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Abstract The common assumption in quantitative trait

locus (QTL) linkage mapping studies that parents of mul-

tiple connected populations are unrelated is unrealistic for

many plant breeding programs. We remove this assumption

and propose a Bayesian approach that clusters the alleles of

the parents of the current mapping populations from locus-

specific identity by descent (IBD) matrices that capture

ancestral marker and pedigree information. Moreover, we

demonstrate how the parental IBD data can be incorporated

into a QTL linkage analysis framework by using two

approaches: a Threshold IBD model (TIBD) and a Latent

Ancestral Allele Model (LAAM). The TIBD and LAAM

models are empirically tested via numerical simulation

based on the structure of a commercial maize breeding

program. The simulations included a pilot dataset with

closely linked QTL on a single linkage group and 100

replicated datasets with five linkage groups harboring four

unlinked QTL. The simulation results show that including

parental IBD data (similarly for TIBD and LAAM) sig-

nificantly improves the power and particularly accuracy of

QTL mapping, e.g., position, effect size and individuals’

genotype probability without significantly increasing

computational demand.

Introduction

The quantitative dissection of complex traits into under-

lying genetic components has been the stated goal of many

generations of quantitative geneticists (Falconer 1989).

Recently, increased availability of molecular markers

combined with enhanced statistical analysis techniques has

given quantitative geneticists new tools. One simple

approach to achieve the goal is to use quantitative trait

locus (QTL) detection methods that exploit phenotypic and

molecular marker data collected in designed bi-parental

mapping populations of large size (Boer et al. 2007).

However, such an approach has a serious limitation in that

it explores only a small fraction of the genetic variance

available in the reference population from which the two

parents of the bi-parental mapping population are sampled.

Additionally, analyses of mapping populations from dif-

ferent parents for the same trait can give inconsistent

estimates of QTL positions and effect sizes (Beavis et al.

1991). QTL analysis of connected populations has been

advocated as an alternative to increase the amount of

genetic variability accounted for in the statistical model

(Bink et al. 2002; Blanc et al. 2006). This approach is also

expected to yield more consistent QTL mapping results.

However, a common assumption in this approach is that the

parents of the connected populations are unrelated and thus

can be treated as independent (Blanc et al. 2006; Crepieux

et al. 2005; Fang et al. 2011; Hayashi and Iwata 2009).

While this assumption is convenient from the standpoint of

the statistical analysis, it does not reflect the reality of most

breeding programs and leads to loss of power in QTL

estimation when the parents are in fact related.

The mapping resolution in QTL linkage studies depends,

among other factors, on the number of meioses events

accounted for in the statistical model. Therefore, accounting
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for meioses events that occurred in the ancestors of the

parents of the current mapping population should be ben-

eficial in the detection of QTL and the precise placement of

these QTL on the genetic map. Meuwissen and Goddard

(2000) proposed such methodology for the precise mapping

of loci affecting quantitative traits. This methodology

combines linkage and linkage-disequilibrium information

where the latter is a function of the historical/ancestral

recombinations. While Meuwissen and Goddard (2000)

made use of population genetics theory to model linkage

disequilibrium, an alternative scenario is possible when

highly accurate pedigree and marker information exists for

the recent ancestral generations of the parents of connected

populations. This is especially true when the ancestral

pedigree has been genotyped for many more genetic

markers than the connected populations to be used for QTL

mapping. However, explicit inclusion of the marker and

pedigree information collected on ancestors into the dataset

to be analyzed can create a significant missing marker data

problem which requires significant imputation efforts when

used for mapping experiments of a size typical for breeding

programs working with commercial elite germplasm.

Instead of including the high-density genotyped ancestors

themselves into the statistical analysis, we propose an

approach that collapses the marker and pedigree informa-

tion from the ancestors into parental identity by descent

(PIBD) information.

This article presents a novel Bayesian approach to

combine PIBD information into a QTL linkage analysis

framework. The PIBD information pertains to the parents

of the connected populations that form the analysis dataset

and this information may be obtained in various ways.

However, it is assumed that this information is in the form

of an IBD matrix specific to a particular genomic position.

Here we extend the Bayesian hierarchical framework of

Bink et al. (2008) to allow for latent ancestral alleles that

are derived from the locus-specific PIBD matrices. The

approach is empirically tested using simulated phenotypic

and marker data conditional on a pedigree specific to a

maize mapping population. Extensions and implications to

other QTL mapping experiments are discussed.

Materials and methods

In conventional QTL linkage mapping it is common to

assume independence among the parental alleles of the

mapping population(s) (Blanc et al. 2006; Crepieux et al.

2005; Fang et al. 2011; Hayashi and Iwata 2009). Here, this

assumption is replaced by allowing for putative depen-

dencies between the parents based on ancestral pedigree

and marker information.

In the description of the methodology and implemen-

tation, we will concentrate on mapping populations con-

taining inbred lines, i.e., individuals are homozygous at all

loci. Consequently, we may use the terms allele, haplotype,

and individual synonymously. The theoretical concepts

presented in this article can be readily adapted for outbred

populations.

Consider a set of nj multiple mapping populations

(J1 - Jm) that have a connectedness through a set of par-

ents (I1 - In) as shown in Fig. 1a. We adopt a bi-allelic

additive QTL model where Q (q) denotes the allele that

increases (decreases) the quantitative trait value. The fre-

quency of allele Q is denoted by p for which we assume a

uniform prior distribution between 0 and 1. Furthermore,

let vector k denote the positions of all QTL in the model,

where the number of putative QTL (NQTL) is treated as a

random variable in our Bayesian approach and the prior

distribution of the positions of the putative QTL along the

marked genome is assumed uniform and continuous.

Three types of data are available, i.e., phenotypic trait

data (YT), low-density marker data on mapping populations

(YM), and parental IBD data (YD). The parental IBD data

are IBD probabilities among the parents of the mapping

populations, available as symmetric matrices Q for a set of

nQ positions along the genome. At each genomic position

an element Qij of Q is the probability that parents Ii and Ij

are IBD.

Modeling QTL genotypes

Let ni denote the number of parents, nj the number of

mapping populations (crosses), no[j] the number of off-

spring in the jth mapping population, and na the number of

ancestral alleles. Then, we denote G as the (ni 9 NQTL)

matrix of parental alleles with i ¼ 1; . . .; niÞ and

qtl ¼ 1; . . .; NQTL. Similarly, let S denote the (nO 9

NQTL) matrix of segregation (or meiosis) indicators (Don-

nelly 1983; Lander and Green 1987), where nO is the total

number of offspring across all mapping populations, i.e.,

nO ¼
Pnj

j¼1 no½j�; let C denote the (ni 9 NQTL) matrix of

ancestral class indicators; and let A denote the (na 9 NQTL)

matrix of ancestral alleles. Finally, for ease of readability

we will suppress the subscripts pertaining to qtl and

describe the concept as if only one QTL is assumed.

Original framework used to model QTL genotypes

In the original framework of Bink et al. (2008) the parental

genotypes are assumed to be unrelated or independent

(Fig. 1c). We denote this model as UNR in the remainder

of this study. The prior distribution for the parental geno-

types at a QTL is
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P G pjð Þ ¼
Yni

i¼1

P gi pjð Þ ð1Þ

where gi denotes the genotype of parent i and p denotes the

allele frequency at a QTL. The QTL genotypes of the

offspring in the mapping populations (J1 - Jm) are defined

as functions of the parental genotypes and segregation

(meiosis) indicators (Donnelly 1983; Lander and Green

1987). For an inbred offspring o, the interpretation of a

binary segregation indicator so is that 0 (1) pertains to the

1st (2nd) inbred parent of that mapping population

(Fig. 1b). The prior distribution for the QTL segregation

indicators of all offspring of all mapping populations is

P S k;YMjð Þ ¼
Ynj

j¼1

Yno½j�

o¼1

P so k; lfmo; rfmojð Þ ð2Þ

where no[j] is the number of offspring from population

j and YM pertains to marker data and lfm (rfm) denotes the

left-sided (right-sided) informative flanking markers for

inbred offspring o.

Framework used to model dependence of parental

QTL genotypes—ancestral alleles

In contrast to the original framework of Bink et al. (2008)

(Fig. 1), we now consider ancestral relationships in mod-

eling QTL alleles of the parents of the mapping population

(Fig. 2). In Fig. 2a an example of a complete ancestral

pedigree is depicted using an assigned descent path of QTL

genotypes from ancestors to the parents of the mapping

population. Alternatively, if the ancestral pedigree is not

modeled explicitly the QTL genotypes in the parents are

assumed to be copies of anonymous ancestral alleles

(Fig. 2b). The ancestral alleles are anonymous as the

ancestral pedigree is not modeled explicitly in the proposed

approach. For known pedigrees, it may be possible to link

the ancestral alleles to real ancestors in the recorded ped-

igree (ter Braak et al. 2010). In our example, this holds for

ancestor alleles A1, A2, and A3 (Fig. 2b). Furthermore, the

number of ancestral alleles (na) is considered random and

may vary at different loci along the genome. We denote the

identity of these ancestral copies as observed in the parents

of the mapping population via ancestral class indicators I,

II, etc. (Fig. 2b). The number of ancestral alleles equals

three in the example in Fig. 1 where ancestral allele I, II,

and III have, respectively, 2, 1, and 3 copies present in the

parental genotypes. For an inbred parent i, the interpreta-

tion of an integer ancestral class indicator ci is that its value

a, a ¼ 1; . . .; na, pertains to the ath ancestral allele.

Analogous to the segregation indicators, S, in (2), the prior

distribution for the ancestral class indicators is

P C k;YDjð Þ ¼
Yni

i¼1

P ci k; YDðlÞ; YDðrÞjð Þ ð3Þ

where YD(l),(YD(r)) denotes the immediate left (right)

flanking PIBD information. The additional source of

information YD is used to account for locus-specific
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Fig. 1 A graphical representation of QTL genotypes (QQ and qq) in

an inbred pedigree of six connected mapping populations (J1–J6)

derived from crosses between unrelated inbred parents (I1–I6).

a provides the actual genotypes whereas b is a representation using

0/1 segregation indicators to describe parental origin in the mapping

offspring. c shows the corresponding directed acyclic graphs for

unrelated mapping parents with founder alleles (G)
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relationships among parents as generated by the ancestral

pedigree and marker information. It will be discussed in

detail below. Finally, the prior distribution for ancestral

QTL alleles is

P A pjð Þ ¼
Yna

l¼1

P al pjð Þ ð4Þ

where al is the allele of ancestor l. This prior is similar to

the prior of Eq. 1 of the parental genotypes in the original

model of Bink et al. (2008), namely it assumes indepen-

dence among ancestral alleles (Fig. 2a).

Models for parental identity by descent (PIBD) data

The locus-specific PIBD matrices jointly form the PIBD

data (denoted YD, Fig. 2); thus YD represents an array of

Q matrices. An example of such a Q matrix is presented in

Table 1A. These IBD probabilities cannot be used directly

in the Bayesian sampling algorithms of Bink et al. (2008).

However, two alternative models have been suggested to

capture the information provided by these data (ter Braak

et al. 2010). We discuss their implementation in a Bayesian

framework below.
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Fig. 2 A graphical representation of an known ancestral pedigree

with known transmission of QTL alleles (red arrows) is included in

(a). This same information is condensed in (b) using assignments

(I–III) linking the alleles of the mapping parents to the ancestral alleles

(A1–A6). Note that ancestral alleles may or may not coincide with real

ancestors in the pedigree. The assignment to ancestral alleles is based

on the TIBD classification of Table 1. c shows the corresponding

Directed Acyclic Graphs for related mapping parents. Parent IBD data

(an array of Q-matrices) to account for relatedness by replacing the

founder alleles (G) by Ancestor alleles (A) and Class indicators (P)
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Threshold IBD model (TIBD)

This first model uses a threshold on the IBD probabilities,

for example a threshold value of 0.80 and is denoted as the

TIBD model. If the IBD probability of two inbred indi-

viduals (i and j) sharing the same ancestral allele exceeds

this threshold, the alleles are assumed to have the same

ancestral allele and their IBD probability is substituted with

a value of 1.0, i.e.,

QTIBD;ij ¼ 0 if Qij\TIBD

QTIBD;ij ¼ 1 otherwise
ð5Þ

Values below the threshold are replaced by 0 unless a

transitivity problem arises (ter Braak et al. 2010). In case of

a transitivity problem, the threshold is locally lowered to

create consistency in IBD patterns (Table 1C). This

threshold-based approach results in a crisp 0/1 matrix; for

example the TIBD model for the example in Table 1A

yields three ancestral allele classes (Table 1D). The inbreds

I1 and I2 are copies of ancestral allele A1, inbreds I3, I4, and

I6 are copies of ancestral allele A3, and inbred I5 is a copy

of ancestral allele A2. Note that the IBD probability

between inbreds I4 and I6 is below the threshold but set to 1

because of the transitivity rule.

The position of a putative QTL is assumed to be con-

tinuous along the genome and can thus be in between

positions at which PIBD data are available. The Q matrix

pertaining to the putative position kqtl may be calculated as

the weighted average of the Q matrices at two flanking

positions kl and kr, (cf., Eq. 3)

Qkqtl
¼ kqtl � kl

� �
Ql þ kr � kqtl

� �
Qr

� ��
kr � klð Þ ð6Þ

This implies that matrix Qk is fixed at any position along

the genome and consequently the class indicators (PTIBD)

are also fixed in this threshold model. The calculation of

Qk is performed at every sampling step in the Markov

chain Monte Carlo (MCMC) simulation. The application of

the weighted Q matrix (Eq. 6) to some initial datasets led

to spurious results due to erroneous clustering of

individuals based on the averaged probabilities. Another

approach is to sample the Q matrix for a putative position

kqtl between two flanking positions kl and kr as follows:

Qkqtl
¼ Ql with Prob ¼ kqtl � kl

� �
= kr � klð Þ

Qr with Prob ¼ kr � kqtl

� �
= kr � klð Þ

�

ð7Þ

This sampling approach seems more robust as it does

not suffer the problem that occurs in the weighted-average

implementation (Eq. 6). In addition, a computational

advantage of the sampling-based implementation is that

the PIBD matrices can be processed once prior to the

MCMC simulation to cluster individuals, given the

threshold value, and thus have crisp 0/1 matrix results

available for all PIBD positions instead of the original IBD

probability matrices.

Table 1 Numerical example of IBD probability matrix Q among six

inbred individuals (A) and the corresponding probability matrix P for

the latent ancestor model (LAAM) (B). The IBD status matrix QTIBD

(C) and the corresponding ancestor assignments (PTIBD) for the

threshold model (D), where the IBD status of pair I4–I6 has been

adjusted for reason of transitivity. The assignments correspond to the

example given in Fig. 1

A B

C D
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Latent Ancestor Allele Model (LAAM)

This approach starts with a simple model with K disjoint

latent classes in which each parent belongs to precisely one

latent class, i.e., one latent ancestor allele. We extend this

model with probabilities. Let P be an n 9 K matrix with

elements pik being the probability that parent i belongs to

class k.

pik� 0 and
XK

k¼1

pik ¼ 1 i ¼ 1; . . .; n; k ¼ 1; . . .;Kð Þ: ð8Þ

By drawing the class memberships for each parent i

from the ith row of P independently, the probability that

parents i and j fall in the same class is

q�ij ¼
XK

k¼1

Pði 2 classðkÞ ^ j 2 classðkÞÞ ¼
XK

k¼1

pikpjk 8i 6¼ j:

ð9Þ

We have recently proposed several algorithms to find a

matrix P such that q�ij is close to the observed Qij for all

i = j (ter Braak et al. (2009, 2010). For the Q matrix in

Table 1A, the P matrix with five latent ancestor allele

classes that corresponds with PIBD matrix Q (zero RMSE

between Q and Q*) is also given (Table 1B).

In the Bayesian algorithm we need 0/1 matrices such as

the one in Table 1D, expressing a unique assignment of

each parent to a single ancestral allele. We can sample such

matrices from this prior model by sampling for each parent

i independently its ancestral allele (class membership)

according to its (row-wise) probabilities pik; k ¼ 1; ::;Kf g
in Table 1B.

The PLAAM matrix pertaining to position kqtl may be

calculated from the matrix Qk, where Qk is obtained from

Eq. 6. However, this is often computationally demanding

within the MCMC simulation and the weighted-average Qk

(6) may lead to unreliable analysis results. Similar to the

sampling of Qk for PTIBD, the approach taken to compute

the PLAAM matrices follows (7) for all nQ positions along

the genome, i.e., a finite number, prior to the actual MCMC

simulation. Let Pl and Pr be the P matrices pertaining to the

flanking positions kl and kr. Then, the P matrix at the QTL

position kqtl

Pkqtl
¼ Pl with Prob ¼ kqtl � kl

� �
= kr � klð Þ

Pr with Prob ¼ kr � kqtl

� �
= kr � klð Þ

�

ð10Þ

Sampling from Pl and Pr with these probabilities yields

precisely the average IBD probabilities Qk of Eq. 6 if Pl

and Pr perfectly fit Ql and Qr, respectively (see ‘‘Appendix

A’’). In the case of a perfect fit, the sampling approach of

Eq. 10 is therefore equivalent to that of calculating the P

matrix corresponding to Qk (6). In the case of a non-perfect

fit, the two approaches are almost equivalent. Note that the

latter sampling approach is not the same as sampling from

an average of Pl and Pr.

Effective number of latent ancestors

The prior model introduces correlation among the alleles of

the parents because parents with similar rows in P are likely

to be assigned as offspring from the same latent ancestor

and will thus receive more often the same allele than under

the independence model. Thus, ter Braak et al. (2010) also

propose to use the effective number of latent classes as a

measure for genetic diversity (see ‘‘Appendix B’’).

Bayesian Markov chain Monte Carlo QTL analysis

The utilization of PIBD data adds a new layer in the

Bayesian hierarchical framework described by Bink et al.

(2008) as presented in Fig. 2. We now present the linear

model for the phenotypes and the joint posterior distribu-

tion of all random variables.

Data likelihood

The probability model for the trait phenotypes (YT) is

assumed to be

P YT l;NQTL;W; ajð Þ ¼ N 1lþ
XNQTL

k¼1

Wkak; r
2
e

 !

; ð11Þ

where 1 is a unity vector pertaining to an overall mean

effect (l) and r2
e is the residual variance for the trait of

interest; the incidence matrix W (see also ‘‘Appendix C’’)

pertains to the QTL genotypes with additive effects a.

Treating the number of bi-allelic QTL (NQTL) as a random

variable, the number of columns and the length of vector a
are a priori unknown. Let h ¼ fl; a; k; p; q; r2

eg, i.e., the set

of location and dispersion variables given a particular

number of QTL in the model. Vector q comprises the

frequencies of marker alleles, which are included in the

prior on the marker haplotypes (H) as shown in Fig. 2.

Further details and prior assumptions on the linear model

are as described by Bink et al. (2008) and are omitted here.

Joint posterior distribution

The probability model for the phenotypes and the prior

distributions yield the joint posterior distribution. Let YP

and YM denote the pedigree and marker data, respectively.

The joint posterior distribution of all unknowns is now

written as,
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P h;NQTL;W Yj T ;YP;YM

� �

/ P YT h;NQTL;Wjð ÞP YP Hj ;Wð ÞP YM Hjð Þ
� P W p; k;Hjð ÞP H qjð ÞP h NQTLjð ÞP NQTLð Þ ð12Þ

Note that the incidence matrix W is fully determined by

variables A, C, and S (‘‘Appendix C’’). For MCMC

simulation, the sampling distributions of the random

variables are derived from this joint posterior distribution

by conditioning on all other variables. These conditional

distributions are as described by Bink et al. (2008), except

for the QTL ancestor class indicator variables (C) that will

be presented in the following.

Posterior conditional distributions of ancestral class

indicators

In the Markov chain simulation the sampling distribution

of the ancestral class indicators is derived by treating all

other random variables in the joint posterior distribution as

fixed. The posterior (12) then reduces to multiplying the

likelihood function and prior on class indicators (3),

P C k;j YT ;YFð Þ / P YT h;NQTL;A;C; Sjð ÞP C k;YFjð Þ ð13Þ

In the TIBD model with the weighted Q (6) this

sampling distribution is actually deterministic because of

the conditioning on k. Consequently, the ancestral class

indicators are updated jointly with the position of the QTL.

In the TIBD model with the sampled Q (7) we follow the

same approach as presented below for the LAAM model.

In the LAAM model the sampling distribution of C is

stochastic. We have implemented a Metropolis–Hastings

updating algorithm for the joint sampling distribution of C

and k, i.e.,

P k;C YFj ;YTð Þ / P YT h;NQTL;A;G;Sjð ÞP G k;YTjð ÞP kð Þ
ð14Þ

where the algorithm starts with a normal random walk

proposal distribution for k and then proposes a C’ from the

prior as follows. With the probabilities given in (10) we

sample either the left-flanking matrix Pl or the right-

flanking matrix Pr of the new position and call the resulting

matrix P with elements pikf g: We then sample for each

parent i independently its ancestral allele (class member-

ship) according to its (row-wise) probabilities pik; k ¼ 1;f
::;Kg: The allele that is then proposed is the allele assigned

to the ancestral class. Because we sample C from the prior

and because the prior of k is uniform, the acceptance ratio

for the proposed values is then simply a ratio of the like-

lihoods of the current and proposed values.

The method of updating of the alleles of the ancestral

classes is identical to that for updating alleles of parents in

the model were parents are unrelated (UNR), which is

Gibbs sampling. Note that the alleles of the parents are

correlated in the TIBD and LAAM models because of the P

matrix. Models TIBD and LAAM thus shift the indepen-

dence assumption upward in the pedigree structure, namely

from the parents to the latent ancestors.

Markov chain Monte Carlo simulation and posterior

inference

The calculation of the above joint posterior distribution is

analytically intractable, and we apply computer-intensive

MCMC simulation (Gilks et al. 1996) to obtain draws from

the joint posterior distribution. Different MCMC sampling

algorithms are used, i.e., the Gibbs sampler (Gelman et al.

1995) when the conditional sampling distribution has a

recognizable kernel and can directly be sampled from, and

the Metropolis–Hastings algorithm (Gelman et al. 1995)

when the conditional distribution cannot be sampled from

directly. The sampling of ancestral class indicators under

our new models TIBD and LAAM has been detailed above.

To allow changes in model dimension, i.e., to increase or

decrease the number of QTL in the model, we use the

reversible jump MCMC method (Green 1995), similar to

previous QTL model selection studies (Bink et al. 2002;

Heath 1997; Sillanpaa and Arjas 1998). For each model we

performed a Markov chain simulation of 500,000 (200,000)

cycles for the pilot dataset (replicated datasets) and stored

every 200th sample for posterior inference.

For all three models (UNR, TIBD, and LAAM), three

values (1, 3, and 5) are evaluated for the mean of the

Poisson distribution being the prior on the NQTL in the

analyses of our simulated data. The stored draws from the

joint posterior distribution were used for posterior infer-

ence on the variables of interest, most importantly the

characteristics of QTL (number, position, size, genotypes).

A linkage group was divided into 1-centiMorgan (cM) bins

and the number of QTL per bin per cycle was used to

calculate the posterior QTL intensity (Sillanpaa and Arjas

1998).

For model selection in the pilot dataset we used Bayes

factors (Kass 1993; Kass and Raftery 1995) as a measure of

evidence coming from the data for different QTL models.

More precisely, we used the statistic 2� ln BFð Þ that scales

similar to a LOD score test statistic (Kass and Raftery 1995).

In the replicated datasets we adopt the approach of Hay-

ashi and Iwata (2009) to assess the power and accuracy of the

three models. The posterior QTL intensity for 1-cM bins

along the linkage groups was calculated. Subsequently, the

Summed QTL Intensity (SQI) was calculated by summing

the QTL intensity over a single linkage group (Hayashi and

Awata 2008). Thresholds of SQI were determined from

empirical null distributions of the maximum SQI over all
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linkage groups obtained from 100 null data sets (no QTL

were modeled on any linkage group). When SQI exceeds

these thresholds for any linkage group, detection of a QTL

was declared. For declared QTL the position and effect were

calculated as the weighted average over the linkage group

where the weights were equal to the QTL intensity. We also

examined an alternative method: to declare a QTL, a SQI

threshold value of 0.50 must be exceeded (regardless of

model), and the posterior mode estimate of QTL location

(and the estimated QTL effect pertaining to that location

mode) is used for every declared QTL. Taking SQI threshold

values other than 0.50—we explored a range between 0.2 and

0.8—yielded similar patterns in relative performance among

the three models (results not presented). Furthermore, the

SQI approach works well for linkage groups with only 1 (or

no) QTL but cannot be applied to a linkage group with

multiple QTL as in the pilot dataset.

Simulated data

To empirically test our models we use one pilot dataset and

100 replicated datasets with the same pedigree data and

marker densities but with different trait architectures.

Pedigree of connected mapping populations

The simulated data set mimics a real QTL mapping

experiment from an ongoing maize breeding program. That

is, 16 inbred parents were crossed in an incomplete mating

design to produce 30 mapping populations of Recombinant

Inbred Lines (RILs) (Table 2). The number of crosses per

parent ranged from 1 (parent 863) to 8 (parent 773) and the

number of RILs per population ranges from 4 to 50. The

entire dataset contains 1,072 RILs.

Table 2 Simulated QTL genotypes and estimated posterior genotype probabilities in the pilot dataset for map intervals with positive QTL

evidence of the 16 mapping parents

Parent No. of

crosses

No. of

progeny

Simulation Modela

UNR TIBD LAAM

Position (cM) Intervals (cM) Intervals (cM) Intervals (cM)

30 60 140 28–37 58–64 134–143 25–32 57–61 136–142 26–33 58–62 138–143

761 4 83 1 0 1 0.3 0.6 0.5 0.9 0.1 1.0 0.7 0.1 1.0

766 2 59 0 0 0 0.3 0.3 0.1 0.1 0.0 0.2 0.1 0.0 0.2

773 8 248 1 0 1 0.3 0.5 0.8 0.9 0.1 1.0 0.7 0.1 1.0

775 3 145 0 1 1 0.3 0.8 0.7 0.1 1.0 1.0 0.1 0.9 1.0

822 2 97 1 0 1 0.3 0.7 0.7 0.9 0.0 1.0 0.9 0.0 1.0

847 4 197 0 0 0 0.1 0.4 0.1 0.1 0.0 0.0 0.1 0.0 0.0

851 6 230 1 0 0 0.8 0.3 0.1 1.0 0.0 0.0 0.9 0.0 0.0

853 5 190 1 0 0 0.4 0.1 0.1 0.9 0.0 0.0 0.9 0.0 0.0

855 4 119 0 0 1 0.4 0.4 0.3 0.1 0.0 1.0 0.1 0.0 1.0

857 7 283 0 1 1 0.2 0.8 0.9 0.1 1.0 1.0 0.1 0.9 1.0

859 3 100 1 0 0 0.3 0.5 0.1 0.9 0.1 0.0 0.9 0.1 0.0

861 3 69 1 0 1 0.5 0.8 0.8 0.9 0.8 0.9 0.9 0.2 0.9

863 1 40 1 1 0 0.7 0.8 0.1 1.0 1.0 0.0 0.9 0.9 0.0

865 2 23 0 1 0 0.7 0.7 0.1 0.1 1.0 0.0 0.1 0.9 0.0

867 2 82 1 0 0 0.4 0.6 0.1 0.9 0.0 0.0 0.8 0.1 0.0

869 4 179 1 1 0 0.8 0.8 0.1 0.9 1.0 0.0 0.9 1.0 0.0

Average Ptrue � Pestj j 0.44 0.39 0.18 0.08 0.08 0.04 0.11 0.06 0.05

The absolute difference between true (simulated) and estimated QTL genotype is given as the parents’ average

The posterior probabilities pertain to the increasing QTL genotype, denoted ‘‘QQ’’ or ‘‘??’’. The probabilities for the decreasing QTL genotype,

denoted ‘‘qq’’ or ‘‘--’’ is equal to one minus the printed probability. The probabilities that are smaller than or equal to 0.1 and probabilities that

are larger than or equal to 0.9 are bold printed

The map regions with positive QTL evidence are intervals with bins having a 2ln(BF) [ 2. These regions are also depicted in Fig. 4
a Model abbreviations: UNR model with unrelated parents (without Ancestral Classes), TIBD model with ancestral allele classes and Threshold

sampling approach, LAAM model with ancestral allele classes and Latent Ancestor Allele approach
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Pedigree of ancestral generations

The known ancestral pedigree of the 16 parents of the

connected mapping populations contains 162 inbred lines.

Of these, 32 are founders, i.e., their parentages (pedigree)

are assumed unknown.

Marker data

We simulated genetic data for 32 independent founders and

their descendants according to the known (ancestral and

mapping) pedigree structure. The pedigree contains mul-

tiple loops and the longest lineage is nine generations for

any of the resulting 16 inbred parents. A gene-dropping

method (Maccluer et al. 1986) was used to simulate

Mendelian inheritance of marker and QTL alleles from

parents to offspring while Haldane’s mapping function

(Haldane 1919) was used to transform linkage distances

into recombination fractions.

Pilot dataset One linkage group of 150 cM was simu-

lated that was covered by 16 equidistantly spaced bi-allelic

SNP markers for the mapping populations (=sparse map).

In contrast, the 16 parents and their ancestors were geno-

typed for 151 markers covering the same genome length

(1 cM distance, = dense map).

Replicated datasets Five linkage groups of 100 cM were

simulated, each group covered by 11 and 101 equidistantly

spaced bi-allelic SNP markers for the mapping populations

and parents and ancestral pedigree members, respectively.

So, the total numbers of SNP markers were 55 and 505

SNPs for the two subsets of the pedigree.

Phenotypic trait data

Pilot dataset The phenotypes of all mapping individuals

were simulated by assuming three QTL residing at posi-

tions 30, 60, and 140 cM on the linkage group. The dis-

tance between the first and second QTL was relatively

small to assess differences in detection power and accuracy

of estimates of closely linked QTL. The size of the additive

effect for all of the three simulated QTL was set to 1.0.

Replicated datasets Linkage groups 1–4 contained a

single QTL at positions 22, 44, 66, and 88, respectively.

Linkage group 5 did not harbor a QTL and was included to

evaluate the false positives rate. The size of the additive

effects for the QTL at the subsequent linkage groups were

1.3, 1.1, 0.9, and 0.7, respectively.

In both datasets, the allele frequency of all QTL was 0.5

in the ancestral founder population and linkage equilibrium

among all loci was assumed. No other genetic or non-

genetic variables were simulated and the residual variance

was equal to 16.0. In the pilot dataset, the realized phe-

notypic variance was equal to 19.3 and the heritability of

each of the three QTL was approximately 5%. The phe-

notypic distributions (not shown) for the whole population

and the individual mapping populations were continuous

and uni-modal as expected from the relatively large

residual variance. The QTL allele frequency of 0.5 in the

founders did not yield the same frequency in the mapping

populations (or their parents) due to drift in the pedigree

ancestral to the mapping parents. For the replicated data-

sets we calculated the fraction of segregation in the nj

mapping populations by

FSegr ¼
Xnj

j¼1

no½j� � so½j�
 !,

nO ð15Þ

where so[j] is a binary indicator whether the jth mapping

population is segregating (so = 1) or not (so = 0). The

segregation indicator is weighted by the size of the map-

ping population (no[j]) and the total number of mapping

offspring is given by nO (defined previously).

Parent IBD data

For every marker position on the 1 cM map, IBD proba-

bilities among the 16 inbred parents were calculated by

using the FlexQTL software (Bink et al. 2008). Note that

these 16 9 16 PIBD matrices were calculated (and stored)

only once for a given dataset regardless of the number of

traits to be analyzed or model specification in the analysis.

The resulting 151 (505) PIBD matrices of the pilot dataset

(replicated datasets) were used as the new additional data

source in the Bayesian analysis (data YD in Fig. 2). In the

LAAM approach we used the least-squares approximation

to obtain Latent Class probabilities allowing a maximum of

16 classes (ter Braak et al. 2010).

Results

Pilot dataset

The effective number of ancestral classes (see ‘‘Appendix

B’’) was computed for the TIBD and LAAM models and

significant variation in this number was observed. That is,

the mean (standard deviation) for the TIBD and LAAM

models were 3.4 (0.96) and 3.1 (0.76), respectively. The

lowest number was 1.6, implying a substantial probability

(0.625) that two randomly chosen individuals belong to the

same ancestral allele class. The highest number was more

than 6. The effective number in the LAAM model was

always smaller or equal to the effective number in the
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TIBD model, indicating that parents in the LAAM model

may have a higher probability of sharing the same ancestral

allele.

The posterior mean estimates for the overall mean and

residual variance component for the UNR model deviated

more from the simulated values than those from the TIBD

and LAAM models, irrespective of the prior value for the

number of QTL (Table 3). In all three models, the posterior

estimates for the number of QTL and the total QTL variance

(and consequently heritability) were inflated for higher mean

values of the prior number of QTL. The Bayes Factors esti-

mates correctly identified the proper QTL numbers for the

TIBD and LAAM models, i.e., large Bayes Factor values

([20) for model with 3 QTL over a model with 2 QTL. For

the UNR model the Bayes Factor estimate for the 3 over 2

QTL model was only moderate (values between 3.1 and 4.1).

The peaks of the posterior intensity profiles for QTL

position were in general close to the simulated values (30,

60, and 140 cM) for all three models (Fig. 3). The intensity

profiles were clearly more peaked and higher for models

TIBD and LAAM (Fig. 3). In these models, the intensity

peaks were often somewhat left-shifted from the simulated

QTL positions, especially for the QTL at 60 cM. For model

UNR the intensity profile near the first two simulated QTL

positions was relatively flat and stretched as these two QTL

were closely linked. The value of the prior number of QTL

seemed most influential on the QTL intensity profile for the

UNR model (Fig. 3) where intensity profiles were lifted

near QTL 1 and 2 while the profile broadened near QTL 3.

These posterior intensity plots pointed to an increased

accuracy in positioning the QTL on the linkage groups

when adding ancestral information into the analysis.

Bin-wise Bayes Factor estimates with a cut-off value of

2.0 are used to identify the most probable QTL regions. For

each bin in these QTL regions, the estimates of the mean

and 90% probability credible regions for QTL effect size

are shown in Fig. 4 (for prior number of QTL equal to 3).

The posterior mean estimates for all three models were

very close to the simulated value of 1.0. The credible

regions were smaller and more accurate in the TIBD and

LAAM models than in the UNR model.

For these most probable QTL regions we computed the

posterior probabilities for QTL genotypes for the 16 parents

of the mapping population (Table 2). The posterior proba-

bility estimates were often inconclusive (0.3 B P B 0.7) for

the UNR model, especially for the QTL at 30 and 60 cM,

while for the QTL at 140 cM ten out of 16 parents had

conclusive probability estimates (0.1 B P or P C 0.9). On

the other hand, the genotype probability estimates for the

TIBD and LAAM models were almost always conclusive for

Table 3 Posterior mean estimates for overall mean (l), residual variance (re
2), the number of QTL (NQTL), the QTL variance (rQTL

2 ), and

heritability (h2) for the pilot dataset

Variable l re
2 NQTL rQTL

2 h2 2ln (Bayes factor)a

1/0 2/1 3/2 4/3

Simulation 0 16 3 3 0.16

Modelb

Prior(NQTL) = 1

UNR 1.1 16.6 3.3 3.9 0.19 na 26 3.7 1.7

TIBD -0.1 16.2 3.6 3.5 0.18 na na 29 1.7

LAAM 0.0 16.2 3.7 3.6 0.18 na na 28 2.3

Prior(NQTL) = 3

UNR 0.9 16.5 4.8 4.2 0.20 na 9.5 3.1 1.5

TIBD 0.0 16.1 4.6 4.0 0.20 na na 24 1.6

LAAM 0.1 16.1 4.9 4.4 0.21 na na 24 2.2

Prior(NQTL) = 5

UNR 0.8 16.4 6.1 4.3 0.21 na na 4.1 1.6

TIBD 0.1 16.1 5.7 4.5 0.22 na na 21 2.0

LAAM 0.0 16.1 5.7 4.7 0.23 na na 21 1.6

For model selection estimates for twice the natural log of Bayes Factors are given and three values (1, 3 and 5) for the prior mean of number of

QTL are used

na not available due to insufficient number of posterior samples from one or both models to estimate Bayes Factor accurately
a 2ln(Bayes Factor) : Bayesian statistic representing the evidence for favoring model Mq over Mq-1 where q represents the number of QTL in the

model (q = 1, 2, 3, 4)
b Model abbreviations: UNR model with unrelated parents (without Ancestral Classes), TIBD model with ancestral allele classes and Threshold

sampling approach, LAAM model with ancestral allele classes and Latent Ancestor Allele approach
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all three QTL positions (Table 2). These differences

between models were also summarized by calculating the

average absolute difference between the true and estimated

QTL genotype probabilities. These summary values show

that including PIBD information leads to four times more

accurate genotype probability estimates.

Fig. 3 Marginal posterior

intensity profile estimates for

QTL position along the 150 cM

linkage map for three types of

analyses, i.e., a unrelated

(UNR) mapping parents;

b related mapping parents with

Threshold IBD (TIBD)

algorithm; and c related

mapping parents with Latent

Ancestor Allele Model (LAAM)

algorithm. The QTL positions of

the simulated dataset are

indicated by arrows on the

x-axis (30, 60, and 140 cM).

Three values (1, 3, and 5) for the

prior number of QTL were

studied

Fig. 4 Marginal posterior mean

(solid black line) and 0.90

probability credible region

estimates (gray surfaces) for

QTL effect size along the

150 cM linkage map for three

types of analyses, i.e.,

a unrelated (UNR) mapping

parents; b related mapping

parents with Threshold IBD

(TIBD) algorithm; and c related

mapping parents with Latent

Ancestor Allele Model (LAAM)

algorithm, and prior

E(NQTL = 3). Estimates are

depicted only for areas with

positive QTL signal

(2 9 ln(Bayes

Factorbin) C 2.0). The QTL

positions of the simulated

dataset are indicated by arrows

on the x-axis (30, 60, and

140 cM). The dashed horizontal
line indicates the simulated

effect size
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Replicated datasets

The fraction of segregation in the mapping populations for

the 100 replicated datasets is presented in Fig. 5. Note that

the values were ordered within each QTL and ranged from

0.0 to 0.76. When the fraction was equal to zero the QTL

was fixed for one of the alleles and consequently the QTL

could not be detected in that particular replicate. For the

QTL on linkage groups 1–4 the number of non-segregating

QTL was equal to 18, 8, 12, and 13, respectively (Table 4),

implying that for example more QTL could be detected for

linkage group 2 than for linkage group 1.

Summed QTL Intensity threshold based on empirical

null distribution

For the prior E(NQTL = 1), the 5% significance level of

these empirical distributions were 0.127, 0.206, and 0.196

for the models UNR, TIBD, and LAAM, respectively. A

plausible cause of the higher threshold for the TIBD and

LAAM models is the following. Some (segments of)

linkage groups are not segregating in the mapping parents

(similar to fixed QTL in Fig. 5). These monomorphic

regions are excluded in the TIBD and LAAM models

which increases the prior probability for QTL on other

linkage groups. This creates a higher variability in SQI

among linkage groups and thus higher values for the

maximum SQI of the linkage groups. The power of QTL

detection was higher for the UNR model than for the other

two models when using the SQI threshold based on 100

null datasets, except for the QTL on linkage group 3

(Table 4). The UNR model also yielded a much higher

false discovery rate, i.e., 37 QTL were declared for linkage

group 5. The posterior estimates for location were most

biased for the UNR model and for the QTL at the extremes

of the linkage groups. The bias is pointing to the middle of

the linkage group and seems to be caused by the estimation

protocol of Hayashi and Iwata (2009). Since all intervals

along the linkage group are included in the estimation

procedure, QTL at the extremes will have their estimated

location biased toward the center of the linkage group.

Especially for the QTL with smaller effect size the location

cannot be precisely determined and positions further away

are plausible as well. This bias in estimates of QTL loca-

tion may be strongly reduced by considering the mode of

the posterior mode estimates. For example, for the QTL

position at the 4th linkage group the estimated mode was

equal to 89 cM in all scenarios and both thresholds (results

not shown). The accuracy, as represented by the standard

deviation of QTL location, was always lower for the UNR

model than for the TIBD and LAAM models. The accuracy

of location estimates decreased (standard deviation esti-

mates increased) for smaller QTLs (Table 4). The TIBD

and LAAM models yielded very similar results for power

and accuracy. The effect sizes were always underestimated

for all three models, more severely for the UNR model, and

this was also likely due to the estimation procedure of

averaging along the whole linkage group.

SQI threshold equal to 0.5

Relative to the empirical null distribution threshold, the

SQI [ 0.5 threshold decreased the power of QTL detection

for all three models (Table 5). The UNR model yielded

lowest power and the power decreased consistently with

QTL effect size. The highest power for the QTL on linkage

group 2 for the TIBD and LAAM models can be explained by

the highest number of replicates with segregation (92). The

posterior mode estimates for QTL location yielded almost

unbiased results, except for the smallest QTL (linkage group

4). Also, the estimates of QTL effects at the mode of QTL

location were close to the simulated values for the models

TIBD and LAAM, especially for the larger QTL effect sizes.

The results for the UNR model were always inferior, espe-

cially for accuracy of the estimates as expressed by the

standard deviations in Table 5. These latter results indicated

that the original SQI protocol of Hayashi and Iwata (2009)

may be further improved and extended to compare relative

performance of different methods and models with respect to

power and accuracy of QTL mapping for complex traits.

Discussion

We present a novel approach to efficiently include genome-

wide ancestral IBD information on parent alleles into the

QTL analyses of multiple connected populations. Analysis

of simulated data indicates improvement of mapping
Fig. 5 Fraction of QTL segregation in offspring populations in the

100 replicated simulations (replicates in ascending order within QTL)
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Table 4 Posterior inferences results on replicated datasets (100 replicates), using the SQI thresholds from 100 null datasets

LG 1 LG 2 LG 3 LG 4 LG 5

Simulation

Position 22.0 44.0 66.0 88.0

Effect 1.30 1.10 0.90 0.70

Segregationa 82 92 88 87 0

UNR

Powerb 81 88 69 67 37e

Locationc 29.5 (9.7) 45.8 (9.4) 55.2 (11.5) 60.0 (17.8)

Effectd 0.86 (0.49) 0.55 (0.43) 0.35 (0.46) 0.24 (0.39)

TIBD

Power 77 83 69 54 7e

Location 25.5 (5.5) 43.5 (6.6) 61.8 (9.9) 75.4 (13.0)

Effect 1.10 (0.25) 0.90 (0.24) 0.73 (0.34) 0.58 (0.32)

LAAM

Power 77 83 71 55 10e

Location 25.4 (6.2) 43.2 (6.9) 61.8 (9.3) 75.0 (14.3)

Effect 1.10 (0.25) 0.91 (0.25) 0.72 (0.34) 0.59 (0.32)

a Number of replicates with QTL segregation
b Significance threshold: 95% quantile of SQI (summed QTL intensity) from 100 null datasets. Threshold values were 0.127,0.206, and 0.196 for

UNR, TIBD and LAAM respectively
c Mean (standard deviation) of the estimated posterior mean of QTL location
d Mean (standard deviation) of the estimated posterior mean of QTL effect across genome
e Type I error as no QTL was simulated on Linkage Group 5

Table 5 Posterior inferences results on replicated datasets (100 replicates), using the same SQI threshold of 0.50 for all scenarios of analysis

LG 1 LG 2 LG 3 LG 4 LG 5

Simulation

Position 22.0 44.0 66.0 88.0

Effect 1.30 1.10 0.90 0.70

Segregationa 82 92 88 87 n.r.

UNR

Powerb 66 63 29 21 2e

Locationc 22.4 (7.7) 44.9 (17.0) 64.3 (14.3) 78.5 (30.2)

Effectd 1.40 (0.23) 1.16 (0.29) 1.27 (0.31) 1.22 (0.46)

TIBD

Power 73 77 56 43 1e

Location 22.0 (4.8) 42.3 (7.4) 64.4 (11.2) 80.6 (19.1)

Effect 1.31 (0.21) 1.11 (0.21) 1.01 (0.29) 0.89 (0.31)

LAAM

Power 73 77 56 43 1e

Location 21.8 (4.1) 42.1 (7.8) 63.6 (11.2) 80.4 (22.2)

Effect 1.30 (0.20) 1.12 (0.18) 1.02 (0.29) 0.89 (0.28)

a Number of replicates with QTL segregation
b Significance threshold: SQI (summed QTL intensity) [0.50
c Mean (standard deviation) of the estimated posterior mode of QTL location
d Mean (standard deviation) of the estimated QTL effect at posterior mode of QTL location
e Type I error as no QTL was simulated on Linkage Group 5
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accuracy and power when genetic relationships between

parents are modeled as opposed to treating the parents as

independent. Two algorithms were implemented and tested.

The threshold-algorithm benefits from ease of implemen-

tation and interpretation but may yield a crude classification

of founder alleles, especially when PIBD probabilities are

more intermediate between 0 and 1. Furthermore, consis-

tency of classification needs to be checked via transitivity

rules. The latent class algorithm is conceptually more

appealing as it provides a more precise representation of the

original IBD information along the genome. In our simu-

lated datasets these two algorithms yielded the same pos-

terior conclusions. Our current results indicate that the

threshold values of 0.90 and 0.80 in the TIBD model yield

very similar posterior results and mixing behavior; how-

ever, results and performance may become different with

further lowering of this threshold. These implementation

issues of the TIBD model are subject to further research.

The comparison of our proposed PIBD approach to a

full pedigree analyses was impractical as the high marker

density in the ancestral pedigree (Fig. 1) creates a major

missing data problem in the mapping pedigree. The prog-

eny in the mapping populations in the pilot dataset would

have missing marker scores for 135 out of 151 loci. A

comparison of our novel approach with a full pedigree

analysis with all individuals genotyped for the sparse

density map showed that the full pedigree analysis was

almost as powerful, but that computation time was dra-

matically increased because of the added number of indi-

viduals and the additional number of generations in the

pedigree which makes the sampling algorithms more time

consuming. Even in a much smaller simulated example,

i.e., considering a single biparental mapping population,

the full pedigree analysis required over 50 times more

computation time (results not shown).

The novel approach to include genome-wide ancestral

IBD information in QTL mapping can be further extended

to include a polygenic component which may account for

QTL that cannot be picked up in the linkage detection, cf.

Bink et al. (2008). When modeling the polygenic compo-

nent, the use of a marker-based genome-wide average

coancestry among founder individuals could be obtained

from the PIBD matrices calculated for each chromosomal

segment, cf. (NejatiJavaremi et al. 1997), and recently

applied to genomic selection, e.g., (Habier et al. 2007). An

alternative to this approach would be to use known pedi-

gree relationships to construct the coancestry relationship

matrix needed to account for the polygenic term.

In this study, we assume two alleles at a QTL which

allows a straightforward extension to include non-additive

effects, e.g., dominance and epistatic interactions. When

primary interest is in additive gene actions, QTL models

with many alleles may be advantageous to allow greater

flexibility for panmictic populations (Hoeschele et al.

1997). However, two important implementation issues

must be addressed. First, a multiple allele model may

contain effects for alleles with little supporting phenotypic

data and is thereby prone to less accurate results for QTL

allelic effects (Hayashi and Iwata 2009). To draw accurate

inference on the number of allelic effects, the allelic effects

must differ substantially from each other (Jannink and Wu

2003). Second, the extension to dominance and higher-

order interactions is not straightforward as many interac-

tion effects will not be realized in the phenotypic data. The

extension of our new approach to outbred populations will

be straightforward in case dense marker data are available

to unambiguously assign haplotypes to all parents of the

mapping population. Then the dimensionality of the PIBD

matrices simply doubles and the number of rows in matrix

P also doubles. In our study we had access to accurate

pedigree and marker data on ancestors of the mapping

populations. When ancestral pedigree is unknown or DNA

is not available on the members, the LD-based estimation

method of Meuwissen and Goddard (2000) utilizing very

dense marker data can be applied to obtain the location-

specific parental IBD matrices in outbred and inbred pop-

ulations (Bink and Meuwissen 2004).

The UNR model was the point of departure in our

Bayesian approach and this model already accounts for the

sharing of one or more common parents by multiple pop-

ulations using a pedigree linkage approach. Other recent

Bayesian approaches have been proposed that take unique

QTL allelic effects for each of the mapping parents

(Hayashi and Iwata 2009) with their simulated datasets

containing a common reference parent in a star design.

Fang et al. (2011) assumed the QTL alleles of all mapping

individuals as samples from a normal distribution with a

covariance matrix proportional to the IBD matrix that was

calculated from the marker information on the mapping

offspring and their parents. The modeling of the QTL as a

random effect in a mixed model can be solved more effi-

ciently using restricted maximum likelihood approaches.

Mixed models for QTL mapping in real connected plant

populations have been successful in wheat (Arbelbide and

Bernardo 2006; Crepieux et al. 2005; Rosyara et al. 2009)

and maize (van Eeuwijk et al. 2010), but the treatment of

multiple QTL models is less straightforward for (closely)

linked QTL as was the case in our pilot dataset.

The simulated datasets used in this study reflect a typical

connected population structure as they contained 30 map-

ping populations derived from 16 connected parents with

known ancestry up to 32 original founder individuals.

These characteristics can easily be varied without changing

the applicability of the method. For example, the idea of

ancestral allele classes can also be applied to a single

mapping population derived from two inbred parents.
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In that case, the ancestral PIBD data will indicate which

genomic regions are shared by the two inbred parents and

these regions can be excluded a priori to harbor QTL. This

type of information may substantially increase mapping

precision but is fully ignored in other linkage methods.

Furthermore, plant breeders may consider a large number

of small mapping populations derived from a large number

of parents where these parents inherited a limited number

of (unknown) ancestral alleles. The additional layer of

ancestral allele classes will facilitate substantial power to

associate phenotypic trait variation with genomic poly-

morphisms. The increase in numbers may require more

efficient algorithms to include ancestral IBD information.

The practicality of our new approach was well illustrated

by the successful mapping of QTLs in hybrid selection

programs (van Eeuwijk et al. 2010).

The increasing availability of cheap and abundant

markers opens new ways to advance genetic progress in

plant and animal breeding programs, such as whole

genome selection approaches (Bernardo and Yu 2007;

Meuwissen et al. 2001). However, the application of high-

density (SNP) genotyping to all mapping populations

grown within commercial breeding programs might still

not be feasible due to economic reasons. Therefore, a

substantial discrepancy in marker density between elite

(selected) breeding lines and regular breeding populations

can occur. Our approach tackles this potential discrepancy

and exploits the available sources of information efficiently

to map important genomic regions affecting complex traits.
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Appendix A

Sampling ancestral alleles from a weighted average of IBD

matrices Ql and Qr. The average IBD matrix is

Qk ¼ aQ1 þ ð1� aÞQ2 for 0� a� 1

with a ¼ ðkqtl � klÞ=ðkr � klÞ

Theorem If Pl perfectly fits Ql (Ql ¼ PlP
T
l for the off-

diagonals of Ql) and Pr perfectly fits Qr (Qr ¼ PrP
T
r for the

off-diagonals of Qr) then the following sampling rule gives

samples that fit Qk:

Sample ancestral alleles with probability a from Pl and

with probability 1� a from Pr

Proof

Prði and j fall in same classjsampling scheme)

¼ a
XK1

k¼1

Prði 2 classðkÞ ^ j 2 classðkÞjPlÞ

þ ð1� aÞ
XK2

k¼1

Prði 2 classðkÞ ^ j 2 classðkÞjPrÞ

¼ a
XK1

k¼1

plikpljk þ ð1� aÞ
XK2

k¼1

prikprjk

¼ aqlij þ ð1� aÞqlij ¼ qkij 8i 6¼ j

Note that this theorem cannot be stated in terms of an

average of P matrices.

Appendix B

Effective number of ancestral allele classes

In the TIBD model the number of ancestral classes is known

along the genome. That is, given the threshold value and

matrix Qk pertaining to position k the number of ancestral

classes is fixed. However, the number of ancestral classes in

the LAAM model is more difficult to infer. One approach is

to determine for each k the optimal number of ancestor

classes by an approach as in (ter Braak et al. 2009, 2010).

The approach we take here is to set the number of ancestral

classes equal to its maximum (the number of individuals)

and then use the P matrix to calculate the effective number

of the latent ancestral classes as described by (Hill 1973).

neff ¼ 1

�XK

k¼1

pþk=pþþð Þ2;

where ? used as an index indicates the sum over the index;

for example p?k is the column sum. Note that 1/neff is equal

to Simpson’s index of diversity (Hill 1973). The Simpson

index of diversity can be interpreted in our context as the

probability that two randomly chosen individuals belong to

the same class. Note that this effective number of classes

can be calculated for both the TIBD and LAAM models.

Appendix C

Construction of incidence matrix of QTL effects

to phenotypes

Let W denote the incidence matrix that links the quanti-

tative trait phenotypes of the offspring in the mapping
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populations to the QTL effects in a linear model. This

matrix W can be calculated by multiplication of three

transition matrices, i.e.,

W ¼ TS � TC � TA ð16Þ

where TS denotes the transition of parental alleles to off-

spring, TC denotes the transition of ancestral alleles to

parents, and TA denotes the assignment of QTL alleles to

specific ancestral classes. For the example for Fig. 2b,

these matrices are

Note that alleles A4, A5, and A6 in matrix TC are included

for completeness; they were not transmitted in the example

of Fig. 2.
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