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1. The observation of an axenic fungal culture growing on an inorganic 
matrix exposed to benzene, added to function as the sole source of 
carbon and energy, does not provide convincing evidence to conclude 
utilization of benzene by the fungus. 

This dissertation 

Qi, B., W. M. Moe, and K. A. Kinney 2002. Biodegradation of volatile organic 
compounds by five fungal species. Applied Microbiology and Biotechnology 58:684-689. 

2. The mineralization of volatile aromatic hydrocarbons on fungal biofilters 
might result in the emission of products that are not as innocuous as 
previously thought. 

This dissertation 

Devinny, J. S., M. A. Deshusses, and T. S. Webster 1999. Biofiltration for air pollution 
control. Lewis Publishers. Boca Raton, Florida. 

3. The variety of substrates that can be assimilated by fungi goes far beyond 
natural products. 

Garcia-Guinea, J., V. Cardenes, A. T. Martinez, and M. Martinez 2001. Growing of 
fungal bioturbation paths in a compact disk. Naturwissenschaften 88:351-354 

4. The proposal to use genetically modified microorganisms for the 
biodegradation of environmental pollutants underestimates the complexity 
both of microbial interactions in the environment and of principles of the 
human society. 

5. The establishment of student exchange programs is an efficient policy for 
stimulating the European integration, as illustrated by the number of 
mixed couples that are formed in places like Wageningen. 

6. The arrival of a new life is a critical dead-line for finishing a PhD. 

7. Patience is the mother of science 

Catalan proverb 
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hydrocarbons: Environmental technology perspectives". 
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CHAPTER 1 

General introduction 



Growth of fungi on aromatic hydrocarbons 

1.1 Volatile aromatic hydrocarbons 

Since the industrial revolution the use of petroleum and coal derivatives has 

increased immensely. These products consist of complex mixtures that include a 

wide range of aliphatic, aromatic, and asphaltic compounds. The intermediate 

distillate range is rich in monoaromatic hydrocarbons, such as benzene, toluene, 

ethylbenzene and xylene (BTEX). These chemicals are widely used as solvents, 

synthesis precursors of other organic chemicals, as well as gasoline components 

(Table 1.A). Accidental spills and industrial discharges have occurred causing 

serious pollution of the environment as a consequence of the bulk scale in which 

BTEX are produced and handled. 

From an environmental standpoint the mobility and toxicity of the BTEX 

are of major concern. Compared with other oil hydrocarbons, BTEX are relatively 

water-soluble and a significant portion of the spill will move rapidly upon entry 

into water systems. Gasoline leakage from underground storage-tanks has been 

identified as one of the main sources of aquifer contamination with BTEX (122). 

Besides being soil and water contaminants, these compounds are also highly 

volatile and are subject to air-quality regulations. BTEX hydrocarbons are 

depressants of the central nervous system and cause damage to liver and 

kidney. The carcinogenicity of benzene has been established and, in spite of 

inconclusive evidence, alkylbenzenes are suspected to be long-term carcinogens 

(82). Besides hazard through direct inhalation, these hydrocarbons are subject to 

photochemical reactions contributing significantly to smog formation in urban 

areas (105). Reduction of BTEX content in modern gasoline formulations has 

been achieved via supplementation with methyl-terf-butyl ether (MTBE) (83). This 

additive acts as an octane enhancer and as an oxygenating agent, allowing the 

elimination of lead-antiknocking compounds. Although MTBE is less toxic than 

the BTEX, the use of this additive remains controversial due to its high 

recalcitrance under natural conditions (37). 
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TABLE 1 .A: Properties of the BTEX hydrocarbons 

Common name 

CAS number 

Chemical properties (2, 70,104) 

Structure 

Molecular weight 
Solubility (mg I"1) 
Vapor pressure (kPa) 
Water/air partition coefficient 

Commercial aspects (104) 
World production 

(x109 lyear"1) 
Main uses 

Environmental aspects (2,124) 
Air odor threshold (mg m"3) 
IOLVc(mgm"3) 
MAC in drink water" (ug I"1) 

Benzene 

71-43-2 

0 
CeHg 

78.11 
1800 
12.7 
4.58 

5.98 

Toluene 

108-88-3 

CH3 

6 
C7H8 

92.14 
540 
3.8 
3.76 

3.07 

Solvents, coating agents, 

Ethylbenzene 

100-41-1 

CH, 

CH, 

I 6 
CeHio 

106.17 
160 
1.3 

3.15 

na" 

0-, rn-, p-Xylene 
95-47-6 
108-38-3 
106-42-3 

CH, 
I 

G--
C j H ^ 

106.17 
170; 160; 180 
0.9; 1.1; 1.2 

3.55; 3.70; 5.04 

3.07 

fuel additives, synthesis of 
medicines, pesticides, dyes, paints, detergents, flavors, 
plastics, resins, 

12 
3.25 

5 . 0 e - 1 . 0 " 

and explosives. 

2.9 
150 

700" 

2.3 
215 
300 9 

1.1 
210 
500 s 

not available 
c threshold limit value for exposure to airborne contaminants in the work place, weighted for a 
normal 8 h workday and 40 h workweek 
"Norm from the European Union 
8 Norm From the World Health Organization 

1.2 Biotechnological removal of BTEX pollution 

A variety of treatment technologies have been developed in order to meet the 

regulatory standards concerning pollution with oil hydrocarbons. These 

techniques strongly differ depending on the chemical nature of contaminants and 

the environmental compartments where they are found. Historically, the removal 

of BTEX from ground and groundwater focused on either excavation and 

disposal or treatment of contaminated soils, or on pumping up the groundwater to 
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remove dissolved contaminants from the aquifer (16). Both approaches are costly 

and they interfere adversely with other site activities. To overcome these 

disadvantages, new developments focused on in situ treatment technologies that 

often take advantage of the metabolic capacity of soil microorganisms to degrade 

hydrocarbons. Depending on the specific site characteristics, biological activity 

can be stimulated by addition of nutrients and suitable electron acceptors, by pH 

amendments, or through the introduction of new microbes, either wild type or 

genetically modified, that possess an enhanced degradative capacity. The in situ 

aeration of the soil gas phase, named soil bioventing, is one of the most common 

ways of increasing the BTEX biodegradation capacity in soil (17). With this 

technique hydrocarbons are removed by a combination of volatilization and 

aerobic biodegradation, depending on the air flow-rate (66, 77). At high flows, 

BTEX removal is accomplished mainly by volatilization, a variant that is termed 

soil vapor extraction (SVE). However, the extracted vapor-phase contaminants 

usually require further treatment in a separate unit before discharged into the 

atmosphere (17). 

Analogous to the generalization of biological methods for the cleaning-up 

of water and soil, the need to control air pollution has prompted the development 

of microbial-based processes for the treatment of gaseous wastes. The 

biofiltration of air is consolidating as a cost-effective option for the treatment of 

streams with low concentrations of volatile hydrocarbons that arise from SVE 

remediation works (67, 94) as well as from a variety of industrial processes (69, 

127). The biofiltration of polluted air consists on passing the gas stream through 

a porous support material that offers a large contact area and immobilizes 

microbial cultures. Besides inoculation with specific strains, biofilters are 

biologically open systems to the in-flow air that carries cells of a wide variety of 

organisms. As biofiltration proceeds, microbes will be enriched according to their 

abilities to adapt to the biofilter ecosystem. 
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1.3 Fungi versus bacteria in the bioremediation of petroleum 

hydrocarbons 

The use of microorganisms to remove, reduce, or ameliorate pollution from the 

environment is generally termed bioremediation. Bacteria and fungi constitute the 

most important part of the microflora present in soils that are polluted with oil 

hydrocarbons. However, the relative contribution of both microbial groups to 

bioremediation varies widely depending on their specific degrading capabilities 

and adaptation to the prevailing physico-chemical conditions. 

Bacteria and fungi display a characteristic form of nutrition, often termed 

osmotrophy or absorbtive tive heterotrophy, which consist on absorbing soluble 

substrates from the external environment. However, most fungi do not rely solely 

on soluble, readily absorbed organic compounds for nutrition and they excrete a 

wide variety of enzymes into their environments that cleave polymeric 

substances. The soluble breakdown products can be absorbed and further 

catabolized by internal enzymes. Besides the primary oxidizers, many other 

microorganisms (fungi and bacteria) benefit from the released substrates. Thus, 

in nature fungi play a vital role in the recycling of a variety of "recalcitrant" organic 

compounds, such as lignin, cellulose, chitin, melanin, and keratin. As a result of 

this biochemical diversity, which combines degradative pathways that resemble 

those present in prokaryotes as well as in higher organism, the fungal 

metabolism of xenobiotics is also highly versatile (102). In addition, fungi display 

a distinctive physiological adaptability. Growth as filamentous hyphae permits 

translocation over solid materials such as soil particles and wood without the 

need of a liquid phase. Consequently, many fungi are tolerant towards limited 

water and nutrient availability, and prefer acidic conditions (131). Instead, soil 

bacteria typically show a rapid growth when the conditions are favorable and 

utilize soluble substrates. 

The inherent characteristics of fungi make these organisms very suited 

biocatalysts for solid-state fermentations, where they are used in a wide range of 
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biotechnological applications (118). This also applies to environmental 

technology, where the biodegradation of pollutants by fungi has most frequently 

been investigated in soil systems and packed-bed reactors (Table 1.B). The 

biodegradation of the poorly available polycyclic aromatic hydrocarbons (PAHs) 

has extensively been studied for fungi and is summarized in Chapter 2. An 

important drawback in this process is that biodegradation occurs by co-

metabolism. This means that aromatic hydrocarbons do not support growth and 

are usually degraded partly, sometimes to metabolites that are more toxic than 

the parent substrate (32, 121). Conversely, biodegradation of low molecular 

weight monoaromatic hydrocarbons such as BTEX has traditionally focused on 

bacteria, and the importance of fungi, the subject of this thesis, has been 

recognized only recently. 

TABLE 1 .B: Examples of the use of fungi for the degradation of aromatic pollutants in non-
sterile environments 

System 

Air biofilter 

Soil 

Soil+compost 

Soil+sludge 

Pollutant 

BTEX 
Styrene 
Toluene 

Phenol 

Cresols 
PAHs 

Benzo[a]pyrene 

PAHs 

Benzo[a]pyrene 

Extent of 
degradation3 

C 
M/G 
M/G 
M/G 
M/G 
M/G 

M/G 
C 

M/C 
M/C/B 
M/C/B 
M/C 
C 

c 

M/C/B 

Fungus 

Phanerochaete chrysosporium 
Exophiala jeanselmei 
Cladosporium sphaerospermurr 
Exophiala lecanii-corni 
Scedosporium apiospermum 
Candida sp. 

Rhodotorula aurantiaca 
Cunninghamella echinulata 
Pleurotus sp. 
Penicillium janthinellum 
Phanerochaete chrysosporium 
Marasmiellus troyanus 
Irpex lacteus 

Pleurotus ostreatus 

Bjerkandera sp. 

Morpho­
logy" 

WR 
Y 
F 
Y 
F 
Y 

Y 
F 

WR 
F 

WR 
WR 
WR 

WR 

WR 

Ref. 

(19) 
(35) 

(132) 
(138) 
(54) 
(51) 

(84) 
(40) 
(80) 
(13) 
(21) 
(88) 
(89) 

(50) 

(70) 

3 M: mineralized; G: growth substrate for the fungus; C: fungal co-metabolism; B: in association 
with indigenous bacteria 

6 WR: basidiomycetous white-rot fungus; F: filamentous microfungus; Y: yeast or yeast-like 
growth 
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1.4 Outline of this thesis 

The earlier observation that a fungus out-competed the bacterial population in a 

biofilter used for treating toluene-polluted air, and the confirmation that toluene 

was used as the sole carbon and energy source by a eukaryote opened a new 

field in the area of microbial metabolism of aromatic hydrocarbons (133). That 

finding motivated the research presented in this dissertation. The general 

objective hereby was to gain more insight in the presently poorly understood 

assimilation of volatile aromatic hydrocarbons by fungi. This knowledge is of 

importance to evaluate advantages and also the limitations of using fungi in the 

biotechnological removal of BTEX pollution. 

An overview of the present knowledge on the hydrocarbon metabolism by 

fungi is given in Chapter 2. In Chapter 3, the isolation of fungi capable of growth 

on volatile aromatic hydrocarbons is described. Different enrichment techniques 

specifically designed for selecting fungi were used. Fungal isolates were 

identified and their growth and degradation parameters characterized. Chapter 4 

deals with the metabolic pathway for the oxidation of toluene in a variety of fungi, 

revealing more details about the metabolic diversity involved in the degradation 

of toluene by fungi. In Chapter 5, the degradation kinetics of BTEX mixtures that 

were analogous to those resulting from gasoline pollution is described using one 

selected fungal isolate. The extent of degradation of each BTEX component and 

the multi-kinetic degradation parameters were determined. These data constitute 

the basis for Chapter 6, where degradation of BTEX is described in a soil 

microcosmos containing the fungal inoculum, incubated under different 

conditions of pH and exposure time to BTEX. A general discussion concludes 

this dissertation in Chapter 7. 



CHAPTER 2 

Hydrocarbon metabolism in fungi 
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2.1 Introduction 

The chemical nature of hydrocarbons is extremely diverse, varying from simple 

saturated aliphatics to the more complex polycyclic aromatics (PAHs). Such a 

range of carbon substrates can be metabolized by many different micro­

organisms using diverse and, sometimes, badly understood degradation 

pathways. Comprehensive studies have been published encompassing the 

bacterial catabolism of aliphatics, the monoaromatic BTEX, and PAHs (26, 57, 

71,144). The fungal degradation of aliphatics and PAHs has also been reviewed 

extensively (31, 74, 86), but the metabolism of the lighter BTEX is less well 

characterized in the fungi. The present Chapter summarizes the current 

knowledge on the fungal metabolism of aliphatic and aromatic hydrocarbons. 

Despite that fungal growth on hydrocarbons has been reported long ago 

(144), the interest on hydrocarbonoclastic fungi dramatically increased in the 

sixties with the advent of the jet aircraft and the shift from gasoline to kerosene-

based fuels (97). Some accidents were then caused by fungal mats that clogged 

the fuel supply to engines. These fungi grew in the oil/water inter-phase that 

accumulated inside storage tanks, as a result of water condensation, utilizing the 

soluble hydrocarbons as sources of carbon and energy. The water-soluble 

fraction of oil-refined fuels contains a mixture of mainly monoaromatic and 

aliphatic hydrocarbons, but only the latter were found to serve as growth 

substrates for fungi. Biodegradation of hydrocarbons also resulted in 

accumulation of organic acids that contributed to corrosion damage, hence 

increasing the risk of fuel leakage (98). Fuel biodeterioration by fungi is, despite 

the generalized practice of blending fuels with fungicides, an important economic 

problem for the petrochemical industry of today (55). Research into the potential 

biotechnological applications of fuel-growing fungi was initially directed towards 
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single-cell protein projects and bioremediation of oil pollution (74). These fungi 

have also been proposed as bioindicators for the prospecting of natural gas (41). 

2.2 Aliphatic hydrocarbons 

The most frequently isolated fungus from fuel tanks is Amorphotheca resinae 

(anamorph Hormoconis resinae, previously named Cladosporium resinae). Many 

other filamentous strains of importance have also been isolated from fuel tanks, 

mainly Penicillium, Aspergillus, Chrysosporium, Phialophora, Fusarium, and 

Alternaria species; yeasts typically included Candida and Rhodotorula strains 

(55, 62, 75). Studies with these fungi revealed that n-alkanes from C10 to C2o, 

which are predominant in kerosene and diesel fuels, were preferentially used as 

carbon and energy sources (74). Though less likely to support fungal growth, 

n-alkanes in the range of gasoline (C5-C9) and natural gas (C1-C4) were oxidized 

by Scedosporium and Graphium spp (41, 93). Unsaturated and branched-chain 

aliphatics were also assimilated to a lesser degree. 

The most common degradation pathway for alkanes reported in fungi 

starts with the hydroxylation of the terminal methyl group (Fig. 2.1). This reaction 

is principally catalyzed at the microsomes by cytochrome-P450 monooxygenase 

NADPH-reductase enzyme complex (107). Following alkane oxidation to a 

primary alcohol, further oxidation to fatty acids via aldehyde occurs. Although this 

is the most frequently encountered mechanism, two variants have been 

described: the diterminal oxidation to form dicarboxylic acids and the subterminal 

oxidation to secondary alcohols. Fatty acids are incorporated to the central 

catabolic pathways via p-oxidation, involving the initial activation of the fatty acid 

to the corresponding acyl-CoA ester. 



12 Growth of fungi on aromatic hydrocarbons 

CH3-[CHJ„-CH3 

( a ) / \ ( b ) 
CytP4S0 

OH 

CH 3 - (CHJ„ - CH,OH CH 3 - [CHJ, - CH - [CHJ, - CH3 

Alcohol dehydrogenase 

CH3 - [CHJ. - CHO CH 3 - [CH J, - C - [CHJ, - CH3 

Aldehyde dehydrogenase 

CH3-[CHJ„-COOH 

HOCH,-[CHJ„-COOH 

1 
OCH-[CHjl„-COOH 

HOOC-[CHJ„-COOH 

O 
I 

CH 3 - [CHJ,,- O - C - [CH J y - CH3 

CH3-[CHJy-COOH + CHj- lCHJ^.-CHjOH 

CH 3 - [CHJ„.,- COOH 

CO; 
H,0 

FIGURE 2.1: Metabolic pathways for the assimilation of n-alkanes by fungi 
showing the terminal (a), subterminal (b) and diterminal (c) oxidation 
variants (22) 
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2.3 Aromatic hydrocarbons 

Degradation of aromatic hydrocarbons that range in size from one to six rings 

has been demonstrated both for fungi and bacteria (26). However, two general 

differences have been established between these microbial groups: (i) Bacteria 

usually oxidize aromatic hydrocarbons as the first step for carbon assimilation 

and energy-yielding reactions, while in fungi oxidation typically occurs by co-

metabolism, (ii) The principal enzymatic mechanism for the oxidation of the 

aromatic ring in bacteria involves intracellular flavoprotein dioxygenases that form 

c/s-dihydrodiols which are then cleaved by other dioxygenases (57); in fungi two 

very different enzymatic systems have been identified: the cytochrome P450 

monooxygenase, and the ligninolytic system. Both fungal pathways are 

presented schematically in Figure 2.2. 

FIGURE 2.2: General metabolic pathways for the ring-oxidation of aromatic hydro­
carbons by fungi. R: H, aliphatic, or aromatic substituent. R': methyl, glucoside, 
glucuronide, sulfate, or xyloside (25,109) 
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2.3.1 Cytochrome P450 monooxygenase 

Cytochromes P-450 are a special class of heme-containing multicomponent 

enzymes that are widely distributed in eukaryotes and are also found in certain 

bacteria (87). These enzymes are coupled to a NADPH-reductase that supplies 

the electrons for oxidation from the hydrolysis of water. The cytochrome P-450 

system plays a central role in the oxidative metabolism of endogenous 

metabolites, as well as in the detoxification of xenobiotics, including aromatic 

hydrocarbons (114). Cytochrome P450 catalyzes the ring-epoxidation of aromatic 

hydrocarbons to form arene oxides, which can either undergo enzymatic 

hydration by epoxide hydrolase to frans-dihydrodiols or else rearrange non-

enzymatically to form phenols. Detailed studies on P450-mediated aromatic 

hydroxylation in eukaryotes, however, indicated that epoxides might not be 

obligatory precursors of phenolic metabolites (109). Hydroxylation products can 

undergo further detoxification by O-conjugation to methyl, glucoside, glucuronide, 

sulfate, or xyloside intermediates, which can be excreted. In general, the later 

biotransformations are also found in mammals. For this reason fungi, mainly 

Cunninghamella spp., have been proposed as model organisms for studying the 

detoxification of aromatic hydrocarbons in humans (117,142). 

2.3.2 Ligninolytic enzymes 

White-rot fungi are a specialized group of wood-decaying organisms, mainly 

basidiomycetes and a few ascomycete genera within the Xylariaceae, that 

degrade lignin and give a characteristic bleached appearance to wood. Lignin 

degradation occurs in order to gain access to cellulose and hemicellulose, 

substrates that effectively used as carbon and energy sources. Lignin is a highly 

heterogeneous phenolic polymer that requires extracellular enzymes functioning 

in a non-specific manner. As a result of this substrate nonspecificity, many other 
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aromatic compounds, including aromatic hydrocarbons, are also degraded by 

ligninolytic enzymes. White-rot fungi that have been selected for the degradation 

of aromatic pollutants include Phanerochaete, Bjerkandera, and Trametes spp. 

(53, 100). Similarly to lignin and despite that mineralization has been reported in 

certain cases, aromatic hydrocarbons are only degraded by co-metabolism. 

Three different types of enzymes are principally involved in the ligninolytic 

system: glycosylated heme-containing lignin peroxidases (LiP), Mn-dependent 

peroxidases (MnP), and copper-containing phenol-oxidizing laccases (Lac). In 

the presence of endogenously formed H2O2, LiP oxidizes veratryl alcohol, an 

endogenously generated low-molecular mass redox mediator, which in turn 

carries out one-electron oxidations of non-phenolic aromatics to form aryl cation 

radicals. These radicals initiate a chain of random oxidative chemical reactions 

that result in a variety of aliphatic and aromatic products (106). MnP performs an 

H202-dependent oxidation of Mn2+ to Mn3+ that oxidizes phenolic compounds. 

Lac also generates radicals from different low-molecular mass redox mediators in 

an H202-independent reaction. 

Depolymerization of lignin results in monomeric products, usually phenols, 

aromatic acids, and their methoxylated or reduced analogues. The latter 

compounds have a higher water-solubility and are catabolized intracellular^ by a 

wider diversity of fungi, mainly soil saprobes (24). Assimilation of these aromatics 

occurs through two successive hydroxylations of the aromatic structure previous 

to the ring fission via dioxygenases. The microbial cleavage of the aromatic ring 

can take place either at the ortho or the meta position. However, only the ortho-

fission has so far been reported for fungi. 
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2.4 Substituted aromatic hydrocarbons 

Two types of oxidative reactions are known in bacteria for the assimilation of n-

alkylbenzenes: (i) the oxidation of the aromatic ring to form alkyl-catechols and 

(ii) the oxidation of the alkyl substituent to form aromatic carboxylic acids, which 

are then dihydroxylated to catechols (57). Assimilation of n-alkylbenzenes has 

also been described in some fungi capable of growth on n-alkanes (Beauveria, 

Verticillium, Paecilomyces, and Penicillium spp.) that were isolated from oil-

polluted environments (52). Minimum side-chain lengths from C4 to C9, 

depending upon strains, were required for growth. More recently, additional 

fungal strains were isolated, which were capable of utilizing alkylbenzenes with 

shorter side-chains (37, 133). In these studies, metabolism of alkylbenzenes was 

initiated at the alkyl group up to the formation of aromatic acids, which were 

eventually assimilated. 
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3.1 Introduction 

Aromatic hydrocarbons like benzene, toluene, ethylbenzene and the xylene 

isomers (collectively known as BTEX) are among the most abundant components 

from the water soluble fraction of crude oil and refined fuels. Moreover, these 

compounds are used on a large scale as solvents and for the production of a 

range of chemicals (72, 122). Besides being relatively water soluble, BTEX 

compounds are also volatile. BTEX is present in the waste gas of industrial 

processes and bioremediation works at oil-contaminated sites (6). Due to their 

toxicity and recalcitrance, aromatic hydrocarbons are regarded as major 

environmental pollutants and have been subject to stringent environmental 

regulations (82). 

The treatment of gas streams containing volatile pollutants by biofiltration 

has been proposed as an alternative to other air pollution control technologies, 

because investment and maintenance costs are relatively low (127). The 

absence of a mobile water phase simplifies the reactor configuration and it 

improves the mass transfer of hydrophobic substrates into the active biofilm, 

where they are degraded. However, control of parameters that strongly affect the 

microbial activity like pH, water activity and nutrient supply is difficult without free-

flowing water (95). Both fungi and bacteria are known to degrade aromatic 

hydrocarbons (26). Fungi perform oxidation reactions as a prelude to the 

detoxification and excretion of hydrocarbons, rather than using these compounds 

as carbon sources for growth (32, 86). Interestingly, Hartmans etal. (61) isolated 

two fungi able to grow on styrene as a sole carbon and energy source. One of 

those strains, the yeast-like fungus Exophiala jeanselmei, was used successfully 

for treating of styrene-polluted air in a biofilter (37, 39). More recently, the 

deuteromycete Cladosporium sphaerospermum was isolated from a biofilter that 

had been used to remove toluene from contaminated air. This fungus can use 

toluene as the sole source of carbon and energy (133). These findings 
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demonstrate that it is possible to isolate fungi that grow on aromatic 

hydrocarbons, provided adequate enrichment techniques are used. Compared to 

most bacteria, fungi adapt more readily to adverse environmental conditions of 

low moisture and low pH (31, 34, 118). Consequently, these environmental 

factors are relevant for the specific enrichment of fungi. 

The present report describes the use of enrichment techniques to isolate 

fungi capable of growing on toluene. In addition, a broad range of fungi belonging 

to the Basidiomycota, Zygomycota and also deuteromycetes were screened for 

their ability to grow on toluene. The new isolates were identified and 

characterized in terms of their growth rates, substrate specificity and toluene 

degradation kinetics. Emphasis was placed on the toluene assimilation 

parameters of these fungi in comparison with bacteria. 

3.2 Materials and methods 

3.2.1 Enrichment and isolation of fungi growing on toluene 

Three different enrichment techniques were performed: solid state-like batches, 

air biofilters and liquid batch cultures. Soil or groundwater samples were used as 

inoculum. 

Solid state-like batches. Serum flasks (250 ml) were filled with 50 ml of peiiite 

granules. Prior to inoculation the perlite was soaked with mineral medium (60). 

Different unpolluted and BTEX-polluted soils (approx. 1 g) and water samples 

(1 ml) were used as inocula. The flasks were closed with a cotton-wool and 

incubated in a desiccator at 30 °C. Toluene, xylenes, benzene, and naphthalene 

were used individually as carbon sources. Substrates were supplied in the 

gaseous phase from 5 % (v/v) solutions in dibutyl-phthalate. Naphthalene was 

added directly in solid form. Humidity was set at 90 % rh using a salt solution 

(140gNaCir1). 
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Air biofilters. Four glass columns packed with perlite granules were used as 

biofilters. The filter bed volume was 1 I in columns A and B and 2 I in columns C 

and D. The perlite was previously saturated with mineral medium (38) and mixed 

with soil from a gasoline station (50 g I"1 perlite). Humidified air containing 0.1 to 

0.55 mg I"1 toluene was fed to the biofilters at a constant gas flow rate of 200 I h"1. 

The pH of the medium in columns A and C was initially set at 4.0 and in columns 

B and D at 8.0. The influent gas for the biofilters A and B was humidified at 92 % 

rh and for C and D at 97 % rh. All filters were operated at 25 °C. 

Liquid cultures. Soil samples (approx. 5 g) were suspended in 100 ml of liquid 

medium. Medium composition was (per liter demineralised water): (NH4)2S04, 

1 g; MgS04.7H20, 0.5 g; NaCI, 0.1 g; CaCI2, 0.1 g; KH2P04, 0.87 g; 

FeS04.7H20, 1 g, and 10 ml of mineral trace solution (135). Ground water 

samples (100 ml) were incubated after adding the components of the mineral 

medium. In both cases, glucose (0.3 g I"1) was added as an additional carbon 

source and the pH was adjusted at 5.5. Toluene was supplied by disolving it in 

dibutyl-phthalate (2 ml, 3 % v/v) from which it evaporated into the incubation 

vessel. This solution was contained in an open vial attached to the rubber cap. 

Flasks were incubated at 23 °C on a rotary shaker (130 rpm). 

Fungi were isolated by washing samples of the support material or directly 

from the liquid media. Dilutions from the resulting suspensions were plated and 

incubated in a dessicator with toluene (3 or 5 % v/v in dibutyl phthalate). Pure 

fungal cultures were obtained by subsequent transfers to fresh agar plates. 

Medium composition and incubation temperatures during isolation were identical 

to those used during enrichment. 

3.2.2 Growth experiments on solid culture 

260 Fungal strains (from the collection of LB Biotechnology, Kaiserslautem, 

Germany) were screened for their ability to grow on mineral agar plates 
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incubated under toluene vapours. The collection of fungi included 165 strains of 

deuteromycetes and Zygomycota previously isolated from polluted soils 

(polycyclic aromatic hydrocarbons, chlorophenols and nitroaromatic compounds) 

and 95 strains of Basidiomycota representing 80 genera. This second group 

included white rot and non-white rot fungi from a broad range of habitats. Plates 

were incubated at 23 °C in dessicators containing a toluene atmosphere (3 % v/v 

toluene solution in dibutyl phthalate). The composition of the mineral media used 

in the agar plates was the same as in the enrichments with liquid cultures (see 

above). Growth was assessed by comparing agar plates incubated with and 

without toluene. 

3.2.3 Growth experiments in liquid culture 

Growth kinetics were characterised in 250 ml Boston flasks sealed with Teflon 

Mininert valves (Phase Separations, Waddinxveen, The Netherlands) to prevent 

solvent evaporation. Each flask contained 25 ml of buffered (35 mM 

K2HP04/NaH2P04.2H20, pH 7) mineral salts medium (60). Hydrocarbons were 

added up to an initial concentration of 0.5 mM in the liquid media based on 

reported water/air partition coefficients (2, 76). Substrates with a lower solubility 

were added in excess up to 50 umol. Glucose (50 umol) was used for reference 

purposes to assess growth on a readily biodegradable and non-inhibitory 

substrate. Hydrocarbon toxicity was determined by comparing growth in the 

presence of each pollutant with growth on glucose. Flasks were inoculated with a 

spore suspension after substrate equilibration. Incubations were performed at 25 

°C under static conditions unless stated otherwise. Flasks in which growth was 

not observed were incubated for a minimum of four months. Growth was 

evaluated by measuring the consumption of the volatile substrate and the 

production of carbon dioxide in the headspace. Measurements were related to 

standards with the same volume of liquid medium and gas phase as the 
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incubated batches and known amounts of both the hydrocarbon and carbon 

dioxide. 

3.2.4 Preparation of fungal cell suspensions 

Higher yields of toluene-grown mycelia were produced in 5 I Erlenmeyer flasks 

containing 0.5 I of mineral medium (60) and 0.02 % (w/v) of yeast extract. 

Toluene was supplied via a 5 ml toluene solution (5 % v/v in dibutyl phthalate) as 

described above. Flasks were incubated under shaken conditions for one week 

at 20 °C or 30 °C depending on the optimum for growth of each strain. The 

mycelium was harvested by filtration using filter paper, followed by washing and 

resuspension in a potassium phosphate buffer solution (50 mM, pH 7.0). Yeast 

cells were harvested and washed twice by centrifugation (10 000 rpm, rav 8 cm, 

for 10 min at 4 °C). Cell suspensions were stored at 4 °C until use for up to three 

days. 

3.2.5 Toluene degradation parameters 

The rates of toluene degradation and mineralisation by fungal cell suspensions 

were determined in 250 ml Boston bottles sealed with Teflon valves. At time zero 

10 ml of cell suspension (approx. 8 g-dw I"1) and 2 pi of toluene were added, 

resulting in a toluene concentration of 0.2 mM in the liquid phase. Flasks were 

incubated at 30 °C under shaking conditions. Toluene consumption and carbon 

dioxide production in the headspace were monitored during the following hours. 

Carbon dioxide production was corrected for the endogenous respiration 

determined in flasks incubated without toluene. All incubations were performed in 

triplicate. 

The effect of the toluene concentration on the oxygen consumption rate 

was determined by using a biological oxygen monitor. The oxygen uptake by a 4 

ml cell suspension was monitored for at least 5 min after the addition of 20 pi of a 
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toluene stock solution in A/,/S/-dimethylformamide. Oxidation rates were corrected 

for the endogenous respiration rate. The addition of A/.N-dimethylformamide had 

no effect on the endogenous respiration. The oxygen consumption rate was 

measured in triplicate up to a toluene concentration of 0.25 mM. 

3.2.6 Analytical methods 

Volatile hydrocarbons and carbon dioxide concentrations were determined by 

injecting 100 pi head-space samples in a HP 6890 Series gas chromatograph 

(Hewlett Packard). For the hydrocarbons, the stationary phase was a 10 % SE-

30 Chromosorb WMP column (Chrompack B.V. Middelburg, The Netherlands). 

The carrier gas was nitrogen used at a flow of 1.9 ml min"1. The temperature of 

the column and the flame ionisation detector was 110 and 300 °C respectively. 

For carbon dioxide a Chrompack Poraplot Q column (Chrompack B.V. 

Middelburg, The Netherlands) and a thermal conductivity detector were used. 

Helium at a flow of 3.0 ml min"1 was the carrier gas. The column and detector 

temperatures were respectively set at 70 and 250 °C. Oxygen consumption was 

measured in a Clark type oxygen electrode (Yellow Springs Instruments Co, Inc., 

Ohio). Dry weight was determined after drying cell suspensions for 24 h at 105 

°C. The latter values were corrected for the salts contained in the suspension 

buffer. 

3.2.7 Chemicals 

Hydrocarbons were obtained from Acros Organics (Geel, Belgium), Sigma-

Aldrich Chemicals (Steinheim, Germany), Jansen Chimica (Geel, Belgium), Lab-

Scan Ltd. (Dublin, Ireland) and Merck KGaA (Darmstadt, Germany). All 

chemicals were of analytical grade. 
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3.3 Results 

3.3.1 Isolation and identification of the fungi 

Three methods were employed for the selective enrichment of toluene-degrading 

fungi in order to obtain a variety of strains. Soil and water samples of different 

origin were enriched under conditions of low pH and/or water activity using solid 

state-like batches, air biofilters and liquid cultures. Fungal growth was only 

observed in incubations with material from BTEX-polluted sites. Fungi were 

detected within one month from these sites using all three incubation methods. 

Five strains, designated T1 to T5, were selected. Attempts to enrich for fungi able 

to grow on xylenes, benzene, or naphthalene were unsuccessful. Additionally, 

260 fungi from a culture collection were screened for their ability to grow under a 

toluene atmosphere. None of the strains tested was able to grow on toluene as a 

sole carbon and energy source. 

TABLE 3.A: Enrichment conditions and identification of the isolated fungal strains growing on 
toluene 
„ ,. , Enrichment „ .... Fungus 
Source of inoculum T . . Conditions-Technique Code Identification (strain number) 

BTEX polluted soil Solid state- pH = 7.0 T1 Cladophialophora sp.a 

(Bennekom, The Netherlands) like batch rh = 90 % (CBS 110513, ATCC MYA-2335) 

Gasoline station soil Air biofilter pH = 4.0 T2 Cladophialophora sp.a 

(Apeldoorn, The Netherlands) rh = 97 % (CBS 110551, ATCC MYA-2336) 
T3 Pseudeurotium zonatum 

sporothrix-like anamorph 
(CBS 110552, ATCC MYA-2337) 

BTEX polluted soil and water Liquid pH = 5.5 T4 Exophiala sp.a 

(Brandenburg,Germany) culture (CBS 110555) 
T5 Leptodontidium sp.a 

(CBS 110554) 

a Conclusive identification at genus level, further identification not possible 
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FIGURES 3.1 - 3.6: Photographs of fungi grown on toluene (bar = 10 um). FIG. 3.1 
Conidiophores of Cladosporium sphaerospermum TO. FIG. 3.2. Conidiophores of 
Cladophialophora sp. T1. FIG. 3.3. Conidial chain of Cladophialophora sp. T2. FIG. 3.4. 
Sporothrix-like anamorph of Pseudeurotium zonatum T3. FIG. 3.5. Conidiophore of 
Leptodontidium sp. T5. FIG. 3.6. Yeast-like growth of Exophiala sp. T4 with budding cells 
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The isolates from BTEX-polluted sites were identified by the 

Centraalbureau voor Schimmelcultures (CBS), Utrecht (Table 3.A) as 

hyphomycetes except for T3 for which both the teleomorph, Pseudeurotium 

zonatum and a sporothrix-like anamorph were observed. Ascomata of this fungus 

were produced on complex agar and on mineral agar with toluene. The 

previously isolated fungus Cladosporium sphaerospermum, here abbreviated as 

TO, was included in the present investigation. The morphological characteristics 

of the isolates are shown in Figs 3.1 - 3.6. 

5 10 
Time (d) 

FIGURE 3.7: Toluene degradation (o) and C02 production (a) by C. sphaerospermum 
growing on toluene at 30 °C. The inset presents the exponential decrease of toluene 
and increase of C02 plotted on a logarithmic scale 
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3.3.2 Growth experiments 

The ability of the fungal strains TO - T5 to grow on toluene was further 

investigated in static submerged cultures. The time course of toluene 

consumption and carbon dioxide production was followed. After a lag-phase of 5 

to 10 days all fungi grew at an apparently constant specific rate until the complete 

depletion of toluene, as determined from the patterns of substrate utilisation and 

carbon dioxide production. More than 60 % of the carbon-substrate was 

recovered as carbon dioxide and 3 - 4 mg-dw of cells were formed. Considering 

that 26 g-dw of biomass contains about 1 mol of carbon (123), the biomass yield 

accounted for about the 30 - 40 % of the carbon-substrate. Fig. 3.7 shows as an 

example of the link between the toluene degradation and growth for C. 

sphaerospermum. Nutrient supplementation of the medium with traces of yeast 

extract (0.01 % w/v) was essential for the growth of the strain Cladophialophora 

sp. T2. The effect of temperature on the fungal growth is shown in Table 3.B. 

These results revealed that the fungi differed in their optimum growth 

temperatures. Pseudeurotium sp. T3 and Leptodontidium sp. T5 showed good 

growth at 20 °C but little or no growth at temperatures higher than 30 °C. In 

contrast, the Cladophialophora strains T1 and T2 grew better in the range of 30 

to 37 °C. 

TABLE 3.B: Influence of temperature on the rate coefficient of carbon dioxide production 
measured in day ~1 for fungi growing on toluene (n > 5, r2 > 0.98) 

Temperature (°C) 
Fungus 

Cladosporium sphaerospermum TO 
Cladophialophora sp. T1 
Cladophialophora sp. T 2 a 

Pseudeurotium zonatum T3 
Exophiala sp. T4 
Leptodontidium sp. T5 

20 

<0.10 
0.24 
0.22 
0.27 
0.28 
0.34 

25 

0.21 
0.31 
0.21 
0.22 
0.36 
0.33 

30 

0.48 
0.40 
0.56 
0.12 
0.40 
0.13 

37 

0.16 
0.39 
0.65 

-
-
-

' Mineral medium supplemented with yeast extract (0.01 % w/v) 
• No growth 
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The substrate range of the fungi was evaluated using different 

hydrocarbons as the sole source of carbon and energy (Table 3.C). Besides 

toluene, ethylbenzene and styrene were used as growth substrates by C. 

sphaerospermum TO and Cladophialophora sp. T1. These strains also grew on 

the oxygenated aromatic compounds phenol and cresols (data not shown). 

Ethylbenzene was also assimilated by Exophiala sp. T4. Benzene, naphthalene 

and xylenes did not support growth of any of the fungi. Furthermore, growth on 

glucose was inhibited by the addition of 2-methylnaphthalene and, in some fungi, 

by naphthalene exposure. The latter result indicated that these compounds were 

toxic when saturating the liquid media. The aliphatic hydrocarbons n-decane and 

n-hexane served as growth substrates for some of the fungi. Nevertheless, they 

were catabolized at much lower rates and growth was characterized by low 

carbon dioxide recoveries. 

TABLE 3.C: Rate coefficient of carbon dioxide production, measured in day-1 at 25 °C, for the 
growth of fungi on different hydrocarbons added up to 0.5 mM (n £ 5, r2 z 0.98) 

Substrate 

Toluene 
Ethylbenzene 
Styrene 
c-Xylene 
m-Xylene 
p-Xylene 
2-Methylnaphthalene 
Benzene 
Naphthalene 
Cyclohexane 
n-Hexane 
n-Decane 
Glucose 

TO 

0.21 
<0.10 
<0.10 

-
-
-

X 

-
X 

-
-
± 

0.31 

T1 

0.31 
0.28 
0.29 

-
-
-

X 

-
-
± 
± 
± 

0.79 

Fungus 
T2a 

0.21 
-
-
-
-
-

X 

-
X 

-
-
+ 

0.64 

(strain code) 
T3 

0.22 
-
-
-
-
-

X 

-
-
-
-
± 

0.67 

T4 

0.36 
0.28 

-
-
-
-

X 

-
-
-
-
+ 

1.19 

T5 

0.33 
-
-
-
-
-

X 

-
-
-
-
-

0.72 

• Mineral media supplemented with yeast extract (0.01 % w/v) 
± Poor growth, - No growth, x Toxic 
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3.3.3 Kinetics of toluene degradation 

Table 3.D summarizes different parameters for toluene degradation in whole cell 

suspensions. No biodegradation activity could be measured in strains T3 and T5. 

Apparently, the latter strains lost their degradation activity during the harvesting 

procedures. Substrate affinity and toxicity were evaluated from the oxygen 

consumption rates at different toluene concentrations (data for C. 

sphaerospermum are shown in Fig. 3.8). 

•as 

100 

100 200 
(MM) 

300 1 2 

Toluene concentration 

3 4 
(mM) 

FIGURE 3.8: Kinetics of toluene oxidation by C. sphaerospermum. The data are 
presented as a direct plot and as a Lineweaver-Burk linearisation (inset). Error 
bars show standard deviations 

These data were fitted to the Michaelis-Menten model and the apparent Km was 

calculated from the Lineweaver-Burk plot. Oxidation rates progressively 

decreased at toluene concentrations higher than 1 mM, indicating that toxic 

levels were reached. Substrate concentrations causing 50 and 80 % of inhibition 

(IC) relative to the maximum measured rate for oxygen consumption were 

calculated by extrapolation. 
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TABLE 3.D: Toluene degradation kinetics by toluene-grown fungal cells. Specific rates are 
given in nmol g dry-wt'1 h'1 at 30 °C (n > 6, r2 > 0.95) 

Parameter 

Specific ratesa 

Toluene degradation 
C02 production * 
Transient C-C02 recovery (%) 

Oxidation kinetics 
Max. 02 consumption rate *c 

Km(iiM)d 

Inhibitory concentration (mM) 
50 % IC 
80 % IC 

TO 

74 ±70 
292 ± 12 

56 

353 + 31 
22 

2.9 
4.3 

Fungus (strain code) 
T1 

81 ±40 
174 ±15 
31 

73 ±60 
12 

3.7 
4.3 

T2 

74 ±60 
227 ± 58 
44 

154±11 
5 

3.5 
4.7 

T4 

25 ±30 
94 ±14 
53 

56 ±12 
6 

2.1 
2.4 

3 Toluene added up to 0.2 mM 
" Corrected for the endogenous respiration 
e Measured value 
"From the Lineweaver-Burkplot (ns8,r2>0.98) 

3.4 Discussion 

The present paper gives a description of the isolation and characterisation of five 

fungal strains which are able to grow on toluene as their sole carbon and energy 

sources. The fungi belong to the following genera: Cladophialophora, Exophiala, 

Pseudeurotium (anamorph sporothrix-like) and Leptodontidium. Previously, 

Exophiala and Sporothrix species assimilating styrene were isolated from 

biofilters used in the treatment of air polluted with styrene (38). Exophiala has a 

high taxonomic affinity with Cladophialophora (45). Consequently, with the 

exception of Leptodontidium sp. T5, the new isolates are related to fungi already 

known to grow on aromatic hydrocarbons. The latter suggests that contrary to the 

cometabolism of aromatic hydrocarbons, which is widespread among fungi (28), 

the ability to use these compounds as growth substrates might be restricted to a 

limited number of fungal genera. 



3. Isolation of fungi 33 

It is interesting to contemplate why, until recently, no fungi have been 

described with the capacity to grow on aromatic hydrocarbons. The lack of 

information about hydrocarbon-assimilating fungi may be attributed to the fact 

that traditional sealed flask enrichments tend to select bacteria rather than 

slower-growing fungi (31, 34). Nevertheless, our results demonstrate that it is 

possible to select for fungi by using appropriate enrichment techniques. 

Interestingly, when enrichments were performed in liquid media, fungi 

preferentially grew as biofilms attached to the glass walls at the water/air 

interface. In fact, the development of fungi was effectively favoured in solid state­

like fermentations, which might result from their ability to grow under conditions of 

limited water and nutrient availability. Using an inoculum that originated from a 

toluene-polluted site increased the chance of obtaining toluene-degrading fungi. 

Most likely, the polluted soil matrix was already enriched in toluene utilizing fungi. 

Due to the inhomogeneous biomass of filamentous fungi, fungal growth is 

generally correlated to the respiration activity (118). Here we used the rate 

coefficient of carbon dioxide production (value that was very similar to the rate of 

substrate utilisation, Fig. 3.1) as an estimate of the specific growth rate. The 

substrate contribution to maintenance however can not be neglected in slow-

growing organisms (123). Therefore, the specific growth rates of our fungal 

isolates are expected to be lower than the respiration rates given in Tables 3.B 

and 3.C. From these results it is clear that the fungi grew on toluene with 

doubling times of at least 2 to 3 days in contrast to their bacterial counterparts, 

which exhibit doubling times of only 1 to 3 hours (33, 79, 85). The white colony 

forming strains Pseudeurotium sp. T3 and Leptodontidium sp. T5 showed poor 

growth at temperatures of 30 °C. These fungi also lacked degradative activity in 

washed mycelia. Loss of activity after harvest has been observed in other 

hydrocarbon-growing fungi (59). 

Some of the fungi were also able to assimilate ethylbenzene, and styrene. 

The substrate specificity was strain or species specific as shown for the two 
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Cladophialophora isolates T1 and T2, of which only T1 grew either on styrene or 

ethylbenzene. The same is true for the Exophiala strains. Our isolate Exophiala 

sp. T4 was not able to grow on styrene under the test conditions, contrary to the 

previously studied E. jeanselmei, which assimilated styrene but did not grow on 

toluene (37). The fact that unsubstituted aromatic hydrocarbons did not support 

growth of any strains suggests that the alkyl side-chain plays an important role in 

the catabolism of the aromatic structure. Nevertheless, the presence of a second 

side-chain (e.g. in the xylenes) or an additional fused aromatic ring (e.g. in 

2-methylnaphthalene) apparently prevents the catabolism of the methylbenzene 

structure. In spite of its low solubility in water (0.18 mM according to Mackay & 

Shiu (76), 2-methylnaphthalene was toxic to all the fungi studied. Naphthalene 

and its methylated analogues are also highly toxic towards invertebrates (3, 18). 

In contrast to the aromatic substrates, aliphatic hydrocarbons were poorly 

utilized. In agreement with our results, low growth rates and biomass yields were 

obtained in previous studies with filamentous fungi growing on n-alkanes (75, 

116). 

Fungi might be well suited for the treatment of air streams in biofilters, 

where acidification and drying of the filter bed are likely to occur. In order to avoid 

clogging problems these systems are ideally operated without net growth, which 

is the case when the substrate supply equals the energy requirements for 

maintenance of the biofilm. Since the maintenance coefficient in both types of 

microorganisms, fungi and bacteria, are known to be comparable (123), the use 

of bacteria may not be especially advantageous in terms of specific activity for 

toluene degradation under growth-limited conditions. The biodegradation rates 

measured with fungal cells (Table 3.D) were of the same order of magnitude as 

the rates of toluene assimilation measured in a non-growing fed-batch culture of 

the bacterium Burkholderia cepacia G4 (22 umol g-dw "1 h"1 at 28 °C; (78)). Fungi 

were found to be comparable to bacteria in relation to the substrate affinity and 

toxicity for toluene. The apparent Km measured in fungal cell suspensions, as 

determined from the overall toluene oxidation (Table 3.D), fell into the range of 
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reported Monod constants for toluene degradation by Pseudomonas species (0.4 

to 43.3 uM; (33, 79, 85)). Furthermore, the 50 % IC values measured for fungi 

are similar to those reported for most aerobic bacteria, but remain well below the 

values for solvent-tolerant bacteria (10,42,134). 

In summary, the newly isolated fungi combine the propensity of many 

fungi to grow at low water activities and in acidic conditions with an ability to grow 

on aromatic hydrocarbons. Therefore, the use of fungi in bioremediation 

processes is very promising when microorganisms must operate under harsh 

environmental conditions and when near-zero net growth is preferred. Due to the 

rather narrow substrate specificity of the fungi isolated in this study, their 

application may be limited to the degradation of a number of compounds that, 

however, are very important pollutants. 
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4.1 Introduction 

In bacteria, five different metabolic pathways for the complete degradation of 

toluene and its assimilation are known (56, 68, 115, 137, 139). Depending upon 

the strain, toluene is initially oxidized either at the methyl group or at the aromatic 

ring. Fungi also can oxidize toluene at both molecular sites. Cultures of 

Mortierella isabellina converted toluene into benzyl alcohol (64). Smith and 

Rosazza (117) identified two zygomycetes and three deuteromicetes that 

hydroxylated toluene at the aromatic ring to produce o-cresol and, in some 

cases, p-cresol. Mineralization of toluene has been reported for the white-rot 

fungus Phanerochaete chrysosporium, but the metabolic pathway was not 

determined (141). The fungal degradation of toluene in these cases occurred 

only by cometabolism and, consequently, it did not support growth. We 

previously identified and described a Cladosporium sphaerospermum strain that 

can grow on toluene as the sole carbon and energy source (133). Oxygen 

consumption experiments with whole cells and enzyme activities in cell-free 

extracts suggest that the initial oxidation of toluene takes place at the methyl 

group, rather than at the aromatic ring. Recently, we identified five additional 

fungi that also can assimilate toluene (Chapter 3). 

19F nuclear magnetic resonance (19F NMR) has been used previously to 

characterize the degradation of fluorine-containing aromatic compounds by fungi 

(11, 99, 126). Fluorine, with its small size, can replace hydrogen in an organic 

substrate with few steric consequences. It also influences the conversion rate of 

many enzyme reactions (136). The 19F isotope, with a natural abundance of 

100% and a broad chemical shift range, is a very sensitive NMR-active nucleus 

that can be advantageously used in the identification and quantification of 

fluorinated intermediates by 19F NMR spectroscopy. 

Our objectives were to identify the initial steps for the catabolism of 

toluene in six previously isolated fungi (101, 133), Chapter 3) .which are capable 
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of growth on toluene as a sole carbon and energy source: C. sphaerospermum 

TO, Cladophialophora sp. strains T1 and T2, Pseudeurotium zonatum T3, 

Exophiala sp. strain T4, and Leptodontidium sp. strain T5. The fungi 

Cunninghamella echinulata CBS 596.68 and Aspergillus niger CBS 126.48 were 

included in this study. These two organisms cometabolically hydroxylate the 

aromatic ring of toluene (7, 117). We used fluorinated toluene isomers as 

substrate analogs and 19F NMR spectroscopy to characterize the pattern of 

metabolite accumulation. In particular, we focused on the site of the initial 

oxidative attack, in order to determine whether fungi can assimilate toluene 

through pathways as diverse as those used by the aerobic bacteria. 

4.2 Materials and Methods 

4.2.1 Chemicals 

Toluene was purchased from Labscan Ltd. (Dublin, Ireland) 2-, 3-, 4-Fluoro-

toluene, and the reference compounds 2-, 3-, 4-fluorobenzyl alcohol, 2-, 3-, 

4-fluorobenzaldehyde, 2-, 3-, 4-fluorobenzoic acid, 3-fluorocatechol and 3-fluoro-

6-hydroxytoluene were from Acros Organics (Geel, Belgium). 4-Fluoro-3-

hydroxytoluene was from ABCR GmbH&Co KG (Karlsruhe, Germany). All 

chemicals were of analytical grade. 3-Fluoro-4-hydroxybenzoic acid was a gift of 

Sjef Boeren (Laboratory of Biochemistry, Wageningen University). The purity of 

all fluorinated compounds was verified by 19F NMR spectroscopy. 

4.2.2 Organisms 

The fungi capable of growing on toluene used in this study were: C. 

sphaerospermum TO, Cladophialophora sp. strains T1 and T2, Pseudeurotium 

zonatum T3, Exophiala sp. strain T4, and Leptodontidium sp. strain T5. These 

fungi can be obtained upon request from the culture collection of the Department 
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of Biotechnology, University of Kaiserslautern (Kaiserslautem, Germany). The 

strains C. echinulata CBS 596.68 and A. niger CBS 126.48 were purchased from 

the Centraalbureau voor Schimmelcultures (Utrecht, The Netherlands). All 

organisms were routinely maintained at 4°C on 2% glucose mineral medium (61) 

agar slants. 

4.2.3 Preparation of cell suspensions 

Toluene-grown mycelium was obtained as described in Chapter 3. C. echinulata 

and A. nigra were grown at 30 °C as shake cultures (120 rpm) in a cotton-

plugged 5 I Erlenmeyer flask containing 0.5 I of the following medium (per liter of 

demineralized water): 20 g glucose, 5 g mycological peptone, 2 g yeast extract, 1 

g KH2P04 and 0.5 g MgS04-7H20. The medium was inoculated with 1 ml of a 

spore suspension (approx. 107 spores per ml) and incubated for 48 hours. 

Toluene oxidation activity was induced by replacing the cotton-plug with a rubber 

cap containing an insert filled with 5 ml of a 5:95 toluene:dibutylphthalate 

solution. The flask was then incubated for 12 additional hours. Mycelium was 

harvested with a glass-fiber paper of >1 urn retentivity (Schleicher & Schuell, 

Dassel, Germany), washed with 500 ml of a 50 mM potassium phosphate buffer 

(pH 7.0) and resuspended in the same buffer solution. Cell suspensions were 

stored at 4 °C and used within three days after preparation. 

4.2.4 Incubations with whole cells 

(Fluoro)toluene was bioconverted in 250 ml Boston flasks closed with teflon 

valves (Mininert, Phase Separations, Waddinxveen, The Netherlands). Cell 

suspensions of toluene-grown fungi (10 ml, approx. 8 g DM I"1) were incubated 

with the fluorotoluenes (shaking conditions, 120 rpm, 30 °C). Toluene and all 

three fluorinated isomers, 2-, 3- and 4-fluorotoluene, were added individually up 

to 2 jj.l/10 ml culture. T3 and T5 had no degradation activity after harvest, so 
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these fungi were cultured in Boston flasks containing 25 ml of mineral media (61) 

and 4.5 u.l of toluene (static conditions, 25 °C). After toluene exhaustion, the 

resulting cultures (approx. 5 g DM I"1) were flushed with non-sterile air and then 

incubated with a fluorinated toluene (2 ^1/25 ml culture). Similarly, toluene 

induced and non-induced cells of C. echinulata and A. niger {25 ml, approx. 14 g-

dw I'1) were incubated with 2 \i\ of each fluorotoluene (shaking conditions, 30 °C). 

We followed fluorotoluene consumption via gas chromatographic analysis of the 

headspace. Incubations lasted no longer than 48 hours and were stopped before 

complete substrate depletion. The cell suspension was stored at -20 °C until 

analyzed. For metabolite determination, samples were thawed and divided in two 

portions. One was centrifuged (4 °C, 10 min, 13 000 * g) to remove cell debris, 

and the other was extracted with 1 volume of ethyl acetate. Both the culture 

medium and the solvent extract were analyzed by 19F NMR. 

4.2.5 Identification of fluorinated metabolites 

Products of fluorotoluene conversion were identified by comparing their 19F NMR 

chemical shift values with those of authentic reference compounds whenever 

available. For compounds not available commercially, the chemical shift was 

either taken from literature or predicted by using the method of Rietjens ef al. 

(110). Comparisons between known and predicted chemical shift values 

indicated that this approach provides reliable results (not shown). The presence 

of fluorinated intermediates at trace level (less than 1 % of the total 19F 

resonance) was confirmed by analyzing new samples from the incubation media. 

4.2.6 Analytical methods 

Toluene and the fluorinated analogs were measured by injecting 100 \i\ head-

space samples into a HP 6890 gas chromatograph (Hewlett-Packard, 

Wilmington, Del.) with a 10% SE-30 Chromosorb WMP column (Chrompack B.V. 



42 Growth of fungi on aromatic hydrocarbons 

Middelburg, The Netherlands). The carrier gas was nitrogen at a flow of 1.9 

ml/min. The temperature of the column and the flame ionization detector was 110 

and 300 °C, respectively. 19F NMR measurements were made with a Bruker DPX 

400 MHz NMR as previously described (129). The temperature of the 

measurement was 7 °C. The sample volume was 2 ml containing 1.8 ml of 

culture media and 0.2 ml of 0.5 M potassium phosphate buffer (pH 7). Ethyl 

acetate extracted fractions (2 ml) were assayed directly. 4-Fluorobenzoate 

(80 nM) was added as internal standard via an insert. 19F chemical shifts 

(expressed in ppm with respect to CFCI3) and concentrations of the various 

metabolites were calculated by comparison of their 19F NMR integrals to that of 

the standard 4-fluorobenzoate. Cell dry weight was determined by weighing dried 

cell suspensions (24 h at 105 °C). 

4.3 Results 

4.3.1 Fungal conversion of fluorinated toluenes 

The two types of toluene-degrading fungi, those that degrade it by co-metabolism 

and those that use it as the sole carbon source, both degraded the fluorinated 

analogs although at very different rates (Table 4.A). The specific degradation 

activity for the fluorotoluenes was up to one order of magnitude higher in fungi 

that used toluene for both energy generation and biomass production. These 

fungi degraded 4-fluorotoluene faster than 3- and 2-fluorotoluene. The latter 

isomer was not degraded by the strain Cladophialophora sp. T2. Recovery of the 

fluorine label from the consumed substrate as conversion products in the liquid 

medium was as high as 90% in most of cases. Due to the low specific 

degradation activity in the fungi cometabolizing toluene, the rates for 

fluorotoluene conversion were estimated on the basis of the amount of 

fluorinated products that accumulated in the media in relation to the biomass and 

the incubation time. The activities presented in Table 4.A for these fungi were 
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obtained with cells that had been exposed to toluene during growth and were 

about four times higher than those in non-induced cells. 

TABLE 4.A: Specific rates (in nmol h "1 g-dw ' ' ) for the degradation of toluene and fluorinated 
toluene analogs by fungi 

Fungus 

Aspergillus nigra 
CBS 126.48 
Cuninghamela echinulata 
CBS 596.68 

Cladosporium sphaerospermum TO 
Cladophialophora sp. T1 
Cladophialophora sp. T2 
Pseudeurotium zonatum T3 
Exophiala sp. T4 
Leptodontidium sp. T5 

Toluene 
metabolism 

C 

C 

A 
A 
A 
A 
A 
A 

' Toluene" 

-

-

74 ± 7 
81 ± 4 
74 ± 6 

2.0 + 0.4 
25 ± 2 

4.3 + 0.9 

Substrate 
2F-toluene 

0.012 

0.034 

22 
29 
NDC 

1.5 
13 
3.3 

3F-toluene 4F-toluene 

0.015 

0.041 

39 
30 
35 

1.3 
8.0 
2.1 

0.012 

0.053 

69 
59 
60 
2.1 

15 
3.5 

* C: toluene co-metabolism by toluene-induced cells (degradation rates estimated from the 
amount of accumulated fluorinated products); A: assimilation of toluene by toluene-grown cells 
(degradation rates measured at the head space, n > 5, r2> 0.98) 

"Average and standard deviation of three experiments; - not determined 
c Not degraded 

4.3.2 Identification of fluorinated metabolites 

The 19F NMR chemical shift of the various fluorotoluene derivatives were 

assigned to specific metabolites (Table 4.B). Peak overlap was observed 

between the 19F NMR signals of 3-fluorobenzyl alcohol and 3-fluorobenzoate, 

since both compounds have the same chemical shift in the aqueous phase. The 

fluorine resonance of these compounds differed in ethyl acetate solution. 

Consequently, the presence of 3-fluorobenzyl alcohol and/or 3-fluorobenzoate 

was confirmed by analyzing the solvent-extracted fractions. 

A small 19F NMR peak at -112.5 ppm resulting from the degradation of 2-

fluorotoluene by C. sphaerospermum TO and P. zonatum T3 was tentatively 
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identified as a muconate-derivative due to its proximity to the chemical shift of 2-

fluoro-c/s,c/s-muconate. We suggest that this resonance results from a cis-trans 

isomerization product of 2-fluoro-c/s,c/s-muconate or from a fluorinated 

carboxymuconate arising from the ring opening of fluoroprotocatechuate. This 

unidentified metabolite had a low signal intensity and limited stability. 

TABLE 4.B: Fluorinated products resulting from the degradation of fluorotoluene by eight fungi. 
The 19F NMR chemical shifts, measured at 7 °C, are assigned in two different solvents: 
aqueous solution and ethyl acetate 

Chemical shift 
50 mM potassium phosphate 

buffer, pH 7 

-124.3 
-117.9 
-119.5 
-120.3 
-118.0 
-114.2 
-116.4 
-141.7 
-141.2 
-126.2 
-140.2 
-140.4 
-111.8 
-129.7 
-120.7 
-123.0 

R" 
R 
R 
R 
R 
R 
L 
R 
L 
L 
P 
R 
L 
R 
P 
R 

(ppm)a 

Ethyl acetate 

-128.1 
-121.6 
-124.3 

-
-120.6 
-114.9 

-
-
-
-
-

-144.6 
-

-134.5 
-
-

R 
R 
R 

R 
R 

R 

R 

Compound 

2-fluorobenzyl alcohol 
3-fluorobenzyl alcohol 
4-fluorobenzyl alcohol 
2-fluorobenzoate 
3-fluorobenzoate 
4-fluorobenzoate 
2-fluoro-4-hydroxybenzoate 
3-fluoro-4-hydroxybenzoate 
2-fluoro-3,4-hydroxybenzoate 
2-fluoro-4,5-hydroxybenzoate 
3-fluoro-4,5-hydroxybenzoate 
3-fluorocatechol 
2-fluoro-c/s,c/s-muconate 
3-fluoro-6-hydroxytoluene 
4-fluoro-6-hydroxytoluene 
Free fluorine 

* Relative to CFCI3 

" R: reference compound; L: taken from literature (11, 12,126); P: predicted (110) 
- Not detected/not identified 

4.3.3 Metabolic pathway for the fluorotoluenes 

The fungi co-metabolizing toluene and the toluene-growing strains differed in the 

nature of the metabolites accumulated (Table 4.C). With 3-fluorotoluene, 

for example, the main fluorinated product excreted by C. echinulata was 
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TABLE 4.C: Metabolite patterns from the fungal degradation of fluorotoluene analogs as 
determined by 19F NMR. The relative composition of intermediates is referred to the total amount 
of fluorinated products other than the parent fluorotoluene, taken as 100 % 

Fungus (grouped by type of toluene metabolism) 
Substrate Co-metabolism Assimilation 

Metabolite CBS CBS 
126.48 596.68 

TO T1 T2 T3 T4 T5 

2F-toluene 
2F-benzyl alcohol - 70 * 
2F-benzoate 100 30 
2F-40H-benzoate 
2F-3,40H-benzoate 
2F-4,50H-benzoate 
3F-catechol 
2F-c/s,c/s-muconate 
Unknowna - -
Free fluorine 

3F-toluene 
3F-60H-toluene - 29 * 
3F-benzyl alcohol 
3F-benzoate 83 * 71 * 
3F-40H-benzoate 17 
3F-4,50H-benzoate 
3F-catechol 
2F-c/s,c/s-muconate 
Free fluorine 

4F-toluene 
4F-60H-toluene - 7 * -
4F-benzyl alcohol 4 * - Tr * 41 * Tr * - Tr * 2 

2 * 
53 
4 
-
. 
-
-
2 

39 

-

18 * 
54 
Tr 
-
-

28 

83 * 
-
-
-
-
-

Tr 
-

17 

51" * 
* 

39 
Tr 
-

Tr 
10 

-
-
-
-
-
-
-
-
~ 

-

16 * 
63 
2 

Tr * 
Tr 
19 

-
46 

-
-
-
. 
-
6 

48 

-

65 * 
15 
8 
-
-

12 

9 * 
7 
2 

12 
2 
1 * 

32 
-

35 

23" * 
* 

51 
-
3 * 
-

23 

37 
57 

-
-
-
-
-
-
6 

92" 

-
-
-
-
8 

Tr * 
99 * 
Tr 

41 * 
57 * 
2 

Tr 
99 

-
4F-benzoate 96 * 93 * 99 * 57 * 99 * 100 * 68 * 98 
Free fluorine Tr 2 - - 31 

a Fluorine resonance at -112.5 ppm tentatively identified as a muconate-derivative 
6 3F-Benzyl alcohol and 3F-benzoate are quantified together due to peak overlap in water 

solution 
Identified in the ethyl acetate extracts 

r Less than 1 c, 
Not detected 

Tr Less than 1 % of the total 19F intensity 
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3-fluorobenzoate (Fig. 4.1). The phenolic metabolite 3-fluoro-6-hydroxytoluene 

(fluorinated o-cresol) also was detected, indicating that this fungus oxidizes 

toluene both at the methyl group and at the aromatic ring. No fluoride anion was 

observed and, consequently, the intermediates measured by 19F NMR are the 

ultimate accumulation products. In contrast, the metabolic profile for C. 

sphaerospermum TO indicates that 3-fluorotoluene is initially oxidized only at the 

side chain. The resulting 3-fluorobenzoate is metabolized to 3-fluoro-4-

hydroxybenzoate and 3-fluoro-protocatechuate. A relatively high concentration of 

free fluorine was measured, possibly as a result of the oxidative defluorination of 

3-fluoro-4-hydroxybenzoate to protocatechuate. 

:Ha F' 

JUL 

COOH 

I" 
OH 

F J OH 
OH 

-120 -130 
ppm 

-140 

FIGURE 4.1: F NMR spectra at 7 °C of the culture supernatant after incubation 
of whole cells of C. echinulata CBS 596.68 (A) and C. sphaerospermum TO (B) 
with 3-fluorotoluene. The resonance at -114.4 ppm marked as IS is from the 
standard 4-fluorobenzoate contained in an insert 
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4.4 Discussion 

The initial oxidation of toluene was characterized by using fluorinated analog 

substrates and identifying the metabolites formed by 19F NMR. Previous attempts 

to measure and identify intermediates of toluene degradation by using a high-

pressure liquid chromatography method were inconclusive (not shown). The 

fluorine substituent effectively decreased the conversion rate of specific 

reactions, resulting in the accumulation of intermediates that otherwise would 

have been rapidly metabolized further. The accumulation pattern depended 

primarily on the type of toluene oxidation, i.e. co-metabolism versus assimilation, 

and the position of the fluorine. 

Conversion of fluorotoluene was exceptionally low in the co-metabolizing 

strains C. echinulata and A. niger. Aryl hydrocarbon hydroxylation by fungi is 

catalyzed by P-450 monooxygenases, which are usually substrate-inducible 

enzymes (31). But even cultures that had been exposed to toluene during growth 

metabolized the fluorinated analogs very slowly. Although both Cunninghamella 

and Aspergillus species are reported to hydroxylate the aromatic ring of several 

aromatic hydrocarbons (31), the two strains we tested both initiated oxidation of 

the fluorinated toluenes at the side-chain. Only C. echinulata also hydroxylated 

the fluorotoluene structure at the aromatic ring to form fluorinated o-cresols. The 

highest yield of fluorocresol was obtained with the 3-fluorotoluene isomer, which 

was hydroxylated exclusively at the para position in relation to the fluorine to yield 

3-fluoro-6-hydroxytoluene. A similar regioselectivity in the related species C. 

elegans was found for the hydroxylation of 1-fluoronaphthalene, in which the 

fluorine group prevented hydroxylation at the adjacent carbons (30). Fluorinated 

o-cresol also was detected with 4-fluorotoluene but not with 2-fluorotoluene. As 

before (117), we found no evidence for cresol formation by A. niger. Taken 

together, our results indicate that the presence of a methyl group in the benzene 

ring channels the fungal oxidative attack towards the side-chain. Preference for 
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hydroxylation of alkylated aromatic hydrocarbons at the side-chain has been 

reported for Cunninghamella species (27, 29, 63). 

Fungi that used toluene for both energy generation and biomass 

production converted the fluorinated analogs at higher rates and to more oxidized 

intermediates, which all were products of the side-chain metabolism (Table 4.C). 

In general, the proximity of fluorine to the methyl group had a negative effect on 

the degradation rate of fluorotoluene (Table 4.A). This steric effect might result 

from the change in reactivity caused by the fluorine nucleus towards the side-

chain monooxygenase. The extent of fluorotoluene degradation also depended 

on the fluorine position: 2-fluorotoluene was converted to 2-fluorobenzyl alcohol 

and/or 2-fluorobenzoate. A significant part of the 19F signal in the liquid media 

was identified as free fluorine, indicating that these metabolites accumulated 

transiently, with the aromatic ring being effectively defluorinated at a latter stage. 

This pattern of substrate conversion was not seen with either Cladophialophora 

sp. T2 or Exophiala sp. T4. While the fluorine at the C-2 carbon center of toluene 

prevented the oxidative attack in the former strain, it induced accumulation of 2-

fIuoro-c/s,c/s-muconate in the latter. Similar to this, 2-fluoro-c/s,c/s-muconate was 

the main degradation product of 2-fluorophenol by phenol-grown cells of another 

Exophiala species (11). 3-Fluorotoluene also was metabolized to fluorinated 

benzoate, but in this case 3-fluoro-4-hydroxybenzoate was often the main 

product. Besides free fluorine, low concentrations of fluorinated protocatechuate, 

catechol, and c/s,c/s-muconate were detected with some of the fungi. Apparently, 

fluorine at C-3 was an important rate-limiting factor for the hydroxylation of 3-

fluoro-4-hydroxybenzoate to fluorinated protocatechuate. In contrast to the 2- and 

3-fluorotoluenes and with the exception of Exophiala sp. T4, the fungi could not 

cleave the carbon-fluorine bond of 4-fluorotoluene. Consequently, 4-fluoro-

benzoate was the end-reaction product of the degradation of 4-fluorotoluene. 
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In summary, the six toluene-growing fungi converted 2-, 3-, and 

4-fluorotoluene to intermediates that matched the toluene metabolic pathway 

earlier proposed for C. sphaerospermum TO (133). By analogy, we suggest that 

toluene is assimilated via an initial oxidation of the methyl group by all fungi 

studied. Thus, toluene is first hydroxylated to benzyl alcohol and then 

dehydrogenated to benzoate via a putative aldehyde intermediate. Benzoate is 

the substrate for the hydroxylation of the aromatic ring to 4-hydroxybenzoate and 

protocatechuate. Detection of fluorinated catechols and fluorinated cis.cis-

muconate in the Cladophialophora sp. strains (T1 and T2) and Exophiala sp. 

strain T4 supports the hypothesis that protocatechuate is decarboxylated to 

catechol. The aromatic ring of catechol is opened at the ortho position to yield 

c/s,c/s-muconate. This ring cleavage pathway has been reported previously for 

fungi growing on 4-hydroxybenzoate (24). However, fungi also assimilate 

4-hydroxybenzoate via two other alternative ring-fission substrates: proto­

catechuate and hydroxyquinol (140). All three pathways converge with the 

formation of 3-oxoadipate. The pattern of ring-cleavage for the metabolism of 

toluene in the strains C. sphaerospermum TO, P. zonatum T3 and 

Leptodontidium sp. strain T5 can not be determined from our results. 

The toluene catabolic pathway is of special interest because either the 

benzene nucleus or the aliphatic side-chain may be subject to oxidative attack. 

Bacteria have evolved both options, but very little is known about the fungal 

metabolism of toluene. The similarity of the initial oxidative steps in all these 

strains suggests that fungi may have less metabolic versatility than bacteria for 

the assimilation of toluene. 
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5.1 Introduction 

A considerable amount of gasoline enters the environment as result of leakage 

from underground storage tanks, accidental spills, or improper waste disposal 

practices (17). When gasoline is in contact with water, benzene, toluene, 

ethylbenzene, and the xylene isomers (BTEX) account for as much as 90% of the 

gasoline components that are found in the water-soluble fraction (113). 

Consequently, these chemicals are some of the most common contaminants 

found in drinking water. BTEX are toxic to human and their removal from polluted 

environments is of special interest (82). 

It has been assumed that soil bioremediation of BTEX pollution relies upon 

indigenous bacterial populations; the significance of fungi has been overlooked 

(17). Fungi generally withstand harsher environmental conditions than bacteria 

and could play an important role in the degradation of petroleum hydrocarbons in 

the soil (15). Nevertheless, fungal degradation of BTEX mixtures has been 

studied only to a limited extent with white-rot fungi (19, 141). BTEX were 

mineralized but they did not support fungal growth when supplied as the sole 

source of carbon and energy. The extracellular lignin-degrading enzymes are 

capable of oxidize a wide range of aromatic hydrocarbons but they appear not to 

be involved in BTEX degradation. The low degradation rates and the requirement 

of an additional carbon source limit the use of white-rot fungi in bioremediation. 

Interestingly, new non-white rot fungal strains have been isolated and applied 

successfully for the biofiltration of air contaminated with volatile aromatic 

hydrocarbons (/. e. toluene and styrene), which were metabolized as sole carbon 

and energy sources (36, 39, 101). When hydrocarbon-degrading microbes are 

used for bioremediation of gasoline pollution, it is very unlikely that they 

encounter a sole substrate. Some papers dealing with substrate interactions 

during the degradation of BTEX mixtures by bacteria have been published (1, 33, 

47, 49, 91), but analogous data for fungi are still very scarce. 
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The objective of the present study was to investigate the degradation 

pattern of BTEX mixtures by a fungus capable of growth on aromatic 

hydrocarbons. The deuteromycete Cladophialophora sp. strain T1, which grows 

on toluene, was selected as a model fungus. This strain was isolated previously 

from a BTEX-polluted soil and showed the best degradative capacity in terms of 

substrate specificity among the fungal isolates examined (Chapter 3). Special 

attention was put on the kinetics of utilization multiple substrates and to the 

extent of degradation of every BTEX component. This information is of 

importance for devising fungal-based techniques for treatment of BTEX pollution 

especially under "solid state-like" environmental conditions, such as in air 

biofilters or acidic soils, which usually favor fungal over bacterial growth (15, 

101). 

5.2 Materials and methods 

Chemicals. BTEX hydrocarbons and reference compounds for intermediate 

identification were obtained from Acros Organics (Geel, Belgium), Sigma-Aldrich 

Chemicals (Steinheim, Germany), Jansen Chimica (Geel, Belgium), Lab-Scan 

Ltd. (Dublin, Ireland) and Merck KGaA (Darmstadt, Germany). All chemicals were 

of analytical grade. Deuterium oxide (>99.9 % d) was supplied by M. G. 

Chemicals (Toronto, Canada). Deuterated chloroform (99.8 % d) was from Isotec 

Inc. (Miamisburg, Ohio). 

Fungal strain. Cladophialophora sp. strain T1 (ATCC MYA-2335, CBS 110553) 

was isolated as previously described in Chapter 3. During the present 

investigation this organism was routinely maintained at 4°C on mineral medium 

(60) agar slants supplemented with 2 % glucose. 

Growth experiments. Tests were performed in 250 ml Boston flasks containing 

25 ml of buffered (35 mM r^HPOVNaHbPCU^r^O, pH 7) mineral salts medium 

(60) and sealed with teflon-coated valves (Mininert, Phase Separations, 
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Waddinxveen, The Netherlands). BTEX compounds were added as the sole 

carbon and energy source. After water/air substrate equilibration, flasks were 

inoculated with a fungal spore suspension (containing approx. 104 viable spores). 

Incubations were performed at 25 °C under static conditions. Growth was 

followed by gas-phase measurements of substrate consumption and C02 

production against non-inoculated controls. Concentration of BTEX in the water 

phase was calculated from reported water/air partition coefficients (2, 76). Co-

metabolic degradation of the BTEX compounds that individually did not support 

growth was assayed in combination with toluene. Carbon recovery as CO2 (C-

C02) and biomass (C-biomass) was determined after substrate exhaustion and 

corrected by control flasks inoculated and incubated with no carbon source. The 

pH of the medium was checked at the end of the incubation for adjustment of the 

water/air partition of CO2, but no significant variations were measured. The 

biomass was collected by filtration and the dry matter determined. C-biomass 

was calculated considering that 26 g dry-weight contains approx. 1 mol of carbon 

(123). The culture filtrate was stored at -20 °C for the identification of 

metabolites. Experiments for carbon mass balance were performed for both, 

cultures and controls, in triplicate. 

Identification of intermediates. The filtrate from the above-described cultures 

was thawed and divided in two portions of 5 ml each. The first fraction was 

freeze-dried under vacuum and the residue re-dissolved in 1 ml of deuterium 

oxide; the second one was extracted with deuterated chloroform (1 ml). Both 

extracts were analyzed by proton nuclear magnetic resonance (1H NMR). 

Products of BTEX conversion were identified by comparing their 1H NMR 

chemical shift values with those of authentic reference compounds, whenever 

commercially available, and by performing two-dimensional NMR experiments via 

the nuclear Overhauser spectroscopy (2D-NMR NOESY) (65). 

Degradation kinetics. A toluene-grown liquid culture of the fungal strain T1 was 

prepared and harvested as described in Chapter 3. Cells were re-suspended in a 
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phosphate buffer (25 ml, 50 mM, pH=7) and incubated in 250 ml Boston flasks 

sealed with teflon valves (120 rpm, 25 °C). The apparent half-saturation constant 

(Km) for the degradation of BTEX was determined from the substrate depletion 

curves. From these data points, the specific substrate consumption rate was 

calculated at different concentrations and fitted to the Lineweaver-Burk plot. The 

maximum biodegradation rate (Umax) was calculated by linear regression of the 

data points for which the substrate concentration was more than 5 times higher 

than the Km value. The amount of biomass was set for every substrate (between 

1 and 6 g dry-matter I"1) in order to obtain a biodegradation activity below the 

rates of mass transfer between the gas and the aqueous phases for the BTEX, 

as reported in a similar batch system (33). BTEX adsorption onto the biomass 

was determined in additional batches containing heat-inactivated cells (25 min, 

120° C). 

Analytical methods. BTEX and C02 were determined by injecting 100 uJ 

headspace samples in a HP 6890 Series gas chromatograph (Hewlett Packard, 

U.S.A.). For the BTEX, the stationary phase was a 10 % SE-30 Chromosorb 

WMP column (Chrompack B.V., Middelburg, The Netherlands). The carrier gas 

was nitrogen used at a flow of 1.9 ml min"1. The temperature of the column and 

the flame ionisation detector was 110 and 300 °C respectively. A CP-Wax 52CB 

column (Chrompack B.V., Middelburg, The Netherlands) at a temperature of 50 

°C was used to resolve mixtures of ethylbenzene and the three xylene isomers. 

For C02 a CP-Poraplot Q column (Chrompack B.V., Middelburg, The 

Netherlands) and a thermal conductivity detector were used. Helium at a flow of 

3.0 ml min"1 was the carrier gas. The column and detector temperatures were 

respectively set at 70 and 250 °C. 1H NMR measurements were performed in a 

Bruker AMX 500 MHz NMR spectrometer. The sample volume was 0.5 ml and 

the temperature of the measurement was set at 23 °C. Biomass dry weight was 

determined after filtering and drying (24 h, 105 °C) cell suspensions over a glass-

fiber paper of >1 urn retentivity (Schleicher & Schuell, Dassel, Germany). Filters 

were previously rinsed with de-mineralized water, dried, and weighed. 
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5.3 Results 

Growth experiments. The time-course concentration of every component in a 

mixture of all BTEX, given as the sole source of carbon and energy, was 

monitored during growth of Cladophialophora sp. strain T1 in a batch system. 

The benzene concentration remained constant throughout the experiment but 

toluene and ethylbenzene were exhausted within 17 days of incubation (Fig. 

5.1.A). The degradation pattern for the xylenes also differed and only the ortho 

and meta isomers were depleted (Fig. 5.1.B). Uptake of these xylenes started 

after toluene and ethylbenzene had been partially removed. During growth, CO2 

was produced at an exponential rate (0.28 d ' \ r*> 0.98) equivalent to a doubling 

time of 2.5 days (Fig. 5.1 .C). 

FIGURE 5.1: (A) Degradation of a 
mixture of benzene (A), toluene (•), 
ethylbenzene (•) and xylenes (•) 
by a batch-culture of the fungus 
Cladophialophora sp. strain T1 
incubated at 25 °C. (B) The 
degradation curves for the different 
xylene isomers: o-xylene (A), m-
xylene (D) and p-xylene (O) are 
shown separately. (C) Production of 
C02 (+) during growth in 
comparison with inoculated controls 
incubated without the BTEX (x) 

10 15 20 

Time(d) 
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The type of metabolism for every single BTEX compound, namely 

assimilation or co-metabolism, was determined in additional growth experiments 

with single and binary substrate combinations (Table 5.A). Carbon balances were 

performed by measuring the amount of consumed C-substrate that was 

recovered as C-C02 and C-biomass. Toluene and ethylbenzene were both used 

for growth and carbon recoveries of about 90% were obtained when these 

compounds were added either individually or together. Neither benzene nor the 

xylenes supported growth as single substrates but the latter were successfully 

co-metabolized in the presence of toluene. 

TABLE 5.A: Carbon mass balance after growth of Cladophialophora sp. strain T1 on single and 
binary BTEX combinations. Shown values are the average and the standard deviation of three 
different experiments 
Substrate 
combination 

Ethylbenzene 
Toluene 
Toluene + benzene 
Toluene + ethylbenzene 
Toluene + o-xylene 
Toluene + m-xylene 
Toluene + p-xylene 

Substrate 
(C-nmol) 

197 
196 
196 + 68 
196 + 66 
196 + 67 
196 + 65 
196+65 

a S: Simultaneous, D: Diauxie 
* Considered as not degraded 

2na Substrate depletion 
(%) 

<56 

00 ±00 
00 ±00 
00 ±00 
58 ±12 

Pattern" 

m 

-
-
S 
s 
s 
D 

C02 Biomass 
(C-nmol) (C-|imol) 

132 ±03 
131 ±07 
135±10 
160 ±23 
134 ±15 
138 ±02 
163 ±12 

42 ±04 
41 ±04 
38 ±05 
64 ±04 
45 ±02 
45 ±06 
58 ±07 

C-Recovery 
(%) 

88 ±03 
89 ±04 
88 ±08 
86 ±07 
68 ±07 
70 ±02 
93 ±04 

Carbon recoveries in batches containing toluene plus o- or m-xylene were 

lower than in those with an identical amount of toluene alone. In contrast to the 

lack of p-xylene degradation observed in BTEX mixtures, about 60% of p-xylene 

was depleted in combination with toluene. Whereas o- and m-xylene were 

consumed simultaneously with toluene, degradation of p-xylene occurred only 

after toluene exhaustion. The carbon recovery with mixtures of p-xylene and 

toluene was as high as those measured for toluene and ethylbenzene (Table 

5.A). 
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Identification of intermediates. Extracts from the previously described cultures, 

grown on single and binary BTEX mixtures, were analyzed by 1H NMR and the 

resonances from aromatic intermediates assigned (Table 5.B). No aromatic 

metabolites were detected in cultures incubated with toluene, ethylbenzene, 

p-xylene, and benzene or binary combinations of the latter with toluene. A similar 

pattern of 1H signals along the aliphatic chemical shift region ( 0 - 6 ppm) was 

measured in all cultures (not shown), indicating excretion of downstream 

metabolites. To address the possibility that volatile intermediates such as 

aromatic aldehydes, alcohols, phenols, and catechols were lost during the 

vacuum extraction, we extracted some cultures with d-chloroform. No evidence of 

these metabolites was found in d-chloroform extracts. 

TABLE 5.B: 1H NMR chemical shift values and coupling constants of metabolites formed from xylene 
degradation. Chemical shifts are determined relative to the HDO signal (4.7 ppm) at 23 °C. 
Resonances which showed strong coupling were simulated and iteratively fitted onto the measured 
data 
Substrate combination 

Intermediate 

o-xylene + toluene 
4-hydroxy-2-methylbenzoatea 

2-methylbenzoic acid 

o-phthalic acid 

m-xylene + toluene 
3-methylbenzoate 

3-hydroxymethylbenzoatea 

m-phthalate 

-CH3 

2.26 

2.25 

2.30 

• 

-CH2OH 

-

• 

-

4.65 

H2 

-

* 

7.63 

7.73 

8.17 

H3 

7.21 

7.18 
JH3-H4 = 7 .0 

7.36 
JH3-H4 = 7 .0 

-

" 

H4 

-

7.12 
JH4-H5 = 7 .0 

7.29 
JH4-H5 = 7 .0 

7.30 
JH4-H5=7.0 

7.42 
JH4-H5 = 7 .7 

7.87 
JH4-H5 = 7 .6 

JH4-H6=1 -3 

H5 

6.64 
JH5-H6 = 8 .3 

7.14 
JH5-H6 = 7 .0 

7.29 
JH5-H6 = 7 .0 

7.30 
JH5-H6 = 7 .0 

7.38 
JH5-H6 = 7 .6 

7.41 
JH5-H6 = 7 .6 

H6 

6.61 

7.20 

7.36 

7.60 

7.71 

7.87 

Identified through 2D-NMR NOESY experiments 
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Degradation kinetics. The effect of a second substrate, present at an increasing 

concentration, towards growth on toluene was studied (Fig. 5.2). Both o- and m-

xylene negatively affected the growth rate causing complete inhibition when 

present at a similar concentration as toluene. Under equivalent conditions, 

ethylbenzene and p-xylene inhibited growth moderately whereas benzene did not 

cause any significant effect. The nature of BTEX inhibitory interactions was 

characterized by performing degradation activity tests using toluene-grown 

harvested mycelia and different substrate combinations. Besides toluene, 

ethylbenzene and the xylenes were degraded without a lag-phase and the 

Michaelis-Menten kinetic parameters for these substrates were determined 

(Table 5.C). 

0.1 0.2 0.3 

Concentration (mM) 

FIGURE 5.2: Effect of benzene (A), ethylbenzene (•), o-xylene (A), m-xylene 
(•) and p-xylene (O) added at different concentrations in combination with 
toluene (0.3 mM), on the growth of Cladophialophora sp. strain T1. Growth is 
characterized as the rate-coefficient of C02 production at 25 °C (n > 5, r2 > 0.98). 
When present, error bars indicate the standard deviation of three independent 
experiments 
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Additionally, Lineweaver-Burk plots were obtained for the depletion of 

toluene in the presence of a second substrate (added up to 0.1 mM), as 

illustrated in Figure 5.3 for the xylenes. The presence of p-xylene did not affect 

the toluene degradation kinetics. However, the Km for toluene in batches that 

were supplemented with o- or m-xylene was respectively 13.3 and 7.8 u,M, as 

determined from Figure 3. These values are significantly higher than that of 

2.7±1.0 u,M, measured for toluene as the single substrate. It was not possible to 

generate similar Lineweaver-Burk plots with binary combinations of ethylbenzene 

and toluene. Ethylbenzene, at 0.1 mM, hindered toluene exhaustion and, if 

added at a lower concentration, toluene and ethylbenzene were both consumed 

simultaneously. Controls containing heat-inactivated mycelia showed that 

adsorption was insignificant in those experiments. 

FIGURE 5.3: Lineweaver-Burk plot from toluene-depletion curves by cells of 
Cladophialophora sp. strain T1 incubated with toluene as single substrate (•), 
and together with 0.1 mM of o-xylene (A), m-xylene (•) and p-xylene (O) 
(T=25 °C, r2 > 0.98). The kinetic parameters {V^JKn,) are given in the text 
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5.4 Discussion 

Spores of the soil fungus Cladophialophora sp. strain T1 germinated and grew on 

a complex mixture of BTEX hydrocarbons as the sole carbon and energy source. 

This BTEX solution was comparable to a real gasoline water-soluble fraction 

(113). The ability of fungi to grow on the water-soluble fraction of petroleum fuels 

is well documented, but it was generally believed that only the aliphatic 

hydrocarbons supported fungal growth (15, 74). Interestingly, this is to our 

knowledge the first report of a fungus growing on aromatic hydrocarbons from a 

model gasoline water-soluble fraction, which included all six BTEX components. 

Most of the previous research in this field has focused on aerobic bacteria 

growing on simpler BTEX mixtures of only two or three components (1, 33, 47, 

49, 91). Although the substrate specificity and the extent of degradation were 

found to be highly strain specific, co-metabolism and competitive inhibition were 

the most common substrate interactions. Like bacteria, Cladophialophora sp. 

strain T1 degraded BTEX components by a combination of assimilation and co-

metabolism but, particularly, only the alkylated benzenes were metabolized. 

Toluene and ethylbenzene served as carbon and energy sources whereas the 

xylenes were co-metabolized. Carbon balance experiments and 1H NMR 

metabolic profiles revealed that the o- and m-xylene isomers were partly oxidized 

to dead-end products. For p-xylene, a higher carbon recovery value together with 

the lack of accumulation of intermediates points to mineralization. However, the 

low rate of degradation of p-xylene seems to be insufficient to sustain growth if 

this compound is supplied as the single substrate. In BTEX mixtures, p-xylene 

appears to be out-competed by the other substrates. 

The Michaelis-Menten model provided a good description of the 

degradation kinetics in batch experiments in which whole cells were used. The 

specific affinity (VmaX/Km) obtained for every individual BTEX component was 

consistent with the degradation pattern seen in a complex BTEX mixture, where 

toluene and ethylbenzene were consumed preferentially, followed by o- and 



62 Growth of fungi on aromatic hydrocarbons 

m-xylene, and finally p-xylene, which was hardly degraded. Comparisons of the 

Km for degradation of toluene, alone and in combination with a second substrate, 

suggest that competitive inhibition is the main substrate interaction. Competition 

for substrates that, like o- and m-xylene, led to neither carbon assimilation nor 

energy-yielding reactions consequently resulted in growth inhibition (Fig. 5.2). 

Strong competition might induce a sequential pattern for the utilization of the 

different substrates, a phenomenon usually referred as diauxie, which makes the 

treatment of mixtures in a continuous system difficult. Diauxie during BTEX 

degradation has been described, for example, for a Rhodococcus strain (47), 

where the presence of ethylbenzene blocked the degradation of any additional 

substrate. In our study, sequential degradation of p-xylene (in combination with 

toluene) was observed, but for all other toluene, ethylbenzene, and xylene 

components a certain degree of simultaneous uptake occurred (Fig. 5.1). 

As reported in our previous study on the assimilation of toluene by 

Cladophialophora sp. strain T1, toluene is first hydroxylated to benzyl alcohol and 

subsequently converted to benzoic acid, prior to the hydroxylation and cleavage 

of the aromatic ring (Chapter 4). Here we have shown that o- and m-xylene were 

also oxidized at the side-chain to form di-benzoic acids, which were not 

metabolized further. Considering in addition the likely competitive nature of 

utilization of multiple substrates, we propose that fungal strain T1 oxidizes the 

alkylated compounds (toluene, ethylbenzene, and xylenes) at the alkyl side-chain 

via the same monooxygenase enzyme. This conclusion explains the immediate 

degradation of ethylbenzene and the xylenes observed with toluene-grown 

mycelia. Conversely, the toluene degradation capacity needs to be induced in 

glucose-grown mycelia (data not shown). According to this view, the metabolism 

of benzene requires a very different enzymatic mechanism, apparently absent in 

our fungus, which is capable of performing the initial oxidation at the aromatic 

ring. 
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The results described in this report suggest that fungi with the ability of 

growing on aromatic hydrocarbons might contribute significantly to the 

bioremediation of BTEX pollution. At present, a great deal of attention in the field 

of fungal bioremediation is being paid to the development of fungal biofilters for 

the treatment of polluted air (36). In relation to this, the low Km of 

Cladophialophora sp. strain T1 for degradation of TEX makes this organism very 

suitable for treatment of TEX vapors. The Km values reported here (Table 5.C) 

are equivalent to air concentrations below the recommended threshold limit 

values for exposure to TEX (2). 

TABLE 5.C: Michaelis-Menten kinetic parameters for the degradation of single TEX by toluene-
grown cells of Cladophialophora sp. strain T1 as measured in batch incubations (120 rpm, 25 °C) 

~Z 5 
i/ a L2IH i/ tie 

Substrate , , T - ' u - n W a t e r Air equivalent ,. T ' -Vu-n (nmolg-dw h ) (MM) ( m ^ m . 3 ) ( Ig-dw h ) 

Toluene c 75±5 2.7±1.0 66 30.7 
Ethylbenzene 45 5.8 195 7.8 
o-Xylene 21 4.2 88 4.4 
m-Xylene 19 3.8 112 5.0 
p-Xylene 2 1.1 33 1.8 

a Measured rates (n > 6, ?> 0.99) 
b From the Lineweaver-Burk plot linearization (n > 8, r^> 0.97) 
c Average and standard deviation of three independent experiments 

Regarding the similarities between air biofiltration and soil bioventing, 

fungi could also be used to enhance the bioremediation of polluted soil. The lack 

of benzene degradation appears to be the main drawback for application of our 

strain. Nevertheless, taking into account the high microbial diversity for the 

metabolism of the BTEX and the environmental variability in field conditions, 

effective bioremediation is most likely to rely on a consortium rather than on the 

action of a single microorganism. In support of this hypothesis, an earlier study 

showed that there is synergism between fungi and bacteria for mineralization of 

aromatic hydrocarbons in an acidic soil (120). In this study we have shown that 
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soil fungi possess a metabolic capacity for the degradation of BTEX similar in 

many aspects to that of bacteria. Fungi thus should not be ignored for the 

development of more efficient bioremediation strategies. 
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6.1 Introduction 

Gasoline leaking from underground storage tanks, distribution facilities, and 

various industrial operations represents a prime source of soil and aquifer 

contamination (122). Among the contaminants present in gasoline, benzene, 

toluene, ethylbenzene, and xylene (BTEX) are classified as priority pollutants 

because of their high mobility and toxicity (82). In addition, modern gasoline 

formulations are commonly supplemented with methyl-terf-butyl ether (MTBE) 

(81). This additive acts as an octane enhancer and as an oxygenating agent, 

allowing the reduction of BTEX hydrocarbons. Although less toxic than the BTEX, 

MTBE appears to be more recalcitrant under natural conditions (48). BTEX and 

MTBE are the most water-soluble components of gasoline and therefore 

groundwater contaminant plumes from recent accidental gasoline releases often 

contain mixtures of BTEX and MTBE. 

Bioremediation of hydrocarbon pollution relies on the biodegradation 

activity of soil microorganisms. Bacteria and fungi capable of degrading BTEX 

and MTBE have been isolated from soil (48, 59, 141). However, while most of the 

studies have focused in bacteria, little is known on the contribution of fungi to 

bioremediation of BTEX and MTBE. Fungal degradation of soil pollutants has 

mainly been assayed with white-rot fungi (100). These fungi oxidize aromatic 

hydrocarbons by co-metabolism, and significant mineralization can only achieved 

through the synergic interaction of fungi and bacteria (13, 70). More recently, 

fungi capable of growing on volatile aromatic hydrocarbons as the sole source of 

carbon and energy have been isolated from soil (Chapter 3), and have 

successfully been applied in the biofiltration of air (128). 

In this Chapter, the use of fungi for the biodegradation of a mixture of 

BTEX and MTBE in a soil microcosmos is described. The effect of inoculating 

with spores of the fungus Cladophialophora sp. strain T1 on the degradation 

rates was evaluated under neutral and acidic conditions. This fungus was 
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isolated previously from a BTEX-polluted soil (Chapter 3) and was found to be 

capable of growth on a mixture BTEX hydrocarbons (Chapter 5). In earlier 

studies, molecular analysis of bacterial 16S ribosomal gene has allowed the 

detection and identification of specific soil bacteria involved in BTEX 

bioremediation (103, 143). Here, the presence of this fungus in soil was 

assessed by analysis of SSU of 18S rDNA. 

6.2 Materials and methods 

Fungal strain. Cladophialophora sp. strain T1 (ATCC MYA-2335, CBS 110553) 

was isolated as described in Chapter 3. During the present investigation, this 

organism was routinely maintained at 4°C on mineral medium (60) agar slants 

supplemented with 2 % glucose. 

Soil characteristics. Soil for the experiments was collected from the Agricultural 

Test Station Kelekamp (Wageningen, The Netherlands), air-dried and stored in 

the dark at 4°C prior to use. The physico-chemical properties of the soil are 

shown in Table 6.A. This location had no known history of hydrocarbon exposure. 

TABLE 6.A: Physico-chemical properties of the soil 

Texture 

Sandy soil 

Grain size distribution (%) 

Sand 93.3 
Silt 2.8 
Clay 3.9 

Density 
(kg m"3) 

2650 

Toe 

(gg-1) 

0.028 

pH 

6.1 

Porosity 
(m3 m'3) 

0.5 

FC 
(%) 

20 

Soil-batch microcosmos. Soil samples (approx. 30 g dry-weight) were placed 

into 250 ml boston flasks. The soil was subsequently soaked with sterile de-

mineralized water and, after removing the excess by gravity, flasks were sealed 

with teflon-coated valves (Mininert, Phase Separations, Waddinxveen, The 
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Netherlands). Sterile control batches were prepared by autoclaving during 50 min 

at 120°C. A mixture of BTEX and MTBE (10 u.l), that contained (in volume) 14 % 

of benzene, 43 % of toluene, 14 % of ethylbenzene, 5 % of each xylene isomer, 

and 14 % of MTBE, was introduced in the flasks. A spore suspension of 

Cladophialophora sp. strain T1 (containing approx. 104 viable conidia) was used 

as inoculum. The content of BTEX and MTBE in the headspace was followed in 

time by chromatographic analysis. Four different treatments were assayed: 

autoclaved soil as abiotic control; non-inoculated soil containing active 

indigenous microflora; autoclaved soil inoculated with the fungus; and non-

autoclaved soil containing both the indigenous microflora and fungal inoculum. 

Experiments were performed in triplicate for each treatment. Two additional sets 

of soil batches were prepared as described previously, in which the soil pH was 

adjusted by soaking with a phosphate buffer (50 mM, pH=7) or with a phosphoric 

acid solution (pH=4), respectively. After removal of the excess of liquid, flasks 

were closed with a cotton plug and placed into desiccators. A volume of 1 ml of 

the previously described BTEX+MTBE mixture was diluted in 20 ml 

dibutylphthalate and placed into the desiccators. The water activity was kept to 

0.9 by placing a salt solution (140 g NaCI I"1) inside the dessicator. The soil-

batches were closed and incubated at 21 °C in darkness. After 60 days, the 

desiccators were opened and the batches left overnight for aeration. The cotton 

plugs were aseptically replaced by teflon-coated valves, and 10 u.l of the 

BTEX+MTBE solution was added to the batches. The time course of the 

concentrations of the substrates was followed in the gas phase and the 

equivalent concentration in the water phase was calculated from reported 

water/air partition coefficients (2, 76). The pH of the soil was measured at the end 

of the experiment. 

Analytical methods. The degradation of each component was monitored in the 

following hours by injecting 100 u.l headspace into a HP 6890 Series gas 

chromatograph (Hewlett Packard, U.S.A.). A CP-Wax 52CB column (Chrompack 

B.V., Middelburg, The Netherlands) was used as the stationary phase. The 
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carrier gas was nitrogen used at a flow of 1.9 ml min'1. The temperature of the 

column and the flame ionization detector was 110 and 300 °C respectively. 

DNA extraction and PCR parameters. DNA was extracted from the soil batches 

and from pure cultures of Cladophialophora sp. strain T1 by using a FastDNA Kit 

(Bio 101, Vista, CA) and purified by using a Wizard Kit (Promega, Madison, Wl). 

Both procedures were carried out according to the standard instructions given by 

the manufacturers. DNA samples were amplified in 50 |il PCR mixtures 

containing the following final concentrations or total amounts: 1 to 10 ng of DNA, 

50 mM Tris (pH 8.3), 2 mM MgCI2, each deosynucleoside triphosphate (dNTP) at 

a concentration of 250 uM, 400 nM of forward and reverse primer, and 0.5 U of 

Taq DNA polymerase. All reagents were combined and heated at 94 °C for 4 

min, followed by 35 cycles of PCR: 94 °C for 35 s, 55 °C s for 50 s followed by 

72 °C for 2 min. The fungal-specific primers nu-SSU-0817-5' (TTA GCA TGG 

AAT AAT RRA ATA GGA) and nu-SSU-1196-3' (TCT GGA CCT GGT GAG TTT 

CC) were used, which generated 422 bp amplicons of the fungal 18S rDNA gene 

(14). A rich GC-clamp was added to the forward primers for TGGE separation. 

PCR amplification was confirmed in agarose gels (12 g I"1) containing 0.5 ng I"1 of 

ethidium bromide. The gels were run in 1 mM TBE buffer at 80 V for 45 min and 

visualized using a UV transilluminator. 

TGGE and sequence analysis. Each PCR-amplified sample (4 nl) was mixed to 

1 nl of loading buffer and loaded onto a TGGE equipment (Bio-Rad, Richmond, 

CA). An 8% polyacrylamide gel (8 x 8 x 1 mm3) containing 6 M urea, 1.25 TAE, 

0.1% TEMED, 1 g I"1 ammonium persulfate, and 5 ml of a solution of 400 g I"1 

acrylamide/bis was used. TGGE was performed at 130 V for 2 h 30 min, the 

temperature gradient from 36 to 42°C being run parallel to the migration. A silver 

staining protocol was applied to the gels. 

Relevant bands from TGGE gels were cut out and eluted in 20 \i\ of PCR 

buffer for 2 h with intervals of shaking. The eluted fraction (15 |il) was used for re-
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amplification and, after purification, the products were sent for sequencing (MWG 

Biotech AG, Ebersberg, Germany). Obtained sequences were deposited 

GenBank and homology searches were performed against other available 

sequences from this database. 

6.3 Results 

Degradative activity experiments. Biodegradation activity by the indigenous 

microorganisms from a non-polluted soil was induced in only 3 days after addition 

of a mixture of BTEX and MTBE (Fig. 6.1). Substrate depletion was complete 

within 8 days for BTEX, but MTBE was not degraded (not shown). The fungus 

Cladophialophora sp. strain T1 was able to colonize autoclaved soil at the 

expense of the BTEX hydrocarbons. However, only the alkylbenzenes (TEX) 

were degraded and a longer time of about 11 days was needed for TEX 

depletion. 
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FIGURE 6.1: Degradation of BTEX in soil microcosmos (at 21 °C), after addition of the substrates 
(Time 0). Untreated soil (•); soil inoculated with the fungus Cladophialophora sp. strain T1 (•); 
autoclaved soil containing fungal inoculum (A); autoclaved soil without the fungus as abiotic control 
(•). Error bars correspond to the standard deviation of three different experiments 
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After soil had been exposed to a mixture of BTEX and MTBE for a period 

of two months, degradation of BTEX occurred without a lag-phase and a three- to 

four-fold increase in the soil-intrinsic biodegradation rates was measured (Table 

6.B). The rates observed for the TEX were similar to those measured in 

autoclaved soil containing the Cladophialophora sp. strain T1 inoculum. At the 

lower soil pH, however, increase of the intrinsic soil degradation activity upon 

exposure to BTEX and MTBE was not observed. In presence of the fungus, the 

soil maximum degradation rate appeared to be less dependent on the pH. 

Filamentous-like growth was macroscopically observed in the acidified soil 

samples that were inoculated with the strain T1. For all soil treatments, benzene 

degradation required always the activity of the indigenous soil microflora, while 

MTBE depletion was very poor in all cases. 

TABLE 6.B: Maximal degradation rates (in umol kg'1 h"1, at 25 °C) of gasoline components 
measured in soil microcosmos incubated at two different pH values, measured at the end of the 
experiments. The given rate values correspond to the average and standard deviation of three 
independent experiments 

-N +F +N -F +N +F 
Substrate 

MTBE 
Benzene 
Toluene 
Ethylbenzene 
o-Xylene 
m-Xylene 
p-Xylene 

pH = 6.5 

ND 
ND 

51.8 ±14.0 
13.3 ± 0.9 
4.5 ± 1.7 
4.9 ± 1.8 
1.6 ± 0.2 

pH = 3.2 

ND 
ND 

33.3 ± 6.6 
7.9 ± 1.3 
3.3 ± 0.7 
3.3 ± 0.5 
0.3 ± 0.1 

pH = 7.1 

ND 
12.0 ± 0.7 
65.7 ± 4.9 

9.7 ± 2.4 
5.2 ± 1.4 
5.2 ± 0.5 
4.7 ± 0.4 

pH = 4.6 

ND 
6.6 ± 1.8 

11.8 ± 1.1 
4.9 ± 1.4 
3.0 ± 0.5 
5.0 ± 0.9 
4.9 ± 0.7 

pH = 6.8 

ND 
13.2 ± 2.1 
71.7 ± 6.0 
24.2 ± 7.0 

5.8 ± 2.4 
9.1 ± 1.5 
6.7 ± 1.1 

pH = 3.7 

ND 
7.1 ± 0.2 

46.3 ±16.9 
9.2 ± 1.6 
3.9 ± 0.5 
3.4 ± 0.5 
4.1 ± 1.0 

(-N +F) soil containing the fungal inoculum without native microflora; (+N -F) soil with native 
microflora; (+N +F) soil containing both the native microflora and the fungal inoculum 
ND: not depleted (the gas phase content after 14 days was similar to that of abiotic controls) 

TGGE microbial profiles. Amplicons of the expected length, as determined in 

electrophoretic gels, were generated from the total soil DNA using the universal 

fungal primers nu-SSU-0817-5' and nu-SSU-1196-3'. Significant PCR-yields 

were only obtained with the DNA extracts from soils containing Cladophialophora 
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sp. strain T1. The latter produced a band pattern in TGGE gels identical to that 

from a pure culture of the fungus (Fig. 6.2). Purity of the original culture was 

subsequently re-assured by performing a new isolation from one single spore. 

The new culture showed again the same TGGE pattern. Three individual bands 

of the gel were excised, re-amplified, and successfully sequenced. Bands a and 

b showed an identical sequence that was deposited into GenBank under the 

accession number AY150798; band cwas also sequenced and deposited under 

the GenBank number AY150899. Alignment searches with other available 

sequences in this database showed the highest homology (100 % for a and b, 

and 98 % for c) with 18S rDNA genes from other fungal strains of the associated 

teleomorph genus Capronia. 

1 3 4 

FIGURE 6.2: TGGE for fungal 18S rDNA fragments obtained from the 
soil samples inoculated with the fungus Cladophialophora sp. strain 
T1: acidified autoclaved soil (Lane 1); acidified and non-autoclaved 
soil (Lane 2); non-acidified non-autoclaved soil (Lane 3); non-acidified 
and autoclaved (Lane 4); pure culture of fungal strain T1 (Lane 5). 
Marked bands are explained in the text 



6. Biodegradation of BTEX in soil 75 

6.4 Discussion 

Biodegradation of BTEX hydrocarbons in soil has usually been attributed to the 

action of bacteria. This study shows that fungi can also degrade BTEX 

components at significant rates in soil. Biodegradation profiles in autoclaved soil 

inoculated with the fungus Cladophialophora sp. strain T1 were similar to those 

previously measured using submerged cultures of this fungus (Chapter 5); in 

which toluene and ethylbenzene served as growth substrates and the xylenes 

were co-metabolized, while benzene was not biodegraded. The longer lag-phase 

observed in soil-fungal cultures, in relation to the intrinsic soil biodegradation, is 

probably the result of the time required for fungal spores to germinate. After long-

term exposure of neutralized soil to BTEX, the biodegradation rates by the 

indigenous soil bacteria and by Cladophialophora sp. strain T1 were similar. At 

acidic pH, however, the intrinsic soil biodegradation rates were lower. Inoculation 

with the fungus increased significantly the biodegradation rates of TEX, indicating 

that the fungus appears to be less sensitive to the pH than the original soil 

degraders. Inactivation of the native soil microbes had little effect on the 

biodegradation rates of TEX in a soil inoculated with Cladophialophora sp. strain 

T1. Similarly, the presence or absence of fungal inoculum in non-autoclaved soil 

did not interfere with the biodegradation of benzene, which could only be 

metabolized by the indigenous soil microflora. The absence of mutual inhibition 

between both the original soil BTEX degraders and the introduced fungus 

indicates that the main interaction between these microbes is of commensalistic 

nature. 

Contrary to aromatic hydrocarbons, degradation of MTBE was not 

observed in the present study. This compound is highly recalcitrant to 

biodegradation and only very few microbial strains have so far been isolated 

which were capable to metabolize MTBE under laboratory conditions (48). 

Biodegradation of gasoline compounds has usually been assessed using 

enriched or pure microbial submerged cultures growing under optimal laboratory 
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conditions. In this situation bacteria usually multiply faster than fungi and hence 

they have been more often selected and comprehensively studied (Chapter 3). 

This situation, however, has little to do with the soil where environmental factors 

that limit microbial growth prevail. A low soil pH has earlier been recognized to be 

an important parameter that inhibits bacterial growth (9) and acidic soils 

contaminated with oil hydrocarbons contained large fungal populations (15). The 

involvement of fungi in the biodegradation of pollutants in acidic soils has 

previously been demonstrated for toluene and naphthalene (120), and phenol 

(84). 

The nuclear-encoded ribosomal RNA genes (rDNA) of fungi exist as a 

multiple-copy gene family comprised of highly similar DNA sequences. In this 

study, the presence of Cladophialophora sp. strain T1 in soil was assessed by 

PCR-TGGE analysis of SSU from 18S rDNA gene amplified using universal 

fungal primers. Sequence analysis of excised bands showed the highest 

homology to other known sequences from the genus Capronia, which is the 

holomorph of Cladophialophora (124). Species in this genus have recently 

experienced a very high degree of evolutive diversification and the classification 

of several closely related species remains puzzling. Consequently, the 18S rDNA 

gene is unlikely to contain enough sequence variability to allow identification of 

Capronia at species level. 

Fungi growing on volatile aromatic hydrocarbons can advantageously be 

used for the biofiltration of polluted air (128). Our preliminary study indicates that 

inoculation of acidic soil with fungi might be a viable technique to enhance 

biodegradation of BTEX pollutants. Further studies are needed at a larger scale 

in order to assess feasibility of introducing fungal cultures into different soils to 

enhance bioremediation of gasoline pollution. 
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7.1 Isolation of fungi growing on volatile aromatic 

hydrocarbons 

This study has shown that only a relatively small number of fungi possesses the 

capacity to assimilate monoaromatic hydrocarbons. These strains could only 

attack certain alkylbenzene compounds (Chapter 3). The screening of a 

heterogeneous fungal collection for growth on agar plates under a toluene 

atmosphere did not yield strains that used toluene as the sole source of carbon 

and energy in closed liquid cultures. Instead, a more successful strategy for 

selecting fungi was based on long-term enrichments of polluted environmental 

samples under growth-limiting conditions, such as acidic pH or low water activity, 

which favored the development of fungi over the faster multiplying bacteria. 

These results contradict previous investigations, which suggested that 

many more fungi from a wide variety of taxa could grow on BTEX hydrocarbons 

(90, 112). The latter studies, however, were based only on the observation of 

fungal growth on agar exposed to these volatiles. Strains that reacted positively 

were assumed to use the supplied substrates as carbon and energy sources, but 

further evidence linking growth to biodegradation was not provided. The use of 

solid media for assessing microbial growth on volatile hydrocarbons usually 

overestimates the number of micoorganisms that effectively utilize the supplied 

substrates (104). Impurities in the agar, in the substrate, or traces of volatile 

compounds from the atmosphere can be used as alternative carbon sources by 

several microorganisms. This is most likely to be the case with soil fungi, which 

are commonly of oligotrophic nature (131). 

7.2 Taxonomy and ecology of the fungi 

In Table 7.A the taxonomic position of the fungi isolated in the present 

dissertation is compared to that from additional strains that have been mention in 

recent literature. It can be concluded that utilization of aromatic hydrocarbons 
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does not appear to be evenly distributed among the fungal system. The qualified 

isolates belong to the ascomycetes and, remarkably, are often affiliated to the 

genera Exophiala and Cladophialophora, both anamorphs of Capronia 

(Chaetothyriales), or Cladosporium {Dothideales) This is especially the case for 

the assimilation of short-chained alkylbenzenes, like toluene, ethylbenzene, or 

styrene. The genera mentioned are comprised among the black yeast-like fungi, 

an heterogeneous group of fungi that encompasses the orders Dothideales and 

Chaetothyriales. Members of these orders have a thallus that is melanized 

throughout, showing a characteristic dark pigmentation. Melanin confers 

resistance towards hostile environments (23), and black yeasts have often been 

isolated under conditions of stress in temperature, water availability, oxygen 

radicals, UV irradiation, electrolyte content, or scarcity of nutrients (46). Dark 

pigmentation has also been described in species of Leptodontidium, 

Pseudeurotium, and Pseudallescheria. 

Besides a higher resistance to adverse environmental conditions, melanin 

is also regarded an important virulence factor in pathogenic strains (23). It is 

therefore interesting to realize that several fungi assimilating aromatic 

hydrocarbons also occur as human pathogens (43). According to the three-level 

scale of occupational health-risk, BioSafety Level (BSL)a, Cladosporium 

sphaerospermum has been placed in BSL-1 as the aetiologic agent of superficial 

skin mycoses. Exophiala jeanselmei, E. lecanii-corni, and Pseudallescheria 

boydii are placed into BSL-2; these fungi can cause cutaneous and 

subcutaneous infections as well as systemic mycoses. Cladophialophora 

contains virulent agents of systemic disease that have been classified into BSL-2 

and BSL-3. Since the strains here isolated showed good growth at 37°C (Chapter 

3), they must be treated as potential pathogens as well. 

a BSL-1: Saprobes or plant pathogens occupying non-vertebrate ecological niches, or 
commensals. Infections are coincidental, superficial, and non-invasive or mild. BSL-2: Species 
principally occupying non-vertebrate ecological niches, but with a relatively pronounced ability 
to survive in vertebrate tissue. They may cause deep mycoses in immune-compromised 
patients. BSL-3: Pathogens potentially able to cause severe mycoses in healthy individuals 
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TABLE 7.A: Classification of the fungi known to grow on aromatic hydrocarbons 

Classification Anamorph name . . . 3 
v substrate 

Reference 

Division: Ascomycota 
Class: Euascomycetes 
Order: Dothideales 
Family: Mycosphaerellaceae 

Mycosphaerella sp. 

Order: Chaetothyriales 
Family: Herpotrichiellaceae 

Capronia sp. 

Capronia sp. 

Order: Helotiales 
Family: -

Cladosporium sp. 
C. sphaerospermum TO 

Exophiala sp. T4 
E. jeanselmei 
E. lecanii-comi 
Cladophialophora sp. T1 
Cladophialophora sp. T2 

Leptodontidium sp. T5 

T 
T, E, S, P 

T, E 
S 
T 

T, E, S 
T 

T 

(8) 
(133), Chr3) 

Chr3 
(38,61) 

Chrs 3, 5 
Chr3 

Chr3 

Order: Eurotiales 
Family: Pseudeurotiaceae 

Pseudeurotium zonatum Sporothrix-like 
Family: Trichocomaceae 

Paecilomyces sp. 
Penicillium sp. 

Order: Microascales 
Family: Microascaceae 

Pseudallescheria boydii Scedosporium apiospermum 

P, H, O, N, D, DD 
N, D, DD 

Chr3 

(52) 
(52) 

(54) 

Order: Hypocreales 
Family: -
Family: Clavicipitaceae 

• 

Verticillium sp. 

Beauveria sp. 

0 , N.D, DD 

N, D, DD 

(52) 

(52) 

a T: toluene; E: ethylbenzene ; S: styrene; P: propylbenzene; H: hexylbenzene; O: octylbenzene; 
N: nonylbenzene; D: decylbenzene ; DD: dodecylbenzene 

From an ecological point of view, the fungal isolates described are 

common and cosmopolitan species that are frequently encountered as soil and 

plant saprobes, as well as opportunistic pathogens. Interestingly, many of these 

species and their close relatives have also been reported in environments that 
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are rich in hydrocarbons or lignin decomposition products: C. sphaerospermum 

has been isolated from a wetland polluted with polycyclic aromatic hydrocarbons 

(58). Species in Exophiala have been found in decaying wood, pulp, and polluted 

water (111, 125). Furthermore, a survey on 28 yeast-like fungi for growth on 84 

oxygenated aromatics (i.e. aromatic acids, phenols, catechols, etc.) revealed that 

£. jeanselmei could utilize the broadest range of substrates (83). The capacity to 

assimilate short-chain alkanes has also been reported for E. jeanselmei (41) as 

well as in a Scedosporium sp. (92). Pseudeurotium zonatum has been isolated 

selectively from wood pulp with a nutrient medium containing the aromatic 

fungicide o-phenylphenol (20). Species of Leptodontidium are usually found in 

rotten wood (44). Degradation of aliphatics in crude oil has been demonstrated 

for Pseudallescheria boydii (4) and this fungus has often been isolated from soil 

polluted with petroleum (5). Penicillium species are among the most commonly 

isolated species from oil-polluted soil, that grow on aliphatics (96,119). 

The apparent higher frequency of isolation of melanin-producing fungi, 

particularly from the highly-melanized genera Cladosporium, Exophiala, and 

Cladophialophora, suggests that these taxa may posses an inherent capacity for 

the assimilation of volatile aromatic hydrocarbons. It is interesting to hypothesize 

about a possible biochemical connection between the fungal metabolism of 

melanin and the assimilation of aromatic hydrocarbons. The most common 

melanin biosynthesis pathway in fungi starts with the condensation of five acetate 

residues to form the aromatic structure tetrahydroxy-naphthalene, which then 

polymerizes. This pathway has been proven for Exophiala, and Cladosporium 

(23). However, it might also be possible that melanized fungi are more commonly 

isolated because of their higher tolerance towards the environmental stress 

imposed during the enrichment procedures. 
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7.3 Catabolic pathways 

So far, assimilation of volatile aromatic hydrocarbons by fungi has only been 

proven for single-chained alkylbenzene substrates (Table 7.A). A closer look into 

the metabolic pathway of toluene in the six strains studied in this thesis revealed 

that, in all cases, the initial oxidation started at the methyl group resulting in the 

formation of aromatic acids that were eventually assimilated (Chapter 4). This 

pathway has also been proposed for the degradation of longer side-chain 

alkylbenzenes (52). The similarities between the side chain oxidation of 

alkylbenzenes and the terminal oxidation of n-alkanes (Chapter 2) suggest that 

assimilation of alkylated benzenes might be the result of the simultaneous 

occurrence of the catabolic pathways forn-alkanes and aromatic acids. However, 

since such a capacity occurs in many more fungal species (83) it is not sufficient 

to explain assimilation of alkylbenzenes in all cases. 

Fungal oxidation of aliphatic hydrocarbons is carried out by cytochrome 

P-450 (Chapter 2). Similarly, enzymatic studies on some of the fungi growing on 

alkylbenzenes strongly suggested the involvement of a cytochrome P-450 

monooxygenase in the side-chain hydroxylation of alkylbenzenes (37), Luykx er 

a/., in preparation). Fungal toluene monooxygenases displayed a moderate 

substrate specificity and other alkylated benzenes, such as ethylbenzene and 

xylene, were also oxidized (Chapter 5, Luyks etal., in preparation). In the case of 

the xylenes, the presence of an additional alkyl side-chain prevented any 

subsequent growth when given as the sole carbon and energy source (Chapter 

3). Fungal P-450 cytochromes are also involved in the ring-hydroxylation of 

several aromatic hydrocarbons (Chapter 2). Monoaromatic compounds like 

toluene can also be oxidized at the aromatic ring by fungi (Chapter 4). The 

primary ring oxidation of toluene results in cresols, compounds that are readily 

assimilated by a broad diversity of fungi (Chapter 2). The hydroxylation of the 

aromatic ring occurs at a rate that is apparently too low to support fungal growth, 

and therefore occurs only co-metabolically. 
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The metabolic uniformity observed for the assimilation of toluene by fungi 

further supports the hypothesis that assimilation of aromatic hydrocarbons is less 

diversified than in the bacteria, where five different pathways have been identified 

for the assimilation of toluene (Chapter 4). 

7.4 Application of fungi in bioremediation of volatile 

hydrocarbons 

The recent development of air biofilters that are based on fungal metabolic 

activity has overcome some of the problems found in the conventional biofiltration 

of hydrocarbons (128). Poor water solubility of volatile aliphatic and aromatic 

hydrocarbons requires biofiltration to function at relatively low water content. 

Under these conditions, fungi thrive better than most bacteria and are therefore 

enriched naturally in air biofilters (Chapter 3). After successful trials in laboratory 

studies, fungus-based biofiltration is being scaled-up for industrial and 

bioremediation uses (36). However, a crucial factor affecting the viability of this 

technology, that has so far been ignored, concerns the potential pathogenicity of 

suitable fungi to humans. Forced aeration through a fungal biofilm will inevitably 

result in large amounts of spores being dispersed in the air, which could be 

hazardous if inhaled. Application of a non-pathogenic strain might not be 

sufficient to prevent biohazard. Displacement of the originally inoculated cultures 

by other fungi that coincidentally entered the biofilter was observed in long-term 

runs (van Groenestijn, pers. comm.). Consequently, safe operation of fungal 

biofilters will require the inoculation with a competitive and non-pathogenic strain 

as well as the monitoring of the microbial community that develops during biofilter 

operation. 

The similarities between air biofiltration and soil bioventing (in both 

techniques a gas phase is blown through a solid porous matrix to which the 

degrading microbes are attached) means that fungi could be used 

advantageously in soil bioremediation as well. Biodegradation of BTEX has, in 
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most cases, been studied using submerged cultures of bacteria. The reason for 

that might be that bacteria growing on aromatic hydrocarbons are readily 

enriched from average soils (Chapter 6), while analogous fungi are less 

ubiquitous and might become only significant under specific environmental 

conditions that inhibit bacterial growth (Chapter 3). The feasibility of using a 

specific microbial strain for the biodegradation of a certain pollutant is usually 

evaluated through the two parameters of the Michaelis-Menten kinetic model: the 

maximum biodegradation rate (Vmax) and the half saturation constant (Km). When 

grown in liquid cultures with an excess of nutrients and a neutral pH, Vmax for 

BTEX are generally higher in bacteria than in fungi (Chapter 3), but this 

difference can be reversed when more stringent growth conditions and time is 

given to the more slowly growing fungi to develop (Chapter 6). The Km value 

gives information on the residual concentration of pollutant that can be achieved 

through biodegradation. The values determined here for the degradation of 

alkylbenzenes in fungi are very similar to those reported for bacteria (Chapters 3 

and 5). 

In the last decades, the importance of fungi as biodegraders of oil 

pollutants has been demonstrated for aliphatic and polycyclic aromatic 

hydrocarbons. The results of this dissertation indicate that the metabolism of 

BTEX in fungi is not as ubiquitous and metabolically diverse as in bacteria. 

However, the use of fungi can be an attractive alternative for specific 

biotechnological applications. The present interest in fungal assimilation of 

aromatic hydrocarbons is demonstrated by the appearance of new research 

groups working in this topic and by the increasing number of additional fungal 

strains that have been isolated since the beginning of the present study. The 

continuation of this type of research is expected to provide a more complete 

picture of the taxonomy, ecology, and biochemistry of the fungal assimilation of 

aromatic hydrocarbons. This information will also contribute to the development 

of new approaches for environmental biotechnology. 
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Summary 

BTEX hydrocarbons (benzene, toluene, ethylbenzene, and xylene) constitute an 

important class of pollutants in water, soil, and air environmental compartments 

(Chapter 1). Recent investigations have shown that certain fungi are capable of 

growing on BTEX and related compounds. Fungal biodegradation can 

advantageously be applied for the biofiltration of air containing BTEX. 

Additionally, the fact that these fungi were isolated from soil indicates that they 

could play an important role in soil bioremediation. Nevertheless, information on 

ecology, metabolism, and degradation kinetics of fungi utilizing aromatic 

hydrocarbons is scarce (Chapter 2). 

Fungi generally thrive better than bacteria under growth-limiting 

conditions, such as low pH and poor water and nutrient availability. Based on this 

fact, three different enrichment techniques were used for the selective isolation of 

fungi with the capacity of using volatile substrates as sources of carbon and 

energy: solid state-like batches, air biofilters, and acidic liquid cultures. 

Environmental samples were exposed to an atmosphere of volatile aromatic 

hydrocarbons and incubated under acidic and dry conditions (Chapter 3). Five 

fungal strains were isolated with toluene as a substrate from soil and 

groundwater samples from gasoline-polluted environments. The isolates were 

identified as Cladophialophora, Exophiala and Leptodontidium spp. and the 

ascomycete Pseudeurotium zonatum. Results showed that these fungi grew on 

toluene with doubling times between 2 and 3 days. The effect of toluene 

concentration on the respiration rates was also studied in the different fungi. The 

apparent half-saturation constant (Km) for toluene oxidation ranged from 5 to 22 

u.M, depending on the strain. The maximum respiration rates were inhibited by 

50% (IC50) at toluene concentrations of 2.4 up to 4.7 mM. Despite repeated 

attempts, no fungal isolates were obtained growing on benzene, naphthalene, or 

xylene. Some of the strains isolated on toluene also grew on ethylbenzene and 

styrene. 
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Previous studies showed that bacteria possess very diverse metabolic 

pathways for the assimilation of toluene. Here, metabolic possibilities involved in 

the oxidation of toluene were studied for the fungi (Chapter 4). Whole cells were 

incubated with isomeric fluorotoluenes, and metabolites were characterized by 
19F nuclear-magnetic resonance spectroscopy. The detected fluorinated 

metabolites indicated that toluene is oxidized by all toluene-grown fungi at the 

side-chain to benzoate. The latter is subsequently hydroxylated, first at the para 

position, and then at additional positions so that it forms catecholic intermediates 

which are eventually assimilated through the 3-oxoadipate pathway. Toluene was 

also found to be hydroxylated at the aromatic ring in the zygomycete 

Cunninghamella echinulata. However, conversion rate in this latter case was very 

low and the reaction it was co-metabolic. 

Studies on biodegradation of BTEX have focused principally on single 

substrates, neglecting the fact that pollution with these hydrocarbons often 

occurs as complex mixtures. The kinetic interactions during degradation of BTEX 

mixtures were studied with the fungus Cladophialophora sp. strain T1 (Chapter 

5). This isolate grew well on a mixture of all six BTEX components that was 

comparable to pollution by the water-soluble fraction of gasoline. Toluene and 

ethylbenzene were used as sources of carbon and energy, and the xylenes were 

co-metabolized; ortho- and mete-xylene were converted to phthalates as end-

metabolites; para-xylene was not significantly degraded in complex BTEX 

mixtures but carbon mass-balances suggested that it was mineralized in 

combination with toluene. Benzene was not degraded with any of the assayed 

substrate combinations. The metabolic profiles and the inhibitory nature of the 

substrate interactions indicate that TEX are hydroxylated at the side-chain by the 

same monooxygenase enzyme. 

Biodegradability of BTEX has usually been assessed with submerged 

cultures growing at optimal conditions. This information can be misleading if 

extrapolated to field conditions. Growth of the fungus Cladophialophora sp. strain 
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T1 on a mixture of BTEX and the gasoline additive MTBE was studied in sterile 

and non-sterile soil microcosms (Chapter 6). Comparison of the biodegradation 

rates measured in soil batches combining presence and absence of indigenous 

bacteria and the fungal inoculum suggests that the main interaction between 

indigenous and inoculated BTEX-degrading microorganisms was 

commensalistic. Alkylbenzenes were all degraded by the fungus, but benzene 

degradation required the activity of the indigenous soil microflora. MTBE could 

not be biodegraded. Inoculation with the fungus increased the degradation rates 

in soil after long exposure to BTEX and a low soil pH. The presence and identity 

of the fungal inoculum in soil was confirmed by PCR-TGGE analysis of SSU of 

fungal 18S rDNA. 

The results presented in this dissertation are discussed in relation to 

previous knowledge on fungal assimilation of aromatic hydrocarbons and in view 

of future potential biotechnological applications (Chapter 7). The use of fungi 

utilizing aromatic hydrocarbons represent a very promising tool in the 

bioremediation of BTEX pollution. Fungal biodegradation is similar in kinetic 

terms to that of bacteria, but the former have the advantage of a higher tolerance 

to adverse environments. However, fungal assimilation of aromatic hydrocarbons 

appears to be confined to black yeast-like fungi and allied species some of which 

can cause mycosis to humans. The potential pathogenicity of fungi also needs to 

be considered when developing and operating fungal-based biotechnological 

applications for the bioremediation of BTEX hydrocarbons. 



Summary 101 



102 Growth of fungi on aromatic hydrocarbons 

Samenvatting 

BTEX koolwaterstoffen (benzeen, tolueen, ethylbenzeen en xyleen) zijn een 

belangrijke groep verontreinigingen in de milieucompartimenten water, bodem en 

lucht (Hoofdstuk 1). Recent onderzoek heeft laten zien dat bepaalde schimmels 

in staat zijn om te groeien op BTEX en aanverwante componenten. 

Biodegradatie met schimmels kan aantrekkelijk zijn voor de biofiltratie van lucht 

die verontreinigd is met BTEX. Omdat deze schimmels uit de bodem geisoleerd 

zijn, lijkt het waarschijnlijk dat deze schimmels ook een belangrijke rol in de 

biologische bodemreiniging kunnen vervullen. Tot nu toe is er echter vrij weinig 

bekend over de ecologie, het metabolisme, de afbraakkinetiek en het gebruik van 

aromatische verbindingen door schimmels (Hoofdstuk 2). 

In het algemeen kunnen onder groeilimiterende omstandigheden 

zoals lage pH, watergebrek en een tekort aan nutrienten schimmels beter 

functioneren dan bacterien. Op basis van deze eigenschappen zijn drie 

verschillende ophopingstechnieken voor de selectieve isolatie van schimmels 

met de eigenschap om vluchtige substraten te gebruiken als enige bran voor 

koolstof en energie. De ophopingstechnieken zijn: vast substraat batches, lucht 

biofilters en zure vloeistofcultures. GeTnoculeerde organismen werden 

blootgesteld aan vluchtige verbindingen en geTncubeerd onder zure en droge 

omstandigheden (Hoofdstuk 3). Uit grand- en grondwatermonsters van een met 

aromatische koolwaterstoffen verontreinigde locatie werden vijf 

schimmelstammen geisoleerd met tolueen als koolstof- en energiebron. De 

gei'soleerde schimmels werden gei'dentificeerd als Cladophialophora, Exophiala 

en Leptodontidium spp. en de ascomyceet Pseudeurotium zonatum. De 

schimmels vertoonden groei op tolueen als substraat met verdubbelingstijden 

van 2 tot 3 dagen. Het effect van de tolueen concentratie op de respiratiesnelheid 

werd eveneens bestudeerd. De schijnbare halfwaarde-verzadigingsconstante 

(Km) voor tolueen oxidatie varieerde van 5 tot 22 mM, afhankelijk van de 

gei'soleerde stam. De ademhalingssnelheid werd voor 50% geremd (IC50) bij 
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tolueen concentraties varierend van 2.4 tot 4.7 mM. Ondanks herhaalde 

pogingen konden geen schimmels ge'i'soleerd worden die in staat waren om te 

groeien op benzeen, naftaleen of xyleen. Sommige stammen die op tolueen 

ge'i'soleerd waren, konden ook groeien op de substraten ethylbenzeen en 

styreen. 

Voorafgaande studies lieten zien dat bacterien een grote variatie vertonen 

in metabole afbraakroutes voor de assimilatie van tolueen. In deze studie is de 

metabole variabiliteit voor de oxidatie van tolueen onderzocht voor de afbraak 

van tolueen door schimmels (Hoofdstuk 4). Hele cellen werden daarbij 

gei'ncubeerd met het isomeer fluortolueen, waarbij de metabolieten werden 

gekarakteriseerd met 19F magnetische kernspinresonantie spectroscopie. De 

gedetecteerde fluor bevattende metabolieten lieten zien dat tolueen werd 

geoxideerd in de methylgroep tot benzoaat in alle op toleen gekweekte 

schimmels. Vervolgens werd benzoaat gehydroxyleerd, eerst in de para-positie, 

en daarna tot catechole intermediairen, die eventueel via de 3-oxoadipaat route 

geassimileerd kunnen worden. Hydroxylering van tolueen kan ook plaatsvinden 

in de aromaat ring, zoals in de hyphomyceet Cunninghamella echinulata. Echter 

de degradatiesnelheid was erg laag en was co-metabool. 

Voor BTEX afbraak door schimmels is vooral gericht op afzonderlijke 

substraten, waarbij voorbij wordt gegaan aan het feit dat de vervuiling door 

koolwaterstoffen meestal in de vorm van complexe mengsels voorkomt. De 

kinetische interacties gedurende BTEX afbraak zijn bestudeerd voor de schimmel 

Cladophialophora sp. stam T1 (Hoofdstuk 5). Dit isolaat vertoonde groei op een 

mengsel van alle zes BTEX componenten van analoge samenstelling als de 

wateroplosbare fractie van benzine. Tolueen en ethylbenzeen werden gebruikt 

als koolstof- en energiebron, terwijl de xylenen werden gecometaboliseerd; 

ortho- en meta-xyleen werden omgezet in phtalaten als eindmetabolieten; para-

xyleen werd niet significant afgebroken in de complexe BTEX mengsels, maar uit 

de koolstofbalans viel af te leiden dat het mogelijk werd gemineraliseerd in 
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combinatie met tolueen. Benzeen werd in geen enkele combinatie afgebroken. 

De metabole profielen, samen met de substraat interacties laten zien dat de TEX 

verbindingen werden gehydroxyleerd in de zijketen door het zelfde 

monooxygenase enzym. 

De biodegradeerbaarheid van BTEX is meestal onderzocht in 

vloeistofculturen bij optimale condities. Dit gegeven kan misleidend zijn voor 

extrapolatie naar veldschaal condities. Daarom is de groei van de schimmel 

Cladophialophora sp. stam T1 op een mengsel van BTEX en MTBE onderzocht 

in steriele en niet-steriele bodem microcosmossen (Hoofdstuk 6). Vergelijking 

van de afbraaksnelheden, gemeten in bodembatches, waarbij de aanwezigheid 

of afwezigheid van endogene bacteriele afbrekers gecombineerd werd met een 

schimmel inoculum suggereert dat commensalisme de voornaamste interactie 

was tussen de endogene en ge'inoculeerde microorganismen gedurende de 

biodegradatie van BTEX. Alkylbenzenen werden allemaal door de schimmel 

afgebroken, maar voor de afbraak van benzeen was de activiteit van de 

endogene microflora essentieel. Echter MTBE degradatie werd in alle batches 

met grand waargenomen. Bij een langere blootstelling aan BTEX bij een lage pH 

leidde dit tot een toename van de biodegradatieactiviteit in de batches met grand 

die een schimmel inoculum bevatten. PCR-TGGE analyse van schimmel 18S 

rDNA met verschiilende universele schimmel primers gaf aan dat 

Cladophialophora sp. stam T1 de enige schimmel was die zich ontwikkelde in de 

batches met grand. 

De resultaten van dit proefschrift zijn bediscussieerd in relatie tot kennis 

die al bekend was over de assimilatie van aromatische koolwaterstoffen door 

schimmels, evenals de toekomstige biotechnologische toepassingen van dit soort 

schimmels (Hoofdstuk 7). Biologische afbraak van BTEX door schimmels is in 

kinetische termen vergelijkbaar met de afbraak door bacterien, maar schimmels 

hebben het voordeel van een hogere tolerantie in een meer extreme omgeving. 

Een mogelijk nadeel van dergelijke schimmels is, dat ze gerelateerd zijn aan 
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zwarte gistachtige schimmels die bekend zijn om hun vermogen om mycose te 

veroorzaken bij mensen. Deze potentiele pathogene eigenschappen van 

schimmels moet nader onderzocht worden bij de ontwikkeling en opschaling van 

op schimmels gebaseerde biotechnologische toepassingen voor de biologische 

afbraak van BTEX koolwaterstoffen. 
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Resumen 

Los hidrocarburos aromaticos conocidos con las iniciales BTEX (benceno, 

tolueno, etilbenceno y xileno) constituyen una fuente importante de polucion del 

suelo, agua y aire (Capitulo 1). Investigaciones recientes han demostrado que, a 

parte de las bacterias, determinados hongos son capaces de asimilar 

hidrocarburos monoaromaticos como BTEX. El aprovechamiento de las 

capacidades degradativas de estos organismos representa una opcion 

interesante de cara a la purification de aire contaminado con vapores de BTEX. 

El hecho de que estos hongos fueran aislados a partir de muestras de suelo 

indica que tambien podrian jugar un papel importante en la bioremediacion de 

suelo contaminado con BTEX. No obstante, la information disponible al 

comienzo de esta investigation en relacibn a la diversidad y asi como aspectos 

cineticos y metabolicos de los procesos degradativos en relacion a la asimilacion 

de hidrocarburos aromaticos por hongos era muy limitada (Capitulo 2). 

De forma generica se puede afirmar que los hongos se desarrollan mejor 

que las bacterias en condiciones acidas, y con poca disponibilidad de agua y 

nutrientes. Basado en este principio, se desarrollaron tres diferentes metodos 

para el enriquecimiento selectivo de hongos con la capacidad de utilizar 

substratos volatiles como fuente de carbono y energia: (i) la fermentation en 

estado s6lido, (ii) biofiitros de aire, y (iii) cultivos liquidos a bajo pH (Capitulo 3). 

Microorganismos de muestras ambientales fueron expuestos a substratos 

volatiles e incubados en condiciones de acidez y/o sequedad. Cinco cepas 

diferentes fueron finalmente aisladas de suelos y acuiferos contaminados con 

gasolina. Estas fueron identificadas como pertenecientes a los generos 

Cladophialophora, Exophiala y Leptodontium, asi como el ascomiceto 

Pseudeurotium zonatum. Los resultados demuestran que estos hongos crecen 

en tolueno doblando su biomasa cada 2 o 3 dias, en contraste con las bacterias 

que lo hacen cada 1 a 3 horas. El efecto de la concentration de tolueno sobre la 

tasa de respiration fue estudiado. Dependiendo de la cepa, la constante de 
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saturation (Km) para la oxidation del tolueno oscilo entre 5 y 22 uM. En el otro 

extremo, la concentration de tolueno que inhibe la tasa de respiration un 50 % 

(IC50) se situo entre 2.4 y 4.7 mM. A pesar de reiterados intentos no se 

consiguio aislar hongos con la capacidad de asimilar benceno, naftaleno, o 

xileno. Sin embargo, etilbenceno y estireno tambien sirvieron como fuente de 

carbono y energia en alguna de las cepas aisladas con tolueno. 

Las bacterias poseen una alta diversification en relation a las rutas 

metabolicas utilizadas para la asimilacion del tolueno. En este trabajo, la 

variabilidad metabolica para la degradation del tolueno fue estudiada para los 

hongos (Capitulo 4). Cultivos previamente crecidos en tolueno fueron expuestos 

a diferentes isomeros fluorinados del tolueno y los metabolitos que se formaron 

fueron identificados mediante la resonancia magnetica nuclear del fluor ( 19F 

NMR). La oxidation inicial del fluorotolueno tuvo lugar en la cadena de metilo 

resultando en fluorobenzoato en todos los hongos que asimilan el tolueno. El 

fluorobenzoato sirvio como sustrato para la hidroxilacion del anillo aromatico en 

la position para y, en funcion de la position del fluor, fue metabolizado hasta 

compuestos catec6licos y muconatos. Estos resultados indican que la utilization 

del tolueno en los hongos estudiados unicamente ocurre a traves de la para-

hidroxilacion del benzoato y la rotura del anillo hacia la ruta del 3-oxoadipato. La 

oxidation inicial del tolueno en el anillo aromatico tambien es posible en los 

hongos, tal como fue demostrado en la conversion del fluorotolueno a 

fluorocresol por el hifomiceto Cunninghamella echinulata. No obstante, este 

ultimo proceso solo sucedio de forma cometabolica siendo la tasa de conversion 

muy baja. 

La biodegradacion de los BTEX se ha estudiado principalmente de forma 

individual, sin tomar en consideration que cuando estos hidrocarburos causan 

contamination ambiental a menudo se encuentran mezclados entre si. La 

cinetica durante la degradation de mezclas de BTEX fue estudiada en el hongo 

Cladophialophora sp. cepa T1 (Capitulo 5). Este hongo fue capaz de crecer en 
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una mezcla de BTEX analogs a la fraccion soluble de la gasolina. Tolueno y 

etilbenceno sirvieron como fuentes de carbono y energia mientras que los 

xilenos fueron cometabolizados. El orto- y el mefa-xileno fueron oxidados hasta 

los respectivos ftalatos como metabolitos terminales. El para-xileno, sin 

embargo, no pudo ser degradado en cantidades significativas en mezclas 

complejas de BTEX, pero en combinacion con tolueno balances de carbono 

indicaron que fue parcialmente mineralizado. Contrariamente a los compuestos 

anteriores, el benceno no fue metabolizado en ninguna de las combinaciones de 

substratos ensayadas. Los patrones de degradacion para los diferentes 

sustratos y la naturaleza competitiva de las interacciones entre ellos indica que 

los compuestos TEX son hidroxilados en el grupo alquilo mediante la misma 

monooxigenasa. 

La biodegradaci6n de BTEX ha sido estudiada principalmente con cultivos 

liquidos en condiciones optimas de crecimiento creadas en laboratorio. Sin 

embargo, los resultados obtenidos de esta manera suelen ser poco 

extrapolables al suelo, situation en que los organismos deben afrontar 

ambientes que limitan su crecimiento. En este estudio, la biodegradacion de 

BTEX y del aditivo de la gasolina MTBE fue evaluada en microcosmos de suelo 

(Capitulo 6). El efecto de la inoculacion del suelo con esporas de 

Cladophialophora sp. cepa T1 sobre las tasas de degradacion fue medida en 

diferentes tratamientos: presencia o inactivacibn de la microflora original, pH 

neutro o acido, exposicion previa o no a BTEX. La comparacion de las tasas de 

degradacion en presencia y absencia de las bacterias inicialmente presentes en 

el suelo por un lado, y del hongo por el otro, indican que el comensalismo es la 

principal interaction entre los degradadores de BTEX indigenos e introducidos. 

Los alquilbenzenos fueron degradados por el hongo, pero la biodegradacion del 

benzeno requirio siempre de la presencia de la microflora del suelo. El MTBE, no 

obstante, no fue degradado en ninguno de los casos. La inoculacion del suelo 

con el hongo aumento las tasa de degradacion despues de la exposicion a BTEX 

y a un pH acidico. La presencia del hongo en el suelo fue confirmada al final de 
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los experimentos mediante la amplification y aislamiento de fragmentos del gen 

ribosomal 18S. 

Los res u I tad os presentados en esta tesis son evaluados con relacion a la 

information disponible en la literatura asi como al uso potential de estos hongos 

en la biotecnologia ambiental (Capitulo 7). El uso de hongos para la 

bioremediacion de la polucion causada por BTEX representa una option muy 

interesante. La capacidad de los hongos para asimilar BTEX y otros 

hidrocarburos analogos es similar al de las bacterias en terminos cineticos, con 

la ventaja que los primeros pueden desarrollarse en medios que son menos 

favorables para las segundas. Sin embargo, existirian tambien condiciones que 

afectan negativamente el uso de los hongos, relacionadas con la posibilidad de 

causar micosis en humanos, que deben ser tenidas en cuanta durante el 

desarrollo y operation de aplicaciones biotecnologicas basadas en la actividad 

de los hongos. 



110 Growth of fungi on aromatic hydrocarbons 

Resum 

Els hidrocarburs aromatics coneguts conjuntament amb les inicials BTEX (benze, 

tolue, etilbenze, i xile) constitueixen una font important de contaminacio del sol, 

I'aigua, i I'aire (Capitol 1). En investigacions recents s'ha demostrat que, a part 

de les bacteries, certs fongs son capacos d'assimilar hidrocarburs aromatics 

volatils, com ara BTEX. L'aprofitament de la capacitat degradativa d'aquest 

organismes representa una opcio interessant de cara al tractament d'aire 

contaminat amb BTEX. A mes a mes, el fet que aquest fongs s'hagin aTllat en 

mostres de sol indica que tambe podrien jugar un paper important en 

bioremediaci6 de s6ls contaminats amb BTEX. La informacio disponible al 

comencament d'aquesta recerca en relacib a la diversitat, metabolisme, i cinetica 

de degradacio en els fongs era escassa (Capitol 2). 

De forma generica, es pot afirmar que els fongs es desenvolupen millor que les 

bacteries en condicions que limiten el creixement microbia, com ara un pH baix, i 

la poca disponibilitat d'aigua i nutrients. Basat en aquest principi, tres metodes 

van ser desenvolupats per tal d'enriquir i ai'llar fongs amb la capacitat d'utilitzar 

substrats volatils com a font de carboni i energia: (i) la fermentacio en estat 

sol.lid en lots, (ii) biofiltres d'aire, i (iii) cultius liquids acidificats (Capitol 3). 

Mitjancant aquests sistemes, microorganismes provinents de mostres ambientals 

van esser exposats a substrats volatils en condicions d'acidesa i/o sequetat 

durant llargs terminis de temps. Cine cepes amb la capacitat de creixer en tolue 

van ser finalment aillades i identificades com pertanyents als generes de 

deuteromicets Cladophialophora, Exophiala i Leptodontidium, axi com 

I'ascomicet Pseudeurotium zonatum. En condicions de laboratori, aquest fongs 

creixen a costa del tolue duplicant llur biomassa cada 2 a 3 dies. Aquests valors 

contrasten amb el dels bacteris, els quals ho fan cada 1 a 2 hores. L'efecte de la 

concentracio de tolue sobre la taxa de respiracio va ser estudiada en els 

diferents fongs. La constant de saturacio aparent (Km) va oscil.lar entre 5 to 22 

(aM, en funcio de la cepa estudiada. La toxicitat del tolue, per altra banda, 
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determinada com la concentracio que inhibeix la taxa maxima de respiracio en 

un 50 % (IC50) es va situar entre 2.4 i 4.7 mM. A pesar de repetits intents per tal 

d'obtenir fongs capacos de creixer en benze, napthale, o xile, aquests van ser 

infructuosos. Algunes de les cepes aillades en tolue tambe utilitzaren I'etilbenze i 

I'estire. 

Els bacteris posseixen una grau de diversificacio molt elevat en relacio a les 

rutes metabdliques que estan implicades en I'assimilaci6 del tolue. En aquest 

treball, la variabilitat metabdlica per la degradacio del tolue va ser estudiada per 

als fongs (Capitol 4). Cultius previament crescuts en tolue van ser incubats amb 

diferents isdmers del fluorotolue. Els metabolits fluorinats que es van formar a 

partir de la conversio del fluorotolue van ser caracteritzats mitjancant la 

resonancia magnetica nuclear del 19F. La identificacio d'aquests metabdlits 

permet concloure que la assimilacio del tolue s'inicia amb I'oxidacio del grup 

metil en totes les cepes estudiades resultant en benzoat. Aquest compost es 

subsequentment hidroxilat, primer a la posicio para, i despres fins a compostos 

catecolics, els quals son finalment assimilats mitjancant la ruta del 3-oxoadipat. 

La hidroxilacio del tolue en I'anell aromatic tambe va esser demostrada en 

I'hifomicet Cunninghamella echinulata. No obstant, la taxa de conversio en 

aquest darrer cas va ser extremadament baixa i la reaccio succei de forma co-

metabolica. 

La biodegradacio dels BTEX s'ha estudiat en la majoria dels casos utilitzant 

compostos de forma individual, ignorant el fet que aquests contaminants sovint 

es troven com a mescles. Les interaccion cinetiques durant la degradacio de 

mescles de BTEX van ser estudiades en el fong Cladophialophora sp. cepa T1 

(Capitol 5). Aquest organisme va ser capac de creixer en una barreja formada 

pels sis compostos BTEX similar a la fraccio soluble de gasolina. Tolue i 

etilbenze van ser utilitzats com fonts de carboni i energia, mentres que els xilens 

van ser co-metabolitzats. Els isomers orto- i meta-xile van ser oxidats fins als 

reapectius ftalats; el para-xyle no va ser degradat de forma significativa en 
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mescles de BTEX, pero balancos de carboni indicaren que en combinaci6 amb 

tolue va ser mineralitzat. El benze en canvi no va ser metabolitzat en cap de les 

combinacions de substrats assajades. Els perfils metabblics i la naturalesa 

inhibitoria de les interaccions indica que els TEX son hidroxilats al grup alquil 

mitjancant la mateixa enzima monooxigenasa. 

La biodegradabilitat dels BTEX comunment s'ha estudiat en cultius liquids 

incubats en condicions optimes. Els resultats d'aquests experiments solen diferir 

dels obtinguts en condicions de camp. En aquest treball, la biodegradacio de 

BTEX i de I'aditiu de la gasolina MTBE va ser estudiada en mostres de sol. 

L'efecte de la inoculacio amb el fong Cladophialophora sp. cepa T1 sobre la tasa 

de degradacio va ser estudiada (Capitol 6). La comparacio de les tases de 

biodegradacio amb la presencia i I'absencia dels bacteris inicialment presents en 

el sol per una banda, i del fong per un altra indicaren que el comensalisme es la 

principal interaccio entre els degradadors de BTEX indigens i introduits. Els 

alquilbenzens van ser degradats pel fong, mentres que la degradacio del benze 

requeri la activitat de la microflora del sol. El MTBE, pero, no va ser degradat en 

cap dels casos. La inoculaci6 del sol amb el fong va aumentar les taxes de 

degradacio despres d'un temps llarg d'exposicio als BTEX i a un pH acidic. La 

presencia i identitat de I'inocul va ser confirmada mitjancant I'analisi de 

fragments del gen ribosomal 18S. 

En el Capitol 7, els resultats presentats en aquesta tesis s6n evaluats en relacio 

a la informacio previament disponible en la literatura cientifica i a I'us potencial 

d'aquest organismes en la biotecnologia ambiental. L'aplicacio de fongs en la 

bioremediacio de la polucio causada per BTEX representa una opcio molt 

interessant. En termes cinetics, la biodegradacio de BTEX en fongs i bacteris es 

similar, pero els primers tenen I'avantatge de tolerar millor certes condicions 

ambientals adverses. No obstant, la assimilacio de hidrocarburs aromatics en 

fongs esta sovint relacionada amb cepes que causen micosis. La capacitat 

patogena d'aquests fongs vers els humans s'ha de considerar seriosament 
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alhora de desenvolupar i posar en operacio sistemes de bioremediacio dels 

BTEX que estan basats en els fongs. 
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