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Stellingen 
1. Adsorptie van polymeren op de kopgroepen van een zelf-associerend 

membraan maakt dit membraan stijver als de kopgroepen groot zijn en 
minder stijf als de kopgroepen klein zijn. 

—Dit proefschrift, hoofdstuk 4. 

2. Bij het toepassen van de numerieke zelf-consistente veld theorie is het 
zaak om niet in hokjes te denken. 

—Dit proefschrift, appendix B. 

3. In tegenstelling tot wat Currie et al. beweren is het wel mogelijk om een 
uitdrukking voor de oppervlaktedruk van verankerde ketens te geven 
binnen de self-consistente veldtheorie. 

—Macromolecules 32, 487 - 498, 1999, Dit proefschrift, hoofdstuk 2. 

4. De numerieke zelf-consistente veldtheorie is een waardevol gereedschap 
om de haalbaarheid van een analytische theorie te voorspellen, danwel 
om de correctheid hiervan aan te tonen. 

5. Het feit dat veel barpersoneel in uitgaansgeledenheden gehoorbescher-
ming draagt is geen geruststelling voor het publiek. 

6. De Euro is te snel ingevoerd. 

7. Iedere democratie kent slachtoffers van de dictatuur van de meerder-
heid. 

8. De meest gehoorde zin in de trein is: "ik zit in de trein". 

Stellingen behorende bij het proefschrift 
'Self-consistent-field theory for chain molecules: 

extensions, computational aspects, and applications', 
J. van Male, Wageningen, 14 maart 2003. 
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1 Introduction 

1.1 Thermodynamics 

Molecules consist of atoms, the basic building blocks from the well-known periodic 
table of elements. Atoms may be linked to each other, forming molecules. The 
number of ways in which atoms may form molecules is almost limitless. All matter 
consists of molecules. Water, plastic, air, paint, peanut butter but also living beings 
are (as far as we know) merely a collection of molecules. 

Until the beginning of the 20th century, however, the existence of molecules and 
atoms as basic building blocks for all matter was still heavily debated. Great sci­
entists like Carnot, Joule, Kelvin, and Clausius laid the foundations of a branch of 
physics which is known as thermodynamics, without the assumption that atoms ex­
ist as separate particles. Thermodynamics therefore gives relations between macro­
scopic quantities like energy, heat, temperature, and work. 

The first law of thermodynamics may be formulated simply as [1] 

l th Law: Energy is always conserved. 

This definition may look simple, since energy is a term which is commonly used 
nowadays. However, it proves to be a difficult task to give a precise definition of 
the term energy. For a discussion about the issues involved see ref. [2]. 

A thermodynamical quantity that is not commonly used outside the scientific 
community is called entropy. The second law of thermodynamics may be formulated 
as[l] 

2nd law: Spontaneous processes increase the entropy of the universe. 

Where the first law may look understandable at first sight, in contrast this second 
law seems a complete mystery. Although the term 'entropy' has not gained any 
popularity in everyday speech, it turns out to be easier to define than notions like 
'energy' or 'temperature'. 

A less precise rephrase of the second law is that anything that happens sponta­
neously increases the total chaos of the universe. The second law states that this 
order may be formed locally (e.g. a human being or a bike) but that this necessarily 
means that even more disorder has been created at the same time in the remainder 
of the universe. Boltzmann discovered the equation that enables us, in principle, 
to count this disorder. It was Boltzmann who quantified the term 'entropy' in the 
second half of the 19th century in terms of molecules. Before that time, the second 
law of thermodynamics was merely an observation, like the first law. His equation 
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S = k\ogW (1.1) 

The symbol S denotes entropy, k is the Boltzmann constant, and W is a measure for 
the chaos of the system at hand. A more scientific term for W is the 'degeneracy' 
of the system. To be even more precise: W is the number of realisations for a given 
system when we fix the volume, the number of molecules, and the energy of the 
system [3]. 

In order to be able to count the number of realisations W we need to intro­
duce the concept of molecules. One can envision that it is possible to 'count' the 
number of ways we can place, say, 5 identical molecules in a container. Eq. 1.1 
therefore gives a relation between the macroscopic description of the world as given 
by thermodynamics and the microscopic world of molecules. 

As stated in the first law of thermodynamics, the total energy of the universe 
is conserved. Mostly, however, we are not interested in the universe as a whole 
but only a small sub-system. This sub-system may exchange energy or molecules 
with its environment or it may not have a constant volume. Then it doesn't suffice 
to apply eq. 1.1 directly. Instead of a constant energy, volume, and number of 
molecules, the system under study may have a constant pressure and temperature, 
which is far more common. Theoretical methods to deal with these more common 
constraints have been developed systematically by Gibbs. 

We will use these methods to derive equations that describe the equilibrium 
behaviour of different types of polymers in solution and near interfaces. Due to the 
complexity of the systems under study we will introduce several approximations 
and solve the resulting equations numerically. 

1.2 Polymers in solution and near interfaces 

The most simple type of polymer is a homopolymer: a linear string of interconnected 
equal monomers. Usually, this string is flexible and will form a coil in solution 
when the interaction with the solvent is not too unfavourable. Upon increasing 
the concentration of polymer, the coils will start to interpenetrate, the solution 
is then called semi-dilute. A further increase of polymer concentration leads to a 
concentrated solution or even a pure polymer phase: a melt. When the interaction 
of the homopolymer with the solvent is made more unfavourable, for example by 
changing the temperature, the polymers will phase separate. The result will be a 
dense polymer phase coexisting with a solvent phase. 

The polymers do not have to be homopolymers. More complex chain architec­
tures exist. Examples are block copolymers, where two or more blocks of identical 
segments are covalently linked into one chain. Block copolymers generally exhibit 
more complex behaviour than homopolymers. When one block is soluble and the 

1This is the formula as it appears on Boltzmann's tombstone. In the main text of this thesis we 
will replace W by O and 'log' by 'In'. 
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other block hardly so, they may form self-assembling aggregates in solution. The 
insoluble blocks will lump together in an aggregate that may be, for example, spher­
ical or cylindrical. The soluble blocks will protrude into the solution, shielding the 
unfavourable interactions of the insoluble blocks with the solution. Different types 
of such aggregates exist. 

This thesis deals with polymers in the liquid phase and near interfaces. This 
interface may be either a solid wall or a more diffuse one resulting from phase 
separation or self-assembling of molecules, as described above. The polymers will 
adsorb onto these interfaces when the interaction between the polymer and the 
interface is favourable. It is of interest to be able to predict to what extent this 
adsorption takes place and how the properties of the interfaces are altered when the 
polymers adsorb onto them. 

1.3 Overview of theoretical approaches 

Theoretical investigation of polymers can be done in a number of different ways. 
Each technique has its own merits and drawbacks. This section gives a short 
overview of the main theoretical methods that can be used to predict or explain the 
experimental behaviour of polymers. The classification used below is necessarily 
rather arbitrary, as many efforts have been made to integrate different techniques. 

1.3.1 Simulations 

Simulations start from a few fundamental equations and compute the time evolution 
of the system at hand. Within the limits of the (necessary) assumptions made in 
the simulation the results can be considered exact. Therefore, simulations are often 
referred to as 'computer experiments' and provide a good reference point for other 
theoretical approaches. Depending on the approximations made, simulations can 
be divided into different categories. 

Ab-initio quantum mechanics makes use of our most fundamental knowledge of 
the behaviour of molecules: quantum mechanics. Only very few molecular systems 
are known for which exact solutions exist. Due to the complex mathematical na­
ture of the equations of quantum mechanics, these exact solutions hardly surpass the 
realm of a single hydrogen atom. However, the introduction of computers and suit­
able approximations to the exact equations has lead to considerable progress. For 
example, the reaction pathway of an enzyme catalysed reaction is feasible through 
focusing only at the active center of the enzyme and its interactions with the reac-
tants. 

Molecular dynamics (MD) makes use of the fact that for many practical appli­
cations the quantum mechanical treatment is not necessary. Instead, the behaviour 
of the molecules are governed by the classical equations of motion as formulated 
by Newton. The quantum mechanical nature of mutual forces between atoms is 
replaced by so-called 'force fields'. When the position and velocity of all atoms 
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together with the forces that act on each atom are known, the equations of mo­
tion can be numerically solved by brute force to obtain the time dependence of the 
system [4]. 

Brownian dynamics is in a way comparable to Molecular dynamics. The main 
difference is that it is usually applied for either large molecules or particles in so­
lution. The large molecules or particles move far more slowly than the solvent 
molecules. In Brownian dynamics the solvent molecules are therefore not explicitly 
taken into account. Instead, use is made of the fact that that the solvent causes on 
the one hand random displacements of the large particles due to thermal noise and 
on the other hand give rise to a certain friction on the large molecules or particles. 
On top of this a systematic force, stemming from e.g. electrostatic interactions be­
tween the polymers or particles may be imposed to describe the time evolution of 
the system. 

In the Monte Carlo method molecules are moved using other strategies. A trial 
move is made by switching the position of two (nearby) molecules (or atoms). When 
this lowers the total energy of the system, the move is accepted. When this increases 
the energy, a random number (between 0 and 1) is generated. This random number 
is compared to exp(—U/kT), where U/kT is the (dimensionless) energy increase. 
Only when the random number is lower than exp(—U/kT), the move is accepted. 
This method was originally devised to study the equilibrium state. However, when 
the two molecules are always chosen to be close to each other one can also study 
the diffusion dynamics of the system at hand. 

A relatively new simulation technique is Dissipative Particle Dynamics (DPD) [5]. 
This technique resembles Molecular Dynamics (MD): the particles move according 
to Newton's laws. However, in DPD the interparticle interactions are chosen such 
that they allow for much larger time steps. The forces between DPD particles 
(which represent clusters of microscopic particles) are soft-repulsive: the particles 
are allowed to interpenetrate to some degree. Furthermore, the DPD particles are 
subject to a dissipative force which slows down the particles and to random force 
which adds energy to the particles. These two forces are chosen such that momen­
tum is locally conserved. This allows for the study of physical behaviour on time 
scales many orders of magnitude greater than possible with MD. 

The main drawback shared among all simulations is that it is hard to obtain the 
equilibrium or the long time-scale behaviour of polymers in solution, especially for 
large system sizes. The coarse-graining used in DPD solves this problem partially. 

1.3.2 Field theories 

A number of different approaches try to circumvent solving the many-body problem 
as is done in simulations. The focus is not on the position of every particle in the 
system, rather it is on the average density at a given position. At each position in 
space, a given particle interacts with the local average of all other particles, instead 
of interacting with different individual molecules. Especially for polymer systems 
in which the exact molecular details are not essential for the overall behaviour, this 
turns out to work rather well. 
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This thesis deals with one such theory, the self-consistent-field (SCF) theory, 
originally developed to study homopolymer adsorption onto a solid surface by 
Scheutjens and Fleer [6]. Historically, the continuum notation of the SCF equations 
dates back to 1965, when Edwards [7] analytically solved the equations describing 
an isolated homopolymer chain, which was grafted to the centre of a coordinate sys­
tem of spherical geometry. Later this work was extended by Helfand and Tagami [8] 
to describe the demixing of polymer blends. In these seminal papers and a lot of 
work following them, a continuum notation was used for the chain propagators. 
However, it was soon noted that for non-trivial problems the equations had to be 
solved numerically. When solving the SCF equations numerically, space needs to 
be discretised. 

Independently, DiMarzio and Rubin [9] used a discrete notation to describe the 
behaviour of homopolymers in solution in between two solid walls. This work was 
extended by Scheutjens and Fleer [6] in 1979 to incorporate excluded volume, a 
feature also present in the theories of Edwards and Helfand. Due to the different 
background of the researchers involved and the different notation of the equations 
it took several years before it was realised that the theory of Scheutjens and Fleer 
is in principle equal to that of Edwards, although they were originally constructed 
to solve a different problem. 

The self-consistent-field (SCF) theory deals with the equilibrium distribution 
in space of (chain) molecules and the resulting thermodynamical quantities of the 
system at hand. The theory is formulated in terms of volume fractions of molecules 
and a molecular field, which is associated with the monomers. The volume fractions 
of the molecules are a function of their molecular fields and vice-versa. In equilib­
rium the volume fractions and molecular fields should be self-consistent. Typically, 
the molecular fields are varied numerically until an SCF solution is found. 

Recently, the self-consistent-field theory has been generalised towards dynamical 
processes [10]. Here, one does not vary the fields as efficient as possible to obtain the 
SCF solution. Instead, the change in the fields is governed by a diffusion equation. 
The diffusion of molecules is directed by gradients in the fields and an additional 
noise term. This dynamic density functional theory enables the calculation of the 
time evolution of the density of polymers. 

In a recent review, Fredrickson et al. [11] connected the SCF theory and the 
dynamic density functional theory in a common framework. As an extension, their 
partition function contains complex arguments, which account for fluctuations in 
the equilibrium state, which gives more exact results for the phase separation of 
polymer melts. They argue that the inclusion of a noise term in the dynamic 
density functional theory does not achieve the same goal. 

1.3.3 Scaling and analytical theories 

The scaling approach has proved to be very successful for polymers. The standard 
reference is the excellent book by de Gennes [12]. The underlying assumption is 
that, since polymers are large, atomistic detail is hardly of any influence on the 
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overall large-scale behaviour. Scaling relations may predict for example the relative 
effect of a change in the volume fraction on the osmotic pressure, expressed as a 
power law. Finding the exact osmotic pressure for a given polymer and volume 
fraction is beyond the scope of scaling. This approximate nature is more or less 
comparable to the SCF theory: exact results are not to be expected due to the 
coarse-graining of the model. Moreover, the power laws resulting from the SCF 
theory may be wrong due to the mean-field approximation. In contrast, scaling 
arguments usually do result in the correct power laws. 

The SCF theory is exact within the mean-field approximation. This means 
that it does not suffer from any mathematical approximations as usually applied in 
analytical theories. In fact, it is common to test the mathematical approximations in 
analytical mean-field theories by comparing with SF-SCF results. This comparison 
can easily detect a serious error in the analytical theory at hand. In contrast, a 
result from numerical theory that can be described by a simple analytical equation 
may suggest that an analytical theory for the problem at hand is feasible; at any 
rate such an analytical theory may provide the limiting behaviour for very long 
chains where numerical computations run into problems. 

1.4 Numerical self-consistent-field theory 

1.4.1 Approximations 

As already stated in sec. 1.3.2 the SCF theory makes use of the mean-field approx­
imation. This has the consequence of neglecting the fluctuations in the system. 
Furthermore, space is discretised in layers. Within these layers all volume fractions 
are averaged; no inhomogeneities within a layer are accounted for. Typically, the 
shape of an interface is imposed on the system by discretising the equations in a 
given geometry: planar, cylindrical, or spherical. The geometry that is imposed 
on the the system may not be that of the equilibrium state. This deficiency is not 
present in a system which is discretised in all three dimensions of space. 

When considering a linear polymer chain in solution, all monomers of the chain 
will have a different position in space. When we would take a walk along the chain 
from the one end to the other, we would never pass the same position in space 
twice. A walk which satisfies this requirement is called a self-avoiding walk (SAW). 
It seems quite natural that any theory dealing with polymers should use these self-
avoiding walks. Mathematically, however, the generation of SAWs is demanding, 
even when using a computer. Therefore, an approximation is used: the (weighted) 
random walk. The chains are described as a random walk through the average force 
field, where a given position in space can be occupied by more than one monomer. 
All possible conformations of the chains are generated in the mean field to predict 
the spatial distribution of the molecules. 

Another mean-field approach was introduced by Ben-Shaul et al. [13]: the single 
chain mean-field (SCMF) theory. In the SCMF theory a sub-set of all possible 
conformations of the chains is generated as self-avoiding walks. This set is then 
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weighted in the mean-field. This approach avoids the random-walk statistics used 
in the SCF theory. The theory of ref. [13] has many similarities to the SCF model: it 
is also a mean-field model which is numerically solved to a self-consistent solution. 
So, although the intra-molecular interactions can be treated 'exactly', the inter-
molecular interactions are still treated on a mean-field level. The SCMF theory has 
been successfully applied to amphiphilic aggregates and tethered polymer layers [14]. 

The exact treatment of the chain statistics does have some drawbacks. Firstly, 
the generation of self-avoiding walks (SAWs) is rather time consuming. This is over­
come by generating a set of SAWs only once in the absence of any intermolecular 
interactions. For chains of 100 segments typically 106-107 different SAWs are gener­
ated [15]. This may seem a lot but when one considers that a chain of 100 segments 
has 1077 different random walk conformations on a six-choice lattice it is clear that 
only a tiny fraction of all real conformations is sampled. The problem at hand, e.g. 
a polymer brush in a collapsed state or at high grafting density, may have a strong 
preference for only a few or none of the conformations that are initially generated 
in zero field conditions. To successfully model these types of systems it is neces­
sary to regenerate the conformations in the field they experience or to use shorter 
chains where almost all possible conformations can be generated. Additionally, the 
computational cost of considering bulk chains is very high. 

1.4.2 Discrete versus continuous notation 

Whether one uses a discrete or continuous notation is, in principle, immaterial: 
the basic ideas behind the theory remain the same. In this thesis the discretised 
notation is retained for three reasons. Firstly, the implementation of the theory is 
(necessarily) discretised. When implementing the theory it is easier to deal with 
discretised equations. Furthermore it seems more 'fair' to write discretised equations 
in the same way as they are implemented: the assumptions are clear from the 
start. The last reason can be summarized as local common practice: the laboratory 
at which this thesis was constructed has ample experience with the discretised 
notation. 

Often the equations used in publications do not reflect the actual implemen­
tation. Therefore one may encounter mistakes in the literature while the actual 
calculated results are still correct, or vice versa. In fact, it is known that the dis­
cretisation of continuous equations is often not trivial and may lead to errors when 
done too naively. It can therefore be argued that the discrete notation is less suscep­
tible to errors in the implementation. Some of the pitfalls are discussed in chapter 
2 and in appendix B. 

1.4.3 Numerical implementation 

All of the results presented in this thesis were computed using a single computer 
program, called 'sfbox', which was designed to be as general as possible [16]. There 
are in principle no restrictions on the number of different molecules in the system, 
which means that many types of problems can be dealt with. Examples include 
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adsorption of weak polyacids, self-assembly of surfactants, and wetting studies. 
Indeed it may solve SCF problems which one cannot think of today. This program 
is freely available for academic use. 

The calculations are fast. The computer time needed on a modern personal 
computer varies from a few seconds (e.g. uncharged brushes) to a few days (e.g. when 
calculating a highly charged brush of chains with a length of about 1000 segments 
in a zero salt solution). This makes it easy apply the SCF theory; a new idea can 
be tested fast. Systematic variation of parameters can be done in very small steps, 
to ensure that no features of the calculated curve are lost. 

1.5 Applications of the self-consistent-field theory 

Polymers and surfactants in solution are present in many industrial and biologi­
cal products. Examples are paint, milk, oil, and pesticides. Theory dealing with 
polymers and surfactants in solution therefore has potential applications in a many 
areas. A legitimate question therefore is: can we indeed apply SCF theory in these 
areas? The answer is twofold: yes and no. 

No, because most practical problems are simply beyond the scope of the present 
theory. If, for example, one wanted to improve the adhesion of a paint by using 
predictions of the SCF theory the outcome would be rather disappointing. Paint 
contains a lot of ingredients, some of them are not even well characterised, others 
may have properties that cannot be well captured within the SCF theory. The 
adhesion process itself is a dynamical process instead of an equilibrium one. In 
short, most practical systems are so hopelessly complicated that applying the SCF 
theory seems pointless. 

One may also have a more positive view. To improve the understanding of 
the fundamental processes involved in complicated mixtures like paint, a physical 
chemist will typically focus on a small subset of the ingredients. Academic research 
is mainly focused on well-characterised model systems. The self-consistent-field 
theory can be used to calculate the equilibrium properties of some of these model 
systems and further enhance the knowledge about them. These calculations are 
often performed by researches which are not theoreticians per se. When simulations 
are out of reach due to the nature of the system and analytical or scaling theories 
are too complicated then the self-consistent-field theory may give answers which 
may not be quantitatively correct due to its approximations but which nevertheless 
result in the right trends. 

1.6 Outline of this thesis 

The remainder of this thesis consists of several chapters dealing with extensions 
of the SCF theory and some applications. Three appendices deal with numerical 
aspects of the SCF theory. 
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In chapter 2 the SCF theory is described in detail and extended to segments 
which differ in dielectric permittivity and are subject to equilibrium reactions like 
acid-base, redox, and complexation equilibria. It is shown that both extensions 
have significant consequences for the formulation of the statistical thermodynamical 
quantities. 

Chapter 3 deals with the bending rigidity of homopolymer layers adsorbed onto 
a (mathematically flat) solid surface. Both reversible and irreversible adsorption 
is considered. The results from the SCF theory are compared to those found from 
an analytical theory by Clement and Joanny [17], and qualitative agreement is 
obtained. 

In chapter 4 the bending rigidity of homopolymers is again considered but from 
a different view point. Instead of adsorbing onto a solid surface, the polymers 
adsorb onto the head groups of a self-assembling bilayer, which forms a more diffuse 
adsorbing interface. The influence of the adsorbing polymers on the bending moduli 
of the vesicles is calculated for a varying size of the head groups. 

Chapter 5 gives an efficient scheme to calculate the SCF volume fraction profiles 
of polydisperse copolymers, and may be seen as an extension of similar work on 
polydisperse homopolymers by Roefs et al. [18]. 

In chapter 6 the intramolecular excluded volume of homopolymers in solution 
is calculated within the mean-field approximation, using a chain which is anchored 
to the centre of a spherical coordinate system. The results are compared to known 
scaling relations. Furthermore, an attempt is made to correct for the neglect of the 
swelling of bulk homopolymers in the original theory of Scheutjens and Fleer. The 
influence of the correction on the volume fraction profiles of adsorbed homopolymers 
is calculated. 

Appendix A deals with two computational aspects of the chain propagators 
which are needed to compute the volume fractions in the SCF theory. Firstly, a 
scheme is presented to avoid over- and underflows in the chain propagators. Sec­
ondly, a scheme is proposed to drastically reduce the computer memory needed to 
calculate the volume fractions of extremely long polymers. 

Appendix B discusses the different ways to discretise space in the self-consistent-
field theory. It describes common pitfalls in discretising the equations. Furthermore, 
the artefacts that may arise due to the discretisation are described. A new way to 
avoid artefacts due to the position of an interface on the layers is presented. 

Lastly, in appendix C the numerical algorithm is described that has been used 
to solve the self-consistent-field equations. Some numerical tricks, developed dur­
ing this investigation, are described that reduce the computational time needed to 
achieve convergence of the equations. 



2 Theory for multicomponent mixtures of 
polyelectrolytes with state equilibria in 
inhomogeneous systems 

ABSTRACT 

A generalisation of the self-consistent-field (SCF) theory of Scheutjens and 
Fleer towards linear charged polymers subject to equilibrium reactions is pre­
sented. Any type of reaction can be dealt with, except for reactions that alter 
the chain architecture. Common examples of reactions that can be modelled 
are acid-base equilibria and complexation of ions. A statistical thermody-
namical analysis leads to expressions for the spatial distribution of the mol­
ecules and several fundamental thermodynamical quantities like the surface 
tension and chemical potential. The influence of electrostatic polarisation 
on the chain statistics and thermodynamic quantities is explicitly taken into 
account. With our mean-field theory it is possible to study phenomena such 
as adsorption, self-assembly, and wetting of macromolecules in planar, cylin­
drical, and spherical geometry. The chains can also be grafted onto a surface. 
A distinction is made between mobile (as in Langmuir-Blodgett layers) or 
immobile (chemically linked) grafted molecules. The consequences for the 
surface pressure and the chemical potential of the grafted chains are derived. 

2.1 Introduction 

Most naturally occurring polymers are polyelectrolytes of which the segments have 
a charge that depends on the local environment and the pH [19]. Mostly, the charges 
can be described using acid-base equilibria. A polymer segment may also form a 
complex with an ion or be subject to redox equilibria. A thorough description of 
these equilibria is therefore important for determining the charge on biopolymers. 
Evidently, the same applies to synthetic polymers with a variable charge. 

In most systems, the distribution of the molecules in space is inhomogeneous. 
At low and moderate salt concentrations, the charges on the molecules have a pro­
nounced effect on their distribution in space. In this chapter we present a self-
consistent-field (SCF) theory that predicts the spatial distribution of polymers with 
a charge that may depend on an arbitrary number of local equilibria with an ar­
bitrary complexity. Furthermore, fundamental thermodynamic quantities like the 
surface tension and chemical potential are derived for such inhomogeneous systems. 

Apart from the generalised treatment of reaction equilibria, the SCF theory is 
extended at two other levels in this chapter. Firstly, the influence of induced polari­
sation charges on the spatial distribution of the molecules and the thermodynamical 
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quantities is taken into account correctly for the first time. Secondly, for the case 
of molecules that are grafted to a surface we distinguish mobile (as in Langmuir-
Blodgett layers) and immobile (chemically linked) grafting in a way similar to that 
proposed by Carignano and Szleifer [20]. 

SCF theories for polymers were initially formulated by Edwards [7] and Helfand 
and Tagami [8], who modelled an isolated homopolymer and the interface between 
two homopolymer blends, respectively. In principle, both theories can be generalised 
to more complex systems like copolymers or multi-component mixtures. However, 
it was soon noted that, even for a moderately complex system, numerical evaluation 
of the continuum equations is necessary [21]. Independently, Scheutjens and Fleer 
[6] developed a numerical SCF theory to calculate the adsorption of homopolymers 
on a solid wall. The Scheutjens-Fleer (SF) theory was extended to calculate the 
adsorption of copolymers [22], branched molecules [23], and polydisperse mixtures 
of homopolymers [18]. The SF theory was also applied to describe self-assembling 
systems like micelles [24], vesicles [25], and membranes [23]. The original theory 
dealt with fully flexible homopolymers, but generalisations to include the rotational 
isomeric state (RIS) model [23] and anisotropic phases [26] of the chains have also 
been developed. 

An important extension to the SCF model is the multi-state theory by Linse 
and Bjorling [27]. In this theory, segments of a chain may occur in two or more 
states. The local ratio between the different states of a segment is determined by 
their internal free energies and local contact interactions. The general form of the 
corresponding reaction equation reads 

A ^ B (2.1) 

A and B are, necessarily, states of the same segment. The internal free energies u*k 

and fig determine the corresponding equilibrium constant, the local concentration 
ratio of A and B is determined by local contact interactions. This theory was de­
veloped to explain the temperature dependence of the adsorption and self-assembly 
of pluronics. In this theory, expressions for thermodynamical functions have been 
derived [27]. 

The polyelectrolyte theory of Israels et al. [28] is in many aspects comparable. 
A noteworthy difference is that the states can be charged and the local equilib­
rium between the states is determined by the local electrostatic potential and the 
local proton concentration. The local proton concentration is assumed to be only a 
function of the local potential, since the protons do not take up any volume in the 
system. Their theory enabled the modelling of acid-base equilibria in an inhomo-
geneous system. However, within this framework expressions for thermodynamical 
functions like the surface tension are lacking so far. 

Vincze et al. [29] considered complexation reactions. The general equation reads 

A + B ^ AB (2.2) 

where A and B denote states of different molecules. Only one of the states A and B 
can belong to a chain molecule. This means that the state equilibria do not alter 
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the chain architecture. If A is part of a chain molecule, obviously AB is too. For 
simplicity, the volume of the AB complex was taken to be equal to that of A and 
thus all segments and states have an equal volume. Vincze et al. used this theory 
to study the interface of two immiscible electrolyte solutions. 

Recently, Shi and Noolandi [30] generalised an earlier density functional the­
ory [31] to describe weakly charged polyelectrolytes. Their theory is in many ways 
comparable to that of Israels et al. [28]. Only one type of acid-base equilibrium is 
dealt with. However, they do derive thermodynamical functions. They apply their 
theory to predict the phase separation of aqueous polyelectrolyte mixtures. 

In this chapter, a more general approach is taken towards internal state equilib­
ria. The number of states on the left and right hand side of the reaction equations 
is not restricted. However, similar to previous models, the same limitation applies 
as for the complexation reactions: linkage of two chain molecules is excluded. As 
an approximation the reaction equilibria are considered at a segment level only. 
The local equilibrium of a chain segment is not directly linked with the other seg­
ments of the chain. Instead, only the local mean field potentials influence the local 
equilibrium constants. In sec. 2.2.10 we elaborate on this aspect of the theory. 

Using the proposed theory, acid-base equilibria, redox equilibria, and complex­
ation can be investigated in a unified approach. Our theory is based on actual 
equilibrium constants, so that measurements of these equilibrium constants can 
be directly translated into dimensionless parameters needed for calculations. The 
necessary translations will be discussed in appendix B.8. 

Generally, molecules have a polarisability which is finite: an electric field E in­
duces polarisation charges on the molecules [32]. This results in a relative dielectric 
permittivity er which exceeds unity. In this chapter the polarisation of the states is 
explicitly taken in to account, a feature which was neglected in previous formula­
tions of the SCF theory [33]. The polarisation influences the volume fractions and 
the expressions for thermodynamical quantities, as elaborated in sec. 2.2.5. 

Our model can also cope with molecules of which a given segment (e.g., an end 
segment) is attached to a surface. Two types of grafting mechanisms are distin­
guished: mobile and immobile grafting. Mobile grafting is experimentally found 
in Langmuir-Blodgett layers where the chains can not leave the surface but are 
free to wander around in two dimensions. Immobile grafting is experimentally ac­
complished by chemically attaching the molecules, e.g. to a solid surface. We will 
show that the volume fractions for both types of grafting are the same within the 
mean-field approximation, as long as the grafting plane is subject to the mean-field 
approximation. In contrast, the thermodynamical properties of the system differ 
for the two grafting mechanisms. Explicit expressions for the chemical potential of 
grafted molecules are derived in sec. 2.2.8. 

We are interested in thermodynamical quantities such as the surface tension 
and the free energy of inhomogeneous systems. These are derived in sec. 2.2.9. 
Since general reaction equations are considered, the resulting expressions for ther­
modynamical quantities differ from those found in ref. [27]; the latter are, however, 
recovered as special cases of our general formulation. Also the polarisation charges 
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and the type of grafting of molecules affect the thermodynamical quantities. 

2.2 Theory 

2.2.1 General aspects 

We consider a system with an arbitrary number of molecules. The molecule type 
is labelled i. These molecules consist of one or more types of segments labelled A. 
Each type of segment A may assume different states, denoted by k. An example of a 
segment with different states is a weak acid, where the protonated and deprotonated 
states are distinguished. Polymer molecules are of special interest. For simplicity, we 
will consider linear chains only (extensions towards branched chains are possible, see 
e.g. ref. [23]). The segments in a chain have a ranking number s = 1,2,... Nt, where 
Ni is the chain length. When more than one segment of a polymer molecule may 
assume different states, the different states of the molecule need to be distinguished 
as well. We use the symbol t for the different states of the molecule. All possible 
combinations of segment states k are counted as a different molecular state t. For 
example: an oligomer of N = 10 segments for which each segment has 2 distinct 
states k = 1,2 results in 210 = 1024 different molecular states t. 

The equilibrium between different states t is described using equilibrium con­
stants. These equilibrium constants are defined on a segment level. In general, the 
equilibrium constants depend on the states of the other segments along the chain. 
In a mean-field approximation, it is common to neglect this dependency [34]. As 
an approximation, the equilibrium only depends on the position of the segment in 
space. The equilibrium is independent of the fact whether a segment belongs to a 
chain or not. In sec. 2.2.10 we elaborate on this approximation. 

In the numerical evaluation of the theory, space will be discretised. Instead 
of writing out the inhomogeneous equations using a general space coordinate f, 
as is done in continuum theories, the discretisation will be made from the start. 
When considering systems with only one gradient in the volume fractions, space 
will be divided into layers (for a planar geometry) or shells (for a cylindrical or 
spherical geometry). We will use the term 'layers' for both cases. The layers are 
numbered z = 1,2,..., M. Note that the equations in this chapter also apply to a 
discretisation of more than one gradient. The only exceptions are the equations for 
the polarisation contribution to the segment potential which are derived in sec. 2.2.5. 

The layers are filled up with segments which all have an equal volume £3, where 
t is the spacing between layers. The (dimensionless) volume of a layer is denoted 
by L(z), which is equal to the (not necessarily integer) number of segments that is 
needed to fill the entire layer z. 

Within each layer a mean-field approximation is used. The volume fraction of 
segments A in state k of molecule i in layer z is denoted as <PitAk{z). The overall 
volume fraction profile for molecules of type i is then given by 

¥>i(*) = £)vi,AkCz) (2-3) 
A,k 
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Likewise, the overall volume fraction segments of type A, irrespective in which 
type of molecule they occur, reads VA{Z) = ^2t k <Pi,Ak(z) • A similar definition for 
segments of type A in state k is <PAk(z) = ^2ifi,Ak{z)-

Both local contact interactions and electric contributions change the local equi­
librium within each layer z and therefore affect the volume fractions <Pi,Ak(z). The 
different conformations of the chains also affect the local volume fractions. In the 
following sections the partition function of the theory will be derived and its maxi­
mum term will be used as the equilibrium value for which the volume fractions are 
calculated. 

2.2.2 Partition function 

Scheutjens and Fleer [6] have given a detailed derivation of the micro-canonical 
partition function fi for a homopolymer and a monomeric solvent in an inhomoge-
neous system, using the mean-field approximation. Evers et al. [22] generalised this 
approach to an inhomogeneous phase of multicomponent copolymers. They distin­
guish different conformations c of chain molecules, where a conformation is defined 
by a set of layers: (z, s)c, the layer z where the segment with ranking number s 
finds itself in conformation c. After counting all possible conformations in space 
and applying Stirling's approximation In n! = n In n — n, they arrived at the micro-
canonical partition function fi describing the mixing and conformational entropy of 
the system. The generalisation to curved geometries reads [24] 

i,c * 

In eq. 2.4 n\ denotes the number of molecules i in conformation c, Nt is the chain 
length of molecule i, and uf is a measure for the degeneration of conformation c. 
This quantity is most easily explained when space is discretised in only one direction, 
i.e. a system with only one gradient in the volume fractions. In a (curved) geometry 
with only one gradient the a priori step probability for a step from layer z to z + 1 
is denoted as Ai(z), the step probability from layer z to z — 1 is A_i(z), and that 
for a step within the same layer z \o(z), such that A_i(z) + Ao(2;) + Xi(z) = 1. 
The parameter LJC is the product N{ of a priori step probabilities between layers 
that are encountered when walking from segment s — 1 to segment s — Ni (in 
the order prescribed by conformation c), multiplied by L(zc), where L(zc) is the 
(dimensionless) volume of the layer where the first segment (s = 1) of conformation 
c is positioned. Note that the definition for wc needs to be independent on the 
direction of the walk through the layers, i.e. its value should not change if the walk 
starts at segment s = Nt and ends in s = 1 or vice versa. For a system with one 
gradient this boils down to the requirement \i(z)L(z) = \-\{z + l)L(z + 1) [24]. 
Similar arguments can easily be constructed when more than one volume fraction 
gradient is considered. The exact expression for wc only affects the equations for 
computing the volume fractions (see sec. 2.2A). When two or more gradients are 
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considered care should be taken to make sure that the chains are isotropic in the 
absence of a field [35]. 

Noting that we have to distinguish between the different states t of a given 
molecule i, the generalisation of eq. 2.4 towards state equilibria is trivial: 

c t 
lnfi = y < ( l n - ^ — +Yn\ln-\- (2.5) 

i,c,t *nM i L\Zi) 

In this equation the first term represents the generalisation of the partition func­
tion for multistate molecules. The second term only applies when component i is 
chemically grafted molecules, as discussed below. 

The formulation of the first term for multi-state molecules differs from the equa­
tion given in Linse and Bjorling [27], where the mixing entropy of different states 
was introduced at the segment level rather than at the molecule level. This 'hides' 
the fact that all different states t of the molecule have their own contribution to the 
mixing entropy. The results are unaffected by this change in formulation. 

The second term in eq. 2.5 accounts for molecules which are chemically attached 
to the surface, denoted by the superscript t. It represents a correction to the 
parameter u>c which is a measure for the a priori probability of placing a chain in 
conformation c in an empty system. When the first segment of a chain i is chemically 
attached to layer z\, the first segment does not have L{z\) possible positions but 
only n\, which is the number of chemically anchored molecules. Note that the 
chemical grafting points are still indistinguishable in the mean field. 

When the second term is omitted for grafted molecules, mobile grafted chains 
are considered, as for example found in Langmuir-Blodgett layers. Due to the mean-
field approximation the volume fraction profiles of chemically anchored (immobile) 
molecules is exactly equal to that of the mobile grafted chains. However, a differ­
ence between immobile and mobile grafted chains turns up in the thermodynamical 
quantities (see sees. 2.2.6, 2.2.8, and 2.2.9). 

Grafted chains only assume those conformations which satisfy the grafting con­
dition. So, when segment s = 1 is grafted to layer z = 1 the sum over c in eq. 2.5 
runs only over those conformations which have segment s = 1 in layer z = 1. In 
contrast, free (i.e. non-grafted) chains may assume all possible conformations in 
space. 

Eq. 2.4 was derived for non-dissociating copolymers using reference phases, one 
for each type i of molecule consisting of a pure phase of this molecule [22]. With 
multiple states, two obvious choices for the reference phase of one molecule type i 
come to mind. The reference phase for one type of molecule may consist of either 
7ij molecules in state t = 0, a state we are free to choose, or t different reference 
phases, each consisting of n^t molecules in state t. The former choice was made by 
Linse and Bjorling [27]. The latter choice, which we adopt, implies 0* = nt^i,t> 
where the superscript * denotes the reference phase. It turns out that after applying 
the Stirling approximation the logarithm of the partition function In fi* does not 
depend on the actual choice for a reference phase of a molecule. Hence, eq. 2.5 is 
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unaffected by this choice. 
The (contact) interactions in the reference phases have been explicitly included 

in various papers [6, 22-27]. While this is formally correct, the resulting equations 
become unnecessarily complicated. Additionally, in the case of pure reference phases 
for each type of molecule the question may arise how to account for electrostatic 
interactions. An easy solution is to omit all interactions in the reference phases. In 
the remainder of this chapter we will implicitly use pure reference phases for each 
state t of each molecule type i. The interactions in the reference phase are all set 
to zero. This is valid since the actual choice for a reference phase is arbitrary. 

It is customary to let the micro-canonical partition function include all entropic 
effects. Weighting with the total energy U then yields the canonical partition func­
tion Q, which equals ^t/f2({/)exp(—f//A;sT). In this chapter, f2 merely denotes 
the mixing and conformational entropy of the system. However, as we will show 
next, Q contains additional entropic contributions. Therefore, we replace the en­
ergy U by a Helmholtz energy Fx containing those additional contributions (but 
not the mixing and conformational entropy). These contributions are due to the 
nearest-neighbour contact interactions and the electrostatic interactions. The con­
tact interactions are accounted for using Flory-Huggins parameters \, which may 
have an entropic component. As we will see, the electrostatic interactions also have 
an entropic component due to polarisation of the segments. Therefore we use the 
symbol Fx, where x denotes the type of interactions, instead of Ux. The contribution 
of the contact interactions is denoted as Fc, and given by 

Fz = \kBT £ L{z)ipAk{z)XAKBl{vBi{z)) (2.6) 
z,A,k,B,l 

where tpAk{z) is the volume fraction of segment A in state fc at coordinate z. The 
Flory-Huggins parameter \Ak BI denotes the change in contact interactions in units 
kBT when exchanging one segment A in state k from a pure phase of segments A in 
state fc to a pure phase consisting of segments B in state /. Because of the double 
summation over all states, the factor \ comes in to correct for the double counting 
of contact interactions. The angular brackets define a local contact fraction through 
(<p(z)) = J2z' ̂ z-z'{z)<p{z'). For a system with one gradient \z-z>(z) can be written 
out as (<p{z)) = \-i(z)tp(z — 1) + X0(z)<p(z) + Xi(z)<p(z + 1), where the values for 
A may, for example, be chosen equal to those used for the degeneration uic (see eqs. 
2.4 and 2.5). Generalisations of Xz-Zi{z) are possible, for example to include longer 
range interactions. In this case \ loses its usual meaning where it describes contact 
interactions only. 

The electrostatic contribution to the free energy has been the subject of some 
debate [36]. To our knowledge, no general equation for the electrostatic contribution 
to the Helmholtz energy exists. Using the assumptions that will be introduced in 
sec. 2.2.5, it can be shown that [32, 36] 

î e = ^ 5Z H^evAkfAkizMz) (2.7) 
z, A, k 
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where e is the elementary unit of charge, ^{z) is the electrostatic potential (in Volts) 
in layer z, and VAk is the valence of state k of segment A. The polarisation of the 
segments is included in eq. 2.7, as will be elaborated on in sec. 2.2.5. 

In principle, we could include a contribution to Q of internal free energies as was 
done by Linse and Bjorling [27]. However, when each state t of molecule i has its 
own reference phase, as in this chapter, the term representing internal free energies 
is zero. 

Combining equations 2.5-2.7, we arrive at the following expression for the canon­
ical partition function Q: 

Q ( K t } , T ) = £ n ( K i t } ) e x p 
K J 

^ c ( « J ) F e (K ,} ) 

kBT kBT 
(2.1 

where n^t represents the number of molecules of type i in state t and {n,,t} represent 
a possible set of these numbers that satisfies the volume filling constraint. Because 
of the volume filling constraint, the volume V does not enter the equations. The 
sum runs over all sets {nc

it} of conformations c which are a realisation of the set 

ini,t}-
The grand canonical partition function H is found from weighting the canonical 

partition function Q with the appropriate Boltzmann factors 

E 
all{nfj 

S(K«},T)= ^ Q (K , J ) exp E ni]tVi,t 

k„T 
(2.9) 

where n^t is the chemical potential of molecule i in state t and {/J,itt} represents a 
given set of chemical potentials of all molecules. Note that the chemical potentials 
are related through the reaction equations, as discussed in more detail in sec. 2.2.10. 

2.2.3 Equilibrium 
In the previous section we arrived at the appropriate expression for the grand canon­
ical partition function 5. The next step is to define equilibrium. We will adopt the 
usual approximation of replacing the sum in the right hand side of eq. 2.9 by its 
maximum term, which has the effect of ignoring the fluctuations in the system. 
It is convenient to use Lagrange multipliers for the constraints and to define an 
unconstrained function / as 

/ ^ o + E w + E f* w fL w - E w w ) (2-10) 
i,t z \ i,t,c / 

where N£(z) is the number of segments molecule i in conformation c has in layer z. 
The Lagrange multipliers (3{z) ensure that the volume is filled in each layer z. This 
does not necessarily make the system incompressible: an extra type of molecule 
representing 'vacuum' may be defined to consider a compressible system, like was 
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done in the equation-of-state theory of Sanchez and Lacombe [37]. The SCF the­
ory has been extended along these lines by Theodorou [38]. The introduction of 
'vacuum' molecules leads to some formal differences in the thermodynamical quan­
tities, see e.g. ref. [39]. Here we will avoid these formal differences by considering 
an incompressible system only. 

It is not necessary to incorporate the reaction equilibria as constraints through­
out the system in eq. 2.10 as was done by Linse and Bjorling [27]. The equilibria 
represent a relation between the values of fii)t, as is shown in sec. 2.2.10. In equilib­
rium, the chemical potential fj,iit for a given molecule i in state t is necessarily the 
same throughout the system. Therefore, the local equilibria are always obeyed. 

Note that the M Lagrange multipliers in eq. 2.10 are not independent, because 
the volume filling constraint constitutes one relation between all chemical poten­
tials. Once the chemical potentials of all molecules minus one are specified, the last 
chemical potential is fixed by the volume filling constraint. This will be dealt with 
in sec. 2.2.7 by setting (3 for the bulk phase to a fixed value, which in principle is 
arbitrary. 

The maximum value of / is found from 

The differentiation is easily performed using 

dS__ST df dnAk{z) - V 9f Nc (z) (2 12) 
dntt" h*dnAk{z) dn'<{z) ~ hk

 dn^ 
where NftAk{z) is the number of segments A in state k that a molecule i in state 
t and conformation c has in layer z and n,Ak{z) is the number of segments A in 
state k in layer z. For other intricacies involving the differentiation we refer to the 
literature [22, 27]. The resulting equation is 

ln^-1 + 0 + ln^(t) 

dFlkBT 1 (2-13) 

- E Ntt,Ak(z 
z,A,k 

dnAk(z) Bl 

= 0 

where o\ = n\/L(z\) and 5j(f) is unity when molecule i is chemically grafted and 
zero otherwise. The differentiation dFe/driAk(z) is not trivial: it introduces a con­
tribution due to polarisation charges that was neglected before [40, 41]. This is 
discussed in sec. 2.2.5. Eq. 2.13 can be rearranged as 

nl = C^ J ] GAk(zf^A^) (2.14) 
z,A,k 
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where the state weighting factor GAk{z) and the dimensionless state potential uAk(z) 
are defined as 

GAk(z) = exp(—uAk(z)) (2.15) 

uAk{z) = /?(z) + ^ ^ + £ x W < M * ) > + < (2-16) 

The normalisation constant in eq. 2.14 C,^ is defined through 

lnCi,t = -IniVi - 1 + lna] + Stf) + £*= + J2N^Akut (2.17) 
kBT 

Ak 

where u™l is an arbitrary reference potential. To evaluate the volume fractions (see 
sec. 2.2.4) it turns out to be convenient to choose uTfk, f3, and ^ for the bulk phase 
such that GAk is unity in the bulk. This will be done in sec. 2.2.7. 

In principle, the volume fraction of molecule i in layer z can be computed from 
these equations as <fii(z) = ^t c AkN°t Ak{z)n

c
it/ L(z). However, the number of 

different conformations c and different states t of molecule i is extremely large and 
generally the interest is not in their individual contributions. Therefore, in the 
following section we will rewrite eq. 2.14 to allow for an efficient evaluation of the 
sum over all states t and conformations c, resulting in the volume fraction ifi(z) of 
molecule i in layer z. 

2.2.4 Volume fractions 

In order to make the numerical evaluation of <fi(z) from eq. 2.14 feasible we first 
rewrite it as 

Ni 

nlt = Cittcjcl[Glt(s) (2.18) 

where G^t(s) is the analogon of eq. 2.15; it denotes the state weighting factor of 
segment number s for molecule i in state t and in conformation c. The following 
definition is introduced 

Q,=c, n <*MM=a n K * ) ^ ^ ( 2 ) (2.i9) 
s= l z,A,k 

where the a parameters need some explanation. The fraction of segments A that 
is in state k in the bulk is denoted by ab

Ak so that Ylk
aAk = 1- The parameter 

o^t(s) is the fraction of segments s of molecules i in molecular state t. Consequently, 

J2tatt(s) = * an(^ £ t n f i i a i , t ( s ) = 1- Substituting eq. 2.19 into 2.18, summing 
over t, and taking out segment s = s' from the product yields 

< = C^ £ al(s')Git(s') J ] <t{s)Glt{s) (2.20) 
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It is convenient to introduce the chain composition operator 5fs which is unity when 
segment s of molecule i is of type A and zero otherwise. Likewise, the conformation 
operator 6*3 c is unity when segment s of molecule i in conformation c resides in layer 
z and zero otherwise. These two delta functions enable us to rewrite the former 
equation as 

Ni 

< = C^ J2 <*AkGAk(z)6ts,Xs' E I I <t(s)Gtt(s) (2.21) 
z,A,k t s^=s' 

Note that eq. 2.21 is a valid replacement of eq. 2.20 since the reaction equilibria are 
considered at a segment level only. In this assumption, the relative dissociation aAk 

of a given segment does not explicitely depend on the states of the other segments in 
the chain. The relative dissociation of other segments is only incorporated through 
the mean-field potential. When repeating the procedure of eqs. 2.20 and 2.21 for 
all segments s, eventually the sum over t drops out. The result reads 

Ni Nt 

< = d"C I I E <**PM*lJt = CWC J ] E G^zKsji (2-22) 
s—l z,A,k s=l z,A 

where in the last identity the following definition was used 

GA(z) = Y,<xb
AkGAk(z) (2.23) 

k 

where GA(z) is the segment weighting factor. It is a measure for the probability to 
find a segment of type A of molecule in layer z. Eq. 2.22 is essentially the same 
result as Hurter et al. [42] obtained from a simplification of the theory of Linse and 
Bjorling [27]. So, although our formulation of the partition function (eq. 2.5) is 
different, we arrive at the same expression for n?. 

In principle, eq. 2.22 permits the evaluation of the statistical weight of self-
avoiding walks (SAWs). However, no efficient algorithm is available that generates 
all SAWs. A subset of all SAWs could be used instead, as done by Carignano 
and Szleifer [20]. Since in their theory each SAW is generated separately, the 
intramolecular interactions of the conformations can be treated exactly. The in­
ter-molecular interaction are solved self-consistently in their theory, i.e. through a 
mean-field approximation, as is done here as well. Obviously, the generation of the 
subset of SAWs is computationally demanding, so this is done only once: i.e. in 
the absence of a field [20]. This implies a loss of generality: when the spatial or 
intermolecular interactions on the chain conformations become large, only a few (or 
none) of the SAWs in the subset will dominate the real equilibrium set of chain 
conformations. 

In our approach, the Markov approximation is used, which implies that direct 
backfolding of the chain is allowed. So, contrary to the theory by Carignano and 
Szleifer [20], the intramolecular interactions are approximated. However, all possi­
ble random walks are included, weighted with the proper Boltzmann factor, which 
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2.2 Theory 

depends on the local mean-field potential acting on the segments of the chain. This 
leads to a greatly simplified numerical evaluation of the volume fraction profiles. 

Above we elaborated on eq. 2.14 to handle the large number of states t. The 
Markov approximation is used subsequently to deal with the large number of con­
formations c. This is done in a similar way as in Evers et al. [22]. Summing eq. 2.22 
over all conformations c and dividing by the (dimensionless) volume L(z) of coor­
dinate z, we may rewrite eq. 2.22 as 

GMVGifrslNj) 
ipi(z, s) = d (2.24) 

Ui{Z,S) 

where Gi(z, s) is the segment weighting factor of segment s of molecule i in layer z, 
defined as: 

Gi{z,s) = Y,GA(z)6t, (2.25) 
A 

The end-segment weighting factors Gi(z,s\l) are defined as 

Gi(z, s|l) = Gi(z, s)(Gi{z, s - 1|1)) (2.26a) 

Gi(z, s\Ni) = Gi(z, a)(Gi(z, s + 1 |^)) (2.26b) 

where Gi(z,s\l) is proportional to the probability to find segment s of molecule i 
in layer z in a weighted random walk starting from segment s = 1. The equivalent 
starting from s = Ni is denoted as Gi(z, s\Ni). Their product, divided by Gi(z, s) to 
prevent double counting of segment s, is proportional to the probability of finding 
segment s in layer z, cf. eq. 2.24. The angular brackets in eq. 2.26 denote a weighted 
average over neighbouring layers similar to that used in eq. 2.6. A common approach 
is to use the same weighted average in eq. 2.26 and eq. 2.6, however, we are free to 
use different values for A in both equations. 

The starting values of the propagators 2.26 are given by Gi(z, 1|1) = Gi(z, 1) 
and Gi(z, l|iVj) = Gi(z,Ni). It has been shown [43, 44], that the propagators 2.26 
are the discrete version of the Edwards diffusion equation [7]. 

The evaluation of the normalisation constant C» depends on the restriction posed 
on the molecule in the system. When the volume fraction in the bulk ip\ is fixed the 
most convenient way of finding C, is by setting UAH = 0 in the bulk. The method 
to achieve this is discussed in sec. 2.2.7. From an evaluation of eq. 2.24 in the bulk 
phase it then follows that 

Ci = fi (2.27) 

Alternatively, the total amount 6i of monomers in molecule i in the system can be 
fixed. This total amount is defined as 

«i = ^ % W (2-28) 
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2. Multistate equilibria 

When 9i for molecule i in the system is fixed the normalisation constant follows 
immediately from ^ = Nt J2Z L(z)ip(z, N) and from eq. 2.24 for s = N: ip(z, N) = 
CiGi(z, N\l). Hence, 

Ci = N^mGiizMN) ( 2-29 ) 

The volume fraction <pb in the bulk phase of molecules with a fixed 0* is easily 
computed by equating this expression for C, with that of eq. 2.27. Necessarily, UAk 
in the bulk should be set to zero for this relation to hold. 

Eq. 2.29 is also the natural normalisation for chains grafted to e.g. a surface. 
Obviously, the number of different possible conformations c for a grafted chain is 
less than that for a free chain. Typically, a given segment of a grafted chain is only 
present in one layer or coordinate. However, multiple grafting points can also be 
considered. For example, grafting one end of a chain to a surface and the other end 
at a given layer enables the computation of the force needed to pull a grafted chain 
off an adsorbing surface. For each grafted segment the segment weighting factor 
Gi(z, s) is set to zero outside the grafting layer(s). Other than that, the propagator 
procedure to compute the volume fractions remains unaltered. 

There is no difference in the volume fraction of laterally mobile and laterally 
immobile grafted chains, since the distinction does not show up in the resulting 
equations for the volume fractions. Note that grafted molecules have a bulk volume 
fraction of zero by definition. Therefore, equating eq. 2.29 (the proper normalisation 
for grafted chains) with 2.27 is not a valid operation to compute (pb for grafted 
molecules. 

Often, the interest is in the interaction free energy between surfaces. When the 
ratio between the surface area and the.total system volume is (close to) zero, the bulk 
composition does not change as the surfaces approach each other and eq. 2.27 can be 
used. When the ratio between the surface area and the total system volume is finite 
rather than zero (which is true for most practical systems), the bulk composition 
usually changes upon approach of the surfaces. The total (dimensionless) volume of 
the system is the volume between the two surfaces, given by J2Z L(z), augmented 
by the volume of the bulk phase, denoted by Lb. A slightly modified version of eq. 
2.29 has to be used in this case: 

Q 
Ci =

 NW + Z.LUGMN)]
 (2-30) 

The total amount of monomers in molecules i in the system #j is usually given. It 
can be computed from J2Z L(z)<fi(z) + Lb<pb. The term Lb in the denominator of 
eq. 2.30 originates from the fact that Gt(z, l\N) is unity in the bulk phase. 

The chemical potential of a given state t of molecule i can also be fixed. This 
then fixes the chemical potentials of all other states t of molecule i through the 
reaction equilibria. The normalisation Cj follows immediately from eqs. 2.17 and 
2.19 

In Q = - In Ni - 1 + In <r\ + Stf) + -£*= + T NiJAk [ < - In ab
M] (2.31) 
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