time, 

insight and understanding of many things. 
Vincent Van Gogh 

12. 
He who has a why to live can bear almost any how. 

Fredrick Nietzsche 

13. 
Blessed is he who never forgets where he comes from, for the world is round and however 

much you travel, just when you think you have reached, you find little difference with 
where you came from. 

An African saying 



This is for you mum... For all your faith, love and guidance. 
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Symbols and notations 

The following is a list of symbols and notations used in more than one chapter in the thesis. 

N 
n 
A 
a, 
w 
D 

D 

Y 

Y 

y, 

y 

c 
So 

s 
A 

k 

z 

Za 

Pr 

EM 
Var[>>] 

E[x\y] 

Var[;t | y] 

PC 

total number of sampling units in study region 
number of sampling units (sample size) 

size of the study area 
size of sampling unit i (i: 1,2,..-, n) 
width of area sampled on either side of the aircraft 
Population density (number per unit size) 

Estimate of D 

Population total (total number in study area) 

Estimate of Y 

number of observed animals in unit i 

Inclusion probability of the rth sampling unit 

mean density per sampled unit 

Condition {y: y>c] for a constant c needed to expand the sample 

sequence of labels and 

set of samples 

parameter corresponding to the./th variable 

Mean population value 

estimate of the total number of networks in the population 

A matrix of eigen vectors 

the standard normal variate 

the 100a per cent upper tail values for z such that Pr[z > z„] = a 

probability 

the mean of a random variable y. 

the variance of a random variable y 

the mean of* conditional on fixed y, for random variables x and y 

the variance of x conditional on fixed y, for random variables x and y 

principal component 

X1H 
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General Introduction 

1.1. Statistics and Wildlife Management 
Studies of biological populations often require estimates of population density (D) or 

total size (10- These parameters vary in space, over time as well as by species, often in 
response to changes in environmental factors. Although ecology deals with living 
organisms, their habitats, modes of life and relations to the environment, it can greatly 
benefit from new developments in statistical procedures, particularly those used in 
estimation of population parameters and their precision. 

The world is generally becoming more quantitative, with many professions depending 
more on data and numerical reasoning. As the use of data grows, so does demand for 
innovative statistical techniques that yield clarity in the data and help draw practical 
conclusions. Data are not just numbers, but numbers that carry information about a specific 
setting. They need to be interpreted in that particular setting. 

This seemingly ecological thesis is written by a statistician in an attempt to combine 
statistical theory and ecological principles to provide tools for better management of 
wildlife populations. Although ecological principles exist to explain observed abundance 
and distribution of wildlife, only appropriate application of sound statistical procedures 
allows quantification, separation and understanding of the different processes at play in the 
ecosystem. Further, the modelling of variables influencing abundance and distribution of 
wildlife is possible only after a clarification of interactions between and within variables. 
This is only achieved by means of proper application of suitable statistical techniques. But 
why study wildlife? 

Wildlife forms the backbone on which Kenya's tourism industries is based (Ottichilo, 
2000). This industry has been a leading foreign exchange earner for the country for a long 
time, being second only to agriculture (GOK, 1994). In the recent past, the country's 
human population growth has far outpaced its economic growth, which has led to more 
people turning to subsistence agricultural production to meet an increasing demand for food 
(GOK, 1998). To fulfil this demand, more land traditionally reserved for wildlife and 
livestock grazing is being converted into agricultural land (Amuyunzu, 1984; Lamprey, 
1984; Lusigi, 1986, Ottichilo, 2000). Combined with changing environmental conditions 
that have adversely influenced wildlife abundance and distribution, there are serious long-
term implications on the survival of wildlife resources in Kenya (De Leeuw et al., 1999). 

A possible solution to this problem lies in formulating and implementing sustainable 
wildlife conservation strategies. These strategies, however, require proper understanding of 
factors that influence abundance and distribution of wildlife populations and how these 
factors interact with one another. In general, wildlife sampling is necessary for resource 
monitoring, conservation and proper management. It also provides useful input in policy 
planning. Wildlife managers require accurate, timely and up to date information on 
abundance and distribution of animals in their parks. Obtaining such information from 
wildlife surveys requires efficient sampling strategies and appropriate statistical analysis 
procedures. All these provide the basis and aim of this thesis. 
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1.2. Motivation of the study 
Abundance of wildlife populations in the tropics is obtained by means of data 

collected by two basic counting procedures: complete enumeration or total counts (TC) and 
partial enumeration or sample counts (SC) (Caughley, 1977; Norton-Griffiths, 1978; 
Steffens, 1993). By means of TC, the whole study area is searched and all observed wildlife 
is counted to yield abundance. With SC, a representative sample of the whole study area is 
searched and all wildlife observations are recorded. Abundance is generally estimated by 
the following procedure: 

Consider an area of known size A (km2, say) partitioned into N non-overlapping 
sampling units. Select a sample of n units out of the N and count the number of animals in 
each unit. If Y is the total number of animals in the whole area (which is unknown) and y, is 
observed in unit / of area a, (i= 1,2, ..., AO, the mean density per sampled unit is defined for 
equally sized units as: 

n 

y = ^—, ( l . i) 
n 

and an estimate of Y is given by: 
Y = Ny. (1.2) 

It is highly unlikely that study areas will be regularly shaped to yield equally sized 

sampling units. A different estimation procedure must, therefore, be employed to yield Y . 

One common approach is to estimate animal density in the sample and extrapolate this to 

the whole study area. The density D of animals in an area of known size A is estimated by: 
n 

D=——, (1-3) 

which is a ratio of total sample counts to total sampled areas (Jolly, 1969a; Cochran, 1977; 
Thompson, 1992). An estimate of Y is then given by: 

Y=DA. (1.4) 

This procedure yields correct estimates for unequally sized sampling units under the 
following key assumptions. 

• All sampling units in the population (study area) have an equal chance of being 
included in the sample, which implies random sampling. 

• All units in the sample are carefully searched and all animals in them are located and 
accurately counted. 
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The first assumption can be assured through application of random sampling schemes. 
On the other hand, the behaviour and dynamics of wildlife populations, as well as 
deficiencies in survey procedures, contribute to invalidation of the second assumption. This 
is particularly pertinent to SCs conducted through elaborate survey procedures. 

Another difficulty associated with sampling wildlife populations is the definition of 
suitable sampling platforms. Light aircraft provide the only practical platform of sampling 
wildlife and are commonly employed in the tropics (Caughley, 1977; Seber, 1982; Steffens, 
1993). For reasons of safety and security, such airborne platforms force observers to be 
separated by some distance from the sampled items. Moreover, sampling units are not 
physically defined, but are arbitrary regions demarcated on the ground by means of markers 
placed on the sampling platform (Smith, 1981; Seber, 1982; Thompson and Seber, 1996; 
Wint, 1998). All these introduce errors in the sampling procedure, which hamper accurate 
analysis of wildlife survey data. 

Unlike in fields like forestry, soil science, geology, or even plant ecology, where 
items to be sampled are generally stationary, at least for a fixed period of time, wildlife 
populations are highly dynamic. A proper analysis of these dynamics must start by 
investigating the stochastic processes yielding observed spatial patterns. For example, 
failure to model the covariance structure in spatially dependent observations leads to 
inaccurate (biased) and imprecise (inefficient) parameter estimates (Isaaks and Shrivastava, 
1989; Cressie, 1993; Legendre and Legendre, 1998). The same goes for wildlife 
populations, where analysis must take into account the existing spatial dependencies 
between observed patterns in relation to important restrictive conditions like presence of 
human settlements, distance to water points, distance to forests and other vegetation types, 
as well as other variables that affect wildlife distribution. Generally, natural plant or animal 
populations are rarely distributed at random but are usually clustered together (Seber, 1982; 
Buckland and Elston, 1993; Augustin et al., 1996). 

Analyses of data from wildlife surveys generally ignore the presence of this 
spatial dependence (Augustin, et al., 1996; Grunblatt et al, 1996). Use of conventional 
sampling designs such as simple random and systematic sampling, in which selection 
probabilities do not account for such clustering, results in inefficient estimates (Buckland, 
et al., 1993; Augustin, et al, 1996). 

Recent advances in sampling and statistical analysis techniques provide 
opportunities to improve sampling of wildlife populations (Buckland, et al., 1993; 
Thompson and Seber, 1996; Legendre and Legendre, 1998). In particular, the use of prior 
and expert/indigenous knowledge to improve analyses of survey data is highly desirable. 
This study is fortunate to have had access to data collected over a 20-year period, providing 
lots of prior information for future surveys. This has made it possible to apply computer 
intensive techniques like MCMC methods to improve estimation of population parameters 
(Gilksefa/., 1996; Brooks, 1998). 
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1.3. Objectives of the study 
The main objective of this study is to develop appropriate statistical procedures to 

improve sampling for purposes of gaining greater insight in the abundance and distribution 
of wildlife populations. This leads to the following minor objectives: 

• To investigate current wildlife sampling procedures and propose an improvement. 

• To model wildlife abundance and distribution using statistical techniques and 

geographical information system (GIS). 

• To use spatio-temporal procedures to model changes in wildlife populations in space 

and time. 

• To model wildlife distribution using spatial point patterns 

• To compare performance of proposed sampling procedures to established sampling 

strategies. 

1.4. Scope of the study 
This thesis deals exclusively with large herbivores (body weight > 20 kg) found in an 

African savannah and the case studies presented here focus on these. Most of the data used 
have been collected through aerial surveys and the proposed sampling design assumes an 
airborne platform. The term sampling design is used here to indicate a method of selecting 
sampling locations to be observed as opposed to the actual removal of sampling locations in 
the population. 

A strong emphasis is placed on estimation of abundance and distribution throughout 
the thesis because this is the main objective of many wildlife surveys in the tropics. 
However, an explanation of observed distribution patterns, especially in relation to 
environmental factors is relevant and is also treated here. This should not be viewed as a 
narrow utilisation of data obtained from wildlife surveys but rather as a focus on 
appropriate information requirements for wildlife managers. 

Since the main objective of this study is the development and application of sampling 
methods and other procedures, illustrations have been selected from differing case studies 
and species. For most illustrations, different social behaviour is distinguished and 
represented by three types of wildlife species. Kongoni (Alcelaphus buselaphus) are 
considered solitary, the elephant (Loxodonta africana), are found in small to medium herds 
of up to 50 animals while the wildebeest (Connochaetes taurimus) are mainly found in 
large herds of several hundred animals. 

Although this may appear to limit a full discussion of results, generalisation to other 
species and ecosystems requires only slight modifications in most cases. Further, two of the 
above species are considered key species because of their influence on the ecosystem. For 
example, through its migration process, the wildebeest facilitates the survival of other 
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species in the Masai Mara ecosystem (Vasey-Fitzgerald, 1960; Bell, 1970; Prins and Olf, 
1998). 

1.5. Outline of the Thesis 
This thesis essentially presents a collection of research papers that have been accepted 

for publication in or submitted to international peer-reviewed journals. Each paper has been 
presented as a chapter, making a partial but distinct contribution to solving the overall 
research problem. I have tried as much as possible, to maintain the content of each paper to 
reflect what was presented to the journal, however, some standardisation in the layout and 
symbols is necessary for consistency of the thesis. In this respect, each chapter is 
introduced separately, stating its contribution to the overall research. This approach is likely 
to lead to some gaps and overlaps, affecting the continuous flow of the thesis. It is my 
hope, however, that the advantages gained through a critical review process has raised these 
chapters to a level that renders this drawback insignificant. The following is an outline of 
the main chapters. 

Chapter 2 looks at different sampling designs used in aerial surveys of wildlife 
populations. It proposes an improved sampling design based on adaptive sampling and 
applicable to clustered populations. Univariate and multi-variate treatments of the improved 
design are developed. The thesis begins with a chapter on sampling because it is my belief 
that estimation of wildlife population parameters will only improve with an improvement in 
wildlife sampling procedures. 

Chapters 3 and 4 integrate the concept of spatial statistics in modelling wildlife 
populations. In particular, chapter 3 illustrates how generalised linear modelling combines 
with GIS to model the distribution of wildlife species. The chapter also introduces a 
distance measure that models spatial dependence and characterises clustering of wildlife 
species. 

Chapter 4 extents the use of statistical techniques in modelling abundance and 
distribution of wildlife by introducing MCMC methods and space-time analysis. The 
chapter also explores diversity measures and develops a diversity index suitable for aerial 
surveys of large herbivores. 

Chapters 3 and 4 work with data obtained by means of strip transects, which is a 
common sampling unit in wildlife sampling. 

More detailed data, in which exact geographical locations of groups of animal have 
been recorded, are available from a second study area. These are used in chapter 5 to model 
the spatial point patterns of six ungulates in the area. Differences in the six wildlife species 
are demonstrated by relating observed patterns to environmental factors like vegetation 
type. Nearest neighbour distance measures like the G-statistic and the ^-function are also 
used to classify observed patterns as clustered, regular or completely random. 
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Chapter 6 uses the same detailed data as in chapter 5 to compare performance of the 
proposed adaptive design to the conventional random and systematic designs. The chapter 
combines statistics with GIS in a simulation study that validates the proposed sampling 
design. 

Chapter 7 gives a brief outline of how spatio-temporal techniques and other 
statistical methods introduced in earlier chapters are used in the decision making process 
for better wildlife management. The chapter describes different scenarios encountered when 
making a decision for example, to adopt one statistical sampling technique instead of 
another. It should be noted that treatment of decision theory in this chapter may be 
inadequate because that would go beyond the scope of the thesis. 

Finally, chapter 8 summarises the findings of the research and concludes with 
recommendations for further research. A combined reference list is given at the end of 
thesis. 

1.6. Location of study areas 
Concepts and procedures introduced in the thesis are illustrated by data from two 

ecosystems in Kenya. Transect data is mainly obtained from the Masai Mara ecosystem in 
Narok district, lying between 0° 45' and 2°00' South, and 34° 45' and 36°00' East and 
covering an area of approximately 6,650 km2. The ecosystem straddles the international 
border of northern Tanzania and southern Kenya and is part of the larger Serengeti-Mara 
ecosystem. The detailed dataset comes from Laikipia district, most of which lies to the 
north of the Equator between latitudes 0° 17'S and 0° 45'N and longitudes 36° 15'E and 37° 
20'E, covering an area of approximately 9,700 km2. More details of the study areas and 
descriptions of the data sets used are provided in each chapter. 
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CHAPTER 2 * 

Designs for sampling wildlife populations 

This chapter is based on Khaemba, W. M. and Stein, A. (submitted). Improved airborne 
Survey Sampling and Estimation of Parameters for African 
Wildlife Species. Wildlife Research. 



.Designs for sampling wildlife populations 

Abstract 
Parameter estimates, obtained from airborne surveys of wildlife populations, often have 

large bias and contain large standard errors. Sampling error is one of the major causes of 

these imprecision and occurrence of several wildlife populations in herds violates common 

assumptions in traditional sampling designs like systematic or stratified random sampling. 

In this chapter, we present an adaptive sampling design that uses criteria on observed animal 

counts to maximise sample information, and is independent of the usual assumption of a 

uniform distribution for animal populations. The design is applied to data derived from a 

survey carried out in Masai Mara Ecosystem (Mara) in Kenya, with focus on three animal 

species: elephant (Loxodonta africana), kongoni (Alcelaphus buselaphus) and wildebeest 

(Connochaetes taurimus). Its more efficient estimates show an improvement to those from 

the conventional systematic design with a more than 10 times reduction in estimated bias 

and a 37% lowering of the standard error. The adaptive design, however, underestimates 

population totals for species in large herds, while a multivariate extension only gives 

marginal improvements. 

KEY WORDS: Adaptive sampling; Jolly II procedure; Wildlife Survey; Bias; Population 
total. 

10 



Chapter 2 

2.1. Introduction 
Sampling for characterising African wildlife populations is important for various 

reasons. First, there is an obvious ecological need to obtain information about the ecological 

state of the reserve. Second, an increasing economic interest exists because wildlife, through 

tourism, contributes to national incomes of many African countries. Third, knowledge of 

year-to-year variation helps to identify and explain environmental aspects influencing 

population sizes of various animal species. 

African wildlife populations are mainly sampled by means of periodic airborne 

surveys (Norton-Griffiths, 1978). For example, Systematic Reconnaissance Flights (SRF) 

(Norton-Griffiths, 1978) are used by the Department of Resource Surveys and Remote 

Sensing (DRSRS) to sample all wildlife populations in the Kenyan range-lands (Grunblatt et 

al, 1996). 

While estimates of population totals constitute the most important information 

obtained from wildlife surveys for most managers, reported estimates are often biased and 

have large standard errors (Caughley, 1974; Pollock and Kendall, 1987). Bias may be 

caused by departures from basic design assumptions, different animal behaviour at different 

times of day or adverse weather conditions like cloud cover that lead to poor visibility. On 

the other hand, large standard errors are mainly a result of using invalid sampling designs, 

inefficient sampling or poor choice of estimators. 

Stratified Random Sampling (SRS) and Systematic Sampling (SS) are commonly 

applied sampling designs for wildlife surveys (Seber, 1982), with estimation of population 

parameters commonly being via the Jolly II procedure (Jolly, 1969a). If accurate or "true" 

counts exist, Jolly (1969b) has shown how correction factors reduce bias in estimates of 

population parameters. Similarly, sampling error is decreased through the use of larger 

samples, rigid standardisation of survey methods and introduction of efficient sampling 

procedures (Cochran, 1977; Thompson, 1992). 

Recent developments have yielded modern sampling strategies like distance 

sampling (Buckland, et al., 1993) and adaptive sampling (Thompson and Seber, 1996). 

Further, Van Groenigen and Stein (1998) illustrated how prior information improves 

sampling for environmental variables. 

This study aims to improve precision of wildlife population estimates derived from 

airborne survey data by extending the Jolly II estimator with an adaptive procedure. A 

modified sampling strategy, based on strip transects, is formulated and its performance 

compared using a simulation of observed data. Throughout the paper, we focus on three 

herbivore species having different social behaviour: elephant, kongoni (a type of antelope) 

and wildebeest. The elephant lives in small herds of not more than 50 animals, kongoni is 

generally solitary, while the wildebeest occurs in large herds of hundreds of animals. 

Procedures developed here, however, are well suited to other wildlife species and habitats. 

11 
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2.2. Materials and Methods 
2.2.7. Sampling wildlife 

Sampling of wildlife populations through airborne surveys is subject to two basic 

assumptions: Representativeness of the population by the sample and a uniform distribution 

of wildlife within the study region. The first assumption is questionable as animals may hide 

at the sound of approaching aircraft, or may be indistinguishable from background patterns 

due to camouflage. Further, dynamic animals may be observed twice. Quite often, therefore, 

sample numbers either underestimate or overestimate population totals. The second 

assumption also fails because many animals occur in herds of varying sizes due to 

influences of local conditions like vegetation, water availability and human settlement. For 

such animals, the probability of observing a single member depends upon the probability of 

the whole herd being observed. Sampling designs that ignore such dependence introduce 

imprecision in the estimation procedure that can not be quantified. Moreover, 

straightforward application of SRS or SS leads to high sampling errors. 

Most survey procedures generally partition study regions into N windows, with the 

ith window W, of area a, having y, animals (i = 1, 2, ..., N). Sampling observes the 

population through a reduced number of windows (sample) of size n (n < N). In this study 

we let our windows be represented by strip transects, which are of primary interest in 

airborne surveys of wildlife because of the ease of navigation (Caughley, 1977). Transects 

are defined on the ground by markers fixed on the windows and wing-struts of an aircraft. 

Animal counts are recorded through observations made on one or both sides of the aircraft, 

which flies in a straight line from one end of a study region to the other at fixed speed and 

height above ground. Each transect is divided into 5 km subunits to yield distributional data. 

2.2.2. Sampling Designs 

Both stratified random sampling (SRS) and systematic sampling (SS) provide a 

basis for development of sampling designs. With SRS, n out of N transects are selected 

without replacement to yield an inclusion probability of n = nIN for each transect, making 

them all equally likely to be selected into the sample. For SS, the N transects are numbered 

from I to N and an integer r is chosen such that N = rn. The initial transect is randomly 

chosen from the first r transects in the population and thereafter, every rth transect is 

selected. Since N is generally not an integral multiple of r, systematic samples obtained 

from the same finite population may vary in size. An improvement treats the N transects as 

being arranged round a circle and takes r as the nearest integer to N/n (see Cochran, 1977, 

p. 206). The first transect is randomly identified from integers between 1 and N, after which 

every rth transect is included in the sample until the required sample size n is obtained. This 

results in an equal inclusion probability for all transects in the population. 

12 
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N 

Both the total area for the study region |w| = ^ a , = A as well as the sampled area 

n 

\w\ = ^ a , must be known to estimate the population total Y. The density D in W for 
1=1 

uniformly distributed populations, is estimated as 

n 

l y , 
D = Jf-r. (2.1) 

M 
Therefore, an estimate of Y is given by 

Y=DA, (2.2) 

with a variance given by Jolly (1969a) and Thompson (1992, p. 60) as: 

W ^ X ^ - ^ , ) 1 , (2-3) 
n(N-l) ti 

which is estimated by: 

Var(Y)=^i^i(yi-D.ai)\ (2.4) 
n(n-l) i=i 

Rasch et al., (1999, p. 44) derive similar results for sampling without replacement from 

finite populations. 

2.2.3. Jolly II procedure 

Let correlated random variables Y and Z have measurements yf and z, for the ith 

sampling unit (i = 1, 2, ..., n), and sample means y and z , respectively, and let Z be 

known. The ratio estimator YR for the population total Y equals: 

YR=~Z. (2.5) 
z 

If the relationship between Y and Z is linear through the origin and variance of Y around this 

line is proportional to that of Z, then YR is the best among a wide class of other estimators 

(Cochran, 1977, p. 158). For wildlife surveys, Y and Z represent observed animals and area 

respectively. If y, and a, are observed animals and area of the rth transect, an estimate of 

density D is given by equation (2.1), leading to an estimated Jolly II population total 

Yj = D- A and has variance given by: 

13 
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N(N-n)(s-

n(n-l) 
2 

a 2 > , 2 + 0 2 2 X 2 - 2 D 2 > , - « , (2.6) 

This procedure is applied for wildlife surveys regardless of whether SRS or SS is used 

(Smith, 1981). Although Norton-Griffiths (1981) suggests that SS estimates have 

conservative variances compared to SRS, a choice between the two is not entirely clear for 

wildlife surveys (Jolly, 1981). 

2.2.4. An adaptive sampling strategy 

2.2.4.1. The univariate case 

Both SRS and SS are characterised by the selection of sampling units (transects) 

prior to the carrying out of surveys. This leads to a selection procedure that is independent 

of subsequent observations during surveys. In practice, this yields transect with many zero 

counts for sparsely or highly clumped populations, thereby resulting in imprecise estimates. 

We formulate an adaptive sampling procedure that improves precision. 

An adaptive sampling design is a function i|/(S | y) assigning conditional probability 

to every possible sample S in the population given observations y (Thompson, 1992). For 

each Wh we define a neighbourhood //, as a collection of windows adjacent to and including 

Wh i.e. for sequentially numbered transects, Ht ={ W,.;, Wh Wi+i}. This procedure requires a 

condition to be fulfilled on W, before it extends S to S uH,-. For example, yt could belong to 

a set C, e.g. an interval C={y: y > c] for a constant c. Since transect lengths are highly 

variable, we let c equal <5, the number of animals observed per unit area but projected on 

each subunit. This is equivalent to the number of animals observed per subunit and is 

calculated individually for each species based on data from previous surveys in the same 

region. Thus, if yt > 8, then W;_; and Wi+i are included in S and observed. 

Following Thompson (1990), we call the collection of transects observed as a 

result of initial selection of W, a cluster. Within a cluster, a subset of transects forms a 

network if selection of any transect leads to inclusion of the whole subset. This implies that 

all transects in a network satisfy condition C. Edge units do not satisfy C but are in the 

neighbourhood of those that do. They are only included in the sample estimator if they are 

part of the initial sample. By classifying transects for which yt < 8 as networks of size one, 

given y-values and condition C, the population is uniquely partitioned into K networks. K is 

unknown and is estimated from the data. 

For surveys of single species, sampling proceeds as follows: We select an initial 

sample of size n using SRS (without replacement) from N transects. The total area A of the 

study region and that of each transect at(i= 1,2, ...,N) must be known. We define C based 

on 8 for each species, yielding k0 observed networks, where k0<n since the sample consists 

of distinct transects. The ith transect in the fcth network (i = 1, 2, ..., tk) contains yik animals 

14 



Chapter 2 

and has an area equal to aik. We estimate the density of animals per unit area in network k 

(Dk) by 

tk 

Dk=^ . (2.7) 

Using (7) would overestimate D since the sampling design deliberately selects transects 

with high abundance. We, therefore, correct Dk by multiply it by a weight wk equal to the 

proportion contributed by the kth network to the total sample area, i.e. 

(2.8) 
" 0 

I>, 
where a,k is the area of all transects covering network k and £ wk = 1. 

An improved estimate of D is obtained by averaging over all k0 networks as follows 

T'k • nk 

D = &— , (2.9) 

which we use to estimate Y through Y = D • A . 

An approximate variance of the estimate is given by 

Var(Y)=K{f-k^{y,-b.a^ (2.10) 

where y,k equals the number of animals observed in network k (k = 1,2, ..., k0) and K is an 

estimate of the total number of networks in the population, obtained for example as — k0, 

where n is the probability of hitting a network, estimated as the minimum of 1 and the ratio 

of the average projection of observed networks on the flight baseline (pn) with the distance 

between initial transects (dt), i.e. IT = min 
dt ' 

2.2.4.2. The multivariate case 

Since most Africa airborne surveys are multi-species, we extend the adaptive 

sampling procedure in a multivariate way by associating the tth window Wt with ytj animals 
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of the 7th species (('= 1,2, ..., Nemdj= 1,2, ...,p). By letting rows and columns represent 

windows and species, respectively, we denote the data in matrix form as 

Y = 

yu yi2 

yn 
y^ 

yiv 

• yNPJ 

(2.11) 

For a sample S of size n, we consider the design as a function \\f(S I Y) that assigns 

conditional probabilities of selecting every possible sample 5 given Y, with an objective of 
N 

estimating a vector of population totals Y = (Yl,Y2,...,Y ) ' , where K. = ̂ yy , j = 1,2, ..., 
i=i 

p. Each transect has to satisfy a condition C, which is a p-dimensional region corresponding 

to p animal species i.e. W, satisfies the condition if j>, e C, where j , = (yu, y^, • ••, y,p) is a 

row vector of values from matrix (2.11). 

We base C on individual species or on a function of some or all species. Following 

Thompson and Seber (1996, p. 202-203), we define the following conditions: 

• Cj= {ytf yu > c) - based on observations of one representative species only; 

• Cz - {y,/- yij > CjV j } — based on observations of all species simultaneously 
(AND); 

• C3 - {ytf ytj > Cj for some j} - based on observations of any one species (OR); 
p 

• C4 = {ytj : ^ ytj >c} - based on the sum of observations of all species. 
j=i 

In actual surveys, C/ is most often used. 

After choosing C, the population is partitioned into unique networks given Y, 

thereby allowing for the estimation of population parameters for each individual species as 

in section 2.3.1. We let yijk represent the number of animals in transect i of network k for 

species j and estimate the population total Yj for the yth species of density D ; 

by Yj = Dj A. Its variance is estimated by 

Vdr(Yj) 
K(K-k0)^ 

l(y»-brak)
2 (2.12) 

k0(k0-l) k=i 

The covariance between estimates of population totals Yj and Yy for species j and j ' , 

respectively, is given by: 
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CMYj,Yf)= \ °. l(y,t-Dj-a,)(y,, -D,-a.t). (2.13) 

This represents the off-diagonal elements of a p by /? variance-covariance matrix for the p • 

species, formed by combining (2.12) and (2.13). 

2.3. Case Study: The Masai Mara Ecosystem of Kenya 
2.3.1. Site description 

Mara, which is part of the Serengeti-Mara Ecosystem, is situated in Narok district 

in southern Kenya and lies between 0° 45' South, 34° 45' East and 2°00\ 36°00' East 

(Figure 2.1). It consists of the Masai Mara National reserve (MMNR), the Loita, Siana and 

Mara plains and covers an area of approximately 6,600 km2. It is home to high wildlife 

diversity and is also an important dry season refuge for migratory wildlife species like the 

wildebeest (Broten and Said, 1995). This species, together with the elephant and kongoni, 

are among the keystone species in this ecosystem (Sinclair, 1995a). 

Data for this study come from a survey conducted in May 1997 (survey Id 9703, 

i.e. the third survey of 1997), in which eighteen transects were flown with a strip width of 

0.282 km, giving a sampling fraction of 5.14%. The spatial distribution of species shows the 

elephant to be found mostly in MMNR and on the Mara plains, while the kongoni occupy 

the middle section of the ecosystem, along boundaries of MMNR and the Siana and Mara 

plains (Figure 2.2). Wildebeest, the most abundant species, mainly occur in Loita plains but 

are also found in Mara and Siana plains. The kongoni is observed only in eight of the 18 

transects surveyed (Table 2.1) indicating a sparse distribution for this species. The other 

two species appear evenly spread, although they too have several transects with zero counts. 

Jolly II estimates of the population totals for the three animal species confirm the high 

abundance of the wildebeest (Table 2.1). 

2.3.2. Simulation 

We base a simulation study on the observed data to evaluate the quality of results 

from the adaptive sampling design. We let animal counts resemble Poisson clusters (Diggle, 

1983) and reproduce spatial patterns similar to the original data. We start by creating a 

rectangular frame that fully encompasses Mara and generate finite population values to 

represent _y, animals in transect i as point objects in a two-step procedure. We uniformly 

distribute mj parent locations in the frame and generate m2 points at each location, 

following a Poisson distribution with species specific mean values obtained from the 1997 

survey. Within the frame, we generate a maximum number (N = 350) of transects using the 

actual strip width and overlay them on a map of Mara to yield transects of unequal lengths. 
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We then generate a systematic sample of n = 18 transects by first selecting one transect at 

random among the first 20 transects and then selecting every 20rt row. 

N 

Map of Kenya 

Figure 2.1. Location map showing the composition of the Mara ecosystem, which lies in Narok 
District of Kenya. 

We use the Jolly II procedure to estimate population totals and standard errors. We 

estimate bias as the difference between the true and estimated population total. Similarly, 

we calculate population totals, standard errors and biases for adaptive samples generated 

with a random initial sample of size 10. For both designs, we calculate relative efficiencies 

as the ratio of the variance of the estimated population total obtained using a SRS design, to 

the variance of the same estimate obtained by either design at equivalent sample sizes. 

Sample sizes are standardised to the effective sample size of the adaptive design, which is 

defined as the number of transects in all networks. Mimicking the original observed patterns 

preserves correlation between species thereby allowing calculation of covariance in the 

multivariate case. The simulations are repeated 100 times, yielding 100 simulated 

populations for each species. 

2.3.3. Simulated distributions 

In the simulation of animal populations, each transect is checked for condition 

C=[y: y > 8} based on subunit density. Values of S, expressed as animals per subunit, are 

equal to 1 for the elephant, 9 for wildebeest and 0.5 for kongoni, yielding mean effective 
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sample sizes of 20, 36 and 15, respectively. The estimated bias for the adaptive estimate of 

the elephant population total is much less in absolute terms than that obtained with the SS 

design, whereas the standard error reduces by 37% (Table 2.2). Less marked reductions are 

also observed for the other two species. Further, the adaptive design tends to give positive 

bias for solitary animals and small to medium herds like kongoni and elephant respectively, 

whereas abundance is underestimated by both methods for animals in large herds like the 

wildebeest. The adaptive design appears to be significantly more efficient in cases where 

effective sample size exceeds the 18 transects used by the SS design in this survey. 

4 
o 

40000 60000 80000 

X - UTM Coordinates 

Figure 2.2. Point map, showing occurrence of elephant, kongoni and wildebeest in the study 
region. 
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Table 2.1. Observed numbers per transect for three animal species based on census 9703 conducted 
in Mara in 1997. Table shows transect area, distribution and Jolly II estimates of population totals for 
the elephant, kongoni and wildebeest. 

Transect 

1 

2 

3 
4 

5 

6 

7 
8 

9 
10 
11 
12 

13 
14 
15 

16 
17 

18 

Area (km2) 

2.784 

8.212 

11.101 

12.758 

14.097 

14.485 
14.661 

21.923 
25.092 

26.857 
29.712 
33.975 
31.882 

31.996 
22.766 

20.106 
13.87 
6.156 

Total observed numbers 
Estimated population total 
Standard error (s.e.) 

Elephant 

0 

0 
0 

0 

37 
7 

4 
2 

7 
2 

33 
73 
3 

22 
12 

3 

31 
0 

236 

4,587 
1,391 

Kongoni 

0 
0 

0 

0 
0 

21 

20 

3 
23 
9 

6 
11 

0 
4 

0 
0 

0 
0 

97 

1,886 
632 

Wildebeest 

0 

72 

3 

0 

0 
18 

20 
0 

29 
20 
79 
17 

293 
684 

296 
495 

108 
0 

2,134 

41,478 
14,332 

Multivariate sampling results in mean effective sample sizes of 20,16, 43 and 28 

transects for conditions C/, Ci, C3, and C4, respectively. Mean results indicate elephant 

abundance to be well estimated under C/, which is based on the elephant's density (Table 

2.3). Estimated bias for kongoni remains small under all conditions, while that of the 

wildebeest is highly overestimated under conditions Ci, and C2. Covariances between 

species are large and generally negative. 
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2.4. Discussion 
This study shows how precision of estimates can be improved by using more 

information from observed populations. Though the method appears to underestimate 

population totals for animals in large herds, its results are better than those obtained from 

the conventional systematic sampling design. It could be a point for further research 

whether this underestimation is due to herd size or to species abundance. If the regression-

through-the-origin model assumption is correct, more precision could be realised by 

deliberately choosing longer transects (Thompson, 1992). To provide robustness against 

such departures, initial samples should be randomly selected. 

The conventional SS design may give better estimates than the adaptive design for 

uniformly distributed animal populations because such populations do not violate basic 

design assumptions. Such distributions, however, are unlikely to occur for wildlife 

populations in large areas, due to substantial spatial variation in factors affecting their 

distribution. Further, stochastic processes influencing this distribution are as yet poorly 

understood and are likely to differ between species (Maddock, 1979). The adaptive 

sampling design, therefore, becomes more efficient in such situations by capturing more 

information. It also responds better to underlying processes by depending on observed 

wildlife distributional patterns. For example, it is better suited to deal with a gradient in the 

data by sampling more intensively in areas with large densities. 

The definition of relative efficiency in this study makes the adaptive design appear 

more efficient for abundant but clustered species like the wildebeest. Although an increase 

in sample size appears to favour the SS design, this is invalidated by the corresponding 

increase in transect variation. Defining condition C by using the number of observed 

animals for each subunit is superior to the mean number of animals per transect, as it takes 

variation in transect length into account. 

Data quality often influences results obtained from airborne sampling of animal 

populations. For example, wildlife species like the wildebeest migrate each year from 

Serengeti in Tanzania to Mara during dry seasons (July - October) and return in wet 

seasons (December - June) (Maddock, 1979). Therefore, surveys carried out in Mara 

during these wet seasons would result in many zero counts for migratory species. If such 

prior information exists, it is reasonable to use an adaptive sampling design with a low 

initial sample size, most probably saving cost, particularly for clustered populations that are 

either sparse or abundant. 

A multivariate extension of adaptive sampling strategies requires further research. 

The four conditions needed to add neighbouring transects to the sample indicate subjectivity 

in the adaptive procedure. The choice of a suitable condition must be based on prior 

information like individual species dynamics. In the absence of such knowledge, a pilot 

survey at a limited scale may be useful. If interest focuses on a single species, this study 

suggests that basing the formulation of C on values of the species may help in obtaining a 
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suitable condition. Even if an improved multivariate treatment was possible, implementation 

difficulty will increase with an increasing number of species. 

2.5. Conclusions 
We conclude from this study that an adaptive sampling design, using information 

from observed transects, can improve estimates of population parameters from airborne 

wildlife surveys. The method appears to perform better for clustered and highly abundant 

species as well as sparse populations. Extension to a multivariate setting does not 

substantially improve estimates but leads to more efficient data use. Modern ways of 

sampling, therefore, clearly improve airborne wildlife estimates, and more specific 

contributions may be anticipated in the near future. 
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.Modelling Wildlife population using GIS_ 

Abstract 
This chapter applies generalised linear statistical techniques in a GIS to analyse wildlife 
data from a Kenyan wildlife reserve and its surrounding areas. Attention focuses on the 
spatial distribution of elephant during nine successive surveys, analysing their temporal and 
spatial relationship and relating them to 12 explanatory variables. A principal component 
analysis identifies five major determining factors, thereby reducing dimensionality in the 
data, while a simple spatial analysis procedure, suitable for wildlife data obtained from 
airborne surveys, quantifies clustering for different animal species. The number of 
explanatory variables appearing in abundance models is found to be subject to large 
variations during successive surveys with a minimum and maximum of four and eight 
variables, respectively. Species from highly clustered populations are found to have over 20 
times more observations within short distances compared to the rest. The study concludes 
that a combination of generalised linear modelling and GIS gives deeper insight into the 
dynamics of wildlife species in and around well-defined nature reserves. 
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3.1. Introduction 
A lot of data on wildlife populations are routinely collected through airborne 

surveys. In most cases, these data are geographically referenced and therefore spatial in 
nature. Quite often too, the surveys are replicated over time, resulting in large amounts of 
spatial and temporal data that need to be translated into useful information. The advent of 
computer technology, particularly Geographical Information Systems (GIS), has led to 
better methods of data storage, retrieval and manipulation (Burrough and McDonnel, 1998). 
For example, wildlife surveys can now be carried out using sampling procedures that are 
optimised through consideration of landscape features and environmental factors stored in a 
GIS. Also, relationships between animal population dynamics and environmental factors 
can now be studied simultaneously. Suitable analysis techniques, which are capable of 
handling spatial and temporal variability, are however, indispensable in yielding useful and 
reliable information. 

In most modelling situations, high correlation between and within variables 
directly affects the precision of estimated model parameters. Buckland and Elston (1993) 
use Principal Component Analysis (PCA) to reduce dimensionality and eliminate 
correlation between explanatory variables, while Augustin et al. (1996) model spatial 
autocorrelation in the distribution of wildlife. Both studies, however, do not simultaneously 
model spatial autocorrelation and correlation in the explanatory variables. 

On the other hand, several studies have confirmed strong association between 
animal species abundance and environmental factors (Osborne and Tigar, 1992; Buckland 
and Elston, 1993). Among the statistical techniques used to establish these relations, 
logistic and multivariate regression analyses have been predominant (Nichols, 1989; Li et 
al, 1997). A shortcoming of these linear models is the assumption of a normal distribution 
for the response variable. In situations where this assumption is not tenable, generalised 
linear models (GLMs) provide a useful alternative (McCullagh and Nelder, 1989; Dobson, 
1990; Pereira and Itami, 1991). Both linear models and GLMs rely on an assumption that 
data are independently and identically distributed. 

It is known, however, that factors influencing animal distribution i.e. vegetation 
cover, soil fertility, distance to water points etc., are spatial in nature. Therefore, there is 
need to combine GLM and GIS in modelling animal distribution so as to account for spatial 
dependence. 

In the past, Walker and Moore (1988) interfaced the software package SIMPLE 
with a GIS to model wildlife distribution. In a subsequent study to relate kangaroo 
distribution to climatic conditions, Walker (1990) combined the package with GLMs to 
obtain results that compared favourably with those from the rule-based CART algorithm 
(CART, 1984). This indicated the usefulness of GIS modelling as a strategy to analyse 
wildlife data. In both studies, however, abundance was re-expressed into presence and 
absence data to allow the use of logistic regression in the modelling. This led to some loss 
of information. 
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The objective of the current study is to analyse observed spatial and temporal 
patterns of four wildlife species, i.e. elephant (Loxodonta africana), kongoni (Alcelaphus 
buselaphus), wildebeest (Connochaetes taurimus) and zebra (Equus burchelli), found in a 
Kenyan wildlife ecosystem. We use GIS techniques to identify and relate environmental 
factors to observed counts. We carry out a spatial correlation analyses as well as 
generalised linear modelling and reduce dimensionality in the data by means of PCA. 
Finally, we outline the ecological implications of these analyses to management of the 
species. We often use data on the elephant to illustrate certain procedures. 

3.2. Study area 
The study area is the Masai Mara ecosystem (Mara), which is fully described in 

section 2.3.1 and illustrated in Figure 2.1. High rainfall, tall grassland and permanent water 
make Mara an important dry season refuge for the last great migrating herds of wildebeest 
and zebra (Delany, 1982; Murray, 1995; Fryxell, 1995; Broten and Said, 1995). These two 
species, together with the elephant and kongoni are among the most important large 
herbivores found in Mara. Mara is also important from an economical perspective because 
of attracting many tourists who bring in foreign earnings (GOK, 1984). All these have led 
to an increasing interest in analysing factors that influence abundance and distribution of 
wildlife over time (Sinclair, 1995b). 

3.3. Materials and Methods 
3.3.1. Data 

Data for this study are a subset of a comprehensive dataset of surveys conducted in 
Mara since 1977, by the Department of Resource Surveys and Remote Sensing (DRSRS), 
of the Ministry of Planning and National Development. We concentrated on post-1990 
surveys because those carried out previously may not have been sufficiently uniform and 
were, therefore, subject to unrealistic variation. Typical surveys simultaneously observe 
several animal species. A number of pre-determined strip transects (18-55) are 
systematically flown by a light aircraft at fixed height (typically 122 m) and fixed strip 
widths (282 m or 304 m). These are designed so as to cover a sampling fraction of between 
3.5% and 11.8% for the Mara (Grunblatt et al., 1995). Distances between transects may 
vary for successive surveys, but 2,500 m, 5,000 m and 10,000 m are typical values 
(Grunblatt et al, 1995). 

Transects are usually divided into sub-units of 5,000 m length for which x and y 
co-ordinates, as well as the number of observed animals of different species, are recorded. 
Based on these co-ordinates, remotely sensed environmental data such as vegetation cover, 
composition and greenness are associated with each sub-unit. Similarly, the shortest 
distance to permanent rivers, major roads and the boundary of MMNR are calculated. 
Legislative changes have placed MMNR under favourable protection and conservation 
status as compared to the surrounding areas. Effects of this protection are studied by 
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defining an explanatory variable that assigns 1 to areas within MMNR and 0 otherwise. 
Average soil fertility as well as the extent of agricultural and fallow land were also recorded 
for each subunit. Finally, the data were verified and formatted before being stored into a 
GIS. 

The three explanatory variables for distances to rivers, roads and MMNR were 
derived by rasterising and resampling digitised topographic maps of a 1:250,000 scale to 
pixels of size equal to 30 m. We obtained vegetation cover variables by a supervised 
classification of georeferenced Landsat TM images, which were complemented by ground-
truthing. Further, Normalised Difference Vegetation Index (NDVI) values were calculated 
from NOAA-AVHRR images that had a resolution of 1.1 km. These were georeferenced 
using the Landsat TM image and resampled to a 30 m pixel size. Finally, the soil fertility 
map of Mara (Jeatzold and Schmidt, 1983) was digitised, rasterised and resampled to a 30 
m pixel size. In all analyses, observed animal numbers were treated as response variables. 

3.3.2. GIS Modelling 

In most wildlife studies, modelling with GIS focuses on defining habitat suitability 
for various animal species (Tomlin et al., 1983; Walker, 1990; Pereira and Itami, 1991). 
However, for modelling wildlife populations, both permanent and dynamic data recorded 
during surveys are required. Functional GIS layers, mainly containing topographical data 
like vegetation cover, drainage and road networks, can store these data as observed or 
interpolated counts of individual animal species (Burrough and McDonnel, 1998). For this 
study, major roads, the MMNR boundary, and the drainage pattern of permanent rivers 
form three such data layers (Figure 3.2). 

Modelling was preceded by a descriptive and correlation analysis of all variables 
in this study. We restricted the analyses to survey 9703 of 1997 and only used data on the 
elephant to illustrate the procedure of modelling spatial and temporal distribution. The 
elephant are an important indicator species, being protected and subject to changing 
nutritional conditions (Delany, 1982; Dublin, 1995). They also possess solitary and 
clustering characteristics and are easily observable due to their large size. We hypothesised 
the elephant abundance to be related to several environmental factors. The exact form of 
this relation being unknown, but able to be modelled using a GLM. We used the 12 
explanatory variables to represent different GIS layers, whose combined overlay would 
have been too complex for interpretation (Table 3.1). We, therefore, started modelling by 
making bivariate comparisons. 

We followed a deductive modelling approach, although inductive modelling is 
also common in GIS studies (Walker, 1990; Pereira and Itami, 1991). Deductive models 
start from a general idea that is applied to specific observations, while inductive modelling 
derives general principles from observing many specific examples (Stoms et al., 1992). As 
a starting point, we utilised the knowledge that elephant generally prefer tall grassland and 
shrubby vegetation (Rosero, 1997). Similarly, past studies of Mara suggest that elephant are 
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