
A generic probability based algorithm to simulate the distribution of 
dominant crop types in time and space 

M. Wattenbach1,4, T. Schartner1, J. Hillier4, F. Hattermann9, F. Wechsung9, M. van Oijen8, W. de 
Vries2,3, G. J. Reinds2, J. Kros2, J. Yeluripati4, M. Kuhnert4, N Hutchings7, R. Kiese5, C. Werner5, K. 

Butterbach Bahl5, A. Leip6, P. Smith

1) Freie Universitaet Berlin, Institute of Meteorology, Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin, 
Germany; 2) Alterra, Wageningen University and Research Centre, P.O. Box 47, 6700 AA Wageningen, The 

Netherlands; 3) Environmental Systems Analysis Group, Wageningen University, PO Box 47, 6700 AA 
Wageningen, Netherlands; 4) School of Biological Sciences, University of Aberdeen, Cruickshank Building, St. 

Machar Drive, Aberdeen AB24 3UU, UK; 5) Institute of Meteorology and Climate Research, Atmospheric 
Environmental Research, Kreuzeckbahnstrasse 19, D-82467 Garmisch-Partenkirchen, Germany; 6) European 

Commission – Joint Research Centre, Institute for Environment and Sustainability, Climate Change Unit, Via E. 
Fermi 2749, I-21027 Ispra (VA), Italy; 7) Aarhus University, Department of Agroecology and Environment, 

Blichers Allé 20, DK-8830 Tjele, Denmark; 8) Centre for Ecology & Hydrology, Bush Estate, Penicuik, EH26 
0QB, U.K. 9) Potsdam Institute for Climate Impact Research (PIK), Telegraphenberg A 31, 14473 Potsdam, 

Germany 

4 

martin.wattenbach@fu-berlin 

Overview 

Croplands are not only the key to human food supply, they also change the physical properties of the 
land surface and contribute to the amount of greenhouse gases entering the atmosphere. The effects of 
cropland on the environment depend on the area planted, the type of crop and the associated 
management. Crop distribution is not random in time and space due to a range of boundary 
conditions. At a given point of time the pattern of crops in a landscape is not only determined by 
environmental and socioeconomic conditions but also by the compatibility with the crops which had 
been grown in the years before. Here we present a crop rotation generator algorithm that is used to 
calculate the combined and conditional probability for a crop to appear in time and space.  

Methods/Approach 

The basis for the year to year change in crops as derived by the algorithm is a transition matrix, but 
we divert from a Markovian approach by imposing additional constraints on year to year change like 
the return period of crops and temporal changes in crop preferences based on reported European crop 
statistics available in the Capri-dataset (Capri, 2010) and Eurostat (Eurostat, 2010). To reflect on 
climate driven changes in crop rotations we employ a bioclimatic envelope approach (Tuck et al., 
2006; Bellarby et al., 2010). The conditional probability (p) of a crop (crop) in any year (i) given the 
crop of the year before (i-1) is defined by the transition matrix as elements of a sequence (seq) for 
spatial unit k as: 

 

Any additional information relevant for a crop to appear is assimilated using probability laws. The 
crops under consideration are durum wheat (DWHE), fodder maize (MAIF), maize (MAIZ), oats 
(OATS), other cereals (OCER), rice (PARI), potato (POTA), pulses (PULS), rape seed (RAPE), 
spring barley (SBAR), soya (SOYA), summer soft wheat (SSWH), sugar beet (SUGB), sun flower 
(SUNF), winter barley (WBAR), winter rye (WRYE), winter soft wheat (WSWH). 
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Results 

The following maps and tables exemplify the model output over time and space.  

 

Fig. 1. Crop rotations over a sequence of three consecutive years. The colours illustrate the dominant rotation 
per NCU. The figure illustrates the change in pattern at country borders due to changes in crop preferences  

 

Fig. 2. Crop sequences for different countries. The 
sequence clearly shows the effect of crop preferences 
and return probability. 

The generator output is then used as input in a crop 
management generator to produce times lines as input 
for biogeochemical process models (Hutchings et al. 
2011). 
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