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Chapter 1 

General introduction 

 

 
 

In recent years the use of species distribution models by community ecologists has increased 

considerably. A central issue of community ecology is to understand species–environment 

relationship (Guisan and Zimmermann 2000). Many theories on community assembly assume that 

the effects of environmental factors are important in controlling and shaping species composition 

(Weiher and Keddy 1995). For over a century, ecologists have attempted to determine the factors 

that control species distribution (Motzkin et al. 2002). The importance of environmental factors to 

explain species distribution was recognized in the early 19th century. Despite the increasing 

number of investigations on species distributions and their relationship to the environment during 

the past decade, our understanding of how environmental conditions shape species distribution is 

still far from complete. 

Models that predict distributions of species by combining species data with environmental 

variables have much potential for application in conservation. In the last two decades, interest in 

species distribution modelling therefore has grown dramatically and a wide variety of modelling 

techniques have been developed (Guisan and Thuiller 2005). These models commonly utilize 

associations between environmental variables and species data to identify environmental 

conditions within which species can be conserved. 

The quantification of species–environment relationships represents the core of modelling in 

community ecology. A central focus of community ecology is to understand and explain where and 

when particular species or groups of species occur and thrive, and where and when not. To be able 

to survive, species need to be adapted to the environment they live in. Species differ in what they 

require and can tolerate from the environment, due to differences in traits, and environmental 

conditions vary in space and time. The relationship between species traits and environmental 

factors is therefore crucial for understanding of species community assembly. Although the role of 

species traits in community assembly has received much recent interest (Weiher et al. 1998, 

Lavorel and Garnier 2002, Statzner et al. 2004, Cornwell and Ackerly 2009, Ozinga et al. 2004, 

Ozinga et al. 2005a, Shipley et al. 2006, He 2010, Ozinga et al. 2005b), little is known about the 

relationships between species traits and different environmental factors.   

A trait is a well-defined property of organisms that is usually measured at the organism level and 

used comparatively across species, as the intra-species variation is usually much smaller than the 
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inter-species variation (McGill et al. 2006). Several empirical studies have shown that species 

traits are associated with habitat conditions (Townsend and Hildrew 1994, Townsend et al. 1997, 

Pöyry et al. 2008) with the implication that traits were developed in the evolutionary process to 

enable species to adapt to the habitat and landscape characteristics in which the species occur 

(Southwood 1977, Ackerly 2003). Table 1 presents a small selection of trait-environment studies 

in recent years and shows the diversity in aim, taxa and statistical method used. 

The increasing availability of species trait data is an extra stimulant for the growing interest of 

ecologists in the analysis of species functional trait responses to environmental conditions (Weiher 

et al. 1999, Violle et al. 2007). Despite this increasing interest, our knowledge of species 

community assembly is still hampered by lack of sound statistical methods for quantifying the 

effect of species traits on community assembly (Dray and Legendre 2008). Most studies on trait-

environment relationship, especially model-based ones, are limited to a single species or to the 

effect of species traits on the performance of individual species. The idea of using species traits to 

study the properties of ecological communities is not new but currently a major research focus in 

ecology (McGill et al. 2006). However, knowledge of the effect of the relationship between 

species traits and environmental factor on species community assembly is still limited. This is 

partially because the link between species traits and environmental factors is mostly conjectured 

and limited to correlate them (McGill et al. 2006, Vile et al. 2006).  Yet, species are seldom 

affected by only one environmental variable but experience different environmental factors 

simultaneously and also species often interact with other species in many ways.  One of the major 

tasks of ecological studies is to analyse the response of community composition to environmental 

conditions and this often requires the use of multivariate analyses (Dray et al. 2003). Therefore 

there is an  immense need for statistical methods that can link the environmental factors to traits in 

such multispecies communities. Species traits are also presumed have much predictive value for 

where and when a particular species or group of species appears or disappears. The central theme 

of this thesis is to develop models for species distribution that integrate the trait-environment 

relationships. 

Trait-Environment relationships 

Typical data in community ecology are arranged in two data tables (Fig. 1): a table Y recording the 

occurrence and abundance of numerous species in sites and a table X recording habitat and other 

site characteristics, i.e. the values or states of numerous environmental variables at the sites. 

Principal component analysis and correspondence analysis are ordination methods for analyzing a 

single table. Co-inertia analysis (Dolédec and Chessel 1994), redundancy analysis (Rao 1964), 

canonical correspondence analysis (ter Braak 1986) and canonical correlation analysis (Hotelling 

1936) are multivariate methods for coupling two tables. Data on traits of species adds a third table 

Z (Fig. 1). For analysis of the three tables different approaches are used.  Some authors combined  
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Fig. 1. Y is a sites × species table, X is a sites × environment table and Z is a species × trait table.  

 

the sites × species table Y and species × trait table Z in to a sites × trait table which is then related 

to the sites × environment table X by standard statistical methods (Díaz et al. 1992, Sonnier et al. 

2010). The combined table contains, for a quantitative trait, the mean across organisms at each site, 

for example the mean seed size, and for a qualitative trait, the numbers or percentages of 

organisms belonging to each category. This can also be done the other way round in which sites × 

species table Y and sites × environment table X are combined into a species × environment table 

which is then related to the species × trait table Z by standard (multivariate) statistical methods. 

The combined table may consist of mean environmental values per species or the percentage of 

individual of a species in each category of qualitative environmental variable.  Legendre et al. 

(1997) and Dray and Legendre (2008) integrated these two steps in to one and called it the fourth-

corner problem. The fourth corner is the lower-right gap in Fig. 1; it is the matrix to be 

constructed: the trait × environment matrix. For quantitative traits and environmental variables, the 

corner contains correlations between traits and environmental variables. The problem that a trait is 

measured on species and an environment variable on sites is circumvented by considering each 

number in each number in the sites × species table Y as a count of individuals of a particular 

species. Each individual has an attached trait value, namely that of the species to which the 

individual belongs, and an attached value of the environmental variable, namely the value of the 

site in which the individual occurs. Using individuals as cases, the Pearson correlation between the 

trait and the environmental variable is then calculated. The result can also be interpreted as a 

weighted Pearson correlation with the weight being the count. This interpretation is useful to 

generalize the method to sites × species tables with non-integer elements, to show that the fourth 

corner method ignores the zero values in the sites × species table Y and to show that negative 

ijY iX

jZ
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values are not allowed. Dray and Legendre  (2008) examined six permutation-based methods to 

test the statistical significance of the trait-environment relationship, but none of them truly 

controlled the type I error. The fourth-corner method is descriptive; it is not a real modelling 

technique. The multivariate version of  the fourth-corner problem is RLQ ordination (Dolédec et 

al. 1996) which has been used for selecting the best traits in species functional trait analyses 

(Bernhardt-Römermann et al. 2008).  

The linear trait-environment (LTE) method (Cormont et al. 2011) was developed as a counterpart 

to the fourth corner method to enable usage of negative values in the sites × species table Y. In 

LTE, the trait-environment correlation is defined as the Pearson correlation between the species-

specific regression coefficient and the species trait. The LTE method is a least squares method and 

the significance of the relationship is tested by a permutation test with a permutation strategy that 

does control the type I error. This strategy is a slight adaptation of one the permutation methods 

proposed for the fourth corner problem (Cormont et al. 2011).  

Shipley et al. (2006) used the maximum entropy principle (MaxEnt) in an innovative way to 

predict microscopic features of communities (species abundance in sites) from macroscopic ones 

(their profiles of traits of species in the sites × trait table, where site refers to community). 

Interestingly, the result is a logistic model relating abundances to traits, as used in logistic 

regression but fitted in a different way (He 2010) and without environmental variables. The 

logistic regression model, which is the workhorse for statistical analysis of presence-absence data, 

can thus (also) be motivated from the maximum entropy principle. Ozinga et al. (2005a) started 

from the multiple logistic regression method and used it to quantify the effect of functional traits in 

a way that accounts for spatial variation in the composition of the local species pool. Their method 

assumes that species records within sites are independent (Hosmer and Lemeshow 2000), thus 

commits pseudo-replication (Hurlbert 1984, Crawley 2002). In applying generalized linear models, 

such as logistic regression, researchers often ignore the hierarchical structure of the data thereby 

producing incorrect variance estimates and increasing the likelihood of committing type I error 

(Wagner and Fortin 2005, Gillies et al. 2006).  

Research Objectives: 

The central focus of the thesis is how to quantify the relation of species traits with the environment 

via data on species occurrence and abundance in sites, species traits and the environmental 

characteristics. The research objectives when modeling species, traits and environments were:  

 to develop a statistically sound and extendable framework for examining trait-

environment relationships, and in particular, 
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 to develop a model-based approach modelling species data in relation to trait and 

environment data, taking into account the facts that species data are often in presence-

absence form and that species often respond nonlinearly, even unimodal, to environmental 

change 

 to develop methods to identify which traits and environmental factors best explain 

the distribution of species in space (and time) 

 to evaluate how effective the newly developed methods are compared with 

existing methods of analysis. 

Thesis outline 

The thesis develops the methods to address the above questions by developing Bayesian and 

hierarchical models that utilize the trait information efficiently and that are able to automatically 

select the relevant traits and characteristics.  

1. Chapter 2 introduces a Generalized linear mixed model (GLMM) approach to identify 

which species traits and environmental variables best explain the species distribution in space 

and time, and which traits are significantly correlated with environmental variables. The 

GLMM approach is illustrated on a presence-absence version of the Dune Meadow data.  

2. Niche theory predicts that species occurrence and abundance shows non-linear, unimodal 

relationships with respect to environmental gradients (Austin et al. 1984). The simplest 

symmetric unimodal species response to model unimodal relationships is the Gaussian 

response curve with three interpretable parameters (optimum, tolerance and height) that 

characterize the ecological niche of a species. Unimodal models, such as the Gaussian 

(logistic) model, are however much more difficult to fit to data than linear ones, particularly 

when also species traits are to be taken into account. Chapter 3 develops a Bayesian approach 

to model unimodal species response to environment with submodels that relate the three niche 

parameters to species traits. The approach is illustrated with an application to phytoplankton 

communities.  

3. Many studies fail to test for unimodal response. Thus straight-line relationships are often 

fitted without justification. Chapter 4 studies the suitability of the GLMM approach for 

detecting unimodality of species response along an environmental gradient and suggests a 

graphical tool and a statistical test for testing unimodality. The efficacy of GLMM to analyze 

unimodal data when the niche widths are not very different among species is illustrated by 

comparing the GLMM approach with an explicit unimodal model approach on simulated data 

and real data that show unimodality.   
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4. Chapter 5 studies the selection properties of Type II maximum likelihood (empirical 

bayes) in linear models with individual variance components for predictors. In a Bayesian 

framework, the variance components are estimated by using empirical bayes or, equivalently, 

by maximizing the marginal likelihood (type-II maximum likelihood) (Berger 1985). 

5. Chapter 6 develops the model selection method that is used Chapter 2 in more detail in a 

linear mixed model context. The method is called tiered forward selection. Using data from a 

mesocosm experiment, the linear mixed model with the tiered forward selection is compared 

with Type-II ML and existing methods for detecting trait-environment relationships that are 

not based on mixed models, namely the fourth corner method and the linear trait-environment 

method (LTE).  

6. Chapter 7 provides a summarizing discussion of the methods and their applicability in 

other research areas. It also gives limitations of methods and future possible research direction 

in species distribution modeling.  
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Chapter 2 

 

Selecting traits that explain species-environment relationships:  

a Generalized Linear Mixed Model approach 

 

 

Tahira Jamil, Wim A. Ozinga and Cajo J. F. ter Braak 

(Submitted to Journal of Vegetation Scienc) 

 

 

Abstract 

Quantification of the effect of species traits on the assembly of communities is challenging from a 

statistical point of view. A key question is how species occurrence and abundance can be 

explained by the traits values of the species and the environmental values at the sites.  

Using a sites × species abundance table, a site × environment data table and a species × trait data 

table, we address this question by a novel Generalized linear mixed model (GLMM) approach. We 

use numerical simulation to evaluate the testing procedure. 

The GLMM can be used to identify which species traits and environmental variables best explain 

the species distribution in space and time, and which traits are significantly correlated with 

environmental variables.  

We illustrate the approach on a presence-absence version of the Dune Meadow data and find that 

the species presence is best explained by moisture and manure of the meadows in combination 

with the Ellenberg’s species traits coding for moisture, nitrogen and light requirements.  

The GLMM overcomes the problem of pseudo-replication and heteroscedastic variance by 

including sites and species as random factors. The method is equally well applicable to presence-

absence data as to count and multinomial data. 

  

Key-words: community assembly; environmental gradient; trait-environment relationship;  

functional ecology; generalized linear mixed model; species traits 
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Introduction 

A central focus of community ecology is to understand and explain where and when particular 

species or groups of species occur and thrive, and where and when not. Species differ in what they 

require from the environment and environmental conditions vary in space and time. Differences in 

traits of species and differences in the environment must thus be part of the explanation. The role 

of species traits in community assembly has received much recent interest (Weiher et al. 1998, 

Lavorel and Garnier 2002, Statzner et al. 2004, Shipley et al. 2006, Cornwell and Ackerly 2009, 

He 2010). Quantification of the effect of traits on the assembly of communities turns out to be 

challenging from a statistical point of view (Dray and Legendre 2008).  

Typical data in community ecology are arranged in two data tables: a table Y recording the 

occurrence and abundance of numerous species in sites and a table X recording habitat and other 

site characteristics, i.e. the values or states of numerous environmental variables at the sites 

(Fig.1). Such data are commonly used to study the relationships between species and 

environmental conditions, such as in species distribution models (Guisan and Zimmermann 2000, 

Guisan and Thuiller 2005) and direct and indirect gradient Analysis (ter Braak and Prentice 2004). 

Such models are powerful tools in investigating the possible consequences of changes in land-use 

and climate change on the distribution of species (Guisan and Zimmermann 2000, Raxworthy et al. 

2003, Thuiller et al. 2005). They are also an important ingredient of conservation planning and 

management (Carroll et al. 2001, Raxworthy et al. 2003, Johnson et al. 2004).  

These studies and models do not give much insight in why the species are distributed the way they 

are and why the species respond to changes in the way they do. Such insight might be gained by 

adding a third table Z (Fig. 1), a matrix with values and states of numerous species traits (Legendre 

et al. 1997, Dray and Legendre 2008). A trait is a well-defined property of organisms that is 

usually measured at the organism level and used comparatively across species (McGill et al. 2006). 

On neglecting the intra-species variability which is often small compared to the inter-species 

variable (Garnier et al. 2001), a trait is a species property (Kleyer et al. 2008). If traits are 

important in structuring communities, then the composition of local communities should be a non-

random sample from the regional species pool (Ozinga et al. 2005a, Shipley et al. 2006). 

Environmental conditions, such as nutrient availability and soil moisture for plants, can act as 

filters that alter the probabilities of species to enter a local community according to their trait states 

(Weiher et al. 1998, Ozinga et al. 2004, Ozinga et al. 2005b, Cornwell and Ackerly 2009). Several 

empirical studies have shown that species traits are associated with habitat conditions (Townsend 
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and Hildrew 1994, Townsend et al. 1997, Pöyry et al. 2008) in accordance with the theory that 

traits in the evolutionary process adapt to the habitat and landscape characteristics in which the 

species occur (Southwood 1977, Ackerly 2003). Our interest is in finding functional traits from the 

joint statistical analysis of the three data tables (Fig. 1). We will do so by adding species traits to 

models that relate species to the environment. 

The key questions when modeling species, traits and environments are: (a) how does the expected 

abundance of species depend on trait and environmental values and (b) which traits and 

environmental variables best explain the distribution of abundance in space and time and (c) to 

what extent are traits associated/correlated with environmental variables (Legendre et al. 1997). 

For modeling different approaches are used. Some authors combined the sites × species table Y 

and species × trait table Z in to a sites × trait table which is then related to the sites × environment 

table X by standard statistical methods (Díaz et al. 1992, Sonnier et al. 2010). Legendre et al. 

(1997) and Dray and Legendre (2008) integrated these two steps in to one, the fourth-corner 

problem, in which they fill the trait × environment corner that is missing in Fig. 1. The entries of 

the missing corner table are Pearson correlations between traits and environmental variables, when 

quantitative, calculated from an inflated table. Dray and Legendre (2008) examined six 

permutation-based methods to test the statistical significance of the trait-environment relationship, 

but none of them truly controlled the type I error. The multivariate version of  the fourth-corner 

problem is the RLQ ordination (Dolédec et al. 1996) which has been used for selecting the best 

traits in plant functional trait analyses (Bernhardt-Römermann et al. 2008). These methods focus 

on key question (c). 

A focus on key question (a) can be found in Shipley et al (2006) and Ozinga et al. (2005a). Shipley 

et al (2006) used the above mentioned sites × trait table in a novel way as a macroscopic feature of 

communities to predict species abundance in sites by the maximum entropy principle. The result is 

a logistic model relating abundances to traits, as used in logistic regression but fitted in a different 

way (He 2010) and without environmental variables. Ozinga et al. (2005a) started from the 

multiple logistic regression method and used it to quantify the effect of functional traits in a way 

that accounts for spatial variation in the composition of the local species pool. Their method 

assumes that species records within sites are independent (Hosmer and Lemeshow 2000), thus 

commits pseudo-replication (Hurlbert 1984, Crawley 2002). In applying generalized linear models, 

such as logistic regression, researchers often ignore the hierarchical structure of the data thereby 

producing incorrect variance estimates and increasing the likelihood of committing type I error 

(Wagner and Fortin 2005, Gillies et al. 2006).  

To address all three key questions, we develop a dedicated Generalized Linear Mixed Model 

(GLMM). GLMMs are as very general powerful class of statistical models in ecology and 

elsewhere (Gelman and Hill 2007, Bolker et al. 2009, Zuur et al. 2009). We introduce our GLMM 
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as the result of integrating a two-step procedure into one, so obtaining a GLMM with main effects 

for traits and environmental variables as well as interaction effects between them. The GLMM 

utilizes species trait data efficiently and overcomes the problem of pseudo-replication (Paterson 

and Lello 2003). For fitting the model we use the library lme4 (Bates et al. 2011) in the free 

software package R (R Development Core Team 2011 ). Other statistical packages with good 

GLMM facilities include SAS proc glimmix (Stroup 2011) and Genstat 

(http://www.vsni.co.uk/software/genstat/). In the main text we will use presence-absence 

abundance data, but the method can be used equally well to count and multinomial data as we 

show in Appendix S1 in Supplementary Information. 
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Fig. 1. A table Y (n×m) containing the abundances of m species at n sites, a second table X (n×p) with 

measurements of p environmental variables for the n sites, and a third table Z  (m×s) describing s traits for 

the m species. 

Methods 

The data set 

We illustrate the method on the basis of the Dune Meadow data (Jongman et al. 1995). This is a 

small data set of 28 higher plants in 20 sites with five environmental variables and four species 

traits (Table 1).  

The Generalized Linear Mixed Model 

In this section, we derive our generalized linear mixed model (GLMM) from a two-step approach. 

The data we consider is a binary data table Y = [yij] recording the presence (1) -absence (0) of m 

species (columns) in n sites (row), an environmental variable x = [xi] with quantitative                                                       

. 

j
Z

i
X

ij
Y
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Table 1. Abbreviations for environmental variables and traits 

Environmental variables 

A1 Thickness of A1 horizon 

Moist Moisture content of the soil 

Mag Grassland management type 

Use Agriculture grassland use 

Manure Quantity of manure applied 

Traits: Habitat requirements (Ellenberg indicator values)  

F Moisture, ranging [1 to 12] (low to high) 

R Soil acidity, ranging [1 to 9] 

N Nitrogen requirement, ranging [1 to 9] 

L Light requirement, ranging [1 to 9] 

 

measurements in the n sites, and a quantitative trait z = [zj] with quantitative values for the m 

species. The subscripts i and j refer to site i and species j, respectively. 

A natural way to study the relationship between a trait and an environmental variable on the basis 

of species presence-absence data is in two steps, consisting of  

1. fitting, for each species separately, a logistic regression of its presence-absence against the 

environmental variable x and 

2. regressing parameters retrieved from the m logistic regressions on to the trait z.  

In its simplest form, the first step involves a linear-logistic regression and models the probability 

of occurrence as a function of the environmental variable. The first stage of two stage approach 

assumes that  

  (   )       
  (       ) ,                                                                     (1) 

where Pr(.) is the probability of occurrence of species j in site i,    and    are the intercept and 

slope for j
th
 species with respect to environmental variable x and 

       ( )     ( ) (     ( ))⁄ , the inverse of the logistic function. Extensions of this simple 

model will be discussed later. This equation can be fitted to the presence-absence data of each 

species separately, resulting in m separate models for the probability of occurrence of the species 

as a function of the environmental variable x. In this model, the relationship of a species with the 

environment is summarized by the slope   . Its sign indicates whether the probability of 

occurrence increases or decreases with increasing value of x and its size how strongly. In its 

simplest form, the second step involves a (possible weighted) linear regression of the estimated 

regression slope coefficients {βj} on to the trait with the model 
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                                , (2) 

with b0 and b1 intercept and slope respectively and error    , normally distributed with zero mean 

and variance   
 , i.e.      (    

 ). The subscript β is added to the error term to distinguish it 

from other error terms later on. (The weights are the inverse of the squared standard errors of 

estimate of {βj} in step 1).  Another way of expressing Eq. 2 is that the slope coefficient of the 

species j with trait value zj is normally distributed with mean          and variance   
 , i.e. 

    (          
 ). (3) 

But, Eqs.1 and 3 together form an example of a generalized linear mixed model (GLMM) and can 

thus be integrated and estimated simultaneously. 

So far the second step only modeled the slopes, because of the particular interest in the trait-

environment relationship, but we may also be interested in the influence of the trait on the overall 

probability of occurrence of a species. The intercept αj in Eq. 1 plays such a role, in particular 

when the environmental variable x is centered prior to the analysis, as        (  ) is the 

probability of occurrence at mean x. Analogously to Eq. 2, we could linearly regress the estimated 

intercepts {αj} on to the trait with the model 

                                ,    (4) 

with a0  and a1 intercept and slope, respectively and     normally distributed with zero mean and 

variance   
 . As in Eq. 3 we rewrite this as  

    (          
 ). (5) 

Eqs.1, 3 and 5 together form another example of a generalized linear mixed model (GLMM). As a 

GLMM this model still has two shortcomings. First, it assumes that the intercept    and slope    

are independent. This is not very realistic, so we complete the model with a correlation ρ between 

them. Second, it assumes that the presence-absences of different species at the same site (given 

their trait values and xi) are independent. The usual way to introduce correlation among them is 

with a common site-specific parameter    that is assumed to be normally distributed with mean 

zero and variance   
 . With this parameter included, the GLMM equations become 

  (   )       
  (          ) ,                                   ,    (6) 

(
  
  
)  ((

       
       

)  (
  
      

       
 )) 

    (    
 )  

This completes our derivation of the GLMM that models the species presence as a function of both 

the environmental variable x and trait variable z. In the GLMM literature the model is called a 
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random intercept and random slope model. This GLMM combines both steps of the two-step 

approach into a single model and avoids pseudo-replication by including site as a random effect.  

Testing and interpreting the trait-environment relationship  

Here we show that the trait-environment relationship is an interaction term in the model that can be 

tested for statistical significance using standard software.  

By inserting Eqs (4) and (2) in Eq. 6 we obtain 

  (   )       
  ((           )  (           )     )  

                        (                              )                            (7) 

with fixed coefficients in Roman and random coefficients in Greek. This model for the probability 

of occurrence contains main effects for the trait z and the environmental variable x and an 

interaction z.x between them. This interaction represents the trait-environment relationship. The 

model also contains random terms for species (   ), sites (  ) and the environment-by-sites 

interaction (     ). We need to specify all effects and random terms to fit the model to data. With 

the lme4 library of the software package R the specification of Eq. 7 is  

M1 <- glmer(y ~ z + x + z:x + (1 + x | species) + (1 | sites), 

family=binomial(link="logit"), data) 

with y, z and x vectors with nm elements and species and sites factors with m and n levels 

respectively. The terms between parentheses are random, the others are fixed.  Library lme4 uses 

vector notation, i.e. y is the matrix Y =[yij]  written as a vector; the species and site factors code to 

which species and site each element of y belongs; the value xi of the environmental value repeated 

at all m elements that code for site i and the value zj of the environmental value repeated at all n 

elements that code for species j (Table S1). To test the trait-environment interaction (with null-

hypothesis: b1 = 0), we also fit the model without this term  by  

M0 <- glmer(y ~ z + x +(1 + x | species)+(1 | sites), 

family=binomial(link="logit"), data) 

and then compare the two models by an analysis of variance statement anova(M0,M1), resulting in 

a P-value for the likelihood ratio (LR) test of model M1 against M0. 

The estimates of the variance   
  in model M0 and M1 can be usefully compared to express the 

contribution of the trait to the inter-species variance in the slope parameter by the coefficient 

(Grosbois et al. 2009, Lahoz-Monfort et al. 2011) 
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      (  
 ̂  (   )
 

 ̂  (     )
 )                                                                                                         ( )              

Where  ̂  (   )
   ̂  

  in model M1 and  ̂  (     )
   ̂  

  in model M0. The rationale is that  ̂  
  is the 

residual variance in Eq. 2, the inter-species variance of the slope parameter after taking account of 

the trait and therefore denoted as   (   )
 . In model M0, b1 = 0 in Eq. 2, so that   

  represents the 

total variance denoted by   (     )
 .  

We investigated the type I error and power of the statistical tests on trait-environment interaction. 

We simulated 1000 new datasets of the same size and the same environment and trait values as the 

Dune Meadow data. The data {yij } were simulated using the GLMM model of Eq. 7 with 

parameters and variance components equal to the estimated ones, i.e. those of model M0 and M1 

for the type I error and power calculations, respectively. We did not observe much difference 

between the test based on the z-statistic and the LR test and report the latter only. 

So far, the environmental variable and the species trait were both quantitative. GLMM can also be 

applied when both are qualitative or when one is quantitative and the other qualitative. A 

difference is that each class of an environmental factor comes with its own variance component 

and the trait-environment interaction may consist of more than one regression parameter, but 

neither difference presents a problem to LR testing and further interpretation. For details see 

Appendix S2. 

Model selection with many environmental variables and traits 

The GLMM of Eq. 7 can readily be extended to more traits and environmental variables by 

including a) main effects for all traits and environmental variables, b) interactions between each 

trait and each environmental variable, and c) species-dependent random terms for each 

environmental variable. Conceptually such a model can still be viewed as one with slope 

coefficients with respect to each of the environmental variables, which are then each (separately) 

regressed on to the traits. GLMM does a joint fit of such a model. With two environmental 

variables (x1 and x2) and three traits (z1, z2 and z3), this model that can be specified in lme4 by  

glmer(y ~ (z1+z2+z3)*(x1+x2)+(1+x1+x2|species)+(1|sites), 

family=binomial(link="logit"), data) 

This model contains trait and environmental variable main effects and their interactions, 

(correlated) species-dependent random effects for all environmental variables and independent 

random effects for species and sites. 

A natural question is then to select a minimal model that describes the species occurrences data 

well and, related to this, to select the traits that explain the species response to relevant 

environmental variables. For an RLQ approach to the latter sees Bernhardt–Römerman et al. 
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(2008). These questions can be solved by model selection (Diggle et al. 2002, West et al. 2006). 

The number of candidate models increases exponentially with the number of predictors (traits, 

environmental variables, interactions and variance components) so an exhaustive search is feasible 

only for low numbers of predictors. Alternatives are forward and backward selection. Backward 

selection would start with the model with all terms included. This model may be difficult to fit, due 

to convergence problems, unless the number of environmental variables is small. For example, we 

could not fit the full model to the Dune Meadow data using lme4. Therefore, we propose a forward 

selection approach that starts with the null model with only random effects for species and sites 

and then adds in each step the environmental variable for which the species-dependent random 

terms most increases the log-likelihood. So, in the first round the model is that of Eq. 6 with 

random coefficients    and   . This process is continued until the increase in log-likelihood is no 

longer statistically significant as judged on the basis of the LR test. At this first stage, the main 

effects of traits and environmental variables are not considered because the random species and 

site effects can already partly take account of them. After this first stage, the choice for the random 

part of the model is complete. 

In the second stage, we consider only the trait-environment interactions of the environmental 

variables that were selected in the first stage. The reason is that the importance of the trait-

environment coefficient (b1) can only be judged against the unexplained variation in the slope 

coefficients {βj}, as can best be seen from Eq. 2. Before interactions can be added we must deal 

with the associated main effects. A simple approach is to first add the main effects of all 

environment variables selected in the first stage and the main effects of all traits. This is feasible if 

the number of traits is smaller than the number of species. In each subsequent step we then search 

for the trait-environment interaction that most increases the log-likelihood. This process is 

continued until the increase in log-likelihood is no longer statistically significant. In a final third 

round we delete sequentially any insignificant main effects that have no associated interaction 

effect. 

The model selection process needs modification when some of the environmental variables or 

traits are qualitative with more than two classes. Additions may then involve different numbers of 

parameters (degrees of freedom, df) so that increases in log-likelihood are no longer comparable 

and must be balanced against the number of degrees of freedom. This is achieved in information 

criteria such as the Akaike Information Criterion (AIC) (Broman and Speed 2002)  which is 

defined as minus two log-likelihood plus two times df. We must thus look for the model with the 

lowest AIC value. We use a variant, SigAIC, which multiplies df by   (    )
   3.84 instead of by 2 

(Broman and Speed 2002). With SigAIC, the addition of a single parameter to a model will result 

in a lower SigAIC value if and only if that parameter is significant at the 5% level as judged by the 

LR test.  
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Table 2. Parameter estimates with standard error and z-statistic (estimate/standard error) from 

GLMM with and without traits (M1 and M0).  

Model Fixed effect Estimate Standard error z statistic 

M1 intercept  5.045 1.958  

 Moist -1.931     0.462   -4.18*** 

  F -1.056     0.333   -3.17** 

  Moist : F  0.322     0.077     4.20*** 

M0 intercept -2.077 1.084  

 Moist -0.029     0.174  -0.17    

  F  0.156     0.145   0.28    

*P<0.05, **P<0.01,***P<0.001 

 

Results 

Relating trait F to moisture 

Table 2 illustrates the results for the Dune Meadow data (Jongman et al. 1995) using 

environmental variable moisture (Moist) and trait the Ellenberg F indicator values (Table 1). As 

Ellenberg’s F ranks the species with respect to the species preference for moisture, we expect a 

positive relationship. The interaction estimate Moist:F is indeed positive (0.32), showing that 

species with a high F indicator value have a higher slope coefficient with respect to Moist than 

species with a low F indicator value. The occurrence probability of species with a high F indicator 

value thus increases more with Moist than that of species with low F indicator value. The 

associated z-statistic (estimate/standard error = 4.2) indicates that the interaction is statistically 

significant (despite the small sample size), so that the true interaction is unlikely to be zero. The 

LR test (Table S1) confirms that the interaction is highly significant (P < 0.0001). In a model with 

an interaction, the size and sign of main effects depend on the scales of the variables and we 

explain the interpretation in Appendix S1.  

Fig. 2 displays how the fitted occurrence probability depends on Moist for some selected species 

with and without usage of the trait F in the model (without F, a1 = 0 and b1 = 0 in Eq. 7). The two 

fitted curves differ more for the species which have few presences. For example, for Aira praecox 

the curve without using trait F is slightly increasing due to one presence at high Moist, whereas it 

is decreasing with the trait F as Aira praecox has a low F value and species with low F typically 

have a negative regression slope (Fig. S1) and thus a decreasing curve. Similarly, the decrease of 

the occurrence probability against Moist for Vicia lathyroides is stronger with trait usage than 

without as this species has a low F value. In Appendix S3 we illustrate the advantages of using the 

GLMM approach over the two-step approach. 
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GLMM also provides estimates of the variances of the model or their square root; in model M1 

(Eq. 6),    is estimated by 2.58,    by 0.55,   by -0.87 and    by 0.37. In model M0,    is 

estimated as 0.80 showing by Eq. 8 that trait F accounts for 53% of the inter-species variance in 

the species response to Moisture.  

The simulated type I error was somewhat larger than the nominal one (8% and 2% for significance 

levels 5% and 1%, respectively). By obtaining the critical value not from the chi-square 

distribution with one degree of freedom, but from an F(1,m-2)  distribution decreases the error rates to 

7% and 1%. The power of the test was high (99% at a significance level of 5% and 97% at 1%).  

 

 

Fig. 2. Occurrence probability against Moisture as fitted by GLMM for nine selected species. Both 

intercept and slope vary among species and either do (red-solid line) or do not (blue-dashed line) depend on 

the trait Ellenberg F.  

◦: jittered presence (1) and absence (0). 
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Table 3. Three stage forward selection of environmental and trait variables in models explaining 

species occurrence probability. The variable or interaction (indicated by :) giving the lowest AIC 

and SigAIC is added in each row (indicated by +). The best model in each stage is indicated in 

bold. 

Stage Random effects AIC SigAIC 

1 (1|species)+(1 | site) 654.4 650.9 

1 (1+Moist|species)+(1 | site) 581.2 590.4 

1 (1+ Moist + Manure | species)+(1|site) 554.3 571.1 

 Fixed effects    

2 +Moist+Manure+F+R+N+L 566.9 592.6 

2 +Manure:N              542.9 570.5 

2 +Moist:F              533.0 562.4 

2 +Manure:F              522.9 554.1 

2 +Moist:L 520.8 554.0 

3 - R 518.9 550.1 

 

Model selection 

Table 3 illustrates the selection steps using AIC and SigAIC as selection criteria. In the first stage 

Moist and Manure are selected. In the second stage the main effects are added. The best interaction 

to add was that between Manure and N requirement (Manure:N). Three more interactions further 

decreased both criteria, although the last addition decreased SigAIC only marginally. In the third 

stage, the insignificant main effect of trait R was deleted.  

In the final model traits F and L are significantly positively related to Moisture and traits F and N 

to Manure (Table S2). The trait main effect N is not significant in the selected model but it is not 

deleted as it showed significant interaction with Manure. Table 4 shows the variance estimates of 

the random slopes with respect to Moisture and Manure in models with and without traits, showing 

that the traits account for 69% and 89% of the inter-species response to Moisture and Manure, 

respectively.  

The correlation between the random intercept and random slope for Moisture is -0.84. It can be 

reduced in size by centering Moisture. After centering, this correlation was reduced to -0.21 

(without essential change in the other statistics). Finally for diagnostic checks we made a Q-Q plot 

of the random effects to check normality and found that the random effects are reasonable (Fig. 

S3).  
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Table 4. Estimated inter-species variance of slope with respect to Moisture and Manure in the final 

model with (residual variance)  and without traits (total variance) and fraction of variance 

accounted for by traits 

 

Environmental 

variable 

Total 

variance  

Residual 

variance 

Fraction accounted 

For by traits 

Moist 1.05 0.33     0.69 

Manure 0.80 0.09     0.89 

Discussion 

In this paper, we showed how GLMM can be applied for modeling and explaining species 

response along environmental gradients by species traits. It is based on a sound statistical model 

that allows, as a standard by-product, questions to be answered about which traits and 

environmental variables are significantly related and which best explain the species response in a 

parsimonious model. 

GLMM accounts for pseudo-replication and heteroscedastic variance by including sites and 

species as random factors. Our GLMM approach can be understood as a two-step approach 

executed at once.  In the first step species response is related to the environment and in the second 

step the (multivariate) outcome of the first step is related to the trait data. The integration of these 

two steps into one has several advantages: GLMM models directly the variable of interest 

(occurrence probability, expected abundance), it automatically weighs the different kinds of 

information for an optimal model fit and standard statistical significance testing and it provides 

consistent estimates of the between-species variance of (slope) parameters, without introducing 

unnecessary random variation by replacing the (slope) parameters by their estimates as in the two 

step approach and it can be applied with small sample size. 

In comparison with separate regressions for each species (as in the first step of the two-step 

approach), the GLMM regression coefficients for each species tend to be pulled inward toward a 

common value; they are a compromise between the coefficients from a per-species fit and the 

population average. Such estimates are called shrinkage estimates (Pinheiro and Bates 2000). The 

shrinkage is particularly evident for the species that have few presences. The estimates for these 

species lead to abnormally high estimates in the GLM fit (Fig. S1). The pooling of species in the 

GLMM estimation gives a certain amount of robustness to species with few occurrences in the 

data.  

Our GLMM starts with a logistic linear model (Fig. 2) and is therefore most suitable along short 

environmental gradients. Such data sets are most common in practice. Moreover, the random 

component for sites (  ) allows for any common non-linearity with as prime example the niche 

model with equal niche width (Ihm and Van Groenewoud 1984, ter Braak 1988, de Rooij 2007). 
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One alternative is to convert quantitative environmental variables to qualitative and model how the 

occurrence probabilities in the newly formed environmental categories depend on the traits, being 

either quantitative or qualitative. This approach fits in our proposed framework as illustrated in 

Supplementary Material. Another alternative, adding polynomial terms as random component to 

the model, is less attractive as it leads to coefficients that lack a clear interpretation.  

For the Dune Meadow example data, we found not only the natural associations of moisture and 

manure with the traits F and N, respectively, but also additional associations of moisture with traits 

L and manure with trait F. The fourth-corner approach (as implemented in the ade4 package 

version 1.4-16) with the combined permutation method -the preferred one in Dray and Legendre 

(2008)- also yields the two natural associations as being statistical significant at the 5% level and 

two others (F with A1 and R with Manure). A reason for the difference is that the fourth-corner 

approach tests associations singly. If tested singly, the other two are also significant in a GLMM, 

but they are insignificant in the multiple variable predictive model obtained after model selection. 

Also, the fourth-corner approach disregards species absence whereas GLMM takes all data into 

account. 

So far we did neither considered phylogeny, which puts constraints on the way traits may evolve in 

evolutionary time (Prinzing et al. 2008), nor the spatial configuration of the sites, which set 

constraints on dispersion (Ozinga et al. 2004, Dray and Legendre 2008). Both aspects can be 

modeled in a GLMM through additional random terms whose correlation depends on either 

phylogenic association or spatial distance. These extensions merit further research, also in terms of 

practical software implementation.  

Species traits are likely to have much predictive value for where and when a particular species or 

group of species appear or disappear. Our model-based approach makes this predictive usage 

practical and allows the selection of the traits and environmental conditions that matter.  
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Supporting information 

Appendix S1. The GLMM trait model for count and multinomial data  

 

When abundance is a count, Poisson log-linear regression analysis is a commonly used starting 

point.  Poisson log-linear regression is part of the generalized linear model family. The data yij are 

assumed to follow a Poisson distribution with mean      

           (   ) 

and the link function is logarithmic function. The analogue of the first part of Eq. 6 in the main text 

is  

 (   )         (          )  

which is usually written as 

   (   )             

The other aspects of the model specification remain the same. In lme4 the GLMM trait model for 

counts can be fitted by simply replacing “binomial” by “poisson” and “logit” by “log”: 

M1 <- glmer(y ~ z + x + z:x +(1+x|species)+(1|sites),   

 family=poisson(link="log"), data) 

Nothing else changes.  

Count data may have a larger variance than assumed by the Poisson distribution. This is called 

overdispersion and can be detected in the data by introducing using a data-level variance 

component in the GLMM (Gelman and Hill 2007). The GLMM for overdispersed count data is  

   (   )                 

     (    
 )      

The variance component   
  measures the amount of overdispersion and can be tested for 

significance by a LR test. In lme4 we specify 

 
data$rows = 1:nrow(data) 

M2 <- glmer(y ~ z + x + z:x +(1+x|species)+(1|sites) + (1|rows), 

family=binomial(link="poisson"), data) 

and can test the significance of the overdispersion by 
anova(M1,M2). 

Multinomial data is data that is count data with a constraint sum so that only the fraction is 

informative. Abundance data may be modeled as multinomial data as the interest is in the relative 

abundance only or if the data has been sampled as such, for example, if at each site a pre-specified 

number of individuals is collected. Multinomial data can be modeled as count data by adding a 

fixed effect for the factor sites (McCullagh and Nelder 1989) 

 
M1 <- glmer(y ~ z + x + z:x + sites + (1+x|species),   

 family=poisson(link="log"), data) 

Unfortunately this specification failed to run in lme4.  
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Appendix S2. The GLMM trait model with quantitative and/or qualitative trait and 

environmental variable 

In the main text, the species trait and the environmental variable were both quantitative. The 

GLMM trait model can also be used to when species trait and environmental variable are both 

qualitative or when one is quantitative and the other qualitative. Here we illustrate all the 

combinations with key output and interpretation of the regression coefficients using the Dune 

Meadow data in vector notation. The R code at the end of this appendix shows for all combinations 

how to compute the fitted occurrence probability with confidence bands from the estimated 

regression coefficients and their covariance matrix. 

1- Both trait and environmental variable quantitative  

 
As in the main text we consider here the case where both species trait and the environmental 

variable are quantitative. Now we fit a model, using glmer in the lme4 package, where sp codes for 

species and site for sites, 

glmer(y~Moist+Moist:F+(1+Moist|sp)+(1|site), family=binomial, Dune) 

or to the same effect 

glmer(y~Moist*F+(1+Moist|sp)+(1|site), family=binomial, Dune) 

The fixed effects estimates are in Table 1. 

Table 1. Fixed effects estimated from GLMM for quantitative environmental variable and 

quantitative species trait 

Fixed effect Parameter estimate Standard error z statistic 

(Intercept) 5.045 1.958 2.577** 

Moist -1.931     0.462   -4.18*** 

F -1.056     0.333   -3.17** 

Moist:F  0.322     0.077     4.20*** 

 

The regression equation is ls = 5.045 -1.931Moist – 1.056 F +0.322Moist F . The result is 

on logit scale and can be converted to occurrence probability (prob) by 

prob =  invlogit(ls) = 1/(1+exp(-ls)).  

Fig.1 shows the occurrence probability against Moisture for species with different dry preferences 

(F = 2, 6 and 9) along with 95% confidence bands.  

We now return to Table 1. In a model with an interaction, the size and sign of main effects depend 

on the scales of the variables and may thus be difficult to interpret. Moist runs from 0 to 5 (dry to 

wet) in the data and F from 2 to 10 (dry to wet preference). In Table 1, the main effect for Moist (-

1.93) is negative and significant showing that, if a species would have F = 0, it would decrease in 

occurrence probability with higher Moist. Such species do not occur in the data; the lowest F is 2.  

Species with F = 2 still decrease (Fig 1); their slope with respect to Moist is -1.93+2*0.32= -1.29. 

Species with a high F value, for example F = 9, have a slope of -1.93+9*0.32 = 0.95, indicating 

that such species are increasing in occurrence probability with higher Moist (Fig 1). The mean F is 

~6, giving close to 0 slope (Fig 1), indicating that the occurrence probability does not depend on 

Moist for such species.  

We now turn to the effect of trait F. In model M1, the main effect for F (-1.05) is negative and 

significant showing that the occurrence probability of the species strongly decreases with 

increasing F in sites with Moist = 0. Therefore, species that prefer dry conditions (low F) are more 

like to occur in  
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Fig. 1. Occurrence probability of species preferring dry (F=2), intermediate (F=6) and wet (F=9) conditions 

in relation to moisture in the dune meadow from a GLMM model along with 95% confidence bands.   

dry meadows than species that prefer wet conditions (high F).  In sites with Moist = 5, the slope 

with respect to F is -1.05+5*0.322 = 0.56, showing that the occurrence probability of the species 

increases with increasing F in sites with high Moist.  

 

2- Quantitative trait and qualitative environmental variable  
 
We consider the case where the environmental variable is qualitative and species trait is 

quantitative. This yields separate regression lines for each category of the environmental variable 

(Fig. 1). In our example Moist is a qualitative explanatory variable (i.e., a factor), with two 

categories: Moistdry and Moistwet, depending on whether moisture smaller than 3.5 (Moistdry) or 

higher (Moistwet).  

data$moist<-factor(data$Moist) 

levels(data$moist)<-list(dry=c(1,2,3),wet=c(4,5)) 

Now we fit a model, using glmer in the lme4 package, with the same type of statement as before 

glmer(y~moist*F+(1+moist|sp)+(1|site),family=binomial, Dune) 

The  fixed effects estimates are in Table 2. 

Table 2. Fixed effects estimated from GLMM for qualitative environmental variable and 

quantitative species trait 

Fixed effect Parameter estimate Standard error z statistic 

(Intercept)  2.135      1.304     1.637  

moistwet  -6.473 1.476  -4.386*** 

F -0.553    0.221  -2.503 * 

moistwet:F  1.061      0.242     4.386 ***   

 

The regression equation for Moistdry (the first level of the factor moist) is on logit scale is 

straightforward  

Moistdry   2.134 – 0.553 F 

The regression equation for Moistwet can be obtained as follows. The intercept for Moistwet can 

be found by adding the coefficients for intercept and Moistwet and the slope for Moistwet with 

respect to F by adding the coefficients for F and moistwet:F . The regression equation for Moistwet 

becomes on logit scale 

moistwet  (2.135 -6.473) + (-0.553+1.0610) F= -4.338 + 0.508 F 

Both equations can be converted to occurrence probability curves with confidence bands (Fig. 2).  
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Fig. 2. Occurrence probability of a species in dry and wet meadows, with 95% confidence band, in relation 

to the species trait F from a GLMM model where the environmental variable is a factor with two categories. 

 

Fig. 2 shows that in dry meadows the probability of occurrence of species decreases with 

increasing Ellenberg indicator F, whereas in wet meadows the probability of occurrence of species 

increases with increasing Ellenberg indicator F. The two regression lines are crossing, so showing 

interaction between Moist and F. In Table 2 the interaction is represented by one regression 

coefficient (1.0610) which is high significant. 

A trick to immediately obtain the regression model for each meadow category is to make a slight 

modification in the model specification: 

glmer(y~0+moist+moist:F+(0+moist|sp)+(1|site),family=binomial, Dune) 

The results for this model specification are displayed in Table 3. 

 

Table 3. Fixed effects estimated from GLMM for qualitative environmental variable and 

quantitative species trait 

Fixed effect Parameter estimate Standard error z statistic 

moistdry  2.135      1.304     1.637  

moistwet -4.338    1.120  -3.874*** 

moistdry:F -0.553    0.221  -2.503 * 

moistwet:F  0.508    0.173    2.943 **   

Table 3 contains directly the coefficients of the regression equations for Moist-dry and Moist-wet 

equation on logit scale:  

Moistdry   2.134 – 0.553 F 

Moistwet   -4.338 + 0.508  F 

In Table 3 there seem two interaction terms, but the real interaction is the difference between the 

two. Table 2 and Table 3 use different parameterizations of the same model. In either case, a 

likelihood ratio (LR) test of the interaction is obtained by comparison with the model  

glmer(y~moist+F+(1+moist|sp)+(1|site), family=binomial, Dune) 

using the anova() statement. 
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3- Qualitative trait and quantitative environmental variable 

We consider the case where the trait is qualitative and the environmental variables is quantitative. 

This yields separate regression lines for each trait category (Fig. 3). In our example F is a 

qualitative explanatory variable (i.e., a factor), with two categories: dry and wet, depending on 

whether F smaller than 5.5 (dry) or higher (wet).   

data$F= factor(data$F) 

levels(data0$F)<-list(dry=c(2,4,5),wet=c(6,7,8,9,10))  # 2 levels  

Now the model specification using glmer in the lme4 package 

glmer(y~Moist*F+(1+Moist|sp)+(1|site), family=binomial, Dune) 

The  fixed effects for the above model are given in Table 4. 

Table 4. Fixed effects estimated from GLMM for qualitative trait and quantitative environmental 

variable 

Fixed effect Parameter estimate Standard error z statistic 

(Intercept)  0.760 0.741    1.026  

Moist -0.529    0.200  -2.643 ** 

Fwet -3.662    1.066  -3.436 *** 

Moist:Fwet  0.952    0.278     3.421***   

The regression equation for F-dry (the first level of the factor F) is on logit scale is straightforward  

F-dry   0.760– 0.529Moist 

The regression equation for F-wet can be obtained as follows. The intercept for F-wet can be found 

by adding the coefficients for intercept and F-wet and the slope for F-wet with respect to moisture 

by adding the coefficients for Moist and Moist:F-wet . The regression equation for Moistwet 

becomes on logit scale 

F-wet  (0.760 – 3.662) + (-0.529+0.952)Moist= -2.902 + 0.423Moist  

Both equations can be converted to occurrence probability curves (Fig. 3).  

The probability of occurrence of species that prefer dry meadows decreases with increasing 

moisture, whereas the probability of occurrence of species that prefer wet meadows increase with 

increasing moisture (Fig. 3). 

 

Fig. 3. Occurrence probability of species preferring dry (F<3.5) and wet (F>3.5) conditions, with 95% 

confidence band,  in relation to moisture in the dune meadow from a GLMM model where the trait is a 

factor with two categories 
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4- Both trait and environmental variable qualitative 

 
We consider the case when both trait and environmental variable are qualitative. This yields 

occurrence probabilities in each class of the cross-classification of trait and environment. In our 

example, the species trait F and environmental variable moist are each classified into two 

categories as above. The model specification in R is:  

glmer(y ~moist*F +(1+moist|sp)+(1|site), family=binomial, Dune) 

Table 5. Fixed effects estimated from GLMM for quantitative environmental variable and 

quantitative species trait 
 

Fixed effect Parameter estimate Standard error z statistic 

(Intercept)   0.061 0.475      0.127  

moistwet -1.893     0.634   -2.985 ** 

Fwet -2.233      0.688   -3.247 ** 

moistwet:Fwet   3.235     0.878      3.685*** 

 

From the coefficients in Table 5 we need to construct the occurrence probabilities in each class. 

The reference class is the first level of moist (dry) and the first level of F (dry),  moistdry-Fdry; we 

have on the logit-scale 

for class moistwet-Fwet   0.061 

for class moistwet-Fdry   0.061-1.893 = -1.832 

for class moistdry-Fwet   0.061-2.233 = -2.172 

for class moiswet- Fwet   0.061-1.893-2.233+3.235 = -0.83 

The occurrence probabilities are the inverse logit of these values, for example invlogit(0.061) = 

1/(1+exp(-0.061))= 0.515.  

Table 5 shows all four probabilities and 95% confidence limits. In dry meadows the probability of 

occurrence for species that prefer dry condition is higher than for species that prefer wet condition 

and in wet meadows the probability of occurrence for species that prefer dry condition is lower 

than for species that prefer wet condition.  

 

Table 6. Probability of occurrence and in parentheses are the corresponding confidence limits of 

species in dry and wet meadows according to their preference for dry conditions (F<3.5) or wet 

conditions (F>3.5).  

 

 F 

 dry wet 

Moist dry 0.515 (0.29, 0.72) 0.102 (0.04, 0.24) 

wet 0.138 (0.05, 0.31) 0.303 (0.15, 0.53) 

 

 
 
 
 
 

2 

T
rait-sp

ecies-en
v

iro
n
m

en
t m

o
d

elin
g

 b
y

 G
L

M
M

 



29 

 

 
5- R code 
The R code  for glmm-plot-conf-int.r.  

rm(list=ls(all=TRUE)) 

library(lme4) 

library(arm) 

Dune=read.table("Dune.txt", header=TRUE,sep=" ") 

colnames(Dune) 

     

glPredict <- function(fm1, newdat, conf = 95) { 

  # Predicts occurrence probability with confidence limits from an lmer object 

  # at the points provided as rows of newdat 

  # fm1 = lmer  object 

  # newdat =data frame with values for predictors for which prediciton must be  

  #made 

  # confidence value (in %) 

  # for related code see package ez 

  # Value: 

  #  y, lo, hi = prediction with confidence limits on link scale 

  #  p, plow, phigh =occurrence probability with confidence limits 

 

  frac = 1 - (100-conf)/200 

  mm = model.matrix(terms(fm1),newdat) 

  y = mm %*% fixef(fm1)  # prediction on link scale 

  Var <- Matrix::diag(mm %*% tcrossprod(vcov(fm1),mm)) # variance on link scale 

  lo = y-qnorm(frac)*sqrt(Var) 

  hi = y+qnorm(frac)*sqrt(Var) 

  newdat$y = y 

  newdat <- data.frame(newdat, ylo = lo, yhi = hi, 

    p = invlogit(y), plow = invlogit(lo), phigh = invlogit(hi)) 

  newdat 

} 

 

################################################################# 

# Table 1 #quant env; quant trait  

################################################################ 

  

fm1 = lmer (y ~ Moist *F +(1 + Moist | sp)+(1|site), 

            family=binomial,data=Dune) 

 

# for confidence limits 

newdat <- expand.grid( Moist=seq(1,5,length.out=100), F = c(2,6,9 ), y =0) 

newdat <- glPredict(fm1, newdat)  

names(newdat)  

# plotting     

par(bty="n") 

par(mfrow=c(1,3))   

for ( j in c(2,6,9)){ 

   

  data.f<- subset( newdat , F %in% j)      

  x<- data.f$Moist   

  plot(0,0,ylim=c(0,1),xlim=range(x),ylab="Pr(sp presence)" ,xlab="Moist" , 

      yaxs="i" , main="",type="n") 

  mtext(paste("F=",j ),   font= 2, col= "black" )     

  polygon(c(x, rev(x)),c(data.f$phigh, rev(data.f$plow)),col='gray',border = 

FALSE) 

  points(x, data.f$p, type='l',lwd=2.5) 

}  

################################################################# 

# Table 2 #factor env; quant trait  

################################################################ 

Dune$moist= factor(Dune$Moist) 

levels(Dune$moist)<-list(dry=c(1,2),wet=c(4,5))  

 

print(fm2<-lmer(y~ moist*F+(1+moist|sp)+(1|site) 

                 , family=binomial, Dune),corr=FALSE)   
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newdat <- expand.grid(moist =c("dry","wet"),F=seq(2,10,length.out=1000),y = 0)      

    

newdat <- glPredict(fm2, newdat)       

   

par(mfrow=c(1,2))     

for ( j in c("dry","wet")){       

    data.f<- subset( newdat , moist %in% j) 

       

    x<- data.f$F 

    plot(0,0,ylim=c(0,1),xlim=range(x),ylab="Pr(sp presence)" ,xlab="F" , 

          yaxs="i" , main="",type="n") 

   # title(paste("F=",j ), cex.main = 1.2,   font.main= 2, col.main= "black") 

    mtext(paste("Moist-",j ),   font= 2, col= "black" ) 

    polygon(c(x, rev(x)),c(data.f$phigh,rev(data.f$plow)),col='gray', 

border=FALSE) 

    points(x, data.f$p, type='l',lwd=2.5) 

} 

# the alternative parametrization 

print(fm2.B<-lmer(y~0+moist+moist:F+(0+moist|sp)+(1|site) 

                 , family=binomial, Dune),corr=FALSE)    

newdat.B <- glPredict(fm2.B, newdat)  

all.equal(newdat.B,newdat)      

  

fm0<-lmer(y~moist+ F+(1+moist|sp)+(1|site) 

                 , family=binomial, Dune) 

anova(fm0,fm2) 

anova(fm0,fm2.B)                          

################################################################ 

# Table 3 #quan env; factor trait  

################################################################ 

Dune$F= factor(Dune$F) 

levels(Dune$F)<-list(dry=c(2,4,5),wet=c(6,7,8,9,10))   # 2 levels   

 

  

print(fm3<-lmer(y~Moist*F+(1+Moist|sp)+(1|site) 

                 , family=binomial, Dune),corr=FALSE) 

 

newdat <- expand.grid( Moist=seq(1,5,length.out=100),F=c("dry","wet"), y =0) 

newdat <- glPredict(fm3, newdat) 

 

par(mfrow=c(1,2))         

for ( j in c("dry","wet")){       

    data.f<- subset( newdat , F %in% j)       

    x<- data.f$Moist 

    plot(0,0,ylim=c(0,1),xlim=range(x),ylab="Pr(sp presence)" ,xlab="Moist" , 

          yaxs="i" , main="",type="n") 

    mtext(paste("F-",j ),   font= 2, col= "black" )     

    polygon(c(x, rev(x)),c(data.f$phigh,rev(data.f$plow)),col='gray',border= 

FALSE) 

    points(x, data.f$p, type='l',lwd=2.5) 

} 

   

################################################################# 

# Table 4 #factor env; Factor trait  

################################################################    

      

Dune$moist= factor(Dune$Moist) 

levels(Dune$moist)<-list(dry=c(1,2),wet=c(4,5))  

#factor env; quant trait 

print(fm4<-lmer(y~moist*F+(1+moist|sp)+(1|site) 

                 , family=binomial, Dune),corr=FALSE) 

                  

newdat <- expand.grid( moist=c("dry","wet"), F = c("A","B" ), y = 0  ) 

newdat <- glPredict(fm4, newdat) 

newdat 

newdat[, -(3:5)] 

 

#end 
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Appendix S3 Comparison of GLMM with the two-step approach  

 

Fig. S1 shows the estimated slopes {βj} against trait F for the GLMM and the two-step approach. 

The slopes of the two-step approach are extremely large in absolute value (>3) for species with 

few occurrences. In the GLMM approach the slopes are shrunken towards the common regression 

line; the vertical deviations from the line are summarized by the parameter σβ = 0.55 in equation 

(6) of the main text. 

 

The dashed regression line of the two-step approach is fitted by weighted least-squares and shows 

a weaker relationship than that of GLMM. A small simulation study was done to see whether that 

was incidental. In the 99% of the 1000 simulated data sets of the power study, the coefficient b1 

estimated by GLMM was greater than that in the two-step approach.  It was also closer to the true 

coefficient as judged from the root mean squared error (0.071 compared to 0.119). In GLMM, the 

standard deviation across simulated data sets (0.066) was close to the standard error of estimate 

reported in Table 2 (0.077),  showing that this standard error of estimate is valid in this data.  

 

 
Fig. S1. Estimated regression slopes (

j
 ) of species versus trait F with fitted regression line for GLMM  

(circles with red solid line) and the 2-step approach (triangles with black dashed line). 
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Table S1. Comparison of models with (M1) and without (M0) trait-environment interaction by 

anova(M0,M1). df = degrees, logLik = loglikelihood, Chi-sq = difference in logLik, Chi df = 

difference in df, Pr(>Chisq) = P-value. 

 

Model df           logLik Chi-sq Chi df Pr(>Chisq) 

M0 7   -285.28                                 

M1 8 -277.48  15.61       1   7.794e-05*** 

 

 

 

Table S2. Parameter estimates with standard error and z-statistic from GLMM in the final model 

(after model selection):  

 y ~ Moist × (F + L) + Manure × (F + N) + (1 + Moist + Manure | sp) + (1|site).   

*P<0.05, **P<0.01,***P<0.001 

 

 

Effects 

 

Fixed effect 

Parameter 

estimate 

Standard 

error 

 

z statistic 

 

Main  

 

Moist 

 

-5.50     

 

1.44   

 

-3.81*** 

 Manure -3.82     0.73   -5.20 *** 

 F -1.75     0.40   -4.36* 

 L -1.80    0.72   -2.52*** 

 N -0.23     0.18   -1.23 

Interactions Moist : F  0.44     0.09      4.90*** 

 Moist : L  0.38     0.18      2.15* 

 Manure  : F  0.29     0.08      3.56*** 

 Manure  : N  0.46     0.07      6.01*** 
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Chapter 3 

 

A unimodal species response model relating traits to environment 

with application to phytoplankton communities  

 

 

Tahira Jamil, Carla Kruk, Cajo J.F. ter Braak 
 

Abstract 

Niche theory proclaims that species response to environmental gradients is unimodal. For 

presence-absence data, the simplest unimodal (non-negative) species response curve is the 

Gaussian logistic response curve with three parameters that characterize the niche: optimum (niche 

centre), tolerance (niche width) and maximum (expected occurrence at the centre). Niches of 

species differ between species and species are assumed to be evolutionary adapted.  In this paper 

we attempt to explain the observed niche differences by the differences in traits of the species. To 

this aim, we propose the trait-modulated Gaussian logistic model in which the niche parameters are 

made linearly dependent on species traits. The model is fitted to data in the Bayesian framework 

using OpenBUGS (Bayesian inference Using Gibbs Sampling). 

 

A Bayesian variable selection method is used to identify which species traits and environmental 

variables best explain the species data through the trait-modulated Gaussian logistic model. The 

approach is extended to find the best linear combination of environmental variables. 

 

The methods are illustrated using phytoplankton community data of 203 lakes located within four 

climate zones and associated measurements on 11 environmental variables and six morphological 

species traits of 60 species. Chlorophyll-a is found to be the best environmental variable, followed 

by temperature. Chlorophyll-a and temperature are also the most important contributors to the best 

linear combination of environmental variables with opposite signs of their coefficients. About 25% 

of the variance in the niche centres with respect to chlorophyll-a could be accounted for by the 

traits, whereas niche width and maximum could not be predicted. Volume, mucilage and flagella 

are found to be the most important traits to explain the niche differences. 

 

Key-words: Niche theory; environmental gradient; trait-environment relationship; Gaussian 

logistic mode; nonlinear mixed model; species traits 
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Introduction  
 

Phytoplankton is a diverse group of microscopic photosynthesizing algae and cyanobacteria with a 

short life span of few days. Phytoplankton is fundamental for maintaining global biogeochemical 

cycles and trophic webs of pelagic ecosystems (Follows et al. 2007), and their excessive growth is 

one of the main concerning aquatic quality problems (Falkowski et al. 2003). The identification of 

the main biotic and abiotic factors controlling phytoplankton in lakes is essential for management 

of ecosystem (Peretyatko et al. 2007). As phytoplankton community composition impacts the 

functioning of aquatic ecosystems and thereby indirectly global climate, it is important to 

understand what factors regulate phytoplankton community assembly and dynamics.  

The construction of species habitat templates (species niches) is necessary to predict community 

structure changes with changing environments. Species can be characterized by a large number of 

quantitative and qualitative traits. Species with particular traits will be able to growth under 

particular environmental conditions and the species habitat template should combine both. 

The idea of matching species to habitats templates started early with Tansley (1939) and Pearsall 

(1950) and was well developed by Grime (1977) for plants. The conceptual basis are credited to 

Southwood (1977, 1988). Further development was by Keddy (1992) to predict community 

organization from species pool and species traits, linking traits with environmental conditions. See 

also the work by Rice et al. (1983) in bird ecology, by Bayley and Li (1992) in fish size and 

migration, hydrology, by Townsend and Hilderw (1994) in stream ecology, by Wiens (1991) in 

shrub-desert avifauna and by Statzner et al. (1994) for plants and animals in rivers. 

Traits included in the habitat template should be functional, directly or indirectly related to fitness 

and easy to estimate for any species and organism (Violle et al. 2007, Violle and Jiang 2009). 

Phytoplankton is a good model to accomplish this objective. Phytoplankton organisms are small 

and reach high abundances with high growth rates, this enable the rapid track of environmental 

changes and their study at human scales (Litchman and Klausmeier 2008). Further, functional 

traits based on morphology which are easy to estimate for any organism (Kruk et al. 2010) and 

predictable form environmental variables (Kruk et al. 2011). Thus phytoplankton is an excellent 

model for the construction of species habitat templates.  

Following seminal works by Southwood (1977) and Townsend and Hildrew (1994), trait-based 

approaches have been increasingly applied to explain and predict response of phytoplankton 

species to environmental conditions. Habitat templates have been built up for phytoplankton for 

different species, combining traits and environmental gradients by (Margalef 1978, Reynolds 

1988, Reynolds et al. 2002) concerning as the main axes growth abilities, resources acquisition and 
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evasion of loss processes. Formalizations for the construction of habitat templates for 

phytoplankton have been done mainly by Reynolds combining species preferences and tolerances 

(Reynolds 1987, Reynolds 1998). However, these conceptual models are difficult to apply to any 

species in any conditions. The studies that cluster the species based on their functional trait and 

then summarize their response to environmental change have also been applied by many (Weithoff 

2003, Follows et al. 2007, Litchman and Klausmeier 2008). Results from all these studies revealed 

that traits could offer new insights into phytoplankton ecology.  

Like all aquatic organisms, phytoplankton species have preferred environmental conditions in 

which they can survive and reproduce optimally. Each species is therefore largely confined to a 

specific interval along an environmental variable. The value most preferred by a species was 

termed its "indicator value" or optimum. This concept can be extended from one environmental 

variable to many. Each species is thus presumed to occur in a characteristic, limited range of the 

multi-dimensional habitat space, called its ecological niche, and within this niche, each species 

tends to be most abundant around a specific environmental optimum (Green 1971). Therefore, the 

distribution of species along any environmental gradient is usually unimodal, with the maximum at 

some ecological optimum. 

The simplest unimodal (non-negative) species response curve is the Gaussian response curve. It is 

symmetric and bell-shaped with three interpretable parameters: the optimum, height of the 

response and tolerance or width of the curve (Jongman et al. 1995, Oksanen and Minchin 2002).  

The model can easily be extended to more than a single environmental variable. The model can be 

fitted by nonlinear regression, but it is easier to first reparametrize it as a generalized linear model 

(GLM) with a second order polynomial in the environmental variables and then fit it to data by any 

of the statistical packages that can handle GLMs (ter Braak and Looman 1986, Oksanen et al. 

2001). The data can be presence-absence, counts or biomass and for each of these data type there is 

an appropriate GLM.  

Chapter 2 developed a statistical approach to related species traits to environment using an 

extension of GLM, namely the generalized linear mixed model (GLMM). It uses the 

environmental variables linearly, so it is unclear whether the model is of any use when data come 

from an ecosystem with niche structure, i.e. from a unimodal system. In their approach the 

regression parameters (intercept and slope in a linear model) are made dependent on the species 

traits. We might try to add squared environmental variables to the model as in the basic analysis of 

the Gaussian response model. However, regression parameters of linear terms and the squared 

terms have no intuitive meaning and no ecological interpretation. Moreover, the meaning of the 

parameter of the linear term depends on the value of that of the squared term and also on the scale 

used for the environmental variable. It appears therefore rather useless ecologically to make these 

parameters dependent on the species traits. By contrast, the optimum, the tolerance and the 
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maximum are interpretable parameters and we would like to model these in terms of the species 

traits.  

As in Chapter 2 we could have attempted a two-step approach by first deriving estimates of the 

optimum, tolerance and maximum for each species separately by GLM and then regressing these 

in turn on to the species traits. However, the estimates can be quite variable, in particular for 

species with low numbers of occurrence. Therefore we propose in this paper an integrated 

approach. With this in mind, the aim of this paper is to relate species traits to the environment via 

statistical models that explicitly acknowledge the concept of the ecological niche, i.e. models that 

are unimodal in terms of the environmental variables.  

The Gaussian logistic model (ter Braak and Looman 1986) with linear trait submodels for the 

parameters, that we propose, cannot be fitted easily with the available (generalized) nonlinear 

mixed model software. Instead, we take a Bayesian approach and fit the model using OpenBUGS 

(Bayesian inference Using Gibbs Sampling) (Sturtz et al.) 

Crucial to the aim is the identification of those traits (covariates) responsible for explaining the 

variation in response curve parameters (optimum, tolerance, maximum). The problem is akin to the 

familiar model selection problem in regression where we try to explain a response variable by a 

number of explanatory variables (whether continuous or discrete factors). The challenge is to 

select a small subset of the trait variables that explain a large fraction of the variation in the 

response parameters. For covariate selection we use the approach of George and McCulloch 

(1993) extended in Yuan and Lin (2005). The same approach is also used to find the linear 

combination of environmental variables that best explains the species data through trait modulated 

Gaussian logistic response curves. The methods are illustrated using phytoplankton communities 

data. The data has 60 species observed at 203 sites, 11 environmental covariates and 6 trait 

covariates.  

The structure of the paper is as follows. We first give a brief introduction to unimodal response 

curve, Bayesian theory and its implementation using MCMC algorithms in OpenBUGS. We then 

present a case study showing how Bayesian variable selection method can select the important 

environmental variables and traits, where traits are functions of parameters of unimodal response 

curve. After presenting the results we discuss and interpret the results. Finally we conclude with 

the implications of this approach and the future extension of our research. 

Model 

Unimodal  response curve 

In this section, we propose a trait-modulated Gaussian logistic model. The data we consider here is 

a binary data table Y = [yij] recording the presence (1) -absence (0) of m species (columns) in n 
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sites (row), an environmental variable xi (i = 1,…, n) with quantitative measurements in the n sites, 

and K quantitative or binary traits {zk , k =1,…,K}, with zk =[zjk] (j=1,…,m) containing the values 

of the k
th
 trait for the m species. The subscripts i, j and k refer to site i, species j, and trait k, 

respectively. Later on we consider the case with multiple environmental variables.  We start with 

the Gaussian logistic model (ter Braak and Looman 1986) with an extra random term for sites (Eq. 

1). This term is added to account for the fact that species observed at the same site are likely to 

correlated in occurrence, even after having taken account of the environmental (and trait) 

information. The model is phrased in terms of the logit of the probability of occurrence pij = E(yij), 

the expected value of the observation yij, given the model,  

     (   )     
(       )

 

     
    

            (1)  

with    a quantitative known environmental variable, aj is a coefficient related to maximum 

probability,      is the species optimum,      is the tolerance of species, and    
      (       

 ) 

the random site effect with variance      
 . Recall that logit(.)=log(./(1- .) with inverse 1/(1+exp(-

.)). This model has thus a logistic form, and the model parameters     and     occur nonlinearly in 

the model function. The optimum on the gradient gives the location where the maximum 

probability of occurrence is attained and the tolerance gives the width of the response (ter Braak 

and Looman 1986). 

In  the trait-modulated Gaussian logistic model, the parameters a, opt and tol are modulated by the 

K traits according to the linear submodels  

     
  ∑   

    
 
      

 , (2) 

       
   
 ∑   

   
   

 
      

   
,  (3) 

       
    ∑   

      
 
      

    ,  (4) 

with intercepts indicated by    with a superscript for the corresponding parameter and similarly 

slopes by    with k for the associated trait. The error terms in these submodels are   
   (    

 ), 

  
   
  (      

 ) and   
     (      

 ) and are usually called the random effects when these 

equation are inserted in Eq. 1. The resulting model is a nonlinear mixed model, where both fixed 

and random effects enter nonlinearly. We implemented the model in OpenBUGS and fitted it to 

phytoplankton community data. OpenBUGS uses Markov Chain Monte Carlo (MCMC), in 

particular Gibbs sampling, to generate a sample from the posterior distribution.  
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Statistics for assessing contribution of traits variables  

After fitting the model to data, the contribution of individual traits to the model can partly be 

assessed by the (standardized) size of their slope parameters {  } in Eqs. 2-4. In line with the 

usual definition of percentage variance explained in a model with multiple predictors, we measure 

the joint contribution of the K traits to the model for the optimum by (Grosbois et al., 2009, Lahoz-

Monfort et al., 2011) 

        (  
 ̂    (   )
 

 ̂    (     )
 )  , (5) 

where  ̂    (   )
  is the estimated variance in the model of Eqs. 1-4 and  ̂    (     )

  that in the model 

with all   
   

  , for k = 1,…, K. In Eq. 5 we compare the variance of the optimum in the model 

with and without traits (Chapter 2). Analogous definitions of percentage variance explained can 

made for the tolerance and the maximum. The variances are estimated by the posterior median. 

It is worth pointing out that including traits in the model does not constrain the optimum (or 

tolerance or maximum), such as in constrained ordination (ter Braak and Verdonschot 1995). The 

reason is that Eqs. 2–4 include a random term, such as   
   

, whereas such random term is not 

included in constrained ordination. In our model, including traits attempts to shift unexplained 

variance, such as  ̂    (     )
  as much as possible to the fixed effects of a trait, thereby reducing the 

unexplained variance to  ̂    (   )
 . We therefore do not expect much change in the variance 

explained on the level of the species data {yij}. 

Bayesian Variable Selection 

In data sets with many potential predictors, choosing an appropriate subset of traits and/or 

environmental variables is a challenging and important task. Here we use the Bayesian variable 

selection (BVS) approach of Yuan and Lin (2005), the empirical Bayes estimator of which is 

closely related to the LASSO estimator. The model analyzed here is the unimodal response curve 

and parameters of the curve have a regression relation with a number of predictors. We apply 

variable selection to this regression relation within the full model. Here the variable selection is 

carried out to obtain a parsimonious model with fewer variables. The variable selection is part of 

larger model. The underlying notion is that most of the traits are expected to have no or only weak 

effects on the optimum, tolerance and maximum. 

Bayesian variable selection can be influenced by the prior. In principle there is considerable 

flexibility in the priors that could be used. Several Bayesian variable selection methods have been 

developed in recent years (George and McCulloch 1993, Green 1995, Kuo and Mallick 1998, 
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Brown et al. 1998, Yuan and Lin 2005). For details and a review of Bayesian model selection 

methods see O’Hara and Sillanpää (2009).  

To keep the presentation simple, assume that the task is to explain an outcome    for species j (j = 

1,…,M) using K trait covariates with values Zk ; k= 1,…, K. Naturally, these covariates  may be 

continuous or discrete variables. Given a vector of regression parameters   (  ) of size K, the 

response  is modelled as a linear combination of the explanatory variables    : 

     ∑      
 
        (6) 

Here   is the intercept and     (    
 ) are the errors. The data are usually sufficiently 

informative to estimate the overall mean   and the variance   
  (the variation in response model 

parameter). Thus, we can use any reasonably noninformative prior distributions for these 

parameters. We used uniform priors for   and   , i.e.   ( )   and   (  )  . 

We could assume a normal prior for   . But we expect that most of the   coefficients are expected 

to be zero or close to zero. To incorporate this prior knowledge into our analysis, therefore, we can 

set up a “slab and spike” prior (Miller 2002 ), with a spike (the probability mass) either exactly at 

or around zero, and a flat slab elsewhere. By introducing the latent variable   = 0 or 1, we adopt 

the hierarchical Bayes framework of Yuan and Lin (2005) by assuming a mixture prior for    

  |   (    ) ( )      (   )               ,  (7) 

where   (   ) is the double exponential with density function     (  | |)   and  ( )  is dirac 

function with point mass at 0. So if     ,     , and otherwise it is double exponentially 

distributed with parameter  . The double exponential is heavier tailed that the normal distribution 

and therefore can better accommodate large regression coefficients than with the commonly used 

normal prior   |      (   
 ) (Yuan and Lin 2005). With the double exponential prior, the 

maximum a posteriori (MAP) estimator is the Lasso estimator (Tibshirani 1996, Park and Casella 

2008). 

A typical choice of prior for inclusion indicator    is Bernoulli(0.5). Note that in OpenBUGS/ 

WinBUGS normal distributions are defined in terms of a mean and precision, where precision = 

1/variance. The complete BUGS model is given in the Appendix. 

Latent environmental variable 

So far we considered a single environmental variable denoted by xi. Community data are 

multivariate and several environmental factors affect communities (Gauch 1982). There are two 

ways to extend our model to multiple environmental variables. The first is to extend the quadratic 

form in Eq. 1 to a general quadratic form, (   )  (   ) where x and u are now vectors with 
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dimensions associated to the different environmental variables (ter Braak 1988). The second is to 

stay with Eq. 1 but to redefine xi as a linear combination of environmental variables, where then 

the challenge is to find the best linear combination given the data. The first approach uses far more 

parameters than the second and is more difficult to fit, and for those reasons we use the second 

approach in this paper. We extend this approach to finding the best sparse combination by 

applying same Bayesian variable selection approach to the environmental variables as we do for 

traits. The best sparse linear combination of (measured) environmental can be interpreted as a 

latent variable driving the phytoplankton communities. 

Initial values 

We must supply starting values in order to estimate the parameters of a non-linear hierarchical 

model. Choosing appropriate values can be something of an art. OpenBUGS can crash when 

inappropriate values are specified.  

For obtaining initial values for the Gaussian parameters a, opt and tol for a particular species 

consider the Gaussian logistic model, that is Eq. 1 without the random site effect, 

     ( )    
(     ) 

     
, (8) 

where we dropped the indices for sites and species for convenience. Instead of directly fitting this 

model to data of a particular species, we rewrite the model as the generalized linear model (ter 

Braak and Looman 1986, Oksanen et al. 1988) defined as a second-degree polynomial with 

logarithmic link function  

     ( )            
 .  (9) 

This model can be easily fitted as a generalized linear model (GLM) with logit link function and, if 

(estimated)      , maximum likelihood estimates of the Gaussian parameters can be found by 

the following simple formulae (ter Braak and Looman 1986, Oksanen et al. 1988): 

     
  

   
 ,     √ 

 

   
 and      

  
 

   
. (10) 

The coefficients   ,   , and    are thus easily transformed into coefficients representing the 

species’ optimum, tolerance and maximum probability value. The point estimates of the Gaussian 

parameters thus obtained are identical to those obtained directly using nonlinear maximum-

likelihood regression for the Gaussian function. So GLM can be used to derive optimum and 

tolerance and probability of occurrence that will serve as starting values if     . What to do 

when    is estimated as zero or positive? A standard way is to set    zero and the response curve is 

in fact sigmoidal. We, instead, simply prevented any nonnegative    by augmenting the data with 

many zeros (absences) outside the observed range of the environmental variable (at both sides). 
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We thus viewed such cases as truncated unimodal curves, curves that would have been unimodal if 

the environmental range in the data were larger. Note the optimum cannot be estimated well if it 

lies outside or near the edge of the environmental range. By augmenting the data with absences 

outside the environmental range, the optimum is well-defined and lies within the newly created 

environmental range. The Bayesian data analysis was, of course, performed on the not-augmented 

data.  

To estimate the initial values for (   
 ,   

 ), (  
   

,   
   
) and (  

   ,   
   ) we regressed the traits on 

             .   

 DIC for Model Selection 

For comparison of model quality, we use the Deviance Information Criterion (DIC; Spiegelhalter 

et al. 2002) defined as  

     ( ̅)      (5) 

where  ( ̅) is the posterior deviance evaluated at the posterior mean of the parameter values and 

   the estimated effective number of parameters in the posterior distribution. Spiegelhalter et al. 

(2002) and OpenBUGS define    as the posterior mean of the deviance minus posterior deviance 

the evaluated at the posterior mean of the parameter values, 

    ̅   ( ̅) (6) 

so that  

      ̅     (7) 

Sturtz et al use this equation and approximate    as half the posterior variance of the deviance, 

      (        )  , and estimate it half the average of the within chain variances of the 

deviance. We used this method for calculating DIC, as it is provided by the R2OpenBUGS 

function (Sturtz et al.). Eq. (5)1 shows that DIC can be viewed as the Bayesian counterpart to the 

AIC for model selection. DIC is typically considered as a Bayesian measure of fit or adequacy. 

The smaller the DIC value, the better the model is.  

The DIC statistic is in its early stages and is controversial (Spiegelhalter et al. 2002, Celeux et al. 

2006, Gimenez et al. 2009). Here we consider the DIC as a preliminary tool for comparing 

competing models. As with other model selection criteria, we caution that DIC is not intended for 

the identification of the best model, but rather merely indicates if a superior model exist within the 

given candidate models (Huang et al. 2011)  
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Data Analysis 

Data is of 237 species from 211 lakes located within four climate zones (polar to nonpolar) in 

South America, Europe and North America, and covering a wide range of environmental 

characteristics. The environmental variables and traits variables are listed in Table 1, which also 

shows abbreviated names, the unit of measurement, the number of missing values and whether the 

variable was transformed to natural logarithms in the analysis. 

We fitted response models for species which occurred on more than 5% of the sites. The data set is 

of 203 sites and 60 species. We analysed the data as presence/absence.    

 

Table 1. List of environmental variables and trait variables with code and unit of measurement, 

number of missing values and indicator for the transformation to natural logarithms. 

 

Variables Code Unit  Missing values Log-transformation 

Environmental  
    

Temperature Temp    17 no 

Inorganic suspended solids ISS          16 yes 

Water column mix depth  Zmix     2 yes 

Light attenuation coefficient  Kd       4 yes 

Conductivity  Cond           3 yes 

Alkalinity  Alk           8 yes 

Total nitrogen  TN         8 yes 

Total phosphorus  TP         3 yes 

Total zooplankton abundance  TZ           8 yes 

Cladocera abundance  CLA           10 yes 

Chlorophyll-a  Chloa         13 yes 

Traits  

Volume  V      5 yes 

Surface area  SV       5 yes 

Maximum linear dimension  MLD     5 yes 

Flagella (presence/absence) Fla  0 no 

Mucilage (presence/absence) Muc  0 no 

Siliceous exoskeleton 

(presence/absence)  

Si  0 no 
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How to deal with missing values in the trait and environment data? Removing rows (species or 

sites) with missing values is an option but that means loss of information. Another option is to do 

imputation. Before imputation, those variables that were clearly not normally distributed were log-

transformed to justify the assumption of normality in the imputation procedure (Table 1). Data 

Imputation was performed using the MICE R-package (Van Buuren and Groothuis-Oudshoorn 

2011)  using the method “mean” for continuous variables and method “logreg” for binary 

variables. Finally, each environmental variable and each trait variable was centered and scaled so 

that the sample mean is zero and the sample standard deviation is 1. 

We fitted the Gaussian logistic model to the phytoplankton data with and without trait covariates. 

We used normal priors and a mixture prior for the regression coefficients. The model was run for 

each environmental variable for 10,000 MCMC iterations, discarding the first halves as burn-in. 

For selecting the best sparse linear combination of environmental variables, we ran the Markov 

chain for 100,000 iterations and discarding the first halves to remove the dependence on the 

starting values and to allow adequate convergence. In this case convergence of MCMC was very 

slow. 

For all these analysis, the MCMC simulation were performed in the Bayesian software 

OpenBUGS, linked from the R statistical computing software (R Development Core Team 2010) 

by R2OpenBUGS (Sturtz et al.). For each analysis, we run three parallel simulation sequences with 

starting values supplies for some parameters and starting values for other parameters were 

randomly generated from the prior distributions.   

Results  
 

Table 2 shows the model quality in terms of DIC for individual environmental variables and the 

best linear combination of them (the latent variable). In the both models with and without traits, 

the latent variable is best, yielding the lowest DIC, followed by chlorophyll-a (Chloa) and 

temperature (Temp) (Table 2).      is the difference between the DIC of a model and the DIC for 

minimum DIC model. Results shows thus the better predictive ability of chlorophyll-a over that of 

Temperature. In terms of standardized variables, the latent variable is defined as (           

                                                         ). 

From the coefficients of the latent variable model, it appears that the environmental covariates 

Chloa, Temp, Zmix, Kd and TZ are important. Coefficients for ISS, TP and CLA are zero. 

Response curves for species along the temperature gradient, Log10Chloa and along the latent 

variable are plotted in Fig. 1. The species are arranged in ascending order magnitude of their 

optimum. Species used in analysis along with parameters (         ) values obtained from BUGS 

output for Temperature and Chlorophyll-a are given in Table S1. 
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Table 2. DIC for individual environmental variables and the best linear combination of them in 

models with and without trait. The superscripts rank of DIC in ascending order. ΔDIC is the 

difference between the DIC of model with minimum DIC model. 

 

Env. variable DIC 

(without trait) 

DIC 

(trait) 
     

Temp 6842 6845
2
 561 

ISS 7736 7731
6
 1447 

Zmix 8553 8552
11

 2268 

Kd 8011 8011
8
 1727 

Cond * 7133
3
 849 

Alk 6671
!
 7244

4
 960 

TN 7816 7891
7
 1607 

TP 8418 8419
9
 2135 

TZ 7442 7442
5
 1158 

CLA 7738
!
 8531

10
 2247 

Chloa 6615 6609
1
 325 

Latent 6283 6284
0
 0 

                       ! negative    value; * No convergence  

 

Table 3. Variance components in models without (Null) and with traits (Y&L and normal, 

indicating the type of prior for trait coefficients). Y&L = Yuan and Lin. 

 

 Variance 

component Null Y&L 
Fraction of 

variation   Normal  
Fraction of 

variation   

Temp   
  2.10 2.07 1.37 1.93 8.00 

     
  2.31 1.14 50.45 1.10 52.27 

     
  0.45 0.15 66.12 0.18 60.80 

 DIC 6842 6845 

 

6837.0  

Chloa   
  1.56 1.56 0 1.61 -3.39 

     
  1.77 1.25 29.09 1.32 25.28 

     
  0.02 0.02 0 0.03 -28.00 

 DIC 6615 6609  6596.0  

Latent
* 

  
  1.61 1.44 10.72   

     
  2.72 2.04 24.89   

     
  0.04 0.04 0.00   

 DIC 6283 6284    
*
 Latent variable, defined as the linear combination of standardized environmental variables 

                                                    +               . 
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a) 

 

b) 

 

c) 

 

 
Fig.  1. Response curves for species along the a) temperature gradient, b) Log(chlorophyll-a) and c) the 

latent variable. Species are arranged in ascending order of their optima values. Each plot has 10 species. 
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Fig. 2. Coefficient estimate   standard deviation for the traits when regressed on Gaussian response 

parameters (         ) for temperature, chlorophyll-a and linear combination of environmental variable.   

 

 

Table 3 shows percentage variance of the parameters (         ) that is explained by the traits 

using Eq. 5. These parameters were estimated for the best three models where the environmental 

variable is Temp, Chloa or the latent variable. We observed the percentage variance explained 

decreases in this order. In our data, the better the environmental variable, the less percentage 

variance in the parameters is explained by traits.  

The traits V, Fla, Muc and Si are important for explaining the variation in optimum. Fig 2 plots the 

values of the regression coefficients with their standard deviations for the best three models. All 

trait coefficients for tolerance are zero for Chloa and Latent variable (Fig. 2). It is also evident 

from Table 3, that traits explain no variation in tolerance for Chloa and the latent variable. 

Discussion 

Many biotic and abiotic processes contribute to variability in phytoplankton diversity in aquatic 

ecosystems. The best model constructed in this article reflected well the main mechanisms 

modulating phytoplankton species growth including temperature (-), resources (light and nutrients: 

+Chloa, +Alk, -Kd) as well as loss processes (hydrological washout, sedimentation and 

consumption by zooplankton: -Zmix, +TZ) (Margalef, 1978; Reynolds, 1984).  
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Temperature has important direct effects on phytoplankton growing rates (Reynolds 1984a, Tilman 

1986) and indirect effects changing water properties and water column mixing. Temperature 

affects latitudinal distribution of species (Fuhrman et al. 2008) and the organisms metabolism 

(Brown et al. 2004).  

Of all variables included in our study, chlorophyll-a had the largest effect. It is a measure of total 

phytoplankton biomass and not an environmental variable per se. However, it reflects a 

combination of variables related to the trophic state of the lakes, and therefore recourses (nutrients, 

light) and ecosystem productivity. Higher chlorophyll-a is usually related to high nitrogen and 

phosphorus in the silicate and carbon, and to the effect of the watershed, increased alkalinity is 

associated to higher nutrients concentrations (Conley 2002).  

Depth of the mixing zone is an important indicator of the phytoplankton environment particularly 

in relation with light availability and sedimentation losses. High mixing depth produce potentially 

higher times for the phytoplankton in depths of the water column with low light and is related to 

mixing losses (Reynolds 1997).  

Finally, total zooplankton abundance (TZ) includes the three dominant groups of zooplankton in 

lakes pelagic zones: rotifers, copepods and Cladocera. Cladocera are the main phytoplankton 

controllers but are dominant under oligo to mesotrophic conditions. Rotifers are also good filter-

feeders but are dominant in more eutrophic conditions attaining the highest abundance therefore 

affecting drastically this community total abundance (Reynolds 1984b, Lampert and Sommer 

2007). 

Interestingly, the two best models with one variable representing a temperature and  

productivity/trophic state gradient are the focus of intensive research nowadays. Chlorophyll-a and 

temperature are used as indicators of eutrophication and climate warming. Those processes affect 

dramatically aquatic ecosystems nowadays modifying their communities and functioning, 

promoting  the species invasion and modifying the trophic interactions (Thuiller 2007, Paerl and 

Huisman 2008, Paerl and Huisman 2009, Kosten et al. 2011, Moss et al. 2011). 

An interest result of our analysis is that differently from expectations (Moss et al. 2011) 

temperature and productivity gradients showed an opposite effect. The explanation might be linked 

to differences in the relative importance of temperature and nutrients along latitudinal gradients 

(Kosten et al. 2009a, Kosten et al. 2009b). Also it might be caused by differences in the effects of 

trophic interactions between warmer and cooler lakes (Malthus and Mitchell 2006, Kosten et al. 

2009b). 
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How different traits (V, Fla, Muc, SV, Si) affect the species habitat features 

(optimum, tolerance and maximum)?  

Phytoplankton morphological traits reflect the ability to acquire resources (light and nutrients), to 

grow and to avoid mortality, through such processes as hydrological washout, sedimentation and  

consumption by grazers (Margalef 1978, Reynolds 1984b). The relation between morphological 

traits and physiology is well-defined for phytoplankton (Lewis 1976, Margalef 1978, Reynolds 

1988, Elliott et al. 2001, Kruk et al. 2010).  

Volume and surface/volume ratio affect specific growth rate, resource-uptake and light-

interception properties (Reynolds 1988, Kirk 1996, Kruk et al. 2010). In general terms smaller size 

and higher SV potentiate higher growth rates and a greater tolerance to limiting light conditions 

(Naselli-Flores and Barone 2007). Therefore we would expect organisms with smaller volume to 

attain their optimum distribution at lower values along the trophic/productivity gradient 

(chlorophyll-a), as was observed in our results. Larger volumes will be expected also at the end of 

succession when higher biomass is attained in the community and higher nutrients are available, 

therefore increasing the optimum values as has been observed in other studies (Sommer 1989, 

Kruk et al. 2002).  

Volume and surface/volume ratio affect specific growth rate, resource-uptake and light-

interception properties (Reynolds 1988, Kirk 1996, Kruk et al. 2010). In general terms smaller size 

and higher SV potentiate higher growth rates and a greater tolerance to limiting light conditions 

(Naselli-Flores and Barone 2007). Therefore we would expect organisms with smaller volume to 

attain their optimum distribution at lower values along the trophic/productivity gradient 

(chlorophyll-a), as was observed in our results. Larger volumes will be expected also at the end of 

succession when higher biomass is attained in the community and higher nutrients are available, 

therefore increasing the optimum values as has been observed in other studies (Sommer 1989, 

Kruk et al. 2002). 

The relation with mucilage is not so clear. The presence of mucilage provides controllable buoyant 

properties (Ferber et al. 2004), may help maintaining an adequate microenvironment for cells and 

avoidance of grazing Reynolds, 2007 (Reynolds 2007)). Also, survival may be prolonged by the 

facility of remaining as resting colonies in the sediment (Reynolds 1981). The inverse relation 

between volume and mucilage in relation with chlorophyll-a might be the following. Biovolume is 

a measure of phytoplankton biomass comparable to chlorophyll-a is and is calculated as the 

volume of individual organisms, estimated from approximated geometrical shape, multiplied by 

their abundance in the environment (mm
3
L

-1
). Therefore higher concentrations of chlorophyll a are 

related to higher biovolume of the phytoplankton community. However, mucilage does not 
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contribute to biovolume in terms of photosynthetically active biomass, therefore increasing volume 

in terms of mucilage (e.g. sorrowing cells in a colony) might be related to lower chlorophyll.  

The case of the latent variable represents a gradient from lower to higher chlorophyll along with 

higher to lower temperature, Kd, Zmix and total zooplankton abundance. Volume increased the 

optimum and the same reasoning applies as before in relation with chlorophyll-a. Larger volumes 

increase the optimum of the species along the productivity gradient. In the case of the latent 

variable also the presence of flagella increased the optimum, this might be explained because of 

the motility might allow algae to forage for nutrients and avoid grazing (Reynolds 1997). 

Increasing productivity gradient was accompanied by high total zooplankton abundance which is 

also typical of more eutrophic systems, which are usually dominated by smaller zooplankton 

species organisms like rotifer (Lampert and Sommers 2007). Furthermore, grazing efficiency by 

filter-feeding zooplankton is affected by phytoplankton size and morphology, being larger 

organisms less edible (Burns 1968, Lampert 1987, Lehman 1988, Reynolds 2006). Smaller 

organisms survive high grazing pressure due to their higher growth rates, and therefore smaller 

volumes would decrease the species optimum along the latent variable gradient. Higher Kd 

interpreted as lower light in the water column, and lower mixing depth would favours a lower time 

under light limitation conditions. Limitation by light would  force the organism to increase their 

S/V and therefore their light reception capabilities, which is larger in organisms with lower volume 

(Lewis 1976). Size also affect sinking losses, and species responses to disturbance (Reynolds 

1984b, Padisák 2003). Smaller and high S/V organisms sink slowly, and survive high water 

flushing. 

A general different effect of the traits in the allocation of the optimum distribution was observed 

for temperature, as was also observed for the latent variable. Direct effect of temperature in 

organisms includes the acceleration of their metabolism, increasing their growth rates (higher C 

assimilation), their senescence rate (higher photo-respiration) and therefore decreasing their 

average size. Therefore at higher temperatures we would expect smaller size and volume, along 

with higher S/V. The negative effect of temperature in size was also observed in paleoecological 

studies (Smol et al. 2005; Ruhland et al. 2008) and actual field analysis (Winder et al. 2009). In 

those cases the effect was mainly indirect through the effect of higher temperatures in water 

properties and aquatic ecosystems mixing regime. Smaller organisms with higher S/V sink slowly 

therefore the presence of smaller organisms is favoured (Winder et al. 2009). Finally, the presence 

of siliceous structures affected the location of the optimum increasing its position along the latent 

variable. The obligate presence of a siliceous wall affect cell density and organisms sink rapidly 

and are excluded from waters depleted in assimilable sources of silica (Padisák 2003). 

Furthermore, siliceous walls also have advantages against certain types of grazers (Hamm et al. 
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2003) and viral infections (Smetacek 2001) and the presence of siliceous spines might reduce 

losses because of grazing (Reynolds and Irish 1997). 

The use of functional traits improved the performance of the models only including habitat 

characteristics. In our data we made the surprising observation that the better the environmental 

variable was in explaining the habitat template, the less variation in the parameters was explained 

by traits.  

Another interesting aspect is that we only included environmental variables associated to local 

environments in our analysis. The habitat template should also include variables associated to 

species distribution and regional or global processes. Here the inclusion of functional traits as 

volume and shape is directly related to distribution processes and including it in the habitat 

template might correct for this limitation (Fenchel and Finlay 2004). 

Groups in the response curves along the habitat templates 

A final striking result is that we observed two groups of species along the three habitat template 

models (Fig. 3). This might recall the idea of communities as functional entities (Clements 1916) 

and the phytosociological approaches (Braun-Blanquet 1964), as well as the classical question of 

how many species can co-exist (Hutchinson 1961). A recent alternative explanation for the co-

existence of many species is advocated by the combination of neutral theory of biodiversity 

(Hubbell 2001) and niche theory. The theory of self-organized similarity (also referred to as 

‘Emergent neutrality’) proposes that there may be a limited number of evolutionary self-organized 

functional groups of species (and corresponding niches), but that within each group an essentially 

unlimited number of ecologically equivalent species might co-exist neutrally (Scheffer and van 

Nes 2006). Nowadays new studies are recognizing this theory as potential explanation (Vergnon et 

al. 2009, Segura et al. 2011) but still more studies are needed. 

Conclusion 

This paper presents a Bayesian approach for modelling a unimodal species response model relating 

traits to environment from phytoplankton communities. Species response curves showed that 

species are divided into clusters and the variation within cluster seems very low. DIC was useful to 

select the potentially important environmental variables, but less useful to select potentially 

important traits because no important difference in DIC was observed between the models with 

and without traits. The variation in the niche parameters (         ) explained by species traits 

was measured by the contribution statistic   . About 25% of the variance in the niche centres with 

respect to chlorophyll-a could be accounted for by the traits, whereas niche width and maximum 

could not be predicted.  Volume, mucilage and flagella are found to be the most important traits to 

explain the niche differences. 
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Fig. 3. Response curves for species along the temperature gradient, Log(chlorophyll-a) and the latent 

variable. 
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Of course, not all measurable features are equally important and some important features may 

perhaps be combined into a synthetic (latent) environmental gradient. It is formed by a linear 

combination of environmental variables that are presumed to maximally explain the species 

distribution.  

We fitted the models in a fully Bayesian approach, employing the MCMC simulation to generate 

posterior samples from the joint posterior distribution, which can be used to make various posterior 

inferences. Although Bayesian methods are computationally intensive, they are easy to implement 

and provide not only point estimates but also interval estimates of all parameters. The fully 

Bayesian approach enabled us to obtain much richer inferences about the models than most non-

Bayesian analyses.  

We assumed that species response on an environmental gradient has a symmetrical bell shaped 

(Gaussian) curve. However other types of response also occur quite common because interactions 

between species and extreme environmental stress may cause skewed or non-unimodal responses. 

The Bayesian approach can be extended to other parametric nonlinear models with parameters 

made dependent on traits. 

 

Appendix  

Bugs model for Latent variable (with traits) 

########################################################################

### 

# X0=Chloa: X1=Temp; X2=ISS; X3=Zmix; X4=Kd; X5=Cond; X6=Alk;, X7=TN; X8=TP; X9=TZ; 

X10=CLA 

# Z= (V, SV, MLD, Fla, Muc, Si)   

# opt=Optimum; tol= Tolerance; logc= a 

###################################################################################### 

 

 model{                 # N observations (species*sites)   

   for (i in 1:N){  

 

   y[i] ~ dbin(p.bound[i],1) 

 p.bound[i] <-max(0,min(1,p[i])) 

 logit(p[i])<-Xbeta[i] 

 Xbeta[i]   <-logc[sp[i]]-0.5*pow((Xstar[i]-

opt[sp[i]])/tol[sp[i]],2)+           

                   b.site[site[i]] 

      Xstar[i]<-beta0*X0[i]+beta[1]*X1[i]+beta[2]*X2[i]+beta[3]*X3[i]+ 

                beta[4]*X4[i]+beta[5]*X5[i]+beta[6]*X6[i]+beta[7]*X7[i]+  

                beta[8]*X8[i]+beta[9]*X9[i]+ beta[10]*X10[i]      

 } 
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for (j in 1:n.sp)  { 

 

       logc[j] ~ dnorm(a.hat[j],tau.a) 

       a.hat[j]<-a0+inprod(a[],Z[j,]) 

       

  opt[j] ~ dnorm(opt.hat[j],tau.opt)  

  opt.hat[j]<-b0+ inprod(b[],Z[j,]) 

        

  tol[j] ~ dnorm(tol.hat[j],tau.tol)   

  tol.hat[j]<-c0+ inprod(c[],Z[j,])        

                   

      } 

 

   for (j in 1:n.site) { 

       b.site[j] ~ dnorm(0,tau.site)                        

      }       

    

   for ( k in 1:n.env){ 

       beta[k]~ddexp (0,taubeta[k]) 

       taubeta[k]<-1/varbeta[k] 

  varbeta[k]<-(1-gammbeta[k])*0.001+gammbeta[k]*10 

  gammbeta[k]~dbern(pi.beta) } 

        

    beta0<-1    

    a0 ~dnorm(0,.0001) 

    b0 ~dnorm(0,.0001) 

    c0 ~dnorm(0,.0001) 

   

   for ( k in 1:6){ 

  a[k]~ddexp (0,taua[k]) 

  taua[k]<-1/vara[k] 

  vara[k]<-(1-gamma[k])*0.001+gamma[k]*10 

  gamma[k]~dbern(pi.a) 

    

  b[k]~ddexp (0,taub[k]) 

  taub[k]<-1/varb[k] 

  varb[k]<-(1-gammb[k])*0.001+gammb[k]*10 

  gammb[k]~dbern(pi.b) 

   

  c[k]~ddexp (0,tauc[k]) 

  tauc[k]<-1/varc[k] 

  varc[k]<-(1-gammc[k])*0.001+gammc[k]*10 

  gammc[k]~dbern(pi.c) 

    }        

      

     tau.a<-pow(sigma.a,-2) 

     sigma.a~dunif(0,100) 

     tau.opt<-pow(sigma.opt,-2) 

     sigma.opt~dunif(0,100) 

     tau.tol<-pow(sigma.tol,-2) 

     sigma.tol~dunif(0,100) 

     tau.site<-pow(sigma.site,-2) 

     sigma.site~dunif(0,100)  

    

     pi.a<-0.5 

     pi.b<-0.5 

     pi.c<-0.5 

     pi.beta<-0.5   

   } 

 

 

3 

T
rait-m

o
d

u
lated

 G
au

ssian
 lo

g
istic m

o
d
el  



54 

 

Table S1. Species names and parameters (         ) values obtained from BUGS output for 

Temperature and Chlorophyll-a 

  
Temperature Chlorophyll-a 

 
Species name A Opt Tol A Opt Tol 

1 Aphanocapsadelicatissima 1.19 42.09 10.05 1.36 -0.74 1.50 

2 Aphanocapsaholsatica -1.19 40.82 9.91 -0.66 -0.86 1.32 

3 Aphanocapsaincerta -0.21 46.39 11.51 -0.67 -0.40 1.46 

4 Aphanotheceminutissima -0.68 37.76 9.70 -0.24 -0.33 1.38 

5 Aulacoseiragranulatavgranulata -0.25 20.10 2.45 -0.68 4.06 1.59 

6 Chlorellahomosphaera -0.99 25.72 2.58 -0.21 -0.44 1.30 

7 Chlorellaminutissima -0.22 31.62 6.33 0.84 -1.05 1.52 

8 Chlorellavulgaris -0.77 27.92 5.25 0.16 -0.50 1.50 

9 Chlorococcales4 -2.24 26.62 3.83 -1.11 -0.74 1.36 

10 Chroomonassp -0.46 18.99 1.90 -0.91 3.55 0.91 

11 Chrysococcussp 1.02 18.85 1.46 0.35 4.68 1.03 

12 Cryptomonasbrasiliensis -0.93 27.94 4.59 0.06 -0.15 1.10 

13 Cryptomonasmarsoniipeq -1.21 27.70 4.66 -0.16 -0.34 1.19 

14 Cryptomonasmarssonii -2.35 26.21 3.04 -1.44 -0.20 1.12 

15 Cryptomonassp 1.66 18.84 1.75 0.98 4.42 1.19 

16 Cyanodictyonimperfectum 1.17 47.66 10.16 0.67 -1.07 1.31 

17 Cyclotella/Stephanodiscus 1.76 18.79 1.50 0.86 4.60 1.17 

18 Cyclotellamengehiniana -1.26 24.93 1.93 -1.23 0.37 1.49 

19 Cylindrospermopsisraciborskii -1.58 30.30 3.16 -1.93 0.64 1.25 

20 Dinobryondivergens -2.95 22.08 5.37 -1.50 -0.51 1.15 

21 Dyctiosphaeriumpulchellum -0.76 45.39 9.86 -1.75 -0.11 1.46 

22 Epithemiasp -1.82 18.69 2.36 -2.32 3.00 1.32 

23 Euglenasp 0.51 18.87 1.58 -0.17 4.49 1.05 

24 Eukaryioticnanoplankton 2.06 18.81 1.83 1.82 4.73 1.19 

25 Eutetramorusfotii -1.02 42.45 11.14 -1.14 0.04 1.40 

26 Gomphonemasp -0.44 18.98 1.89 -1.36 3.67 1.48 

27 Gymnodiniumcnecoides -1.19 28.60 1.57 0.53 -1.36 0.91 

28 Gyrosigmasp -1.52 18.78 1.88 -2.05 3.89 1.10 

29 Jaaginemagracile -2.42 17.51 5.48 -1.86 0.56 1.43 

30 Lemmermmaniellapallida -0.94 43.70 9.29 -1.96 -0.02 1.57 

31 Lepocinclissalina -0.23 18.54 1.54 -0.73 5.35 1.27 

32 Merismopediaduplex -0.30 47.47 10.19 -1.09 -0.89 1.44 

33 Merismopediatenuissima -0.08 46.81 11.45 -1.00 0.35 1.52 

34 Monoraphidiumcontornum -1.41 27.67 3.88 -1.27 0.71 1.45 

35 Monoraphidiumconvolutum -2.03 25.55 6.61 -1.09 0.38 1.38 

36 Oocystislacustris -0.87 43.42 12.25 -0.32 -1.06 1.58 

37 Oocystismarsonii -1.58 42.79 12.29 -1.08 -0.79 1.51 

38 Oocystisparva -1.91 43.59 11.85 -1.62 -0.72 1.45 

39 Oocystissp.1 -0.45 45.22 10.62 -0.93 -0.52 1.47 

40 Peridiniumsp -1.76 19.64 2.14 -2.09 4.22 1.26 

41 Peridiniumumbonatumvumbonatum -2.38 25.86 3.14 -1.67 -0.19 1.37       
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42 Phacussp 0.74 18.84 1.52 0.17 5.11 1.23 

43 PicoChloroesférico 0.23 33.16 5.14 0.63 -0.93 1.33 

44 PicoChloroesferóide2 -0.69 30.61 4.66 0.23 -0.95 1.33 

45 Picocyano(<1um) 1.17 34.64 7.60 3.40 -1.40 1.36 

46 PicoCyanocilindrico2 -2.52 24.88 3.93 -1.24 -1.03 1.43 

47 PicoCyanoesférico1 0.92 32.10 4.22 1.25 -1.01 1.28 

48 Planktolyngbyalimnetica -0.99 29.97 4.46 -0.95 0.22 1.45 

49 Pseudanabenarecta -2.68 28.47 5.49 -2.07 0.31 1.35 

50 Raphidiopsismediterranea -2.43 25.49 3.80 -2.14 1.81 1.32 

51 Rhodomonasminuta -0.98 26.14 6.09 -0.15 0.41 1.44 

52 Scenedesmusellipticus -1.41 28.95 7.64 -0.16 -0.07 1.19 

53 Strombomonassp -0.70 18.56 1.88 -0.80 5.46 1.26 

54 Synechococcusaquatilis -1.86 29.11 4.12 -1.48 -0.12 1.41 

55 Synechococcusnidulans -1.38 27.53 5.22 -0.56 -0.39 1.58 

56 Synedraacus -2.30 19.97 3.03 -2.29 3.20 1.27 

57 Tetraedronminimum -2.06 22.51 4.23 -1.68 2.36 1.36 

58 Tetraeëdroncaudatum -1.22 30.84 2.60 -0.97 -1.25 1.31 

59 Trachelomonassp 1.30 18.94 1.65 0.70 4.68 1.17 

60 Trachelomonasvolvocina 3.01 18.58 1.34 2.16 4.69 0.97 
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Chapter 4 

 

A Generalized Linear Mixed Model approach to species-

environment relationships can handle and detect unimodal 

relationships with simulated and real data examples  

 

 

Tahira Jamil, Cajo J.F. ter Braak 
 

Abstract 

Niche theory predicts that species occurrence and abundance show non-linear, unimodal 

relationships with respect to environmental gradients. Unimodal models, such as the 

Gaussian (logistic) model, are however much more difficult to fit to data than linear ones, 

particularly when also species phylogeny and species traits are to be taken into account. 

This is one of the reason for the popularity of canonical correspondence analysis and RLQ 

in ecology. These methods are very useful with unimodal data but are linear after 

transformation. This paper explains why and when generalized linear mixed models can 

effectively analyse unimodal data and also presents a graphical tool and statistical test to 

test for unimodality while fitting just a generalized linear mixed model.  

 

Key-words:   Niche theory; environmental gradient; testing unimodality; Gaussian 

logistic mode; Generalized linear mixed model 
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Introduction  
 

Niche theory predicts that species occurrence and abundance show non-linear, unimodal 

relationships with respect to environmental gradients (Økland 1986, Austin 1987, Minchin 1989, 

Palmer and Dixon 1990). Many studies fail to test for unimodal response (Austin 2007). Thus 

straight-line relationships are often fitted without justification (e.g. Gibson et al. (2004)).  

Ordination is a class of multivariate methods to analyze the occurrence and/or abundance of  a set 

of species in a set of sites and results in a configuration of the sites in a factorial plane, the 

directions of which can be interpreted as latent environmental variables (Jongman et al. 1995, ter 

Braak and Prentice 2004, Walker and Jackson 2011). Principal component analysis, (detrended) 

correspondence analysis are rival eigen vector methods for this. In constrained or canonical 

ordination, the latent variables may be constrained to linear combination of manifest (measured) 

environmental variables, and the above rival methods become redundancy analysis and canonical 

correspondence analysis (ter Braak and Verdonschot 1995), together with alternatives such as 

coinertia analysis (Dolédec and Chessel 1994). With species traits in the analysis the latter 

becomes the RLQ method (Dolédec et al. 1996, Bernhardt-Romermann et al. 2008). Principal 

component analysis and redundancy analysis are known as the linear methods whereas 

correspondence analysis, and canonical correspondence analysis are claimed to be an 

approximation to fully unimodal methods (ter Braak 1987). Nevertheless, (canonical) 

correspondence analysis is an eigen vector method and therefore inherently linear. This is most 

apparent in the reconstitution formula of (canonical) correspondence analysis (Greenacre 1984, ter 

Braak and Verdonschot 1995). How can it be understood that these methods are able to model 

unimodal data but are inherently linear? The same question can be phrased for principal 

components analysis on transformed data, such as double centered, log transformed data, or data 

standardized to equal site total or equal site norm. 

Some insight in this question is given by Ihm and van Groenewoud (1984) and further worked out 

by ter Braak (1987) and de Rooij (2007) who show the relation between the unimodal model and 

Goodman’s RC model, which is a generalized linear model, and a loglinear model in particular. 

The relation can be used both ways. Ihm and van Groenewoud (1984) use the relationship to 

justify the RC model (there called Model B) for ecological ordination and de Rooij (2007) uses it 

to transform the linear predictor of the RC model into a quadratic form, with the graphical purpose 

to transform a vector representation or biplot to a distance representation that is supposed to be 

easier to interpret for naïve users of multivariate methods. 

In this paper we use the same approach to derive a graphical tool and statistical test to test for 

unimodality while fitting just a generalized linear mixed model (GLMM). GLMMs are model-
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based, inferential statistical tools for describing the underlying community pattern and are 

becoming popular in ecological and evolutionary studies (Bolker et al. 2009, Ives and Helmus 

2011). We claim that GLMMs can effectively analyze unimodal data when the niche width is not 

very different among species and illustrate this claim by comparing the GLMM approach with an 

explicit unimodal model approach on data that show unimodality.   

Theory  

Unimodal curves and generalized linear (mixed) models  
 

For easy of exposition we use logistic linear (mixed) models as example of generalized linear 

(mixed) models. The same approach can be followed for loglinear model, which would relate to 

the RC model (de Rooij 2007). One of the simplest unimodal curves for presence-absence data is 

the Gaussian logistic curve (ter Braak and Looman 1986) 

     (   )     
(     )

 

   
   (1) 

with pij is the probability of occurrence [ pij = E(yij), the expected value of the observation yij],    a 

quantitative known environmental variable, aj is a coefficient related to maximum probability of 

occurrence,    is the species optimum and    is the tolerance of species j. The subscripts i and  j 

refer to site i and species  j respectively (i=1,…, n; j = 1,…, m). This model has thus a logistic form 

and is nonlinear in this parameterization.  By expanding the quadratic term in equation (1) and 

assuming     , we obtain 

   
(     )

 

       
 

     
  

 

     
  

 

        

                         (   
 

     
 )  (

  

  )    
 

     
  . (2) 

By setting 

       
 

     
 ,    

  

   and     
 

     
 ,  (3) 

we obtain a Generalized Linear Model (GLM) 

     (   )             (4) 

where    is an intercept,    a slope and    a site effect. If   would vary among species then 

equation (3) does not exactly hold because   
   

 ⁄  then also depends on j. We will turn this GLM 

into a Generalized Linear Mixed Model (GLMM) by assuming that the three parameters are 

random effects deriving from three distributions, for which we will take normal ones for numerical 
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convenience. The random site effects are of the form    , which has a nonzero mean. This mean 

can be taken out and transferred to the mean of the distribution of the intercepts     , so the 

distributional assumptions are 

(
  

  
)  ((

  

  
)  (

  
      

       
 ))   (5) 

where   
  and   

  are the variance components for    and    and   is the correlation between     

and   , and 

    (     
 )  (6)  

with    
  the variance component for the site effects. 

There is nothing special about equation (1) stating a single environmental variable. The model can 

be extended to two environmental variables (ter Braak and Prentice 2004) 

     (   )     
 

 
(  (       )

 
   (       )

 
      (       )(       )). (7) 

where d’s are precision parameters, in the context of the bivariate normal distribution (Rue and 

Held 2005 ). By setting  

      
 

 
(     

       
             ), 

                 , 

                 , 

        ,  (8) 

and 

    
 

 
(     

       
 )  (9) 

we can write 

     (   )                                .  (10) 

Here     are random effects for interactions. If the ‘co-precisions’ are equal (         ) the 

term           can be subsumed in to the site effects       and the model can do without 

interactions. The      account for the quadratic term arising from the Gaussian (logit) model. In 

conclusion, up to distributional assumptions, the GLMM can be interpreted as a Gaussian logit 

model with equal tolerances for the species. 
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A graphical tool and statistical test for unimodality 

Equations (3) and (9) suggest a graphical tool for detecting unimodality and also a statistical test. 

The idea is to fit a GLMM to the binary data {yij} with respect to the environmental variable with 

values  {xi} (i = 1,…, n). In the R package lme4  (Bates et al. 2011),  the model can be fitted by 

lmer (y ~ 1+ x + (1+ x | sp) + (1| site) 

          family=binomial(link="logit") ,data), 

 
where y represents the vectorized response data while sp and site are factors indicating species and 

sites. The site effects      obtained from the fit are then plotted against the environmental variable 

{xi}. There is an indication of unimodality in terms of the species response with respect to the 

environmental variable x if this graph shows a quadratic relationship. An associated statistical test 

can be obtained by regressing the site scores on   and   , i.e. using linear multiple regression with 

model formula 

                 (11) 

and examining the significance of the squared term by a t-test on its regression coefficient.  

The usual role of the site effects in a GLMM such as equation (4) is to account for the size of the 

site or the fertility of the site and, in general, for factors that influence the probability of occurrence 

of all species in the site. The site effect    will thus be expected to be related to the expected 

number of species in a site, that is to ∑      and, in terms to the data to the number of species that 

is observed in a site, for short the site total, defined as    ∑     . The site total and the site score 

are thus naturally related. In order to obtain a more sensitive test, it is thus logical to add the site 

total to the formula in in equation (11), giving 

                 .  (12) 

where S is the site total (number of species in a site). There is evidence of unimodality if the 

squared term is significant as judged by a t-test on its regression coefficient.  

Material and methods 

Simulation Set-up 

 
Example 1: The procedure to simulate data was the following: 

1) Generate n=50 values of an environmental variable x as a random sample from the 

uniform distribution such that           . 

2) Generate a vector  , a parameter related to maximum probability of length m (number of 

species) drawn at random from a normal distribution with 0 mean and unit variance 

(        ).  
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3) Generate a vector   of length m from a uniform distribution such that           , where 

     , for a fixed value of t, to ensure that optima are also placed outside the sample 

range of x.  

4) Generate the binomial probabilities form the unimodal response curve 

                                                   (   
(     )

 

   
 )    (13) 

where     presence–absence data were generated at random from a binomial distribution with 

probability       and     . We simulate data for constant tolerance in each data set with m=100 

species for               . Fig. 1 indicates how the simulated species response curves look like 

for different values of tolerances. 

Example 2: 

Example 2 is as example 1, except that it uses a normal instead of a uniform distributions for x and 

u, x         and        where              

Example 3: 

In this example the tolerance varies among species, with a median tolerance of 0.5 in example 3A 

and of 1 in example 3B. Let                   , for each   generate a vector   of length m=100 

from a lognormal distribution               where             and 1 in examples 3A and 3B, 

respectively. The rest of the setup is the same as example 1.  

Example 4: 

In this example we simulate datasets with fewer (m=10) and more (m= 100) species than in 

example 1 (m= 50) with tolerance   =1.  Simulation setup is the same as example 1.   

Each dataset was characterized by beta diversity and length of gradient  The most commonly used 

index of beta diversity is       ̅⁄   , where S is the total number of species, and  ̅ is the 

average number of species per site (Whittaker 1960).  Length of gradient is a property of an 

environmental variable. The length of gradient can be defined as the range of the environmental 

variable divided by the average range of the species. The axis length of first axis of detrended 

correspondence analysis (DCA) of data is the Length of gradient (ter Braak 1993).  Length of 

gradient was expressed in standard deviation (S.D.) units (Hill and Gauch 1980).  Beta diversity 

was calculated using the asbio package (Aho 2011) and DCA was performed in the vegan package 

(Jari et al. 2011),  both in R software (R Development Core Team R 2011). We also simulated data 

according to GLMM model of equations (4)-(6).  
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Fig. 1. Simulated unimodal response curves of the probability that species occur at a site, against the 

environmental variable x for 4 different values of tolerances            . For each tolerance value, 

curves vary  in optimum and maximum probability of occurrence.  

Results and discussion 
 

Simulated data 

 
Fig. 1 shows the simulated response curves in examples 1 and 2; the sampled range of the 

environmental variable is the range of x shown. With increasing tolerance the part of the curves 

that is sampled shows less unimodality. This is expressed quantitatively in Table 1 by the length of 

gradient SD units which varies between about 1 SD (not so unimodal) to 6 SD (very unimodal). 

The associated beta diversity varied between 1 and 5.   

The site effects issued by the GLMM analysis of each of the simulated data sets are plotted in Figs. 

2-6 against the environmental variable (left) and the site total (middle), together with a plot of the 

site total against the environmental variable (right).  

For example 1 (uniform set-up), site effects shows a clear quadratic relationship along the 

environmental variable for t = 0.5, 1, and 2 but for     the relationship does not look very 

quadratic (Fig. 2). The range of sites effects also decreases with increasing tolerance and for large  

 , the site effects are close to zero, as can be seen from the vertical scale values. The plot of the site 

effects against the site total is linear but more dispersed for small tolerance than for large tolerance. 

For large tolerance they become nearly exactly linear (middle column of Fig. 2). The site total has 

also a weak quadratic relationship with the environmental gradient but for large tolerance no  
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Fig.  2. Diagnostic plot to detect unimodality      . Data simulated from example 1 (Uniform set-up) for 

four values of  tolerances. Tolerance is constant for each of data set. In first column site effects are plotted 

against the environmental variable for each level of tolerance. In second column sites scores are plotted 

against the site total (species total per site) and in the third column site total are plotted along the 

environmental variable.  
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Fig.  3. Diagnostic plot to detect unimodality. Data simulated from example 2 ( Normal set-up) for four 

values of  tolerances. Tolerance is constant for each of data set. 
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Table 1. Length of gradient and beta diversity of datasets simulated in example 1 (uniform set-up) 

and example 2 (normal set-up) for four levels of tolerance (t). 

 Uniform setup Normal setup 

t Length of gradient Beta diversity Length of gradient Beta diversity 

0.5 6.63 4.95 4.81 3.25 

1 3.06 2.95 2.77 2.48 

2 1.65 1.92 2.04 2.17 

4 1.12 1.38 1.73 2.12 

 

 Table 2. Coefficient estimate of quadratic term and site total obtained by fitting equation (7) and 

(8) to the simulated data of example 1 & example 2.  In parentheses are the corresponding 

standard errors.  

 

model               

t   
            

Uniform set- up (example 1) 

0.5 2.335 -1.111 (0.037)*** -1.029       (0.012)*** 0.105       (0.005)*** 

1 0.178 -0.232 (0.019) *** -0.139       (0.002) *** 0.053       (0.001)*** 

2 0.001 -0.002 (3.7×10
-3

)*** -3.7×10
-04

 (8.2×10 
-06

)*** 9.5×10
-04

 (2.6×10 
-06

)*** 

4 0.010 -0.004 (0.005) -8.6×10
-05

 (8.3×10 
-05

)*** 9.6×10
-03

 (2.6×10 
-06

)*** 

Normal set-up (example 2) 

0.5 1.623 -1.337 (0.039)*** -1.318       (0.080)*** 0.003       (0.011) 

1 0.070 -0.136 (0.023)*** -0.089       (0.001)*** 0.035       (0.0002)*** 

2 0.000  0.000 (0.000) -1.2×10
-13

 (1.1×10 
-15

)*** 2.2×10
-13

 (2.8×10 
-16

)*** 

4 0.005  0.002 (0.003) -4.1×10
-4

  (2.6×10 
-6

)*** 4.3×10
-03

 (5.7×10 
-7

)*** 

*** p-value < 0.001. 

 

relationship is observed. In example 2 (normal set-up), the plots Figs looks very similar to those of 

example 1, except that the relationship of the site total with the environmental gradient is more 

strongly quadratic for t = 0.5. In example 1, the site total increases with increasing tolerance but 

this effect is small in example 2. This might be a side effect of the choice of the distribution of the 

optima in these examples.  

Table 2 shows the relevant coefficients of the regression of the site effect on the environmental 

variable x and its square, with (right) and without (left) the site total in the model. As expected, the 

coefficient of the squared term is always negative and decreases in size absolute value with 

increasing tolerance. It may become very close to zero when accounting for the site total. Despite 

this, the squared term is always significant when the site total is in the model. Without site total, 

the squared term is not significant for t = 4 in both set-ups and for t = 2 in the normal set-up.  

When the data are simulated using a linear model the squared term was not judged significant 

more often than expected on the basis of Type I error of the test. 

With tolerance varying across species with a median of 0.5 and 1, (example 3) the length of 
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gradient and beta diversity decreases with increasing variation in the tolerance (Table 3).  The site 

effects issued by GLMM still show a quadratic relationship with the environmental variable (Figs. 

4 and 5). The quadratic terms decreases in size with increasing coefficient of variation (Table 4), 

but is significant in all cases.  

 

 

Fig.  4. Varying tolerance                      for (a)      , (b)        (c)       (d)   . Data 

simulated from example 3A. 
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Fig.  5. Varying tolerance                    for (a)      , (b)        (c)       (d)   . Data 

simulated from example 3B. 
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Table 3. Length of gradient and beta diversity of simulated dataset of example 3. 

 

 Lognormal median tolerance=0.5 median tolerance=1 

Sigma Length of gradient Beta diversity Length of gradient Beta diversity 

0.1 6.27 5.03 3.60 2.83 

0.25 5.92 5.02 3.04 2.96 

0.5 5.42 4.97 3.12 3.07 

1 3.60 4.09 2.97 2.81 

 

 

 

 

Table 4. Coefficient estimate of quadratic term and site total obtained by fitting equation (7) and 

(8) to the simulated data of example 3.  In parentheses are the corresponding standard errors.  

 

Model               

Sigma   
            

Median tolerance =0.5 

0.1 2.110 -1.119 (0.042)*** -1.038 (0.014)*** 0.095 (0.005)*** 

0.25 1.162 -0.805 (0.035)*** -0.702 (0.009)*** 0.096 (0.003)*** 

0.5 0.423 -0.411 (0.034)*** -0.511 (0.008)*** 0.078 (0.002)*** 

1 0.196 -0.241 (0.024) -0.180 (0.003)*** 0.064 (0.001)*** 

Median tolerance = 1 

0.1 0.201 -0.256 (0.027)*** -0.164 (0.003)*** 0.052 (0.001)*** 

0.25 0.144 -0.209 (0.021)*** -0.128 (0.002)*** 0.047 (0.001)*** 

0.5 0.076 -0.109 (0.017)*** -0.121 (0.002)*** 0.036 (0.001)*** 

1 0.067 -0.109 (0.014)*** -0.068 (0.001)*** 0.035 (0.0003)*** 

*** p-value < 0.001. 

 

 

Fig. 6 shows the effect of number of species. For smaller (    ) and larger (m =    ) number 

of species, the site effects remain to show a quadratic relationship with the environmental variable 

(Fig. 6). The length of gradient and beta diversity decreases as the number of species increases 

(Table 5). Despite the smaller length of gradient, the quadratic effect is stronger when the number 

of species is larger (Table 6).  

Figs. 7 and 8 shows the linear relationship of between the random slopes (  ) issued by GLMM 

and the true optima (  ). The relation was predicted by equation (3). The relationship is weaker the 

larger the tolerance.  With tolerance varying across species, the relationship continues to hold true 

surprisingly well (Figs. 9 and 10), except perhaps when the coefficient of variation of the tolerance 

is large (>100%).  
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Fig.  6. Data simulated from example 4 for 10 and 100 species and constant tolerance =1. 

 

 

Table 5. Length of gradient and beta diversity of simulated dataset of example 4  

No of Species (m) Length of gradient Beta diversity 

10 4.42 3.31 

100 2.75 2.14 

 

 

Table 6. Coefficient estimate of quadratic term and site total obtained by fitting equation (7) and 

(8) to the simulated data of example 4.  In parentheses are the corresponding standard errors and m 

is for number of species. 

Model               

m   
            

10 0.324 -0.075 (0.017)*** -0.032 (0.001)*** 0.225 (0.001)*** 

100 0.347 -0.363 (0.015)*** -0.190 (0.003)*** 0.053 (0.001)*** 

*** p-value < 0.001. 
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Fig.  7. Plot beta (  )vs species optimum (  ) , data from example 1. 

 

 
Fig.  8. Plot beta (  )vs species optimum (  ), data from example 2. 
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Fig.  9. Plot   vs    for example 3A,                     , Median tolerance=0.5. 

 

 
Fig.  10. Plot   vs    for example 3B.                   , Median tolerance=1.  
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Real data example  

Dune Meadows data 

We illustrate the method on the basis of the Dune Meadow data (Jongman et al. 1987). This is a 

small data set of 28 higher plants in 20 sites in a dune area in the Netherlands. Environmental 

variables related to soil and management were measured at each site. We fitted a GLMM to the 

dune meadow data using Moisture as the environmental variable. The estimated site effects show 

some unimodality when plotted against the environmental variable (Fig. 11). The quadratic term is 

significant when adjusted for the site total, but without adjustment it is not (Table 7). We conclude 

that there is some indication for unimodality in this small data set, but the unimodality is not 

strong.  

Phytoplankton data  

The data set involve phytoplankton community of 203 lakes located within four climate zones and 

associated measurements on various environmental variables and morphological species traits of 

60 species (Kruk 2010, Jamil et al. in prep). We considered three environmental variables in turn, 

fitted a GLMM for each and plotted the site effects against the chosen environmental variable. The 

environmental variables were temperature, chlorophyll-a and a latent variable, that is linear 

combination of environmental variable                                   

                                     . The coefficients were estimated 

using a OpenBUGS program that specified a Bayesian variable selection method.  

Both the graphical test and the statistical test confirm unimodality (Fig. 12, Table 7). Fig. 13 shows 

the relationship of between the random slopes (  ) with respect to chlorophyll-a issued by GLMM 

and the optima (  ) on the chlorophyll-a gradient as obtained from a fit of the unimodal model of 

Eq. 1using OpenBUGS. The species with low values for the optimum received similar values for 

the slope, analogously to Figs. 7-10, and thus cannot be properly ranked on the basis of the slopes 

only, but otherwise there is a good agreement. 

 

 

   Fig.  11. Diagnostic plot from Dune Meadows data where Moisture is an environmental gradient. 
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Fig. 12 Diagnostic plot for Phytoplankton data. Three rows are for temperature, chlorophyll-a, and latent 

variable.     

 

 

Fig.  13. Plot of the slope estimates (  ) of the GLMM against the fitted optimum  (  ) obtained with 

unimodal Gaussian model.  
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Fig.  14.  Diagnostic plot for Sea-shore data for the two years (circle (●) for the year 1978 and  circle (○) for 

the year 1984) where elevation  is an environmental gradient 

 

Sea-shore data  

This data set is about the vegetation of the rising seashore on the island Skabbholmen in the 

Stockholm archipelago, eastern central Sweden (Cramer and Hytteborn 1987) and is part of the 

Canoco package (ter Braak and Smilauer 1998).  The data set consists of 63 sites sampled in both 

1978 and 1984 and contains 68 species. We fitted a GLMM to the sea-shore data for the years 

1978 and 1984 separately and plotted the site effects against the environmental variable Elevation 

for both years. The estimated site effects show unimodality when plotted against the environmental 

variable (Fig. 14, Table 7). Both the graphical test and the statistical test confirm unimodality. 

 

Table 7. Coefficient estimate of quadratic term and site total obtained by fitting equation (7) and 

(8) to the dune meadow data and phytoplankton data. In parentheses are the corresponding 

standard errors. In parentheses are the corresponding standard errors 

Model               

  
                   

Dune meadows data 

Moisture 0.135 -0.053 (0.034) -0.020 (0.001) *** 0.088 (0.001)*** 

Phytoplankton data 

Temprature 0.375 -0.005 (0.002) *** -0.012 (0.0003)*** 0.103 (0.001)*** 

chlorophyll-a 0.606 -0.114 (0.016) *** -0.182 (0.005) *** 0.124 (0.002)*** 

Latent variable 0.463 -0.035 (0.005) *** -0.064 (0.001) *** 0.117 (0.002)*** 

Sea-shore data 

Elevation-1978 1.113 -0.002 (0.0002)*** -0.001 (0.0001)*** 0.158 (0.010)*** 

               -1984 0.973 -0.002(0.0002)*** -0.001 (7.0×10 
-5

)*** 0.171 (0.008)*** 

*** p-value < 0.001. 
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Conclusion 

To our knowledge, explicit testing of unimodality in species response along an environmental 

gradient, without fitting a unimodal model, has not been done before.  Walker and Jackson (2011) 

used a latent variable approach to test for unimodality. We tried their approach to the 

phytoplankton data, but failed to get an answer because the program for fitting the quadratic model 

crashed. In this paper, we take a simpler approach and studied the suitability of GLMM for 

detecting the unimodality of species response along an environmental gradient and suggested a 

graphical tool and a statistical test for testing unimodality. There is an indication for unimodality 

when site effects show quadratic relationship with the environmental gradient. The test can make 

even stronger by adjusting the relationship with the site total (the number of species in a site). 

As an alternative to our approach, we could explicitly add the square of the environmental variable 

as a fixed effect term to the GLMM of equation (4), yielding 

     (   )               
       (14) 

and judge the significance of the addition by a one-sided test on    (H0 :      versus H1:    

 ). This approach is presumably even more powerful, but necessitates the fit of an extra model. 

The model assumes constant tolerance for all species curves (as does equation (4)) and can be 

rewritten as 

     (   )     
(     )

 

     ̃     (15) 

with     √    ,          ,         
 

     
    ,    and  ̃     

 

     
 .  (16) 

To test the assumption of equi-tolerance, we can go one step further and add the squared term     

also as a random (species-dependent) component to equation (14) and test the significance of this 

extra variance component. In the R package lme4  (Bates et al. 2011),  the two models to compare 

are (with xx = x
2
) 

lmer (y ~ 1+ x + xx + (1+ x | sp) + (1| site) 

          family=binomial(link="logit") ,data) 

and 

lmer (y ~ 1+ x + xx + (1+ x + xx| sp) + (1| site) 

          family=binomial(link="logit") ,data). 

A GLMM is, of course, a linear model. This paper shows that, despite this fact, it can be used to 

detect unimodality and to fit unimodal data, with the provision that the differences in niche widths 

among species is not too large (Fig. 10) and even this assumption can be tested within the GLMM 

framework. The application scope of GLMM in ecology is thus much broader than one might think 

at first glance.  
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Chapter 5 

 

Selection properties of Type-II maximum likelihood (empirical Bayes) in 

linear models with individual variance components for predictors 

 

 

Tahira Jamil, Cajo J.F. ter Braak 
(Submitted to Pattern Recognition Letters) 

 

Abstract 

Maximum Likelihood (ML) in the linear model overfits when the number of predictors (M) 

exceeds the number of objects (N). One of the possible solution is the Relevance vector machine 

(RVM) which is a form of automatic relevance detection and has gained popularity in the pattern 

recognition machine learning community by the famous textbook of Bishop (2006). RVM assigns 

individual precisions to weights of predictors which are then estimated by maximizing the 

marginal likelihood (Type-II ML or empirical Bayes). We investigated the selection properties of 

RVM both analytically and by experiments in a regression setting.  

 

We show analytically that RVM selects predictors when the absolute z-ratio (|least squares 

estimate|/standard error) exceeds 1 in the case of orthogonal predictors and, for M = 2, that this still 

holds true for correlated predictors when the other z-ratio is large. RVM selects the stronger of two 

highly correlated predictors. In experiments with real and simulated data, RVM is outcompeted by 

other popular regularization methods (LASSO and/or PLS) in terms of the prediction 

performance. We conclude that Type-II ML is not the general answer in high dimensional 

prediction problems. 

 

In extensions of RVM to obtain stronger selection, improper priors (based on the inverse gamma 

family) have been assigned to the inverse precisions (variances) with parameters estimated by 

penalized marginal likelihood. We critically assess this approach and suggest a proper variance 

prior related to the Beta distribution which gives similar selection and shrinkage properties and 

allows a fully Bayesian treatment.  

 

Keywords: Automatic relevance detection; Empirical Bayes; Lasso; Sparse model; Type-II 

maximum likelihood; Relevance vector machine  

 

 

 

 

 

 

 

 

 

 

 



 

78 

 

 

 

 

Introduction 
 

Maximum likelihood (ML) or least squares (LS) can lead to sever over-fitting and poor estimation, 

when the number of predictors or basis functions ( ) is large as compared to data size ( ) i.e., 

   . Regularization or shrinkage estimation can improve an estimate and regularize an ill-posed 

problem (Bishop 2006). This involves adding a penalty term to the error function in order to 

discourage parameters from reaching large values. In a linear model the modified error function 

takes the form  

     ∑ |  |
  

    for      (1) 

where RSS is the residual sum of squares, w = (w1,.., wM)
T
 is the parameter vector containing the 

weights (regression coefficients) for the predictors, and λ   0 is a complexity parameter that 

controls the amount of regularization. For q=2 we have ridge regression (RR) (Hoerl and Kennard 

1970) which proportionally shrinks estimates of {wj} to zero, but does not produce a sparse 

solution. In neural networks this is known as weight decay. For q=1 we have the LASSO (least 

absolute shrinkage and selection operator) (Tibshirani 1996) which also shrinks the coefficients 

towards zero but also puts some coefficients exactly to zero, and therefore performs variable 

selection (Tibshirani 1996, Efron et al. 2004). The optimal choice for λ in penalized likelihood is 

often based on cross validation.  

Most regularization methods have a Bayesian interpretation as giving the maximum a posterior 

(MAP) mode for a given prior distribution for the parameters. The prior in RR is Gaussian and in 

LASSO it is double exponential. The equivalence of MAP with the shrinkage estimate does not 

mean that the Bayesian framework is simply a re-interpretation of classical methods. The 

distinguishing element of Bayesian inference is marginalization. By marginalizing over w we 

obtain a marginal likelihood, also known as the Type-II likelihood or the evidence function 

(Bishop 2006). The parameter λ can then be obtained by maximizing this function, i.e. by Type-II 

maximum likelihood, and then w is obtained for this value of λ. This procedure is also known as 

empirical Bayes and automatic relevance determination (MacKay 1992, Neal 1996). A fully 

Bayesian approach would also require a prior for the hyperparameter λ and marginalization over λ.  

Tipping (2001) created the relevance vector machine (RVM) as a sparse kernel technique build 

upon a linear model with M = N. In RVM each weight wj is assigned an independent Gaussian 

prior with an individual precision, resulting in M hyperparameters which are all precisions (or their 

inverse, variances). Tipping (2001) considered assigning a Gamma prior to the precisions, but 
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eventually focussed on a uniform prior for which maximization of the posterior reduces to 

maximization of the marginal likelihood, also called the type II likelihood (Tipping 2001, Bishop 

2006). By maximizing the Type-II likelihood with respect to all M hyperparameters many 

precisions go to infinity (Faul and Tipping 2002), so creating a sparse model as each infinite 

precision effectively eliminates the corresponding predictor from the model. Tipping and Faul 

(2003) developed a fast sequential algorithm for this. RVM has found wide-spread application 

with 705 citations in the Web of Science as of July 2011, also outside the kernel world (Li et al. 

2002, Rogers and Girolami 2005) and found general exposure through the exposition in Bishop 

(2006). However, little is known about the properties of RVM. With (hyper)parameters on the 

edge of the permissible region, general asymptotic theory for maximum (marginal) likelihood does 

not apply.  

This paper studies the selection and shrinkage properties of RVM in the un-kernelised regression 

setting (Bishop 2006: section 7.2). We found it easier to work with variance rather than precision, 

because a predictor drops from the model when its variance component is zero, which is easier to 

work with than with infinite precision. As Bishop (2006), we phrase and study RVM outside its 

kernel context as a Type-II maximum likelihood approach to the linear model with individual 

variance components for the predictors. We first state the model and rewrite the marginal 

likelihood in a form that uses inner product matrices of size M × M rather than N × N. We then 

obtain an analytical expression for the selection and shrinkage properties of RVM in the special 

case that the predictors are orthonormal and the error variance is known. The main result here is 

that RVM drops a predictor from the model if and only if its z-ratio (least-squares estimate of the 

weight divided by its standard error of estimate) is less than 1 in absolute value. RVM is thus very 

tolerant in allowing predictors to stay in the model. In practice, particularly in a kernel context and 

always when    , predictors are not orthogonal and regularization methods tend to behave very 

different in the presence of correlation. For example, if the two predictors are highly correlated, 

LASSO selects one, whereas ridge, elastic net (Zou and Hastie 2005) and PLS (Frank and 

Friedman 1993) select both. Tibshirani (1996) gave analytical expressions for the two correlated 

predictors case for the LASSO. In section 4 we attempt similarly for RVM and arrive at analytical 

expressions for when RVM selects neither, one or both predictors. The main conclusion from these 

expressions is again that RVM is very tolerant in allowing predictors to stay in the model. In 

section 5 we compare RVM on simulated and real data for a range of M/N ratios with LASSO and 

Partial Least Squares (PLS), which is a shrinkage method based on latent variables that is very 

popular in chemometrics (Wold et al. 2001). We conclude with a discussion of the RVM and its 

extensions in relation to fully Bayesian approaches. 
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RVM as sparse Bayesian linear regression 
 

RVM for regression is a linear model with a prior that results in a sparse solution (Bishop 2006). 

The model for real-valued target variable t, given an input vector x, takes the form 

   (   )    (2) 

where   is a vector of M parameters and   is a white noise term that is Gaussian distributed with 

zero mean and variance   , which we will assume known.The regression function  (   ) is then 

defined as the linear model  

 (   )  ∑     ( ) 
     (3) 

with fixed nonlinear basis functions   ( ). For ease of presentation we ignore the constant term 

representing bias as it can be dealt with by centring the target variable. For given set of N 

independent observations of the target t and input vector x, the data likelihood function of the 

target vector   (       )  for given input vectors             is  

 (      )  (  )   ⁄    ∏    ( 
 

   (    (    ))
 
)   

     (4) 

To make it a Bayesian model we need to specify a prior for the parameter  . In RVM, each 

parameter    is an independent zero mean Gaussian with a separate variance parameter   , 

giving 

  (   )  (  )   ⁄ ∏   
   ⁄ 

      ( 
  

 

   
) (5) 

where   (       )  is the vector of hyperparameters, which are in our notation not precisions 

but variances. These M independent hyperparameters control the strength of the prior over its 

associated weight and this form of prior is responsible for the sparsity properties of the model 

(Tipping 2001).  

In Type-II maximum likelihood (Berger 1985), also known as empirical Bayes or evidence 

approximation (MacKay 1992), an estimate  ̂ is obtained by maximizing the marginal likelihood 

 (      ) over  , which is then plugged into posteriori density  (     ̂   ), which is a 

multivariate normal, the mean which is taken as the shrinkage estimate  ̃. The marginal likelihood 

requires integration over  , giving the multivariate normal density (Bishop 2006) 

 ( )   (      )  ∫  (      ) (   )  
 

  
 (  )   ⁄       ⁄    ( 

 

 
      )  

 (6) 
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where            with   the     design matrix, of which the ith row is 

(  (  )     (  ))
  and       (       ).  

Our goal is now to maximize (6) with respect to the hyperparameters  . At this point we deviate 

from Bishop (2006) and convert the inverse and determinant of the     matrix   using the 

matrix inversion and determinant lemma or Woodbury formula (Golub and van Loan 1989) into 

forms using     matrices. On deleting terms that do not depend on  , we obtain (Appendix A) 

 ( )                ⁄    (
 

      (          )     )  (7) 

This marginal likelihood has a form equivalent to the posterior distribution of the variance 

component in a hierarchical linear model or random model (O'Hagan and Forster 2004, ter Braak 

2006). The study of the selection properties of RVM is equivalent to the study of the conditions 

under which hyperparameters ( -values) become zero. We do this by setting the derivative of (7) 

with respect to   to zero, solving the resulting equation for  , checking that this is a maximum and 

checking whether the obtained  ̂ has some zero elements.  

 

Fig. 1. Two uncorrelated predictor case: regions in terms of the z-ratio (estimate/standard error) where the 

RVM estimate of the weights and associated variance components are exactly zero. In these regions the 

corresponding predictor(s) can be pruned from the model. 
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Orthonormal predictors 
 

In this section we study the selection properties of RVM in the special case that the predictors are 

orthogonal, i.e.      is a diagonal matrix. In this case the marginal likelihood (7) decomposes as 

a product of individual likelihoods  (  ) with (Appendix B) 

 (  )  (    
    )   ⁄    (

 ̂ 
   

    

 (    
    )

) (8) 

where  ̂    
    

   ⁄ , the least-squares estimate,         
   , the variance of 

 ̂ , and    is the mth column of  . The variance component    that maximizes (8) is 

 ̂  ( ̂ 
    ) , (9) 

where ( )  is the positive part operator, defined as ( )    if     and 0 otherwise. In the 

orthogonal predictor case, RVM thus leads to soft thresholding (Donoho and Johnstone 1994, 

Donoho 1995) of the variance component, whereas LASSO does this for the weights  (Tibshirani 

1996). Also observe that  ̂   , iff  ̂ 
     or, equivalently, |z-ratio|    ̂    ( ̂ )  1 

where se(.) is the standard error of estimate. The elements of the shrinkage estimate  ̃ for which 

the z-ratio is smaller than 1, are thus zero. The corresponding predictors can thus be pruned. Fig. 1 

displays the result for the case of two uncorrelated predictors. 

Two correlated predictors 
 

We now consider the case with two correlated predictors and assume they are rescaled such that 

  
       

      and   
      

     . In this case, A is a 22  diagonal matrix with 

diagonal elements    and    which are linearly changed by the rescaling. The dependence of the 

marginal likelihood  ( ) on    can be removed by transformation to variance ratios        

and by defining c    
    , d    

    . The maximum is invariant under these transformations. 

Note that c is the simple z-ratio, that is the z-ratio in least-squares simple regression with single 

predictor   , and the same holds for d and   . On using Mathematica, differentiating  (     ) 

with respect to    and    and setting the derivatives equal to zero gives (Appendix C) 

[
 ̂ 

 ̂ 
]  

[
 
 
 
 
(   ̂ (    ))

 
 (   ̂ )(   ̂ (    ))

(   ̂ (    )) 

(   ̂ (    ))
 
 (   ̂ )(   ̂ (    ))

(   ̂ (    ))
 ]

 
 
 
 

  (10)  
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This represents a maximum if  ̂  0 and  ̂  0. From (10), if  ̂  0, then  ̂  (    )  

and it should hold that 

(   ̂ (    ))
 
 (   ̂ )(   ̂ (    ))  (11) 

Inserting  ̂  (    )  in (11) and solving for c gives upper and lower bounds 

    (     )  √    (     ) (12) 

Subject to  ̂   , values of c within the bounds of (12) give  ̂ =0, and consequently  ̃   . 

Interchanging the roles of  ̂ and  ̂  and thus c and d yields similar for bounds of d such that  ̂ =0, 

and consequently  ̃   , now subject to  ̂   . If  ̂  0, then  ̂  (    ) , and if  ̂ =0, then 

 ̂  (    ) , so that both variance ratios are zero if both     and     are smaller than  . The 

bounds are a function of c, d and   .  

 

Fig. 2. Two correlated predictor case: regions in terms of the simple) z-ratio (a,b) and multiple z-ratio (c,d) 

where the RVM estimate of the weights and associated variance ratios are exactly zero. In these regions 

RVM prunes the corresponding predictor(s) from the model. The simple z-ratio is based on least-squares 

with a single predictor, the (multiple) z-ratio on least-squares with two predictors.  
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Figs. 2a,b shows these bounds for   = 0.5 and 0.9 in the (c,d)-plane and the resulting regions 

where none, one or both weights are exactly zero. Figures for the corresponding negative values of 

ρ   ff r only  n rot t on ov r 90
◦
 and shading.  

Wh r  s for ρ = 0,  ̃    if the simple z-ratio c is less than 1 in absolute value (      ), no such 

s m l  rul     sts for ρ ≠ 0. Th   nt rv l of c-values for which the first weight is exactly zero 

depends on d, as shown in Figs. 2a,b. For    m l , for ρ = 0.9 th n st ll  ̃    for       if d = 

1, but if d = 4, then  ̃    if              (Fig. 2b). The simple z-ratio alone thus says little 

about the nullity of the first weight estimate. We need both c and d.  

Figs. 2c,d shows the same bounds in terms of the (multiple) z-r t o’s,  ̂    ( ̂ ), m = 1,2, i.e. 

 ̂  (   )
  

    and   ( ̂ )  is a diagonal element of   (   )
  

, so that, in the two 

predictor case,    (    ) √     and    (    ) √    . For ρ = 0, th s  s th     nt ty 

transformation and the result is the same as Fig. 1. With      in (12),      √    , so 

that       (Figs. 2c,d); the associated values of    are  √      . For small and 

intermediate values of d the bounds are less simple. The same holds for      so that       

with     √      . 

Some more insight into Fig. 2 is obtained by noting that the corners of the unit rectangle in Fig 2a 

transform to the corners of the approximate trapezium in Fig 2c; the (1,1) corner becomes 

(0.58,0.58), the (1,-1) corner becomes (1.73,-1.73) for ρ = 0.5,  n  th  o  os t  corn rs (-1,-1) and 

(-1,1) follow by mirroring. This means that with the z-ratio pair (0.6, 0.6) both variables stay in the 

model. So it is not even necessary that the z-ratio exceeds 1 for obtaining a non-zero Type-II ML 

estimate. For ρ = 0.9, the corners become (0.23, 0.23) and (4.36,-4.36). So, for example, the z-ratio 

pair (0.3,0.3) gives two non-zero Type-II ML estimates, but the pair (4,-4) yields two zero 

estimates in Type-II ML so pruning both predictors from th  mo  l,   s  t  th  f ct th t for th s ρ 

the chi-square test-statistic of the latter point is about 9 times that of the former. This is a 

remarkable property of Type-II ML. 

Note that the white upper-right and lower-left corners in Figs 2c,d come from the small white 

wedges in Figs 2a,b in the same corners. In Fig. 2b the wedge is very small: if the correlation 

among predictors is high, both predictors to stay in the model when c and d are very close or very 

different, or both should be very large.  

In conclusion, if the (estimated least squares) effect of one predictor is very strong, the bound for 

the additional correlated predictor comes close to the bound for the uncorrelated case (|z-ratio| > 1 

for a predictor to stay in the model). If, by contrast, neither predictor has a large effect, then Type-

II ML prunes the one with the smallest effect. If, for positively correlated predictors, they have 

virtually identical estimated effects, then both predictors stay in the model, even if their z-ratio is 
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 s sm ll  s 0.6  n  0.3 for ρ = 0.5  n  0.9, r s  ct v ly. How v r,  f for  os t v ly corr l t   

predictors, the estimated least squares effects are of opposite sign, Type-II ML excludes both 

predictors, except when the z-ratios are large.  

Experiments 
 

In the following we compare the performance of RVM with LASSO and PLS on simulated and 

real data. Computation was carried out in R (R Development Core Team 2010) using the packages 

lme4 (Bates et al. 2011), glmnet (Friedman et al. 2010) and pls (Wehrens and Mevik 2006). The 

kernelized version of RVM was carried out with the function rvm in the kernlab package 

(Karatzoglou et al. 2004 ). Results are for two types of kernels: RVMrbf (Gaussian radial basis 

kernel) and RVMlin (the linear or dot product kernel).A prototype statement to carry out RVM (by 

Type-II ML) in lme4 with M = 2 is 

lmer(t ~ (0 + x1 | v) + (0 + x2 | v), data=train, REML=FALSE) 

where t is the target, x1 and x2 predictors, v is an all ones N-vector and train is a data frame 

containing these vectors. The argument REML shows that RVM could also be fitted using 

Residual Maximum Likelihood (Searle et al. 2008). REML estimates of variance components are 

generally less biased than ML estimated. In the experiments we show results from both Type-II 

ML and REML. In RVM context the differences are expected to be small.  

Simulation study 

We first checked that lmer follows our theoretical analysis that RVM with orthogonal predictors 

sets the variance of predictors to zero if their |z-r t o  ≤ 1. For this, we generated data sets with R-

package mvrnorm with M=6 orthogonal predictors and target t such that the z-r t o’s  n   l  st 

squares fit were 0.90, 0.94, 0.98, 1.02, 1.06, and 1.10. For large N (e.g. N = 100 and 1000), lmer 

followed the theory in all such data sets. For small N, the two small differences between our theory 

and lmer play a role. First we could not fix the error variance to 1 as we did in our theory and, 

secondly, we could not omit the intercept. The REML- and ML- estimates for the error variance by 

lmer were biased downward with, as expected, less bias in REML than in ML, and with less bias 

for larger N. For small N (we tested with N = 8 and 20), our theory still turned out to work for the 

estimated z-ratio, that is, the z-ratio in which the estimated error variance  ̂   s  ns rt   for σ
2
. The 

variance estimates by both REML and ML were in accordance with equation (9) with    

 ̂    
   , except in occasional cases of non-convergence. So, lmer followed the theory for 

orthogonal predictors also quantitatively. 

Next, we simulated data where all predictors were assumed to be independent and Gaussian 

distributed, but not necessarily orthogonal in each particular data set due to randomness or N < M.  
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Table 1. Median mean-squared prediction errors for the simulated examples with independent 

predictors for different methods (100 replications). In parentheses are the corresponding standard 

errors (of the medians) computed via 1000 bootstrap resamples of the 100 mean squared errors. 

The null model used the mean for prediction. 

 

We simulated data from the true model        ,    (   ), σ
 
= 1 with      and      

for      where        , and M = 1, 5, 10, 20 and 100 predictors. The examples thus differ 

in the number of weights equal to zero (noise predictors). The lme4 implementation of type II ML 

did not allow much higher M. We set N = 20 to still get a wide range of M/N. For each example, 

100 datasets were generated. For computing mean-squared error of prediction of the target 

(MSEP), each dataset was split into training data of N = 20 observations and test data of 1000 

observations and MSEP was calculated from the test data using the weights estimated from the 

training data.  

Table 1 and Fig. 3 summarize the results. Type-II ML and REML behaved similar and almost 

identically to LASSO for M= 1 and 5 but behaved worse for    . PLS had the worst 

performance in all examples.  

 

 

Fig. 3. Box plot of the mean-squared prediction error (MSEP) for LASSO, PLS, ML and REML of the 100 

simulations with independent predictors.  

              Type-II 

M null model
 

LASSO PLS ML REML 

1 10.33 (0.062) 1.09 (0.011)  1.09 (0.010) 1.09 (0.010) 

5 10.31 (0.086) 1.17 (0.024) 1.32 (0.032) 1.14 (0.031) 1.14 (0.027) 

10 10.45 (0.087) 1.27 (0.021) 2.04 (0.104) 1.32 (0.035) 1.31 (0.035) 

20 10.32 (0.079) 1.45 (0.045) 4.97 (0.275) 2.44 (0.111) 2.38 (0.101) 

100 10.39 (0.063) 1.52 (0.045) 8.81 (0.123) 2.21 (0.080) 2.14 (0.053) 
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The next three examples are similar to those in Zou and Hastie (2005), where simulated 100 data 

sets are simulated from the model         with    (   ). These examples are:  

In example 1, N = 20, M = 8, w = (3, 1.5, 0, 0, 2, 0, 0, 0)
T
 and the predictors are Gaussian with 

    (     )         with  = 0.5. We set σ = 3  n  th s  m l  s  N  ≈ 1.5.  

Example 2 is the same as example 1, except that           m ( N  ≈ 1.3). 

In example 3, N = 50, M = 40,      for m = 1, …, 15  n       for m = 16, …, 40  n   N  

≈ 1.7. Th  f rst 15  r   ctors  r  thr    qu lly  m ort nt  rou s of 5  r   ctors   ch, wh ch  r  

generated as follows:  

        
 

 with     (   ),         

        
 

 with     (   ),          

        
 

 with     (   ),           

and   
 
  (      ) for         . In this model, the pairwise correlations within groups are 

0.86 and the correlations between groups are 0. The remaining 25 predictors are pure noise 

features.  

The next four examples are from ter Braak (2009) and use a latent variable model. In these 

examples the target was generated from four independent standard Gaussian latent 

variables   ,     by 

   ∑         
 
    with     (    ) 

and fixed   (       )
 , and the predictors were generated as 

   
( )           

 
 with    

 
  (      

 ) (                        ), 

and fixed {   }, yielding predictors with unit variance. The following four examples differ in the 

number of predictors per latent variable (  ), the weights ( , {   }), and the number of noise 

variables added.   

In Example 4, N = 50, M = 75,   (                   )  and σ
 
= 15, so that signal to noise 

r t o ( N  ≡ s (E(t)/σ) is 3. The first latent variable h1 generate m1 = 5 predictors with          

  k (SNR= 1.6). The second, third and fourth latent variables generate 10, 20 and 40 predictors in 

the same way by using q = 2, 4 and 8 repetitions of the   coefficients, respectively. In this setup, 

the population least square weights for the predictors associated with the first latent variable are w 

= (5, 5, 5, 5, 5)
T
 and the weights for the predictors associated with the other three latent variables 

are equal to ~5/q, more precisely 2.59, 1.32 and 0.67. The within-group correlations are 0.72. This 

example has 75 nonzero coefficients and no zero coefficients.  
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Example 5 is as example 4, except that 75 nuisance predictors are added.  

Example 6 has N = 50 with M =75 predictors and target generated as in example 4 but with 

different {   }, σ
 
= 15 ( N  ≈3. ). For f rst l t nt v r  bl  {   } = (               ). The 

second latent variable generated two block of five coefficients; in each block {   } 

=(               ). The third latent variable generated four blocks of five predictors; in each 

block {   }  = (2, 2, 0, 2, 2) and the fourth latent variable generated eight blocks of five 

predictors; in each block {   } = (1, 1, 0, 1, 1).  In this setup, contrasts of correlated predictors 

derived from the first and second latent variable are important for precise prediction (ter Braak, 

2009).   

Example 7 is as example 6, except that 75 pure noise features are added.  

Table 2 summarizes the results based on 100 simulations of the examples. Note that the numbers in 

Table 2 are    higher than those in ter Braak (2009). Type II ML and REML perform comparably 

to LASSO and PLS in examples 1-2, but do poorly in examples 3-7. RVMrbf does better than 

either Type II ML or REML, except in examples 1 and 2, and better than RVMlin, except in 

examples 4 and 6. The performance of PLS is the best in all examples, except in examples 1 and 6 

where LASSO dominates all.  

 

 

Fig. 4. Marker weights w estimated by Type-II ML and LASSO in the barley data. 
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Real data example 
In this example we reconsider the barley dataset from the North American Barley Genome 

Mapping project to illustrate the performance of Type-II maximum likelihood and LASSO (Xu 

2007). The data consists of N = 145 doubled haploid population lines of barley. The target t was 

average kernel weight. The input vector x was the genotype of the line, consisting of M = 127 

markers. Each marker was coded as   ( )   1 for genotype A (TR306 allele), -1 for genotype B 

(Harrington allele) and 0 for missing genotype. The mean squared error of prediction, estimated 

using 10-fold cross-validation was 1.62 for Type-II maximum likelihood and 0.68 for LASSO (the 

LASSO penalty being estimated by an inner loop of cross-validation). Fig. 4 shows the estimated 

weights of markers for the two methods. Both the methods perform similar in terms of sign and 

have same direction for coefficients. The LASSO pattern of weights is more shrunken towards 

zero as compared to Type-II ML. Type-II ML has thus higher peaks. 

Discussion 
 

RVM has the attractive property that it automatically selects relevant predictors. Its 

hyperparameters are estimated by Type-II ML (empirical bayes). By contrast, methods such as 

LASSO require crossvalidation to set the penalty hyperparameter. We showed analytically that 

RVM selects predictors on the basis of the least-squares z-ratio (|z|>1) in the case of orthogonal 

predictors and, for M = 2, that this still holds true for correlated predictors when the other z-ratio is 

large. We also found that RVM prunes the weaker of two highly correlated predictors. In a kernel 

setting, predictors are likely to be highly correlated, so RVM prunes there. In our simulated and 

real data, we found that RVM gave higher prediction error than LASSO. 

The threshold of 1 for the z-ratio is a kind of minimum that is also implicit in the AIC criterion. 

For M >N, it appears too weak. For example, Donoho (1995) advocated pruning based on     

√     ( ) based on the idea that, for large M, the maximum of M independent standard Gaussian 

deviates is below this threshold with probability close to 1. More recent work proposes thresholds 

based on the ratio of the actual and potential model sizes (Abramovich et al. 2005). RVM does not 

have this property. 

In line with the original ideas in Tipping (2001), Xu (2007, 2010)  extended the RVM approach by 

adding a (hyper)prior for the variance components. With a uniform prior for the variances his 

approach reduces to RVM, whereas it relates to the adaptive sparseness method (Figueiredo 2003) 

w th   J ffr y’s  r or. Th   r or    s     n lty to th  m r  n l l k l hoo ; th    n l z   m r  n l 

likelihood is maximized to obtain the variance components. The prior provides the means for 

threshold values higher than 1, although we were not yet able to show that analytically.  
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Penalized methods are often given additional underpinning as giving maximum a posteriori (MAP) 

estimates in the Bayesian framework (Zou and Hastie 2005). In the same vein, RVM yields 

variance estimates that are MAP under a uniform prior for the variances  . But what happens in 

terms of precisions? The posterior density would change with a Jacobian term involving ∏  
  that 

accounts for the transformation to precision and therefore the MAP would change when back-

transformed to variance. By contrast, penalized methods are invariant under transformation. The 

Bayesian underpinning of penalized methods is thus rather thin. 

Th s r  s s th  qu st on wh th r  VM  n  Xu’s   t ns ons c n b  thou ht of  s    ro  m t ons to 

a fully Bayesian model. Xu (2007, 2010)  uses independent scaled inverse chi-square distributions 

as priors for the variances, which is equivalent to gamma distributions for the precisions. The prior 

for    is thus inverse gamma 

  (      )    
 (   )    ( 

 

  
), (13) 

which is proper for a>0 and b>0 and leads to t-priors for the weights. For obtaining more 

shrinkage, Xu (2007, 2010) used improper priors with b=0 and -1≤ a ≤0. Th  mo  l  s  qu v l nt 

with the improper δ-prior (ter Braak et al. 2005, ter Braak 2006). 

 (    )    
       (14) 

Their fully Bayesian treatment showed that the posteriors for   and   are proper if and only if 

        or equivalently          with b = 0 in (13) and that the model gives attractive 

sigmoidal shrinkage for small  , similar in form of that of the SCAD penalty (Fan and Li 2001). 

Note that the uniform prior (   ) for    ( VM)  n  J ff y’s  r or  r    clu    (   ). The 

uniform for the standard deviation   
   

 (     ) is not excluded, but does not shrink. We 

conclude that the empirical Bayes approach in RVM and its extensions by Xu (2010) are not 

supported as approximations to a fully Bayesian approach; the fully fletched Bayesian model does 

not even exist for the values used for the parameter of a and b. 

Parameters of priors such as (13) and (14) can no longer be estimated in a Bayesian way if they are 

improper. The reason is that it is impossible to add an additional level to the Bayesian model and 

to assign them a hyper prior so as to obtain the posterior distribution of   for the assigned hyper 

prior. It is therefore of interest to define a proper prior for the variances. In terms of the scaled 

variance ratios     (  
   )      a useful proper prior is  

 (      )  
 (   )

 ( ) ( )
  

   (    ) (   )  for a >0 and b >0. (15) 

For a = b = δ  small, (15) gives very similar shrinkage properties as shown in ter Braak (2006) for 

(14). This prior is closely related to the beta distribution; if    ~ Beta(a,b), then     

  (    )⁄  follows distribution (15). Conversely,      (    )⁄  which can be interpreted 
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as shrinkage coefficient; it relates the shrunken estimate  ̃  to the least-squares estimate  ̂  via  

 ̃     ̂  in the orthogonal predictors case. Whereas (15) implies a proper Beta(a,b) prior for 

  , (14) implies the improper Beta(    ) prior. The model with the proper prior is a rival for 

methods in which discrete mixtures of weights (George and McCulloch 1993, Johnstone and 

Silverman 2004) or variances (Meuwissen et al. 2001) give sparsity and is of interest for further 

study; see e.g. (Polson and Scott 2009). Such models are needed as this paper suggests that Type-II 

ML in the linear model with individual variance parameters is not the general answer in high 

dimensional prediction problems. 

 

Appendix A: Derivation of equation (7) 
 
Here we convert the marginal likelihood  ( ) from a form that uses N     matrices to one that 

uses      matrices.  We start with  

 ( )  (  )   ⁄       ⁄    ( 
 

 
      ), (A.1) 

where           . The Matrix Determinant Lemma gives (Golub and van Loan 1989, 

Roweis 1999) 

                       | -1        |            . (A.2) 

The Matrix Identity Lemma or Woodbury formula gives (Golub and van Loan 1989, Roweis 1999, 

Bishop 2006) 

    (        )      [   (         )    ]   (A.3) 

so that 

          (       (         )     ). (A.4) 

On inserting (A.2) and (A.4) in (A.1) and deleting the terms that do not depend on  , we obtain 

 ( )                ⁄    (
 

   
   (          )     )  (A.5) 

which is (7). 

 

Appendix B: Derivation of equation (8) 
 

If        , (A.5) decomposes as a product of individual likelihoods  (  ) with 

 (  )  (       
     )   ⁄    (

 

       (  
        ⁄ )    

  )  (B.1)  

With  ̂    
    

   ⁄ , the least-squares estimate, and         
   , the variance of  ̂ , 

(B.1) can be written as 

 (  )  (    
    )   ⁄    (

 ̂ 
   

    

 (    
    )

), (B.2) 

which is (8). 
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Appendix C: Derivation of equation (10) 
 
Next, we consider the case of two correlated predictor variables with weights with variance 

parameters     and   . On defining         , c     
    , d    

    , (A.5) becomes 

 

 (     )  |  [
  
  

] [
   
   

]|
   ⁄

   [
 

 
[
 
 
] [[

  
  

]  [
   
   

]
  

]

  

[  ]]. (C.1) 

 

Differentiating  (     ) with respect to    with Mathematica and then setting derivatives to zero 

gave a ratio for   ̂  with numerator 

        ̂      ̂   ̂ 
     ̂ 

       ̂       ̂ 
     ̂     ̂ 

       ̂ 
 

 (C.2)  

and denominator (   ̂   ̂  
 ) . Simplifying with Mathematica did not help and was done by 

hand by collecting terms that involved c or d and those that did not. The terms involving c or d are 

   ̂ 
       ̂ 

       ̂ 
   ̂ 

 (    )  , (C.3) 

    ̂       ̂     ̂ (    )  (C.4) 

and   , resulting in  

 ̂ 
 (    )     ̂ (    )     ( ̂ (    )   )  (C.5) 

and the terms involving neither c nor d are 

     ̂   ̂ 
     ̂     ̂ 

   (   ̂ )(   ̂ (    )), (C.6) 

so that by insertion 

 ̂  
(   ̂ (    ))

 
 (   ̂ )(   ̂ (    ))

(   ̂ (    )) 
. (C.7) 

 

The expression for  ̂  was obtained by symmetry.  
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Chapter 6 

 

Trait-environment relationships and tiered forward model 

selection in linear mixed models 

 

 

Tahira Jamil, Wout Opdekamp, Ruurd van Diggelen, Cajo J.F. ter Braak 

  

 

Abstract 

Trait-environment relationships are usually complex due to the high number of interacting 

environmental variables and traits. To understand patterns of variation in species biomass in terms 

of species traits and environmental variables a one-to-one approach might not be sufficient and a 

multi-trait multi-environment approach will be necessary.  

A multi-trait multi-environment approach is proposed, based on a mixed model for species 

biomass. In the model, environmental variables are species-dependent random terms, whereas 

traits are fixed terms and trait-environment relationships are fixed interaction terms. In this 

approach, identifying the important trait-environment relationship becomes a model selection 

problem. Because of the mix of fixed and random terms, we propose a novel tiered forward 

selection approach for this. In the first tier, the random factors are selected, in the second, the fixed 

effects and in the final tier non-significant terms are removed using a modified Akaike information 

criterion. We complement this tiered selection with an alternative selection method, namely Type-

II maximum likelihood. 

A mesocosm experiment on early community assembly in wetlands with three two-level 

environmental factors is analyzed by the new approach. As the number of traits exceeded the 

number of species, a backward selection approach was not even possible in this case. The results 

are compared with those of two existing one-to-one approaches, namely the fourth corner problem 

and the linear trait-environment method, which use permutation for determining statistical 

significance of trait-environment relationships. Traits related to germination and seedling 

establishment are selected as being most important in the community assembly in these wetland 

mesocosms. 
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Introduction 
 

Understanding the processes that drive community assembly has been and still is a major challenge 

in community ecology (Diamond 1975, Weiher and Keddy 1995). Many studies have already 

shown the importance of environmental factors in controlling and shaping species composition 

(Weiher and Keddy 1995, Kotowski et al. 2010).  

The use of species-traits instead of species identity in community ecology research has many 

advantages as the latter reflect a species adaptation to its environment (Menezes et al. 2010). 

Hence, a trait-based approach not only allows a comparison of the same process in different 

vegetation types (e.g. (Díaz et al. 2001, Lavorel and Garnier 2002, Kahmen and Poschlod 2008) 

but also gives insight into the mechanisms responsible for such patterns (Kahmen and Poschlod 

2004) and allows predictions about possible future changes.  

In the last decade plant trait data have become more easily available, especially in Western Europe 

(LEDA, BIOLFLOR, …). This has further strengthened the growing interest of ecologists to study 

the responses of plant functional traits to environmental conditions (Weiher et al. 1999, Violle et 

al. 2007). 

Despite this increasing interest, our knowledge of plant community assembly is still hampered as 

the quantification of the effect of plant traits on community assembly stays a real statistical 

challenge (Dray and Legendre 2008). Most studies on trait-environment relationship, especially 

model-based ones, are limited to single species. Knowledge about the effect of traits on plant 

community assembly stays limited. Empirical evidence is limited as most of the studies are 

observational and correlative (McGill et al. 2006, Vile et al. 2006). Therefore there is an immense 

need for randomized multispecies experiments that study trait-environmental links and for 

statistical methods that can link the experimental environmental factors to traits in such 

multispecies studies. This paper proposes such methods and applies them to a factorial three-year 

mesocosm study of plant communities with three environmental factors, each on two levels. The 

experimental measurements are the biomass per species in each of the three years. 

The linkage between the traits and the environment is expressed differently in different statistical 

models. It is a Pearson correlation in the fourth corner problem (Dray and Legendre 2008) and an 

interaction term in the mixed model approach (Chapter 2). Environment-trait relationships are 

usually very complex due to the high number of interacting environmental variables and traits. To 

understand patterns of variation in species density a multivariate approach will be necessary as a 
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one-to-one approach might not be sufficient. This way, selecting important trait-environment 

interactions becomes a model selection problem in mixed models.  

Mixed models are extremely flexible and form a computationally attractive tool to model complex 

and large datasets. Their potential applications in ecology are numerous. The resulting flexibility 

and model complexity makes model selection even more vital (Greven and Kneib 2010). In mixed 

models, model selection not only includes selecting the best mean structure but also the most 

optimal variance-covariance structure (Wolfinger 1993, Wolfinger 1996). Despite the fact that 

mixed models have been available for a few decades, there is surprisingly little literature available 

concerning model specification, i.e. “Which set of candidate models should be considered”, “How 

to select a model” and “What is the best model to use?” These are the critical questions in making 

valid inference from data. This also includes the variable selection problem in mixed model 

analysis.  

One of the goals of model selection is a trade-off between model complexity and accuracy. 

Depending on the modeling objective, different procedures to select an optimal model subject to a 

particular criterion are available. However, it is important to adopt a model selection procedure 

that reflects the ultimate objective of the modeling process (Hoeting et al. 2006). Model selection 

is often done though sequential testing either stepup (forward) or stepdown (backward) regression 

methods (Hosmer and Lemeshow 2000). For simple problems, the outcomes of model selection 

using these two approaches might happen to be similar; however, in more complex situations, with 

many candidate models, the results of the two approaches may be quite different. Yet, selecting the 

best model from all possible models with different fixed and random effect factors is 

computationally forbidding as the number of models grows exponentially with the number of 

factors.  

This paper develops a novel model selection method called tiered forward selection. The method 

uses a modified Akaike information criterion. In the first tier, the random factors are selected, in 

the second, the fixed effects and in the final tier non-significant terms are removed. In our case 

study, the random factors are the environmental factors while the fixed effects are related to traits 

and trait-environment interactions. We complement this tiered selection with an alternative one-

shot method, namely Type-II maximum likelihood (Type-II ML).  

The paper is structured as follows. After a short description of the mesocosm example data and 

association data screening, the linear mixed model, the tiered forward selection and Type-II ML 

are presented. Next we describe two simple, existing methods for detecting trait-environment 

relationships that are not based on mixed models. These methods, the fourth corner method and the 

linear trait-environment method (LTE), use permutation for determining statistical significance. 
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After presenting the results we discuss statistical issues and shortly interpret the results in  

biological terms.  

Material & Methods 

Data 
Data are from an outdoor mesocosm experiment investigating early community assembly from a 

pool of 28 floodplain species covering a wetness gradient. Experimental variables were i) Canopy 

presence (with and without canopy) at initial germination, ii) Waterlogging (with and without 

waterlogging), iii) Mowing (with and without summer mowing) for a full-factorial design (2 x 2 x 

2) using 10 replicates. Canopy (C/nC) consisted of Poa pratensis, Lolium perenne and Alopecurus 

pratensis. Grasses were pre-grown for 6 weeks and cut at 10 cm height at the sowing date (this 

grass species mixture ensured the persistence of a grass canopy in both dry and wet conditions). In 

the other mesocosms, soil was kept bare until the sowing date through weeding.  

In waterlogged (W/nW) soils water level was maintained at 5cm below soil surface while water in 

other soils was unobstructed from percolating through the soil profile. 

Mowing (M/nM) involved annual mowing of vegetation to 2cm in June–July. 

Aboveground biomass of all mesocosms was harvested at the end of August 2006, 2007 and 2008, 

and was sorted to species level with the exception of Poa, Lolium and Alopecurus (grouped 

together). Dry mass was measured after 72 hours of drying at 70°C. A more detailed description of 

the experimental set-up can be found in Kotowski et al (2010).  

Traits were either measured (for details see Kotowski et al 2010) or extracted from several plant 

trait databases: Biobase (van Duuren et al. 2003 ), BiolFlor (Kühn et al. 2004), CloPla (Klimešová 

and Klimeš 2006), LEDA (Kleyer et al. 2008) and SID (Liu et al. 2008 ). A description of the 

different traits can be found in Table 1.  

Data screening  

Prior to analysis, trait data was screened for zero-variance predictors and for multicollinearity 

among predictors. Predictors with a single unique value (also known as “zerovariance predictors”) 

and near zero-variance predictors (for details see (Kuhn 2008)) can cause numerical problems and 

lead to misinterpretation. Both near zero-variance and zero-variance predictors were removed from 

the dataset. Predictor detection was performed using the caret package for R (Kuhn 2011). 

Multicollinearity among predictors is a problem in mixed models. From each pair of trait 

predictors with correlation greater than 0.80, one predictor was removed using the “findCorrelation” 

function in the caret package in R (Kuhn 2011). This function removes the predictor that has 

highest mean pairwise correlation with the other predictors.  
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Table 1. Traits used for analysis with code and description 

 Germination traits 

Z1 SW Seed weight (mg) 

Z2 GP Total germination percentage in full light (%) 

Z3 T50 Time of 50% germination in light (days) 

Z4 WGR                                                                                                                                                                                                                                                                Wet germination ratio (germination in wet mesocosms/germination in dry mesocosms) 

Z5 DGR Dark germination ratio (dark germination/light germination) 

 Seeding traits 

Z6 H7 Average height of seedlings at 7th day from germination (mm) 

Z7 LWR7 Mean leaf weight ratio at 7th day ( leaves and cotyledons) 

Z8 LAR7 Mean leaf area ratio, i.e. mean quotient of the total leaf area per plant and the total 

weight per plant at 7th day (mm
2
 mg

-1
) 

Z9 AGR Mean actual growth rate of seedlings between the 7th and 22nd day (mg day
-1

) 

Z10 RGR Mean relative growth rate of seedlings between the 7th and 22nd day 

Z11 LWR Mean leaf weight ratio, increase between the 7th and 22nd day 

Z12 LA7 Mean leaf area of seedlings at 7th day (mm
2
) 

 Adult traits 

Z13 CH Canopy height (maximum value) (m) 

Z14 LDMC Leaf Dry Matter Content (mg g
-1

) 

Z15 SLA Specific Leaf Area (adult plants only) (mm
2
 mg

-1
) 

Z16 HEM Leaf Distribution along stem (Hemi-rosettes) 

Z17 STA Flowering start (1: January-April; 2: May-June; 3: July-September) 

Z18 DUR Flowering duration (1: Short (1-2 months); 2: Medium (3-4 months); 3: Long (>4 

months)) 

Z19 SEX Reproductive type (sexual) 

Z20 AB0 BudBank Vertical Distribution - Aboveground - 0 (0 buds) 

Z21 AB2 BudBank Vertical Distribution - Aboveground - 2 (>10 buds) 

Z22 GR2 BudBank Vertical Distribution - Groundlevel - 2 (>10 buds) 

Z23 BE0 BudBank Vertical Distribution - Belowground - 0 (0 buds) 

Z24 BE1 BudBank Vertical Distribution - Belowground - 1 (1-10 buds) 

Z25 GRS BudBank Seasonality - Groundlevel - seasonal 

Z26 BES BudBank Seasonality - Belowground - seasonal 

Z27                                                      LAT2 Lateral Spread (2: 0.01-0.25m year-1) 

Z28 LAT3 Lateral Spread (3: >0.25m year-1) 

 

 

Trait predictors were checked for normality by making histograms. Predictors departing from 

normality (WGR, H7, AGR, and LA7) were log-transformed (Table 1). Once the final set of 

predictors was determined, predictors were centered and scaled using their mean and standard 

deviations (Kuhn 2008). Species with small average biomass (< 0.1) were removed from the 

analysis and data set is 23 species. Species biomass was log-transformed (log(y+0.01)). 

The three experimental factors are indicated by c, w and m and the levels of each are coded 

numerically as -1 (nC/nW/nM) and 1 (C/W/M) without loss of generality. In this coding, c, w and 

m are orthogonal and also orthogonal to the interactions cw, cm and wm. 
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Linear mixed models for trait-environment relations 

Single trait-environment relationships 
 
The model for yij, the species biomass for the j

th
 species in the i

th
 site is  

              
                                                                                    (1) 

where    is a known environmental factor,   
     is the site effect and     is the error term. This 

model is of interest for our case study as each of the factors in the mesocosm experiment was 

coded as if it were quantitative, with the levels of the factors coded as -1 and +1. See Chapter 2 in 

case X is a multilevel factor. We assume that the intercept     and slope    for the  j
th
 species 

depend on the known value     of a particular trait (Jamil et al 2011) 

(
  

  
)  ((

       
       

)  (
  

      

       
 )  ) 

and also assume   
      (     

 ) and            . This is a random intercept and random slope 

model where trait is a predictor for the random intercept and slope. Inserting        and   
     in 

equation 1 gives: 

                          
       

    
 
      ,                                          (2) 

where    represents the trait-environment interaction. The above model is fitted for each 

combination of trait and environmental variable. To test the trait-environment interaction (with 

null-hypothesis: b1 = 0), we fit the model without this term  

                   
       

    
 
                                                                 (3) 

and then compare the two models by an analysis of variance resulting in a P-value for the 

likelihood ratio (LR) test of model with trait-environment interaction term against the null model 

without this term.  

Multiple trait-environment relationship 

In community assembly traits and environmental variables should not be considered in isolation as 

they influence and often coordinate each other. The development of a multivariate framework, in 

which multiple traits can be linked to multiple environmental variables is needed (Poff et al. 2006). 

In this section, we show how to link environmental variables and species traits in a multivariate 

framework. We use a multi-trait and multi-environment version of the mixed model to select the 

species traits, environments and trait-environment interactions that significantly contribute to the 
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species biomass distribution model. Equation 1 for a one-one model can readily be extended to 

cover multi-trait and multi-environmental variables 

                                                    
    

  
      

  
  

      
         ,                                                                                                     (4) 

where Greek letters are used for random terms. Environmental variables enter the model both as 

fixed terms and as random terms, and traits enter as fixed terms. In this formulation, the selection 

of the best traits and environmental factors is a model selection problem 

Tiered forward models Selection 
 

When the number of fixed effects and random effects is large, it is computationally very expensive 

and time-consuming to compute all possible candidate models (Fernandez 2007) due to the 

presence of random terms and variance-covariance structure (Hoeting et al. 2006, Littell et al. 

2006 ). Furthermore the number of candidate models increases exponentially with increased 

number of fixed effects and random effects (Yuan and Lin 2005). Different protocols for model 

selection have been developed, in particular step-up (forward) (West et al. 2006) and top-down 

(backward) protocols (Diggle et al. 2002). Most stepwise functions take a start model and 

according to some criteria iteratively add or delete a predictor at each step, to get to the best 

parsimonious regression model. Backward selection starts from the model with all possible terms 

included and is only feasible if that model can be fitted. In our case, the number of environmental 

variables should be less than the number of sites and the number of traits should be less than the 

number of species. In our data, the former holds true, but the latter does not. Here we develop an 

approach called tiered forward selection.  The analysis was done for the three years separately and 

for the combined data of all three years.  

Model Selection Criteria 
 
Different Information criteria, such as AIC (Akaike 1973), AICC (Hurvich and Tsai 1989), CAIC 

(Bozdogan 1987) and BIC (Gideon 1978), can be used for model selection in linear mixed model 

(Gurka 2006). Generally, these information criteria are a function of the likelihood for a given 

model and a penalty term based on the number of parameters in the model. The general form of 

information criterion (IC) is  

IC = -2 logLL + Penalty factor  

where log LL is the loglikelihood derived from fitting the mixed model to the data using either ML 

or REML. 
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The use of these criteria is somewhat arbitrary and no formal inference can be made based on these 

values. Comparison of the values of the criteria for a set of candidate models simply indicates if a 

superior model exist within the given candidate models (Gurka 2006). For an extensive review and 

discussion on the theoretical aspects of model selection criteria and procedures see Burnham and 

Anderson (2002) and Hoeting et al. (2006). The most widely used information criteria is   

AIC = -2 logLL + 2×parn. 

 We use the variant SigAIC defined as  

SigAIC=-2 logLL + 3.84× parn  

where parn  is the number of parameter estimates. The variant, SigAIC, which multiplies df by 

        
 = 3.84 instead of by 2 (Broman and Speed 2002), guarantees that the addition of a single 

parameter to a model will result in a lower SigAIC value if and only if that parameter is significant 

at the 5% level as judged by the LR test. 

Phase Tier I: Selection of environmental variance components 

The start or null model is the model with crossed random effects for species and sites. In the R 

package lme4  (Bates et al. 2011),  it can be represented as 

start.model <- lmer( y ~1+(1| sp)+(1|site), data) 

where y represents the vectorized response data while sp and site indicate species and sites, 

respectively. REML is the default estimation method. In each consecutive step, the environmental 

predictor for which the species-dependent random effect term increases the log-likelihood most is 

added. This means all models with one extra term have to be fitted each step and the best term is 

retained for the next step. For example for “w”  

lmer( y0 ~1+(1+w|sp)+(1|site)  ,data) 

In lme4, such model can be fitted as an update of the start model with the statement  

update(start.model, .~. +(1+ w|sp) +(1|site)-(1|sp) , data). 

To generate all models needed in this tier, we used the statement 

update(start.model,as.formula(paste(". ~ .+(1+",block[j],"|sp)+(1|site)-

(1|sp)"))). 

Here block is a vector of the candidate predictors, i.e. the environmental factors. All models, after 

fitting the predictors in the block, are arranged in order of the predictive criterion. The best 

candidate model is compared with the null model. If the best candidate model is statistically 

significant, it becomes the null model for the next step. This process is repeated until the increase 

in log-likelihood is no longer statistically significant as judged by LR test. 
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After this tier, the selected predictors are added as fixed effect. Thus, environmental variables in 

the model are now the component of both fixed terms and random terms.  

Tier II: Selection of Fixed trait effects 

In our case study, the start model for the next phase has a specification,  

start.model<-lmer(y~c+w+cw+(1+c+w+cw|sp)+(1|box),method= “ML”, data). 

Now traits and trait-environment interactions can be added as fixed effects to the model. It is 

important to note that REML is the default estimation method for mixed models. Generally REML 

estimates of variance components are preferred to ML estimates. However, in REML it is not 

legitimate to compare models with different sets of fixed effects as the contrast used to develop the 

restricted maximum likelihood depends on the fixed effect design matrix (Verbeke and 

Molenberghs 2000). Therefore the ML estimation method is used in this tier. 

Given a starting model and a set (here block) of variables to evaluate, the starting model is updated 

by adding every single trait variable and trait-environment interaction. To evaluate the importance 

of a trait the current model is updated with the statement 

update(start.model, . ~ .+  Z + c:Z ) 

A generic way to update the current model with any single trait is  

update(start.model,as.formula(paste(". ~ .+ ",block1[j],"+",block2[j]))). 

Here block1 is for trait main effects and block2 for the trait-environment interaction. Models fitted 

this way are then ordered based on the chosen predictive criterion, here SigAIC, after which the 

best fitting model is retained for the next step. The procedure continues until addition of new traits 

and trait-environment interactions does not significantly improve the model. 

Next, the same procedure is repeated for the three-way interaction, but keeping the marginal effect 

of a trait variable and its two-way interaction,  

update(start.model,as.formula(paste(". ~ . + ", block1[j],"+", block2[j],    

"+", block3[j],"+",block4[j]))). 

Block1 is for trait main effects, block2 and block3 for two-way interactions and block4 for three-

way interaction. This structure ensures the marginality principle (Nelder 2008) which entails a 

model can include an interaction term (high order term) only if it includes the main effects (and all 

lower order terms) that compose the interaction. The condition requires that a mixed model with an 

interaction, say X:Z, must also include the main effects X and Z. In general, we neither test nor 

interpret the main effects of explanatory variables that are also included in an interaction. The 

procedure continues until addition of new predictors does not significantly improve the model.  
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Tier III: Removal of non-significant interaction terms 

In this tier non-significant interaction terms are sequentially removed. An example statement in 

this tier is 

update(start.model, as.formula(paste(". ~ . - ", block1[j]))). 

The final model was obtained by sequential removal of non-significant interaction terms. Now we 

refit the final model using REML estimation, this is needed to obtain unbiased estimates of the 

covariance parameters. As the ML estimation leads to biased covariance parameter estimates. This 

can result in smaller estimated standard errors for the estimates of fixed effects in the model. The 

REML estimate for the fixed effects is not identical to its ML version and differs more from ML as 

the number of fixed effects in the model increases.  

Model selection by Type-II Maximum Likelihood 
 

When a system is described by a statistical model, model complexity leads to a very large 

computing time and poor estimation, especially if the number of predictors is large relative to data 

size. As an alternative to and improvement over stepwise methods, shrinkage methods have been 

proposed. One of these is the Relevance vector machine (RVM) which has gained popularity 

within the Bayesian framework (Tipping 2001, Bishop 2006, Xu 2007). RVM introduces a 

Gaussian prior to the regression coefficients, with one variance component for each predictor. The 

variance component or hyperparameter controls the degree of sparseness. These parameters are 

commonly adjusted by crossvalidation. In Bayesian framework, the hyperparameters are estimated 

by using empirical Bayes or, equivalently, Type-II maximum likelihood (Berger 1985).  

The Type-II maximum likelihood shrinks the coefficients to zero and readily sets some of the 

coefficients to zero, namely if their variance component is estimated to be zero (Chapter 5). These 

zero variance coefficients are equivalent to pruning the corresponding predictors from the model. 

Hence this method readily helps in pruning predictors from the model and does variable selection 

and model estimation. A prototype statement in lme4 in linear regression is 

lmer(y ~ (0 + x1 | v) + (0 + x2 | v), data, REML=FALSE) 

where y is the response and x1 and x2 predictors, v is an all ones N-vector and train is a data frame 

containing these vectors. In our multi-trait – multi-environment context a prototype statement is  

lmer(y ~ (0 + z1:x1 | v)+(0 + z1: x2|v)+(0 + z2 : x1 | v)+(0 +z2 : x2|v)    +(1+x1+x2|sp)+ (1|site), 

data, REML=FALSE) 

where x1 and x2 indicate two environmental factors, z1 and z2 two traits and z1: x1 and related 

term indicate the vector that is the product of the corresponding trait and environmental factor. 
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Fourth Corner Method 

The fourth-corner method developed by Legendre et al (1997) and extended in Dray and Legendre 

(2008) is the oldest integrated trait-environment method. The species data in this method must be 

non-negative and can thus be presence-absence data, abundance data or  species biomass. The 

fourth-corner statistic measures the link between trait and environment via the species data table 

with a weighted Pearson correlation coefficient between trait and environmental variable, each 

vectorized as in the mixed model approach (Chapter 2). The weights are the species data {yij} 

(presence-absence, abundance or biomass). The role of the species data is thus rather different 

from that in mixed models and in LTE of the next subsection. In particular, absences or zeroes 

therefore do not carry any information in the analysis. The method works well for data stemming 

from unimodal response models (Dray and Legendre 2008). The significance of the trait-

environment relationship is tested by a permutation test. Dray and Legendre (2008) offer different 

permutation scenarios. We used the combined approach implemented in the combine.4thcorner 

function in the ade4 package in R. It combines the P-values of two fourth-corner models, viz 

Model 2 (site permutation) and Model 4 (species permutation), as proposed by Dray and Legendre 

(2008) by taking their maximum (Chessel et al. 2011). This method controls the type I error 

(Cormont et al. 2011). 

The linear trait-environment method (LTE) 

The linear trait-environment (LTE) method (Cormont et al. 2011) was developed as an alternative 

to the fourth corner method to account for negative species data values. The method is linear and 

as such is more closely related to the liner mixed model than the fourth corner method. However, 

just like the fourth corner method, LTE has no variance components. The statistical analysis thus 

proceeds by advanced permutation testing. 

LTE starts with a two-step analysis. In the first step regressions per species biomass to each 

environmental variable give a species specific regression coefficient 

                 

where    and    are intercept and slope of k
th
 species. In the second step, these regression 

coefficients are correlated to each trait  

             

where c and d are the intercept and slope for trait Z and    is a species specific error term with 

mean 0. LTE integrates both steps in a single model. LTE achieves this integration based on a 

linear model with main effects for the trait and environmental variable and their interaction. The 

interaction between a trait and an environmental variable in this model captures the trait-
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environment relationship, in particular the trait-dependent effect of environment on species 

biomass. The significance of this interaction is tested by a permutation test with the same 

permutation strategy as in the fourth corner problem (Cormont et al. 2011).  

Summary of data analysis strategy 

We applied the different methods that link functional traits to the experimental environmental 

factors to data on 23 floodplain species in a factorial mesocosm experiment with three two-level 

factors (c, w and m for canopy, waterlogging and mowing). We estimated the one-to-one 

interactions for each trait-environment combination by mixed models,  the fourth-corner method 

(Legendre et al. 1997, Dray and Legendre 2008) and the linear trait-environment method (Cormont 

et al. 2011). Then we applied the tiered forward selection method to select the traits and 

environmental variables that significantly contribute to the explanation of species biomass. The 

environmental variables were c, w, m and their first order interactions. Furthermore, we performed 

Type-II maximum likelihood analysis (Type-II ML) to select trait-environment interactions. The 

analysis has been carried out on the three-year mean log-transformed biomass, unless stated 

explicitly otherwise. 

Results 

In this study, we explore different methods that link the species traits to the environmental factors 

in the mesocosm experiment. Table 2 summarizes the results of the one-to-one analyses by mixed 

models, the fourth-corner method and the linear trait-environment method, and the multi-trait to 

multi-environment analyses by mixed models and Type-II maximum likelihood. Only significant 

trait-environment interactions obtained from these analyses are reported together with the sign of 

the relationship. The factor mowing is excluded from the Table 2 as its variance component in the 

mixed model approach was very small, smaller than that of the interaction “cw” between the other 

two factors, canopy “c” and waterlogging “w”. Mowing thus has a similar effect on all species. 

The sign of coefficient for trait-environment interactions are almost consistent between different 

methods. 

From Table 2, H7 and SW appeared important traits that are consistently significant with canopy 

or/and waterlogging for all methods. Other important traits appear DGR and AGR, although they 

are less consistent across methods. STA and GRS are significant with waterlogging in except the 

multivariate mixed model. Type-II ML gave many more trait-environment interactions than the 

other methods (Table 2 and 4). The coefficients estimated by Type-II ML are plotted in Fig. 1.  

Table 3 summarizes the results of the tiered forward model selection in mixed models using 

SigAIC. The analysis was done for each year and by combining the data for all three years. All 
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Table 3. Results of the multi-trait and multi-environment analysis using tiered forward model 

selection in mixed models. The following treatment c: canopy, w: water logging and cw: 

interaction c×w were always in the model as a fixed effect and random effects. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

NS- is for non-significant  

 

Table 4. Trait-environment interactions from Type-II that were not common to other methods 

 

 

 

 

 

 

 

 

 year1 year2 year3 all 

(Intercept) -2.66 -2.24 -1.67 -2.20 

c -3.28 -1.97 -1.27 -2.17 

w   0.45
NS 

-0.06
 NS

  0.28
 NS

  0.22 

cw -0.78 -1.02 -0.45
 NS

 -0.75 

SW   0.58  0.34  0.11 

c:SW     0.86 

w:SW  -0.59 -1.24 -0.72 

WGR   -0.11
 NS

 -0.12 

w:WGR    0.88  0.46 

H7   0.83  0.56  0.63  0.77 

c:H7 -1.53 -1.49 -1.16 -1.47 

w:H7 -0.75 -0.90   

cw:H7   0.60  0.63   

LWR7  -0.51  0.08
 NS

 -0.28 

w:LWR7   0.66  1.09  0.67 

AGR   0.67    0.47 

c:AGR -1.26   -1.38 

SLA   -0.45 -0.13 

w:SLA   -0.44 -0.29 

HEM    0.36  

BE0  -0.26
 NS

  0.38  0.08 

w:BE0    0.87  0.56 

c:BE0   0.99   

 Type-II ML 

 c w cw 

GP     

RGR     

LWR     

CH     

LDMC      

AB0     

AB2     

GR2      

LAT2     

LAT3      
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significant traits, except BE0, are germination and seedling establishment traits. Canopy capture 

more interactions with traits in first and second year of germination and establishment as compared 

to waterlogging.  

Discussion  

Statistical  

We used three methods to relate each single trait to each single environmental factor. Two of the 

methods use an explicit linear model for the data (the mixed model and LTE) whereas the third 

method uses the data are weights. Also, two of the methods use statistical significance testing by a 

Monte Carlo permutation strategy (LTE and the fourth corner method) whereas the mixed model 

uses LR testing. What effects do these theoretical similarities and dissimilarities have on the results? 

The numbers of one-to-one relationships found (Table 2) were 17 in the mixed model, 11 in LTE 

and 16 in the fourth corner method. The mixed model disagreed in its significance judgement in 14 

cases (out of the 48 shown in Table 2) with LTE and in 15 cases with the fourth corner method. 

LTE and the fourth corner disagreed in 13 cases. The methods thus are about equally dissimilar 

among one another. The multi-trait multi-environment mixed model yielded 8 significant 

interactions, so fewer than the one-to-one methods. This is to be expected if one trait can replace 

another because of their mutual correlation. In our data, traits show some, but no high correlation. 

Apparently the other aspect of a multivariate model, namely that is can reduce the error variance 

and thereby can find more significant effects, is less important. 

Type-II ML identified many of the trait-environment interactions which were also identified by 

other methods but also many more. As shown in Chapter 5, Type-II ML tends to be very tolerant 

for predictors (here interactions) to stay in the model. 

Biological interpretation 
 
A major objective of this study was to compare the effects of competition from canopy and 

waterlogging on assembly processes in a floodplain and how plant functional traits are related to 

the successful establishment of species. Both wetness and light affected species germination in our 

experiment, but only few species were directly eliminated at this stage (one under oxic and three 

under dark conditions). Clearly, canopy  presence was a much stronger filtering factor. Especially 

in the first year it almost totally disabled establishment, which is probably due to high light 

attenuation. However, more severe root competition could possibly also play a role. Waterlogging 

is a major constraint on growth and establishment of plant species in wetlands (Lenssen et al. 

2003). Only species that are adapted to this environment can occur and thrive. It is relevant to 

understand which specific combination of traits makes the germination and establishment of plants 
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resilient to waterlogging and which species traits showed the greatest tolerance to waterlogged 

conditions. The knowledge which traits determine species seedling and germination might help for 

conservation planning (Dolédec et al. 1999). 

Species able to establish successfully within the grass canopy showed high seed weight, combined 

with a small individual size and a relatively low actual growth rate. These traits are related to a 

stress-tolerant strategy, allowing plants to minimize resource requirements and survive in 

suboptimal conditions. Apparently even the largest seedlings had difficulties in reaching layers 

with sufficient light. This confirms that large seed size may contribute to seedling establishment in 

shade through various mechanisms (Westoby et al. 1992). Large seeds with a large nutrient stock 

are often thought to be advantageous in dense canopies as seedlings should possess enough 

resources to reach layers with higher light availability (Grime 1979). However, a significant 

fraction of resources in a large seed may remain in storage instead of being used for immediate 

seedling development (Garwood 1996) (Green and Juniper 2004), a strategy characteristic for 

stress-tolerant species. When germinating on bare ground, seedlings of different species compete 

with each other for light. Yet, the intensity of this competition is much higher in the non-

waterlogged treatment. Traits responsible for rapid establishment and outcompeting neighbours 

appear more important here than those responsible for shade tolerance (Keddy et al. 1994, Stockey 

and Hunt 1994). A combination of fast growth and large-sized seedlings are prerequisites for 

success under dry conditions without imposed light stress. In waterlogged soils, specific leaf area 

(SLA) decreased as waterlogging induces an increased allocation to roots (Lenssen et al. 2003). 

The ability to germinate in wet conditions is a main determinant of community assembly. This is in 

accordance with the habitat filter theory which states that the number of species in the local species 

pool is reduced by habitat constraints. 

Hence, all traits (except one) that were selected by the tiered forward model selection describe 

germination and seedling establishment. This stresses the importance of both two stages as major 

bottle necks for species recruitment (Grubb 1977, Shipley et al. 1989) and how they may largely 

determine patterns of biological diversity (Grime 1979, Henry et al. 2004 ). Moreover, because of 

their small stature, seedlings can be subject to a totally different light regime and soil resource 

availability than adult plants, even in the same site.  

In conclusion, we have demonstrated different methods that link environmental factors (e.g 

waterlogging and canopy) to species traits during early assembly process in a wetland mesocosm. 

Our results clearly stress how the choice of a particular statistical method to analyse the trait-

environment link will have consequences for the ecological interpretation of this link. Of the 

studied methods, the multi-trait multi-environmental mixed model is clearly best suited for 

predictive usage.   

6 

T
iered

 fo
rw

ard
 m

o
d
el selectio

n
 in

 L
M

M
s 

 



111 

 

 

 

 

   
  
  
 F

ig
. 
1

. 
E

st
im

at
ed

 e
ff

ec
ts

 o
f 

tr
ai

t-
en

v
ir

o
n
m

en
t 

in
te

ra
ct

io
n
 u

si
n
g
 T

y
p
e-

II
 M

L
. 
 

 

  



112 

 

 

 

 

 

 

 



113 

 

Chapter 7 

General discussion 

 

 
 

Species can be characterized by a large number of quantitative and qualitative traits. Following 

pivotal works by Southwood (1977) and Townsend and Hildrew (1994), trait-based approaches 

have been increasingly applied to explain and predict response of species to environmental 

conditions (Weithoff 2003, Follows et al. 2007, Litchman and Klausmeier 2008). These studies 

cluster the species based on their functional trait and then summarize their response to 

environmental change. Results from these studies reveal that traits could offer new insights into 

ecology. In this thesis different methods of modelling the species distribution were approached 

from a hierarchical modelling perspective. The central theme was to develop models for species 

distribution that integrate trait-environment relationships.  

Chapter 2 of this thesis developed a statistical approach to relate species traits to environment 

using an extension of the generalized linear model (GLM), namely the generalized linear mixed 

model (GLMM). GLMMs form a very powerful class of statistical models in ecology and 

elsewhere (Gelman and Hill 2007, Bolker et al. 2009, Zuur et al. 2009) and are introduced here for 

modeling and explaining species response along environmental gradients by species traits. 

Ecological data are often binary (e.g. presence or absence of a species in a site), or counts and have 

short environmental gradient. Such data sets are most common in practice. GLMMs are the best 

tool for analysing nonnormal data and that involves random effects and have short environmental 

gradient. GLMM is based on a sound statistical model that allows, as a standard by-product, 

questions to be answered about which traits and environmental variables are significantly related 

and which best explain the species response in a parsimonious model.  

Our GLMM can be considered as integrating two steps in to one. The basis of our GLMM is the 

random intercept and random slope model (step 1). We made the intercepts and slopes dependent 

on the species traits (step 2). The result is a GLMM which combines steps 1 and 2; it has main 

effects for traits and environmental variables as well as interaction effects between them and 

random effects for sites, species and environmental variables. In our GLMM model, the trait-

environment relationship is an interaction term and not a correlation. It can be tested for statistical 

significance using standard software. The GLMM utilizes species trait data efficiently and 

overcomes the problem of pseudo-replication (Paterson and Lello 2003).  
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GLMM has several advantages over existing two step approaches. It models directly the variable 

of interest (occurrence probability, expected abundance), it automatically weighs the different 

kinds of information for an optimal model fit and statistical significance testing and it provides 

consistent estimates of the between-species variance of (slope) parameters, without introducing 

unnecessary random variation by replacing the (slope) parameters by their estimates as in the two 

step approach and it can be applied with small sample size. 

The GLMM regression coefficients for each species are a compromise between the coefficients 

from a per-species fit and the population average and are also called shrinkage estimate (Pinheiro 

and Bates 2000). Species which have few presences lead to abnormally high estimates in the GLM 

fit. The pooling across species in the GLMM estimation gives a certain amount of robustness to 

species with few occurrences in the data.  

Niche theory predicts that species occurrence and abundance show non-linear, unimodal 

relationships with respect to environmental gradients (Økland 1986, Austin 1987, Minchin 1989, 

Palmer and Dixon 1990, Begon et al. 1990). Many studies fail to test for unimodal response 

(Austin 2007). Thus linear relationships are often fitted without justification. Chapter 4 developed 

explicit testing of unimodality in species response along an environmental gradient, without fitting 

a unimodal model. In this Chapter we took a simple approach and studied the suitability of GLMM 

for detecting the unimodality of species response along an environmental gradient and suggested a 

graphical tool and a statistical test for testing unimodality. There is an indication for unimodality 

when site effects show a quadratic relationship with the environmental gradient. The test can make 

even stronger by adjusting the relationship with the site total (the number of species in a site). As 

an alternative, we could explicitly add the square of the environmental variable as a fixed effect 

term to the GLMM and judge the significance of its addition. This approach is presumably even 

more powerful, but necessitates the fit of an extra model. The theory developed in this chapter 

gives insight in why an ordination method such as correspondence analysis can be viewed either as 

linear or as a unimodal and why the linear-trait-environment method (LTE) might be applicable 

even when the data are unimodal. 

Each species has preferred environmental conditions in which it can survive and reproduce 

optimally. Thus it is presumed to occur in a characteristic, limited range of the multi-dimensional 

habitat space, called its ecological niche, and within this niche, each species tends to be most 

abundant around a specific environmental optimum (Green 1971). Therefore, the distribution of 

species along any environmental gradient is usually unimodal, with the maximum at some 

ecological optimum. The symmetric and bell-shaped unimodal (non-negative) species response 

curve is a Gaussian response curve with three interpretable parameters: the optimum, height of the 

response and tolerance or width of the curve (Jongman  et al. 1995, Oksanen and Minchin 2002).  
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Generally, the bell-shaped response curve is not estimated by nonlinear regression, but is estimated 

by the equivalent (or almost equivalent) polynomial model (ter Braak and Looman 1986, Oksanen 

and Minchin 2002), which can be easily fitted using generalized linear model and that gives results 

close to the real Gaussian curve. GLM can model presence-absence, counts or biomass data with 

an appropriate link function. 

It is difficult to fit the Gaussian logistic model (ter Braak and Looman 1986) with linear trait 

submodels for the parameters with the available (generalized) nonlinear mixed model software. 

Instead, a Bayesian approach is applied and fitted using OpenBUGS (Bayesian inference Using 

Gibbs Sampling). Chapter 3 adopted a fully Bayesian approach to model unimodal species 

response model relating traits to environment. A GLMM is, of course, a linear model. GLMM uses 

the environmental variables linearly (Chapter 2). When data come from an ecosystem with niche 

structure, i.e. from a unimodal system, adding polynomial terms as random component to the 

linear model is less attractive as it leads to coefficients that lack a clear ecological interpretation 

and have no intuitive meaning (Chapter 3). Moreover, the meaning of the parameter of the linear 

term depends on the value of that of the squared term and also on the scale used for the 

environmental variable. It appears therefore rather useless ecologically to make these parameters 

dependent on the species traits. By contrast, the optimum, the tolerance and the maximum are 

interpretable parameters and were modeled in terms of the species traits (Chapter 3). 

Crucial to our aim is the identification of those traits responsible for explaining the variation in 

response curve parameters (optimum, tolerance, maximum). The challenge is to select a small 

subset of the trait variables that explain a large fraction of the variation in the response parameters. 

The problem is akin to the familiar model selection problem in regression where a response 

variable is explained by a number of explanatory variables also called covariates (whether 

continuous or discrete factors). For covariate selection we used the Bayesian variable selection 

approach of Yuan and Lin (2005). The same approach is also used to find the linear combination 

of environmental variables that best explains the species data through trait modulated Gaussian 

logistic response curves. 

Bayesian techniques define posterior model probabilities that automatically penalize more 

complex models, providing a way to select models. Because these probabilities can be very 

difficult to compute, Bayesian analyses typically use two common approximations, the Bayesian 

(BIC) and deviance (DIC) information criteria. The BIC is similar to the AIC, and similarly 

requires an estimate of the number of parameters. The DIC makes weaker assumptions, 

automatically estimates a penalty for model complexity and is automatically calculated by the 

WinBUGS/OpenBUGS program (http://www.mrc-bsu.cam.ac.uk/bugs). Despite dispute among 

statisticians about its properties, the DIC is rapidly gaining popularity among statistician and 

ecologists. 
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DIC is used as a preliminary tool for comparing competing models for individual environmental 

variables and the best linear combination of them (the latent variable). Of course, not all 

environmental factors are equally important and some factors may perhaps be combined into a 

synthetic (latent) environmental gradient. The latent variable is formed by a linear combination of 

environmental variables that are presumed to maximally explain the species distribution.  

In Chapter 3, no large difference in the DIC was observed between models with and without traits. 

Nevertheless, some traits appeared important as judged by their selection by the Yin and Lin 

approach. The insensitiveness of DIC to the traits is rather unexpected as traits could be usefully 

selected in chapter 2 on the basis of AIC, the frequentistic equivalent of DIC. The usefulness of 

DIC for trait selection needs further research. 

Chapter 3 fits the Gaussian models in a fully Bayesian framework employing MCMC simulation 

to generate posterior samples from the joint posterior distribution, which are used to make various 

posterior inferences. Bayesian methods are easy to implement and provide not only point estimates 

but also compute confidence intervals for model parameters. The downside is that MCMC 

simulation may be (computer) time-consuming and that it might be difficult to assess convergence, 

beyond assessment by Gelman’s R-statistic. By contrast, the R software for GLMM that we used 

(lme4) reports explicitly that its optimization procedure did not converge. Problems with 

convergence were encountered both using GLMM and the Bayesian approach, but were not so 

serious as to make the methods impractical. 

When a system is described by a statistical model, model complexity leads to a very large 

computing time and poor estimation, especially if the number of predictors is large relative to the 

data size. As an alternative to and improvement over stepwise methods, shrinkage methods have 

been proposed. One of these is the Relevance vector machine (RVM) which has gained popularity 

within the machine learning community (Tipping 2001, Bishop 2006, Xu 2007) as it does not need 

cross-validation. RVM introduces a Gaussian prior to regression coefficients, with one variance 

component for each predictor, which are then estimated by maximizing the marginal likelihood 

(Type-II maximum likelihood or empirical Bayes). RVM yields variance estimates that are MAP 

under a uniform prior for the variances.  

The Type-II maximum likelihood (Type-II ML)  shrinks the coefficients to zero and readily sets 

some of the coefficients to zero, namely if their variance component is estimated to be zero 

(Chapter 5). These zero variance coefficients are equivalent to pruning the corresponding 

predictors from the model. Hence this method readily helps in pruning predictors from the model 

and does simultaneous variable selection and model estimation. 

We studied the selection properties of RVM. RVM selects predictors when the absolute z-ratio 

(|least squares estimate|/standard error) exceeds 1 in the case of orthogonal predictors and, for two 
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predictors, this still holds true for correlated predictors when the other z-ratio is large. RVM selects 

the stronger of two highly correlated predictors (Chapter 5). Compared to other regularization 

methods e.g. LASSO and PLS, RVM is outcompeted in terms of the prediction performance. The 

main conclusion from these expressions is again that RVM selects but is also very tolerant in 

allowing predictors to stay in the model. Despite the fact that RVM has gained popularity in the 

fields of machine learning, theoretically and empirically, Type-II ML is not the general answer in 

high dimensional prediction problems. 

The empirical Bayes approach in RVM and its extensions by Xu (2010) are not supported as 

approximations to a fully Bayesian approach (Chapter 5). This fact decreases their credibility; they 

cannot lend for proven optimality properties of the Bayesian approach.  

Community data are multivariate and several environmental factors and traits variables are 

interacting. Therefore to understand patterns of variation in species density a multivariate approach 

will be necessary as one-to-one approaches might not be sufficient. This way, selecting important 

trait-environment interactions becomes a model selection problem in mixed models. 

Chapter 6 developed a novel multi-trait and multi-environmental variable model selection method 

called tiered forward selection. In the first tier, the random factors are selected, in the second, the 

fixed effects are selected and in the final tier non-significant terms are removed based on a 

predictive modified Akaike information criterion. Here random factors are the environmental 

variables while the fixed effects are related to traits and trait-environment interactions. Further we 

compared the performance of mixed model with the fourth corner method, the linear trait-

environment method (LTE) and the one-shot method, namely Type-II maximum likelihood (Type-

II ML). 

LTE estimates the parameters by least square. In contrast to LTE, linear mixed model (LMM) 

estimates the fixed effects by generalized least square estimation and their significance can be test 

by parametric bootstrap (Chapter 6). Type-II ML also identifies the trait-environment interactions 

which are also identify by other methods but the selection is optimistic. It encountered too many 

trait-environment interactions and many of them were not common to other methods as Type-II 

ML is very tolerant in allowing predictors to stay in the model (Chapter 5). The multi-trait multi 

environment method resulted in less number of significant trait-environment interactions. 

The fourth-corner method (Dray and Legendre 2008) test the  significance of  trait-environment 

relationship by a permutation test. Dray and Legendre (2008) offer different permutation scenarios 

but non faithfully controlled the type I error. The linear trait-environment (LTE) method (Cormont 

et al. 2011) was developed as an alternative to the fourth corner method to account for negative 

species data values. The method is linear and as such is more closely related to the linear mixed 

model than the fourth corner method. However, just like the fourth corner method, LTE has no 
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variance components. The interaction between a trait and an environmental variable in LTE 

captures the trait-environment relationship. The significance of this interaction is tested by a 

Monte Carlo permutation test as in the fourth corner problem. The LTE differs from the fourth-

corner method by using multivariate linear regression (Cormont et al. 2011).  

In this thesis we considered trait-environment relationships. In hindsight, perhaps the most 

important reason that it is difficult to quantify this relationship is that traits are measured on 

species and environmental variables on sites. So how can these be related? They can only be 

related via the sites × species data. So, there is a third entity involved, which complicates the issue.  

Statisticians are often keen to distinguish interactions from correlations. Two variables are 

correlated when a change in one variable is likely to be associated with a change in the other. By 

contrast, interaction involves a third variable and considers the effects of the variables on this third 

variable. Two variables are said to interact when the one variable modifies the effect of the other 

on the third variable. In terms of regression modeling, the third variable is the response variable, 

the other two are predictor variables and the interaction might be represented by the product of the 

predictor variables.  

Is the trait-environment relationship now best expressed as a correlation as in the fourth corner 

problem (and LTE) or as an interaction as in the GLMM model? The fourth corner problem is able 

to express the relationship as a correlation by taking the individual organism as the statistical unit: 

the cases are the individual organisms. This trick gives the third variable (the sites × species data) 

another role; the elements become weights. This is the logical approach when individuals are 

(randomly) sampled rather than sites. However, in the practice of much ecological research, 

primarily sites are sampled and then individuals within sites. The sampling process is thus 

hierarchical and hierarchical statistical models are thus a natural way to model it. We toke this 

hierarchical approach in this thesis (Chapter 2). By giving the third variable the role of response 

variable, the trait-environment relationship becomes naturally an interaction. In contrast with the 

fourth corner problem, this approach does not ignore the information that some species are absent 

at a site. The advantage of the GLMM is that it has the potential of predictive use: which species 

from a species pool are expected to occur under specified environmental conditions when we only 

know the trait values of the species in the pool. Of course, at the current stage, we are still ignoring 

any competition and successional processes that must also be important in community assembly, 

but that does not necessarily invalidate the prediction. It makes it less precise. 

Further Research 

There has been growing interest in how information about phylogenetic relationships between co-

occurring species aids our understanding of community assembly. It should be noted that species 

are not phylogenetically independent. This seriously precludes claims that the traits we observed as 
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associated to an environmental variable have evolved independently as an adaptive response to 

local conditions. In this view, there may also be pseudo-replication on the level of species and not 

only on the level of the basic observations (presence-absence) as noted in Chapter 2.  So far we did 

neither considered phylogeny, which puts constraints on the way traits may evolve in evolutionary 

process (Prinzing et al. 2008), nor the spatial configuration of the sites, which set constraints on 

dispersion (Dray and Legendre 2008, Ozinga et al. 2004). Both aspects can be modeled in a mixed 

effect models through additional random effects whose correlation depends on either phylogenic 

association or spatial distance. When these aspects are modeled properly, the GLMM is able to 

overcome the above-mentioned problems of pseudo-replication. The greatest obstacle for 

application of this approach is the absence of general software to perform the necessary 

calculations. In the absence of software, the parameter estimation in these cases is not easy to 

implement (Bolker et al. 2009). For example, covariance matrices cannot be specified in the 

GLMM R package lme4. Recently, Ives and Helmus (2011) investigated the phylogenetic structure 

in community data in combination with either a single environmental variable or a single trait 

variable or no external data, but not in combination with both a trait and an environmental variable 

(the case we studied in this thesis). 

In an attempt to add the phylogenetic structure in a simpler way, we extended the GLMM analysis 

by adding principal coordinates of the distance matrix of the phylogenetic tree as nuisance traits.  

We selected the significant principal coordinates and added those to the GLMM so as to adjust for 

phylogeny. In the Dune Meadow Data (chapter 2), phylogeny decreased the SigAIC of the model 

but did not influence the significance of trait-environment interactions. Methods that take an 

integrative approach to the analysis of traits, phylogeny, environment and spatial configuration 

merit further research, also in terms of practical software implementation. 

This thesis offer new insight in species distribution modeling. The hierarchical approach to 

estimate trait-environment interactions may have applications in other fields of sciences where one 

has three table data. One of the promising areas is genetics where the interest is to estimate gene-

by-environment (G×E) interactions. 

Mixed models are extremely flexible and form a computationally attractive tool for modelling 

species distribution of complex and large datasets that are common in ecology. They are invaluable 

when the random variation is the focus of attention, particularly in studies of ecological 

heterogeneity of species. Fitting models to data is more informative and statistically powerful than 

informal approaches. In this thesis, we have encouraged ecologists to choose appropriate 

modelling tools for analyses, and to use them wisely.  
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Summary 

 
In the last two decades, the interest of community ecologists in trait-based approaches has grown 

dramatically and these approaches have been increasingly applied to explain and predict response 

of species to environmental conditions. A variety of modelling techniques are available. The 

dominant technique is to cluster the species based on their functional traits and then summarize the 

response of the clusters to environmental change. In general, fitting explicit models to data is 

always more informative and powerful than more informal approaches.  

The central theme of the thesis is how to quantify the relation of traits with the environment using 

three data tables, data on species occurrence and abundance in sites, data on traits of species and 

data on the environmental characteristics of sites. In this thesis, we place the challenge of 

quantifying trait-environment relationships in the context of species distribution modelling, so in 

the context of species-environment relationships. We present a hierarchal statistical approach to 

species distribution modelling that efficiently utilize the trait information and that is able to 

automatically select the relevant traits and environmental characteristics. This model-based 

approach, coupled with recent statistical developments and increased computing power, opens up 

possibilities that were unimaginable before. 

In Chapter 2 a hierarchical statistical approach is introduced for modeling and explaining species 

response along environmental gradients by species traits. The model is an extension of the 

generalized linear model with random terms that express the between-species variation in response 

to the environment. This so-called generalized linear mixed model (GLMM) is derived by 

integrating a two-step procedure into one. As the basic GLMM we take the random intercept and 

random slope model. To introduce traits, the regression parameters (intercept and slope) are made 

linearly dependent on the species traits. As a consequence the trait-environment relationship is 

represented as an interaction term in the model. The method is illustrated using the famous Dune 

Meadow Data using Ellenberg indicator values as species traits. 

Niche theory proclaims that species response to environmental gradients is nonlinear. Each species 

has preferred an environmental condition in which it can survive and reproduce optimally. Thus 

each species tends to be most abundant around a specific environmental optimum and the 

distribution of species along any environmental gradient is usually unimodal, with the maximum at 

some ecological optimum. For presence-absence data, the simplest unimodal (non-negative) 

species response curve is the Gaussian logistic response curve with three parameters that 

characterize the niche: optimum (niche centre), tolerance (niche width) and maximum (expected 

occurrence at the centre).  Niches of species differ between species and species are assumed to be 

evolutionary adapted.  It is difficult to fit the Gaussian logistic model with linear trait submodels 
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for the parameters with the available (generalized) nonlinear mixed model software. In Chapter 3 

we develop the trait-modulated Gaussian logistic model in which the niche parameters are made 

linearly dependent on species traits. The model is fitted to data in the Bayesian framework using 

OpenBUGS (Bayesian inference Using Gibbs Sampling). A Bayesian variable selection method is 

used to identify which species traits and environmental variables best explain the species data 

through this model. We extended the approach to find the best linear combination of 

environmental variables. 

In Chapter 4 we explained why and when (generalized) linear mixed models can effectively 

analyse unimodal data and presented a graphical tool and statistical test to test for unimodality 

while fitting just a generalized linear mixed model without any squared or other polynomial term. 

A GLMM is, of course, a linear model. Despite this fact, it can be used to detect unimodality and 

to fit unimodal data, with the provision that the differences in niche widths among species are not 

too large. As graphical tool we suggested to plot the random site effects against the environmental 

variable. There is an indication for unimodality, when this graph shows a quadratic relationship. 

The efficacy of GLMM to analyse unimodal data is illustrated by comparing the GLMM approach 

with an explicit unimodal model approach on simulated data and real data that show unimodality.   

When a system is described by a statistical model, model complexity leads to a very large 

computing time and poor estimation, especially if the number of predictors is large relative to the 

data size. As an alternative to and improvement over stepwise methods, shrinkage methods have 

been proposed. One of these is the Relevance vector machine (RVM). RVM assigns individual 

precisions to weights of predictors which are then estimated by maximizing the marginal 

likelihood (Type-II ML or empirical Bayes). In Chapter 5 we investigated the selection properties 

of RVM both analytically and by experiments. We found that RVM is rather tolerant for predictors 

to stay in the model and concluded that RVM is not a real solution in high-dimensional data 

problems. 

Chapter 6 further developed the multi-trait and multi-environmental variable model selection 

method that used Chapter 2 in a linear mixed model context. The method is called tiered forward 

selection. In the first tier, the random factors are selected, in the second, the fixed effects are 

selected and in the final tier non-significant terms are removed based on a modified Akaike 

information criterion. The linear mixed model with the tiered forward selection is compared with 

Type-II ML and existing methods for detecting trait-environment relationships that are not based 

on mixed models, namely the fourth corner method and the linear trait-environment method (LTE).  

Chapter 7 summarizes the findings of the methods. The limitations of methods are discussed and 

future research directions in species distribution modeling and integration of these methods in 

other disciplines are proposed.   
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Samenvatting 
 

 

 

De belangstelling van ecologen voor de rol van kenmerken van soorten in hun verspreiding is de 

afgelopen twintig jaar enorm toegenomen. Kenmerken worden meer en meer gebruikt om de 

reactie van soorten op milieufactoren te verklaren en te voorspellen. Een aantal 

modelleertechnieken zijn hiervoor beschikbaar. De meest gebruikte techniek is om soorten te 

clusteren op basis van hun functionele kenmerken en om dan de reactie van de clusters op 

milieuverandering samen te vatten. Over het algemeen is het aanpassen van expliciete modellen 

aan gegevens altijd informatiever en krachtiger dan een informelere aanpak. 

Het centrale thema van het proefschrift is de vraag hoe the relatie tussen kenmerken en milieu te 

kwantificeren op basis van drie tabellen van gegevens, gegevens over het voorkomen en/of de 

abundantie van soorten op monsterplekken, gegevens over kenmerken van soorten en gegevens 

over milieukarakteristieken op de monsterplekken. In dit proefschrift plaatsen we de uitdaging om 

kenmerk-milieu relaties te kwantificeren in de context van het modelleren van de verspreiding van 

soorten, dus in de context van soort-milieu relaties. Deze op modellen gebaseerd aanpak, samen 

met recente ontwikkelingen in de statistiek en de toegenomen kracht van computers, biedt nieuwe 

mogelijkheden die tevoren ondenkbaar waren.  

In hoofdstuk 2 wordt een hiërarchische statistische aanpak voorgesteld om de reactie van soorten 

op milieugradienten te modeleren en te verklaren op basis van kenmerken van soorten. Het model 

is een uitbreiding van het gegeneraliseerde lineaire model met random termen die de tussen-

soortsvariatie in reaktie op het milieu uitdrukken. Dit generaliseerde lineaire gemengde model 

(GLMM) wordt afgeleid door de twee stappen van een twee-staps procedure te integreren.  Als 

basis GLMM nemen we het random intercept en random helling model. Kenmerken worden aan 

het model toegevoegd door de regressie parameters (intercept en helling) lineair afhankelijk te 

maken van de kenmerken van de soorten. Als gevolg hiervan wordt de kenmerk-milieu relatie 

weergegeven door een interactieterm in het model. Het model wordt geïllustreerd aan de hand van 

de beroemde Duinweidengegevens met gebruikmaking van de Ellenberg indicatiegetallen als 

kenmerken van soorten. 

Niche theorie dicteert dat de reactie van soorten op milieugradienten niet lineair is. Elke soort heeft 

een voorkeursconditie waarbij de soort kan overleven en zich optimaal kan reproduceren. Elke 

soort komt dus het meeste voor onder een specifiek milieuoptimum en de verdeling van de soort 

langs een milieugradient is doorgaans unimodaal (eentoppig) met het maximum bij het 

milieuoptimum. De eenvoudigste unimodale (niet-negatieve) reactie curve voor aan- en 
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afwezigheidsgegevens is de Gaussisch logistische curve met drie parameters die de niche 

karakteriseren: optimum (centrum van de niche), tolerantie (breedte van de niche) en maximum 

(kans van voorkomen in het centrum). Niches van soorten verschillen tussen soorten en van 

soorten wordt verondersteld dat ze door evolutie aangepast zijn aan het milieu waarin ze leven. Het 

is moeilijk met de beschikbare software voor (gegeneraliseerde) niet-lineaire gemengde modellen 

om het Gaussische logistische model met lineaire submodellen voor de parameters, die 

soortenkenmerken koppelen aan de parameters, aan te passen aan gegevens. In hoofdstuk 3 

ontwikkelen we het kenmerk-gemoduleerde Gaussisch logistische model waarin de parameters van 

de niche lineair afhankelijk zijn gemaakt van de kenmerken van de soorten. Het model wordt 

aangepast aan gegevens in het Bayesiaanse raamwerk met OpenBugs (Bayesian inference Using 

Gibbs Sampling). Een Bayesiaanse variabelenselectiemethode wordt gebruikt om die 

soortskenmerken en milieuvariabelen te identificeren die de aan- en afwezigheidsgegevens het 

beste verklaren. Ook breiden we de aanpak uit naar het vinden van de beste lineaire combinatie 

van milieuvariabelen.  

In hoofdstuk 4 verklaren we waarom en wanneer gegevens met unimodale structuur effectief 

kunnen worden geanalyseerd met (gegeneraliseerde) lineair gemengde modellen. We stellen een 

grafisch hulpmiddel en een statistische toets voor om op unimodaliteit te toetsen. De grafiek en 

toets maken gebruik van de uitkomsten van een gegeneraliseerd lineair gemengd model zonder 

enige kwadratische of andere polynomiale term. Een GLMM is natuurlijk een lineair model. 

Ondanks dit onomstotelijke feit, kan het model gebruikt worden om unimodaliteit te detecteren. 

Een aanpassing van een GLMM aan gegevens met een unimodale structuur blijkt bruikbaar, als de 

verschillen in niche breedte tussen soorten niet al te groot is. Als grafisch hulpmiddel stellen we 

voor om de random plekeffecten uit te zetten tegen de milieuvariabele. Er is aanwijzing voor 

unimodaliteit, wanneer deze grafiek een kwadratische relatie laat zien. De effectiviteit van GLMM 

om gegevens met unimodale structuur te analyseren wordt geïllustreerd door de GLMM aanpak te 

vergelijken met een aanpak met een expliciet unimodaal model voor gesimuleerde en werkelijke 

gegevens die unimodaliteit laten zien.  

Wanneer een systeem wordt beschreven met een statistisch model leidt modelcomplexiteit tot een 

erg grote rekentijd en een slechte schatting van parameters, in het bijzonder als het aantal 

voorspellers groot is ten opzichte van de steekproefomvang. Als alternatief voor en verbetering 

van stapsgewijze methoden zijn krimpmethoden voorgesteld. Eén van deze is de Relevantie vector 

machine (RVM). RVM kent individuele precisies toe aan de regressiegewichten van voorspellers 

die dan worden geschat door de marginale aannemelijkheid (likelihood) te maximaliseren (Type II 

ML of empirisch Bayes). In hoofdstuk 5 onderzoeken we de selectieeigenschappen van RVM, 

zowel analytisch als experimenteel. We vinden dat RVM nogal tolerant is; het laat voorspellers in 
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het model die weinig bijdragen. We concluderen dat RVM is geen echte oplossing is voor 

problemen met hoog-dimensionele gegevens.  

In hoofdstuk 6 ontwikkelen we de modelselectiemethode uit hoofdstuk 2 verder, en wel in de 

context van lineaire gemengde modellen. We noemen de methode gelaagde voorwaartse selectie. 

In eerste laag, worden random factoren geselecteerd. Dit zijn in dit proefschrift de 

milieuvariabelen. In de tweede laag worden de vaste effecten geselecteerd (kenmerken van soorten 

en hun interactie met milieuvariabelen) en in de laatste laag worden de termen die niet significant 

zijn weer verwijderd. Alle stappen maken gebruikt van een gewijzigd Akaike informatiecriterium. 

Het lineair gemengde model met gelaagde voorwaartse selectie wordt vergeleken met Type II ML 

en met bestaande methoden om kenmerk-milieu relaties op te sporen die niet zijn gebaseerd op 

gemengde modellen, te weten de zogenaamde ‘fourth corner’ (vierde kwadrant) methode en de 

lineaire kenmerk-milieu methode (LTE).  

In hoofdstuk 7 vatten we de bevindingen over de methoden samen. We bespreken de beperkingen 

van de methoden en geven nieuwe onderzoeksrichtingen aan, zowel voor het modelleren van de 

verdeling van soorten als voor overeenkomstige uitdagingen in andere disciplines.  
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