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Abstract. Maximum Likelihood (ML) in the linear model overfits when the number of 
predictors (M) exceeds the number of objects (N). One of the possible solution is the 
Relevance vector machine (RVM) which is a form of automatic relevance detection and has 
gained popularity in the pattern recognition machine learning community by the famous 
textbook of Bishop (2006). RVM assigns individual precisions to weights of predictors which 
are then estimated by maximizing the marginal likelihood (type II ML or empirical Bayes). 
We investigated the selection properties of RVM both analytically and by experiments in a 
regression setting.  

We show analytically that RVM selects predictors when the absolute z-ratio (|least squares 
estimate|/standard error) exceeds 1 in the case of orthogonal predictors and, for M = 2, that 
this still holds true for correlated predictors when the other z-ratio is large. RVM selects the 
stronger of two highly correlated predictors. In experiments with real and simulated data, 
RVM is outcompeted by other popular regularization methods (LASSO and/or PLS) in terms 
of the prediction performance. We conclude that Type II ML is not the general answer in high 
dimensional prediction problems. 

In extensions of RVM to obtain stronger selection, improper priors (based on the inverse 
gamma family) have been assigned to the inverse precisions (variances) with parameters 
estimated by penalized marginal likelihood. We critically assess this approach and suggest a 
proper variance prior related to the Beta distribution which gives similar selection and 
shrinkage properties and allows a fully Bayesian treatment.  
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1. Introduction 
 

Maximum likelihood (ML) or least squares (LS) can lead to severe over-fitting and poor 
estimation, when the number of predictors or basis functions M  is large as compared to data 
size N  i.e., M N. Regularization or shrinkage estimation can improve an estimate and 
regularize an ill-posed problem (Bishop, 2006). This involves adding a penalty term to the 
error function in order to discourage parameters from reaching large values. In a linear model 
the modified error function takes the form  

RSS ∑ | |  for 0, (1) 

where RSS is the residual sum of squares, w = (w1,.., wM)T is the parameter vector containing 
the weights (regression coefficients) for the predictors, and λ   0 is a complexity parameter 
that controls the amount of regularization. For q=2 we have ridge regression (RR) (Hoerl and 
Kennard, 1970) which proportionally shrinks estimates of {wm} to zero, but does not produce 
a sparse solution. In neural networks this is known as weight decay. For q=1 we have the 
LASSO (least absolute shrinkage and selection operator)  (Tibshirani, 1996) which also 
shrinks the coefficients towards zero but also puts some coefficients exactly to zero, and 
therefore performs variable selection (Efron et al., 2004; Tibshirani, 1996). The optimal 
choice for λ in penalized likelihood is often based on cross validation.  

Most regularization methods have a Bayesian interpretation as giving the maximum a 
posterior (MAP) mode for a given prior distribution for the parameters. The prior in RR is 
Gaussian and in LASSO it is double exponential. The equivalence of MAP with the shrinkage 
estimate does not mean that the Bayesian framework is simply a re-interpretation of classical 
methods. The distinguishing element of Bayesian inference is marginalization. By 
marginalizing over w we obtain a marginal likelihood, also known as the type II likelihood or 
the evidence function (Bishop, 2006). The parameter λ can then be obtained by maximizing 
this function, i.e. by type II maximum likelihood, and then w is obtained for this value of λ. 
This procedure is also known as empirical Bayes and automatic relevance determination 
(MacKay, 1992; Neal, 1996). A fully Bayesian approach would also require a prior for the 
hyperparameter λ and marginalization over λ.  

Tipping (2001) created the relevance vector machine (RVM) as a sparse kernel technique 
build upon a linear model with M = N. In RVM each weight wm is assigned an independent 
Gaussian prior with an individual precision, resulting in M hyperparameters which are all 
precisions (or their inverse, variances). Tipping (2001) considered assigning a Gamma prior 
to the precisions, but eventually focussed on a uniform prior for which maximization of the 
posterior reduces to maximization of the marginal likelihood, also called the type II likelihood 
(Tipping, 2001; Bishop 2006). By maximizing the type II likelihood with respect to all M 
hyperparameters many precisions go to infinity (Faul and Tipping, 2002), so creating a sparse 
model as each infinite precision effectively eliminates the corresponding predictor from the 
model. Tipping and Faul (2003) developed a fast sequential algorithm for this. RVM has 
found wide-spread application with 705 citations in the Web of Science as of July 2011, also 
outside the kernel world (Li et al., 2002; Rogers and Girolami, 2005) and found general 
exposure through the exposition in Bishop (2006). However, little is known about the 
properties of RVM. With (hyper)parameters on the edge of the permissible region, general 
asymptotic theory for maximum (marginal) likelihood does not apply.  
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This paper studies the selection and shrinkage properties of RVM in the un-kernelised 
regression setting (Bishop 2006: section 7.2). We found it easier to work with variance rather 
than precision, because a predictor drops from the model when its variance component is 
zero, which is easier to work with than with infinite precision. As Bishop (2006), we phrase 
and study RVM outside its kernel context as a type II maximum likelihood approach to the 
linear model with individual variance components for the predictors. We first state the model 
and rewrite the marginal likelihood in a form that uses inner product matrices of size M × M 
rather than N × N. We then obtain an analytical expression for the selection and shrinkage 
properties of RVM in the special case that the predictors are orthonormal and the error 
variance is known. The main result here is that RVM drops a predictor from the model if and 
only if its z-ratio (least-squares estimate of the weight divided by its standard error of 
estimate) is less than 1 in absolute value. RVM is thus very tolerant in allowing predictors to 
stay in the model. In practice, particularly in a kernel context and always when M N, 
predictors are not orthogonal and regularization methods tend to behave very different in the 
presence of correlation. For example, if the two predictors are highly correlated, LASSO 
selects one, whereas ridge, elastic net (Zou and Hastie, 2005) and PLS (Frank and Friedman, 
1993) select both. Tibshirani (1996) gave analytical expressions for the two correlated 
predictors case for the LASSO. In section 4 we attempt similarly for RVM and arrive at 
analytical expressions for when RVM selects neither, one or both predictors. The main 
conclusion from these expressions is again that RVM is very tolerant in allowing predictors to 
stay in the model. In section 5 we compare RVM on simulated and real data for a range of 
M/N ratios with LASSO and Partial Least Squares (PLS), which is a shrinkage method based 
on latent variables that is very popular in chemometrics (Wold et al., 2001). We conclude 
with a discussion of the RVM and its extensions in relation to fully Bayesian approaches. 

 

 

2. RVM as sparse Bayesian linear regression 
 

RVM for regression is a linear model with a prior that results in a sparse solution (Bishop, 
2006). The model for real-valued target variable t, given an input vector x, takes the form 

,  (2) 

where 	is a vector of M parameters and  is a white noise term that is Gaussian distributed 
with zero mean and variance , which we will assume known. The regression function 

,  is then defined as the linear model  

, ∑   (3) 

with fixed nonlinear basis functions . For ease of presentation we ignore the constant 
term representing bias as it can be dealt with by centring the target variable and basis 
functions. For a given set of N independent observations of the target t and input vector x, the 
data likelihood function of the target vector , … ,  for given input vectors 

,…,  is  

t|w, 2 N 2⁄ N ∏ exp , .  (4) 

To make it a Bayesian model we need to specify a prior for the parameter . In RVM, each 
parameter  is an independent zero mean Gaussian with a separate variance parameter , 
giving 
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 | 2 M 2⁄ ∏ ⁄ exp  (5) 

where , … , 	is the vector of hyperparameters, which are in our notation not 
precisions but variances. These M independent hyperparameters control the strength of the 
prior over its associated weight and this form of prior is responsible for the sparsity properties 
of the model (Tipping, 2001).  

In type-II maximum likelihood (Berger, 1985), also known as empirical Bayes or evidence 
approximation (MacKay, 1992), an estimate  is obtained by maximizing the marginal 
likelihood | , 	over , which is then plugged into posteriori density | , , , 
which is a multivariate normal, the mean of which is taken as the shrinkage estimate . The 
marginal likelihood requires integration over , giving the multivariate normal density 
(Bishop, 2006) 

| , | , | 2 ⁄ | | ⁄ exp ,  (6) 

where I  with  the  design matrix, of which the ith row is 
, … , 	and A diag , … , .  

Our goal is now to maximize (6) with respect to the hyperparameters . At this point we 
deviate from Bishop (2006) and convert the inverse and determinant of the	N N matrix  
using the matrix inversion and determinant lemma or Woodbury formula (Golub and van 
Loan, 1989) into forms using M M matrices. On deleting terms that do not depend on , we 
obtain (Appendix A) 

∝ |I A| ⁄ exp 	 σ . (7) 

This marginal likelihood has a form equivalent to the posterior distribution of the variance 
component in a hierarchical linear model or random model (O'Hagan and Forster, 2004; ter 
Braak, 2006). The study of the selection properties of RVM is equivalent to the study of the 
conditions under which hyperparameters ( -values) become zero. We do this by setting the 
derivative of (7) with respect to  to zero, solving the resulting equation for , checking that 
this represents a maximum and checking whether the obtained  has some zero elements.  

 

3. Orthonormal predictors 
 

In this section we study the selection properties of RVM in the special case that the 
predictors are orthogonal, i.e. 	  is a diagonal matrix. In this case the marginal likelihood 
(7) decomposes as a product of individual likelihoods  with (Appendix B) 

∝ 1 ⁄ exp  (8) 

where ⁄ , the least-squares estimate, / , the variance of , 
and  is the mth column of . The variance component 	that maximizes (8) is 

, (9) 

where .  is the positive part operator, defined as  if 0 and 0 otherwise. In the 
orthogonal predictor case, RVM thus leads to soft thresholding (Donoho and Johnstone, 1994; 
Donoho, 1995) of the variance component, whereas LASSO does this for the weights  
(Tibshirani, 1996). Also observe that 0, iff  or, equivalently, |z-ratio| ≡



6 
 

| / | 1 where se(.) is the standard error of estimate. The elements of the shrinkage 
estimate , for which the z-ratio in absolute value is smaller than 1, are thus zero. The 
corresponding predictors can thus be pruned. Fig. 1 displays the result for the case of two 
uncorrelated predictors. 

 

 
 

 

4. Two correlated predictors 
 

We now consider the case with two correlated predictors and assume they are rescaled 
such that  1 and . In this case, A is a 22   diagonal 
matrix with diagonal elements  and  which are linearly changed by the rescaling. The 
dependence of the marginal likelihood  on 	  can be removed by transformation to 
variance ratios /  and by defining c /σ, d /σ. The maximum is invariant 
under these transformations. Note that c is the simple z-ratio, that is the z-ratio in least-

 

Fig. 1. Two uncorrelated predictor case: regions in terms of the z-ratio (estimate/standard 
error) where the RVM estimate of the weights and associated variance components are 
exactly zero. In these regions the corresponding predictor(s) can be pruned from the 
model. 
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squares regression with single predictor , and the same holds for d and . On using 
Mathematica, differentiating ,  with respect to  and  and setting the derivatives 
equal to zero gives (Appendix C) 

. (10)  

This represents a maximum if 0 and 0. From (10), if 0, then 1  
and it should hold that 

1 1 1 . (11) 

Inserting 1  in (11) and solving for c gives upper and lower bounds 

1 1 1 . (12) 

Subject to 0, values of c within the bounds of (12) give =0, and consequently 0. 
Interchanging the roles of and  and thus c and d yields similar for bounds of d such that 

=0, and consequently 0, now subject to 0. If 0, then 1 , and if 
=0, then 1 , so that both variance ratios are zero if both | | and | |	are smaller 

than 1. The bounds are a function of c, d and .  

Figs 2a,b shows these bounds for  = 0.5 and 0.9 in the (c,d)-plane and the resulting 
regions where none, one or both weights are exactly zero. Figures for the corresponding 
negative values of ρ differ only in rotation over 90◦ and shading.  

Whereas for ρ = 0, 0 if the simple z-ratio c is less than 1 in absolute value ( | | 1), 
no such simple rule exists for ρ ≠ 0. The interval of c-values for which the first weight is 
exactly zero depends on d, as shown in Figs 2a,b. For example, for ρ = 0.9 then still 0 
for | | 1 if d = 1, but if d = 4, then 0 if 2.88 	 3.87 (Fig. 2b). The simple z-ratio 
alone thus says little about the nullity of the first weight estimate. We need both c and d.  

Figs 2c,d shows the same bounds in terms of the (multiple) z-ratio’s, / , m = 1,2, 
i.e. y and  is a diagonal element of , so that, in the 

two predictor case, / 1  and / 1 . For ρ = 0, this is 
the identity transformation and the result is the same as Fig. 1. With → ∞ in (12), 

→ 1 , so that → 1 (Figs 2c,d); the associated values of  are 1
. For small and intermediate values of d the bounds are less simple. The same holds for	 →
∞ so that → 1 with 1 . 

Some more insight into Fig. 2 is obtained by noting that the corners of the unit rectangle in 
Fig. 2a transform to the corners of the approximate trapezium in Fig. 2c; the (1,1) corner 
becomes (0.58,0.58), the (1,-1) corner becomes (1.73,-1.73) for ρ = 0.5, and the opposite 
corners (-1,-1) and (-1,1) follow by mirroring. This means that with the z-ratio pair (0.6,0.6) 
both variables stay in the model. So it is not even necessary that the z-ratio exceeds 1 for 
obtaining a non-zero type II ML estimate. For ρ = 0.9, the corners become (0.23, 0.23) and 
(4.36,-4.36). So, for example, the z-ratio pair (0.3,0.3) gives two non-zero type II ML 
estimates, but the pair (4,-4) yields two zero estimates in type II ML so pruning both 
predictors from the model, despite the fact that for this ρ the chi-square test-statistic of the 
latter point is about 9 times that of the former. This is a remarkable property of type II ML. 
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Note that the white upper-right and lower-left corners in Figs 2c,d come from the small 
white wedges in Figs 2a,b in the same corners. In Fig. 2b the wedge is very small: if the 
correlation among predictors is high, both predictors to stay in the model when c and d are 
very close or very different, or both should be very large.  

 

Fig. 2. Two correlated predictor case: regions in terms of the simple z-ratio (a,b) and multiple 
z-ratio (c,d) where the RVM estimate of the weights and associated variance ratios are exactly 
zero. In these regions RVM prunes the corresponding predictor(s) from the model. The simple 
z-ratio is based on least-squares with a single predictor, the (multiple) z-ratio on least-squares 
with two predictors.  

In conclusion, if the (estimated least squares) effect of one predictor is very strong, the 
bound for the additional correlated predictor comes close to the bound for the uncorrelated 
case (|z-ratio| > 1 for a predictor to stay in the model). If, by contrast, neither predictors has a 
large effect, then type II ML prunes the one with the smallest effect. If, for positively 
correlated predictors, they have virtually identical estimated effects, then both predictors stay 
in the model, even if their z-ratio is as small as 0.6 and 0.3 for ρ = 0.5 and 0.9, respectively. 
However, if for positively correlated predictors, the estimated least squares effects are of 
opposite sign, type II ML excludes both predictors, except when the z-ratios are large.  
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5. Experiments 
 

In the following we compare the performance of RVM with LASSO and PLS on simulated 
and real data. Computation was carried out in R (R Development Core Team, 2010) using the 
packages lme4 (Bates et al., 2011), glmnet (Friedman et al., 2010) and pls (Wehrens and 
Mevik, 2006). The kernelized version of RVM was carried out with the function rvm in the 
kernlab package (Karatzoglou et al., 2004). Results are for two types of kernels: RVMrbf 
(Gaussian radial basis kernel) and RVMlin (the linear or dot product kernel).  A prototype 
statement to carry out un-kernelized RVM (by Type II ML) in lme4 with M = 2 is 

lmer(t ~ (0 + x1 | v) + (0 + x2 | v), data=train, REML=FALSE) 

where t is the target, x1 and x2 predictors, v is an all ones N-vector and train is a data frame 
containing these vectors. The argument REML shows that RVM could also be fitted using 
Residual Maximum Likelihood (Searle et al., 2008). REML estimates of variance components 
are generally less biased than ML estimated. In the experiments we show results from both 
Type II ML and REML. In RVM context the differences are expected to be small.  

5.1	Simulation	study	
 

We first checked that lmer follows our theoretical analysis that RVM with orthogonal 
predictors sets the variance of predictors to zero if their |z-ratio| ≤ 1. For this, we generated 
data sets with R-package mvrnorm with M=6 orthogonal predictors and target t such that the 
z-ratio’s in a least squares fit were 0.90, 0.94, 0.98, 1.02, 1.06, and 1.10. For large N (e.g. N =  
100 and 1000), lmer followed the theory in all such data sets. For small N,  the two small 
differences between our theory and lmer play a role. First  we could not fix the error variance 
to 1 as we did in our theory and, secondly, we could not omit the intercept. The REML- and 
ML- estimates for the error variance by lmer were biased downward with, as expected, less 
bias in REML than in ML, and with less bias for larger N. For small N (we tested with N = 8 
and 20),  our theory still turned out to work for the estimated z-ratio, that is, the z-ratio in 
which the estimated error variance  is inserted for σ2. The variance estimates by both 
REML and ML were in accordance with equation (9) with / , except in 
occasional cases of non-convergence. So, lmer followed the theory for orthogonal predictors 
also quantitatively.   

Next, we simulated data where all predictors were assumed to be independent and 
Gaussian distributed, but not necessarily orthogonal in each particular data set due to 
randomness or N < M. We simulated data from the true model , ~ 0,1 , σ = 1 
with 3 and 0 for  1 where 1,… , , and M = 1, 5, 10, 20 and 100 
predictors. The examples thus differ in the number of weights equal to zero (noise predictors). 
The lme4 implementation of type II ML did not allow much higher M. We set N = 20 to still 
get a wide range of M/N. For each example, 100 datasets were generated. For computing 
mean-squared error of prediction of the target (MSEP), each dataset was split into training 
data of N = 20 observations and test data of 1000 observations and MSEP was calculated from 
the test data using the weights estimated from the training data. 

Table 1 and Fig. 3 summarize the results. Type II ML and REML behaved similar and 
almost identically to LASSO for M = 1 and 5 but behaved worse for . PLS had the 
worst performance in all examples.  
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The next three examples are similar to those in Zou and Hastie (2005), where simulated 
100 data sets are simulated from the model  with ~ 0,1 . These examples 
are:  

In example 1, N = 20, M = 8, w = (3, 1.5, 0, 0, 2, 0, 0, 0)T and the predictors are Gaussian 
with corr , | | with = 0.5. We set σ = 3 and this implies SNR ≈ 1.5.  

Example 2 is the same as example 1, except that 0.85   m (SNR ≈ 1.3). 

 

 

Table 1. Median mean-squared prediction errors for the simulations with independent 
predictors for different methods (100 replications). In parentheses are the corresponding 
standard errors (of the medians) computed via 1000 bootstrap resamples of the 100 mean 
squared errors. The null model used the mean for prediction. 

 

 

 

 

 

 

 

 

 

 

In example 3, N = 50, M = 40, 3 for m = 1, …, 15 and 0 for m = 16, …, 40 
and SNR ≈ 1.7. The first 15 predictors are three equally important groups of 5 predictors each, 
which are generated as follows:  

 with ~N 0,1 , 1,… ,5 

 with ~N 0,1 , 5,… ,10 

 with ~N 0,1 , 10,… ,15 

 

    Type II 

M null model LASSO PLS ML REML 

1 10.33 (0.062) 1.09 (0.011)  1.09 (0.010) 1.09 (0.010) 

5 10.31 (0.086) 1.17 (0.024) 1.32 (0.032) 1.14 (0.031) 1.14 (0.027) 

10 10.45 (0.087) 1.27 (0.021) 2.04 (0.104) 1.32 (0.035) 1.31 (0.035) 

20 10.32 (0.079) 1.45 (0.045) 4.97 (0.275) 2.44 (0.111) 2.38 (0.101) 

100 10.39 (0.063) 1.52 (0.045) 8.81 (0.123) 2.21 (0.080) 2.14 (0.053) 
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Fig. 3. Box plot of the mean-squared prediction error (MSEP) for LASSO, PLS, ML and 
REML of the 100 simulations with independent predictors. 

and ~N 0,0.16  for 1, … ,15. In this model, the pairwise correlations within groups 
are 0.86 and the correlations between groups are 0. The remaining 25 predictors are pure 
noise features.  

 

The next four examples are from ter Braak (2009) and use a latent variable model. In these  
examples the target was generated from four independent standard Gaussian latent 
variables	 , ⋯ ,  by 

∑  with ~N 0,  

and fixed , … , , and the predictors were generated by 

 with ~N 0,1 	 1, … , , 1, … , 4, 1, …	, , 

and  fixed { },yielding predictors with unit variance. The following four examples differ in 
the number of predictors per latent variable ( ) , the weights ( , { }), and the number of 
noise variables added.  

In Example 4, N = 50 , M = 75, 22.9, 22.9, 22.9, 22.9  and σ = 15, so that signal to 
noise ratio (SNR ≡ sd(E(t)/σ) is 3. The first latent variable h1 generate m1 = 5 predictors with 

0.85   k (SNR= 1.6). The second, third and fourth latent variables generate 10, 20 and 
40 predictors in the same way by using q = 2, 4 and 8 repetitions of the  coefficients, 
respectively. In this setup, the population least square weights for the predictors associated 
with the first latent variable are w = (5, 5, 5, 5, 5)T and the weights for the predictors 
associated with the other three latent variables are equal to ~5/q, more precisely 2.59, 1.32 
and 0.67. The within-group correlations are 0.72. This example has 75 nonzero coefficients 
and no zero coefficients.  

Example 5 is as example 4, except that 75 nuisance predictors are added.  

Example 6 has N = 50 with M =75 predictors and target generated as in example 4 but with 
different { },  σ = 15 (SNR ≈3.2). For first latent variable { } = )20,20,0,20,20(  . The 
second latent variable generated two block of five coefficients; in each block { }  =

)10,10,0,10,10(  . The third latent variable generated four blocks of five predictors; in each 
block { }  = (2, 2, 0, 2, 2) and the fourth latent variable generated eight blocks of five 
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predictors; in each block { } = (1, 1, 0, 1, 1).  In this setup, contrasts of correlated 
predictors derived from the first and second latent variable are important for precise 
prediction (ter Braak, 2009).  

Example 7 is as example 6, except that 75 pure noise features are added.  

Table 2 summarizes the results based on 100 simulations of the examples. Note that the 
numbers in Table 2 are σ2 higher than those in ter Braak (2009). Type II ML and REML 
perform comparably to LASSO and PLS in examples 1-2, but do poorly in examples 3-7. 
RVMrbf does better than either Type II ML or REML, except in examples 1 and 2, and better 
than RVMlin, except in examples 4 and 6. The performance of PLS is the best in all examples, 
except in examples 1 and 6 where LASSO dominates all. 

5.2	Real	data	example	
In this example we reconsider the barley dataset from the North American Barley Genome 

Mapping project to illustrate the performance of Type II maximum likelihood and LASSO 
(Xu, 2007). The data consists of N = 145 doubled haploid population lines of barley. The 
target t was average kernel weight. The input vector x was the genotype of the line, consisting 
of M = 127 markers. Each marker was coded as  1 for genotype A (TR306 allele), -1 
for genotype B (Harrington allele) and 0 for missing genotype. The mean squared error of 
prediction, estimated using 10-fold cross-validation, was 1.62 for type-II maximum likelihood 
and 0.68 for LASSO (the LASSO penalty being estimated by an inner loop of cross-
validation). Fig. 4 shows the estimated weights of markers for the two methods. Both the 
methods perform similar in terms of sign and have same direction for coefficients. The 
LASSO pattern of weights is more shrunken towards zero as compared to type II ML. Type II 
ML has thus higher peaks. 
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Fig. 4. Marker weights w estimated by type II ML and LASSO in the barley data. 
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6. DISCUSSION 
 

 

RVM has the attractive property that it automatically selects relevant predictors. Its 
hyperparameters are estimated by type II ML (empirical bayes). By contrast, methods such as 
LASSO require crossvalidation to set the penalty hyperparameter. We showed analytically 
that RVM selects predictors on the basis of the least-squares z-ratio (|z|>1) in the case of 
orthogonal predictors and, for M = 2, that this still holds true for correlated predictors when 
the other z-ratio is large. We also found that RVM prunes the weaker of two highly correlated 
predictors. In a kernel setting, predictors are likely to be highly correlated, so RVM prunes 
there. In our simulated and real data, we found that RVM gave higher prediction error than 
LASSO. 

The threshold of 1 for the z-ratio is a kind of minimum that is also implicit in the AIC 
criterion. For M >N, it appears too weak. For example, Donoho (1995) advocated pruning 
based on | | 2log	  based on the idea that, for large M, the maximum of M independent 
standard Gaussian deviates is below this threshold with probability close to 1. More recent 
work proposes thresholds based on the ratio of the actual and potential model sizes 
(Abramovich et al., 2005). RVM does not have this property. 

In line with the original ideas in Tipping (2001), Xu (2007, 2010) extended the RVM 
approach by adding a (hyper)prior for the variance components. With a uniform prior for the 
variances his approach reduces to RVM, whereas it relates to the adaptive sparseness method 
(Figueiredo, 2003) with a Jeffrey’s prior. The prior adds a penalty to the marginal likelihood; 
the penalized marginal likelihood is maximized to obtain the variance components. The prior 
provides the means for threshold values higher than 1, although we were not yet able to show 
that analytically.  

Penalized methods are often given additional underpinning as giving maximum a posteriori 
(MAP) estimates in the Bayesian framework (Zou and Hastie, 2005). In the same vein, RVM 
yields variance estimates that are MAP under a uniform prior for the variances . But what 
happens in terms of precisions? The posterior density would change with a Jacobian term 
involving ∏  that accounts for the transformation to precision and therefore the MAP 
would change when back-transformed to variance. By contrast, penalized methods are 
invariant under transformation. The Bayesian underpinning of penalized methods is thus 
rather thin. 

This raises the question whether RVM and Xu’s extensions can be thought of as 
approximations to a fully Bayesian model. Xu (2007, 2010) uses independent scaled inverse 
chi-square distributions as priors for the variances, which is equivalent to gamma distributions 
for the precisions. The prior for  is thus inverse gamma 

 | , ∝ exp , (13) 

which is proper for a>0 and b>0 and leads to t-priors for the weights. For obtaining more 
shrinkage, Xu (2007, 2010) used improper priors with b=0 and -1≤ a ≤0. The model is 
equivalent with the improper δ-prior (ter Braak, 2006; ter Braak et al., 2005). 

| ∝ .   (14) 

Their fully Bayesian treatment showed that the posteriors for  and  are proper if and only 
if 0 1/2 or equivalently 1/2 0 with b = 0 in (13) and that the model gives 
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attractive sigmoidal shrinkage for small , similar in form of that of the SCAD penalty (Fan 
and Li, 2001). Note that the uniform prior ( 1) for  (RVM) and Jeffey’s prior are 

excluded ( 0). The uniform for the standard deviation /  ( 1/2) is not excluded, but 
does not shrink. We conclude that the empirical Bayes approach in RVM and its extensions 
by Xu (2010) are not supported as approximations to a fully Bayesian approach; the fully 
fletched Bayesian model does not even exist for the values used for the parameter of a and b. 

Parameters of priors such as (14) can no longer be estimated in a Bayesian way if they are 
improper. The reason is that it is impossible to add an additional level to the Bayesian model 
and to assign them a hyper prior so as to obtain the posterior distribution of  for the assigned 
hyper prior. It is therefore of interest to define a proper prior for the variances. In terms of the 
scaled variance ratios  γ α /  a useful proper prior is  

| , 1 , for a >0 and b >0. (15) 

For a = b = δ  small, (15) gives very similar shrinkage properties as shown in ter Braak 
(2006) for (14). This prior is closely related to the beta distribution; if  ~ Beta(a,b), 
then		 1⁄  follows distribution (15).  Conversely, 1⁄  which 
can be interpreted as shrinkage coefficient; it relates the shrunken estimate  to the least-
squares estimate  via   in the orthogonal predictors case. Whereas (15) 
implies a proper Beta(a,b) prior for , (14) implies the improper Beta( , ) prior. The 
model with the proper prior is a rival for methods in which discrete mixtures of weights 
(George and McCulloch, 1993; Johnstone and Silverman, 2004) or variances (Meuwissen et 
al., 2001) give sparsity and is of interest for further study; see e.g. Polson and Scott (2009). 
Such models are needed as this paper suggests that Type II ML in the linear model with 
individual variance parameters is not the general answer in high dimensional prediction 
problems. 

 

 
Appendix A: Derivation of equation (7) 

Here we convert the marginal likelihood  from a form that uses  N N  matrices to 
one that uses  M M matrices.  We start with  

2 ⁄ | | ⁄ exp , (A.1) 

where I . The Matrix Determinant Lemma gives (Golub and van Loan, 1989; 
Roweis, 1999) 

| | | I | | I|| | -1 σ | I |. (A.2) 

The Matrix Identity Lemma or Woodbury formula gives (Bishop, 2006; Golub and van Loan, 
1989; Roweis, 1999) 

I ,  (A.3) 

so that 

. (A.4) 

On inserting (A.2) and (A.4) in (A.1) and deleting the terms that do not depend on , we 
obtain 

∝ |I A| ⁄ exp 	 σ , (A.5) 
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which is (7). 

 
 
Appendix B: Derivation of equation (8) 
 

If 	  , (A.5) decomposes as a product of individual likelihoods  with 

∝ 1 σ ⁄ exp ⁄ . (B.1)  

With ⁄ , the least-squares estimate, and / , the variance of 
, (B.1) can be written as 

∝ 1 ⁄ exp , (B.2) 

which is (8). 

Appendix C: Derivation of equation (10) 
Next, we consider the case of two correlated predictor variables with weights with variance 

parameters 	  and . On defining  	 / , c  /σ, d /σ, (A.5) becomes 

 

, ∝
1

1
0

0

⁄

exp
1

1
0

0 .  (C.1) 

 
Differentiating ,  with respect to  with Mathematica and then setting derivatives to 
zero gave a ratio for 	  with numerator 

1 2γ 2 γ γ γ 2 γ 2 γ γ γ γ  (C.2)  

and denominator 1 γ γ . Simplifying with Mathematica did not help and was done 
by hand by collecting terms that involved c or d and those that did not. The terms involving c 
or d are 

γ 2 γ γ γ  , (C.3) 

2 γ 2 γ 2 γ   (C.4) 

and , resulting in  

γ 2 γ γ  (C.5) 

and the terms involving neither c nor d are 

1 2γ γ γ γ 1 γ 1 γ 1 , (C.6) 

so that by insertion 

. (C.7) 

 
The expression for  was obtained by symmetry.  
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Table 2. Median mean-squared prediction errors (MSEP) for the simulated examples 1-7 for six methods based on 100 replications. In 

parentheses are the corresponding standard errors (of the medians) estimated by using 1000 bootstrap resamplings of the 100 MSEPs. For each 

example the smallest mean-square is in bold  (NA = not available as rvm ended with an error). 

 

 

 Method Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 

  MSEP se MSEP se MSEP se MSEP se MSEP se MSEP se MSEP se 

LASSO 12.4 (0.34) 13.5 (0.31) 311.0 (4.3) 483.4 (8.8) 436.6 (8.2) 663.8 (14.3) 1134.9 (19.3) 

PLS 13.4 (0.38) 11.0 (0.30) 273.4 (4.4) 351.5 (4.9) 361.7 (6.7) 750.1 (13.8) 989.7 (19.9) 

Type-II ML 12.9 (0.40) 13.9 (0.35) 380.1 (7.5) 1132.7 (27.0) 601.4 (11.2) 1129.5 (27.1) 1278.4 (37.1) 

REML 12.8 (0.37) 13.8 (0.29) 379.7 (8.3) 1155.9 (37.6) 599.5 (10.1) 1110.7 (32.2) 1314.1 (36.1) 

RVMrbf 24.0 (0.81) 20.6 (1.12) 347.0 (3.2) 605.7 (7.3) 437.3 (6.17) 1061.0 (11.5) 1044.2 (10.7) 

RVMlin NA  NA 431.5 (7.4) 512.3 (6.4) 603.1 (8.5) 884.2 (12.9) 1279.6 ( 9.5) 

 

9   9  225  225  225  225  225   

N 20   20  50  50  50  50  50   
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