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Abstract: Most of the primary production of the world's oceans takes place in the water column, thereby fuelling not 
only marine pelagic food-webs, but also most benthic communities. In addition, nearly all marine organisms depend on 
the pelagic zone for some part of their life-cycle. Although most contaminants have physico-chemical properties that 
cause them to associate with organic material particles and eventually be transported to sediments, direct contaminant 
inputs are predominantly to pelagic ecosystems. Taking both the ecological importance and the contaminant load into 
account, there is a surprising lack of scientific knowledge concerning the effects of contaminants in pelagic systems. The 
main reasons are presumably the difficulty in linking exposure with processes at a scale relevant for environmental 
management, and challenges involved in using pelagic fish and zooplankton species for experimental studies (excluding 
the 2-3 copepod species used for regulatory toxicity testing). Contaminants have been shown to affect primary 
producers as well as secondary producers-consumers, but there is very limited knowledge about ecological impacts. Top 
predators in marine ecosystems (piscivorous fish species, marine mammals, seabirds) will be particularly at risk from 
persistent organic contaminants since they will biomagnify. Although there is evidence of effects caused by such 
substances in the past, there is a need for continuous updates including “new” contaminants. Most relevant for lower 
trophic levels, micro- and mesocosm studies under controlled conditions are critical for increased understanding of 
processes and putative effects of contaminants in the pelagic zone. Some field-based strategies have been suggested and 
implemented to varying degrees for environmental management of contaminants in the water column, including risk-
based modelling, bioassay-analyses of environmental samples or extracts (e.g., through the use of passive samplers), 
caging of organisms and, finally, collection and analyses of native organisms. 

INTRODUCTION 

The pelagic zone of the oceans constitutes the single largest ecosystem of the world and contains the organisms that 
form the basis for most marine food chains and all fisheries resources. The characteristics of the marine pelagic 
ecosystem have been extensively reviewed [1]. Verity et al. [1] clearly indicate that the various forms of 
anthropogenic impacts on the seas, may result in, i.e. overexploitation, habitat changes, extinctions, increased 
disease, species replacements, and how an integrated understanding of resource availability and predation pressure is 
required for effective environmental management. As will become apparent later in this chapter, increased 
concentrations of contaminants may affect both bottom-up and top-down processes. Although causing less obvious 
effects than, for example, overfishing or habitat modification, contaminants are nevertheless important for our 
understanding and proper management of human interactions with marine pelagic ecosystems. 

There are of course spatial and temporal variation of physical and chemical parameters in the pelagic zone, both 
vertically and horizontally, but it is comparatively stable compared to habitats in most terrestrial or freshwater 
ecosystems (e.g., Kaiser et al. [2]). However, in terms of productivity there are large differences between areas. 
Whereas coastal areas and shallow seas are among the most productive per area of any ecosystem on the planet, 
oceanic areas generally have low biomass and productivity [2]. Sunlight-driven primary production needs to take 
place in the upper reaches of the oceans, sometimes limited to the upper ten or twenty meters. The part of the pelagic 
zone with the highest primary production will in most cases also be the area that receives contaminant inputs and 
will have the highest concentrations of such substances. Although there is an extensive literature on oceanographic 
trace metals, including non-essential metals such as mercury, cadmium and lead, and their behaviour in relation to 
hydrographic processes and nutrients [3], there is limited data for organic contaminants (see [4]). Organic 
contaminants are generally thought to be associated with dissolved or particulate organic material, to some extent 
inorganic particles, and will thus be gradually removed from the water column through sedimentation. Contaminant 
exposure to pelagic organisms will therefore be from low concentrations in water, through ingestion of particles with  
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somewhat higher concentrations, through uptake of organic material with associated contaminants or through 
trophic transfer (which would lead all the way from bacteria and protists to marine mammals, seabirds and humans). 
Although it should theoretically be simple to quantify the relative distribution and bioavailability of a given 
substance in pelagic waters by knowledge of its lipid-solubility (and hence affinity for organic material), complex 
biotic and abiotic processes results in concentrations of contaminants in water, particles or organisms that are 
difficult to predict (e.g., Ruus et al. [5], Vethaak et al. [6]). The available data support some general observations; 
for example, bioaccumulation and possible biomagnification of polycyclic aromatic hydrocarbons in invertebrate 
food chains, but not in vertebrates [7, 8, 9] (but see Berrojalbiz et al. [10]), trophic transfer of persistent organic 
contaminants [11, 12, 13, 14] and mercury [15, 16], and finally, more or less species- and exposure-dependent 
accumulation of other trace metals [17, 18]. 

Major sources of contaminant inputs to the pelagic zone are atmospheric deposition, riverine inputs, shipping 
activities, land run-off and point discharges. A small proportion of marine contaminants will be directly deposited 
on the seafloor through activities such as dredging or drilling operations. Sediment-associated contaminants may 
eventually be a source of input to the pelagic zone through diffusion, resuspension or trophic transfer, but there is 
limited knowledge about links between contaminants in benthic or demersal species and their predators in the 
pelagic zone. An emerging problem is the presence of plastic debris and associated contaminants. Contaminants can 
interact with both floating microplastics and plankton, and thus potentially enter food chains that may ultimately 
affect humans [19]. Preliminary data show that chemicals in plastic microparticles (<1 mm) are being taken up by 
marine organisms, including mussels [20]. There is as yet limited knowledge of any effects.  

A distinction needs to be made between coastal and oceanic areas. Coastal areas are for natural reasons the waters of the 
world’s oceans with the highest inputs and levels of contaminants, but at the same time areas with a high variability in 
environmental factors such as particle load, primary production, salinity and temperature. About 30% of oceanic primary 
production occurs in shelf and coastal environments, constituting less than 10% of the total area of the ocean [21]. The 
factors discussed above will affect the behaviour of contaminants and how they may impact marine ecosystems [22]. 
Oceanic areas are less variable than coastal areas and sources of contaminants are limited to atmospheric deposition, 
offshore oil and gas activities, shipping discharges and, to a lesser extent, the presence of plastic debris.  

Over the last decade there has been an increasing number of studies reporting the concentrations of contaminants in 
surface and microlayer water [23, 24], associated with plastic resin pellets [25], passive samplers [26, 27], 
particulate material [24, 28] and caged or pelagic organisms [5, 24, 29]. As will be discussed in greater detail below, 
there are obvious problems in trying to assess the effective concentration of contaminants in water-masses, both due 
to the variable solubility, speciation, association with particles and bioavailability of contaminants and because 
water-masses move and mix.  

There is even less data for contaminant-related effects in pelagic ecosystems. Nearly all marine model organisms for 
laboratory- or field-based studies on contaminant effects are benthic species, including blue mussel (Mytilus edulis; [30, 
31]), dab (Limanda limanda; [32, 33]), eelpout (Zoarces viviparus; [34]) and flounder (Platichthys flesus; [35, 36], [37]). 
There are however, some studies that have targeted pelagic species or used caged species. The BECPELAG (Biological 
Effects of Contaminants in Marine Pelagic Ecosystems; [23]) workshop investigated effects and levels of contaminants 
in pelagic systems through field-collected organisms [38], caged organisms [39] and bioassays of water and passive 
sampler extracts [40]. Organisms studied ranged from invertebrates to fish. The results from the workshop clearly 
showed that levels and effects of contaminants in field-collected organisms were less clear than in organisms caged in 
the same area. Other studies have focused on species at the top of food chains such as swordfish, for which there are 
indications of relationships between contaminant levels and sublethal endocrine disrupting effects [41]. 

The aims of this chapter are to review the current understanding of how contaminants affect pelagic ecosystems, 
outline approaches and to suggest research directions. 

CHALLENGES 

There are reasons why benthic organisms and systems have been preferred to pelagic systems in contaminant 
research. As hinted to above, ecological importance is certainly not the reason and many pelagic fish species are as 
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economically important as benthic species. One reason for the preference of benthic species for research in general 
is accessibility – intertidal or shoreline species require less infrastructure for their collection and study than 
organisms in the water column. Secondly, benthic species are generally more amenable to being kept in the 
laboratory and there is hence much more general knowledge about their biology. Thirdly, and possibly most 
important, concentrations of contaminants are orders of magnitude higher in sediment than in the water column, at 
least in theory resulting in higher exposure levels for sediment-dwelling than for pelagic organisms. However, 
exposure levels in the two habitats will vary considerably for different groups of contaminants. Pelagic organisms 
will generally be exposed to higher levels of the more easily degradable substances than their benthic counterparts. 
Finally, there is a difference between benthic and pelagic organisms in our knowledge of their exposure history (or 
at least perceived knowledge). Whereas many benthic species, for example blue mussel, are sedentary and 
stationary, pelagic species move continuously. Although contaminants may enter marine ecosystems through pelagic 
waters, there is a feeling that it is easier to quantify exposure for benthic than for pelagic species. In enclosed water 
bodies such as fjords or estuaries this may be true, but in the open sea it is not obviously a clearer relationship 
between contaminants in abiotic matrices such as sediment and epibenthic organisms than between concentrations in 
water and pelagic organisms. Even for benthic organisms there are not obvious quantitative relationships between 
contaminants in sediment and the tissues of sediment-dwelling organisms [42, 43], and sediment-related factors such 
as black carbon strongly affects bioavailability even of organic contaminants [8, 44].  

One major challenge for understanding contaminant exposure and effects for pelagic organisms concerns their 
presence in and exposure to different water masses. For planktonic organisms this is not necessarily the case as they 
will remain associated with a water mass for periods of time, but nekton such as fish will clearly be exposed to 
different levels of contaminants as they move through more or less contaminated water masses.  

A relevant question here is how contaminant exposure in marine ecosystems can be most precisely estimated. For 
species with low metabolising capacity, accumulated concentrations of many organic contaminants and non-
essential metals will be a reasonable estimate for long-term exposure. Other species, and particularly vertebrates, 
will to a larger extent regulate their intake and accumulation of non-essential metals and metabolise and excrete a 
variable fraction of absorbed organic contaminants. Although some organic contaminants have half-lives in the 
range of years in most organisms [45, 46], most are metabolised at least to some extent and some, such as 
alkylphenols and polycyclic aromatic hydrocarbons, to the extent that tissue residue analyses are less useful than 
analyses of metabolites in bile or other excretory fluids [47, 48, 49]. As mentioned above, there is a complex 
relationship between contaminant concentrations in abiotic matrices (sediment, water) and concentrations in tissues, 
particularly for mobile species. Contaminant exposure may therefore be most accurately determined from tissue 
concentrations for persistent substances and metabolite levels for others. There are however some other alternatives 
and we will focus particularly on the pelagic organisms here. There is limited knowledge about the ecotoxicology of 
this group of organisms, but zooplankton does not appear to metabolise organic substances efficiently [50] (but see 
Magnusson et al. [51]), and they accumulate a range of metals [52] as well organic contaminants [11, 53] and would 
therefore be a useful matrix by which to estimate exposure in any given water-mass. Using zooplankton for this 
purpose would however need to be part of a carefully designed experiment to ensure spatial representivity, and 
vertical migration patterns would need to be taken into account. In the photic zone phytoplankton could be used for 
the same purpose, although any vertical movement would have to be considered for the species used. A second 
alternative is to use passive samplers: a range of different materials have been used, including membranes with a 
lipid inside [54], silicone sheets [26, 55], various plastics [56], coated membranes [57] or polyurethane foam [58]. 
Common to most passive samplers as they have been deployed until now is the need for a mooring system. Passive 
samplers are generally deployed for a period of three to six weeks prior to extraction and chemical analyses. 

PRIMARY PRODUCERS 

Phytoplankton forms the basis of marine food webs and embodies the carrying capacity of marine ecosystems. In the 
classical view, the main route for organic carbon was through zooplankton feeding on phytoplankton, but it is now 
well established that microzooplankton, bacteria and probably viruses play crucial roles in affecting the trophic 
dynamics and composition of plankton communities [59, 60]. Our knowledge of how and whether contaminants 
affect these organisms and interactions between them is limited. 
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The increase in primary production in coastal waters since the 1970s, at least to some extent due to increased nutrient inputs, 
has received much attention from the scientific community as well as from environmental managers. In many coastal 
systems, phytoplankton blooms are common events and a significant amount of this phytoplankton biomass will sediment 
through the water column, settle on the bottom and the nutrients be remineralised in surface sediments [61]. Increases in the 
occurrence of algal blooms have been linked to phenomena such as oxygen deficiency and mass kills of benthic fauna and 
fish as well as the formation of foam on beaches (produced by algae species such as Phaeocystis) and toxic shellfish.  

To what extent will chemical stressors affect primary producers? Given the large amount of new, industrially 
produced substances, this is an important and relevant issue for the coming decades. Results from experimental 
studies indicate that certain chemicals may have a direct impact on plankton communities and food chains, and may 
thus potentially affect the carrying capacity of estuarine and coastal ecosystems. The most important compounds for 
causing toxic effects upon phytoplankton are pesticides and biocides, especially those with a herbicidal mode of 
action. The antifouling agent TBT has been shown to affect phytoplankton communities at concentrations that are 
present in coastal waters [62]. Effects include reductions in population development rate and shifts in species 
composition – i.e., towards species that are more tolerant to TBT pollution. Worldwide measures to restrict TBT in 
antifouling paints (with a total ban by 2008) has lead to the development of alternative antifouling compounds such 
as zinc pyrithione (ZPT), copper pyrithione (CPT), Irgarol 1051 and diuron [63, 64, 65]. Residues of these novel 
antifouling agents are currently found worldwide, especially in estuarine and coastal waters near and in 
contaminated marinas. Irgarol 1051, like other triazine herbicides, is a strong inhibitor of photosystem II and reduces 
growth and productivity of sensitive phytoplankton species [66]. Some phytoplankton species appear to be more 
sensitive to Irgarol 1051 than others. For example, a 23-h exposure to Irgarol (112 ng/L) decreased the abundance of 
some eukaryotic species to less than half of the controls [67]. Zamora-Ley et al. [63] found in a marine harbour that 
Irgarol 1051 caused changes in several phytoplankton species with increasing herbicide concentrations. 

Maraldo and Dahllöf [64] found that the acute toxicity of the antifouling agents ZPT and CPT among natural 
phytoplankton communities was similar to that of TBT [62], which in turn was higher than those reported for Zn and 
Cu alone [64]. The sensitivity towards ZPT and CPT was dependent on the phytoplankton community structure and 
the density of algae and suggested an enhanced effect of ZPT and CPT under phosphate-limiting conditions.  

The effects of the herbicide atrazine on marine phytoplankton typical of the German Bight (North Sea) were 
demonstrated in mesocosm experiments [68]. The authors reported reduced photosynthesis accompanied by lower 
chlorophyll concentrations and reduced primary production. Other recent experimental work have demonstrated that 
the pharmaceutical clotrimazole can affect marine microalgal communities at picomolar concentrations, but the true 
potential for impact on marine primary producers has not been established [69]. 

The development of plankton communities in estuarine and coastal waters is governed by highly dynamic physical and 
chemical processes. This makes it hard to predict or establish the effect and ecological significance of chemical 
compounds on these communities. The potential impact of chemicals on phytoplankton and phytobenthos communities 
in coastal waters is known to depend on environmental factors such as salinity, temperature, nutrients, and exposure to 
UV-A and UV-B radiation and contaminants. Although contaminants may affect phytoplankton, any effects might be 
masked by other factors and interactions. To tackle this problem field studies complemented with mesocosm 
experiments should be conducted to improve control over factors and to improve the ecological relevance of the findings.  

Another aspect of chemical stress on plankton and other organisms higher in the food chain are natural toxins produced 
by marine algae. As a consequence of changes in the coastal zone, the frequency and intensity of toxic algal blooms 
might increase, resulting in increased levels of natural toxins. The risk of toxic algal blooms can also increase as a result 
of unintended introductions of new invasive species, for example by ballast water releases. However, it remains difficult 
to quantify ecological impacts of such natural toxins because available toxicity data are limited. The relative contribution 
of anthropogenic chemical compounds and natural toxins on the total chemical pressure under field conditions is 
therefore unknown, and we lack insight into any interactions between these groups of chemicals.  

SECONDARY PRODUCERS AND TERTIARY CONSUMERS 

Secondary production includes the consumption of primary producers and biomass generated by heterotrophs. 
Tertiary consumers include predatory fish and fish-eating mammals and birds. Long-term changes of offshore 
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zooplankton appear to be mainly associated with climatic and hydrographic phenomena [70]. Any direct or indirect 
effects of contaminants on marine zooplankton are not well understood. Bioaccumulation of metals and organic 
contaminants in marine zooplankton including jellyfish has been reported, [71, 72]. An obvious challenge in this 
context is the identification and separation of different species in a sample. In a comprehensive study, Hoekstra and 
co-authors concluded that concentrations of organic contaminants in zooplankton predominantly reflected chemical 
partitioning and that there was limited biotransformation by the Calanus species investigated [71]. Although 
organochlorine contaminants do not appear to be metabolised extensively by zooplankton, there is some evidence 
that polycyclic aromatic hydrocarbons may be [10].  

Toxicity information for zooplankton is limited, except for the few species used in toxicity testing (mainly Acartia, 
Nitocra, Tisbe and mysids, [73, 74, 75]), although there is some indication that, e.g. insecticides affect coastal 
zooplankton [76]. Toxic effects have been shown for TBT at concentrations present in coastal waters [77]. The 
observed effects included reduced population development rate and shifts in species composition.  

A high potential for bioaccumulation of endocrine disrupting compounds (i.e., organotins, flame retardants) and 
indications of endocrine disrupting effects have been demonstrated for the estuarine mysid Neomysis integer [72, 
78]. This species plays a key role in the transfer of energy between phytoplankton and fish production in estuaries 
and along shallow coastal waters in northern Europe, and between benthic and pelagic food webs. Furthermore, 
some studies have investigated effects of contaminants on population-level effects in the ecologically very important 
copepod genus Calanus [79, 80]. A limited number of studies have evaluated the application of sublethal effect 
protocols and biomarkers, in phyto- and/or zooplankton species [78, 81]. However, there have been some recent 
studies using transcriptomic approaches for ecologically important Calanus species [82, 83, 84].  

A number of studies indicate that eggs and larvae of pelagic and demersal fish that float in surface and subsurface 
layers may be particularly sensitive to diffuse contaminant exposure (including PAHs from oil pollution) and 
sublethal effects [85, 86, 87]. Unfortunately, the full impact of contaminants on critical life stages of fish and other 
nekton is still largely unknown. 

Several studies have demonstrated effects of contaminants on sublethal responses in selected pelagic fish species. In 
studies with saithe (Pollachius virens) as part of the BECPELAG workshop, tissue-level effects were observed in 
fish collected close to a production platform in the North Sea [88]. A North Sea monitoring study using a 
predominantly demersal feeding species, haddock (Melanogrammus aeglefinus), reported a range of effects in this 
species linked to the presence of populations in or near areas with offshore activity [89]. There were substantially 
increased levels of DNA damage and changes in the lipid composition of membranes in haddock collected in areas 
with high offshore activity. The effects were corroborated by other biomarkers and showed a total picture of a 
population with increased DNA damage mainly due to PAH exposure (indicated through elevated PAH metabolite 
concentrations), but also increased oxidative stress resulting in changed lipid composition [89]). However, the 
ecological significance of the observed effects remains unresolved.  

Fossi and co-workers [41] showed that large pelagic predators, bluefin tuna (Thunnus thynnus), swordfish (Xiphias 
gladius) and Mediterranean spearfish (Tetrapturus belone), contained increased levels of vitellogenin (VTG), a yolk 
precursor protein only expected to be present at appreciable quantities in female fish. Such levels are most likely 
caused by accumulation of endocrine-disrupting substances through their diet. Another study by De Metrio et al. 
[90] supported these findings and showed that close to a quarter of caught male Mediterranean swordfish (Xiphias 
gladius) displayed ovotestis (intersexuality), again possibly caused by endocrine-disrupting compounds (EDCs). 
Furthermore, elevated VTG levels were found in liver tissue. The causes of these phenomena are not yet known, but 
bioaccumulation of endocrinologically active substances is a possible explanation. The evidence of wide-spread 
EDC exposure in the marine environment is supported by studies of Scott and co-workers [91, 92], who observed 
offshore male cod (Gadus morhua) and male dab (Limanda limanda) with elevated levels of VTG.  

Because of bioaccumulation and biomagnification processes in food webs, globally distributed persistent organic 
pollutants (POPs), including EDCs, may attain high concentrations, in pelagic top predators. Such substances may reach 
levels that result in effects on reproductive and/or immune systems. This has been well illustrated in field studies on 
Baltic grey and ringed seals, and semi-field studies with Wadden Sea harbour seals. Those studies have shown that 
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reproduction and immune functions can be impaired in top predators following biomagnification of PCBs in the food 
chain (see review by Vos et al. [93]). Reproduction effects have resulted in population declines and may also have 
contributed to the mass mortalities observed in some European seal populations due to virus infections.  

Numerous other cases refer to mass mortalities by infectious diseases, poor reproductive performance, immuno-
suppression, thyroid abnormalities and other non-reproductive disorders in marine mammals and fish-eating birds 
(for reviews, see Vos et al. [93] and Law et al. [94]). Such effects have to some extent been associated with the 
presence of POPs (e.g., organochlorine compounds, brominated flame retardants and metabolites) and other 
endocrine disrupting and/or immunotoxic compounds in the body fat [95]. Bennett et al. [96] found an association 
between chronic exposure to mercury and infectious disease in harbour porpoises. An increase in disease 
susceptibility in contaminant-exposed whale and dolphin populations has further fed speculation about a possible 
negative influence of contaminants on the immune system [97]. Accumulation of persistent and lipophilic 
contaminants, including polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and 
coplanar polychlorinated biphenyls (coplanar PCBs), were found in several albatross species feeding in the open 
oceans, specially the North Pacific Ocean. Possible adverse effects of these compounds to these birds may be 
expected from toxic equivalent (TEQ) levels [98]. However, in most of these cases, it was not possible to confirm a 
cause-effect relationship between a specific chemical or group of chemicals and individual or population level 
effects. Studies over the last decade have shown high concentrations of a range of substances of concern in marine 
top predators, including TBT [99, 100], toxaphenes [101], polybrominated diphenyl ethers [101, 102, 103, 104], 
perfluorooctane sulfonates PFOS and perfluorooctanoic acid PFOA [105, 106]), nonyl- and octylphenol [107] and 
phthalate esters [108]. Single and combined impacts of food-chain accumulation of these contaminants and 
subsequent high concentrations in marine pelagic secondary producers and tertiary consumers has yet to be 
elucidated. In addition to the above, increasing levels of human pharmaceuticals, personal care products and 
aquaculture veterinary pharmaceuticals in coastal pelagic ecosystems is an area of concern with limited knowledge 
of any ecological impacts [109].  

INTERACTIONS BETWEEN ENVIRONMENTAL FACTORS 

Three of the most obvious pressures from human activity in marine waters are eutrophication, oil and contaminant 
inputs. For eutrophication there is extensive data on nutrient and bloom dynamics in coastal areas [110]. There are 
large amounts of data on the environmental physiology of many algal species. There is also a substantial body of 
knowledge on how oil and offshore-related discharges affect marine ecosystems, not least from monitoring 
following accidental spills from, for example, Exxon Valdez [111] or Prestige [112]. Aspects of the consequences of 
offshore-related effluents were evaluated recently through the BECPELAG workshop [23]. Finally, there is a large 
literature on the presence and effects of contaminants in coastal ecosystems even at low exposure levels [113]. 
Although there is limited evidence of large-scale effects of contaminants in marine ecosystems, possibly with the 
exception of Puget Sound, USA [114] and the North Sea and Baltic in the 1970-80s [86, 115], there is reason to 
believe that chronic exposure to low levels of contaminants will affect pelagic organisms. 

Eutrophication, oil and contaminant inputs are co-occurring features of most estuaries and harbours in industrialised 
countries. Organic enrichment, the presence of oil, contaminants and variable oxygen availability would be expected 
to interact in their effects on marine biota, but there are surprisingly few studies on whether and to what extent this 
is the case (but see Gunnarsson et al. [22] and Herman et al. [116]). Natural waters contain both dissolved (DOM) 
and particulate organic material (POM), both of which may act as “sponges” to mop up organic and many inorganic 
contaminants in the water column. Increased levels of organic material could therefore be expected to modulate 
effects of contaminants through decreased bioavailability in water or increased sedimentation and “co-precipitation” 
of contaminants. For filter-feeding organisms in the water column, association of contaminants with particles may 
actually increase exposure as both food and water will contain contaminants. For predators this process would 
decrease water-borne exposure, but increase exposure through the food chain. Water-soluble components of oil 
would behave as other contaminants in this context, whereas dispersed oil would be expected to behave like DOM. 
It is not clear how algal, bacterial and protist interactions may be affected, although specific effects from 
contaminants on any one group would be expected to affect energy and nutrient flows in the network. Association of 
contaminants with particles will generally decrease residence time in the water column and thus shift exposure from 
pelagic to sediment ecosystems.  
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Despite existing knowledge about eutrophication effects in pelagic systems, there is a need for further knowledge 
about how natural systems behave under conditions of varying nutrient or carbon availability and there is limited 
understanding about how oil or contaminants may interact in such systems. Small-sized organisms could be thought 
to be at greater risk since they would be expected to accumulate higher concentrations of contaminants, but 
organisms that accumulate non-limiting substrates may also have a high uptake [117]. The question remains whether 
organisms that accumulate high concentrations of contaminants are most sensitive to the effects of the contaminants. 
In addition to ecological consequences of modulating the systems themselves, changes in both small and medium 
scale pelagic processes could strongly affect fluxes and effects of contaminants in coastal ecosystems through 
affecting sedimentation and transfer to higher trophic levels. 

Combined effects between UV radiation and contaminants on plankton community structure in coastal zones have 
been observed in several recent studies. Major coastal and marine contaminants that still often exceed environmental 
risk limits in estuarine and coastal waters, such as TBT, PAH, Irgarol or atrazine have phototoxic capacity and 
proven or suspected impact on planktonic species composition and communities. Microphytobenthos and 
phytoplankton might be especially sensitive to such phototoxic effects. What appeared to be a synergistic interaction 
between TBT exposure and UV-B radiation effects on a natural planktonic assemblage was found by Sargian [118] 
and Pelletier et al. [119] using a microcosm approach. Deleterious effects of TBT exposure were significantly more 
pronounced when cells were co-exposed to enhanced UVB levels. The same author also found a reduced bacterial 
production in the presence of TBT. Hjorth and co-workers [120] observed effects of the polycyclic aromatic 
hydrocarbon pyrene on a natural marine plankton community using a food-web approach in a mesocosm. Direct and 
indirect effects on the function and structure of bacteria, phytoplankton and to a lesser degree on zooplankton 
communities were found. The change in system function suggested that PAHs might be an important stress factor 
for pelagic systems, as a one-time exposure of a single compound changes the development of a pelagic community.  

An important finding was recently reported by Echeveste et al. [121]. These authors performed in situ experiments on board 
of a research vessel in the NE Atlantic Ocean that determined the influence of complex mixtures of organic pollutants on 
oceanic phytoplankton populations. The results of these experiments suggest that current levels of POPs are only 20 times 
below the levels at which significant influence on ecosystem function (primary productivity) would be found.  

Table 1: Alternative strategies for pelagic environmental assessment. 

Approach Advantages Disadvantages References 

Exposure and/or 
effect modelling 

Reproducible; 
Direct link to risk assessment. 

No direct link to environmental impact. [27, 122] 

In situ extracts 

Identify specific mechanisms and 
substances; 
Sensitive and reproducible;  
Possible to test systems not otherwise 
included (e.g., early life stages in fish).  

Limited volume/area;  
Laboratory testing for effects. 

[40, 123 - 125] 

Caging 

Reflects local exposure over deployment 
period; 
Can use organisms with desirable 
characteristics.  

"Semi-natural" exposure situation;  
Food availability unknown; Exposure at 
one point. 

[26, 29, 39, 
126]  

Mesocosm 
studies 

Can control vital parameters. 
Some ecological relevance; 
Improves scope for interpretation. 

Reduced biological and physical 
complexity relative to field situation. 

[6, 68, 77, 118, 
120] 

Field sampling High ecological relevance. 
Difficult to assess area integrated over;  
High natural variability. 

 
[38, 89] 

APPROACHES 

There are substantial logistical challenges involved in the study of how contaminants may affect pelagic systems or 
species. Micro- or mesocosm studies are required for detailed studies of specific effects or interactions between 
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factors. For lower trophic levels, mesocosm studies are generally required to assume any kind of ecological 
relevance. In the field, four approaches have been used:  

I. modelling of contaminant distribution and subsequent effects by comparing with lab-data;  

II. estimating exposure through whole-water extraction or passive samplers and either model effect – as 
for (i) – or measure using a battery of bioassays, e.g., in vitro techniques; 

III. cage organisms in the area of interest;  

IV. mesocosm studies; and  

V. field-collection of organisms.  

The five approaches all have weak and strong characteristics, outlined in Table 1. 

RESEARCH NEEDS 

As will be apparent from the above, there are large blank areas in our understanding of how and whether 
contaminants impact pelagic ecosystems. On the other hand, knowledge of the pelagic zone is clearly vital in the 
management of our oceans. In this context it is important not to view the pelagic zone in isolation, but remember 
that pelagic processes are important to both the surface layer and benthic ecosystems. Future research should be 
directed towards integrating and not dividing our understanding of different environmental compartments. 

As for all other fields in ecotoxicology, we face a major challenge in developing methods to assess the effects of 
contaminant mixtures. For pelagic systems this may be particularly relevant since even the less persistent 
contaminants will be present in the water column near the source. In addition to contaminant mixtures, there is a 
scarcity of knowledge on how other factors modulate contaminant impacts or combination effects. Micro- and 
mesocosm model systems (see below) should be useful tools in this context. 

It will be clear that there is a need for an improved understanding of how contaminants affect both primary 
producers and microbial loop components. Current knowledge is limited to effects on single algal species and there 
is virtually no knowledge of impacts in more complex systems that include bacteria and protists. 

There is some understanding of how some contaminants affect a limited number of zooplankton species (e.g., 
calanoid copepods), but little is known about the wide range of mesozooplankton species, including 
metamorphosing stages and effects on their sensory systems [127]. 

It is inherently challenging to keep pelagic fish species and their early life stages for experimental studies due to the 
need for specialised sampling techniques and large volume aquarium systems. In contrast to primary producers and 
zooplankton, there is a substantial knowledge of general physiology and biochemistry that can be applied for fish, 
even though there may be species-dependent contaminant-associated effects. There are even larger obstacles 
involved in experimental studies of pelagic top predators. 

In addition to experimental micro- or mesocosms, four approaches have been used for the assessment of 
contaminant effects in marine pelagic ecosystems: modelling, in situ extracts/passive samplers, caging and field 
collection. Both laboratory- and field-based methodologies are needed and they complement each other. 
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