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Dankwoord

Op het moment dat ik deze woorden schrijf is het exact vijf jaar geleden dat ik als
promovendus begon bij de toenmalige leerstoel Bodeminventarisatie en Landevalu-
atie en bij Team Bodemgeografie van Alterra. Nu, 33.000 regels computerscript, 600
bodemmonsters, ruim 1 300 meter grondboren (de eerlijkheid gebiedt mij er direct bij
te vermelden dat ik hiervan slechts een kwart zelf heb gedaan) en acht werkplekken
later, ligt er dit proefschrift. Promoveren gaat uiteraard niet vanzelf en veel werk ge-
beurt eenzaam achter de computer. Toch zijn er talloze personen geweest die mij de
afgelopen vijf jaar op allerlei manieren hebben bijgestaan en hiermee een belangrijke
rol hebben gespeeld bij de totstandkoming van dit proefschrift. Vanzelfsprekend wil
ik hen hiervoor bedanken. En dat ga ik nu doen!

Allereerst mijn drie begeleiders: Gerard, Dick en Jetse. Mijn dank aan jullie is moei-
lijk in woorden uit te drukken. Wat ik wel kan zeggen is dat een promovendus
zich geen beter begeleiding kan wensen zoals ik deze van jullie al die jaren heb ge-
had. Het feit dat mijn promotieonderzoek zo soepel is verlopen is voor een groot
deel aan jullie te danken. Ik heb ontzettend veel van jullie geleerd op het gebied
van geostatistiek, steekproeftheorie, het doen van wetenschappelijk onderzoek en
het schrijven van artikelen. Het was me een groot genoegen om met jullie te mo-
gen samenwerken! Tom, als voormalig leerstoelhouder, en Mirjam, als voormalig
teamleidster van Bodemgeografie, jullie hebben deze AIO-positie mogelijk gemaakt
met als doel de samenwerking tussen universiteit en Alterra te bevorderen en jullie
hebben mij daarop aangesteld. Ik hoop dat ik daarin geslaagd ben. Hartelijk dank
voor het gestelde vertrouwen.

Ik heb vijf jaar deel uit mogen maken van Alterra’s team Bodemgeografie. Een clubje
mensen met een voorliefde voor de bodem: voor de één in de vorm van zand, klei,
veen en voor de ander in de vorm van bits en bytes. Bedankt voor alle gezellig-
heid tijdens lunches, uitjes en etentjes. Voor mij waren het vijf plezierige jaren en
ik ben blij dat ik sowieso nog een aantal jaren in jullie midden mag vertoeven. Er
zijn een aantal Bodemgeografen die ik hier in het bijzonder wil noemen. Folkert,
bij jou kon ik altijd terecht met verzoeken voor en vragen over bodemgegevens uit
het bodemkundig informatiesysteem. Als projectleider van het grote veenactuali-
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satie project heb jij mij de ruimte gegeven om binnen dit project mijn eigen weg te
zoeken wat uiteindelijk heeft geleid tot hoofdstukken 5 en 6 van dit proefschrift.
Mijn dank daarvoor is groot. Ik ben verheugd dat we de kennis opgedaan in dit
proefschrift komende jaren kunnen gaan inzetten in de praktijk. Fokke wil ik bedan-
ken voor het beantwoorden van vele bodemkundige vragen door de jaren heen en
voor de week die we samen in het Drentse zand en veen hebben doorgebracht om
mijn veldbodemkundige kennis wat op te krikken. Ik heb veel van je geleerd! Den-
nis, R-goeroe van team Bodemgeografie, bedankt voor al je waardevolle hulp met R.
Martin, bedankt voor het redigeren van de Nederlandse samenvatting en voor dat
LATEX bestandje van je (proefschrift was het toch?). Dat laatste heeft me enorm op
weg geholpen met de opmaak van dit proefschrift. Gert, Willy, Ebbing en Matheijs
wil ik hartelijk danken voor hun enorme inzet tijdens het verzamelen van de valida-
tiedata voor de hoofdstukken 5 en 6. Joop, als teamleider van Bodemgeografie heb
je me tijdens het laatste jaar veel vrijheden in mijn werkzaamheden gegeven en heb
je het voor elkaar gekregen dat ik, ondanks economisch zwaar weer, mijn carrière
komende jaren kan voortzetten bij het team. Ik ben je daar erg erkentelijk voor.

Bij de leerstoel Landdynamiek dank ik alle AIOs en oud-AIOs voor alle gezelligheid
tijdens de koffiepauzes, lunches en allerhande sociale activiteiten. Ook hier wil ik
een aantal mensen persoonlijk noemen. Jantiene, we zijn ongeveer tegelijkertijd als
AIO begonnen en zijn nu ook bijna tegelijkertijd klaar. Bijna vijf jaar hebben we de
hoogtepunten en dieptepunten (gelukkig waren dat er niet zoveel) in het leven van
een promovendus gedeeld (met bijbehorende stemmingen) tijdens onze gezamelijke
kantoordag op vrijdag in Gaia en op onze ‘koffiehangplek’ in Atlas. Bedankt voor
je gezelschap. Ik beschouw het als een eer dat ik al die jaren je koffiemeisje, secreta-
resse en ArcGIS helpdesk heb mogen zijn ;). Verder wil ik Arnaud bedanken voor het
altijd netjes terugbetalen van z’n snoepautomaatleningen ;), Wieteke voor shaRing,
Catherine voor het (niet) in leven houden van onze kantoorplanten tijdens mijn af-
wezigheid ;), en Dirk voor de vele goed gesprekken en het zo nu en dan delen van de
PhD-blues; nu nog die Zimbabwe paper gepubliceerd krijgen. Nynke, bedankt voor
van alles en nog wat en bij deze ook alvast voor de foto’s! Marthijn en Gert, het was
me een groot genoegen om jullie vier jaar te mogen assisteren tijdens het bodemkun-
dig veldpracticum voor eerstejaars: van de Drentse keileem naar de Limburgse löss
en van de fruitboomgaarden in de Betuwe naar de schorren van Zeeland. Ik vond
het erg leuk om te doen en voor mij was het denk ik net zo leerzaam als voor de
studenten zelf. Henny, bedankt voor alle onmisbare administratieve hulp.

En dan mijn paranimfen: Maarten en Bouke. Bouke, ondanks de ontelbare oorlogen
die we met dobbelstenen hebben uitgevochten, bedankt voor 21 jaar hechte vriend-
schap en je niet aflatende interesse in mijn bezigheden. Maarten: oud-studiegenoot,
squashmaatje, ex-huisgenoot, mede-concertganger en worthy opponent aan de spel-
tafel; bedankt dat je ook tijdens mijn promotie aan mijn zijde wil staan.

Voor de broodnodige ontspanning in de vorm van lange spelavonden en -middagen,
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filmmarathons, BBQs, zuurkoolorgies, pannenkoekenfeestjes, bioscoopbezoekjes, zeil-
tochtjes en uitstapjes naar Jena zorgden Sipke en Marlide, Hans en Priscilla, Bram
en Irka, Johan en Ebertine, en sinds kort ook Wessel en Imie. Maarten, jij hoort
hier uiteraard ook bij maar jou had ik al genoemd ;). Ook aan jullie mijn hartelijke
dank voor jullie jarenlange vriendschap. De vele partijtjes squash op maandag en
woensdag waren niet alleen erg leuk maar hielpen ook om mijn hoofd na een lange
werkdag te legen. Diederik, Noortje, Matthijs en Mike, bedankt daarvoor!

During the final months of my PhD I had the opportunity to visit the Department of
Crop & Soil Sciences at Cornell University. Harold and Bianca, thank you so much
for your hospitality and for making my stay, albeit short, a very pleasant one. It has
been a great experience.

Pap en mam, bedankt voor de onvoorwaardelijke steun die ik altijd van jullie heb
gehad. Het is goed te beseffen dat er ergens in Brabant altijd een deur voor me open
staat.

En tenslotte: Lieve Els, al bijna 10 jaar mijn lief en mijn maatje. Hoeveel je voor me
betekent hoef ik hier niet uit te leggen. Bedankt dat je er voor me bent.
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Chapter 1. Introduction

1.1 Background

Soils are back on the global agenda (Hartemink, 2008). An increasing world popu-
lation, rapid economic growth in large parts of the world and the energy crisis are
putting pressure on the soil as a natural resource. The soil must feed an estimated
nine billion people around 2050, but food production is threatened by soil fertility
decline as a result of poor soil management and by competition for fertile lands from
biofuels and animal feed. Besides food production, the soil plays an important role
in climate change and the carbon cycle (Gorham, 1991; Lal, 2004). Global concerns
about food security and climate change and increasing awareness about the impor-
tance of sustainable soil management to protect and preserve soil resources for soci-
ety and environment, have instigated that soils are increasingly mentioned in global
studies conducted by the United Nations, World Bank and FAO (Hartemink and
McBratney, 2008). Soil legislation is developed on national and continental level.
Examples are the adoption of a Resolution on soil in the US Senate (Hartemink
and McBratney, 2008) and the Thematic Strategy for Soil Protection of the European
Union (EU) (Commission of the European Communities, 2006; Bouma and Droogers,
2007; Bouma, 2010). The objective of the EU Thematic Soil Strategy is the protection
and sustainable use of soils by preventing further degradation, preserving its func-
tions and restoring degraded soils (European Commission, 2006). These functions
are i) production of food and biomass, ii) storing, filtering and transforming com-
pounds, iii) providing habitat and gene pool, iv) providing the physical and cultural
environment for human activities, v) source of raw materials, vi) acting as carbon
pool, and vii) archive of geological and archeological heritage (Commission of the
European Communities, 2006). Along with the soil functions, the EU defined eight
main soil threats. These are erosion, organic matter decline, contamination, salinisa-
tion, compaction, soil biodiversity loss, sealing, floods and landslides.

Renewed global interest in soil has fuelled demand for accurate, up-to-date, high-
resolution geographical soil information to assess effects of soil threats on soil func-
tions, to study the role of soil as a source or sink of greenhouse gasses and to support
policy-making in soil resource management to secure food production. To meet this
demand, several soil mapping projects were recently initiated across the globe, of
which the GlobalSoilMap.net project1 (Sanchez et al., 2009) is perhaps the most am-
bitious. This project aims to make a new digital soil map of the world using digital
soil mapping (McBratney et al., 2003), which comprises quantitative, state-of-the art
technologies for soil mapping.

Also in the Netherlands there is growing demand for soil information for a great
variety of purposes. The national soil map at scale 1:50 000 is the main source of
soil information. This map was initially created for soil suitability analysis for vari-
ous land-use systems (van Lynden et al., 1985; Sonneveld et al., 2010), but since the

1http://www.globalsoilmap.net/
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1990s it is increasingly being used for environmental and agro-economic analyses
in support of policy-making. Examples include modelling of nutrient and pollutant
fluxes in the soil (van der Salm et al., 1996; Hack-ten Broeke et al., 1999; Kros et al.,
2011), inventories and monitoring of carbon stocks (de Groot et al., 2005; Schulp
and Veldkamp, 2008; Reijneveld et al., 2009), modelling soil subsidence (Hoogland
et al., 2011), implementation of the EU Thematic Soil Strategy (Bouma and Droogers,
2007) and simulation studies on greenhouse gas emissions from peat soils (Nol et al.,
2010; van Beek et al., 2011). These environmental applications of soil information
greatly outnumber the land suitability studies (de Vries et al., 2008). A consequence
of the shift soil data applications is that the national soil map often fails to meet the
requirements of the current generation soil data users. User inventories on data re-
quirements held between 2004 and 2008 revealed several shortcomings in the current
status of soil spatial information in the Netherlands (de Vries et al., 2008). Digital soil
mapping can play a key role in tackling these deficiencies and in supplying soil data
users with the information necessary to address current issues in soil protection,
conservation and agro-environmental policy-making.

The remainder of this chapter introduces conventional and digital soil mapping in
section 1.2. Section 1.3 focusses on soil information in the Netherlands and describes
trends in soil mapping, the development of soil information system BIS and the cur-
rent status of soil information. Section 1.4 defines the objectives and research ques-
tions of this thesis, provides a description of the study area and presents an outline
of the thesis.

1.2 Soil mapping

1.2.1 Conventional soil mapping

Conventional soil mapping (CSM) matured in the second half of the 20th century
(Schelling, 1970; Dijkerman, 1974). The original methodologies were refined over
time, although important methodological differences between schools and countries
remain until today. The soil survey manual (Soil Survey Division Staff, 1993)—
considered a standard work by many—provides the major principles and practices
for making and using soil surveys at the end of the 20th century. Soil maps are typ-
ically created with the free survey method. Free survey starts with physiographic
aerial photo interpretation in which the soil surveyor employs a mental soil-landscape
model to delineate soil boundaries based on landscape features. Aerial photo in-
terpretation is followed by field survey. Based on the mental model, the surveyor
selects sample locations from which the most useful information is likely to be ob-
tained (Bregt, 1992b). The field observations are used to check and further develop
the mental model of soil formation, to confirm or modify soil boundaries and to de-
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termine map unit composition. Sampling effort concentrates on ‘problem areas’, i.e.
areas where the soil pattern does not fit the mental model (Rossiter, 2000) and on ar-
eas with more variation. Free survey results in a general-purpose soil class map and
a set of soil profile descriptions. Each map unit is characterized by one or more rep-
resentative soil profiles, which are used for the interpretation of the soil map (Bregt,
1992b).

In the Netherlands, conventional soil maps are created with free survey but without
the aerial photo interpretation stage. Soil boundaries are located and drawn based
on field observations. Nowadays a high-resolution digital elevation model (DEM)
assists the surveyor in the delineation process. Sampling locations are chosen pur-
posively and are considered ‘representative’ for the field that is surveyed. These
follow a fairly regular pattern across the survey area. At the selected locations soil
profiles are described and classified from auger borings. A smaller set of detailed
descriptions is obtained from soil pits. In addition, extra (often non-recorded) obser-
vations are made to determine the boundary of the map delineations.

The conventional approach to soil mapping can produce accurate maps but is labour
intensive and often impractical in large, inaccessible areas such as for example in
Australia (Bui and Moran, 2003). Because of the qualitative nature of conventional
methods, i.e. the use of soil-landscape models is not formalized in the methodol-
ogy, these are often considered as much an art as a science (Hewitt, 1993). Main
criticisms of CSM include irreproducibility because the soil surveyor’s mental soil-
landscape model employed in deriving soil mapping units is often not recorded;
soil bodies that are strictly represented as discrete, homogeneous entities (informa-
tion is lost because the reporting format requires the data to be classified), which in
many cases is unrealistic; lack of quantified measures of accuracy; and ‘static’ rep-
resentation of soil variation (Hewitt, 1993; Goovaerts and Journel, 1995; Hartemink
et al., 2010). Moreover, CSM is based on soil classification, which is a hierarchical,
rigid system. The legend associated to a classification system is central to mapping,
whereas ideally the soil data and their applications should be. This is especially true
when considering today’s environmental-centered research approach in which soils
are an integral part of an ecosystem that interact with other environmental factors
(Grunwald, 2010; Bouma, 2010).

1.2.2 Digital soil mapping

Quantitative methods for the study of the spatial distribution of soils based on re-
gionalised variable theory were introduced in the early 1980s (Burgess and Webster,
1980; McBratney et al., 1982). These methods quickly gained popularity, assisted by
the rise of the personal computer, and led to the establishment of the Pedometrics
Working Group (later Commission) of the International Union of Soil Sciences in the
late 1980s and the first conference on Pedometrics in 1992. Pedometrics is defined as

14
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the ‘application of mathematical and statistical methods for the study of the distribution and
genesis of soils’ (Webster, 1994; Burrough et al., 1994).

Digital soil mapping (DSM) applies pedometric methods to map (predict) the spatial
(and temporal) distribution of soils (McBratney et al., 2000, 2003; Grunwald, 2006).
It is defined as the ‘creation and population of spatial soil information systems by use of
field and laboratory observational methods coupled with spatial and non-spatial soil inference
systems’ (Lagacherie and McBratney, 2007). It aims to extend the functionality of soil
information systems from storage of (digitised) conventional soil maps to produc-
tion of soil maps to meet current and future demand for accurate, up-to-date soil
information. Developments in DSM gained momentum in the 1990s (e.g. McKen-
zie and Austin, 1993; Odeh et al., 1994; Knotters et al., 1995), triggered by the great
explosion in computation power and information technology. With that came vast
amounts of high-resolution environmental data such as DEMs and satellite imagery.
During the first decade of the 21st century DSM moved forward from research to op-
erational phase and became a true global venture (Lagacherie and McBratney, 2007;
Hartemink et al., 2008; Sanchez et al., 2009; Boettinger et al., 2010). DSM is also re-
ferred to as ‘pedometric mapping’ (Hengl, 2003), which is occasionally used in this
thesis as well. Furthermore, in this thesis ‘digital soil map’ refers to a map generated
by pedometric methods and not to a digitised, conventional soil map.

The conceptual framework of DSM, like that of CSM, is based on the original model
of Jenny (1941) that describes soil formation in terms of the main soil forming factors:
climate, organisms, relief, parent material and time. DSM formalizes the relation-
ships between soil and soil forming factors by deriving empirical relationships be-
tween observations on soil and explanatory variables that represent the soil forming
factors (McBratney et al., 2003). These explanatory variables are derived from spa-
tially referenced environmental data layers such as DEMs, satellite images, geology
maps and soil maps. Once quantified in form of a statistical model, the relationships
between soil and soil forming factors can be used to predict soil at locations where
field observations are lacking but where environmental data are available. There is a
great variety of models in the DSM toolbox such as classification and regression trees
(Bui et al., 2006; Grimm et al., 2008), neural networks (Behrens et al., 2005), various
forms of kriging (Lark et al., 2006; Hengl et al., 2007a), expert systems (Skidmore
et al., 1996), Bayesian maximum entropy (D’Or and Bogaert, 2004; Brus et al., 2008)
and Kalman filtering (Webster and Heuvelink, 2006). Empirical models are the most
widely applied but process-based or mechanistic models exist as well (e.g. Stacey
et al., 2006; Minasny and McBratney, 2006b; Finke, 2011).

Digital soil mapping is, in contrast to CSM, data-centered. It takes the soil data as
starting point, instead of a legend, and transforms these data into soil information
required for a specific application, i.e. DSM is environmental-centered soil map-
ping which better fits the current view of soils as being part of an ecosystem (Grun-
wald, 2010) than does CSM. Various models can be used for this purpose, depend-
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ing on the application. DSM is not limited to use of one specific model such as in
CSM and is thus less rigid. Moreover, the main drawbacks of CSM do not apply to
DSM. DSM methods are reproducible: a prediction model is documented in com-
puter script which can be stored and rerun. Soil spatial variation can be represented
with different models of spatial variation. It is generally modelled as a continuous
phenomenon with a continuous model of spatial variation (e.g. kriging) but dis-
crete or mixed models of spatial variation can be applied as well (Heuvelink, 1996;
Heuvelink and Huisman, 2000). Use of (geo)statistical models does not only produce
a soil map but also quantifies the associated prediction uncertainty. In addition, it
is assumed that DSM is much more efficient than CSM. Despite these advantages
compared to CSM, DSM methods have drawbacks of their own. Conventional soil
maps are general-purpose maps that provide information on the three-dimensional
variation of a wide range of soil properties (including hard-to-measure properties)
via representative profiles, whereas digital soil maps are generally specific-purpose
maps: a map is created of a specific soil property at a specific depth interval. Mul-
tivariate methods can be used for DSM but these become prohibitive when a large
number of properties is considered. Furthermore, complex soil forming processes
might be difficult to quantify and represent by environmental explanatory variables,
while these can be more easily taken into account in free soil survey. Also, DSM
methods for soil classes are limited by the number of classes that can be handled
(Brus et al., 2008). While conventional methods are standardized (e.g. Soil Survey
Division Staff, 1993), DSM methods generally lack standardization. This can com-
plicate transferability of soil prediction models developed in one region to similar
and/or other regions (Grunwald, 2009). Finally, the success of DSM depends on the
availability of (up-to-date) soil data and environmental data layers. In areas with
limited data, producing accurate maps with pedometric techniques is challenging
(Stoorvogel et al., 2009).

1.3 Soil information in the Netherlands

1.3.1 Trends in soil inventories

The Netherlands has a long-standing tradition in land and soil inventories. In this
section I give a brief overview, which is largely based on Buurman and Sevink (1995)
and van der Pouw and Finke (1999). Already in the 1860s the first geological map
with nationwide coverage was produced at scale 1:200 000, with a legend that dis-
tinguished different types of unconsolidated deposits (the Netherlands being a sed-
imentary basin). During the first decades of the 20th century it became apparent
that the geological approach to soil survey could not sufficiently answer agricultural
questions regarding soil management and soil fertility. This led to the development
of soil science and soil survey as an independent discipline. An important contribu-
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tion was made in the 1930s by W.A.J. Oosting, who is considered one of the founding
fathers of soil science in the Netherlands. Oosting developed a new approach to soil
survey in which soils and their spatial distribution were studied in coherence with
geology, geomorphology, vegetation and soil forming processes. His approach was
adopted and further developed by C.H. Edelman and became the cornerstone of soil
survey in the Netherlands. Until the 1960s soil survey had a physiographic nature.
In 1950 the first provisional soil map of the Netherlands at scale 1:400 000 was pub-
lished, followed by publication of the first soil map with nationwide coverage at
scale 1:200 000 in 1965. During fieldwork for this map the need for a standardized
approach to soil survey and for a soil classification system based on measurable soil
properties became apparent. This resulted in the publication of a morphometric clas-
sification system (de Bakker and Schelling, 1966), a legend for a new nationwide soil
survey at scale 1:50 000 and a standardized methodology (Steur, 1961; Buringh et al.,
1962). The first sheet of the 1:50 000 soil map was published in 1964, the last in 1995.
In 1984 a soil information system became operational (see section 1.3.2). One year
later, a nationwide soil map at scale 1:250 000 soil map was published (Steur et al.,
1985).

Quantitative methods for soil inventories were introduced in the mid-1980s and
1990s to meet changing soil information needs that resulted from new societal en-
vironmental concerns (see section 1.1). In this period research focused on a great
variety of topics such as the development of pedotransfer functions for difficult-to-
measure soil properties (Wösten and van Genuchten, 1988), methods for soil map-
ping (Bregt et al., 1992; Heuvelink and Bierkens, 1992; Knotters et al., 1995), strategies
for updating soil survey information (Brus et al., 1992), comparison of (simple) quan-
titative methods for soil mapping with conventional methods (Bregt et al., 1987; Brus
et al., 1996), numerical methods for soil classification (McBratney and Gruijter, 1992),
the effect of soil spatial variation on soil processes (Finke et al., 1992; Finke, 1993),
development of design-based sampling methods for soil map accuracy assessment
(de Gruijter and Marsman, 1985; Marsman and de Gruijter, 1986; Brus, 1994; Dom-
burg et al., 1994; Brus et al., 1999; Brus, 2000) and the fundamental difference between
design-based and model-based sampling (de Gruijter and ter Braak, 1990; Brus and
de Gruijter, 1993, 1997). After 2000, quantitative research became more applied and
was often carried out in support of research in other soil science disciplines such as
soil quality (e.g. Brus et al., 2002; Brus and Jansen, 2004).

1.3.2 BIS: the Dutch soil information system

Digital archiving of soil information started in the late 1960s with the storage of
chemical data from soil horizons of well-described reference soil profiles (Leeters
et al., 1990). In the second half of the 1970s map sheets of the 1:50 000 map as well as
standard forms with soil profile descriptions were digitized and stored. This created
the first digital soil database that contained both soil point and areal data. In 1983 the
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project ‘BIS’ (Dutch acronym for ‘soil information system’) was initiated with the aim
to develop a relational database (ORACLE) for storage of soil point data and maps.
BIS became operational in 1984. Initially it only stored point data from reference soil
profiles. In 1988 digitization of the 1:50 000 soil map was completed and the map
was linked to the database. Between 1984 and 1990 BIS was gradually extended
with point data from various research and rural land restructuring projects as well
as large-scale (1:10 000-1:25 000) soil maps created for the latter. In 1990 BIS contained
almost 4 400 soil profile descriptions with measurement data on a great variety of soil
properties and over 80 000 basic profile descriptions with hand-estimates of basic soil
properties such as texture fractions and soil organic matter content. Storage of soil
data and maintenance of BIS was funded from governmental programme funds.

The mid-1980s saw a growing demand for quantitative information on the quality
of the 1:50 000 soil map and on the variation of soil properties within the map units.
Focus was not only on the traditional soil properties but also soil properties that had
become relevant for environmental research such as the Phosphate Sorption Capac-
ity and the Phosphate Saturation Degree. In 1988, a project was initiated to obtain
statistically reliable information about soil spatial variation within the map units of
the 1:50 000 soil map. This project developed into the Netherlands Soil Sampling
Programme in the 1990s (Visschers et al., 2007). At the same time there was a grow-
ing awareness that data in BIS became outdated, particularly data on the presence
and thickness of peat. This led to the revision and updating of several map sheets
of the 1:50 000 map (which were the last update activities until to date) (Makken and
de Vries, 1989; Finke et al., 1996). In 2004, government funding for maintenance and
extension of BIS halted. Since that time no new (up-to-date) point data and maps
were added to BIS. Also the funding of strategic research on methods for collecting
and processing (mapping) soil data came to a standstill, which hampered method-
ological developments.

In the context of updating and upgrading soil information, it is worth noting that
in the late 1990s a large project was initiated, funded by the national government
and regional water authorities, to update the groundwater table maps (Finke, 2000).
In addition, a more dynamic (high-resolution) description of the groundwater table
was required. For this purpose, a method was developed to obtain a large set of
parameters describing groundwater table dynamics (Finke et al., 2004). This method
used geostatistical techniques that are very similar to techniques that are nowadays
used in DSM.

Since 2004 BIS can be accessed through the internet2. Presently, BIS stores the 1:50 000
and 1:250 000 soil maps, regional soil maps at scales 1:10 000 and 1:25 000, a soil sam-
ple archive with 15 000 samples from 8 000 locations with measurements on texture
and chemical and physical properties, soil physical characteristics of the main tex-
ture classes, and spatially-referenced soil profile descriptions from over 307 000 loca-

2www.bodemdata.nl
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tions (de Vries et al., 2008).

1.3.3 Current status of soil information in BIS

The 1:50 000 national soil map still is the main source of soil information in the
Netherlands. Almost a hundred ministries, research and education institutes, con-
sultancy and utility companies, provinces, and over 150 municipalities (40% of the
total) obtained a license for use of the digitized map (de Vries et al., 2008). However,
soil data user inventories held between 2004 and 2008 revealed four shortcomings
of the current soil spatial information in BIS that hamper efficient and reliable use in
today’s agro-environmental research:

1. Outdated soil information. The map sheets of the 1:50 000 soil map are 20-50 years
old. Outdated soil information particularly concerns the areas with peat soils
(ca. 527 000 ha). Intensive agricultural use and deep drainage in these areas
causes mineralization of peat layers. Recent inventories on the status of peat
soils showed great changes in soil conditions in the north-eastern agricultural
peatlands. An estimated 47% of the deep peat soils have changed to shallow
peat soils or mineral soils and approximately 50–60% of the shallow peat soils
have changed to mineral soils (van Kekem et al., 2005; de Vries et al., 2009). It
is estimated that 365 000 ha peat soils require updating.

2. Lack of thematic soil maps. Thematic maps of basic soil property such as organic
matter, texture fractions, pH or phosphate sorption capacity are essential input
for various environmental models that predict and evaluate the effect of policy
measures on for example crop growth, soil acidification, pesticide and nutri-
ent leaching, carbon sequestration and land-surface greenhouse gas emission.
At the present, BIS does not allow storage of soil property maps. These maps
are currently made on ad-hoc basis. There is no standardized methodology to
transform soil data in BIS to soil information that is needed as input for envi-
ronmental research. Typically the description of a representative profile is used
to determine the soil property of the map unit that is linked to that profile. The
soil property value of interest is then assigned to the map delineations that
comprise the map unit. Often a generalized soil map with 21 map units is used
for this purpose given the very large number of map units of the 1:50 000 map.
This approach results in maps with crisp boundaries (lateral and vertical). In
many cases a continuous or mixed discrete-continuous representation of spa-
tial variation is more truthful. Also, no use is made of environmental ancillary
data and soil point data stored in BIS. Sometimes DSM methods are used to
create thematic soil maps but the resulting maps are not stored in BIS and the
used methods are not always documented.
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3. Lack of quantified measures of accuracy. Soil maps and point data stored in BIS
are not error-free. Errors in soil maps propagate to output of environmental
models that use these maps as input and may for instance affect the accuracy of
estimates of nutrient or pesticide leaching, soil carbon stock or greenhouse gas
emissions. Therefore there is a growing demand for quantitative information
on the accuracy of soil data stored in BIS and maps derived from these data.

4. Lack of detailed soil information. Many environmental applications require soil
information on a local scale for which the 1:50 000 map does not provide suffi-
cient detail. Large-scale (1:10 000–1:25 000), digitally available soil maps cover
roughly 13% of the country (400 000 ha).

1.4 Content of the thesis

1.4.1 Objectives

There is a need to update the national soil map and to extend BIS with full-coverage
thematic maps of all major soil properties with quantified accuracy at multiple scales.
In 2009 the Dutch government commissioned a six-year research programme named
BIS2014 with the aim to update and upgrade soil information in BIS. This programme
gave a new impulse to research on soil mapping methods and aims to update the
1:50 000 soil map for the areas with peat soils. It has been recognized that DSM
can play a key role herein. However, despite a long history in soil survey, exten-
sive research on quantitative methods for soil inventory between the late 1980s and
mid 1990s and rapid global advancements in DSM methods during the past decade,
DSM has not yet been applied in an operational way in the Netherlands. Soil map-
ping kept its qualitative nature until to date. The main objective of this thesis is
therefore to investigate and evaluate the merits of digital soil mapping for updating
soil information in the Netherlands.

The main objective can be divided into the following sub-objectives with their re-
spective research questions:

1. Updating the 1:50 000 soil map.

(a) Can the accuracy of the current 1:50 000 soil map be improved by updat-
ing using a simple digital soil mapping model and legacy soil data from
BIS?

(b) Does incorporation of spatial dependence in a model for digital soil type
mapping result in a more accurate soil map than use of a non-spatial
model?
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2. Development of digital soil mapping models for updating soil property maps.

(a) How can a soil map with quantified uncertainty be used for mapping the
soil organic matter content (SOM) and does this approach improve predic-
tion accuracy compared to use of a conventional geostatistical approach?

(b) How can pedological knowledge be integrated with geostatistics for mod-
elling the three-dimensional spatial variation of soil properties?

(c) Do depth functions of SOM constructed by pedometric methods give bet-
ter predictions of SOM stock than conventional depth functions?

3. Accuracy and efficiency assessment of digital and conventional soil mapping
for updating soil information.

(a) What is the effect of mapping intensity (in a monetary unit ha−1) on ac-
curacy of digital soil type and property maps?

(b) Are digital soil mapping methods more efficient than conventional meth-
ods for updating soil type and soil property maps?

(c) How can soil maps best be validated?

1.4.2 Study area

The case studies presented in this thesis are all located in the province of Drenthe, the
Netherlands. In Chapters 2 and 3 the province itself is the study area. The method-
ology developed in Chapter 4 is illustrated with a case study for a small area in
south-central Drenthe. Chapters 5 and 6 focus on a study area in the southeast of
Drenthe: the cultivated peatlands.

The province of Drenthe is situated in the northeastern part of the Netherlands be-
tween 52°12’ and 53°12’ northern latitude and 6°7’ and 7°5’ eastern longitude (Fig.
1.1). The size of Drenthe is about 2 680 km2. Agriculture (dairy farming, potatoes,
wheat, maize) covers 67% of the area; natural areas, 21%; built-up areas, 9%; the
remainder of the area is composed of water and infrastructure. Altitude ranges be-
tween -1 and 30 m above sea level.

Formation of the present-day landscape of Drenthe started at the end of the Mid-
Pleistocene during the Saalian ice age (240-128 ka BP). A continental ice sheet cov-
ered the northern part of the Netherlands 160 000 years ago. Under the ice sheet a
thick layer of glacial till was deposited. A deep glacial meltwater valley formed east
of the till plateau, the Hunze valley, which was partly filled with fluvioglacial sands
when the ice sheet melted. The upper part of the till weathered during the Eemien
interglacial (128-116 ka BP). The first part of the Weichselian ice age (116-73 ka BP)
was cold and wet. Meltwater incised and eroded the till plateau, forming an exten-
sive system of brook valleys. In the course of the Weichselien the brook valleys were
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partly filled with eroded material of the till and fluvial sands. Aeolian cover sands
were deposited on the glacial till and in the brook valleys during the coldest and dri-
est part of the Weichselian (40-11.5 ka BP). This further levelled the relief and formed
a slightly undulating landscape with ridges and flats. The climate became more gen-
tle in the Holocene (since 11.5 ka BP). Groundwater levels rose and fen peat started
forming in the brook valleys. At the same time, oligotrophic peat formed in depres-
sions on the till plateau. Around 5000 BP oligotrophic peat formation started in the
Hunze valley as a result of a changed drainage situation. The peat on the plateau
and in the Hunze valley quickly expanded over the landscape forming vast, raised
highmoor bogs. Eventually these bogs covered one third of Drenthe (Spek, 2004).
During the Middle Ages, drift-sands and open-field agricultural complexes formed
on the till plateau as a result of the plaggen-based, open-field farming system. Large-
scale, systematic peat cutting in the highmoor swamps and subsequent reclamation
for agriculture began in the 17th century and continued until the mid-20th century.
This transformed the highmoor swamps to a man-made, agricultural landscape: the
cultivated peatlands (or, translated from Dutch, the colonized peat landscape).

The soils in Drenthe formed during the Holocene. Podzols formed in infertile cov-
ersand deposits on the till plateau, while brown forest soils formed in richer, more
loamy parent material. Plaggen soils were formed by plaggen-based agriculture in
the open fields surrounding medieval settlements on the plateau (Blume and Lein-
weber, 2004; Spek, 2004). These soils have a thick (>30 cm) humic topsoil. The
plaggen-horizon typically covers a podzol or a brown forest soil. Peat soils domi-
nate the centres of the brook valleys. Hydromorphic earth soils, which are soils with
a humic topsoil that overlies a C-horizon that may have gley features, are found in
the brook valley-plateau transition zone. Raw sand soils, which are soils without
pronounced signs of soil formation, are found in the drift-sand complexes bordering
the open fields. Soils of the cultivated peatlands are distinguished from the peat soils
of the brook valleys by their strong human disturbances to a considerable depth as a
result of deep cultivation and their anthropogenic topsoil, which is a mixture of sand
and peat fragments.

1.4.3 Outline

This thesis comprises seven chapters, including this introductory chapter. Chapters
2 to 6 form the core of this thesis. These chapters address the objectives and re-
search questions presented in section 1.4.1. In Chapter 2 the national soil map for the
province of Drenthe is updated using a simple DSM model and legacy soil data. The
accuracy of the updated map is compared with that of the current map (Question
1a). Chapter 3 presents a model for spatial prediction of quantitative soil properties
that uses a soil type map with quantified uncertainty (Question 2a). In Chapter 4 a
method is proposed for three-dimensional DSM of SOM based on soil type-specific
depth functions. Predictions with these depth functions are compared with those
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Figure 1.1: The province of Drenthe. The light grey-shaded area indicates the extent of the
cultivated peatlands while the dark grey-shaded are shows the system of brook valleys. The
inset shows the location of Drenthe in the Netherlands.

obtained by conventional depth functions (Question 2b, 2c). Chapter 5 returns to the
topic of updating the national soil map and introduces the generalized linear geosta-
tistical model for digital soil type mapping (Question 1b). In Chapter 6 the efficiency
of DSM methods is compared with that of conventional methods. In addition the
effect of mapping intensity on map accuracy is assessed for digital soil type and
property maps (Questions 3a-b). Validation of the soil maps is an important topic
in each of the Chapters 2 to 6 (Question 3c). Chapter 7 concludes this thesis and
summarizes and discusses the main research findings of this thesis.

Chapters 2, 3 and 4 are based on articles that have been published in refereed jour-
nals, whereas Chapters 5 and 6 are submitted to refereed journals. Chapters 2 to 6
can be read separately—although a reference will be made occasionally to a table or
figure in an earlier chapter—as a consequence there might be some overlap between
chapters. Literature references have been combined in the References section at the
end of this thesis.
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Chapter 2

Updating the 1:50 000 Dutch soil map using legacy soil
data: a multinomial logistic regression approach

The 1:50 000 national soil map of the Netherlands is gradually becoming outdated. Intensive
land and water management have had great impact on particularly peat soils. The area of
these soils has substantially declined through oxidation of the peat layer soil since the survey
was competed. This chapter assesses the possibility of updating the national soil map for
the province of Drenthe by multinomial logistic regression modelling of ten major soil types
using legacy soil data from BIS and high-resolution environmental covariates. Special at-
tention is given to model selection. A framework for selecting logistic regression models was
taken from the literature and adapted for the purpose of soil mapping. The model selection
process was guided by pedological expert knowledge to ensure that the final models are not
only statistically sound but also pedologically plausible. A prediction model was calibrated
for each of the ten major soil types depicted on the soil map. The models were used to estimate
the probability of occurrence of the soil types at the nodes of a raster with 25-m resolution.
Shannon entropy was used to quantify the uncertainty associated to the predictions. The
updated soil map was validated with independent probability sample data. The estimated
overall purity of the updated map was 58%, which is 6% larger than the overall purity of the
existing soil map.

Based on: B. Kempen, D.J. Brus, G.B.M. Heuvelink and J.J. Stoorvogel
Geoderma 151 (2009): 311–326



Chapter 2. Updating the 1:50 000 soil map

2.1 Introduction

The 1:50 000 soil map is the major source of soil information in the Netherlands. This
map was completed in the early 1990s after more than three decades of field surveys.
It is nowadays used for a wide variety of purposes such as agricultural and environ-
mental policy making, nature and soil conservation and archeological prospection.
The soil map, however, is gradually becoming outdated (de Vries and Brouwer, 2006;
Rosing et al., 2006). Intensive land and water management has had great impact on
soil conditions. Large areas of peat soils have disappeared through oxidation rates
as a result of tillage and deep drainage. Recent inventories on the status of peat soils
revealed that almost 50% of area originally mapped as deep peat soils has changed to
shallow peat soils or mineral soils and approximately 50–60% of the mapped shallow
peat soils are now mineral soils (van Kekem et al., 2005; de Vries et al., 2009). For two
1:50 000 map sheets in Drenthe, Finke et al. (1996) found that 82% of the deep peat
soils had changed into shallow peat soils and that 63% of the shallow peat soils to
mineral soils. Use of outdated soil information for environmental research or policy
making may lead to erroneous conclusions or decisions.

Although the need for updating the soil map has been recognized for a long time, the
last update activities took place in the early nineties. Four map sheets of the national
soil map were updated between 1988 and 1993 (Finke et al., 1996). Brus et al. (1992)
evaluated the merits of four update strategies for soil maps. Use of conventional soil
mapping methods for updating are hampered by their costs. As fieldwork is a major
cost component in a project on map updating (Finke, 2000), methods that reduce the
amount of fieldwork, such as used in digital soil mapping (DSM), can be attractive
for future update activities.

In DSM soil observations are related to readily available, spatially exhaustive envi-
ronmental data using a (geo)statistical model. The relationships are then extended
across a survey area to predict soil at unvisited locations (Bui and Moran, 2003;
McBratney et al., 2003). Such methods also may have great potential in the Nether-
lands for updating soil maps, considering its data rich environment. The Dutch soil
information system BIS contains soil profile descriptions and classifications at over
300,000 locations. Besides, an extensive suite of high-resolution environmental data
is available. These data were combined with point observations to create maps of
groundwater status for the sandy soils of the Netherlands using time series analy-
sis and geostatistical techniques (Finke et al., 2004), whereas Brus et al. (2008) used
over 8 000 legacy point observations to estimate the probabilities of occurrence of
seven soil categories in the Netherlands. Here it is hypothesized that existing, recent
soil profile observations can be used to update the peat and other map units of the
national soil map. Furthermore, it is expected that the purity of the map units can
be increased by using high-resolution ancillary data to delineate inclusions of soil
classes other than the dominant soil class.
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The objective of this chapter is to update the national soil map for the province of
Drenthe without additional fieldwork by using legacy soil data from BIS. A soil map
update is urgent for Drenthe considering the large area of peat soils in that province.
Use of multinomial logistic regression (MLR) for digital soil type mapping is ex-
plored. MLR is widely used for spatial modeling in land use and ecology studies
(e.g. May et al., 2008; Müller and Zeller, 2002; Rhemtulla et al., 2007; Suring et al.,
2008). Application of MLR for DSM, however, is limited to only a few studies, see
for instance Bailey et al. (2003), Campling et al. (2002), Debella-Gilo and Etzelmüller
(2009), and Hengl et al. (2007b). For the study in this chapter legacy point data ob-
tained from BIS are used to calibrate an MLR-model for each of the ten major map
units depicted on the soil map of Drenthe. With these models soil type is re-mapped
within each map unit. Careful attention is given to the process of model selection
since this is perhaps the most crucial step in DSM. A framework for MLR-modeling
was taken from the literature and adapted for soil mapping. The model selection
framework is described and its application illustrated for one map unit. The accu-
racy of the updated soil map is assessed by independent probability sample data
and compared to that of the existing soil map.

2.2 Methods

2.2.1 Study area

The province of Drenthe (2 680 km2) is situated in the northeastern part of the Nether-
lands (Fig. 1.1). The landscape in Drenthe is characterized by a glacial till plateau
that is dissected by an extensive brook valley system. The till is covered with poor
aeolian sand deposits that can be up to two metres thick. Cultivated peatlands bor-
der the plateau to the east and south. Podzols formed in the aeolian sand deposits. In
loamy parent material, brown forest soils formed. Plaggen soils surround medieval
settlements on the plateau. Peat soils dominate the centres of the brook valleys. Hy-
dromorphic earth soils are found in the brook valley-plateau transition zone. Raw
sand soils are found in drift-sand complexes. Peat soils of the cultivated peatlands
are characterized by strong disturbances to a considerable depth due to deep culti-
vation. Their topsoil consists of sand mixed with small peat fragments.

2.2.2 Data sources

Soil data

The national soil map for Drenthe distinguishes 96 map units describing 61 soil types
at the subgroup level of the Dutch soil classification system (de Bakker and Schelling,
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1989), and 35 soil associations. Because it is practically unfeasible to calibrate an
MLR-model for a variable with 96 possible outcomes, the legend of the map was
generalized to ten map units, representing the major soil types (Fig. 2.1):

1. Deep peat soils, (P) (25 000 ha): soils with an organic (organic matter content
>15%) surface horizon; at least 40 cm of peat within 80 cm from the surface;

2. Deep peat soils with a mineral surface horizon, (mP) (24 800 ha): soils with at least
40 cm of peat within 80 cm from the surface, and a sandy, clayey, or peat-
colonial surface horizon less than 40 cm thick;

3. Shallow peat soils, (PY) (13 400 ha): soils with an organic surface horizon; at most
40 cm of peat within 80 cm from the surface;

4. Shallow peat soils with a mineral surface horizon, (mPY) (36 000 ha): soils with at
most 40 cm of peat within 80 cm from the surface, and a sandy, clayey or peat-
colonial surface horizon less than 40 cm thick;

5. Brown forest soils, (BF) (900 ha): soils with a B-horizon formed by weathering of
minerals and incorporation of moder humus;

6. Podzol soils (PZ) (93 000 ha): xeromorphic and hydromorphic podzols;
7. Earth soils (ES) (13 000 ha): hydromorphic soils with a 15–50 cm thick humic A-

horizon, overlying a sandy or loamy C-horizon that might have gley mottling;
8. Plaggen soils (PS) (17 000 ha): soils with an anthropogenic, humic A-horizon

thicker than 30 cm overlying a podzol or brown forest soil; typical for the open
fields on the Drenthe plateau;

9. Till soils (TS) (3 500 ha): soils with glacial till within 40 cm from the surface;
10. Raw sand soils (RS) (5 800 ha): These are sandy soils with a humus-poor topsoil

less than 30 cm thick; subsoil only shows initial or no signs of soil formation.

Although some detail is lost by aggregating map units, the ten soil types still describe
the major soil variation in Drenthe. BIS contains 16 282 soil profile descriptions that
are located in Drenthe (Fig 2.1). Roughly 96% (15 556) of the soil profile observations
are located in four areas where 1:10 000 soil surveys were carried out between 1996
and 2005. These areas cover 10% of the total area. The remaining 726 profile ob-
servations, collected during various research projects, are scattered across Drenthe.
Because of the variety of data sources, the profile observations were collected with
different sampling designs. The sampling locations in the 1:10 000 survey areas were
selected by purposive sampling. The other locations were selected by both purpo-
sive (n = 469) and probability sampling (n = 257). The recorded soil types were
reclassified to the ten major soil types. Cross-tabulation of observed versus mapped
soil type showed that at 55% of the observation locations the recorded soil type cor-
responded to the soil type as depicted on the map. The podzol map unit is the most
pure map unit (78%), while the shallow peat soils are the least pure (PY: 19% and
mPY: 30%). The latter shows the effect of oxidation of the peat.
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Figure 2.1: Soil map of Drenthe (A) and the locations of the profile observations (B).

Environmental ancillary data

Twelve primary environmental datasets were available (Table 2.1). Polygon maps
were converted to raster maps with 25-m resolution. The DEM was used to derive
four relative elevation layers using the local mean elevation within search radii of
250, 500, 750 and 1 000 m. Groundwater table classes were regrouped into three
classes. Historic land cover (HLC) was regrouped into five classes and resampled to
25-m resolution. Three recent land cover layers were combined into a land cover map
for the period 1997-2003 with five classes. The geomorphological units were grouped
into 16 classes. The paleogeography grid contained 12 classes. After preprocessing
the primary datasets, the environmental data layers were grouped into eight groups:
(1) elevation, (2) relative elevation, (3) groundwater, (4) recent land cover, (5) historic
land cover, (6) paleo-geography, (7) geomorphology, and (8) soil.

2.2.3 Multinomial logistic regression

The logistic model

The logistic model belongs to the family of generalized linear models and is used
when the response variable is categorical. Suppose that variable Yi represents the
observed soil type at a sampling location, with i = 1, . . . , n and n is the number of
soil types in a survey area. In case n equals 2 and Y has outcomes y1 and y2. Both
the counts of Y1 and Y2 follow a binomial distribution. The probability of occurrence
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Table 2.1: Available primary environmental ancillary data.

Dataset Description Res/Scale Reference

Digital elevation model Absolute elevation 25 m www.ahn.nl

Groundwater
Table class (GT) Seasonal fluctuation of phreatic 1:50 000 Finke (2000)

water levels
Dynamics class (GD) Updated GT map: quantitative 25 m Finke et al. (2004)

set of parameters describing
groundwater dynamics

GD—MHW GD—mean highest water table 25 m
GD—MLW GD—mean highest water table 25 m

Land cover
HLC Land cover in 1900 50 m Knol et al. (2004)
LC1997 Land cover in 1997 25 m Hazeu (2005)
LC2000 Land cover in 2000 25 m
LC2003 Land cover in 2003 25 m

Paleogeography Reconstruction of the landscape 1:50 000 Spek (2004)
of Drenthe by the end of the early
Middle Ages (ca. 1000 AD)

Geomorphology Geomorphological units 1:50 000 Koomen and Maas (2004)

Soil map (scale 1:50 000) Spatial distribution of soil classes 1:50 000 Steur and Heijink (1991)

of Y1 is π1 and that of Y2 is π2. Logistic regression relates probability π1 to the linear
predictor using the logit-link function:

g (π1) = ln

(
π1
π2

)
= ln

(
π1

1− π1

)
= xTβ, (2.1)

where g(·) is the link function, x is a vector of predictors, and β is a vector of model
coefficients that are typically estimated by maximum likelihood. Eq. (2.1) can be
rewritten as:

π1
1− π1

= exp
(
xTβ

)
= exp(η). (2.2)

The quotient in Eq. (2.2) is referred to as the odds. From Eq. (2.2) follows that:

π1 =
exp(η)

1 + exp(η)
. (2.3)

The binomial logistic regression model is easily generalized to the multinomial case.
In case of n soil types there are n variables Y1, . . . , Yn with associated probabilities
π1, . . . , πn. Analogous to binomial logistic regression the odds π1

πn
, . . . , πn−1

πn
are mod-

elled by means of exp(η1), . . . , exp(ηn − 1). From
∑n
i=1 πi = 1 it follows that:
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πi =
exp(ηi)

exp(η1) + exp(η2) + . . .+ exp(ηn)
, (2.4)

where ηn = 0. This model ensures that all probabilities are in the interval [0, 1] and
that the probabilities sum to 1.

Assessing model significance and contribution of predictors

The significance of the logistic regression model is assessed with the likelihood ra-
tio test (Hosmer and Lemeshow, 2000). Central to this test is the deviance statistic,
which is defined as :

D = −2 ln

(
likelihood fitted model

likelihood saturated model

)
, (2.5)

where the quotient is the likelihood ratio. The larger the deviance D, the poorer the
fit of the fitted model compared to the saturated model. The likelihood ratio test
compares two logistic models by assessing the change in deviance due to inclusion
of predictors:

G = D (model without the predictor)−D (model with the predictor) . (2.6)

G is the log-likelihood ratio statistic, which is χ2-distributed under the null hypoth-
esis that the model coefficients are zero, assuming independent and normally dis-
tributed residuals. The likelihood ratio test is used to assess the significance of the
overall model by comparing the deviance of the intercept-only model with the full
model, and that of the individual predictors. This test can only be used to compare
nested models. The significance of an individual model coefficient is assessed with
the Wald statistic, which is obtained by comparing the estimated coefficient to an
estimate of its standard error (Hosmer and Lemeshow, 2000):

W =
β̂

ŝe(β̂)
. (2.7)

The Wald statistic follows the standard normal distribution under the null hypoth-
esis that a model coefficient is zero. Important for the interpretation of the logistic
regression is the value of exp(β), the odds ratio, which indicates the change in odds
of an event resulting from a one-unit change in the predictor.
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2.2.4 Model building

Pedological knowledge for regression modelling

Regression modeling is a popular method for quantifying the relationship between
soil and ancillary data (e.g. Thompson and Kolka, 2005; Meersmans et al., 2008;
Schulp and Veldkamp, 2008). Usually a set of predictors is derived from ancillary
data, coefficients are estimated for these predictors, followed by an evaluation of the
selected model on basis of some statistical performance criterion such as R2 or Mal-
lows’ Cp statistics. The resulting regression model might be statistically sound but
can be pedologically questionable if the selected predictors do not have a plausible
relationship with the soil variable based on knowledge of the soil-landscape system.

An alternative to data-driven approaches to DSM are knowledge-driven approaches.
It has become widely recognized that tacit knowledge of the soil-landscape sys-
tem provides valuable information that should be integrated into the DSM process
(Heuvelink and Webster, 2001; McKenzie and Gallant, 2007; Walter et al., 2007). Such
knowledge can be used to build expert systems for soil mapping (Cook et al., 1996;
Zhu et al., 2001) or to define a conceptual model of pedogenesis that forms the foun-
dation of a statistical DSM model (Müller and Zeller, 2002; McKenzie and Gallant,
2007; McKenzie and Ryan, 1999). Use of knowledge of the soil-landscape system
should be fully integrated throughout the model selection process for regression
modelling. Each step of the process should be critically reviewed from a statistical
as well as a pedological perspective to ensure a plausible prediction model.

Model building strategy

Hosmer and Lemeshow (2000) provide a methodological framework for building a
binomial or multinomial logistic regression model. In this chapter their approach
is adopted and extended into a framework for digital mapping of multinomial soil
variables. This framework comprises eight steps, which are described hereafter.

(1) Definition of a conceptual model of pedogenesis
To ensure a sound pedological basis of the regression model, a conceptual model of
pedogenesis is defined. This is an explicit, structured representation of knowledge
of the soil-landscape system of the survey area. The conceptual model identifies the
driving factors and processes controlling pedogenesis and soil spatial distribution.

(2) Collection of predictors from available environmental ancillary data
In DSM models, the drivers of pedogenesis are represented or proxied by predictors.
The predictors are identified and collected from available environmental ancillary
data. The result is a set of predictors, all of pedological importance, that are candi-
dates for the MLR-model.
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(3) Univariate analysis and selection of candidate predictors
Selection of predictors for an MLR-model from the set of candidates starts with a
univariate analysis of each predictor. For categorical predictors this involves cross-
tabulation of the response variable versus each predictor followed by the chi-square
test of independence. Attention must be paid to contingency tables with zero fre-
quency cells as these may cause numerical instability during parameter estimation,
which is marked by extreme model coefficients and associated standard errors (Hos-
mer and Lemeshow, 2000). The analysis of the contingency tables is followed by
the fit of a univariate MLR-model for each predictor that showed at least a moder-
ate level of association with the response variable. Univariate MLR-models are also
fit for continuous predictors. The estimated coefficient and odds ratio of each logit
function of the univariate MLR-models should be checked for pedological consis-
tency. Predictors that are significant in the univariate analysis are selected for the
next step. Hosmer and Lemeshow (2000) suggest to retain predictors with p-value
< 0.25. The large p-value used is based on the work of Bendel and Afifi (1977) and
Mickey and Greenland (1989) who showed that the 0.05 level often fails to identify
predictors known to be important. Predictors that are only weakly correlated with
the response variable may become strong predictors when taken together in the mul-
tivariate model. When univariate analysis resulted in a very large set of candidate
predictors only the predictors with the strongest association to the response variable
were selected from each variable group (Table 2.1), as predictors within each group
are expected to be strongly associated.

(4) Multivariate analysis of selected candidate predictors
A multicollinearity assessment is carried out to identify associated predictors. Next,
multivariate MLR-models are fitted, with the aim of selecting one or more prelimi-
nary models. The stepwise-forward method was used for model selection with entry
probability 0.20 and removal probability 0.25, as recommended by Lee and Koval
(1997). Selected MLR-models must be checked for numerical stability and multi-
collinearity. Numerical problems can be solved by replacing the predictor with an-
other (associated) predictor that describes the same soil forming process, by group-
ing the levels of the predictor, by omitting the predictor from the model or by omit-
ting the outcome class of the response variable that shows numerical instability (this
will induce bias in the predictions). Multivariate analysis of candidate predictors
might result in several competing models.

(5) Evaluation of adequacy of the multivariate model(s)
The fit of the MLR-model(s) is followed by verification of the importance of each in-
cluded predictor using the Wald statistic (Eq. 2.7). When there are competing MLR-
models, then verification is done with the best model. Competing models that are
not nested cannot be compared with the likelihood ratio test but are compared with
goodness-of-fit measures. Assessing goodness-of-fit of logistic regression models is
not as straightforward as for linear regression models, and the appropriateness of the
various goodness-of-fit measures for logistic regression models is a subject of debate
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in the literature (e.g. Mittlböck and Schemper, 1996; Hosmer et al., 1997; Menard,
2000). Three goodness-of-fit measures were used: Pearson-χ2 statistic, classification
tables and the McFadden-R2. The Pearson-χ2 statistic indicates how well the model
fits the data. Hosmer and Lemeshow (2000) advise caution when using this statis-
tic for models containing continuous predictors. The χ2–distribution then becomes
an inadequate approximation of the true distribution of the statistic. Therefore the
p-value for this statistic becomes meaningless, although the statistic itself is a good
measure of model adequacy: the lower the statistic, the better the model fit. Clas-
sification tables were used to derive the calibration purity, which is the proportion
of observation locations at which the soil map predicts the correct soil type. The
McFadden-R2 (Menard, 2000) measures the reduction in maximized log-likelihood.
It is conceptually and mathematically close to the ordinary least squares R2.

Once an MLR-model is selected from the alternatives, the included predictors can be
verified. Predictors that are not significant should be deleted from the model one by
one, starting with the least significant. A new model is fitted each time a predictor is
deleted and compared to the old model with the log-likelihood ratio test. Careful at-
tention should be paid to predictors whose coefficient have changed markedly after
another predictor is removed, indicating that the deleted predictor is a confounder
of other predictors (Hosmer and Lemeshow, 2000). A strong confounder should be
kept in the model, even when the predictor is not significant. Next the odds ratios of
the predictors are checked for pedological consistency.

(6) Checking the assumption of linearity in the logit
Logistic regression assumes a linear relationship between continuous predictors and
the logit. The Box-Tidwell approach and logit graphs were used to test this assump-
tion. Box-Tidwell adds the transformed predictor x ln(x) to the model, where x is the
value of the predictor (Hosmer and Lemeshow, 2000). Statistical significance of this
predictor suggests non-linearity in the logit. The logit graph approach replaces the
continuous predictor with a categorical predictor with four levels using the quar-
tiles as cut-points. Estimated coefficients of this predictor are plotted against the
midpoints of the quartiles. Non-linear plots indicate non-linearity in the logit. The
relationship shown by the graph should be pedologically plausible, as before.

(7) Checking for interactions between predictors
To check whether interactions between predictors should be included in the MLR-
model, pairwise interactions are created for each possible combination of predictors
or only for those predictors the modeller expects to interact. The stepwise forward
method was used to select interactions from all possible combinations of predictors.
Interactions are tested for significance with the likelihood ratio test. Significant inter-
actions are included unless these are not pedologically plausible or cause numerical
instability. Goodness-of-fit statistics are used to check if the model fit improved.

(8) Statistical and visual assessment of the final model
Statistical assessment of the final MLR-model is based on the of goodness-of-fit mea-
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sures as described in step 5. If the model is judged statistically acceptable then the
model is applied to create a preliminary soil map. If unrealistic soil patterns are
found the model should be adjusted. This means a return to step 4.

2.2.5 Model Application

The ten calibrated MLR-models were used to estimate the probabilities of occurrence
of the ten soil types at the nodes of a 25-m raster covering Drenthe. The soil type
with the largest probability at each grid node was used to construct a prediction
map. The theoretical purity was computed as the mean of the maximum probability
at each grid cell of the prediction grid (Brus et al., 2008). Prediction uncertainty was
quantified by Shannon entropy:

Hz = −
nz∑
i=1

π̂(zi, s) log nz
π̂(zi, s) (2.8)

where π̂(zi, s) is the estimated probability that random variable Z at location s takes
the value zi, and nz is the number of outcomes (Brus et al., 2008). By using the loga-
rithm with base nz the maximum entropy is 1, which occurs when all outcomes have
equal probability. The minimum value for the entropy is zero, which occurs when
there is no uncertainty and one of the outcomes has probability one. It should be
noted that the entropy indicates whether the predicted soil type has a large prob-
ability, it does not indicate that the prediction itself is correct. The accuracy of the
predicted soil types was validated with independent data.

2.2.6 Model Validation

Sampling strategy

The predictive soil map was validated with independent data collected by stratified
simple random sampling (de Gruijter et al., 2006). Strata were obtained by overlay-
ing the generalized national soil map, henceforth referred to as the reference map, with
a map depicting three regions that roughly coincide with the major drainage basins
and the areas with 1:10 000 soil maps. The latter map improves the spreading of the
sample locations over the study area and facilitates separate estimation of purity for
the subareas with high and low density of calibration data. This resulted in 34 strata.
A total of 150 locations were allocated to the strata in proportion to their area, with a
minimum of two per stratum to allow estimation of the sampling variance for each
stratum. Locations where permission was denied or proved otherwise impossible to
sample were replaced with locations from a reserve list.
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Statistical inference

An indicator variable was derived that takes value 1 if mapped soil type equals ob-
served soil type and 0 else. Several accuracy measures were estimated form the val-
idation sample. The first is the overall purity (or global purity) of the reference map
and updated map. The overall purity is defined as the proportion of the mapped
area in which the predicted soil type, which is the soil type as depicted on the map,
equals the true soil type. The purity was also estimated for each of the soil strata and
‘map scale’ strata separately. In addition, the map unit purities and class representa-
tions of the updated map were estimated. The map unit purity is the proportion of
the map unit correctly classified. Class representation of soil type k is the proportion
of the area where the actual soil type k occurs that is also mapped as type k.

The overall purity is estimated by (de Gruijter et al., 2006):

f̂ =

l∑
h=1

whf̂h (2.9)

where wh is the weight (relative area) of stratum h, f̂h is the estimated areal fraction
of stratum h correctly classified, and l is the number of strata. The stratum fractions
were estimated by the fraction correctly predicted locations in each stratum since the
validation locations in each stratum were selected by simple random sampling:

f̂h =
1

nh

nh∑
h=1

yi (2.10)

where nh is the number of sampling locations in stratum h, and yi is the indicator
variable at sampling location i. The map unit purities and class representations of
the updated map were estimated by the ratio-estimator (de Gruijter et al., 2006). This
estimator must be used to obtain accuracy estimates for so-called domains (sub-areas
of interest) that do not coincide with the sampling strata. The purity of map unit k
of the updated soil map is estimated by:

p̂k =

∑l
h=1Ahȳ

k
h∑l

h=1Ahx̄
k
h

(2.11)

where Ah is the area of stratum h, ȳkh is the sample mean of indicator yki,h taking
value 1 if mapped and observed soil type at sampling location i equal soil type k
and 0 else, and x̄kh is the sample mean of indicator xki,h taking value 1 if the mapped
soil type equals soil type k and 0 else. Class representation of soil type k is estimated
by:

ĉk =

∑l
h=1Ahȳ

k
h∑l

h=1Ahz̄
k
h

(2.12)
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where and z̄kh is the sample average of the indicator zki,h taking value 1 if the observed
soil type equals soil type k and 0 else.

Eqs. 2.9 and 2.10 were also used to compare the predictive capabilities of the updated
soil map and reference map by substituting yi for di = yui −yri , the difference between
the indicators for the updated (yui ) and for the reference map (yri ). This variable can
have values -1, 0, and 1 and is used to estimate d̂, which is the mean difference in
actual purity of the updated and reference maps. Under the null hypothesis that
the expected value of the estimated mean difference is zero, it was assumed that
d̂ follows a normal distribution with zero mean and variance var(d̂). It should be
noted that absolute purity differences are reported when comparing purities of soil
maps or map units in this chapter and in Chapters 5 and 6.

2.3 Results

2.3.1 Model building

The model building framework described in Section 2.2.4 was applied to each of
the ten map units of the soil map of Drenthe. This section describes the results of
the model building process for map unit mPY, which are shallow peat soils with a
mineral surface horizon.

(1) Definition of a conceptual model of pedogenesis
Map unit mPY (36 000 ha) is the second largest of Drenthe. The national soil map
subdivides this unit in iW, zW and kW, which have different topsoils due to different
soil forming processes. Map unit kW, covering 200 ha in the northern tip of Drenthe,
has a clayey topsoil that is formed by deposition of marine clay on peat in the brook
valleys. The topsoils of units iW (22 000 ha) and zW (14 000 ha) are of anthropogenic
origin. The spatial extent of iW is limited to the cultivated peatlands. The topsoil is
formed by repetitive mixing of the sand cover, applied after peat excavation, with
slivers of peat from the subsoil. Resulting topsoils are spatially highly variable in
thickness (15-40 cm) and organic matter content (10-25%). Map unit zW is found in
small areas within the peat colonies, along the edges of brook valleys or in depres-
sions on the Drenthe plateau. The sandy topsoil can be formed by (1) cultivation by
application of sand-rich manure, (2) leveling of the irregular surface of the Drenthe
plateau during agricultural reclamation, or (3) sand application on the peaty surface
to improve trafficability. The zW topsoil is spatially less heterogeneous than the iW
topsoil and its organic matter content is on average 5–15%. All soils in map unit
mPY have a sandy subsoil that may contain a podzol, depending on the position
in the landscape. A podzol-B horizon in the subsoil is generally found at higher
positions.
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The frequency distribution of observed soil types in map unit mPY shows that at
only 30% of the locations a shallow peat soil with a mineral topsoil was found. The
podzol now is the most common soil type and is observed at 42% of the locations. At
these locations the peat layer has disappeared as a result of oxidation. Oxidation rate
depends on several factors. These include land use, because oxidation rate is faster
under arable land than under grassland or natural vegetation; groundwater level,
because oxidation rate increases as the groundwater level decreases; and peat type,
because mesotrophic peat is less resistant to oxidation than oligotrophic peat. Soils of
the cultivated peatlands are better drained and under more intensive agricultural use
than peat soils in the brook valleys. Therefore soils in the peat colonies are expected
to be more strongly affected by oxidation than soils in the brook valleys. Where peat
has disappeared, earth soils (ES) can also be found.

Not all impurities in map unit mPY can be explained by peat oxidation. Part of the
inclusions were present from the beginning, due to generalization errors. Confusion
of soil types close to boundaries of map delineations is expected to be larger than in
the centre of the delineations due to the positional accuracy of the delineations. It
was therefore assumed that the probability of occurrence of soil types within an im-
pure map delineation is also governed by the soil types of adjacent map delineations
and by soil types that dominate the direct neighbourhood of a location. Generaliza-
tion errors are also caused by large short-scale soil variability in the cultivated peat-
lands, which cannot be adequately expressed at the 1:50 000 map scale. Because of
this variability, shallow peat soils (PY), shallow peat soil with mineral topsoil (mPY),
deep peat soils (P) or deep peat soils with mineral topsoil (mP) can all occur in areas
smaller than the minimum delineation size. Inclusion of podzols or earth soils can
be found at higher and drier positions in the peat colonies and brook valleys, such
as coversand ridges. These geomorphological features are in general too small to be
mapped at the 1:50 000 scale.

(2) Collection of predictors from available environmental ancillary data
The soil forming processes and factors that cause inclusions of soil types other than
mPY were represented by a set of 46 predictor variables (Table 2.2). These are:

1. Land cover. The effect of land cover on peat oxidation is represented by data
layers ‘recent land cover’ and ‘historic land cover’. Five indicator predictors
were derived from both layers.

2. Groundwater. The effect of groundwater level on peat oxidation is represented
by data layers GD, GT, GD MHW, and GD MLW. Three indicator predictors
were derived from each layers. An ordinal categorical predictor with three
levels was derived from GD and GT.

3. Peat type. Peat type is proxied by subsoil type as described by the soil map
Finke et al. (1996). If a podzol-B horizon is present in the subsoil then it was
assumed that the peat is of oligotrophic origin otherwise it was assumed that
the peat is of mesotrophic origin.
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4. Oxidation risk. Finke et al. (1996) mapped peat oxidation risk (high-low) for
two map sheets of the soil map of Drenthe by combining groundwater and
peat type data. Two predictors representing oxidation risk were created, one
using groundwater data from the GT layer, and one using the groundwater
data from the GD layer.

5. Topsoil lithology. One indicator predictor was derived from the soil map to rep-
resent the topsoil type.

6. Landscape. The extent of the cultivated peatlands was delineated from the soil
and geomorphology maps. The paleogeography map was used to delineate
the former highmoor landscape and the brook valley system.

7. Elevation. Elevation was used to map out inclusions of soil types PZ and PY.
8. Relative elevation. Four relative elevation layers captured local variation in ele-

vation and can be used to identify for example local depressions or coversand
ridges.

9. Proximity to boundary of map delineations. Two maps were generated from the
soil map, indicating whether a pixel was located within 125 m or within 250 m
from the boundary of the map delineation.

10. Neighbouring soil type. The soil type of the nearest neighbouring delineation
was determined for each pixel within map unit mPY. The resulting map was
reclassified twice based on peat thickness class.

11. Dominant soil type. The dominant soil type within 125, 250, and 500 m radius
was determined for each pixel within map unit mPY. The resulting map was
reclassified twice based on peat thickness class.

(3) Univariate analysis of candidate predictors
BIS contained 2 894 soil profile observations within map unit mPY. Each of the ten
soil types is observed at least once in the map unit. Brown forest soils are observed
two times and till soils three times. These two soil types were eliminated as outcome
level because there were not enough observations to fit the logit functions. This
implies that the probability of occurrence of these soil types in map unit mPY was
set to zero.

Each cross-tabulation of a categorical predictor with the response variable resulted
in a significant Pearson chi-square statistic. Furthermore, cross-tabulations showed
that response outcome ‘plaggen soil’ (seventeen observations) had zero cell frequen-
cies for several predictors (2.2). To reduce the number of candidate predictors the
predictors that showed the strongest association to the response variable were se-
lected from variable groups ‘groundwater’, ‘recent land cover’, ‘historic land cover’
and ‘soil map’. This selection resulted in nineteen categorical and five continuous
predictors (Table 2.2). A univariate MLR-model was fitted for each of the selected
predictors, with soil type mPY as reference level. The likelihood ratio test was signif-
icant for each univariate model, indicating that all predictors are candidates for the
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Table 2.2: Candidate predictors for map unit mPY.

Variable Description Codes/Unit Predictor name Associated predictors
group of other groups

1 Elevation* Absolute elevation cm a.s.l. ELEV

2 Relative elevation
search radius 250m* cm RELELEV250
search radius 500m* cm RELELEV500
search radius 750m* cm RELELEV750
search radius 1 000m* cm RELELEV1000

3 Groundwater
GD*† 1=Wet,2=Moist,3=Dry GD PEATOX GD

PEATOX GT
GD wet*† 1=Yes, 0=No GD W PEATOX GD
GD moist 1=Yes, 0=No GD M
GD dry 1=Yes, 0=No GD D
GD MHW wet 1=Yes, 0=No MHW W
GD MHW moist 1=Yes, 0=No MHW M
GD MHW dry 1=Yes, 0=No MHW D
GD MLG wet 1=Yes, 0=No MLG W
GD MLG moist 1=Yes, 0=No MLG M
GD MLG dry 1=Yes, 0=No MLG D
GT* 1=Wet,2=Moist,3=Dry GT PEATOX GT
GT wet* 1=Yes, 0=No GT W PEATOX GT
GT moist 1=Yes, 0=No GT M
GT dry 1=Yes, 0=No GT D

4 Land cover, 1997–2003
Permanent grassland* 1=Yes, 0=No LC GR
Permanent cropland* 1=Yes, 0=No LC CR
Gras-crop rotation 1=Yes, 0=No LC GRCR
Gras-crop, cropland* 1=Yes, 0=No LC ROTCR
Nature 1=Yes, 0=No LC NAT

5 Land cover, 1900
Grassland* 1=Yes, 0=No HLC GR
Cropland 1=Yes, 0=No HLC CR
Heath* 1=Yes, 0=No HLC HEATH
Forest 1=Yes, 0=No HLC FOR
Nature* 1=Yes, 0=No HLC NAT

6 Paleogeography
Brook valley system*† 1=Yes, 0=No BROOKVAL PEATTYPE
Former highmoor area* 1=Yes, 0=No HIGHMOOR PEATTYPE

7 Geomorphology-soil map
Cultivated peatland* 1=Yes, 0=No CULPEAT SOILCOV

GT, GT W

8 Soil map
Peat type* 1=Oligotrophic PEATTYPE BROOKVAL

0=Mesotrophic HIGHMOOR
Topsoil lithology* 1=Cult. peatl. SOILCOV CULPEAT

0=Sandy\clayey
Distance to boundary
<125m*† 1=Yes, 0=No DIST125
<250m 1=Yes, 0=No DIST250

Nearest neighbour
2 levels 1=Peat soil NEIGHB 2L

0=Mineral soil
3 levels*† 1=Deep peat soil NEIGHB 3L

2=Shallow peat soil
3=Mineral soil

continued on next page
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Table 2.2: Candidate predictors for soil map unit mPY. (continued)

Variable Description Codes/Unit Predictor name Associated predictors
group of other groups

Domin. soil 125m radius
2 levels see nearest nghb MS125 2L
3 levels see nearest nghb MS125 3L

Domin. soil 250m radius
2 levels see nearest nghb MS250 2L
3 levels see nearest nghb MS250 3L

Domin. soil 500m radius
2 levels see nearest nghb MS500 2L
3 levels* see nearest nghb MS500 3L

9 Groundwater-soil map
Oxidation risk using GD*† 1=High, 0=Low PEATOX GD GD, GD W
Oxidation risk using GT 1=High, 0=Low PEATOX GT GD, GT GT W

* Predictors selected after univariate analysis.
† Outcome soil type PS has a zero cell frequency for one of the levels of the predictor.

multivariate model. The odds ratios were generally in accordance with the presented
knowledge on the soil-landscape system.

(4) Multivariate analysis of selected candidate predictors
A multicollinearity assessment confirmed the assumption that predictors within vari-
able groups are associated. Furthermore, moderate and strong associations were
found between predictors from different groups (Table 2.2). Model selection started
with all 24 predictors. Again soil type mPY was used as reference level. All predic-
tors except GD, GT W and HLC GR were selected resulting in a model that showed
strong multicollinearity effects, evidenced by highly inflated coefficients and stan-
dard errors for several predictors. To eliminate the multicollinearity effects the least
significant predictor of variable groups elevation, recent land cover and historic land
cover were removed from the model, followed by the second least significant and so
on until the two strongest predictors within these groups remained. With these pre-
dictors four competing MLR-models (Models 1–4, Table 2.3) were selected. Model
1 resulted after selecting the most significant predictor from each variable group.
Models 2 to 4 are competing models in which one of the competing predictors is
substituted for the other competing predictor of the same variable group. Because
none of these models showed effects of multicollinearity, it was decided to keep
the weakly and moderately associated predictors that belong to different variable
groups in the model. Four predictors showed signs of numerical instability for the
logit function of outcome level PS. Because eliminating an outcome level is at first
less preferable than omitting predictors, an MLR-model was fitted without the pre-
dictors that caused numerical instability for outcome level PS (Model 4*, Table 2.3).

(5) Evaluation of adequacy of the multivariate model(s)
Summary measures of goodness-of-fit were calculated for each of the four competing
multivariate models (Models 1-4, Table 2.3) and proved to be very similar. Because
Model 4 performed slightly better for Pearson Chi-squared and calibration purity,
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Table 2.3: Competing MLR-models with their goodness-of-fit measures. Competing
predictors are indicated in bold type.

Model 1 Model 2 Model 3 Model 4 Model 4*

Variable group

1 ELEV ELEV ELEV ELEV ELEV
2 RELELEV250 RELELEV1000 RELELEV250 RELELEV250 RELELEV250
3 GT GT GT GT GT
4 LC ROTCR LC ROTCR LC GR LC ROTCR LC ROTCR
5 HLC HEATH HLC HEATH HLC HEATH HLC NAT HLC NAT
6 BROOKVAL BROOKVAL BROOKVAL BROOKVAL
7 CULPEAT CULPEAT CULPEAT CULPEAT CULPEAT
8 PEATTYPE PEATTYPE PEATTYPE PEATTYPE PEATTYPE

SOILCOV SOILCOV SOILCOV SOILCOV SOILCOV
DIST125 DIST125 DIST125 DIST125
NEIGHB 3L NEIGHB 3L NEIGHB 3L NEIGHB 3L
MSOIL500 3L MSOIL500 3L MSOIL500 3L MSOIL500 3L MSOIL500 3L

9 PEATOX GD PEATOX GD PEATOX GD PEATOX GD

Goodness-of-fit measure

Pearson-χ2 (df) 19 592 (20 034) 19 824 (20 041) 19 636 (20 034) 18 716 (20 062) 24 119 (20 027)
McFadden-R2 0.13 0.12 0.13 0.13 0.10
Calibration purity 48.4 48.0 48.1 48.4 47.6

this model was selected for the next steps in the model-building process. Model 4*
performed worse than Model 4. It was therefore decided to eliminate PS, the plaggen
soil, as outcome level because this soil was observed at only seventeen locations
within map unit mPY. A pedological justification is that plaggen soils are unlikely to
occur in map unit mPY as they are characteristic for the open field farming system
found on coversand ridges and not for the cultivated peatlands. The MLR-model
fitted without this outcome level contained the same predictors as Model 4.

The number of significant predictors differed between the six logit functions (Table
2.4). Predictors SOILCOV, HLC NAT and NEIGHB 3L were not significant for five
logit functions. Since the likelihood ratio test is significant for SOILCOV and SOIL-
COV is a pedologically important predictor, it was decided to retain this predictor
in the model. The likelihood ratio test for HLC NAT is not significant. Furthermore,
HLC NAT is only a moderately strong confounder of one coefficient in the logit of
soil type PZ. HLC NAT was therefore omitted from the model. NEIGHB 3L con-
tributes significantly to the model and is a strong confounder of other predictors, in
spite of five non-significant model coefficients. Collapsing NEIGHB 3L to two lev-
els improves the Wald statistic: the coefficient of the binary predictor is significant
in three logits. However, the likelihood ratio test suggests that the model with the
three-level predictor performs better than the model with the binary predictor so
NEIGHB 3L was retained. Predictors MSOIL500 3L, LC ROTCR and BROOKVAL
were not significant for four logit functions. Collapsing MSOIL 3L into a binary
predictor or omitting the predictor did not improve the model. BROOKVAL and
LC ROTCR were kept in the model for their pedological significance although the
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Figure 2.2: Logit graphs for predictors RELELEV250 (top) and ELEV (bottom).

likelihood ratio test of BROOKVAL did not confirm its importance. Like the odd ra-
tios of the univariate model, the odd ratios of the multivariate MLR-model generally
agree with the conceptual model of pedogenesis.

(6) Checking the assumption of linearity in the logit
So far the continuous predictors ELEV and RELELEV250 were treated as linear in
the logit. The coefficients of both Box-Tidwell transformed predictors were not sig-
nificant for four of six logit functions. The logit graphs for RELELEV250 (Fig. 2.2)
show that this predictor is linear in the logit of soil types PZ, ES and RS, is somewhat
linear in the logits of mP and PY, and is non-linear in the logit of P. Both logit graph
and Box-Tidwell transformation for RELELEV250 suggest that this predictor can be
treated as linear in the logit. The logit graph for ELEV (Fig. 2.2) shows that this pre-
dictor is linear in the logit of outcome levels PZ and P, and non-linear in the logit of
mP and ES. The logit graphs of PY and RS show linearity between the second, third
and fourth quartiles. The results of the logit graphs and Box-Tidwell transformation
for ELEV do not convincingly support linearity in the logit, nor do they rule it out.
As the fit of the model with ELEV as continuous predictor was much better than the
fit with ELEV as categorical predictor, ELEV was retained as continuous.
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(7) Checking for interactions between predictors
Three interactions remained after excluding interactions that were not pedologically
plausible, that caused numerical instability or that did not improve model fit. Inter-
actions between BROOKVAL and RELELEV250, LC ROTCR and RELELEV250 were
statistically significant and pedologically plausible and were added to the model. Ta-
ble 2.4 presents the final MLR-model for spatial prediction within map unit mPY.

(8) Statistical and visual assessment of the final model
The results of the statistical assessment of the final MLR-model for map unit mPY
are presented in Table 2.5. The deviance of the fitted model is 13% (McFadden-R2)
smaller than the intercept-only model, which predicts the most frequently observed
outcome (PZ) at each calibration location. Calibration purity is 49%, which is 19%
larger than that of the reference map. Statistical assessment of the other nine MLR-
models showed that the models explain a substantial part of the variation within the
soil dataset (Table 2.5). Overall calibration purity is 66%, which is 11% larger than
that of the reference map. The gain is on average about 20% for the peat map units
and 3% for the mineral map units.

The soil map for map unit mPY did not show unexpected patterns of soil types. The
area of soil type mPY was, as expected, greatly reduced. Podzols were predicted
at 62% of the map unit area. The MLR-models for map units P, ES and TS were
adjusted after inspection spatial distribution of the predicted soil types.

2.3.2 Model application

Ten MLR-models were used to re-map soil distribution within the ten map units of
the reference map. The resulting map is shown in Fig. 2.3. The general spatial pat-
tern of soil distribution of the updated map resembles that of the reference map: the
maps correspond for 68.5% of the area. Changes are most dramatic, as expected, for
the peat map units. The area with peat soils declined with 34% (33 525 ha) compared
to the reference map. Roughly 60% of the soils mapped as shallow peat soils are pre-
dicted to be transformed to mineral soils: the extent of the podzol soil type increased
with almost 40 000 ha. Thirty-six percent of the deep peat soils with a mineral topsoil
(mP), typical for the cultivated peatlands, are predicted to be transformed to shallow
peat soils with mineral topsoil. Fig. 2.5 clearly shows these changes. Changes within
map unit P are less severe: only 22% is predicted to be transformed to shallow peat
soils. The reason for this is that soil type P primarily occurs in the brook valleys
where peat layers are thicker and where conditions for oxidation are less favorable
compared to the cultivated peat lands. The strong decline of soil type TS can be ex-
plained by the fact that most till soils occur in association with podzol soils on the
reference map. The majority of the observations used to calibrate the model for map
unit TS are classified as PZ, which results in PZ as the dominant predicted soil type
in map unit TS. The area with plaggen soils, PS, is reduced with 32% compared to
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Table 2.4: The estimated model coefficients (β) and odds ratios (OR) of the
final MLR-model for map unit mPY.

Predictor Logit function
PZ mP ES

β OR β OR β OR

Intercept -0.63 -3.61* -4.26*

NEIGHB 3L=1 -0.22* 0.81 1.12* 3.08 0.08 1.08
NEIGHB 3L=2 -2.04* 0.13 0.12 1.13 0.33 1.3
MSOIL500 3L=1 -0.83* 0.44 0.81* 2.24 -1.05* 0.35
MSOIL500 3L=2 -0.36* 0.70 0.26 1.30 -0.52* 0.60
DIST 125=0 -0.24* 0.79 -0.37* 0.69 0.31 1.37
SOILCOV=0 0.12 1.13 -0.40* 0.67 -0.47 0.62
GT=1 -0.02 0.98 -0.88* 0.42 0.87* 2.38
GT=2 0.10 1.11 -0.658 0.52 0.04 1.04
LC ROTCR=0 -0.23* 0.80 -0.07 0.93 -0.48* 0.62
PEATOX GD=0 -0.49* 0.61 0.46* 1.58 -0.15 0.86
PEATTYPE=0 0.12 1.12 0.28 1.32 1.50* 4.49
CULPEAT=0 0.82* 2.27 0.75* 2.12 1.85* 6.39
BROOKVAL=0 0.42* 1.52 0.52 1.69 -0.12 0.88
ELEV 0.001* 1.001 0.001* 1.001 0.002* 1.002
BROOKVAL=0 x RELELEV250 0.02* 1.02 -0.01* 0.99 0.02* 1.02
BROOKVAL=1 x RELELEV250 0.05* 1.05 -0.03* 0.97 0.02* 1.02
RLC ROTCR=0 x RELELEV250 0.01 1.01 -0.02* 0.98 -0.01 0.99

Predictor Logit function
P PY RS

β OR β OR β OR

Intercept -6.91* -3.37* -5.70*

NEIGHB 3L=1 0.24 1.27 -0.17 0.84 0.25 1.29
NEIGHB 3L=2 -1.02 0.36 -0.53* 0.59 0.68 1.97
MSOIL500 3L=1 1.44* 4.20 0.10 1.11 -1.60 0.20
MSOIL500 3L=2 0.64 1.89 0.49* 1.63 -0.64 0.53
DIST 125=0 0.23 1.26 0.14 1.16 -1.88* 0.15
SOILCOV=0 -0.58 0.56 -1.41* 0.24 -1.21 0.30
GT=1 0.93* 2.54 1.80* 6.04 1.25 3.49
GT=2 -0.07 0.93 0.90* 2.45 0.54 1.71
RLC ROTCR=0 0.60* 1.83 0.00 1.00 0.73 2.08
PEATOX GD=0 1.02* 2.77 0.36* 1.44 0.48 1.62
PEATTYPE=0 1.85* 6.33 0.58* 1.78 0.32 1.38
CULPEAT=0 -0.10 0.91 0.91* 2.47 1.87* 6.47
BROOKVAL=0 1.23* 3.43 0.81* 2.24 -0.98 0.38
ELEV 0.001 1.001 0.001* 1.001 0.002* 1.002
BROOKVAL=0 x RELELEV250 -0.03* 0.97 0.01 1.01 0.01 1.01
BROOKVAL=1 x RELELEV250 -0.07* 0.93 -0.02 0.98 0.02 1.02
RLC ROTCR=0 x RELELEV250 0.02 1.02 -0.01 0.99 0.01 1.01
* Wald statistic is significant at the 0.15 level.
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Table 2.5: Statistical assessment of the ten final MLR-models. The R2 is the McFadden-R2.

Model R2 Calibration purity

P 0.31 61
mP 0.28 62
PY 0.21 51
mPY 0.13 49
BF 0.19 63
PZ 0.21 79
ES 0.21 57
PS 0.30 63
TS 0.31 75
RS 0.49 83

the reference soil map. Affected areas are the edges of PS map delineations (Fig. 2.5)
and the plaggen soils on the Hondsrug. The former is explained by the decrease
in thickness of the plaggen A-horizon from the centre of the open fields towards the
edges: if the thickness does not exceed 30 cm, then the soil is not classified as plaggen
soil. The latter is a direct result of the observations on the Hondsrug, which were all
located in a relative small area (intensively surveyed area 3, Fig. 2.1). Many profile
observations within map unit PS were classified as brown forest soils (BF). This is
also the reason for the strong increase in area of map unit BF on the updated soil
map compared to the reference map.

The overall theoretical purity of the updated soil map is 67% (Table 2.6). In general
the theoretical purity is smaller and the uncertainty is larger for the areas mapped
as peat soils on the reference map than for the mineral soils. The areas with the
smallest theoretical purity are the areas that were originally mapped as shallow peat
soils (PY, mPY) and earth soils (ES). Predictions for these areas are also the most
uncertain (Table 2.6). Map unit mPY is characteristic for the cultivated peatlands,
whereas PY and ES are mainly found along brook valley sides. Fig. 2.4 shows high
entropy values for these two parts of the landscape. The soil type pattern in the
cultivated peatlands is very heterogeneous by itself and is further complicated by
peat oxidation. This makes soil spatial prediction challenging in this area, which is
evidenced by highly uncertain predictions. The brook valley sides are topographical
transition zones where gradual changes in soil weaken relationships between soil
types and predictors. Uncertainty associated to the predictions will be larger in such
areas than in areas with stronger relationships such as in the centre of the brook
valleys and the high parts of the plateau.

Fig. 2.6 depicts a catena of predicted and mapped soil types along a 1 500 m long
transect from plateau through a brook valley to plateau, as well as the change of
estimated probabilities and entropy of the main predicted soil types. The location
of the catena is indicated by the arrow in Fig. 2.5. The typical catena in Drenthe
has plaggen soils on top of the plateau, bordered by podzols or brown forest soils,
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Soil type
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PY
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BF
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Figure 2.3: Updated soil map as predicted by the ten MLR-models.

depending on parent material. When going from plateau to brook valley one would
typically encounter a gradual transition from podzols to earth soils to shallow peat
soils to deep peat soils. The first difference between predicted and mapped soil types
is the soil sequence from the northern plateau towards the brook valley. In the ref-
erence map plaggen soils border deep peat soils whereas the updated map shows
a pedologically more realistic transition from plaggen soils to podzols to shallow
peat soils to deep peat soils. The second difference is the prediction of podzols on
a coversand undulation in the earth soil map unit at the southern side of the brook
valley centre. These undulations are better drained than the surrounding, lower ter-
rain, creating more favourable conditions for podzol formation. Earth soils are pre-
dicted at the sides of the undulation and podzols at the top, which is pedologically
plausible. The catena was not validated but based on soil-landscape system knowl-
edge the updated map shows a more realistic soil sequence along the transect than
the reference map. The probability graph shows that the MLR-models do not have
much difficulty in differentiating soil types at the topographical extremes: the low-
est parts of the brook valleys, the plateaus and the top of the coversand undulation.
The difference between largest and second largest estimated probability is relatively
large. Small differences in estimated probabilities are found at topographical transi-
tion zones. At these locations the models easily confuse between soil types, which is
evidenced by an increase in entropy at these zones.
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Entropy
0 - 0.2
0.2 - 0.4
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0.6 - 0.8
0.8 - 1

Figure 2.4: Entropy map that shows the uncertainty associated to the predictions.

Table 2.6: Theoretical purity and entropy of the updated soil map for the areas corresponding
to the map units of the reference map, i.e. the areas for which the MLR-models were calibrated
and applied, and for grouped map units peat (P–mP–PY–mPY) and mineral (BF–PZ–ES–
PS–TS–RS).

Theoretical purity Entropy

Global 67 0.40

Map unit
P 64 0.42
mP 63 0.43
PY 50 0.54
mPY 50 0.54
BF 83 0.21
PZ 79 0.34
ES 58 0.47
PS 66 0.38
TS 79 0.24
RS 77 0.24

Peat 57 0.48
Mineral 75 0.35

2.3.3 Model validation

Table 2.7 summarizes the validation results of the updated and reference soil map.
The estimated actual purity of the updated map is 58%, which is 6% larger (p =
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Figure 2.5: Details of the updated and reference soil maps: colonized peat updated map (A),
colonized peat reference map (B), brook valley updated map (C), and brook valley reference
map (D). The arrows in the bottom figures indicate the location of the north–south oriented
catena shown in Fig. 2.6.

0.039) than the purity of the reference map. The purity is 9% smaller than the theo-
retical purity, possibly because the calibration locations are concentrated in the four
areas with a detailed soil map (Fig. 2.1). Apparently, the calibrated relationships
were unable to explain a similar amount of variation outside the four detailed sur-
vey area than within the four areas.

At the level of the soil strata soil spatial distribution is better represented by the
MLR-model than by the reference map for soil strata mP, PY, mPY, PS and T. The
largest increase is for stratum PY (35%, p = 0.000). Purity gains for strata mP (5.4%,
p = 0.318) and mPY (14%, P = 0.224) are not significant due to the small numbers of
validation locations, but they are pedologically relevant, especially the 14% purity
gain for stratum mPY. The cause of the large purity increase of soil stratum TS is
outlined in section 2.3.2. Purity gain of stratum PS is 10% (p = 0.174). There is no
difference in actual purity between the updated and reference maps for soil strata
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Figure 2.6: Change of the entropy, maximum probability, mapped and predicted soil types
along a typical catena in the Drenthe landscape.

P, PZ and RS. The reference map better represents soil spatial distribution within
strata ES and BF. The actual purity of both strata is 13% smaller (p = 0.105 for ES;
p = 0.159 for BF) for the updated soil map than for the reference soil map. These
figures indicate that the global increase in map purity of the updated map compared
to the reference map is largely attributed to the increase in purity in the peat strata.
The pooled purity increase for these strata is a pedologically relevant 11% (p = 0.069)
whereas the pooled purity increase for the mineral strata is 2.4% (p = 0.086).

Table 2.8 shows the purities of the ten map units of the updated soil map. The MLR-
models predict the spatial distribution of soil types P, BF, PZ, PS and RS fairly well,
while map units PY and TS have purities close to 0. The large variation in puri-
ties can have several reasons. First, the effect of peat oxidation is underestimated:
mineral soils were observed at three validation locations in map unit PY and at five
validation locations in map unit mPY; shallow peat soils were observed at four val-
idation locations in map unit mP. Second, the models have difficulty in predicting
topsoil lithology of peat soils, which is to a large extent influenced by human activ-
ities and is not easily associated to environmental predictors. In map unit PY, soil
type mPY was observed at three validation locations and soil type P was observed at
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Table 2.7: Estimated purities of the two soil maps: overall purity (standard error) and the
purities of the soil strata, grouped strata (peat–mineral) and mapping-scale strata.

n Updated map Reference map

Overall 150 58.1 (0.04) 0.52.1 (0.04)

Soil stratum*

P 15 45.2 (0.14) 45.2 (0.14)
mP 15 31.0 (0.11) 25.6 (0.08)
PY 9 39.5 (0.17) 4.6 (0.05)
mPY 22 49.5 (0.11) 35.9 (0.11)
BF 4 13.1 (0.13) 26.2 (0.00)
PZ 55 72.7 (0.06) 72.7 (0.06)
ES 10 42.2 (0.14) 55.4 (0.17)
PS 11 75.2 (0.15) 65.2 (0.10)
TS 4 97.5 (0.03) –
RS 5 64.1 (0.32) 64.1 (0.32)

Peat 61 42.5 (0.07) 31.5 (0.06)
Mineral 89 69.8 (0.05) 67.4 (0.05)

Mapping-scale stratum
Area with 1:10 000 map 26 72.4 (0.12)
Area without 1:10 0000 map 124 56.4 (0.04)

* Note that here the soil strata corresponds to the map units of the reference soil map. The
MLR-models re-mapped the soil within these map units.

three validation locations in map unit mP. Third, soil types in topographical transi-
tion zones are easily confounded. In map unit ES, typical for such transition zones,
earth soils, podzols and peat soils were observed. Fourth, sample size. The small
number of validation locations in several map units results in highly uncertain pu-
rity estimates. An example is the purity of map unit TS that might be attributed to
chance as only two validation locations were located in this map unit.

It is interesting to note that when the legend of the updated soil map is generalized
to two map units (peat and mineral), the purity of the peat map unit would increase
to 80%, while the pooled purity of the four separate peat map units is 43%. This
indicates that the main confusion between predicted soil types within the peat map
units is between the four peat soils. Thus at the locations where the MLR-models
predict peat soils, it is very likely that a peat layer is present in the soil profile at
these locations. However, the model is uncertain about the thickness of the peat
layer and the topsoil lithology (peaty or mineral). The purity of the mineral map
unit is 88%.
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Table 2.8: Estimated map unit purities and and class representations for ten soil types as
depicted on the updated soil map.

Soil type n Map unit purity Class representation

P 9 76.5 51.5
mP 10 28.0 55.5
PY 8 4.7 5.7
mPY 13 36.9 24.5
BF 5 71.0 39.7
PZ 82 67.1 89.6
ES 9 46.2 21.1
PS 8 79.6 47.4
TS* 2 0.0 –
RS 4 94.2 51.6

* Class representation not estimated because TS was not observed in the sample.

2.4 Discussion

2.4.1 Multinomial logistic regression for soil mapping

MLR is computationally a simple method compared to more demanding methods
such as indicator kriging (IK) (Bierkens and Burrough, 1993) and Bayesian Maxi-
mum Entropy (BME) (Brus et al., 2008). It does not suffer from shortcomings of IK
like probabilities that are outside the interval [0,1] or probabilities that do not sum
to 1. Nor is it as computationally demanding as BME. However, building a sta-
tistically and pedologically sound MLR-model requires careful attention as many
choices have to be made, and interpretation (both statistical and pedological) of the
MLR-model is not as straightforward as that of linear regression models. The frame-
work based on (Hosmer and Lemeshow, 2000) proved a valuable guideline for build-
ing MLR-models, although the steps should be meticulously applied.

The main drawback of applying MLR to spatial data is that spatial autocorrelation
during coefficient estimation and prediction is ignored. This may bias estimated ef-
fects of the predictors on the response variable. Hengl et al. (2007b) showed that
MLR did not perform as well as methods that incorporate spatial autocorrelation in
soil spatial prediction. Autologistic regression can account for spatial autocorrela-
tion in the response variable and is a popular method in spatial ecology (Augustin,
1996; Smith, 1994). Unfortunately, the autologistic regression model can only han-
dle binomially-distributed data. There are no examples that extend the autologistic
model to the multinomial case. Another drawback is that certain structures in the
calibration data, such as predictors that completely separate outcome levels or pre-
dictors that lack observations for one or more of its levels, cause non-existent maxi-
mum likelihood estimates or infinite odds ratio estimates (Hosmer and Lemeshow,
2000). This is a serious drawback of MLR as it limits the number of outcome levels

52



2.4. Discussion

and the number of predictor levels. Even with only ten soil types outcome levels
of the response variable were often forcibly omitted. Furthermore, predictors that
cause complete separation or that have zero cell counts are in theory strong predic-
tors as they suggest that certain soil types do not occur under certain conditions.
Several candidate predictors that were highly correlated with the response variable
could not be used as predictors because of complete separation or zero cell counts.

2.4.2 Soil spatial prediction

The most frequently observed soil types within a map unit are over-represented on
the predicted soil maps (e.g. soil types mPY and PZ in map unit mPY), which was
also reported by Hengl et al. (2007b). These authors argue that this is caused by
weak association of the predictors with some of the soil types. The odds ratios of the
predictors included in the logits of PY and ES, however, show that the several predic-
tors are strongly related to soil types PY and ES (Table 2.4). There is no evidence that
weak associations with less frequently observed soils cause over-representation of
the most frequently observed soils. The predictors strongly influence the estimated
probabilities of less frequently observed soil types, but apparently this is not enough
to exceed the estimated probabilities of the most frequently observed soil types.

At the reason why the clustered distribution of the calibration locations causes the
9% discrepancy between actual and theoretical purities can only be hinted. The four
survey areas can be regarded as reference areas used to obtain predictive relation-
ships. These relationships are then extrapolated across the entire survey area. This
resembles the digital soil mapping approaches presented by Lagacherie et al. (1995),
Bui and Moran (2003) and Grinand et al. (2008). Lagacherie et al. (1995) state that the
reference area approach works when similar soil forming processes act in the two
areas, creating similar soil patterns. If soil forming processes were similar for the ar-
eas with and without a detailed soil map, as expected, then similar purities for these
areas would be expected. But validation indicates that the actual purities of the two
mapping scale strata differ (Table 2.7). The estimated actual purity of the updated
map for the areas with detailed soil maps is 16% larger than for the area without the
detailed maps. Note, however, that this estimate is very uncertain given the large
standard errors of the purities. This might indicate that the modelled relationships
are not so easily extrapolated across the province. Under the assumption that the
natural soil forming processes within and outside the detailed survey areas are simi-
lar, the difference between theoretical and actual purities and the difference between
purities within and outside the detailed soil survey areas might be attributed to hu-
man influence on soil formation. Since peat soils are much more sensitive to human
interventions in the landscape than mineral soils, it would be expected that the dis-
crepancy between theoretical and actual purity to be larger for peat soils than for
mineral soils. This is supported by the results in Tables 2.6 and 2.7. For the pooled
peat soils this discrepancy is 14% and for the mineral soils 5%.
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The influence of human activities on soil distribution might also partly explain the
27% difference in overall purity of the peat soil-strata compared to mineral soil-strata
(Table 2.7). Human influence can sometimes be proxied by predictors, for example
human influence on peat oxidation can be proxied by land cover and groundwater.
In many cases, however, this influence is hard to proxy with biophysical data. For
example, the decision to apply a sand cover on a peaty topsoil to improve traffica-
bility is made on the scale of individual agricultural fields. Furthermore, the topsoil
of the soils in the cultivated peatlands exhibits large short-distance variation as a
result of the reclamation method used. Peat soils with organic and mineral topsoils
occur in association. This means that topsoil lithology of peat soils is not easily pre-
dicted. If topsoil lithology would be disregarded, then the actual purity of the peat
soil-stratum of the updated soil map (Table 2.7) would increase from 42.5% to 56.6%
and global overall purity from 58.1% to 64.1%.

2.4.3 Legacy soil data

The utility of legacy soil data for updating soil maps in landscapes with highly dy-
namic soils such as peat soils, greatly depends on the age of legacy data. Roughly
60% of the calibration locations located in the four detailed survey areas was already
twelve years old at the time this study was carried out. The other 40% was between
three and six years old. Twelve-year-old observations on peat soils are also becom-
ing outdated as peat oxidation continues. Omitting these data would have greatly
reduced the size of the dataset for calibrating the models for the peat map units and
hence was not an option. Furthermore, the soil survey for the reference soil map was
conducted at least fifteen years before the detailed soil surveys that yielded almost
all calibration observations. This means that these observations might still contain
useful information for updating. Nevertheless, use of decade-old observations on
peat soils for updating might overestimate the area of (shallow) peat soils on the
predicted soil map, although this is not strongly supported by the validation. Age of
the calibration observations might also have contributed to the difference between
theoretical and actual overall purity.

2.4.4 Validation of soil maps

Accuracy assessment of soil maps is imperative for any soil mapping study; conven-
tional or digital. Commonly used statistics to quantify accuracy of soil type maps
are the purity and the kappa index (Grinand et al., 2008; Hengl et al., 2007b; Li and
Zhang, 2007). Another statistic for accuracy assessment that provides valuable infor-
mation is the class representation of the soil types depicted on the map. This statistic
is often used in image classification studies (Foody, 2002) (reported as producer’s
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accuracy or sensitivity) but is hardly reported for (digital) soil maps. Class represen-
tation of the updated soil map are presented in Table 2.8. An example of the merit of
this statistic is given by map unit ’deep peat soils’ (P). This map unit has a high pu-
rity (77%), which tells the user that soil type P is found at 77% of the area predicted
as soil type P. However, the class representation of soil type P is 52%, meaning that
only 52% of the true area of soil type P is mapped as P. One can question the use-
fulness of a soil map, for example for a carbon stock inventory, if the area with peat
soils is heavily underestimated, which is not indicated by the purity. Class represen-
tation for peat soils (disregarding topsoil lithology and thickness) as depicted by the
updated map is 72%.

Pedological knowledge was used for model-building. Such knowledge could also be
exploited for error analysis or validation of the model. One could argue if predicting
a site which is P as mP (two different deep peat soils) is equally wrong as predicting it
as PZ (a mineral soil) and vice versa. Whether all errors are equal or different, clearly
depends on the application for which a soil type map is used. Predicting a site which
is P as mP would not have a large impact on estimates of carbon stock but it would
have for the organic matter content of the topsoil; while predicting a site which is
mP as PZ would have a large effect on carbon stock estimates but not on the topsoil
organic matter content. Pedological knowledge was not used for estimation of the
validation statistics or for the evaluation of the classification tables, but it would be
worthwhile to investigate this in future mapping studies.

2.5 Conclusions

Legacy soil data in combination with high-resolution environmental ancillary data
can be used to update a soil map. The updated soil map had 6% larger purity than
the existing soil map. Updating proved to have more effect for the peat map units
than for the mineral map units. The presented framework provides a systematic ap-
proach for building MLR-models and allows integration of expert knowledge during
model selection and evaluation. When calibration locations are clustered in small ar-
eas within the survey area such as in this study, the transferability of the calibrated
relationships might be limited, especially when there is strong human influence on
soil development. This might lead to overestimation of the theoretical map purity,
which emphasizes the importance of validation of soil maps with an independent
probability sample.
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Chapter 3

Pedometric mapping of soil organic matter using a soil
map with quantified uncertainty

In this chapter three models are compared that use soil type information from point observa-
tions and a soil map to map the topsoil organic matter content for the province of Drenthe in
the Netherlands. The models differ in how the information on soil type is obtained: Model
1 uses soil type as depicted on the soil map for calibration and prediction; Model 2 uses soil
type as observed in the field for calibration and soil type as depicted on the map for predic-
tion; and Model 3 uses observed soil type for calibration and a pedometric soil map with
quantified uncertainty for prediction. Validation with independent probability sample data
showed that Model 3 outperformed Models 1 and 2 in terms of mean squared error. How-
ever, Model 3 over-estimated the prediction error variance and so was too pessimistic about
prediction accuracy. Model 2 performed the worst: it had the largest mean squared error and
the prediction error variance was strongly under-estimated. This confirmed that calibration
on observed soil type is only valid when uncertainty about soil type at prediction locations is
explicitly accounted for by the model. It is concluded that whenever information about un-
certainty associated to the soil types depicted on a soil map is available, and both soil property
and soil type are observed at sampling locations, Model 3 can be an improvement over the
conventional Model 1.

Based on: B. Kempen, G.B.M. Heuvelink, D.J. Brus, J.J. Stoorvogel
European Journal of Soil Science 61 (2010): 333–347



Chapter 3. Pedometric mapping of SOM

3.1 Introduction

Soil maps typically describe the spatial variation of soil types, but are also an impor-
tant source of information on spatial variation of quantitative soil properties (Bregt
and Beemster, 1989; van Meirvenne et al., 1994; Liu et al., 2006). A commonly used
method for spatial prediction of soil properties is to use a ‘representative’ value for
each map unit of the soil map (Leenhardt et al., 1994; Brus et al., 1996; Voltz et al.,
1997; Webster and Oliver, 2007). These values are obtained from soil profile descrip-
tions in soil survey reports or are provided by experienced soil surveyors. Goovaerts
and Journel (1995) pointed out two weaknesses of this mapping approach: i) it re-
sults in abrupt transitions in the predicted value from one soil type to another, which
are unrealistic in landscapes where lateral changes in soil are gradual and ii) it ig-
nores spatial variation of the soil property within the map units. Marsman and
de Gruijter (1986) found that within-map unit variation of soil properties ranged
between 65% and 80% of the total variation in a 1 600 ha sandy area in the Nether-
lands.

Several studies showed that combining maps of soil type with soil property informa-
tion from point observations can improve spatial prediction of soil properties com-
pared with prediction from a soil map only (Voltz and Webster, 1990; Heuvelink
and Bierkens, 1992; Goovaerts and Journel, 1995; Brus et al., 1996; Heuvelink, 1996;
Oberthür et al., 1999). Typically, a regression model is calibrated by using mapped
soil type as predictor followed by kriging of residuals (Hengl et al., 2004; Liu et al.,
2006). The strength of the relationship between soil property and mapped soil type
depends on the accuracy of the soil type map. Large impurities in the map units
might result in a weak relationship, even when the relationship between soil prop-
erty and the observed ‘true’ soil type is strong.

When both soil property and soil type are observed at sampling locations, the re-
gression model can be calibrated by using observed soil type (e.g. Meersmans et al.,
2009). This can improve the regression because the relationship between soil prop-
erty and observed soil type is not confounded by impurities in the soil map units. For
spatial prediction, however, the calibrated relationship has to be applied to the soil
map because the true soil type is unknown at unsampled prediction locations. Using
hard information (observed soil type) for calibration and soft information (mapped
soil type) for prediction has the undesirable consequence that the prediction error
variance will be under-estimated because the uncertainty in the map units of the
soil map is not accounted for by the model. Furthermore, a strong, informative, re-
lationship between soil property and soil type is applied to a soil map that is less
informative about the soil property. Thus to take advantage of a calibration on true
soil type for spatial prediction, the true soil type at the prediction locations must be
used. The true soil type is typically unknown but it can be represented with a prob-
ability model. When a probability model is available, then this model may be used
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for spatial prediction of the soil property. Probability distributions of soil type can be
obtained from soil maps produced using pedometric methods such as indicator krig-
ing (Goovaerts and Journel, 1995; Oberthür et al., 1999), Bayesian maximum entropy
(Brus et al., 2008) or multinomial logistic regression (Debella-Gilo and Etzelmüller,
2009, and Chapter 2). Soil survey reports accompanying traditional soil maps often
provide areal estimates of the soil types occurring within the map units (Soil Survey
Division Staff, 1993). Such information may be used to define a frequency distribu-
tion for each map unit that can serve as a probability distribution at any location
within that map unit.

In the present chapter a geostatistical model is presented that uses a soil type map
with quantified uncertainty as a covariate for spatial prediction of a quantitative soil
property. This map represents the true soil type at each location with a probability
distribution. A case study in the province of Drenthe will illustrate the use of this
model for spatial prediction of the organic matter content of the topsoil (0–30 cm).
For this province a pedometric soil map is available with location-specific probabil-
ity distributions of ten major soil types (Chapter 2), as well as a large data set with
point observations on soil organic matter (SOM) and soil type. The prediction model
is calibrated with soil type information from these point observations and is subse-
quently applied to the pedometric soil type map for spatial prediction of the SOM
content. Model performance is validated with an independent probability sample
and compared with results from i) the conventional model that uses mapped soil
type (i.e. the soil type with the largest probability) for calibration and prediction and
ii) the theoretically flawed model that uses observed soil type at sampling locations
for calibration and the soil type as depicted on the map for prediction.

3.2 Theory

Let us assume the following model of spatial variation of soil property Z:

Z(s) = a(s) + b(s)ε, (3.1)

where a(s) is the mean or trend at location s, b(s) is the standard deviation and ε

is a zero-mean, second-order stationary spatially correlated (standardized) residual
with unit variance. Note that in Eq. 3.1 the mean and standard deviation of Z are a
function of the spatial coordinates s, i.e. they vary in space.

Suppose that Z is measured at n locations within a two-dimensional spatial domain
D, yielding values z(sk), k = 1, 2, ..., n. At each sampling location the residual is
computed by subtracting mean a(sk) from the measured soil property value z(sk).
The residual is standardized by division with the standard deviation b(sk). Next the
spatial structure of the standardized residuals is modelled with a variogram. The
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sill of the variogram is known to be 1, and the remaining variogram parameters are
estimated from the sample of residuals. Residuals at unsampled locations can then
be predicted using simple kriging. Next the soil property Z at prediction location
s0 is predicted by back-transformation of the kriged residual using b(s0) and a(s0)

(Goovaerts, 1997):

ẑ(s0) = b(s0)[
n∑
k=1

λkε(sk)] + a(s0), (3.2)

where ẑ(s0) is the predicted soil property value at s0, ε(sk) is the observed residual
at sampling location and λk is the simple kriging weight assigned to the residual at
location sk. The prediction error variance at s0 is calculated as:

V (s0) = var(b(s0)[ε̂(s0)− ε(s0)])

= b2(s0)var[ε̂(s0)− ε(s0)], (3.3)

where var[ε̂(s0)− ε(s0)] is the simple kriging variance.

Prediction of soil property Z at each location s0 requires estimates of a(s0) and b(s0).
I will now discuss three models for prediction of Z where these model parameters
are a function of the categorical explanatory variable ”soil type”. The models differ
in the source from which the soil type information is obtained to estimate a(s0) and
b(s0).

In this chapter it is assumed that a(s0), b(s0) and the variogram are estimated with-
out error: â(s0) and b̂(s0) are substituted into Eqs. 3.2 and 3.3 as if these are the true
values to obtain the prediction of soil property Z and the prediction error variance.
Ignoring the estimation error of the model parameters simplifies modelling dramat-
ically but generally is unrealistic and affects the model outcome. This assumption
will be addressed further on in this chapter in section 3.4.

Model 1: Parameter estimation and prediction using a soil type information from a map
Suppose that a soil map is available that distinguishes M soil types, m = 1, 2, ...,M ,
and that specifies the soil type cmap(s) at each location s ∈ D. If soil type as read from
the soil map is the only predictor of soil property Z, then a(s) is a stepwise function
with levels equal to the number of soil types. The mean of a soil type is estimated
from all observations contained in the map unit (Webster and Oliver, 2007). Thus,
the mean at prediction location s0 is estimated by :

â(s0) =
1

d

n∑
k=1

δ[cmap(sk) = cmap(s0)]z(sk), (3.4)
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where cmap(sk) is the mapped soil type at sampling location sk with k = 1, 2, ..., n,
s0 is the mapped soil type at prediction location s0, δ[cmap(sk) = cmap(s0)] is the
Kronecker delta that equals 1 if cmap(sk) = cmap(s0) and 0 otherwise, and d is the
number of sampling locations for which the mapped soil type equals the mapped
soil type at location s0. The population variance at location s0 is estimated by:

b̂2(s0) =
1

d− 1

n∑
k=1

δ[cmap(sk) = cmap(s0)][z(sk)− â(s0)]2. (3.5)

The standard deviation at s0 is taken as the square root of the variance. Likewise
â(sk) and b̂2(sk) are estimated at sampling locations sk. Once these are known, the
geostatistical analysis is done as described above.

Model 2: Parameter estimation using soil type information from point observations and pre-
diction using the soil map
Model parameters a(s0) and b(s0) can also be estimated using the observed (‘true’)
soil type at sampling locations sk, k = 1, 2, ..., n. This is attractive because the rela-
tionship between soil property and true soil type is not confounded by map errors
(i.e. impurities in the map units) and is presumably stronger than the relationship
between soil property and mapped soil type.

These parameters are estimated as in Model 1, the only difference being that aver-
aging is done over observations with the same observed soil type instead of over
observations with the same mapped soil type. Thus a(s0) and b(s0) are estimated by:

â(s0) =
1

d

n∑
k=1

δ[ctrue(sk) = cmap(s0)]z(sk), (3.6)

and

b̂2(s0) =
1

d− 1

n∑
k=1

δ[ctrue(sk) = cmap(s0)][z(sk)− â(s0)]2, (3.7)

where ctrue(sk) is the observed soil type at sampling location sk, δ[ctrue(sk) = cmap(s0)]

is the Kronecker delta that equals 1 if ctrue(sk) = cmap(s0) and 0 otherwise, and d is
now the number of sampling locations for which the observed soil type equals the
mapped soil type at location s0. Note that here mapped soil type at s0 is used to
estimate a(s0) and b(s0) because true soil type is unknown at unsampled locations.
Note also that this approach requires that each soil type read from the soil map is
observed at least twice in the sample.

Although calibration of a(s0) and b(s0) based on observed soil types is attractive for
reasons explained above. However, applying the estimated model parameters to a
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soil type map for spatial prediction of these parameters has the undesirable conse-
quence of under-estimating the prediction error variance, because the uncertainty
about the soil type prevailing at unsampled locations is not accounted for by the
model. Furthermore, a strong, informative, relationship between soil property and
soil type is applied to a soil map that is less informative about the soil property, i.e.
Model 2 overrates the usefulness of the information of the soil map. Thus, use of
Model 2 for spatial prediction of soil property Z is essentially flawed. However, if a
soil map with quantified uncertainty is available, then one could benefit from param-
eter estimation based on observed soil type without the drawbacks described here.
The following section describes how such model is calibrated and how the kriging
prediction and prediction error variance are computed.

Model 3: Parameter estimation using soil type information from point observations and pre-
diction using a soil map with quantified uncertainty
As for Model 2, Model 3 uses observed soil type at sampling locations to estimate
model parameters a(s0) and b(s0). However, unlike Model 2, which uses mapped
soil type at s0 as if it were the true soil type, Model 3 represents true soil type at s0
with a probability distribution.

Let us assume that a vector of length M containing the probabilities of occurrence
of each soil type pm(s0), m = 1, 2, ...,M , is available at each location s ∈ D. Model
parameters a(s0) and b(s0) are now stochastic variables denoted as A(s0) and B(s0),
which have discrete probability distributions:

P (A(s0) = am) = P (B(s0) = bm) = pm(s0), m = 1, 2, ...,M. (3.8)

The expected value and variance of A(s0) are given by:

E[A(s0)] =
M∑
m=1

pm(s0)am, (3.9)

and

var[A(s0)] =
M∑
m=1

pm(s0)(am − E[A(s0)])2, (3.10)

where am is the mean of soil type m. Similarly, the expected value and variance of
B(s0) are given by:

E[B(s0)] =
M∑
m=1

pm(s0)bm, (3.11)

62



3.2. Theory

and

var[B(s0)] =
M∑
m=1

pm(s0)(bm − E[B(s0)])2, (3.12)

where bm is the standard deviation of soil typem. The most obvious predictor of soil
property Z at unsampled location s0 is:

ẑ(s0) = E[A(s0)] + E[B(s0)]ε̂(s0). (3.13)

It should be noted that this predictor might not necessarily be the optimal predictor,
i.e. the best linear unbiased predictor. However, for reasons of simplicity it is used
here.

Computation of the expected value and variance of the prediction error is more com-
plex than in the previous models because the model parameters are now stochastic,
whereas in Models 1 and 2 they are fixed. For brevity, the stochastic variables are de-
noted as A(s0) as X, B(s0) as Y, ε(s0) as U, ε̂(s0) as V, and the deterministic variables
E[A(s0)] as µx and E[B(s0)] as µy . Here X and U, X and V, Y and U, and Y and
V are pairwise independent. The prediction error associated with Eq. 3.13 has the
expectation:

E[Z(s0)− Ẑ(s0)] = E[X + Y U − µx − µyV ]

= E[X] + E[Y ]E[U ]− E[µx]− E[µy]E[V ]

= µx + µy · 0− µx − µy · 0 = 0. (3.14)

The prediction error variance satisfies:

V (s0) = var[Z(s0)− Ẑ(s0)]

= var[X + Y U − µx − µyV ]

= var[X] + var[Y U ] + µ2
yvar[V ] +

2cov[X,Y U ]− 2µycov[X,V ]− 2µycov[Y U, V ]. (3.15)

Making use of the unbiasedness of the kriging residual, of var[U ] = 1, and of inde-
pendence between variables, it follows that:
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V (s0) = var[X] + (var[Y ] + µ2
y) + µ2

yvar[V ] + 0− 2µy(µycov[U, V ])− 0

= var[X] + (var[Y ] + µ2
y) + µ2

yvar[V ]

−2µ2
y(

1

2
{var[U ] + var[V ]− var[U − V ]})

= var[X] + var[Y ] + µ2
yvar[U − V ]

= var[A(s0)] + var[B(s0)] + E[B(s0)]2var[ε̂(s0)− ε(s0)]. (3.16)

where var[ε̂(s0) − ε(s0)] is the simple kriging variance. The third term on the right-
hand side of Eq. 3.16 is similar to Eq. 3.3 that is used to compute the prediction error
variance of Models 1 and 2. The first and second term represent the variance caused
by uncertainty about the prevailing soil type at prediction location s0. In Model 1
this uncertainty is accounted for by b2s0 in Eq. 3.3 while model Model 2 ignores this
uncertainty.

Using Model 3 for spatial prediction of soil property Z requires estimates of am and
bm. Soil type mean am is estimated by (Goovaerts, 1997):

âm =
1

dm

n∑
k=1

δ[ctrue(sk) = m]z(sk), (3.17)

where dm is the number of sampling locations with observed soil typem, and δ[ctrue(sk) =

m] is the Kronecker delta that equals 1 if observed soil type at sampling location sk
equals m and 0 otherwise. Soil type standard deviation bm is estimated by:

b̂m =

√√√√ 1

dm − 1

n∑
k=1

δ[ctrue(sk) = m][z(sk)− âm]2. (3.18)

3.3 Case study

The province of Drenthe (2 680 km2) is situated in the northeastern part of the Nether-
lands (Fig. 1.1). The landscape in Drenthe is characterized by a glacial till plateau
that is dissected by an extensive brook valley system. The glacial till is covered with
poor aeolian sand deposits that can be up to two metres thick. Cultivated peatlands
border the plateau to the east and south. Podzols formed in the aeolian sand de-
posits. In loamy parent material, brown forest soils formed. Plaggen soils surround
medieval settlements on the plateau. Peat soils dominate the centres of the brook
valleys. Hydromorphic earth soils are found in the brook valley-plateau transition
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zone. Raw sand soils are found in the drift-sand complexes. Peat soils of the culti-
vated peatlands are characterized by strong human disturbances to a considerable
depth due to deep cultivation. Their topsoil consists of sand mixed with small peat
fragments.

3.3.1 The Data

Soil map. A raster soil map with 25-m resolution of the province of Drenthe was used.
This map distinguishes ten major soil types (Fig. 2.3). The soil map is an updated
and generalized version of the existing 1:50 000 national soil map of Drenthe (Chap-
ter 2). The main reason for updating the 1:50 000 map was the large areal decline of
peat soils because of intensive agriculture since the original map at that scale was
completed (Finke et al., 1996; van Kekem et al., 2005). Location-specific probability
distributions of the ten soil types were modelled using multinomial logistic regres-
sion, and are available on a grid with 25-m resolution. The mapped soil type is the
soil type with the largest probability. Fig. 2.4 shows an entropy map of the proba-
bility distributions. The entropy was used to quantify uncertainty associated to the
predictions. Entropy values vary between 0 (no uncertainty; one of the soil types has
probability 1) and 1 (maximum uncertainty; uniform probability distribution). Note
that here the entropy is a normalized score by choosing the base of the logarithm
equal to the number of soil types.

Point data. Two sets of point data were available for this study. These sets contained
soil profile descriptions at 24 845 locations in Drenthe. Two-thirds of these points
were also used to calibrate the multinomial logistic regression models that produced
the pedometric soil map (Chapter 2).

• Data set 1. 23 785 soil profile descriptions: 95,7% of the total data. These data
were collected during five detailed soil surveys (scale 1:10 000) in 1983, 1996-
1997, 2002, 2003, and 2006. The five survey areas cover 15% of the area of
Drenthe. Sampling density in these areas varies between 0.33-1 locations per
ha. The sampling locations in the 1:10 000 survey areas were selected by pur-
posive sampling.

• Data set 2. 1 060 soil profile descriptions collected throughout Drenthe during
various projects between 1955 and 2008. Average sampling density is four lo-
cations per 1 000 ha. The sampling locations were selected by both purposive
(n = 633) and probability sampling (n = 427). Fig. 3.1 shows the locations of the
sampling locations of data set 2 and the five areas with detailed soil surveys.

At each sampling location the soil profile was described and classified according to
the Dutch soil classification system for detailed soil surveys (ten Cate et al., 1995).
Each class was recoded to one of the ten soil types read from the soil map. The
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 Point observations
 Area with 1:10 000 soil survey 0 5 10 15 20 252.5

km

Figure 3.1: Locations of the five areas with detailed soil surveys that yielded point data set 1
and the sampling locations of point data set 2.

soil profile descriptions included the SOM content for each horizon in the soil pro-
file, which was generally determined in the field by hand estimation. The hand
estimates were calibrated during the field surveys with a limited number of labo-
ratory measurements. Laboratory measurements of SOM were available for only
a few hundred locations. Hand-estimates were not distinguished from laboratory
measurements during data analysis and modelling.

SOM is a dynamic property that changes in time. Using a validation set from a
different period (2008, see also section 3.3.4) than the calibration set might result in
biased predictions. Loss of SOM particularly affects the reclaimed peat soils in the
peat colonial landscape. Oxidation of SOM in these soils has resulted in a substantial
areal decline (de Vries and Brouwer, 2006). Soil profile descriptions of reclaimed
peat soils dating before 1993 were therefore not included in the data sets described
above. Profile descriptions of fen peat soils in the brook valleys and of peat soils in
contemporary highmoor areas from before 1993 were kept. Oxidation of SOM was
assumed to be limited for these soils because of less favourable conditions. Land use
in the brook valleys generally is natural grassland with extensive grazing. Highmoor
areas are large natural areas. Groundwater levels in both brook valleys as highmoor
areas are generally close to the surface. Profile descriptions of mineral soils were all
included irrespective of the description date. Hanegraaf et al. (2009) and Reijneveld
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et al. (2009) assessed trends in SOM content for agricultural soils in the Netherlands.
These authors estimated changes in SOM content of between 0.1% and 0.4% per
decade for mineral soils in the north-eastern Netherlands. These changes are fairly
small compared with the spatial variation of SOM in mineral soils. It was therefore
assumed that the effect of changes of SOM content in mineral soils on calibration
bias was negligible.

Soil organic matter content. The SOM content of the topsoil (defined as 0–30 cm), was
computed from the SOM contents of the soil horizons according to:

SOM =

∑n
i=1 TiρiSOMi∑n

i=1 Tiρi
, (3.19)

where Ti is the thickness of soil horizon i within 30 cm depth (m), ρi is the bulk den-
sity of the soil horizon (kg m−3) and SOMi is the soil organic matter content (%).
A weighted average based on bulk density was used because mineral and organic
horizons occur together in the topsoils in the study area. Such horizons have highly
contrasting SOM contents and bulk densities. In order to compute an average SOM
content (expressed on a % mass basis) for a topsoil that contains such contrasting
horizons, differences in bulk density must be accounted for. Bulk density values of
mineral horizons (SOM<15%) were derived from look-up tables with profile char-
acteristics of the Dutch soils. A pedotransfer function was used to compute bulk
density of organic horizons (de Vries, 1999):

ρi = (1− tsi)
100

(SOMi

1.47 ) + ( 100−SOMi

2.66 )
, (3.20)

where tsi is a variable that takes a value between 0.72 and 0.89 depending on the
type of organic material and the position of the organic horizon in the profile.

3.3.2 Exploratory data analysis

Table 3.1 lists the summary statistics of topsoil organic matter content of both data
sets and Fig. 3.2 shows the histograms. The difference in mean SOM content between
the data sets is caused by i) the relatively larger number of peat soils included in data
set 1 and ii) larger mean SOM contents for three of the four peat soil types in data
set 1. The data of both sets showed strong positive skew. After natural logarithm
transformation of the (SOM+1) values, the data were still mildly positively skewed.
The peak in the left tail of the distribution of the transformed values of data set 2 is
caused by ’raw sands’ soil type that is characterized by very small SOM contents in
the topsoil. The log-transformed data were used for modelling.
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Table 3.1: Summary statistics for raw and log-transformed topsoil organic matter content of
the two data sets.

Mean Median Variance Skew

Data set 1
SOM (%) 12.4 6.2 233 2.3
SOM log(%) 2.23 1.97 0.58 1.1

Data set 2
SOM (%) 8.6 5.2 167 4.0
SOM log(%) 1.85 1.82 0.67 0.6

SOM (%)

F
re

qu
en

cy

0

2000

4000

6000

8000

0 20 40 60 80
SOM log(%)

F
re

qu
en

cy

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5

SOM (%)

F
re

qu
en

cy

0

100

200

300

400

500

0 20 40 60 80 100
SOM log(%)

F
re

qu
en

cy

0

50

100

150

200

0 1 2 3 4 5

Figure 3.2: Histogram of the SOM and log-transformed SOM contents of data set 1 (left
plots) and data set 2 (right plots).

3.3.3 Mapping the soil organic matter content

The soil type means, standard deviations and variogram parameters were estimated
by using only data from data set 2 (n = 1060). Use of both data sets for estimation of
the model parameters would result in estimates that are strongly dominated by data
from data set 1 which are clustered in only a small part of the study area. However,
both data sets were used for kriging the residuals.

Estimation of the soil type means and standard deviations. Two sets of soil type means and
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standard deviations of the log-transformed SOM content were estimated from the
data: one set was derived from a calibration with mapped soil type and one set from
a calibration with observed soil type. Standardized residuals at sampling locations
of data set 2 were computed for each set by subtracting the estimated means from
the observed log-transformed SOM content followed by division with the standard
deviation.

Variogram modelling. Variogram parameters were estimated for the residuals of both
calibrations. The variogram parameters were estimated using maximum-likelihood
estimation (ML) for its advantages over method-of-moments estimation as discussed
by Pardo-Igúzquiza (1998) and Lark (2000). The procedure for parameter estimation
by ML as outlined by Lark and Cullis (2004) was followed. To obtain initial values for
the variogram parameters the variogram of the residuals was initially estimated by
the method-of-moments estimator. After the first run, ML estimation was repeated
with different initial values to ensure convergence to the global instead of a local
optimum. Parameters were estimated for the spherical and exponential covariance
models since these are commonly used to model the spatial structure of soil variables
(e.g. McBratney and Webster, 1986; van Meirvenne et al., 2003; Lark and Cullis, 2004;
Rivero et al., 2007). The variogram model with the largest log-residual likelihood
statistic was then selected for simple kriging of the residuals.

Spatial prediction. Two standardized residuals were computed at each sampling loca-
tion in data set 1: one for each calibration. These were used together with the stan-
dardized residuals from data set 2 for interpolation by simple kriging at the nodes
of a regular grid with 25-m resolution. This resulted in two rasters with interpolated
residuals: again one for each calibration. Model parameters were estimated at the
nodes of a 25-m grid using the three models discussed in the theory section. These
estimated parameters were used together with the interpolated residuals to map the
SOM content (Eq. 3.2). Note that the interpolated residuals resulting from a calibra-
tion with mapped soil type were used for prediction of SOM content with Model 1,
while those resulting from a calibration with observed soil type were used for pre-
diction with Models 2 and 3. Maps of the prediction error variance were produced by
using Eq. 3.3 for Models 1 and 2 and Eq. 3.16 for Model 3.

3.3.4 Validation

Sampling design. The performance of the three models was assessed with an inde-
pendent, stratified simple random sample (de Gruijter et al., 2006). In Chapter 2
a detailed description of the stratification method, sample allocation and sampling
protocol is provided (section 2.2.6). A total of 150 locations were sampled in April
and May 2008. At each location a soil sample was taken at a depth of 30 cm using
a soil auger. Soil samples were oven-dried at 103° C for six hours, and then sieved
and crushed. The soil organic matter content of a dry sample was determined with
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the weight loss-on-ignition method. The samples were combusted at 550° C for three
hours. The SOM content was determined from the weight difference before and after
combustion.

Statistical Inference. For each model three validation indices were estimated from
the observed and predicted log-transformed SOM content at the 150 validation lo-
cations. These were: the mean error (ME), which is a measure for the bias of the
predictions; the mean squared error (MSE) which is a measure for the accuracy of
the predictions; the mean squared deviation ratio (MSDR) which is a measure of the
goodness of the theoretical estimate of the prediction error variance (PEV) (Voltz and
Webster, 1990). The MSDR should be close to 1. Values larger than 1 indicate under-
estimation of the PEV, while values smaller than 1 indicate over-estimation. The ME
of a stratified random sample is estimated by (de Gruijter et al., 2006):

ME =

H∑
h=1

ah
1

nh

nh∑
i=1

[ẑ(shi)− z(shi)], (3.21)

where ẑ(shi) is the predicted log-transformed SOM content at validation location si,
i = 1, 2, ..., nh, in stratum h, h = 1, 2, ...,H , z(shi) is the natural log transform of
the measured (SOM+1) content, and ah is the relative area of stratum h. The MSE is
estimated by:

MSE =
H∑
h=1

ah
1

nh

nh∑
i=1

[ẑ(shi)− z(shi)]2. (3.22)

The MSDR is the ratio between actual squared error and the theoretical estimate of
the PEV and is estimated by:

MSDR =
H∑
h=1

ah
1

nh

nh∑
i=1

[ẑ(shi)− z(shi)]2

V̂ (shi)
, (3.23)

where V̂ (shi) is the PEV as defined by Eq. 3.3 for Models 1 and 2 and Eq. 3.16 for
Model 3.

To compare the performance of two models, the difference in the squared error ob-
tained by two models, d̂(shi), was computed at each validation location. The mean
squared error difference, ˆ̄d, was estimated by replacing the quantity between square
brackets in Eq. 3.21 with d̂(shi). Under the null hypothesis that the expected value
of the estimated mean difference is zero, it was assumed that ˆ̄d follows a normal
distribution with zero mean and variance (de Gruijter et al., 2006):
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var( ˆ̄d) =
H∑
h=1

a2h
1

nh(nh − 1)

nh∑
i=1

[d̂(shi)− ˆ̄dh]2, (3.24)

where ˆ̄dh is the mean squared error difference of stratum h.

3.4 Results and discussion

3.4.1 Mapping the soil organic matter content

Estimated soil type means and standard deviations

Table 3.2 presents the summary statistics for the log-transformed SOM content de-
rived from calibrations with mapped and observed soil type. The estimated within-
soil type variances show that there is considerable variation in SOM content within
the map units of the soil map, especially within the four peat map units. The larger
variation in the peat map units compared with the mineral map units is caused by
the lesser purity of these units (section 2.3.3), and the larger SOM content range in
the topsoil of peat soils (15–100% versus 0–15% for mineral soils). Calibration on
observed soil type greatly reduces the residual variation within the peat soil types.
As expected, calibration on observed soil type results in a stronger relationship be-
tween SOM content and soil type than a calibration on mapped soil type: observed
soil type explains 77% of the total variance while mapped soil type explains 54%.

Table 3.3 shows the summary statistics for the unstandardized residuals from Models
1 and 2. The variance of the residuals of Model 2 is half of that of Model 1 indicating
a much stronger relationship between SOM content and observed soil type than be-
tween SOM content mapped soil type. The skewness statistic of both sets of residuals
is close to zero suggesting a symmetrical distribution around the mean.

Variogram Modelling

The exponential model was selected for both prediction models because the log-
likelihoods of the exponential models were larger than those of the spherical models.
Fig. 3.3 shows the experimental variogram (dots) of residuals from Model 1 and
Model 2. The line represents the variogram model fitted by maximum likelihood.
The estimated parameters of these are in Table 3.3. The sill of both models is close to
1 as a result of the standardization. The part of the residual variance that is spatially
structured, indicated by the spatial dependence ratio, is similar for both models.
This is surprising as less structure in the residuals from Model 1 would have been
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Table 3.2: Soil type means and variances of the topsoil organic matter content log(%) for a
model calibrated using mapped soil type and for a model calibrated using observed soil type.
The quantity between brackets is the estimated standard error of the mean

Soil type Model 1: mapped soil type Model 2: observed soil type
n mean (se) variance n mean (se) variance

P 45 3.53 (0.12) 0.68 69 3.81 (0.05) 0.19
mP 20 2.80 (0.24) 1.13 13 2.29 (0.13) 0.23
PY 24 2.49 (0.21) 1.02 40 3.03 (0.07) 0.20
mPY 143 2.38 (0.07) 0.60 76 2.20 (0.05) 0.21
BF 17 1.69 (0.08) 0.10 22 1.66 (0.06) 0.08
PZ 510 1.81 (0.02) 0.21 468 1.77 (0.02) 0.15
ES 92 1.77 (0.06) 0.32 123 1.87 (0.03) 0.14
PS 78 1.90 (0.03) 0.07 86 1.95 (0.03) 0.07
TS 3 1.52 (0.25) 0.19 11 1.59 (0.19) 0.40
RS 128 0.63 (0.03) 0.13 153 0.67 (0.03) 0.15

Table 3.3: Summary statistics of the unstandardized residuals and maximum likelihood esti-
mates of variance parameters for models with different calibrations of the model parameters.

Model 1 Model 2

Summary statistics
Mean 0.00 0.00
Median -0.004 -0.005
Variance 0.30 0.15
Skew 0.18 0.02

Variogram parameters
Partial sill 0.60 0.55
Nugget 0.44 0.45
Spatial dependence† 0.58 0.55
Range (m) 1019 710

† The spatial dependence is calculated as [partial sill/(nugget+partial sill)] (Lark and Cullis, 2004)

expected because of the larger explanatory power of observed soil type. The range
of spatial correlation is shorter for Model 2 than for Model 1.

Spatial Prediction

Fig. 3.4 shows the maps of the log-transformed SOM content obtained by the three
models and the associated prediction error variances. The spatial pattern of SOM
content in all maps resembles the soil map with large values in the brook valleys,
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Figure 3.3: Experimental variogram (dots) and maximum likelihood fit of the variogram
model (dotted line) for residuals from calibration on mapped soil type (left plot) and calibra-
tion on observed soil type (right plot).

which are dominated by peat soils P and PY; medium values in the peat-colonial
landscape, which is dominated by peat soils mP and mPY; and small values on the
plateau with its mineral sandy soils. The maps with Model 1 and Model 2 predictions
show both sharp and gradual changes across soil type boundaries, which is an ef-
fect of the varying sampling density across the study area (Fig. 3.5). In areas with
low sampling density sharp changes in SOM content, typical of a discrete model
of spatial variation (Heuvelink, 1996), dominate the spatial pattern. Only close to
the sampling locations there is a smoothing effect of kriging as a result of the rel-
atively short ranges. In the areas with high sampling density the effect of kriging
is much stronger and both sharp and gradual changes occur, which are typical of a
map predicted with a mixed model of spatial variation, which combines a discrete
model (for the trend) and a continuous model (for the error) to describe the spatial
variation of an attribute (Heuvelink, 1996). Thus, in order to take advantage of the
kriged residual for spatial prediction a sufficiently dense pattern of observations is
required, especially when the range of spatial autocorrelation is short. The map ob-
tained with Model 3 appears smoother than those obtained with the other models
(Fig. 3.5), because here soil type is not represented with discrete entities but with
probability distributions. Sharp changes in SOM content only occur where there are
sharp changes in probabilities. Furthermore, the Model 3 map shows much more
short-distance variation in SOM content. This is a result of using location-specific
probability distributions to represent soil type instead of discrete entities. As a con-
sequence, the predicted SOM content varies between locations (pixels on the map).
Models 1 and 2 are not able to model local uncertainty about soil type, that is uncer-
tainty within map units. Here the SOM content, as predicted by the trend part of the

73



Chapter 3. Pedometric mapping of SOM

model, is equal for all locations within a map unit. The variation of SOM content
that can be observed within the areas of the Model 1 and 2 maps that correspond to
the map units of the soil map, is attributed to the effect of the kriged residual.

The PEV of Models 1 and 3 have similar magnitudes (the average of Model 1 is 0.32;
that of Model 3, 0.29) but the spatial patterns differ (Fig. 3.4). The PEV pattern of
Model 3 shows much more short-distance variation than that of Model 1. This is again
caused by the location-specific probability distributions of soil type. As a result the
variance of model parameters A and B (Eqs. 3.10 and 3.12) varies between predic-
tion locations. This means that the uncertainty about the predicted SOM content is
larger at locations with large uncertainty about soil type than at locations with small
uncertainty. In Model 1 the variance attributed to uncertainty about soil type is not
modelled explicitly but is accounted for by the within-map unit variance that is con-
stant within a map unit. This explains the similar magnitude of the PEV for Models
1 and 3 despite their different spatial patterns. The PEV of Model 2 is much smaller
than those of Models 1 and 3 (average PEV is 0.14) because this model does not ac-
count for the variance resulting from uncertainty about soil type. Fig. 3.6 shows the
percentage of the prediction error variance of Model 3 that is attributed to uncertainty
about the trend. Not surprisingly, the map correlates well with the entropy map (Fig.
2.4): large entropy values (large uncertainty about the prevailing soil type) generally
result in PEVs that are dominated by the variance of the trend part of the model.

For reasons of simplicity some assumptions were made for the estimation of the
model parameters, which may have resulted in too optimistic estimates of the predic-
tion error variance. First, the SOM means per soil type the soil type means were es-
timated by OLS, hence assuming independence of the point observations. Lark and
Cullis (2004) state that OLS estimates of model coefficients from dependent observa-
tions may result in biased estimates of the variances of the coefficients. Variances ob-
tained by OLS estimation are under-estimated. Second, it was assumed that model
parameters a(s0) and b(s0) and the variogram parameters were estimated without
error. The estimated parameters were then plugged into the prediction equations as
if these were the true values, hereby ignoring uncertainty in these parameters.

Uncertainty about the estimated trend coefficients can be taken into account for
variogram modelling and spatial prediction, for example through universal krig-
ing. In that case residual maximum likelihood (REML) estimation is most appropri-
ate for simultaneously estimating the trend coefficients and variogram parameters
(Lark and Cullis, 2004; Minasny and McBratney, 2007b). While incorporating uncer-
tainty about the estimated trend coefficients in parameter estimation and prediction
is fairly straightforward, addressing the uncertainty about the estimated standard
deviation and variogram parameters is not. This requires more advanced methods.
Pardo-Igúzquiza et al. (2009) use maximum likelihood inference to assess variogram
parameter uncertainty, while Marchant and Lark (2004) use simulation tests. Diggle
and Ribeiro Jr. (2007) advocate the use of a Bayesian approach to assess parameter

74



3.4. Results and discussion

SO
M 

log
(%

)
0 -

 1
1 -

 1.
5

1.5
 - 2

2 -
 2.

5
2.5

 - 3
3 -

 4
4 -

 5
A

C
B

PE
V l

og
(%

)
0 -

 0.
1

0.1
 - 0

.2
0.2

 - 0
.3

0.3
 - 0

.4
0.4

 - 0
.5

>0
.5

D
E

F

2

Fi
gu

re
3.

4:
Pr

ed
ic

te
d

lo
g-

tr
an

sf
or

m
ed

SO
M

co
nt

en
ts

w
ith

M
od

el
1

(A
),

M
od

el
2

(B
)a

nd
M

od
el

3
(C

)a
nd

th
ep

re
di

ct
io

n
er

ro
rv

ar
ia

nc
es

as
so

ci
at

ed
to

th
e

pr
ed

ic
tio

ns
by

M
od

el
1

(D
),

M
od

el
2

(E
)a

nd
M

od
el

3
(F

).

75



Chapter 3. Pedometric mapping of SOM
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Figure 3.5: Detail of the SOM map obtained by Model 1 (A) and Model 3 (B) that show
different spatial patterns. The soil map with the interpolation points are shown in (C).

uncertainty. Use of these advanced methods was not the aim of this chapter.

3.4.2 Validation

Table 3.4 lists the validation results. The mean errors of the models are close to
zero, suggesting unbiased predictions. Apparently using calibration and validation
data sets from different periods did not cause biased predictions. The mean squared
errors show that Model 3 outperforms Model 2 (p = 0.018) and performs slightly
better than Model 1 (p = 0.240). Model 2 has the largest MSE. This shows that model
calibration on observed soil type only improves prediction accuracy when the model
explicitly accounts for uncertainty resulting from impurities in the soil map units.
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Figure 3.6: Percentage of the prediction error variance of Model 3 that is attributed to un-
certainty about the trend part of the model.

Table 3.4: Validation indices of the three prediction models: ME (mean error), MSE (mean
squared error), and MSDR (mean squared deviation ratio).

ME MSE MSDR

Model 1 -0.003 0.259 0.91
Model 2 -0.035 0.292 1.98
Model 3 0.005 0.236 0.74

The PEV of Model 1 is 0.33, that of Model 2 is 0.14 and that of Model 3 is 0.30. These
values are close to the spatial means of the PEV maps. Also on basis of the PEV,
Model 3 performs better than Model 1 (p = 0.009). The PEV of Model 3 is composed of
the simple kriging variance of Model 2 and the variances of the soil type means and
standard deviations (Eq. 3.16). The latter proved to be negligible, while the variance
of the means accounts on average for 39% of the PEV. This is an advantage of Model 3
over Model 1: it allows to quantify the variance that is attributed to uncertainty about
soil type. In this particular case, it turns out that eliminating the uncertainty about
the true soil type at prediction locations would decrease the PEV by one-third. The
small PEV of Model 2 compared to that of the other models is caused by ignoring
the uncertainty about the soil type prevailing at the prediction locations. This is
reflected by the MSDR of Model 2, which is 1.98, indicating severe underestimation of
the PEV. Model 1 performs well in terms of MSDR, with only a small overestimation
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of the actual squared error. Apparently the model does not suffer from ignoring the
variances of the model parameters. Model 3 does not seem to provide an accurate
estimate of the PEV: the MSDR deviates strongly from the expected value 1 (p =

0.003), indicating an over-estimation of the PEV.

A possible explanation for the bias in MSDR with Model 3 could be that the multi-
nomial logistic regression models used to produce the pedometric soil map did take
spatial autocorrelation into account when predicting of the probability distributions.
These distributions were not conditioned on the observations at locations in the
neighbourhood of the prediction location, as for example in Bayesian Maximum En-
tropy prediction (Brus et al., 2008). Consequently, the SOM content as predicted by
the trend part of the model is predicted independent of the SOM content at neigh-
bouring locations, while field observations on SOM content (such as used for vali-
dation) are correlated. This hypothesis was tested using simulations. Soil type was
simulated at sampling and validation locations by drawing from the multinomial
probability distributions. Residuals were simulated at both locations through un-
conditional sequential Gaussian simulation using the estimated variogram model of
prediction Model 2 (Table 3). Next the ‘true’ SOM content was computed at the vali-
dation locations using the simulated soil type and residuals and the soil type data in
Table 3.2 (right part). Residuals were predicted at the validation locations by krig-
ing the simulated residuals at the sampling locations, followed by prediction of the
SOM content with Model 3 and computation of the PEV with Eq. 3.16. Finally, the
predicted SOM content was validated with the simulated (true) SOM content and
the MSDR computed. The average MSDR of 1000 simulations was 0.994 and the
95% confidence interval was 0.985-1.004. These results indicate that it is likely that
lack of autocorrelation in the soil type map caused over-estimation of the PEV.

3.4.3 Applicability

Like any other pedometric mapping approach, the models presented in this chapter
require data, specifically soil type maps and observations with recorded soil types.
Soil type maps are available for most countries of the world although cartographic
scales greatly differ between countries (Rossiter, 2004). Here an updated and gen-
eralized version of the 1:50 000 soil map of the Netherlands was used. Medium and
large scale soil type maps (scales larger 1:250 000) are (partially) available for many
countries all over the world1. An overview provided by Jones et al. (2005) shows
that 36 European countries have a national coverage at a scale of 1:250 000 and that
one third of these countries have national coverage at 1:25 000–1:50 000 scale. Most
countries have thousands of analyzed and described soil profiles in their soil infor-
mation systems. The SSURGO soil map covers the entire eastern and central US and

1http://www.itc.nl/∼rossiter/research/rsrch ss; A Compendium of Online Soil Survey Information
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large parts of the western US at 1:12 000–1:63 600 scale2. The US soil database con-
tains about 20 000 descriptions of pedons (Rossiter, 2004). Canada has coverage at
1:10 000-1:125 000 scale of significant agricultural areas3. Selvaradjou et al. (2005a,b)
give an overview of available (scanned) soil maps of Africa and Asia. This shows
that application of Model 3 is possible in large parts of the world although pedomet-
ric soil type maps are rare. When such maps are not available, point observations
with recorded soil types can be used to define frequency distributions of soil types
within the mapping units of the soil type map, which can then be used to proxy
probability distributions for soil type.

3.5 Conclusions

Calibration of the model trend on observed soil type resulted in a much stronger
predictive relationship between SOM and soil type than calibration on mapped soil
type, which is done conventionally. Such calibration implies, however, that soil type
as depicted on a soil map cannot be simply used as a covariate. The true soil type
at prediction locations must be used, which is unknown. However, when a prob-
ability model of the true soil type is available, then this model may be used. This
approach was followed in this chapter and obtained more accurate predictions of
SOM with smaller prediction error variance (PEV) than the conventional method.
Model 2, which is theoretically flawed, performed worst. It had the largest MSE and
the PEV was strongly underestimated. Use of this model for pedometric mapping of
soil properties should be avoided.

Model 3 gives a more realistic representation of the PEV than Model 1. It uses location-
specific probability distributions to account for uncertainty about the prevailing soil
type at prediction locations. Hence, uncertainty associated to the predicted SOM
content is larger at locations where we are more uncertain about the prevailing soil
type than at locations where we are less uncertain. Model 1 is not capable of mod-
elling this because in this model the uncertainty about the prevailing soil type is
implicitly accounted by the map unit standard deviations and is therefore constant
within a map unit. In addition, Model 3 makes it possible to quantify the variance
attributed to uncertainty about soil type at prediction locations.

Quantitative information about the uncertainty of existing maps of soil type is rare,
although soil survey reports or experienced soil surveyors might provide estimates.
Still, pedometric soil mapping is developing rapidly and is increasingly applied for
producing and updating of soil maps from field scale to global scale. Maps of soil
type with quantified uncertainty should become more readily available in the near
future. Use of such maps for mapping soil properties is advocated.

2http://soils.usda.gov/survey/geography/surgo; Soil Survey Geographic (SSURGO) Database
3http://sis2.agr.gc.ca/cansis; Canadian Soil Information Service
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Chapter 4

Three-dimensional mapping of soil organic matter
content using soil type-specific depth functions

In this chapter a method is proposed for mapping depth functions of soil organic matter
(SOM) that combines general pedological knowledge with geostatistical modelling. A digital
soil map that represents soil type at any location with a probability distribution formed the
starting point. For each of the ten soil types depicted on this map a depth function structure
was defined that describes the SOM depth profile based on knowledge of soil profile morphol-
ogy. Five depth function building blocks were defined, referred to as ‘model horizons’. For
each soil type a depth function structure was obtained by stacking a subset of model horizons.
The parameters of the ten soil type-specific depth functions were calibrated with data from soil
profile descriptions and spatially interpolated using environmental covariates as predictors.
From the predicted parameters and the soil type-specific depth function structures the depth
functions were reconstructed for each soil type at each prediction location. By combining the
soil type-specific depth functions with the soil type map a probability distribution of depth
functions was obtained at each location in the study area. The soil type-specific depth func-
tions and their associated probabilities were used to map the SOM stock for depth intervals
0–30 cm, 30–60 cm, 60–90 cm, and 0–90 cm. The mapped SOM stocks were validated with
independent probability sample data. Validation results showed adequate predictions for the
topsoil but poor predictions for the subsoil. Additionally, prediction performance of the pedo-
metric depth functions was compared to that of conventional depth functions.

Based on: B. Kempen, D.J. Brus, J.J. Stoorvogel
Geoderma 162 (2011): 107–123



Chapter 4. Three-dimensional mapping of SOM

4.1 Introduction

Several attempts have been made recently to use pedometric methods to map the
three-dimensional variation of soil properties using depth functions (Minasny and
McBratney, 2006b; Malone et al., 2009; Meersmans et al., 2009; Mishra et al., 2009).
This typically involves the use of splines or exponential decay functions to describe
the variation of soil properties down a profile. The parameters of these functions
are estimated at observation locations, correlated with environmental covariates and
then spatially interpolated across the area of interest. Use of splines or exponential
decay functions is based on the premise that soil properties vary continuously with
depth (Bishop et al., 1999; Ponce-Hernandez et al., 1986). Although this might be true
for large areas in the world, in areas where there has been strong human influence on
soil formation or where the soil profile contains highly contrasting parent materials,
sharp discontinuities in the depth distribution of soil properties occur. Furthermore,
besides an anthropogenic or geologic origin, discontinuities can also have a pedo-
logic origin such as the sharp boundary between the eluvial and illuvial horizons
in a podzol. Fig. 4.1 gives some examples of soil profiles with discontinuities of
different origins.

The Netherlands has intensively managed landscapes. Soils are often disturbed or
are completely man-made. Besides, many soils have different parent materials in
their profile. For example, soils of the cultivated peatlands—reclaimed highmoor
swamps—have a sandy topsoil that covers peat remains in the subsoil. In the north
of the Netherlands, thick layers of loamy glacial till are covered with sand deposits,
whereas in the river floodplains alternating sand, loam, clay and peat layers are
found in the soil profile as a result of a changing depositional environment in the
past. This makes purely continuous variation of soil properties with depth the ex-
ception rather than the norm in large parts of the Netherlands. Discontinuities en-
countered in depth profiles of soil properties must be explicitly considered in depth
functions used to model these profiles.

Depth functions are typically calibrated using information from soil profile samples
or descriptions at point locations (Malone et al., 2009; Mishra et al., 2009). In addi-
tion, soil maps are available for many areas. Although soil maps typically describe
discrete spatial variation of soil types, they also provide insight in the profile build-
up of the different soil types and representative average properties for the different
soil layers (Bregt and Beemster, 1989; van Meirvenne et al., 1994; Liu et al., 2006).
Hence, soil type maps can be considered discrete three-dimensional models of soil
properties. If available, such maps may be used for three-dimensional mapping of
soil properties. Soil horizons then act as carriers of soil property information. If a
dataset with field descriptions and classifications of soil profiles at point locations is
available then these data can be used to describe a depth function for each soil type
depicted on the soil type map.
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The type of depth function can vary between different soil types depending on the
natural and anthropogenic soil forming processes. Different soil-forming processes
result in different soils with different soil property depth profiles and therefore re-
quire different depth functions to model these. Meersmans et al. (2009) were first to
take anthropogenic influence (tillage) on soil formation and profile morphology into
account for modelling the vertical distribution of soil organic carbon (SOC). They
used a function with a constant SOC concentration until tillage depth. The vertical
distribution of the SOC concentration below the tillage layer was modelled with an
exponential decay function.

In this chapter the current methodology for three-dimensional mapping of soil prop-
erties is extended by integrating pedological knowledge on soil property depth pro-
files and geostatistical modelling by i) characterizing a depth function of soil organic
matter (SOM) for each of the ten soil types occurring in a study area in the province
of Drenthe, ii) mapping the soil-type specific depth functions across the study area
and iii) using the mapped functions in combination with a digital soil type map,
which represents soil type at any location in the study area with a probability distri-
bution, to predict the SOM stock at four depth intervals. The results were validated
with data from an independent probability sample.

4.2 Material and methods

4.2.1 Study area

The 125 km2 study area is situated in the south-central part of the province of Dren-
the (Fig. 4.2). The area surrounds the village of Oosterhesselen (52.75 N, 6.72 E)
and corresponds to map sheet 17G of the 1:25 000 Dutch Topographical Map. It is
a typical part of the Drenthe plateau with large agricultural complexes formed by
the open-field farming system, early 20th-century heath reclamations, fen peat-filled
brook valleys and forested drift-sand complexes. The area includes a small part
of the man-made cultivated peatlands in the southwest. Major land use is agricul-
ture with cropland (potatoes, wheat, maize) dominating the open-field complexes
and the cultivated peatlands; a mosaic of cropland and intensive pasture systems is
found in the heath reclamations, while extensive pasture systems and natural grass-
lands characterize land use in the brook valleys. One third is under nature (forests,
heath and highmoor). Major soil types include podzols, hydromorphic earth soils,
plaggen soils and peat soils.

Podzols formed in poor aeolian sands in the drier parts of the landscape and domi-
nate the heath reclamations and parts of the cultivated peatlands, while brown forest
soils formed in more loamy sands. Hydromorphic earth soils, which are soils with
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A B D C 

Figure 4.1: Soil profiles showing discontinuities in the vertical distribution of soil organic
matter caused by different processes: A) anthropogenic: plough layer on top of podzol re-
mains, B) geologic: Holocene drift sand covering Pleistocene sand with podzol, C) pedologic:
eluvial E-horizon above an illuvial podzol-B horizon, D) anthropogenic: the soil of the cul-
tivated peatlandsshowing dislocated peat (dark material) and sand (light material) layers
resulting from deep cultivation.

a humic topsoil overlying a C-horizon with gleyic features, are found in hydrologi-
cally intermediate positions between well-drained podzols and poorly-drained peat
soils. Plaggen soils which have a deep (>30 cm) anthropogenic humic topsoil are
found in the open-field complexes. Raw sand soils (arenosols) are found in the drift-
sand complexes. Deep peat soils are found in the centres of the brook valleys. Peat
soils in the cultivated peatlands are marked by their strong human disturbances to a
considerable depth because of deep cultivation and their man-made, sandy topsoil.

4.2.2 Soil profile data

Soil profile data from 2 111 locations situated in the province of Drenthe (Fig. 4.2)
were obtained from BIS. Ninety-one of these are situated in the study area. The re-
maining profile descriptions are situated elsewhere in the province at locations with
similar soil conditions. These profile data were collected during various projects be-
tween 1955 and 2009 that used both purposive (n = 1 492) and probability sampling
designs (n = 619). At each sampling location the soil profile was described, typically
to a depth of 120 to 150 cm, and classified according to the Dutch soil classification
system for detailed soil surveys (ten Cate et al., 1995).

The profile descriptions included the SOM content (in mass%) for most of the hori-
zons, horizon thicknesses (cm) and horizon parent material. Most SOM contents
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Figure 4.2: (A) Location of the study area in Drenthe. The points indicate locations at which
soil profile descriptions are available. The right plot shows the elevation in the study area
(10–22 m above sea level) with the lowest positions in blue and the highest positions in red-
brown. (B) Soil map of the study area. The depicted soil type at each location is the soil type
with the largest probability. P = deep peat soils (organic layer >40 cm), mP = deep peat soils
with mineral surface horizon, PY = shallow peat soils, mPY = shallow peat soils with mineral
surface horizon, BF = brown forest soils, PZ = podzols, ES = hydromorphic earth soils, PS =
plaggen soils, TS = glacial till soils (till is present within 40 cm from the surface), RS = raw
sand soils.

were estimated by hand in the field; approximately 500 soil profiles have partial or
complete laboratory measurements (no distinction was made between these for data
analysis and modelling). In most survey projects hand-estimates of soil properties
are calibrated with laboratory measurements, and consequently it is expected that
use of hand-estimates does not lead to substantial prediction bias when such data is
used for (geostatistical) modelling. Twenty percent of the 11 000 soil horizons in the
dataset missed a value for the SOM content. The SOM content for these horizons,
mainly mineral C-horizons, was obtained from similar horizons in representative
soil profile descriptions (de Vries, 1999).

For this study depth functions of volumetric SOM content (kg m−3) were constructed
and predicted so that these functions can be used to predict SOM stock for a specific
depth interval. SOM content in mass% was therefore converted to volume basis:

CV =
CM
100

ρs , (4.1)

where CV is the SOM content on volume basis (kg m−3), CM is the SOM content
in mass% (kg kg−1*100) and ρs is the bulk density (kg m−3). Bulk densities were
derived from a look-up table where soil bulk density is a step-wise function of par-
ent material (geological deposit), SOM class and position in the profile (topsoil or
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subsoil). The look-up table was compiled by experienced soil surveyors. There is no
information about the accuracy of the bulk density values derived from the look-up
table, but there are no have reasons to assume these would cause bias in the model
results.

4.2.3 Soil map

The soil map is a raster soil map of 25-m resolution that distinguishes ten major soil
types (Fig. 4.2). The soil map is an updated and generalized version of the Drenthe
part of the 1:50 000 national soil map. Soil types are represented through location-
specific probability distributions, as predicted by multinomial logistic regression.
The mapping process is described in detail in Chapter 2.

4.2.4 Environmental covariates

Ten datasets were available from which 26 environmental covariates were derived.
These can be used to improve spatial prediction of the depth function parameters.
Table 4.1 provides an overview of the covariates, including the classes of the cate-
gorical ones. The primary datasets are:

• Digital elevation model (DEM). A 25-m resolution DEM, constructed from LI-
DAR measurements. Three relative elevation grids were derived from the
DEM by subtracting the local mean elevation within search radii of 250, 500,
and 750 m from the elevation at each grid cell. These grids capture local relief.

• Groundwater class map. Finke et al. (2004) constructed a 25-m resolution that
distinguishes eleven groundwater table classes. These were grouped into three
drainage classes: poorly, moderately, and well drained soils.

• Land cover maps. This set contains five grids depicting land cover in 1900 (50
m), 1940 (25 m), 1960 (25 m), 1980 (25 m) and 2003 (25 m) (Clement and Koois-
tra, 2003; Knol et al., 2003, 2004; Hazeu, 2005). The 1900 grid distinguishes ten
classes and was reclassified into a grid with two classes and into a grid with
three classes. The 2003 grid distinguishes 23 classes and was reclassified into
six grids, each with a different combination and number of classes. The 1900,
1940, 1960, 1980 and 2003 grids were combined into a map that represents recla-
mation period. Six grids were derived from the reclamation period map, each
with a different combination and a different number of periods.

• National Soil Map (Steur and Heijink, 1991). The extent of the cultivated peat-
lands was digitized using digital and paper versions of the Drenthe part of the
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1:50 000 soil map. Furthermore, a layer representing mechanical soil distur-
bance was extracted from the attribute data of the map polygons. Both data
layers were converted to grids of 25-m resolution.

• Paleogeography map (Spek, 2004). This 1:50 000 map represents a reconstruction
of the geography of Drenthe around 1000 AD, and distinguishes 12 geograph-
ical units. The map was converted to a grid of 25-m resolution. Three new
grids were extracted from this grid: one with the former extent of fen peat
coverage, one with the former extent of highmoor coverage and one with the
former total extent of peat coverage. Furthermore two grids were created from
combinations of peat types and the extent of cultivated peatlands.

• Geomorphology map (Koomen and Maas, 2004). A 1:50 000 map representing
landform units. The map was converted to a grid of 25-m resolution. A layer
with the extent of the land dunes was extracted from the geomorphology grid.

Table 4.1: List of environmental covariates.

Description Levels Code

Digital elevation model
Relative elev, 250 m - REL250
Relative elev, 500 m - REL500
Relative elev, 750 m - REL750

Groundwater class maps
Drainage condition 1 = poor, 2 = moderate, 3 = well GD

Land cover maps
Land cover 1900, 2 cl 1 = agriculture, 2 = natural LC19002CL
Land cover 1900, 3 cl 1 = grassland, 2 = cropland, 3 = natural LC19003CL

Current land cover, 2 cl 1 = agriculture, 2 = natural COV2CL
Current land cover, 2 cl 1 = highmoor, 2 = other COV2aCL
Current land cover, 3 cl 1 = agriculture, 2 = forest, 3 = rangeland/highmoor COV3CL
Current land cover, 3 cl 1 = grassland, 2 = cropland, 3 = natural COV3aCL
Current land cover, 4 cl 1 = agriculture, 2 = forest, 3 = rangeland, 4 = highmoor COV4CL
Current land cover, 4 cl 1 = grassland, 2 = cropland, 3 = forest,

4 = rangeland/highmoor COV4aCL
Current land cover, 5 cl 1 = grassland, 2 = cropland, 3 = forest,

4 = rangeland, 5 = highmoor COV5CL

Reclamation period, 2 cl 1 = <1940, 2 = >1940 RECLAM2CL
Reclamation period, 3 cl 1 = <1940, 2 = 1940-2003, 3 = >2003 RECLAM3CL
Reclamation period, 3 cl 1 = <1940, 2 = 1940-1980, 3 = >1980 RECLAM3aCL
Reclamation period, 3 cl 1 = <1900, 2 = 1900-1940, 3 = >1940 RECLAM3bCL
Reclamation period, 4 cl 1 = <1900, 2 = 1900-1940, 3 = >1940-2003, 4 = >2003 RECLAM4CL
Reclamation period, 6 cl 1 = <1900, 2 = 1900-1940, 3 = >1940-1960

4 = 1960-1980 5 = 1980-2003 6 = >2003 RECLAM6CL

Soil map, (scale 1:50 000)
Peat-colonial landscape 1 = Yes, 0 = No PEATCOL
Disturbed soils 1 = Yes, 0 = No DISTURBED

Paleogeography map
Former fenpeat coverage 1 = Yes, 0 = No FENPEAT
Former highmoor coverage 1 = Yes, 0 = No HIGHMOOR
Former peat coverage 1 = Yes, 0 = No PEAT

Paleogeography & Soil maps
Peatlands geography 1 = Peat-colonies, 2 = Highmoor, non peat-colonial,

3 = other PEATGEO
Former highmoor, non peat-colonial 1 = Yes, 0 = No MOOROUTPEATCOL

Geomorphology map
Land dunes 1 = Yes, 0 = No DUNES
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4.2.5 Defining the depth functions

Depth function structure and parameters

For each of the ten soil types in the study area a depth function structure was defined
that describes the depth distribution of SOM based on a conceptual model of pedo-
genesis, explained below. Each soil type-specific depth function is constructed from
building blocks, hereafter referred to as ‘model horizons’. Based on the pedological
model, it was assumed that five different model horizons were needed to define the
structures of the SOM depth profiles of the soil types in the study area:

1. organic topsoil horizon with constant SOM over depth.
2. mineral topsoil horizon with constant SOM over depth.
3. organic subsurface horizon with constant SOM over depth.
4. mineral subsurface horizon with constant SOM over depth.
5. horizon with SOM exponentially decreasing over depth.

Note that these model horizons share similarities with functional layers or units, i.e.
pedogenic horizons with comparable soil properties (Finke et al., 1992; Cosandey
et al., 2003).

For each soil type a depth function structure was obtained by stacking a subset of
model horizons. The stacking order of the model horizons is fixed and follows the
above order. For example model horizon 1 is always on top of 3 and model horizon
five is always the last horizon in the stack. In addition, only a single topsoil horizon
is allowed. Each model horizon has two associated parameters that characterize the
depth distribution of SOM. This means that the SOM depth profiles of the ten soil
types in the study area can be modelled with ten unique parameters. For model
horizons 1 to 4 these parameters are SOM content (kg m−3) which shall be denoted
as Ci and thickness (m) which shall be denoted as di. Here i indicates the model
horizon. The SOM content in model horizon 5 is modelled by a negative exponential
depth function with parameters Ca and k:

CV (z∗) = Ca exp(−kz∗) , (4.2)

where CV (z∗) is the SOM content volume basis (kg m−3), z∗ is the depth from the
top of the model horizon (m), Ca is the SOM content at the top of the model hori-
zon, k (m−1) is the rate of SOM decrease with depth. The depth function for a soil
type can then be constructed using the depth function structure and the associated
parameters.
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Pedological models for soil type-specific depth functions

The soil type-specific depth function structures—the stacking order of the model
horizons—are based on expert knowledge on the depth profiles of SOM of the soils
in the study area:

• Deep peat soil P generally has a well-decomposed organic topsoil (model hori-
zon 1) overlaying a less-decomposed organic horizon that has a higher SOM
content (model horizon 3) than the topsoil. When mineral material is encoun-
tered within observation depth then the transition from organic to mineral ma-
terial is sharp. SOM content in the mineral subsoil decreases with depth. The
soil horizons in the mineral subsoil make up model horizon 5. The organic top-
soil with decomposed material can be absent in areas under natural vegetation
(d1 = 0). For soil type P the SOM depth profile can be modelled by stacking
model horizons (1), 3 and 5.

• The SOM depth profile of soil type mP is similar to that of soil type P, only the
topsoil is mineral instead of organic and is always present. The depth profile
can be modelled by stacking model horizons 2, 3 and 5.

• The SOM depth profile of shallow peat soil PY can be modelled with the same
model horizon sequence as P, although the organic subsoil is often absent (d3 =

0).

• The SOM depth profile of soil type mPY is similar to that of soil type mP but
with a thinner organic subsoil. The mineral subsoil is always present within
observation depth. The depth profile can be modelled by stacking model hori-
zons 2, 3 and 5. Soil types mP and mPY are characteristic of the cultivated peat-
lands. Deep cultivation of these soils after reclamation often dislocated sand
and peat layers in the subsoil (Fig. 4.1d). Inclusions of irregular sand bodies
in the predominantly organic subsoil are therefore common. To keep the mod-
elling of the depth functions straightforward these inclusions were considered
part of model horizon 3.

• Soil type PS is characterized by a humic topsoil 30–50 cm thick. Generally
one or two A-horizons are distinguished within the topsoil: the Aap-horizon,
which is the ploughed anthropogenic surface horizon (30–35 cm deep), and
the Aa-horizon, which is a buried anthropogenic A-horizon. In the conceptual
depth function model the former is regarded as model horizon 2, while the
latter is regarded as model horizon 4. Below the plaggen layer remains of a
podzol (without the E-horizon) or brown forest soil are found, the soil horizons
of which make up model horizon 5.

• The SOM depth profile of soil types BF, PZ, ES and TS can be modelled by
stacking model horizons 2 and 5. It is assumed that each has a mineral topsoil
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with a constant SOM depth profile regardless the land use. Soil under agricul-
ture have a constant SOM because of long-term cultivation. Soils under forest
were ploughed before afforestation in the early 20th century. These soils are
characterized by a disturbed, heterogeneous topsoil, of which the SOM profile
can best be modelled with a constant. Soils under heath virtually lack an A-
horizon. The topsoil typically is classified as AE or Eh. Also for these topsoils a
constant SOM profile was assumed. Subsoil morphology of podzols (PZ) and
brown forest soils (BF) is characterized by soil horizon sequence Bh or Bw–
BC–C, which has a decreasing SOM profile. The podzol E-horizon is absent
in cultivated soils. Most soils under forest also lack an E-horizon because the
original E material is often incorporated in the topsoil; mixed with A and B
material. The hydromorphic earth soils (ES) and till soils (TS) lack a B-horizon.
Their subsoil horizon sequence generally is AC–C with a gradually decreas-
ing SOM profile. The subsoil SOM depth profile in soil types BF, PZ, ES and
TS was therefore modelled with an exponential decay function. The subsoil
horizons in these soils will be allocated to the model horizon 5 building block.

• Soil type RS is mainly found in the drift-sand complexes. In this highly dy-
namic environment the material of the original podzols was blown out and
redeposited in the surroundings. The land dunes were afforested with pine in
the early 20th century. Once the material was kept in place by vegetation, soil
forming processes could start again. Initial signs of soil formation, if present,
can now be observed within 5–15 cm from the soil surface. These signs in-
clude a shallow Ah, AE or AC horizon or a very shallow podzol profile (<15
cm thick). In this study these layers were regarded as topsoil layers and were
modelled by model horizon 2. Subsoil morphology is extremely heterogeneous
as a result of the aeolian processes that created the drift-sand complexes. The
soils can contain layers of humus-poor drift sand, podzolic horizons, buried A-
horizons, glacial till and peat remains. The occurrence of these layers and their
thickness is spatially (both lateral and vertical) highly variable. It is far beyond
the potential of the propopsed method to model this variation. A simple and
pragmatic solution is to model the SOM depth profile in the subsoil of soil type
RS with a constant (model horizon 4).

4.2.6 Mapping the depth functions

This section describes the methodological framework for mapping the soil type-
specific depth functions of SOM. A flowchart summarizing the mapping process is
presented in Fig. 4.3.
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Soil profile descriptions

Assign model horizon (MH) code to soil horizons / Merge in each 

profile consecutive individual soil horizons with MH codes 1-4

(2.4.1) 

Transformed soil profile descriptions

Depth distribution parameters at 

each observation site

Universal (co)kriging models

Select environmental covariates using OLS-regression. Estimate 

parameters of the universal (co)kriging models: 1 model for each 

depth function parameter. (2.4.3)

Predicted depth function parameters

Predict each parameter for each soil 

type at each location (2.4.4)

Pedometric soil type map

Soil type-specific depth 

function structures

Soil type-specific depth functions at 

each prediction site

 Construct depth functions using soil type-

specific depth function structure and 

predicted parameters(2.4.4)

Probability distribution of soil type-

specific depth functions

MH 1-4: Derive depth distribution parameters Ci and di

MH 5: Fit exponential decay function to estimate Ca and k

(2.4.2)

Figure 4.3: Methodological flowchart.

Allocating soil horizons to model horizons

The soil profile dataset contained 2 111 profile descriptions with almost 11 000 soil
horizons. In total 230 unique horizon codes were used to classify the soil horizons
based on morphogenetic properties. In order to facilitate allocating soil horizons
to model horizons, the soil horizons were recoded into twelve master soil horizons
(Table 4.2). A model horizon number was then attributed to each soil horizon in the
dataset based on master soil horizon code and geological deposit. This process was
guided by expert decisions.
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Table 4.2: Master soil horizon classes used to transform soil horizons to model horizons.

Soil horizon Description

A1 Organic topsoil
A2 Mineral, humic topsoil
A3 Anthropogenic, humic soil horizon
Ab Buried A-horizon
AT Transition horizon: AE or AC
E Eluviation horizon
Bs Illuvial horizon with SOM accumulation
BC Transition horizon
C1 Parent material layer: peat
C2 Parent material layer: sand, till
MM Mixed mineral material (A,B,E,C2)
MO Mixed mineral, organic material (A,B,E,C1)

Allocating soil horizons to model horizons may result in model horizons that con-
sisted of multiple soil horizons. For model horizons 1 to 4 that consisted of several
consecutive soil horizons, the average SOM content was computed as a thickness-
weighted average of the SOM contents of the individual soil horizons. To obtain the
thickness of a model horizon the thicknesses of the individual soil horizons were
simply summed. The individual soil horizons that make up model horizon 5 were
retained as the SOM contents of the individual soil horizons are required to fit the
exponential decay function.

Deriving the depth function parameters of model horizons

The parameters SOM content and thickness, Ci and di, of model horizons 1 to 4 were
directly derived from the transformed soil profile descriptions. The parameters Ca
and k of model horizon 5 were estimated by fitting the exponential function Eq. 4.2
to the individual soil horizons that make up model horizon 5, using non-linear least
squares.

The parameters Ca and k were fitted by minimizing the sum of squared differences
between the observed and predicted SOM stocks of individual soil horizons within
the model horizon:

O =
n∑
i=1

[(
Ca
k

[exp(−kz∗Li)− exp(−kz∗Ui)])− CIi]2 , (4.3)

where z∗Li is the depth of the lower boundary of soil horizon i in a soil profile with
respect to the top of the model horizon, n is the number of soil horizons within
the model horizon, z∗Ui is the depth of the upper boundary soil horizon i with re-
spect to the top of the model horizon, and CIi is the observed SOM stock of hori-
zon i. Note that this approach has similarities with the equal-area smoothing spline
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(Bishop et al., 1999; Ponce-Hernandez et al., 1986) where for each sample layer (hori-
zon) the area to the left of the fitted spline is equal to the area to the right of the fitted
spline so that the spline represents the average value of the soil property for each
sample layer. But unlike the spline, minimizing Eq. 4.3 does not always guarantee
mass-conservation. Nevertheless, it has better mass-conserving properties than a de-
cay function fitted to the mid-points of the soil horizons. Also note that at least three
observations of SOM within a model horizon 5 building block are required to fit the
decay function. Soil profiles in the dataset with a model horizon 5 building block that
comprises less than three soil horizons were not used to estimate and interpolate the
decay parameters of this horizon.

Selecting environmental covariates and calibrating the geostatistical models

The aim is to map soil-type specific depth functions of SOM. So far a model horizon
sequence was defined for each soil type in the study area, the parameters were de-
fined that describe the SOM depth profiles and the values of these parameters were
derived from soil profile descriptions at point locations. The next step is to predict
the depth function parameters at the nodes of a 25-m grid that covers the study area.
For each depth function parameter one spatial model was defined, using observed
soil type at the point locations as one of the covariates in the model because param-
eter values are expected to differ between soil types.

For each depth function parameter a set of environmental covariates was selected
using ordinary-least-squares (OLS) regression and the Akaike Information Criterion
(Webster and McBratney, 1989) as a selection criterion. Interactions between covari-
ates were not included to keep the models simple. The depth function parameters
were predicted by universal kriging with variance models estimated by residual
maximum likelihood. A detailed description of this method can be found in Lark
et al. (2006) and Lark and Webster (2006). Correlated depth function parameters
were interpolated using universal co-kriging with auto- and cross-covariance mod-
els estimated by the methods-of-moments estimator. Profile descriptions of peat soils
dating before 1993 were not used for covariate selection and spatial interpolation of
the parameters of organic model horizons 1 and 3 in order to avoid a possible bias in
the predictions because of changes in SOM content over time.

Mapping the depth function parameters

As explained above, observed soil type (considered to be the true soil type) was
used as covariate in the the universal (co)kriging models of the depth function pa-
rameters. This implies that actual soil type at unsampled locations is required for
prediction (Chapter 3). Actual soil type, however, is unknown at these locations but
can be represented with a probability model. In this case the probability model is
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the digital soil type map: at each location—a 25-m pixel—it provides a probability
distribution of ten soil types. This implies that at each prediction location the depth
function parameters of all model horizons of the soil types with a probability greater
than zero must be predicted. From the predicted soil type-specific parameters and
the soil type-specific depth function structures the depth function of SOM can be
reconstructed for each soil type at each prediction location. By combining the soil
type-specific depth functions with the probability distributions from the soil map
a probability distribution of depth functions was obtained for each location in the
study area.

4.2.7 Application and validation of the depth functions

Mapping SOM stocks

The probability distributions of depth functions can be used to generate a variety of
maps of which the SOM stock for a specific depth interval is the most obvious one.
Malone et al. (2009) provide illustrated examples of the use of SOC and available
water capacity depth functions to answer three scenario-based queries.

For the purpose of validation the soil-type specific depth functions were used to
compute the SOM stock (in kg m−2) for depth intervals 0–30 cm, 30-60 cm, 60–90
cm and 0–90 cm by integrating the predicted depth functions for these layers. This
results in four soil type-specific SOM stocks at each prediction location. The SOM
stock for a pixel is then predicted by :

CI(s) =
K∑
k=1

pk(s)CIk(s) , (4.4)

where CI(s) is the SOM stock at location s, pk(s) is the probability of occurrence of
soil type k, k = 1, 2, . . . ,K, and CIk(s) is the computed SOM stock for a user-defined
depth interval for soil type k. The predicted SOM stocks at the four depth intervals
were compared with measured SOM stocks at validation locations.

Sampling for validation

The predicted SOM stocks were validated with data from an independent stratified
simple random sample (Brus et al., 2011). The strata were three landforms: brookval-
leys, coversand ridges and coversand plains, which were manually delineated from
the DEM. These strata were used to improve the spreading of the sample locations
over the study area. A total of 50 locations were allocated to the strata proportionate
to their surface areas. Locations where permission was denied or proved otherwise
impossible to sample were replaced with locations from a reserve list. The locations
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were sampled in May 2008. At each location an auger bore was made, the soil profile
was described and classified and soil samples were taken at depths: 0–30 cm, 30–60
cm, and 60–90 cm.

The samples were oven-dried at 103° C for 6 h, and then sieved and crushed. The
SOM content (in mass%) of a dry sample was determined with the weight loss-on-
ignition method. The samples were combusted at 550° C for 3 h. The SOM content
was determined from the weight difference before and after combustion. The mea-
sured SOM content on mass basis was converted to volume basis by multiplying
with the bulk density of the soil layer. For this bulk density values were assigned
to each soil horizon in the soil profile using the same look-up table that was used
for assigning bulk density values to the soil horizons in the calibration dataset. If a
validation layer was composed of more than one soil horizon then a depth-weighted
average of the bulk density was computed from the bulk densities of the individual
soil horizons. The SOM stock was computed by multiplying the volumetric SOM
content with the thickness of the sampled soil layer. Total SOM in the 0–90-cm layer
was computed by adding the SOM stocks of the three individual layers.

Statistical inference

Two validation indices were computed from the observed and predicted SOM stocks
at the three depth intervals at the 50 validation locations. These were: the mean
error (ME), which is a measure for the bias of the predictions and the root mean
squared error (RMSE), which is a measure for the accuracy of the predictions. The
global mean of a validation index is estimated from a stratified random sample by
(de Gruijter et al., 2006):

ˆ̄y =

H∑
h=1

ah ˆ̄yh , (4.5)

where ah is the relative area of stratum h, h = 1, 2, . . . ,H , and ˆ̄yh is the sample mean
of the validation index of stratum h. The stratum sample mean is estimated by:

ˆ̄yh =
1

nh

nh∑
i=1

yhi , (4.6)

where yhi is the value of the validation index at sampling location i in stratum h, and
nh is the number of sampling locations in stratum h. For the ME yhi is computed as:

yhi = ĈIhi − CIhi , (4.7)

and for the MSE as:
yhi = [ĈIhi − CIhi]2 , (4.8)
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where ĈIhi is the predicted SOM stock at sampling location i in stratum h, and CIhi
is the measured SOM stock. The RMSE is computed as the square root of ˆ̄yMSE . The
sampling variance of the mean of the validation index is estimated by (de Gruijter
et al., 2006):

V̂ (ˆ̄y) =
H∑
h=1

a2hV̂ (ˆ̄yh) , (4.9)

where V̂ (ˆ̄yh) is the sampling variance of the stratum mean ˆ̄yh, which is estimated by:

V̂ (ˆ̄yh) =
1

nh − 1

nh∑
i=1

(yhi − ˆ̄yh)2 . (4.10)

4.3 Results

4.3.1 Soil type-specific depth function structures

Table 4.3 presents the model horizon stacks that define the SOM depth function
structures of the ten soil types in the study area. It shows that for each soil type
two or three model horizons were used. Note that some soil types have the same
depth function structure. Soil type-specific depth function were constructed using
the soil type-specific depth function structures and the associated parameters (Table
4.3). For instance, the depth function for soil type mP is given by:

CV (z) =


C2 for z ≤ d2
C3 for d2 < z ≤ d2 + d3
Ca exp(−k[z − (d2 + d3)]) else ,

(4.11)

where CV (z) is the SOM content (kg m−3) at depth z from the soil surface, C2, C3,
d2, d3 are the SOM contents and depths of model horizons 2 and 3, and Ca and k

are the parameters of the exponential decay function. In total six parameters are
required to model the depth distribution of SOM for soil type mP. Similar functions
were constructed for the other nine soil types.

4.3.2 Transforming soil profile descriptions

Table 4.4 shows some illustrative examples of allocating master soil horizons (Table
4.2) to model horizons. Table 4.5 shows the transformed soil profile descriptions pre-
sented in Table 4.4 after recalculation of the SOM content and thickness for model
horizons 1 to 4 that comprised multiple, consecutive soil horizons. Now the param-
eters of model horizons 1 to 4 can be directly derived from the profile descriptions.
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Table 4.3: Model horizon sequence used to define the structure of the soil type-specific depth
functions of SOM and the associated parameters that describe the functions.

Soil type* Model horizon Depth function parameters
1 2 3 4 5

P x x x C1, d1, C3, d3, Ca, k
mP x x x C2, d2, C3, d3, Ca, k
PY x x x C1, d1, C3, d3, Ca, k
mPY x x x C2, d2, C3, d3, Ca, k
BF x x C2, d2, Ca, k
PZ x x C2, d2, Ca, k
ES x x C2, d2, Ca, k
PS x x x C2, d2, C4, d4, Ca, k
TS x x C2, d2, Ca, k
RS x x C2, d2, C4, d4

* P = deep peat soils, mP = deep peat soils with mineral surface horizon, PY = shallow peat soils, mPY
= shallow peat soils with mineral surface horizon, BF = brown forest soils, PZ = podzols, ES = earth
soils, PS = plaggen soils, TS = glacial till soils, RS = raw sand soils.

The five soil horizons that make up model horizon 5 of profile 1 in Table 4.5 were
used to fit the Ca and k parameters of the exponential decay function for this pro-
file. The parameters of this model horizon in the other soil profile descriptions were
fitted likewise.

4.3.3 Deriving the depth function parameters

The parameters of the exponential decay function were estimated for each model
horizon 5 building block in the dataset by minimizing Eq. 4.3. To evaluate the pre-
dictive capability of the decay functions, each function was used to predict the SOM
stock of the model horizon 5 building block for which it was fitted. The predicted
stock was then compared to the stock computed from the soil horizons that make
up the building block; see for example profile 3 in Table 4.5. Fig. 4.4 (left panel)
shows a scatter plot with predicted versus observed stocks (R2 = 0.98). Each point
represents a model horizon 5 building block in the soil profile dataset. The ME of the
predicted stocks is -0.5 kg m−2 and the RMSE is 2.1 kg m−2. This is a considerable
improvement—less bias and larger accuracy—compared to the results one would
obtain from an exponential function fitted to SOM contents (kg m−3) assigned to the
midpoints of the soil horizons: Fig. 4.4 (right panel), R2 = 0.91, ME = 1.2 kg m−2,
RMSE = 6.2 kg m−2.

Fig. 4.5 displays boxplots of the ten depth function parameters and Table 4.6 lists
the soil type parameter means. These results show that the depth function parame-
ter values and their spreads differ between soil types, even when the functions are
modelled with identical model horizon sequences. This is what one would expect
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since different environments in which the soils formed result in different parame-
ter values. For instance, the large values for the C2 parameter of soil types mP and
mPY are a result of yearly mixture of some subsoil peat through the topsoil dur-
ing ploughing. The intermediate values for soil types ES and PS are an effect of
poor drainage (ES), which results in less favourable conditions for SOM decompo-
sition, and the centuries long application of a SOM-rich mixture of sheep manure
and heath sods that resulted in the formation of plaggen soils (PS). The parameters
in each model horizon sequence were checked for mutual correlations. The decay
function parameters Ca and k were correlated (r = 0.60). The other parameters were
mutually uncorrelated.

Table 4.4: Six examples of allocating model horizons to soil horizons.

Depth Horizon Master SOM Model Depth Horizon Master SOM Model
(cm) horizon (kg m−3 ) horizon (cm) horizon (kg m−3 ) horizon

1. PZ - cultivated peatlandsa 2. PZ - forest
0–20 Ap A3 138 2 0–2 Che C2 14 2
20–30 Cw C1 200 5 2–50 A/B/E MM 47 5
30–45 Eu E 77 5 50–60 Bhs Bs 16 5
45–65 Bhe Bh 54 5 60–100 Cu1 C2 5 5
65–90 BCe BC 16 5 100–200 Cu2 C2 3 5
90–150 Ce C2 5 5

3. mP - cultivated peatlands 4. mP - cultivated peatlandsb

0–20 Ap A3 42 2 0–25 A3 A2 70 2
20–55 Cw1 C1 225 3 25–50 Cu C1 280 3
55–60 Cw2 C1 88 3 50–70 Ce C2 30 3
60–65 Ahb Ab 83 5 70–110 Cu C1 298 3
65–75 Bhe Bs 65 5 110–135 Cer C2 5 5
75–85 BCe BC 8 5 135–150 Cr C2 5 5
85–140 Ce1 C2 5 5
140–180 Ce2 C2 0 5

5. P - highmoor areac 6. RS - drift-sand complexd

0–12 Cu1 C1 225 3 0–3 Cem C2 7 2
12–30 Cu2 C1 180 3 3–30 Cbm C2 17 2
30–86 Cr1 C1 180 3 30–60 Cg C2 8 4
86–140 Cr2 C1 228 3 60–65 Cu C1 120 4
140–150 Cr C2 31 5 65–90 Cgr C2 25 4

90–110 Cr C1 245 4
110–120 Eub E 23 4
120–140 Bhb Bs 186 4
140–155 Bhe Bs 78 4
155–200 Ce C2 0 4

a Soils classified as PZ (podzol) in the cultivated peatlands sometimes have peat remains
between the sandy topsoil and podzolic subsoil. Such layer was considered a part of model
horizon 5.

b Deep peat soil with mineral topsoil which has a sandy layer (50–70 cm) in the peat layer
because of deep cultivation. Such inclusion is considered part of model horizon 3.

c Peat soil in a highmoor area. Here the A1 topsoil (well-decomposed organic horizon) is
absent. The value of depth function parameter d1 is 0 for this profile.

d Raw sand soil from a drift-sand complex. This profile shows the heterogeneity of the
subsoil. The first two horizons are regarded as the topsoil (model horizon 2) based on
morphology: there is formation of a micro-podzol in the drift sand indicated by the suffix
‘m’ in the horizon code. The third horizon is unaltered drift sand that overlays a shallow
organic horizon (C1), possibly an old forest floor. Below this horizon another horizon with
unaltered drift sand is found. At the bottom of the profile another organic horizon (C1) is
found that overlays an elluvial horizon that is part of the original podzol profile that was
found at the soil surface.
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4.3. Results

Table 4.5: Transformed soil profile descriptions from Table 4.4. Descriptions like these were
used to derive the parameters of depth functions.

Depth Model SOM Depth Model SOM
(cm) horizon (kg m−3 ) (cm) horizon (kg m−3 )

1. PZ - cultivated peatlands 2. PZ - forest
0–20 2 138 0–2 2 14
20–30 5 200 2–50 5 47
30–45 5 77 50–60 5 16
45–65 5 54 60–100 5 5
65–90 5 16 100–200 5 3
90–150 5 5

3. mP - cultivated peatlands 4. mP - cultivated peatlands
0–20 2 42 0–25 2 70
20–60 3 208 25–110 3 229
60–65 5 83 110–135 5 5
65–75 5 65 135–150 5 5
75–85 5 8
85–140 5 5
140–180 5 0

5. P - highmoor area 6. RS - drift-sand complex
0–140 3 202 0–30 2 16
140–150 5 31 30–120 4 73
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Figure 4.4: Observed and exponential decay function fitted SOM stock at the data locations.

Some attention should be given to model horizon 4, which is used as building block
in the depth function of soil types PS (plaggen soils) and RS (raw sand soils). For soil
type PS the model horizon 4 building block is used to model the SOM depth profile
of buried A-horizons and for soil type RS the extremely heterogeneous subsoil (see
section 4.2.5). Consequently, the soil horizons that comprise this building block are
morphologically very different (contrary to the soil horizons in other model horizon
building blocks). This has implications for the mapping of the depth function pa-
rameters of the model horizon 4 building block. Because of the highly contrasting
landscapes in which soils RS (drift-sand complexes) and PS (agricultural, open-field
complexes) occur and the differences in soil forming processes it is likely that the
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Figure 4.5: Boxplots of the soil type-specific distributions of the ten depth function parame-
ters.
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Table 4.6: Soil type means of the parameters of the depth function. Parameters Ci and di
are the SOM content (kg m−3) and depth (cm) of model horizon i, and Ca (kg m−3) and k
(m−1) are the parameters of the exponential decay function. The number between brackets is
the number of data used to compute the associated mean, and n is the total number of data on
the depth function parameters in the dataset.

Model Parameter n Soil type
horizon P mP PY mPY BF PZ ES PS TS RS

1 C1 252 289(171) 165(81)
d1 272 15(191) 22(81)

2 C2 1777 96(161) 95(364) 65(33) 79(770) 89(183) 86(107) 78(11) 26(148)
d2 1777 26(161) 27(364) 23(33) 24(770) 26(183) 30(107) 17(11) 12(148)

3 C3 741 187(190) 190(161) 183(26) 166(364)
d3 797 95(191) 74(161) 5(81) 26(364)

4 C4 228 66(71) 18(157)
d4 107 15(107)

5 Ca 1473 111(58) 106(49) 85(74) 85(285) 39(31) 84(731) 69(142) 58(98) 73(5)
k 1473 6.5(58) 8.0(49) 4.9(74) 4.8(285) 3.1(31) 4.1(731) 5.0(142) 3.9(98) 7.6(5)

spatial distribution of the depth function parameters is controlled by different fac-
tors and processes. These soils therefore require different sets of covariates for spatial
prediction. Furthermore, the assumption that the depth function parameters of the
model horizon 4 building block of soil type PS are spatially correlated with those
of soil type RS seems implausible from a pedologic point of view. Also, the spatial
dependency structure of depth function parameters will likely be very different be-
tween the two soil types. Therefore, it was decided to use soil type-specific models
for spatial prediction of the depth function parameters of model horizon 4, instead
of defining one geostatistical model for each parameter in which soil type is used as
covariate like what is done for the other model horizons.

The thickness parameter d4 of the depth function for soil type RS has no pedolog-
ically defined boundary: it is the remaining depth of the profile below the topsoil.
This parameter was therefore not spatially predicted but computed as 120 cm minus
the predicted thickness of the overlying model horizon 2. This implies that horizon
data up to a depth of 120 cm were used to compute the SOM content parameter C4

for soil type RS (see profile 6 in Tables 4.4 and 4.5).

4.3.4 Selection of environmental covariates and geostatistical mod-
elling

Ten unique depth function parameters model the SOM depth profiles of the ten soil
types in the study area. A geostatistical model was constructed for each of the pa-
rameters of model horizons 1, 2, 3, and 5. The two parameters of model horizon
4 were modelled separately for soil types that use this horizon as depth function
building block.

Table 4.7 shows for each depth function parameter the environmental covariates that
were selected in the OLS regression models. The residuals of the regression models

101
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Table 4.7: Environmental covariates used in the regression models for the parameters of the
model horizons. The R2 is the adjusted coefficient of determination of the regression model,
and n is the number of data used for model selection and spatial prediction.

Model horizon Parameter n R2 Covariates

1 C1 252 0.68 SOILTYPE+COV5CL+RECLAM2CL
d1 272 0.52 COV5CL+LC19003CL+MOOROUTPEATCOL

2 C2 1777 0.35 SOILTYPE+LC19003CL+PEATCOL+DISTURBED+RECLAM3CL
d2 1777 0.27 SOILTYPE+COV4CL+DISTURBED+DUNES+PEATCOL

3 C3 741 0.09 SOILTYPE+COV4CL+RECLAM2CL
d3 797 0.64 SOILTYPE+RECLAM3CL+MOOROUTPEATCOL

4 (PS) C4ps 71 0.18 GD+PEATCOL
d4ps 107 0.12 COV2CL

4 (S) C4s 157 0.17 DISTURBED+PEAT+PEATCOL
d4s - - Not modelled with covariates but computed as 120− d̂2s

5 log(Ca) 1473 0.09 SOILTYPE+PEATLAND+RECLAM4CL+GD
log(k) 1473 0.06 SOILTYPE+COV2CL+RECLAM3bCL+GD+FENPEAT+REL250

for parameters Ca and k showed strong positive skew. The raw data values were
transformed to natural logarithms and regression models were fitted again to the
transformed data values. The residuals of the other parameters were weakly or
mildly skewed and were kept on their original scale. The correlation between the
covariates and parameters of the topsoil model horizons (1 and 2) was generally
much stronger than that between the covariates and parameters of the subsurface
horizons (3, 4 and 5) with the exception of the depth parameter of model horizon
3. Land cover and reclamation period were found to be strong predicting covariates
for most depth function parameters. Also geographical covariates such as the cul-
tivated peatlands and the former highmoor areas outside the current peat colonial
landscape proved to be strong predictors. Soil type was a significant covariate for all
parameters of model horizons 1, 2, 3, and 5, except parameter d1. Here the effect of
soil type is accounted for by the other covariates.

The parameters Ci and di were spatially predicted using universal kriging with a
variance model estimated by residual maximum likelihood, while the correlated log-
transformed parameters Ca and k were predicted using universal co-kriging with a
linear model of co-regionalization estimated by the method-of-moments estimator.
The trend models included the covariates that were selected by OLS-regression. In
total nine universal kriging models and one universal co-kriging model were con-
structed for spatial interpolation of the depth function parameters. Table 4.8 presents
results for parameter estimates of the variance models for each depth function pa-
rameter. Autocorrelation of the residuals is relatively strong for parameters C1, d1,
C2, C4ps, C4s; with 40 to 90% of the residual variance spatially structured at short to
medium distances. The selected covariates for parameter d3 explained a large part of
the observed variance in the data. The weak autocorrelation of the residuals of this
parameter indicates that the important predictors were included in the trend model.
The variogram of parameter C3 is almost pure nugget. The covariates in the trend
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Table 4.8: Parameter estimates of the variance models of the depth function parameters.
Parameters Ci and di are estimated by REML and Ca and k by the method-of-moments
estimator using a linear model of co-regionalization.

Model horizon Parameter Model type Variance aa (m) Spatial dependenceb

1 C1 Sph 3864 2855 0.44
d1 Sph 45.6 4374 0.41

2 C2 Exp 859 903 0.53
d2 Sph 59.3 3645 0.14

3 C3 Sph 1380 272 0.07
d3 Sph 685 2731 0.27

4 (PS) C4ps Sph 527 2881 0.77
d4ps Sph 214 867 0.91

4 (S) C4s Exp 403 537 0.59
5 log(Ca) Sph 1.01 10000 0.02

log(k) 0.39 0.14
log(Ca)*log(k) 0.04 0.00

a Distance parameter of the exponential model (practical range is 3a) and range of the spherical model
b The spatial dependence is the ratio between spatially structured variance and total variance [partial

sill/(nugget+partial sill)](Lark and Cullis, 2004).

model explained only a very small part of the observed variance. This indicates that
most of the variation in the data is spatially unstructured and cannot be predicted
by geostatistical methods. This is not surprising given the source of the data on
model horizon C3. Roughly 70% of the data was derived from soil profile descrip-
tions from soils in the cultivated peatlands. Here the SOM content of the organic
horizon in the subsoil is very heterogeneous both laterally and vertically because of
strong anthropogenic disturbance as explained in section 4.3.1 and shown by Fig.
4.1d. The auto-variogram of the residuals of the log-transformed Ca parameter and
the cross-variogram of the log-transformed Ca and k parameters were pure nugget
variograms.

4.3.5 Spatial prediction of the depth functions

The universal (co)kriging models were used to predict soil type-specific depth func-
tion parameters, which was accomplished by applying the universal kriging model
for prediction of a given parameter as many times as there are soil types whose
depth distribution is partly described with this parameter. For instance, the univer-
sal kriging model of parameter C1 was applied twice: once given the soil type at
each prediction location is P and once given the soil type is PY. In this way, a total of
50 soil-type specific parameters were predicted at each location: 25 soil type-model
horizon combinations (Table 4.3) times two parameters per combination. With the 50
predicted parameters and the soil type-specific depth function structures, the depth
function was reconstructed for each of the ten soil types at each prediction location
in the study area. Each of the ten depth functions at each location has an associated
probability, which was derived from the digital soil type map.
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Figure 4.6: Predicted depth functions for soil types with positive probability at one location.

As an example, Fig. 4.6 shows the depth functions for six soil types at one location in
the study area with the associated probabilities and predicted depth function param-
eters. Four peat soils (P, mP, PY and mPY) and two mineral soils (ES and PZ) have
a probability greater than zero at this location. The predicted depth functions are as
one would expect on the basis of knowledge on the profile morphology of these soils.
The topsoil SOM content (C1) of deep peat soil P is larger than that of the subsurface
organic layer (C3) which can be explained by the larger bulk density of the former.
The very shallow subsurface organic layer in shallow peat soil PY is a modelling arti-
fact in this example, and will generally not be distinguished from the topsoil horizon
in the field. The mineral soils ES (hydromorphic earth soils) and PZ (podzols) differ
in topsoil SOM content (C2) and the SOM content in the upper part of the subsoil.
Topsoil SOM is larger for the earth soil than for the podzol, which is explained by the
generally wetter conditions under which the former occurs. The larger SOM content
in the upper subsoil of the podzol compared to the earth soil, is explained by SOM
accumulation in the podzol-B horizon, which slowly decreases with depth. The earth
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soil lacks this horizon. Instead, it often has an AC-transition horizon at this location
in the profile, which has a lower SOM content than the podzol-B horizon.

4.3.6 Application and validation of the depth functions

Mapping SOM stocks

Fig. 4.7 shows the predicted SOM stocks for the four depth intervals. The spatial
pattern of SOM is clearly controlled by the soil type with the largest probability at
a prediction location (Fig. 4.2B). The largest stocks are found in the brook valleys
where peat soils prevail. Other areas with large SOM stocks are in the northwest
and southwest corners. These areas were once covered with peat and peat remains
can still be found in the soils. The SOM stock for the 30–60-cm layer is the most
variable. This is explained by the profile morphology of the soils. Within the mineral
soil group the soil profiles differ most around this depth: podzols typically have the
podzol-B horizon at this depth, brown forest soils a brown B-horizon containing
some moder humus, earth soils an AC- or C-horizon, plaggen soils a dark, buried
A-horizon and raw sand soils a C-horizon. It is therefore not surprising that at this
depth interval the spatial variation is largest. Also within the peat soil group this
is the depth with the largest between-profile variation. Soils P and mP generally
have peat around this depth, soil PY mineral material and soil mPY can have peat
or mineral material. The topsoil of the mineral soils is much more homogenous
than the subsoil as a result of intensive land use (regular tillage and organic manure
application). This results in small between-soil type variation; especially for the most
common mineral soils in the study area, which are the podzol, earth soil and plaggen
soil (see Table 4.6). Furthermore, most mineral soils will have (sandy) C-material
below 60 cm depth. SOM contents will therefore vary little between these soils at
depths exceeding 60 cm.

The average mapped SOM stock in the soils in the study area for the 0–30-cm layer
is 28 kg m−2; for the 30–60-cm layer, 18 kg m−2 and for the 60–90-cm layer, 10 kg
m−2. The stock for the 0–90 cm-layer ranged between 13 and 182 kg m−2. The
largest stocks are predicted in areas mapped as peat soils (Fig. 4.2B), i.e. where peat
soils have the largest probability of occurrence. For mapped soil type P the average
predicted stock for the 0–90-cm layer is 141 kg m−2; for soil type mP 124 kg m−2;
for soil type PY 71 kg m−2; and for soil type mPY 73 kg m−2. Medium stocks, on
average around 45 kg m−2 in areas mapped as soil types PS, PZ and ES and 35 kg
m−2 in the areas with mapped soil types BF and TS. The lowest stocks (21 kg m−2)
are predicted in the two drift-sand complexes in the northern part of the study area
where raw sand soils dominate.
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Figure 4.7: Predicted SOM stock (kg m−2) at 0–30 cm (A), 30–60 cm (B), 60–90 cm (C)
and 0–90 cm (D) depth intervals.

Validation

Table 4.9a shows the validation results of the predicted SOM stocks for the four val-
idation layers. There is modest positive bias (over-estimation) for the 0–30-cm layer
and small positive bias for the subsurface layers. The RMSE is largest for the 30–60-
cm layer. This is expected given the strong between-soil type variation for this depth
interval. The predicted stocks are probability weighted averages of predicted soil
type-specific stocks. Large uncertainty in the soil type occurring at a validation loca-
tion will predominantly affect the accuracy of the predictions of the 30–60-cm layer.
The R2-values were computed from a scatter plot of observed versus predicted and
decrease from the top layer to the bottom layer. These values show good results for
the upper 30 cm but poor results for the bottom two layers. The R2-value of the
0–90-cm layer is a modest 0.46.

106



4.4. Discussion

4.4 Discussion

This study provides an example how general pedological knowledge can be used to
define soil-type specific depth functions of SOM. This is in contrast with previous,
more data-driven studies (Minasny et al., 2006; Malone et al., 2009; Mishra et al.,
2009) in which one type of function, typically a spline or exponential decay, is used
irrespective of soil type and under the assumption that the depth-wise variation of
soil properties is entirely continuous. Using pedological knowledge for defining
depth function structures might result in a more realistic representation of the depth
distribution of soil properties when there are large differences in profile morphology
between soil types or when there has been strong human influence on profile devel-
opment. Furthermore, the proposed method explicitly uses a soil type map, which
is a valuable source of information on the three-dimensional spatial variation of soil
properties. Conventional soil maps are available for many areas in the world. If such
maps can be upgraded with information on the areal proportions of soil types within
the mapping units, then the method presented in this chapter enables the exploita-
tion of these conventional maps for three-dimensional mapping of soil properties.
This is in contrast to the more data-driven methods mentioned before.

The presented method demands a rich soil dataset. It requires complete soil profile
descriptions and a soil type map, which may limit application in data-poor environ-
ments. Care should be taken that the number of depth function parameters remains
within practical limits. Ten parameters were used to model the soil type-specific
depth functions (Table 4.6). This required nine universal kriging models and one
universal co-kriging model to predict these parameters. Soil type was used as co-
variate in these models to account for the effect of soil type on parameter values.
Hereby assuming that the covariate effects on parameter values were similar for all

Table 4.9: Estimated validation indices for the predicted SOM stocks for pedometric and
conventional depth functions. ME is the mean error, MSE the mean squared error, RMSE
the root mean squared error and R2 the coefficient of determination. The quantity between
brackets is the standard error of the estimates.

Soil layer ME MSE RMSE R2 Soil layer ME MSE RMSE R2

a. Pedometric depth functions c. Conventional depth functions
0–30 cm 4.5 (1.2) 98 (23) 9.9 0.75 0–30 cm 1.1 (1.3) 81 (26) 9.0 0.66

30–60 cm 1.1 (1.9) 179 (72) 13.4 0.23 30–60 cm -4.1 (2.0) 218 (93) 14.8 0.17
60–90 cm 1.1 (1.4) 94 (43) 9.7 0.09 60–90 cm -2.4 (0.8) 40 (13) 6.4 0.19
0–90 cm 6.7 (3.3) 585 (206) 24.2 0.46 0–90 cm -5.4 (3.2) 553 (178) 23.5 0.46

b. Pedometric depth function, actual soil type d. Conventional depth function, actual soil type
0–30 cm 4.0 (1.1) 82 (15) 9.1 0.78 0–30 cm -0.2 (1.1) 70 (18) 8.4 0.73

30–60 cm -0.2 (1.4) 103 (41) 10.1 0.54 30–60 cm -6.2 (1.7) 187 (78) 13.7 0.35
60–90 cm 0.1 (1.4) 101 (43) 10.0 0.11 60–90 cm -3.5 (0.8) 49 (16) 7.0 0.19
0–90 cm 3.9 (2.8) 424 (120) 20.6 0.59 0–90 cm -9.9 (2.3) 431 (116) 20.8 0.67
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soil types. This might not necessarily be true. An alternative would be including co-
variate interactions in the trend parts of the geostatistical models but for reasons of
simplicity this was not done. Another alternative would be to calibrate one geosta-
tistical model for each soil type-specific parameter. For this study (with only ten soil
types) this would already have required calibration of 50 geostatistical models (Table
4.2). Besides, this would have complicated estimation of trend coefficients and vari-
ogram parameters as for soil types BF and TS only a few dozen profile descriptions
were available.

For each soil type one depth function structure was defined (Table 4.3), based on a
conceptual model of pedogenesis. It was assumed, for reasons of simplicity, that this
structure was valid for all soils classified as such. There are exceptions, however,
to the defined structures, especially within the podzol soil type. Three general pod-
zol types occur in the study area with different profile morphologies: podzols under
agriculture on the Drenthe plateau, forested podzols on the Drenthe plateau, and the
podzols in the cultivated peatlands. The depth distribution of SOM of the agricul-
tural podzol, the most common podzol in the study area, is adequately modelled by
the depth function used in this study. The forested podzols have horizons that can
be disturbed up to depths of 1 m below the surface as a result of deep ploughing
before afforestation in the early 20th century. Deeply disturbed subsurface horizons
in profile descriptions disturbed the fit of the exponential decay function to the hori-
zon data and resulted in estimates of the Ca parameter that are outside the physical
boundaries. Furthermore, the SOM content does not decrease exponentially with
depth in such horizons, which was assumed by the depth function model. Forested
podzol profiles disturbed deeper than 50 cm below the surface were, therefore, ex-
cluded from modelling. This means that the depth function model of soil type PZ
is not valid in areas with deeply disturbed forested podzols. The podzols in the
cultivated peatlands are also characterized by disturbed profiles that may contain
inclusions of peat remnants. Thus, in order to properly model the SOM depth pro-
file of the podzol unit, three depth function models would have been required.

Validation with an independent dataset showed that the depth functions provided
good estimates of the SOM stock in the upper part of the soil profile. However, the
functions performed poorly for the soil subsurface. These results agree with find-
ings of Minasny et al. (2006) and Malone et al. (2009) who also reported a decreasing
accuracy of prediction with depth for SOC and available water capacity in a study
area in southeast Australia. Vasques et al. (2010) modelled the SOC content at four
fixed depth intervals in a watershed in Florida. They also found better results (lower
mean absolute error and RMSE) for the 0–30-cm layer than for the 30–60-cm and
60–120-cm layers. Furthermore, they found that environmental covariates explained
little spatial variation of organic carbon in the lower part of the profile. In this study,
covariates correlated well with topsoil depth function parameters but poorly with
subsurface parameters (Table 4.7). Vanwalleghem et al. (2010) spatially modelled the
vertical variation of the soil horizons of a loess-derived profile in Belgium. They only
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found absent or weak correlations between horizon thicknesses and environmental
covariates resulting in poor predictions of the spatial variation of these thicknesses.
These examples from study areas in different parts of the world with different soils
and where different methods and different sets of environmental covariates were
used to model the depth profiles of soil properties, illustrate that there is a general
challenge of capturing subsurface variation in soil properties or soil horizons by pe-
dometric models.

There is modest bias in the predicted SOM stocks. With a digital soil type map
it is possible to quantify the contribution of the uncertainty of the predicted soil
types (expressed with probability distributions) to the ME (bias) and MSE. Chapter
3 showed that the uncertainty in the soil map is overestimated, which might affect es-
timates of soil properties when the soil map is used as predictor. The contribution of
soil type uncertainty to the ME and MSE was assessed by validating the SOM stocks
predicted by the depth function of the soil type that was observed at the validation
locations. Results are shown in Table 4.9b. For the 0–90-cm layer the bias was re-
duced by 42%, with unbiased predictions for the 30–60 cm and 60-90 cm layers. The
MSE of the 0–90-cm layer was reduced by 28% and that of the 30–60-cm layer even
with 42%. This indicates that the between-soil type variation is largest for this depth
interval. The R2-value of this layer improved from 0.23 to 0.54 and that of the 0–90-
cm layer from 0.46 to 0.59. These results show that the contribution of the uncertainty
in the soil map to the prediction errors is considerable. Other important causes of er-
ror are the hand-estimated SOM contents with which the models were calibrated
and the expert-knowledge based bulk density values used to convert SOM content
from mass to volumetric basis. Unfortunately, there was no information about the
accuracy of the hand-estimates and bulk density values so their contribution to the
MSE could not be quantified.

The presented approach is closely related to the conventional approach that repre-
sents depth profiles of soil properties with representative profile descriptions—the
soil horizons of which are characterized by typical values for several soil properties—
associated to the map units of a soil type map. The soil type-specific depth functions
defined in this chapter, however, are more flexible than conventional functions. The
parameters of the functions can vary in space, depending on environmental condi-
tions that can be represented by a set of covariates. In addition, the depth func-
tions are knowledge-based and describe both discontinuous (stepped) and continu-
ous depth-wise variation within a soil profile, which likely better represents the true
SOM depth profile of the soil in the study area. Furthermore, a probability distribu-
tion of depth functions was obtained, which provides information on the uncertainty
of the depth distribution of SOM at each prediction location. This information is typ-
ically not available in the conventional approach.

The question now is if the presented pedometric approach to three-dimensional
mapping of soil properties indeed performed better than the conventional approach?
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To address this question, representative profile descriptions were obtained of the soil
types depicted on the soil map (de Vries, 1999). SOM stocks were computed for each
validation depth interval for each profile. Eq. 4.4 was applied to predict SOM stock
of each depth interval at each validation location. The predicted stocks were com-
pared with the measured stocks (Table 4.9c). The performance of the two approaches
was assessed by comparing the squared errors. The conventional approach gave bet-
ter predictions for the 0–30-cm (p = 0.06) and 60–90-cm (p = 0.06) layers, while, in-
terestingly, the pedometric approach gave a better prediction for the 30–60-cm layer
(p = 0.11). This is typically the layer with the largest within-soil type and between-
soil type variation of SOM stock. For the 0-90-cm layer there was no difference in per-
formance of the two methods on the basis of the MSE. Predicted SOM stocks with the
pedometric approach were less biased for the 30–60-cm and 60–90-cm layers, while
the bias for the 0–90-cm layer was slightly lower for the conventional approach. For
the conventional approach was it also assessed how well the depth function of the
soil type observed at each validation location, predicts the SOM stock (Table 4.9d).
Comparing the validation indices from Table 4.9d with those from Table 4.9b, shows
that the bias in the SOM stocks of the 30–60-cm, 60–90-cm and 0–90-cm layers as
predicted by the pedometric approach was much smaller than for the conventional
approach. In addition the pedometric approach gave much better predictions for
the 30–60-cm layer (p = 0.03). The conventional approach better predicted the SOM
stocks of the observed soil type for the 0–30-cm (p = 0.14) and 60–90-cm (p = 0.08)
layers. For the 0–90-cm layer the difference in prediction accuracy was negligible.
Although the validation is not conclusive, the modelled depth functions might give
a more realistic representation of the vertical variation of soil properties than the dis-
crete (stepped) functions based on representative soil profile descriptions and thus
might provide better predictions of the SOM content at smaller depth intervals. A
full validation of the predicted depth functions requires many soil samples per val-
idation location, the costs of which readily become prohibitive. Validation for three
depth intervals as done here is less costly, but also less conclusive as a large part of
the vertical variation can be averaged out within the depth increments.

4.5 Conclusions

This chapter presented and illustrated a method for mapping depth functions of soil
organic matter, which integrates general pedological knowledge about SOM depth
profiles of the soil types in the study area (for defining the structure of soil type-
specific depth functions) and geostatistical modelling (for spatial interpolation of
the depth function parameters). When a soil type map is available then this can be a
valuable source of information and an attractive starting-point for three-dimensional
modelling of soil properties as the soil type map itself can be considered a simple
representation of the three-dimensional variation of soil properties. Soil type proved
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to be a strong predictor for each of the depth function parameters.

Validation with an independent dataset shows that the depth functions provided
adequate estimates of the SOM stock in the 0–90-cm soil layer. However, the depth
functions performed much better for the top layer than for subsurface layers. Sim-
ilar results were reported for other studies, which illustrates that there is a general
challenge of capturing subsurface variation in soil properties by pedometric models.

A comparison of the presented pedometric approach with the conventional approach
for mapping the three-dimensional variation of SOM showed that there is little dif-
ference in performance on basis of the validation results, although the pedomet-
ric depth functions presumably give more realistic representations of the vertical
variation than the discrete (stepped) functions of the conventional approach. This
comparison illustrates that it is not obvious that state-of-the-art pedometric meth-
ods provide higher quality soil maps than conventional methods as is often claimed
but rarely verified.
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Chapter 5

Digital soil type mapping with the generalized linear
geostatistical model

This chapter introduces the generalized linear geostatistical model (GLGM) for soil type map-
ping and investigates if spatial prediction with this ‘spatial’ model results in a soil map of
greater accuracy than a map obtained using a non-spatial model, i.e. a model that ignores
spatial dependence in the soil type variable. The GLGM is central to the framework of model-
based geostatistics, which is considered state-of-the-art in digital soil mapping. A pragmatic
approach was adopted in which the five soil types in a case study area in the cultivated peat-
lands were modelled separately with a binomial logit-linear GLGM. Prediction with soil type-
specific GLGMs resulted in five binomial probabilities at each prediction location, which were
scaled to multinomial probabilities. A soil map was created from the predicted probabilities
by selecting the soil type with maximal probability. In addition two non-spatial models were
used to map soil type. These were the multinomial logit model and the generalized linear
model for Bernoulli distributed data. Validation with independent probability sample data
showed that the spatial model did not give more accurate predictions then the two non-spatial
models.

Based on: B. Kempen, D.J. Brus, G.B.M. Heuvelink
Submitted to Geoderma



Chapter 5. Digital soil type mapping with the GLGM

5.1 Introduction

Incorporating spatial dependence in statistical prediction models for categorical soil
attributes such as soil type or texture class is not as straightforward as for contin-
uous attributes. Because of this, many applications focus on methods that ignore
spatial dependence in the categorical soil variable, such as multinomial logistic re-
gression (Hengl et al., 2007b; Debella-Gilo and Etzelmüller, 2009, Chapter 2), arti-
ficial neural networks (Behrens et al., 2005) and classification and regression trees
(Minasny and McBratney, 2007a; Nelson and Odeh, 2009; Stum et al., 2010). Among
the methods that accommodate spatial dependence in predictive mapping of cate-
gorical soil attributes, perhaps indicator kriging (IK) is the most widely used (e.g.
Bierkens and Burrough, 1993; Oberthür et al., 1999; Goovaerts, 2001). However, IK
is known to have some theoretical and practical shortcomings such as probabilities
that are outside the interval [0,1] or probabilities that do not sum to unity (D’Or and
Bogaert, 2004; Papritz, 2009). More recently Bayesian maximum entropy was intro-
duced as a statistically valid alternative to IK and allows integration of different data
sources of various quality (D’Or and Bogaert, 2004; Brus et al., 2008). A drawback
of Bayesian maximum entropy is that the method quickly becomes computationally
prohibitive when the number of outcome classes is large. Modelling categorical data
as a Markov random field is a promising approach but applications in the environ-
mental sciences in general (Norberg et al., 2002; Kasetkasem, 2005; Hou et al., 2011)
and soil science in particular (Hartman, 2006; Heuvelink, 2007) are still limited. Be-
sides, application of the Markov random field model has its drawbacks. The model
is numerically complex, estimation of its parameters can be difficult given the poten-
tially large number of model parameters and statistical validity of the model is not
easily verified (Heuvelink, 2007).

A potentially interesting alternative to the methods above is the generalized lin-
ear geostatistical model (GLGM) (Diggle et al., 2002; Ben-Ahmed et al., 2010). The
GLGM was introduced by Diggle et al. (1998) and is central to the model-based
geostatistical framework. This framework extends the linear geostatistical (kriging)
method for Gaussian-distributed data to situations in which the stochastic variation
in the data is known to be non-Gaussian. In model-based geostatistics one assumes
that the observed responses are realizations of a spatial random process. Estima-
tion of the parameters of this process is based on an explicitly declared stochastic
model, that is supposed to have generated the responses (Lark and Cullis, 2004;
Diggle and Ribeiro Jr., 2007). For example, for continuous soil pollution data the
log-normal model might be the natural candidate for the stochastic process that gen-
erated the data. The joint probability density function of the data is then the multi-
variate log-normal distribution, which is completely defined by the mean function
and covariance function of the log-transformed variable. The model parameters, in
this example the mean and covariance parameters, are estimated by likelihood-based
methods. For soil mapping, model-based geostatistics has so far only been used for
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mapping continuous soil attributes (e.g. Lark and Cullis, 2004; Lark et al., 2006).

Soil type data can be considered multinomial data when the number of outcome
categories, the soil types, is larger than two. The natural candidate model for multi-
nomial data is the multinomial logit model (MLM). A logical choice for modelling
spatially correlated multinomial data is an MLM with spatially correlated random ef-
fects, but to our best knowledge there are no examples in the literature that describe
such model. Nor are we aware of readily available software to fit spatial MLMs.
An alternative to the MLM is the Poisson log-linear model. It is well-known in the
statistical literature that multinomial data can be modelled with the Poisson log-
linear model with extra parameters (one per sampling object) added to the linear
predictor (Palmgren, 1981; McCullagh and Nelder, 1989). These extra parameters
ensure that the probabilities of the outcome categories (soil types, in this case) sum
to unity. Chen and Kuo (2001) prove that multinomial and Poisson log-linear fixed
effect models are likelihood equivalent. They assert that this equivalence holds when
the log-linear model is extended with random effects, but do not provide a proof. We
have reservations about this likelihood equivalence in the presence of random effects
and therefore propose to model soil types as Bernoulli-distributed random variables.
Each individual soil type is then considered a spatially dependent Bernoulli variable
that is modelled with a GLGM for Bernoulli-distributed data. This yields a statisti-
cally valid spatial model for each soil type that predicts its probability of occurrence.
Next a pragmatic approach can be taken to obtain a multinomial probability distribu-
tion from the estimated soil type-specific Bernoulli distributions. It is this approach
that is taken in this work.

The Netherlands has full soil map coverage at scale 1:50 000. This map is the primary
source of soil information and is used for a wide variety of purposes. Recent studies
have shown that the 1:50 000 soil map has become outdated for areas with peat soils
as peat layers are decomposing as a result of intensive land use (de Vries et al., 2010).
In Chapter 2 the 1:50 000 soil map for the province of Drenthe was updated using the
MLM. In this chapter the GLGM is used to re-map soil type in a cultivated peatland
area and it is investigated if soil type mapping with a spatial model results in a map
that is of greater accuracy than a map obtained by a non-spatial model.

The objectives of this chapter are to i) use the GLGM to update the soil map of a
peatland area using a large set of recent point data, ii) assess the accuracy of the soil
map with independent probability sample data and iii) compare the results with soil
type maps as predicted with two non-spatial prediction models.

5.2 Theory

Here a brief review is given of the GLGM, the estimation of its parameters and how
the model can be used for spatial prediction. In addition it is shown how the GLGM
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can be used for spatial prediction of categorical soil variables. For a comprehensive
exposition of the GLGM see Diggle et al. (2003) and Diggle and Ribeiro Jr. (2007).

5.2.1 The generalized linear geostatistical model

The linear mixed model (LMM) extends the traditional linear model for Gaussian
responses by introducing random effects into the model structure in addition to fixed
effects. In the context of model-based geostatistics it is assumed that the random
effects are spatially correlated, Gaussian distributed random variables (Lark et al.,
2006). This means that spatial dependence in the response variable is modelled by
introducing spatial dependence in the random effect of the model. The LMM for
geostatistical data can then be written as:

Y (x) = m+ U(x) + ε(x) , (5.1)

where the Y (x) are the response variables at spatial location x ∈ D, D ⊂ <2, m is a
fixed effect which can be a constant or a trend (for the latter m depends on spatial lo-
cation x), U(·) = {U(x) : x ∈ D} is a second-order stationary, Gaussian distributed,
spatial process with zero mean and variance σ2, and the ε(x) are mutually indepen-
dent, Gaussian distributed random variables with zero mean and variance τ2. In
geostatistics the term ε is the nugget effect, which represents measurement error and
short-range variation (Lark et al., 2006).

The generalized linear mixed model (GLMM) extends the classical LMM to non-
Gaussian error distributions that belong to the exponential family, including Bernoulli
and Poisson (McCullagh and Nelder, 1989). In similar fashion the LMM for geosta-
tistical data can be extended to accommodate modelling of non-Gaussian distributed
responses. Diggle and Ribeiro Jr. (2007) refer to this model as the generalized linear
geostatistical model. The GLGM has the following components:

1. Signal process S(·). A real-valued Gaussian spatial process defined on D, with
E[S(x)] = d(x)Tβ, Var[S(x)] = σ2, correlation function ρ(h) = Corr{S(x), S(x′)},
where h is the Euclidean distance between x and x′, and Cov{S(x), S(x′)} =

σ2ρ(h). Here d(x)Tβ is a spatial trend, where d(x) is a vector of explanatory
variables at location x and β is a vector of trend coefficients (usually the first
component of d(·) is taken as a constant, and if this is the only component then
S(·) has constant mean). The signal process S(x) can be written as:

S(x) = d(x)Tβ + U(x) , (5.2)

where U(x) is as defined in Eq. 5.1.

2. Measurements Y (xi), i = 1, 2, . . . , n. The model-based approach assumes that
the stochastic process S(·) is not directly observable. Instead, the available
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data consist of measurements y(x1), . . . , y(xn), which are realizations of ran-
dom variables Y (x1), . . . , Y (xn) (Diggle et al., 2003). The Y (xi) follow a com-
mon distributional family (e.g. Bernoulli, Poisson, binomial or Gaussian) de-
pending on the mechanism that generated the data, and are mutually inde-
pendent conditional on the signal S(·). The responses have conditional means
E[Y (xi)|S(·)] and possibly additional parameters that characterize higher or-
der moments of the distribution (e.g. the variance τ2 in case of the Gaussian
distribution).

3. Link function g(·). The link function links the conditional means of the Y (xi)|S(·)
to the linear predictor S(xi). The choice of the link function depends on the
distribution of the responses. The natural candidate link function for binomial
distributed measurements is the logit, that for Poisson distributed measure-
ments the log, and for Gaussian distributed measurements the identity.

The GLGM can now be written as:

g(E[Y (xi)|S(·)]) = S(xi) , (5.3)

where S(xi) is defined by Eq. 5.2. For brevity and notational clarity the spatial
location indicator xi will be denoted as i in the remainder of this chapter.

5.2.2 The GLGM for digital mapping of soil type

This chapter focusses on the GLGM for categorical responses: of interest is spatial
prediction of soil types. For spatial prediction of continuous, Gaussian distributed
responses (soil attributes) a GLGM with the identity link function can be used. This
is equivalent to using the universal kriging model (kriging with external drift) with
variance parameters estimated by residual maximum likelihood (REML), of which
Lark and Webster (2006) provide an excellent description.

Observed soil types at the sampling locations can be considered realizations of a
multinomial probability distribution, which makes the multinomial logit model the
natural candidate model of the data generating mechanism. However, a GLGM for
multinomial distributed data cannot be fitted with existing geostatistical software.
An alternative is to consider the observed soil types realizations of Bernoulli ran-
dom variables. The Bernoulli distribution is a special case of the binomial distribu-
tion with the number of trials equal to 1. In other words, the Bernoulli distribution
has only two outcomes (success or fail). Bernoulli-distributed data can be modelled
with the binomial logit-linear GLGM. Suppose that a soil map legend contains K
entries. Let Yk denote a random vector for soil type k with Bernoulli-distributed
variables (Yk1, . . . , Ykn) for a set of sampling locations xi, i = 1, . . . , n. Conditional
expectations of the Yki, E[Yki|S(·)], are binomial probabilities (i.e. probabilities of
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occurrence of soil type k). The observations associated to the sampling locations, the
yki, are realizations of the random variables Yki. The yki take value 1 if soil type k is
observed at sampling location i and 0 otherwise. This means that there are K real-
izations yki at each sampling location i: one for each of the Yk (i.e. one for each soil
type distinguished on the soil map). One of these realizations has value 1 and the
other K − 1 realizations have value 0, hereby assuming that soil types are mutually
exclusive and only a single soil type can be observed at a sampling location. Each
of the K soil types is modelled separately with the binomial logit-linear GLGM in
which the link function is the logit. To simplify notation we denote E[Yki|S(·)] as πki
in the definition of the logit-linear GLGM:

logit(πki) = log(
πki

1− πki
) = Ski = dT

kiβk + Uki . (5.4)

Modelling each soil type separately yields K binomial probabilities at each predic-
tion location x0. A pragmatic approach can be then taken to obtain the multinomial
probabilities by dividing each binomial probability by the sum of the individual bi-
nomial probabilities. For notational convenience subscript k is left out in the sections
where parameter estimation and spatial prediction are discussed.

5.2.3 Parameter estimation

So far the GLGM for digital mapping of soil type is defined in the form of the bi-
nomial logit-linear GLGM. Next, the parameters of this model must be estimated.
Once the parameters have been estimated, these can be used in the model to de-
rive the probability distribution of the soil type at unsampled locations. The model
parameters are the coefficients β of the trend model, the variance σ2 of the stochas-
tic component U(·) (Eq. 5.2) and the parameters of the autocorrelation function ρ

(range) and the nugget-to-sill ratio. These parameters determine the conditional dis-
tribution of Y (·) given S(·).

Estimation of the GLGM parameters for non-Gaussian distributed variables is not
straightforward. In case of soil type, the observations yi of the Bernoulli-distributed
variables Yi are not direct observations of the underlying Gaussian process S(·) and
can therefore not be directly used to estimate the parameters of the GLGM. A so-
lution is to use Markov Chain Monte Carlo (MCMC) methods (Diggle et al., 1998;
Mosegaard and Sambridge, 2002; Minasny et al., 2011). MCMC is a general-purpose
technique for simulating from complex probability distributions. It constructs a
Markov chain, which has the desired distribution as its equilibrium distribution.
Simulation from the chain after equilibrium has been attained yields a sample from
the target distribution. Here MCMC is used to simulate samples (realizations) of Si
conditional on the observations yi. Next, the simulated Si are used to estimate the
model parameters by maximum likelihood. If this is repeated a sufficiently large
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number of times the proper conditional distributions of the signal and its parame-
ters are reconstructed. This method for parameter estimation is referred to as Monte
Carlo (MC) maximum likelihood (Christensen, 2004).

For notational convenience, let us assemble all model parameters into one vector
of parameters θ. We wish to estimate θ from observations yi of the Yi using the
maximum likelihood method. Thus, we seek that value of θ for which the likelihood
L(θ) is maximised.

The likelihood of the parameter vector is defined as:

L(θ) = f(y|θ) , (5.5)

where f is probability distribution and y is the n-element vector containing the yi.
The influence of the model parameters on the observations is passed on through the
signal S(·). To unravel the structure of the likelihood the first step is therefore to
incorporate the signal into the equation:

f(y|θ) =

∫
f(y, s|θ)ds

=

∫
f(y|s,θ)f(s|θ)ds

=

∫
f(y|s)f(s|θ)ds , (5.6)

where in the last step it was used that the y are independent from θ given s. Both
densities in Eq. 5.6 are known in analytical form, but the difficulty is that the n-
dimensional integration (i.e. over the distribution of the Si) is numerically pro-
hibitive. Christensen (2004) proposes an alternative method to evaluate Eq. 5.6 (see
also Diggle and Ribeiro Jr. (2007), section 5.5.1). The idea is to introduce a sensibly
chosen density function f̃(s), and use this to rewrite Eq. 5.6 as proportional to an
expected value that can be evaluated using Monte Carlo simulation:∫

f(y|s)f(s|θ)ds =

∫
f(y|s)f(s|θ)

f̃(y, s)
f̃(y, s)ds

=

∫
f(y|s)f(s|θ)

f(y|s)f̃(s)
f̃(y, s)ds ∝

∫
f(y|s)f(s|θ)

f(y|s)f̃(s)
f̃(s|y)ds

=

∫
f(s|θ)

f̃(s)
f̃(s|y)ds

= Ẽ[
f(S|θ)

f̃(S)
] , (5.7)

where the joint density f̃(y, s) is defined as f̃(y, s) = f(y|s)f̃(s). The density f̃(s)

may be any valid density that has positive value for all s (but preferably chosen suit-
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ably, see below). The expectation in Eq. 5.7 is taken over the proposed distribution
of S given y (f̃(s|y)), which is proportional to f(y|s)f̃(s). The result of Eq. 5.7 can
be approximated by repeated MCMC sampling from the proposed distribution of S
given y, evaluating the expression for each simulated value sj (both probability den-
sities in Eq. 5.7 are easily computed because both are multivariate normal so their
analytical expression is known) and averaging:

L(θ) = Ẽ[
f(S|θ)

f̃(S)
] ∼=

1

J

J∑
j=1

f(sj |θ)

f̃(sj)
, (5.8)

where J is the number of MCMC simulations. The maximum likelihood estimates of
the model parameters in vector θ are obtained by identifying the θ that maximizes
Eq. 5.8 for the simulated MCMC samples s1, . . . , sJ from [S|y]. To find this θ, Eq.
5.8 is repeatedly evaluated for different values of θ, using some form of numerical
optimization, until the maximum is found. Although any valid distribution f̃(s)

may be chosen, Christensen (2004) mentions that one may choose f̃(s) = f(s|θ0) for
some sensible value θ0. Trend coefficients obtained by fitting a generalized linear
model (GLM) to the data, and variogram parameters obtained by a fitting a vari-
ogram model to the deviance residuals of the GLM were used as initial parameter
values θ0.

5.2.4 Spatial prediction

The aim of digital soil mapping is to predict the target soil variable at unobserved
locations from observations at neighbouring locations, preferably with the help of
a set of environmental covariates. In case of the binomial logit-linear model this
means predicting the conditional expectation of the Bernoulli variable Y at unsam-
pled locations x0 given the neighbouring observations y: E[Y (x0)|y]. Like param-
eter estimation, spatial prediction with the logit-linear model is not straightforward
as the Yi are not Gaussian-distributed and therefore cannot be interpolated directly
by kriging. Eq. 5.4 shows that conditional expectations of Yi are computed from Si.
This means that if one can predict S(·) at x0, the conditional expectations of Yi can
be obtained by back-transformation of the link function. Because the Si are unob-
served at the sampling locations xi, spatial prediction with the logit-linear GLGM
takes several steps (Diggle et al., 2003; Diggle and Ribeiro Jr., 2007).

First, realizations of S(·) must be obtained at sampling locations xi. Like for param-
eter estimation, MCMC methods can be used to simulate samples of Si conditional
to the observations yi from f(s|y) with parameters θ̂ as estimated by the procedure
of the previous section. MCMC sampling is repeated J times, yielding J realizations
of S(·) at each sampling location: s(j)i , with j = 1, 2, . . . , J and i = 1, 2, . . . , n, which
shall be denoted by n-element vector s(j).
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5.2. Theory

Second, S(·) is predicted at x0 by kriging a single MCMC sample s(j):

Ŝ(j)(x0) = E[S(x0)|s(j)] = d(x0)Tβ + cTΣ−1(s(j) −Dβ) , (5.9)

where Σ is the n× n covariance matrix of the random effect U(·), c is the n-element
vector containing the covariances between S(x0) and sj , D is the n×p design matrix
that associates each of the n observations with a value of each of the p covariates and
β contains the p covariate coefficients. The prediction variance is:

var[S(x0)|s(j)] = σ2 − cTΣ−1c . (5.10)

The prediction variance does not depend on the value of sj and is therefore similar
for the MCMC samples. The kriging step yields J interpolated surfaces of S(·).

Third, each of these surfaces is back-transformed to the original scale by Taylor series
expansion of g−1[Ŝ(j)(x0)] (see also Diggle and Ribeiro Jr., 2007, section 6.5) to obtain
the expected value of Bernoulli variable Y at x0 given the simulated values of the
signal at the sampling sites s(j):

E[Y (x0)|s(j)] = g−1[Ŝ(j)(x0)]

∼=
e(x)

1 + e(x)
+ 0.5v(x)

e(x){1− e(x)}
{1 + e(x)}3

, (5.11)

where e(x) = exp[Ŝ(j)(x0)] and v(x) = var[S(x0)|s(j)]. Note that the first term in Eq.
5.11 is the back-transform of the non-spatial binomial model. The back-transform of
the prediction variance equals:

var[Y (x0)|s(j)] ∼= (
e(x)

[1 + e(x)]2
)2v(x) + 0.5v(x)2(

e(x){1− e(x)}
{1 + e(x)}3

)2 . (5.12)

Fourth, the minimum mean squared error predictor given the observed data,E[Y (x0)|y],
can be approximated by averaging the J prediction surfaces:

E[Y (x0)|y] ≈ 1

J

J∑
j=1

E[Y (x0)|s(j)] . (5.13)

The prediction variance var[Y (x0)|y] is approximated by averaging the J surfaces
with prediction variances var[Y (x0)|s(j)] and then adding the variance of the J con-
ditional expectations E[Y (x0)|s(j)]:

var[Y (x0)|y] ≈ 1

J

J∑
j=1

var[Y (x0)|s(j)] +
1

J − 1

J∑
j=1

(E[Y (x0)|s(j)]− E[Y (x0)|y])2 .

(5.14)
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Chapter 5. Digital soil type mapping with the GLGM

Finally, the K multinomial probabilities are obtained by by dividing each binomial
probability by the sum of the individual binomial probabilities:

E[Yki|yk]∗ =
E[Yki|yk]∑K
k=1E[Yki|yk]

, (5.15)

The predicted soil type at x0 is the soil type with the largest probability. The confu-
sion index was used as a measure of prediction uncertainty (Burrough et al., 1997):

CI(x0) = 1− (E[Y1,k(x0)|yk]− E[Y2,k(x0)|yk]) , (5.16)

in which subscript 1 indicates the largest conditional expectation (probability) and 2

the second largest.

5.3 Case study

The GLGM is applied to map soil type in an area covering 16 750 ha in the southeast
corner of the province of Drenthe, the Netherlands (latitude 52.67–52.85 N, longi-
tude 6.85–7.09 E) (Fig 5.1). The study area is part of the man-made agricultural peat
landscape that covers an extensive area in the northeast of the country. In 2009 a con-
ventional soil survey started in this area with the aim to update the 1:50 000 national
soil map for the areas with peat soils. Recent studies on the status of the peat soils
in this landscape revealed major changes in soil conditions since the 1:50 000 survey
in the early 1970s and a substantial areal decline of organic soils. Based on recent
inventories, shallow peat soils (peat layer less than 40 cm thick) are now found in an
estimated 47% of the area mapped as thick peat soils, while mineral soils now cover
approximately 55% of the area mapped as shallow peat soils (van Kekem et al., 2005;
de Vries et al., 2009).

5.3.1 Landscape and soils

Until the 17th century, the study area was completely covered with vast highmoor
bogs. These bogs developed on late-Pleistocene, slightly undulating aeolian sand
deposits. Large-scale, systematic reclamation of the area started in the early 17th

century and lasted until the mid-20th century. The bogs were drained and the upper
part of the peat was excavated for use as a fuel. Deeper peat layers, consisting of
sedge and reed peat, were less suitable for fuel and left behind. To prepare the soil
for agriculture, peat remains were covered with sand from the vast network of canals
that were dug to drain the area and to transport the turf. The sand cover was levelled
and slivers of subsoil peat were mixed through it. Large areas of the reclaimed agri-
cultural peat soils were deeply cultivated during the second part of the 20th century,
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0 3 61.5 km

Figure 5.1: Location of the study area in the province of Drenthe with highmoor in purple,
forest in green, agriculture in yellow and built-up in pink and red.

which dislocated subsoil peat and sand layers. A few parts of the study area, mainly
in the southeast corner and central area, were never reclaimed and cultivated. These
areas are now highmoor nature reserves (1 800 ha). Not surprisingly, as a result of the
methods for reclaiming and cultivating the former highmoor swamps there is con-
siderable short-range variation in soil conditions such as the topsoil organic matter
content and the thickness of the remaining peat layer. Furthermore, spatial hetero-
geneity at short distances increased over time by decomposition of peat remains that
is caused by deep drainage and intensive agriculture.

The existing 1:50 000 national soil map of the study area, which was completed in
the 1970s and has become outdated, distinguishes four major soil types: three peat
soils and one mineral soil (Fig. 5.2, left panel). Currently, a fifth soil type is found
now that the peat layer has been worn away by oxidation in large parts of the study
area. The 1:50 000 soil legend further subdivides these major soil types on the basis
of for instance presence of gley mottles and soil texture of mineral soils, thickness of
the peat layer in deep peat soils and peat type. Here, however, digital soil mapping
focusses on the five major soil types. The five major soil types are (reported areas
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Chapter 5. Digital soil type mapping with the GLGM

refer to areas on the existing 1:50 000 map of the study area):

• Reclaimed shallow peat soils (iW). Soils with at most 40 cm of peat within 80
cm from the surface and a man-made topsoil. Topsoil SOM content typically
ranges between 5–25% and can be highly variable at short distances as a result
of the reclamation process. These soils cover 3 590 ha or 22.4% of the area.

• Reclaimed deep peat soils (iV). Like the reclaimed shallow peat soils but with at
least 40 cm of peat within 80 cm from the surface. The peat layer can extend
below auger observation depth (∼ 120 − 150 cm below surface). These soils
cover 9 025 ha (56.2%).

• Raw peat soils (V). These are unreclaimed peat soils found in the few remaining
highmoor bogs and swamps. The original peat layer is largely intact and the
man-made topsoil is absent. These soils cover 3 175 ha (19.8%).

• Podzols (Hn). Soils with a podzol-B horizon that originally developed in the
late-Pleistocene sands before these were covered by peat in the Holocene. These
soils cover 266 ha (1.6%). Peat remains can be present in the soil profile, often
mixed with mineral material.

• Hydromorphic earth soils (pZ). These sandy soils developed in the late-Pleistocene
sands under somewhat wetter conditions than the podzols. They have a dark,
humic topsoil that directly overlays the C-horizon. Gley mottles can be present
in the subsoil. Although earth soils were not mapped in the study area during
the 1:50 000 soil survey, these are now found at locations where the overlying
peat layer has completely disappeared. Like the podzols, these soils can have
peat remains in the profile.

5.3.2 Data

Soil point data were collected during a soil survey in southeast Drenthe in 2009 and
2010 and contain 4 168 observations on soil type (Fig. 5.2, right panel). At each sam-
pling location an auger boring was made from which the soil profile was observed
and classified according to the Dutch soil classification system for detailed soil sur-
veys (ten Cate et al., 1995). The classified soils were recoded to the five major soil
types described above.

Nine data layers were available from which a suite of 27 environmental covariates
was derived (Table 5.1 provides an overview):

• Digital elevation model (DEM). A 25-m resolution DEM, constructed from LI-
DAR measurements1. From the DEM four relative elevation layers were de-
rived by subtracting the local mean elevation within search radii of 250, 500,

1www.ahn.nl
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Figure 5.2: The simplified 1:50 000 national soil map of the study area (left) and the point
dataset with observed soil types (right).

750, and 1000 m from the actual elevation. These layers capture local relief.
One relative elevation layer (based on the 750-m search radius) was reclassified
into layers with two, three and four classes to account for a possible non-linear
relation between soil type and relative elevation. In addition, a layer with his-
toric elevation was constructed by inverse distance weighted interpolation of
a network of elevation measurements from the 1960s (1.2 ha−1). A layer repre-
senting elevation change was computed from the actual and historic elevation
layers and reclassified into two classes. Elevation change is informative be-
cause peat excavation and decomposition lower the surface.

• Land cover maps. This set contains five layers depicting land cover in 1900 (50-
m resolution), 1940 (25 m), 1960 (25 m), 1980 (25 m) and 2003 (25 m) (Clement
and Kooistra, 2003; Knol et al., 2003, 2004; Hazeu, 2005). The layer from 1900
distinguishes ten classes and was reclassified into a layer with two classes and
into a layer with three classes. The layer from 2003 distinguishes 23 classes and
was reclassified into four layers, each with a different combination of classes.
The layers from 1900, 1940, 1960, 1980 and 2003 were combined into a map that
represents reclamation period, i.e. the period when reclamation for agriculture
took place. Four layers were derived from the reclamation period map, each
with a different combination of reclamation periods.

• National Soil Map (Steur and Heijink, 1991). Polygon map at scale 1:50 000 as
described in section 5.3.1. In addition to soil type, five soil variables were de-
rived from map unit classifications: one variable representing peat type, three
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Chapter 5. Digital soil type mapping with the GLGM

variables representing peat thickness, and one variable indicating the status
(degraded or not degraded) of peat soils iV and V based on the results of a
quick-scan of these soils (van Kekem et al., 2005).

• Paleogeography map (Spek, 2004). Polygon map at scale 1:50 000 representing a
reconstruction of the geography of Drenthe around 1 000 AD, distinguishing
12 geographical units. The map was converted to a layer of 25-m resolution,
from which two new layers were extracted: one with the former extent of fen
peat, one with the former extent of highmoor.

5.3.3 Digital soil type mapping with the GLGM

Digital mapping of soil type k, k = 1, . . . , 5 (Fig. 5.2) was done as follows. First, a
Bernoulli variable was created for each sampling location that takes 1 if soil type k
is observed at that location and 0 otherwise. Second, a GLM with logit-link func-
tion was fitted and the deviance residuals at the sampling locations were calculated.
Covariates for the trend component of the GLM were selected from the suite of envi-
ronmental covariates using a manual step-wise approach (starting with the strongest
predictor based on univariate analysis) with the Akaike Information Criterion (AIC)
(Webster and McBratney, 1989) as selection criterion. The coefficients of the trend
model were used as initial estimates of the parameters of the trend component of
the GLGM for soil type k (βk0). Third, an exponential variogram model was fit-
ted to the deviance residuals using maximum likelihood. The parameters obtained
from the variogram were used as initial estimates of the variance parameters of the
stochastic component of the GLGM for soil type k (the sill σ2

k0, the range φk0 and the
nugget τ2k0). The initial model parameters were combined in parameter vector θ̂k0.
Fourth, 150 000 MCMC samples of Sk were generated at each sampling location xi
given the yki and θ̂k0. Of these, the first 25 000 were discarded as burn-in and of the
remaining 125 000 every 50th was sampled, yielding 2 500 simulations of Sk. These
simulated values were used to obtain θ̂k, the maximum likelihood estimate of θk.
Finally, for spatial prediction again 125 000 MCMC samples of Sk were generated at
each sampling location, but this time given the yki and θ̂k. Again, the first 25 000
were discarded as burn-in and of the remaining 125 000 every 50th was sampled.
Kriging was performed at the nodes of a 50-m grid for each of the 2 500 simulated
datasets sk. The predictions and prediction variances were back-transformed to the
original scale and then averaged over the 2 500 surfaces.

Model selection, parameter estimation and spatial prediction were repeated for each
of the five soil types, resulting in five predicted binomial probabilities at each predic-
tion location. From these probabilities the multinomial probabilities were computed
by Eq. 5.15. Subsequently, the soil type with the largest predicted probability at
each raster node was used to create the soil type map. In addition the confusion in-
dex was mapped. Two preliminary measures of accuracy were computed from the
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5.3. Case study

Table 5.1: List of environmental covariates.

Description Levels Code

Digital elevation model*
Relative elev, 250 m - REL250
Relative elev, 500 m - REL500
Relative elev, 750 m - REL750
Relative elev, 1000 m - REL1000
Relative elev, 2 cl 1 = <0, 2 = >0 REL2
Relative elev, 3 cl 1 = <-25, 2 = -25–25, 3 = >25 REL3
Relative elev, 4 cl 1 = <-25, 2 = -25–0, 3 = 0–25, 3=>25 REL4

DEM + point measurements†

Elevation change, 2 cl 1 = <-25, 2 = >-25 EC2
Elevation change, 3 cl 1 = <-50, 2 = -50–25, 3 = >25 EC3

Land cover maps
Land cover 1900, 2 cl 1 = agriculture, 2 = natural LC1900 2
Land cover 1900, 3 cl 1 = grassland, 2 = cropland, 3 = natural LC1900 3

Current land cover, 2 cl 1 = agriculture, 2 = natural COV2
Current land cover, 2 cl 1 = highmoor, 2 = other COV2a
Current land cover, 3 cl 1 = agriculture, 2 = forest, 3 = rangeland/highmoor COV3
Current land cover, 3 cl 1 = agriculture, 2 = forest/rangeland, 3 = highmoor COV3a

Reclamation period, 2 cl 1 = <1940, 2 = >1940 RECLAM2
Reclamation period, 3 cl 1 = <1940, 2 = 1940–2003, 3 = >2003 RECLAM3
Reclamation period, 3 cl 1 = <1940, 2 = 1940–1980, 3 = >1980 RECLAM3a
Reclamation period, 3 cl 1 = <1900, 2 = 1900–1940, 3 = >1940 RECLAM3b

Soil map, scale 1:50 000
Soil type 1 = Hn, 2 = iV, 3 = iW, 4 = V, SOIL
Peat type 1 = Oligotrophic, 0 = Mesotrophic PEATTYP
Peat thickness‡, 2cl 1 = 0–120, 2 = >120 PEATTHK2
Peat thickness‡, 2cl 1 = 0–40, 2 = >40 PEATTHK2a
Peat thickness‡, 3cl 1 = 0–40, 2 = 40–120, 3 = >120 PEATTHK3
Peat status 1 = deformed peat soil, 0 = unchanged, PEATSTAT

Paleogeography map
Former fenpeat coverage 1 = Yes, 0 = No FENPEAT
Former highmoor coverage 1 = Yes, 0 = No HIGHMOOR

* Relative elevation in cm. Negative numbers indicate relatively low positions.
† Elevation change in cm. Negative numbers indicate subsidence.
‡ Thickness in cm.

predicted soil map. The first is the calibration purity, which is the proportion of ob-
servation locations at which the soil map predicts the correct soil type. The second is
the theoretical purity. This is the expected proportion of a map that will be correctly
classified given the probability model and is equal to the spatial mean of maximum
probability over the region (Brus et al., 2008).
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Chapter 5. Digital soil type mapping with the GLGM

5.3.4 Digital soil type mapping with non-spatial models

In addition to digital mapping with a spatial model, soil type was also predicted
with two non-spatial models. The first model is the multinomial logit model (section
2.2.3). The MLM for a categorical variable withK outcome categories hasK−1 logit
functions. One outcome category is chosen as the reference category. The model
coefficients of the K − 1 logit functions are estimated by maximum likelihood with
respect to the reference category (Hosmer and Lemeshow, 2000). In an MLM the
logit function of the probability of occurrence of soil type k at location xi is assumed
to be a linear combination of the covariates:

logit(πk) = log(
πk
π∗k

) = Dβk , (5.17)

where πk is the probability of outcome category k, π∗k is the probability of the refer-
ence category, D and βk are as defined in Eq. 5.9. The multinomial probability of
outcome category k then equals:

πk =
exp(Dβk)

1 +
∑K−1
k exp(Dβk)

. (5.18)

Covariates were selected from Table 5.1. The probabilities of the five soil types were
predicted at the nodes of 50-m grid. The soil map with the largest probability was
used to construct the soil map.

The second non-spatial model is the logit-linear GLM for Bernoulli-distributed data,
which shall be hereafter referred to as BLM (Bernoulli Linear Model). The selected
GLGM and MLM can have different sets of covariates, which confounds the effect
of the spatial model component on the predicted probabilities. To assess the effect
of the spatial component on the predicted probabilities, five soil type-specific BLMs
were fitted in addition to the MLM. The trend models of the BLMs contained the
same covariates as the associated GLGMs. The five BLMs were used to predict the
probabilities of the five soil types at the nodes of a 50-m grid. These probabilities
were scaled to multinomial probabilities by applying Eq. 5.15. For both non-spatial
models a map of the confusion index was constructed, and the theoretical and cali-
bration purities were calculated.

5.3.5 Validation

Sampling strategy

The soil maps were validated with independent probability sample data. The valida-
tion data were collected with a stratified simple random sampling design (Brus et al.,
2011). The map units of the soil map constructed from predictions with the GLGM
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formed the five strata. At each sampling location the soil profile was described and
classified from an auger bore observation. A total of 125 sampling locations were se-
lected, which were allocated to the strata roughly proportional to their surface areas.
Sampling locations where permission was denied or proved otherwise impossible
to sample were replaced with randomly selected locations from a reserve list. Field-
work took place in March 2011.

Statistical inference

Three quality measures for the categorical soil type maps are considered: overall
purity, map unit purity (user’s accuracy) and class representation (producer’s accu-
racy) (Brus et al., 2011). Overall purity is defined as the proportion of the mapped
area in which the predicted soil type, which is the soil type as depicted on the map,
equals the true soil type. In other words, it is the areal proportion correctly classi-
fied. To estimate the overall purity an indicator variable is created, which takes the
value 1 if the observed soil type equals the predicted soil type and 0 otherwise. For
each stratum the average of this indicator is computed. The overall purity is then
estimated as the weighted average of the stratum purities, with weights equal to the
relative sizes of the strata.

The map unit purity is the proportion of the map unit correctly classified. If the map
units were used as the sampling strata, then the map unit purities area estimated
by the strata means (in case of the soil map based on predictions with the spatial
model). If the map units do not equal the strata, then the map unit purities must
be estimated with the ratio estimator (in case of the soil map based on predictions
with the non-spatial models). This estimator is used for purity estimates of so-called
domains (sub-areas of interest) (Brus et al., 2011). Class representation of soil type k
is the proportion of the area where the actual soil type k occurs that is also mapped
as type k. Class representations are also estimated by the ratio estimator.

The accuracies of the soil maps can be compared by introducing variable qhi defined
as yshi − ynhi, where yhi is an indicator that takes value 1 if the predicted soil type at
location i in stratum h equals the observed soil type and 0 otherwise, superscripts s
and n indicate spatial model and non-spatial model. Variable q can have values -1, 0,
and 1. The mean purity difference (MPD) of two soil maps, q̄, is estimated in similar
fashion as the overall purity. To test whether the estimated MPD differs significantly
from 0 it was assumed that the estimated MPD follows a normal distribution.

5.3.6 Software

All statistical modelling was carried out using the software R, Version 2.13.0 on a
dual-core laptop computer with 2.53 GHz processors and 3Gb RAM on Windows
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Chapter 5. Digital soil type mapping with the GLGM

32-bit platform. Parameter inference and spatial prediction with the GLGM were
done with the package geoRglm (Christensen and Ribeiro Jr., 2002). This package
implements the Langevin-Hastings algorithm for MCMC simulation and a general-
purpose (quasi-Newton) optimization algorithm to identify the maximum likelihood
estimates of the model parameters. The MLM was fitted using the mlogit package.
Figures were created with package ggplot2 (Wickham, 2009).

5.4 Results

5.4.1 Prediction models

Table 5.2 shows the selected trend models of the GLGMs and MLM, and the esti-
mates of the variance parameters of the GLGMs. The covariates are listed in order
of the strength of correlation between covariate and soil type based on univariate
analysis. Not surprisingly, the 1:50 000 soil map and its derivatives (peat type and
peat layer thickness) are strong predictors of current soil type. The land cover map
with three classes (agriculture, forest/rangeland, highmoor) proved also to be an ef-
fective predictor. This can be explained by the fact that mineral soils Hn and pZ and
reclaimed shallow peat soils iW almost exclusively occur under agriculture, whereas
raw peat soils V almost exclusively occur under forest vegetation and in highmoor
areas. Reclaimed deep peat soils iV mainly occur under agriculture but are also
found under rangeland, where they are the dominant soil type. The rangeland area
was used for agriculture until the mid 1990s. At that time agriculture was abandoned
and natural vegetation restored, which slowed peat decomposition. Covariates re-
lated to elevation and landscape type were also influential but less important.

Roughly 15 to 40% of the residual variance of the signal is spatially structured at
medium distances (practical range of the exponential variogram models varies ap-
proximately from 1000–3500 m). Spatial dependence in the residual is weakest for
the reclaimed shallow peat soils, with only 17% of the residual variance spatially
structured. These soils are in a pedologically intermediate position between the min-
eral soils and reclaimed deep peat soils, which means that both mineral soils as well
as deep peat soils frequently occur in areas where shallow peat soils dominates. This
short-distanced spatial heterogeneity results in a relatively large nugget variance.
Areas dominated by mineral soils and deep peat soils are expected to be relatively
more homogeneous than shallow peat soil dominated areas, which results in a larger
part of the variance that is spatially structured.
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Table 5.2: Selected trend models and estimates of the variance parameters.

Soil n Covariates Variance a* Spatial
type (m) dep.†

Generalized linear geostatistical models
Hn 935 PEATTHK3+EC2+PEATTYP+COV3a+REL3 0.99 726 0.34
iV 1 023 PEATTHK2+SOIL+COV3a+EC2+REL1000+PEATSTAT 0.95 846 0.34
iW 1 670 COV3a+PEATTHK2+RECLAM3+SOIL+REL4+HIGHMOOR 1.24 348 0.17
pZ 303 PEATTYP+FENPEAT+PEATTHK3 0.47 1 112 0.39
V 237 COV3a+PEATTHK2+PEATTYP 0.06 387 0.24

Multinomial logit model
- 4 168 PEATTHK3+COV2+RECLAM3+PEATTYP+REL3+PEATSTAT+EC2

* Distance parameter of the exponential model. The practical range is 3a.
† The spatial dependence is the ratio between spatially structured variance and total variance

[partial sill/(nugget+partial sill)].

5.4.2 Digital soil type mapping

Fig. 5.3 shows the soil maps as predicted by the spatial and non-spatial models. The
general patterns of soil distribution are quite similar: the GLGM and MLM predict
similar soil types at 87% of the prediction sites, for the GLGM and BLM this is 89%.
Raw peat soils are predicted in the highmoor nature reserves. All models predict
reclaimed deep peat soils iV in former agricultural areas under natural vegetation
(west-central part) and in former highmoor areas that were reclaimed for agriculture
after the 1:50 000 soil survey was completed (south-central and east-central areas).
The most obvious effect of including a spatial component in the model is reflected
by the greater predicted area of mineral soils (Hn, pZ) in the GLGM map (+630 ha),
at the expense of the shallow peat soils iW. Comparing the GLGM and MLM maps
shows that the GLGM predicted greater areas of podzols Hn and deep peat soils
iV, while the MLM predicted greater areas of thin peat soils iW and hydromorphic
earth soils pZ. Spatial patterns of the CI are very similar (Fig. 5.3). The median CIs for
predictions with the GLGM was 0.78, for the BLM and MLM this was 0.73. Including
a spatial component in the prediction model did not reduce the uncertainty about the
prevailing soil type at the prediction sites. For each model the median CI is smallest
for map unit V, followed by iV, iW, pZ and Hn. The calibration purities are 61.9% for
the GLGM; 56.5% for the MLM, and 56.7% for the BLM. The theoretical purities are
57.1% for the GLGM; and 58.3% for the MLM, and 58.2 % for the BLM.

Fig. 5.4 depicts the difference between the probabilities predicted by the GLGM and
BLM for each soil type. The maps show, with an exception for soil type V, that the
spatial component had a distinct effect on the predicted probabilities. The areas with
positive differences for a specific soil type (probability with GLGM larger than with
the BLM) correlate very well with the areas with frequent observations of that soil
type.
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Figure 5.4: Difference in predicted probabilities by the spatial and non-spatial models. Posi-
tive numbers indicate a larger probability for the spatial model.
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5.4.3 Validation

The results of validation with independent data are listed in Table 5.3. Overall purity
of the soil map created with the spatial model is 54.9%, which is 3.5% smaller than
the MLM map (p = 0.105) and 1.7% smaller than the BLM map (p = 0.260). The
theoretical purities are somewhat larger than the overall purities, but all fall within
one standard error of the estimated means and thus give a fairly good estimate of
the actual map purities.

Table 5.4 shows the sample error matrices from which it is evident that confusion be-
tween soil types is largest for the reclaimed shallow peat soils iW. This is not surpris-
ing as these soils are in pedologically intermediate position between mineral soils
and reclaimed deep peat soils. The superior overall purity of the MLM map com-
pared to the GLGM map is mainly caused by the better representation of iW (for
MLM 35 out of 51 observations correctly represented, with GLGM 31 out of 51 loca-
tions), which are less confused with Hn. Map unit purities and class representations
vary greatly between soil types and between models. Raw peat soils V occur in very
specific areas that are easily identified from land cover maps (used as covariate). The
occurrence of these soils is very well predicted by all three models. Map unit iV had
the lowest purity for all models. However, these soils are mainly confused with iW,
suggesting that at locations were the models predict soil type iV, it is highly probable
that a peat soil is found. Only the thickness of the peat layer is uncertain.

As a final analysis the three soil maps were generalized into three groups, (mineral
soils (Hn, pZ), reclaimed peat soils (iV, iW) and raw peat soils (V), and then validated.
The estimated overall purities are 75.1% for the GLGM map, 79.3% for the MLM

Table 5.3: Estimates of overall purity, map unit purity and class representation for the three
prediction models. The standard errors of the accuracy estimates are between brackets and n
is the number of validation observations.

GLGM MLM BLM
n purity n purity n purity

Overall purity 125 54.9 (4.4) 125 58.4 (4.4) 125 56.6 (4.4)

Map unit purity
Hn 22 48.3 (10.7) 14 69.3 (11.8) 14 57.1 (13.6)
iV 25 40.0 (10.0) 23 43.2 (10.5) 24 41.7 (10.3)
iW 56 55.1 (6.7) 69 55.7 (6.3) 68 54.1 (6.1)
pZ 10 60.7 (17.6) 7 41.5 (16.5) 7 85.7 (13.9)
V 12 91.7 (8.3) 12 92.3 (7.7) 12 917 (8.3)

Class representation
Hn 21 49.1 (9.8) 21 49.1 (9.8) 21 34.8 (9.2)
iV 24 39.6 (8.4) 24 39.1 (8.8) 24 39.6 (8.4)
iW 51 63.6 (5.7) 51 71.8 (5.0) 51 73.4 (4.7)
pZ 17 22.9 (6.6) 17 16.3 (6.3) 17 19.6 (6.5)
V 12 92.1 (7.3) 12 100 (0.0) 12 92.1 (7.3)
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map, and 77.3% for the BLM map. The improvement in overall purity for all three
models is primarily caused by pooling soil types iV and iW, illustrating the difficulty
in predicting the correct peat thickness in the man-made cultivated peatlands.

Table 5.4: Sample error matrices showing the counts of predicted versus observed soil type
in the validation sample. Column totals are identical for each model.

Observed soil type
Mapped soil type Hn iV iW pZ V Total

GLGM
Hn 11 2 7 2 0 22
iV 0 10 12 2 1 25
iW 9 10 31 6 0 56
pZ 1 1 1 7 0 10
V 0 1 0 0 11 12

MLM
Hn 11 0 3 2 0 16
iV 0 10 11 2 0 23
iW 9 12 35 8 0 64
pZ 1 1 2 5 0 9
V 0 1 0 0 12 13

BLM
Hn 8 1 3 2 0 14
iV 0 10 11 2 1 24
iW 13 12 36 7 0 68
pZ 0 0 1 6 0 7
V 0 1 0 0 11 12

Total 21 24 51 17 12

5.5 Discussion and conclusions

In this chapter the generalized linear geostatistical model for digital soil type map-
ping was presented and its use illustrated with a real-world case study for updating
the soil map for cultivated peatlands. Predictive mapping with the GLGM is compu-
tationally intensive since modelling involves MCMC simulation and MC maximum
likelihood estimation of the model parameters, but feasible on a standard laptop
computer. For our case study with over 4 100 point observations and 55 000 predic-
tion locations, total computation time for parameter estimation and prediction with
a single (soil type-specific) GLGM was about 45 hours.

Validation results showed that the non-spatial MLM generated a more accurate soil
map than the GLGM. Furthermore, a comparison of the GLGM map with the BLM
map showed that inclusion of a spatial component in the model had considerable
effect on the predicted probabilities and the soil type distribution, although it did
not improve map accuracy. The fact that predictions with the spatial model were
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not more accurate than those with the non-spatial models was not completely unex-
pected given the substantial heterogeneity in soil conditions at short distances in the
Dutch cultivated peatlands, where very different soils can be found only few metres
apart (section 5.3.1). The three prediction models were able to predict the major spa-
tial patterns of soil variation but failed to capture the details. Nevertheless, this study
provides valuable insight into the performance of spatial and non-spatial method for
soil type mapping in the Dutch peatlands and can guide decisions on strategies for
nationwide updating of the peat areas of the 1:50 000 soil map in the near future.
One should be careful with generalizing the findings in this chapter to areas with
more natural landscapes where soil-landscape relationships are less disturbed by
human activities and soil cover is more homogenous. In such situation, spatial pre-
diction of soil type is more likely to benefit from using a spatial model. It would be
worthwhile to compare the performance of a spatial with a non-spatial model, both
calibrated with real-world data, for soil type mapping in a natural landscape.

The large difference between calibration purity and actual purity is striking. This
emphasizes the importance of validating soil maps with independent data, collected
by probability sampling (Brus et al., 2011). The difference might be attributed sim-
ply to chance: the calibration purity falls within two standard errors of the overall
purity. One other reason for the large difference we can think of is over-estimation
of the spatial continuity for soils Hn, iV and pZ (which exhibit the strongest spatial
autocorrelation, Table 5.2). The difference in calibration purity between the GLGM
and BLM is attributed to better representation of these soil types at the observation
locations by the GLGM map. Preferential sampling for data collection might have re-
sulted in over-estimation of the strength of spatial dependence for these three soils.
In the agricultural part of the study area soils Hn, iV and pZ are typically found
as large and small inclusions in the dominant iW unit. Soil surveyors focus on de-
lineating these inclusions on 1:50 000 scale, which might lead to biased selection of
sampling sites towards these soils. Occasionally sampling sites were discarded be-
cause the observed soil did not fit the soil surveyor’s general picture of soil variation
in the field under investigation. Another reason for over-estimation of the strength
of spatial dependence might just be a poor choice of the initial model parameters θ0.
Christensen (2004) warns that the choice of θ0 is not trivial. We took a pragmatic
approach and used variance parameters estimated from the deviance residuals as
initial estimates. Model parameters θ0 are used for MCMC simulation of the under-
lying but unobservable signal S(·). The simulated values are in turn used to estimate
θ by MC maximum likelihood. It is therefore expected that θ0 will have some effect
on θ̂ but we have no insight in the robustness of MC maximum likelihood estima-
tion against misspecification of the model. Instead of using initial estimates obtained
from the data, Diggle et al. (2002) and Ben-Ahmed et al. (2010) used a Bayesian ap-
proach.

The multinomial probability distribution was modelled via soil type-specific Bernoulli
distributions. This pragmatic approach was chosen because for binomial (Bernoulli)
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data the theory of GLGM has been worked out and software is available, whereas
for multinomial data this is not the case. Hartzel et al. (2001) and Hedeker (2003)
have shown that the multinomial logit model can be extended to incorporate non-
spatial Gaussian random effects. This MLM with random effects might be further
extended by incorporating additional parameters of a covariance function in the ran-
dom model component and Bayesian specification of the model.

The GLGM assumes that the Yi are mutually independent conditional on the un-
derlying Gaussian process S(·). Spatial dependence in Y is only modelled through
S, which implies that whereas the soil type probabilities have spatial structure, the
actual realizations of Y may be quite noisy, and possibly more noisy than is realis-
tic. For example, suppose that at two adjacent grid cells i and j the probabilities of
observing soil type A are P [(yi) = 1] = π(yi) = 0.8 and P [(yj) = 1] = π(yj) = 0.8.
Because of independence, the joint probability of observing soil type A at both lo-
cations is π(yi,j) = 0.82 = 0.64. A cluster of nine grid cells with equal probabilities
has a joint probability of only 0.13. However, since the same soil type often occurs
in larger patches these joint probabilities appear to be too small. The GLGM can-
not account for this effect because it assumes independent observations given the
spatial process S(·). An alternative to the GLGM is the autologistic model (e.g. Au-
gustin, 1996; Hoeting et al., 2000). In the autologistic model the data are modelled as
a locally dependent Markov random field. Here the probability at a prediction loca-
tion is modelled as a linear combination of observations in the neighbourhood and a
set of covariates. Thus the autologistic model can represent much more contiguous,
and perhaps more realistic, realizations of soil spatial variation. Autologistic mod-
els, however, can only be used for binomial-distributed data and suffer some severe
drawbacks (Dormann, 2007).

Concluding, the GLGM is based on a valid theoretical framework and can be fitted
with available geostatistical software, which makes it a potentially attractive model
for soil type mapping. The GLGM was applied to update a soil map of the Dutch
cultivated peatlands but gave no better predictions in terms of map purity than two
non-spatial models. Therefore the usefulness of the GLGM for future soil map up-
dating in the Dutch peatlands seems limited. Issues that require further investigation
are the extension of GLGM to multinomial data and the validity of the assumption
of conditionally independent observations in the context of soil type mapping.
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Chapter 6

Efficiency comparison of conventional and digital soil
mapping for updating soil maps of a cultivated peatland

This chapter compares the efficiency of digital soil mapping (DSM) methods for updating soil
type and property maps with that of conventional soil mapping (CSM) methods. For digital
soil type mapping the GLGM (presented in Chapter 5) was used. For soil property mapping
(SOM content and peat thickness) two methods are considered for both DSM and CSM.
For DSM these are the method proposed in Chapter 3 and the conventional geostatistical
method. For CSM these are the representative profile descriptions (RPD) and map-unit-
means (MUM) methods. In addition, the effect of mapping effort (expressed in a monetary
unit per ha) on accuracy is assessed for digital soil type and property maps. For CSM the
MUM method gave better results than the RPD. For DSM both methods gave similar results
in terms of accuracy. Validation results further illustrated that DSM methods produced soil
type and property maps that were of similar accuracy as those produced by CSM methods.
Furthermore, DSM maps were produced much more efficiently than the CSM maps: costs
per ha were a factor three to four smaller without compromising accuracy. This shows that
for future updating of soil information, DSM can be an attractive alternative to CSM.

Based on: B. Kempen, D.J. Brus, J.J. Stoorvogel, G.B.M. Heuvelink, F. de Vries
Submitted to Soil Science of America Journal



Chapter 6. Efficiency comparison of conventional and digital soil mapping

6.1 Introduction

Digital soil mapping (DSM; McBratney et al., 2003) has become an established alter-
native to conventional soil mapping (CSM; Soil Survey Division Staff, 1993) during
the first decade of the 21st century. The explosive increase in the use of DSM tech-
niques has been made possible because of rapid developments in computing and
information technology, increased availability of cheap and easily accessible digital
environmental data and fast methodological advances in the field of pedometrics
which has been supported by growing availability of (open-source) computer soft-
ware for statistical computing such as R (R Development Core Team, 2008). DSM is
nowadays widely applied to produce soil maps and populate soil databases across
the world (e.g. Lagacherie and McBratney, 2007; Hartemink and McBratney, 2008;
Sanchez et al., 2009; Boettinger et al., 2010).

In CSM soil maps are generally created using free survey. In free survey the soil
surveyor employs a conceptual (mental) soil-landscape model to select observation
locations at which the most useful information is likely to be obtained (Bregt, 1992b).
Landscape features as seen in the field or aerial photographs, available environmen-
tal data such as a DEM and past experiences of the surveyor in similar landscapes
are taken into account (Hewitt, 1993). CSM results in a soil type map and a set of soil
profile descriptions. Each map unit is characterized by one or more representative
soil profile of the soil types that comprise the map unit. These profiles are used for
the interpretation of the soil map (Bregt and Beemster, 1989). Conventional soil maps
are general-purpose soil maps: they provide information on the spatial distribution
(in three dimensions) of a wide range of soil properties.

In DSM (geo)statistical models are used to relate field observations on soil type or
property to readily available, spatially exhaustive environmental data. These data
should represent important soil forming factors that explain the spatial variation
of the target soil attribute. For example, derivatives from digital elevation models
(DEM) can represent the influence of topography on soil formation while satellite
imagery can represent the effects of vegetation and climate. Once a (geo)statistical
model is fitted to the data, i.e. the soil-landscape relationships are quantified, then
this model can be used to spatially predict the target soil attribute at unobserved
locations given the observed environmental data at these locations. Contrary to con-
ventional soil maps, maps obtained by DSM methods are typically specific-purpose
soil maps: a map is created of a specific soil property at a specific depth interval.
Multivariate methods can be used for DSM but these become prohibitive when a
large number of properties is considered. Furthermore, complex soil forming pro-
cesses might be difficult to quantify and to represent by environmental explanatory
variables, while these can be more easily taken into account in conventional soil
maps. Also, DSM methods for soil type are limited by the number of soil types that
can be handled (Brus et al., 2008).
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Conceptually DSM and CSM are very similar: both approaches use a soil-landscape
model to predict soil at unobserved locations. The main difference is that in CSM
the soil-landscape model is a qualitative (non-documented) model based on soil sur-
veyor expert-knowledge, while in DSM the soil-landscape model is a quantitative,
(geo)statistical model. Because of its qualitative nature, CSM is often considered
as much an art as science (Hewitt, 1993). Main criticisms of CSM include irrepro-
ducibility, soil bodies being represented as discrete, homogeneous entities, and the
lack of quantified measures of uncertainty (Hewitt, 1993; Goovaerts and Journel,
1995). DSM does not suffer from these shortcomings. Prediction models can be
stored and run again, different models of spatial variation (discrete, mixed, continu-
ous; Heuvelink, 1996) can be chosen and proper use of (geo)statistical methods result
in predictions with quantified uncertainty. In addition, DSM is assumed to be more
efficient than CSM. Here more efficient means that fewer soil observations (i.e. less
field work) are required to produce a map with similar accuracy. However, this as-
sumption has to our knowledge never been tested in the literature. Perhaps DSM
requires as many or more observations than CSM to reach the same accuracy. For
instance, the results in Chapter 4 showed that depth profiles modelled with DSM
methods for three-dimensional mapping of the soil organic matter (SOM) content
performed only marginally better than depth profiles obtained from representative
profile descriptions.

Issues on accuracy of DSM products and DSM efficiency have also become increas-
ingly important to soil survey in the Netherlands. Approximately 365 000 ha mapped
as peat soils on the 1:50 000 national soil map requires updating. Roughly one third
of these peatlands are cultivated. Intensive land use and deep drainage in combina-
tion with shallow peat layers has resulted in major changes in soil conditions since
the 1:50 000 survey was conducted in the 1970s. A 20 000 ha area of cultivated peat
soils in the province of Drenthe has been re-mapped with conventional survey meth-
ods in 2009 and 2010. However, updating the entire peat area in the Netherlands by
CSM is not a viable option given the high costs of such an undertaking. Map up-
dating in the near future will have to rely more and more on alternative, cheaper
methods such as DSM. The results presented in Chapter 2 on updating the exist-
ing 1:50 000 with DSM methods were promising, but did not meet the 70% purity
standard generally assumed for the 1:50 000 soil map.

In order to move DSM activities in the Netherlands forward from experimental to
operational phase, insight in the current performance of DSM methodology—for
updating soil type as well as soil property maps—in terms of map accuracy and
mapping efficiency with respect to CSM is essential. The objective of this chap-
ter therefore is to evaluate and compare the efficiency, in terms of mapping effort
and accuracy, of digital and conventional soil mapping methods for updating soil
type and property maps for a cultivated peatland in the province of Drenthe in the
Netherlands.
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6.2 Materials and methods

6.2.1 Study area

The study area covers 16 750 ha in the southeast corner of the province of Drenthe,
the Netherlands (latitude 52.67–52.85 N, longitude 6.85–7.09 E) (Fig. 5.1). The study
area is part of the man-made agricultural peat landscape that covers an extensive
area in the northeast of the country. Non-soil areas cover 2 950 ha.

Landscape

Until the 17th century, the study area was completely covered with vast highmoor
bogs. These bogs developed on late-Pleistocene, slightly undulating aeolian sand
deposits. Large-scale, systematic reclamation of the area started in the early 17th

century and lasted until the mid-20th century. The bogs were drained and the upper
part of the peat was excavated for use as a fuel. Deeper peat layers, consisting of
sedge and reed peat, were less suitable for fuel and left behind. To prepare the soil
for agriculture, peat remains were covered with sand from the vast network of canals
that were dug to drain the area and to transport the turf. The sand cover was levelled
and slivers of subsoil peat were mixed through it. Large areas of the reclaimed agri-
cultural peat soils were deeply cultivated during the second part of the 20th century,
which dislocated subsoil peat and sand layers. A few parts of the study area, mainly
in the southeast corner and central area, were never reclaimed and cultivated. These
areas are now highmoor nature reserves (1 800 ha). Not surprisingly, as a result of
the methods for reclaiming and cultivating the former highmoor swamps there is
considerable short-range variation in soil conditions such as the topsoil organic mat-
ter content and the thickness of the remaining peat layer. Furthermore, spatial het-
erogeneity at short distances increased over time by decomposition of peat remains
caused by deep drainage and intensive agricultural use.

Soils

The existing 1:50 000 national soil map of the study area, which was completed in
the 1970s and has become outdated, distinguishes four major soil types: three peat
soils and one mineral soil (Fig 6.1). Currently, a fifth soil type is found now that
the peat layer has been worn away by oxidation in large parts of the study area.
The 1:50 000 soil legend further subdivides these major soil types on the basis of for
instance presence of gley mottles and soil texture of mineral soils, thickness of the
peat layer in deep peat soils and peat type. Here, however, digital soil mapping
focusses on the five major soil types. This is a limitation of DSM methods for soil
type mapping; for CSM there is obviously no need for such generalization. The five
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major soil types are (reported areas refer to areas on the existing 1:50 000 map of the
study area):

• Reclaimed shallow peat soils (iW). Soils with at most 40 cm of peat within 80
cm from the surface and a man-made topsoil. Topsoil SOM content typically
ranges between 5–25% and can be highly variable at short distances as a result
of the reclamation process. These soils cover 3 590 ha or 22.4% of the area.

• Reclaimed deep peat soils (iV). Like the reclaimed shallow peat soils but with at
least 40 cm of peat within 80 cm from the surface. The peat layer can extend
below auger observation depth (∼ 120 − 150 cm below surface). These soils
cover 9 025 ha (56.2%).

• Raw peat soils (V). These are unreclaimed peat soils found in the few remaining
highmoor bogs and swamps. The original peat layer is largely intact and the
man-made topsoil is absent. These soils cover 3 175 ha (19.8%).

• Podzols (Hn). Soils with a podzol-B horizon that originally developed in the
late-Pleistocene sands before these were covered by peat in the Holocene. These
soils cover 266 ha (1.6%). Peat remains can be present in the soil profile, often
mixed with mineral material.

• Hydromorphic earth soils (pZ). These sandy soils developed in the late-Pleistocene
sands under somewhat wetter conditions than the podzols. They have a dark,
humic topsoil that directly overlays the C-horizon. Gley mottles can be present
in the subsoil. Although earth soils were not mapped in the study area during
the 1:50 000 soil survey, these are now found at locations where the overlying
peat layer has completely disappeared. Like the podzols, these soils can have
peat remains in the profile.

6.2.2 Data

Soil point data

The point dataset was collected by the free survey method during a soil survey in
2009 and 2010 and contains 4 168 observations (Fig. 6.3, top-left panel). Two types
of observations can be distinguished: soil profile observations (n = 1 715) and de-
lineation observations (n = 2 453). The former are made to determine where the
various soil mapping units occur. These observations locations are chosen purpo-
sively by the soil surveyor—who considers the selected locations ‘representative’
for the agricultural field that is surveyed—and have fairly regular spatial coverage,
except in nature reserves (forests, highmoor swamps) where locations are selected
based on accessibility. At the selected locations auger borings were made to describe
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Figure 6.1: The 1:50 000 national soil map for the study area with generalized legend.

and classify soil profiles according to the Dutch soil classification system for detailed
soil surveys (ten Cate et al., 1995). The SOM, sand and loam contents of the soil
horizons were estimated by hand. Delineation observations are made to assist plot-
ting of the map delineation boundaries. At the locations of these observations the
soil was classified (often not in full detail) but not described. Delineation observa-
tions can therefore not be used for soil property mapping. It is worth noting here
that DSM typically follows a different sampling strategy (e.g. Brus and Heuvelink,
2007a; Walvoort et al., 2010) than CSM. The sampling strategy applied in study can,
therefore, be suboptimal for DSM.

Environmental covariates

Nine data layers were available from which a suite of 27 environmental covariates
was derived (Table 5.1 provides an overview):

• Digital elevation model (DEM). A 25-m resolution DEM, constructed from LI-
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DAR measurements1. From the DEM four relative elevation layers were de-
rived by subtracting the local mean elevation within search radii of 250, 500,
750, and 1000 m from the actual elevation. These layers capture local relief.
One relative elevation layer (based on the 750-m search radius) was reclassi-
fied into layers with two, three and four classes to account for a possible non-
linear relation between soil and relative elevation. In addition, a layer with
historic elevation was constructed by inverse distance weighted interpolation
of a network of elevation measurements from the 1960s (1.2 ha−1). A layer
representing elevation change was computed from the actual and historic ele-
vation layers and reclassified into two classes. Elevation change is informative
because peat excavation and decomposition lower the surface.

• Land cover maps. This set contains five layers depicting land cover in 1900 (50-
m resolution), 1940 (25 m), 1960 (25 m), 1980 (25 m) and 2003 (25 m) (Clement
and Kooistra, 2003; Knol et al., 2003, 2004; Hazeu, 2005). The layer from 1900
distinguishes ten classes and was reclassified into a layer with two classes and
into a layer with three classes. The layer from 2003 distinguishes 23 classes and
was reclassified into four layers, each with a different combination of classes.
The layers from 1900, 1940, 1960, 1980 and 2003 were combined into a map that
represents reclamation period, i.e. the period when reclamation for agriculture
took place. Four layers were derived from the reclamation period map, each
with a different combination of reclamation periods.

• National Soil Map (Steur and Heijink, 1991). Polygon map at scale 1:50 000 as
described in section 6.2.1. In addition to soil type, five soil variables were de-
rived from map unit classifications: one variable representing peat type, three
variables representing peat thickness, and one variable indicating the status
(degraded or not degraded) of peat soils iV and V based on the results of a
quick-scan of these soils (van Kekem et al., 2005).

• Paleogeography map (Spek, 2004). Polygon map at scale 1:50 000 representing a
reconstruction of the geography of Drenthe around 1 000 AD, distinguishing
12 geographical units. The map was converted to a layer of 25-m resolution,
from which two new layers were extracted: one with the former extent of fen
peat, one with the former extent of highmoor.

6.2.3 Updating soil maps

This section briefly describes the methods used in this study to generate the updated
conventional and digital soil type and property maps. For a more elaborate descrip-
tion of the DSM methods for soil property mapping see Lark and Webster (2006) and
Chapters 3 and 4 and for soil type mapping Diggle et al. (2003); Diggle and Ribeiro Jr.
(2007) and Chapter 5.

1www.ahn.nl
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Figure 6.2: Schematic overview of the soil mapping methods.

Digital soil type mapping was done with the geoRglm package (Christensen and
Ribeiro Jr., 2002) and digital soil property mapping with the geoR and gstat pack-
ages (Ribeiro Jr. and Diggle, 2001; Pebesma, 2004) in R (R Development Core Team,
2008). In addition to soil type, the soil organic matter (SOM) content (in mass%)
of the topsoil (0–20 cm) and the thickness of the peat layer within 150 cm from the
soil surface were mapped. Two digital and conventional methods to generate the
soil property maps. For CSM these were i) representative soil profile descriptions
(RPDs) and ii) map unit means (MUMs). For DSM these were i) a full pedometric
approach (FPA), meaning that spatial prediction involves the updated digital soil
type map, and ii) the conventional pedometric approach (CPA), which is standard
universal kriging. Fig. 6.2 provides a schematic overview of the mapping methods.

The FPA was applied in addition to the CPA to investigate the merits of using an
updated 1:50 000 digital soil type map for spatial prediction. Soil type has proven to
be a useful covariate for soil property mapping (e.g. Heuvelink and Bierkens, 1992;
Brus et al., 1996; Voltz et al., 1997; Goovaerts, 2011). It might therefore be worthwhile
to update the soil map first and next use the resulting map as covariate for spatial
prediction, instead of using the existing, outdated soil map. An additional advantage
of using a digital soil type map (that represents soil type by probability distributions)
for prediction is that in that case soil type observed at the sampling locations may be
used as predictor (Chapter 3). Observed soil type typically has a stronger predictive
relationship with a soil property than mapped soil type because this relationship is
not confounded by soil map impurities.
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Soil type maps

Conventional soil mapping
The conventional soil type map was created by four experienced soil surveyors using
free survey at scale 1:50 000 with over 4 000 observations of soil type. A DEM with
5-m resolution was used to assist delineation of soil boundaries. Each map unit was
recoded to one of the five major soil types so that the map has the same legend as the
digital soil type map for accuracy comparison. A preliminary measure of accuracy
was computed from the soil map: the calibration purity. This is the proportion of
observation locations at which the soil map predicts the correct soil type.

Digital soil mapping
The generalized linear geostatistical model (GLGM) was used to map soil type. The
GLGM is central to the model-based geostatistical framework (Diggle et al., 1998)
and can be used to model non-Gaussian distributed spatial data. The GLGM has
three components (Diggle and Ribeiro Jr., 2007). The first component is the signal
process S(·), which is a real-valued Gaussian spatial process with E[S(x)] = m,
var[S(x)] = σ2, and correlation function ρ(h). Here m is a spatial trend d(xi)

Tβ,
where d(xi) is a vector of explanatory variables at location xi and β is a vector of
trend coefficients. The second component is the measurement process Y (·). Realiza-
tions of this process are the observed data y(x1), . . . , y(xn), which are considered
measurements of the signal process. The Y (xi) are assumed to follow a common
distributional family (e.g. Bernoulli, Poisson, binomial or Gaussian), depending on
the mechanism that generated the data, and are mutually independent conditional
on the signal. The responses have conditional means E[Y (xi)|S(·)]. The third com-
ponent is the link function g(·), which links the conditional mean E[Y (xi)|S(·)] to the
linear predictor S(xi). The GLGM is thus defined as:

g(E[Y (xi)|S(·)]) = S(xi) = d(xi)
Tβ + U(xi) , (6.1)

where U(xi) is a second-order stationary, Gaussian distributed, spatial process with
zero mean and variance σ2.

Soil type data can be considered multinomial data when the number of outcome cat-
egories, the soil types, is larger than two. Theory for fitting a GLGM for multinomial-
distributed data, however, has not been worked out, nor is there available software
that can fit such model. Therefore a pragmatic approach was adopted in which each
soil type k, k = 1, 2, . . . ,K, was considered a Bernoulli-distributed random variable
Yk, which can be modelled with the binomial logit-linear GLGM (Chapter 5). Real-
izations yk(xi) of Yk(xi) take value 1 if soil type k is observed at a sampling location
i, i = 1, 2, . . . , n, and 0 otherwise. There are five soil types in the study area. Each soil
type was modelled separately with a logit-linear GLGM. Next, the soil type-specific
GLGMs were used to predict five binomial probabilities at the nodes of a 50-m raster
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covering the study area, which were scaled to multinomial probabilities so that they
sum to one. The soil type with the largest probability at each location was used to
create the soil map.

Estimation of the model parameters of the GLGM as well as spatial prediction with
this model is complex. It involves repetitive use of Markov Chain Monte Carlo meth-
ods (Minasny et al., 2011) to obtain simulations of the unobserved signal process S(·)
and Monte Carlo maximum likelihood estimation of the model parameters (Chris-
tensen, 2004). These methods are discussed in detail in section 5.2. Also for the
digital soil type map the calibration purity was computed.

Soil property maps

Conventional soil mapping
Note that to derive the RPD and MUM soil property maps the updated conventional
soil type map with the full 1:50 000 legend has been used.

Representative soil profile descriptions. The two soil property values were derived from
the RPDs (de Vries, 1999) associated to the map units of the updated soil map. These
values were then assigned to the map delineations to which they are linked. All
locations within a map unit thus receive the same value.

Soil map unit means. At each soil profile observation location (n = 1 715) the two soil
property values were derived from the soil profile description. Next, the average for
each property was computed for each map unit from the sampling locations located
within the selected map unit. Like in the RPD method, all locations within a map
unit receive the same value.

Digital soil mapping
Both soil properties were spatially predicted by universal kriging (Lark and Webster,
2006). This model can be defined as:

Z(x) = d(x)Tβ + ε(x) , (6.2)

in which Z(x) denotes the soil property, d(x) is a vector of covariates at location x, β
is a vector of trend coefficients and ε is a zero-mean, second-order stationary, spatial
dependent random function. Once the parameters of the universal kriging model—
the trend parameters and the variance parameters of the residual—are estimated,
preferably by residual maximum likelihood (REML) (Lark and Cullis, 2004), then
these can be used to predict soil property Z at prediction location x0:

Ẑ(x0) = d(x0)Tβ +
n∑
i=1

λi(zi − d(xi)
Tβ) , (6.3)
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in which λi is the kriging weight associated to sampling location xi, i = 1, 2, . . . , n,
and z(xi) is the observed soil property at xi. Two different methods were used to
calibrate the universal kriging model.

Full pedometric approach. In the FPA the actual (observed) soil type at the sampling
locations is used as a covariate in the universal kriging model. This implies that at
prediction locations actual soil type must be used to predict the soil property. The
actual soil type is unknown at unsampled locations but can be represented by a
probability model (Chapter 3), i.e. the digital soil type map. This method requires
soil type-specific predictions of the soil properties at each prediction location which
are averaged, using the probabilities as weights, to obtain the final prediction. For
further details on model selection and spatial prediction see Chapter 4, in which a
similar procedure as here was followed. Both properties were predicted for 25-m
blocks centered at the nodes of a 50-m raster that covers the study area.

Conventional pedometric approach. The CPA is the standard application of universal
kriging for soil spatial prediction. The same procedure for covariate selection and
parameter estimation as for the FPA was followed. Both soil properties were pre-
dicted for 25-m blocks centered at the nodes of a 50-m raster by applying Eq. 6.3.

6.2.4 Mapping efficiency: effort

Mapping efficiency is here defined as the accuracy of a soil map that can be obtained
given a certain amount of effort invested in the mapping process. Thus method
A is more efficient than method B when method A produces a soil map of similar
accuracy as method B but with less effort or produces a map of larger accuracy with
similar effort. In this study mapping effort was expressed in observations ha−1 as
well as e ha−1. Note that the latter is not directly proportional to the number of
observations used to create a soil map.

The aim of the mapping efficiency assessment was two-fold: i) to compare the ef-
ficiencies of CSM and DSM, ii) to assess the effect of different mapping efforts on
the accuracy of the digital soil maps. For the second aim four point datasets with
different sampling intensities were used. For each of these the cost of mapping in
e ha−1 was calculated. Unfortunately, the effect of different mapping efforts on the
accuracy of soil maps could only be assessed for DSM and not for CSM, since con-
ventional soil type maps based on different sampling intensities were not produced
during the 2009/2010 soil survey.

This section explains how the mapping effort of the various soil mapping methods
was computed, while in the next section focusses quantifying map accuracy. In this
chapter ‘days’ refers to person-days.
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Conventional soil mapping

Sampling intensity. The soil type map is based on 4 168 field observations, which
equals an sampling intensity of 0.3 ha−1. Soil property maps are generated from
point data with the same density since this requires the soil type map.

Costs. Only the direct costs for production of a 1:50 000 soil map and a dataset with
soil profile descriptions were considered. These are all variable costs, depending on
the mapped hectarage. Fixed costs such as write-off of materials, server costs for
hosting the soil information system and reporting were not taken into account. The
costs of a conventional soil map can be divided into four cost components, all of
which are a function of area:

• Fieldwork preparation: 3 500 ha day−1. This includes preparation of field maps,
elevation maps and landowner maps.

• Fieldwork: 75 ha day−1. Fieldwork consists of describing and classifying soil
profiles at observation locations from auger bores, collecting plotting obser-
vations and preliminary drawing of soil boundaries on the field maps. After
consulting experienced soil surveyors it was estimated that an experienced sur-
veyor can map 75 ha per day at scale 1:50 000.

• Operational costs: 125 e day−1. These cover operational expenses such as car
fuel.

• GIS work: 500 ha day−1. Digitizing the soil boundaries from the field maps and
entering them into a GIS. Also a soil attribute table is prepared that stores the
attributes associated with the soil map polygons. The result is a GIS-layer of
the soil map that can be uploaded to the soil information system.

• Soil profile dataset compilation: 1 000 profile descriptions day−1. Processing of the
soil profile descriptions. The descriptions are read from a field computer, checked
for errors and then converted into a data format that can be uploaded to the
soil information system and used for other soil data applications.

The total cost per component was estimated from the study area size and the cost per
person-day. From these the total cost of a conventional soil survey was calculated
and expressed as the mapping effort in e ha−1. The cost of the soil property maps
equals the cost of the soil type map plus the cost of one extra person-day to apply
the RPD and MUM methods.

Digital soil mapping

Sampling intensity. Four digital soil type maps were produced using four point
datasets with different sampling intensities (Fig. 6.3). Soil property maps were pro-
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duced using three point datasets (datasets 2, 3 and 4; listed below) because for these
datasets field observations on the soil properties were available.

1. Complete dataset (n = 4 168). Sampling intensity is 0.30 observations ha−1. The
soil type map created with this dataset reflects how well DSM performs when
exactly the same data are used as for the conventional soil type map.

2. Soil profile observations only (n = 1 715). Sampling intensity is 0.12 observations
ha−1.

3. Two-thirds of the soil profile observations (n = 1 146). Sampling intensity is 0.08
observations ha−1. The observation locations were selected from dataset 2 by
spatial coverage sampling (Walvoort et al., 2010) so that the selected observa-
tion locations cover the study area as uniformly as possible.

4. One-third of the soil profile observations (n = 572). Sampling intensity is 0.04
observations ha−1. Subset selection as for dataset 3 but with lower density.

Costs. The cost of a digital soil mapping can be divided into five variable cost com-
ponents (V; costs are a function of area or method) and three fixed cost components
(F):

• Fieldwork preparation: 3 500 ha day−1, (V). Preparation of field and landowner
maps.

• Environmental data collection: 5 days, (F). Collection and processing of environ-
mental covariates.

• Data collection: n observations day−1, (V). Fieldwork effort for DSM is measured
in the number of soil observations that can be collected in one day and de-
pends on sampling intensity. Lower densities mean that observation locations
are more widely spaced. This means that more time is required to reach the
locations since distances have to be covered by foot. Two experienced soil sur-
veyors provided estimates on how many soil profile descriptions from auger
bores can be collected in one day for the sampling intensities of datasets 2-4.

• Operational costs: 125 e day−1, (V). See CSM.
• Soil profile dataset compilation: 1 000 profile descriptions day−1, (V). See CSM.
• Digitizing delineation observations: 600 observations day−1, (V). This cost com-

ponent only applies to dataset 1 as this is the only dataset that includes the
delineation observations.

• Preparation point dataset: 1 day, (F). Preprocessing of the dataset with soil pro-
file descriptions (e.g. deriving the soil properties of interest from the profile
descriptions).

• Geostatistical modelling: n days, (F). It was assumed that computer scripts for
spatial interpolation of soil type and soil property data were available. This is
a likely scenario in the near future (Heuvelink et al., 2010). Only the time was
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counted that it would take an experienced pedometrician to tailor the com-
puter scripts to a specific case study, run the computer scripts, inspect the re-
sults and adjust the scripts if deemed necessary. For soil type mapping it was
estimated that this requires 5 days as each of the five soil types has to be mod-
elled separately. Soil property mapping with the FPA was estimated to take 7
days: 5 days to map soil type and 2 days to prepare and run soil-type specific
universal kriging models. Soil property mapping with the CPA was estimated
to take 1 day.

Like for CSM, the total cost per component was estimated from the study area size
and the cost per person-day. From these the total cost of each digital soil mapping
was calculated as well as the mapping effort in e ha−1. Table 6.1 shows which of
the soil maps produced in this study are considered for assessment of mapping effi-
ciency and Table 6.2 of the cost components of the various soil mapping methods.

Table 6.1: Overview of the soil maps produced in this study.

Dataset Mapping effort Conventional soil mapping Digital soil mapping
(obs. ha−1) Soil type Soil properties Soil type Soil properties

RPD MUM FPA CPA

1 0.30 X X X X
2 0.12 X X X
3 0.08 X X X
4 0.04 X X X

Table 6.2: Overview of the main cost components of each of the soil mapping
methods. ST refers to soil type and SP to soil property.

Cost component Sampling intensity
0.30 ha−1 0.12 ha−1 0.08 ha−1 0.04 ha−1

ST SP ST SP ST SP ST SP

Conventional soil mapping
Fieldwork preparation (ha day−1 ) 3 500 3 500
Soil mapping (ha day−1 ) 75 75
Operational costs fieldwork (e day−1 ) 125 125
Soil profile dataset compilation (obs. day−1)) 1 000 1 000
Mapping in GIS (ha day−1 ) 500 500
Application RPD/MUM methods (days) 1

Digital soil mapping
Fieldwork preparation (ha day−1 ) 3 500 3 500 3 500 3 500 3 500 3 500 3 500
Environmental data collection (days) 5 5 5 5 5 5 5
Data collection (obs. day−1 ) 26 16 16 14 14 12 12
Operational costs fieldwork (e day−1 ) 125 125 125 125 125 125 125
Soil profile dataset compilation (obs. day−1 ) 1 000 1 000 1 000 1 000 1 000 1 000 1 000
Digitizing plotting observations (obs. day−1 ) 600
Preparation point dataset (days) 1 1 1 1 1 1 1
Model application (days) 5 5 7/1* 5 7/1 5 7/1

* For the two methods of digital soil property mapping: FPA/CPA
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Figure 6.3: Point datasets with different sampling intensities: complete dataset (top-left,
n = 4 168), soil profile observations only (top-right, n = 1 715), two-thirds of the soil profile
observations (bottom-left, n = 1 146), one-third of the soil profile observations (bottom-right,
n = 572).

6.2.5 Mapping efficiency: accuracy

Sampling strategy

The soil maps were validated with independent probability sample data. These data
were collected with a stratified simple random sampling design (Brus et al., 2011).
The mapping units of the digital soil type map created with dataset 1 were used as
strata. Within each stratum, sampling locations were selected in three steps. First,
in each stratum n 50-m pixels of the prediction grid were randomly selected with
replacement. Second, within each selected pixel one of the quadrants was randomly
selected. Third, the selected quadrant, or 25-m block, was sub-sampled by simple
random sampling. Validation data was collected at five point locations within each
block.
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Chapter 6. Efficiency comparison of conventional and digital soil mapping

The digital soil type maps are on point support and thus should be validated with
observations on point support. The basic sampling unit for soil type, therefore, is
a point location. The soil profile was described and classified from an auger bore
observation at the first of the five selected locations in each selected block. Soil prop-
erty maps are on 25-m block support. The sampling units for validation should have
the same support. For SOM content an aliquot of the 0–20-cm soil layer was taken
with a gouge auger at each of the five selected locations in each selected block. The
five aliquots were bulked into a composite sample. The SOM content of this sample
is used as an estimate of the block-mean. The thickness of the peat layer was deter-
mined from an auger bore observation at each of the five sampling locations. The
five observed thicknesses were averaged to obtain an unbiased estimate of the mean
peat thickness of the block.

A total of 125 sampling units were selected, which were allocated to the strata roughly
proportional to their surface areas. Sampling units where permission was denied or
proved otherwise impossible to sample were replaced with randomly selected lo-
cations from a reserve list. Fieldwork took place in March 2011. The composite
soil samples were oven-dried at 105° C for at least 12 hours, and then sieved and
crushed. The SOM content (in mass%) of a dry sample was determined with the
weight loss-on-ignition method. The samples were combusted at 550° C for at least
3 hours. SOM content was determined from the weight difference before and after
combustion.

Map quality measures

Measures of map accuracy for soil type and property maps are discussed only briefly
here. For a more elaborate review, including the estimation of these measures and
their variances see Brus et al. (2011) and Chapters 2 and 4.

Soil type maps. One accuracy measure was considered for the soil type maps: the
overall purity. Overall purity is defined as the proportion of the mapped area in
which the predicted soil type, which is the soil type as depicted on the map, equals
the true soil type. In other words, it is the areal proportion correctly classified. To
estimate the overall purity an indicator variable is created, which takes the value 1 if
the observed soil type equals predicted soil type and 0 otherwise. For each stratum
the average of this indicator is computed. The overall purity is then estimated as the
weighted average of the stratum purities, with weights equal to the relative sizes of
the strata.

Soil property maps. Two accuracy measures were considered for the soil property
maps: the mean error (ME), which is a measure for prediction bias and the (root)
mean squared error ((R)MSE), which is a measure for prediction accuracy. Estimates
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6.3. Results and discussion

of these parameters are based on the prediction error, which is the difference be-
tween predicted and true value at a validation location. The ME is estimated as the
weighted average of the strata means of the error, with weights equal to the rela-
tive sizes of the strata. The MSE is estimated as the weighted average of the strata
means of the squared error. The RMSE is calculated as the square root of the es-
timated MSE. Sampling the 25-m block at a limited number of locations induces
sampling error since taking a composite sample from another set of point locations
would result in a different estimate of the block mean. This results in a biased es-
timate of the MSE (but not of the ME) (Brus et al., 2011). The sub-sampling error
was quantified by sub-sampling 25 randomly chosen blocks twice. From the 25 du-
plo samples the block sub-sampling variances were calculated and from these the
mean sub-sampling variance. The raw estimate of the MSE estimate was corrected
by subtracting the mean sampling variance.

Map comparison. To compare the accuracies of the pedometric soil maps with those of
the conventional soil maps, variable qi is defined. For the categorical soil type maps
qi is calculated as ydi −yci , where yi is an indicator that takes value 1 or 0 at validation
location i, superscript d indicate digital soil map and c conventional soil map. The
mean purity difference (MPD) of two soil maps, q̂, is estimated in similar fashion
as the overall purity. To test whether the estimated MPD differs significantly from
zero it was assumed that the estimated MPD follows a normal distribution. For the
soil property maps, qi was calculated as the difference between the squared errors:
(edi )

2 − (eci )
2.

6.3 Results and discussion

6.3.1 Conventional soil mapping

Soil type map

Fig. 6.4 shows the soil type map. Extensive changes in soil are evident when this
map is compared with the simplified 1:50 000 soil map made in the 1970s (Fig. 6.1),
illustrating the necessity to update the current map for the cultivated peatlands. The
updated and old soil maps correspond for only 31% of the area. The calibration
purity is 83.3%.

Soil property maps

The soil property maps are shown in Fig. 6.5. The SOM RPD map predicts generally
larger SOM contents than the MUM map. The MUMs of the reclaimed peat soils are
roughly 5% smaller than the SOM contents derived from RPDs whereas the MUMs
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Figure 6.4: Soil type map created with conventional soil mapping.

of the raw peat soils are 10-25% larger. Differences between predicted peat layer
thickness are small. The MUM method predicts somewhat less thick peat layers (5–
10 cm) for the reclaimed shallow peat soils. Also, the MUM method predicts very
shallow peat layers (3–7 cm) in the mineral map units whereas the RPD method
predicts absence of peat. These very shallow layers are remains of much thicker peat
layers that were once present.

6.3.2 Digital soil mapping

This section presents and discusses the digital soil type and property maps created
from all available field data. That is dataset 1 for soil type mapping (n = 4 168) and
dataset 2 for soil property mapping (n = 1 715). The effects of sampling intensity on
geostatistical modelling and spatial prediction are discussed in next section.
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Figure 6.5: Maps depicting the organic matter content of the 0–20-cm soil layer and the
thickness of the peat layer as predicted by conventional soil methods: representative profile
descriptions (RPD) and soil map unit means (MUM).

Soil type map

Table 6.3 provides the selected models and the estimates of the variance parame-
ters for digital soil type mapping with the GLGM. The environmental covariates are
listed in order of the strength of correlation between covariate and soil type based on
univariate analysis. Not surprisingly, the 1:50 000 soil map and its derivatives (peat

157



Chapter 6. Efficiency comparison of conventional and digital soil mapping

Table 6.3: Selected trend models and estimates of the variance parameters for digital soil type
mapping.

Soil n Covariates Variance aa Spatial
type (m) dep.b

0.30 obs. ha−1, n = 4 168
Hn 935 PEATTHK3+EC2+PEATTYP+COV3a+REL3 0.99 726 0.34
iV 1 023 PEATTHK2+SOIL+COV3a+EC2+REL1000+PEATSTAT 0.95 846 0.34
iW 1 670 COV3a+PEATTHK2+RECLAM3+SOIL+REL4+HIGHMOOR 1.24 348 0.17
pZ 303 PEATTYP+FENPEAT+PEATTHK3 0.47 1 112 0.39
V 237 COV3a+PEATTHK2+PEATTYP 0.06 387 0.24

0.12 obs. ha−1, n = 1 715
Hn 414 PEATTHK3+EC2+PEATTYP+COV2+REL2 0.84 1 015 0.26
iV 394 PEATTHK3+COV3a+PEATSTAT 0.78 850 0.34
iW 632 PEATTHK3+COV3a+PEATCOL+REL2 1.23 262 0.54
pZ 131 PEATTYP+FENPEAT+PEATTHK3+COV2 0.47 1 254 0.45
V 144 COV3a+PEATTYP 0.09 339 0.33

0.08 obs. ha−1, n = 1 146
Hn 246 PEATTHK3+PEATTYP+COV2+REL2 0.71 850 0.32
iV 272 PEATTHK3+COV3a+PEATSTAT 0.76 569 0.22
iW 432 PEATTHK3+COV3a+REL2 1.30 540 0.24
pZ 89 PEATTYP+FENPEAT+PEATTHK3 0.41 640 0.39
V 107 COV3a+PEATTYP 0.07 266 0.30

0.04 obs. ha−1, n = 572
Hn 105 PEATTHK2+PEATTYP+REL2 0.91 633 0.30
iV 134 PEATTHK3+COV3a+PEATSTAT 0.88 597 0.56
iW 235 PEATHK3+COV3a+REL2 1.05 300 0.65
pZ 46 PEATTYP+FENPEAT+PEATTHK2 0.46 401 0.33
V 52 COV2a 0.08 557 0.24

a Distance parameter of the exponential model. The practical range is 3a.
b The spatial dependence is the ratio between spatially structured variance and total variance [partial

sill/(nugget+partial sill)].

type and peat layer thickness) are strong predictors of current soil type. Also the
land cover map with three classes (agriculture, forest/rangeland, highmoor) proved
to be an effective predictor. This can be explained by the fact that mineral soils Hn
and pZ and thin agricultural peat soils almost exclusively occur under agriculture
whereas raw peat soils almost exclusively occur in (forested) highmoor areas. Deep
agricultural peat soils (iV) mainly occur under agriculture but are also found under
rangeland, where they are the dominant soil type. The rangeland area was under
agriculture until the mid-1990s. At that time agriculture was abandoned and natural
vegetation restored, which slowed peat decomposition. Covariates related to eleva-
tion and landscape type were also significant but less important. Roughly 15 to 40%
of the residual variance is spatially structured at medium distances (practical range
of the exponential variogram models varies approximately from 1000–3500 m). The
weak to moderate spatial autocorrelation highlights the short-distanced heterogene-
ity in soil conditions in the cultivated peatlands.

Fig. 6.6 (top-left) shows the soil type map generated with dataset 1. The calibration
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purity of the digital soil type map is 61.9%. The general spatial pattern of soil distri-
bution is similar to that of the conventional soil map. The digital and conventional
maps correspond for 70% of the area. Mineral soils have smaller area on the digital
map than on the conventional map (2 500 ha versus 3 000 ha). The maps have the
smallest correspondence for map unit pZ: only 38% of the area depicted on the con-
ventional soil map is mapped as pZ on the digital soil map. For the podzol unit Hn
this is 55%. Map unit iW has larger area on the digital map (6 900 ha versus 6 350 ha).

0.30 obs/ha

Easting (km)

N
or

th
in

g 
(k

m
)

525

530

535

540

255 260 265

0.12 obs/ha

Easting (km)

N
or

th
in

g 
(k

m
)

525

530

535

540

255 260 265

0.08 obs/ha

Easting (km)

N
or

th
in

g 
(k

m
)

525

530

535

540

255 260 265

0.04 obs/ha

Easting (km)

N
or

th
in

g 
(k

m
)

525

530

535

540

255 260 265

Soil type
Hn
iV
iW
pZ
V

Figure 6.6: Soil type maps created with digital soil mapping using four different sampling
intensities.
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Soil property maps

Table 6.4 lists the selected models and the REML estimates of the variance parame-
ters for digital soil property mapping with the full pedometric approach (FPA) and
conventional pedometric approach (CPA). The observed SOM contents were log-
transformed to reduce positive skewness of the residuals (FPA: 1.92, CPA: 3.33). The
predictions and their variances were back-transformed for visualization and valida-
tion. The peat thickness residuals were mildly skewed only (FPA: 0.31, CPA: 0.66)
and were left on the original scale. As expected, observed soil type was for both
properties the most important predictor in the FPA. The FPA uses observed soil type
as covariate in the trend model. Mapped soil type was offered as covariate in the
CPA but was not selected for the most parsimonious model. Instead ‘peat thickness
class’ and ‘land cover’ were selected for SOM content (both indicative for soil type,
Table 6.3), whereas soil map-derived covariates ‘peat thickness class’ with three out-
come levels and ‘peat status’ were selected for peat layer thickness. The FPA trend
models fitted the observed data (much) better than the CPA trend models, as judged
from the fraction of explained variance. Observed soil type proved a strong predic-
tor for peat layer thickness: the residual variance in the FPA is less than half of that
in the CPA. This is not surprising because peat layer thickness is the most important
diagnostic soil property of the five soil types considered in this study. For both soil
properties and pedometric methods, between 35 and 40% of the residual variance is
spatially structured at practical ranges between 2 000 and 3 000 meters.

Table 6.4: Selected prediction models for digital soil property mapping.

Obs. density n Covariates R2* Variance a† Spatial
(ha−1) (m) dep.‡

SOM content - full pedometric approach
0.12 1 715 SOIL.OBS+RECLAM3 0.73 0.155 731 0.39
0.08 1 146 SOIL.OBS+RECLAM3 0.74 0.159 999 0.33
0.04 572 SOIL.OBS+RECLAM3 0.78 0.172 943 0.38

SOM content - conventional pedometric approach
0.12 1 715 PEATTHK2+COV3a+RECLAM3 0.63 0.218 718 0.37
0.08 1 146 PEATTHK2+COV3a+RECLAM3 0.66 0.206 831 0.33
0.04 572 PEATTHK2+COV3a+RECLAM3 0.66 0.215 851 0.36

Peat layer thickness - full pedometric approach
0.12 1 715 SOIL.OBS+COV3a+PEATTHK2 0.80 374 769 0.36
0.08 1 146 SOIL.OBS+PEATTHK2 0.80 399 569 0.38
0.04 572 SOIL.OBS+PEATTHK2 0.79 411 401 0.65

Peat layer thickness - conventional pedometric approach
0.12 1 715 PEATTHK3+COV3a+PEATSTAT 0.55 890 1 060 0.40
0.08 1 146 PEATTHK3+COV3a+PEATSTAT 0.56 882 1 117 0.33
0.04 572 PEATTHK3+COV3a+PEATSTAT 0.55 884 522 0.41

* The R2 of the selected trend model.
† Distance parameter of the exponential model. The practical range is 3a.
‡ Spatial dependence: the ratio between spatially structured variance and total variance.
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Fig. 6.7 (top- and bottom-left) shows the maps of topsoil organic matter content
created with the two pedometric approaches. The maps are very similar with only
some minor difference along the eastern border and slightly larger SOM contents in
the north area in the FPA map compared with the CPA map. Large SOM contents
are predicted in the highmoor areas with raw peat soils. Predicted SOM contents
in the agricultural areas are typically smaller than 10%, with somewhat larger SOM
contents for the reclaimed peat soils than for the mineral soils. An explanation for
the similarity might be that topsoil organic matter contents of the agricultural soils
(Hn, pZ, iV, iW) are very similar. As a result the FPA estimate is largely independent
of the estimated probabilities.

Fig. 6.8 (top- and bottom-left) shows the maps of predicted peat layer thickness.
Again the general spatial patterns are very similar, with deep peat layers along the
north-western and east-central borders and the southeast corner. These areas coin-
cide with the areas where deep peat soils are found. At a more detailed level, how-
ever, the two digital maps show distinct differences. The spatial pattern in the FPA
map is controlled by the predicted probability distributions and mark either areas of
large confusion between soil types or small confusion, resulting in a less smooth pre-
dicted surface compared with the CPA map. In general, the predicted surfaces of the
pedometric maps are much smoother than those of the conventional maps because
of kriging and probability weighted averaging (in case of FPA). Also predictions by
pedometric methods are location-specific and follow the spatial pattern of the field
data.

6.3.3 Mapping efficiency: effort

Sampling intensity

Table 6.3 shows the soil type-specific trend models and variance parameters for each
of the four point datasets for digital soil type mapping. The trend models are very
similar. Covariates derived from the current 1:50 000 soil map remain the most im-
portant predictors together with land cover and, to a lesser extent, elevation-related
covariates. Only some of the less important covariates are dropped from the models
compared with the trend model for the full dataset. They lost their significance as a
result of a decreasing number of calibration observations. Estimates of the variance
parameters are reasonably stable for the four sampling intensities. Reducing sam-
pling intensity did not appear to have a very pronounced effect on the information
content of the data. Given the great similarities between the geostatistical models, it
is not surprising that the soil type maps created by these models are also very alike,
as shown in Fig. 6.6. All maps show a similar general pattern of soil spatial variation,
with raw peat soils (V) in the southeast and west-central regions, deep agricultural
peat soils (iV) stretching along the western border and in the south-central part, min-
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eral soils (pZ and Hn) dominating the northeast corner as well as some larger patches
in the southwest. The maps mainly differ in the extent and distribution of the min-
eral soils. As the observations density decreases the mineral soils seem to become
less well represented, especially on the maps based on densities 0.08 ha−1 and 0.04
ha−1.

Sampling intensity hardly affected the geostatistical models for the soil properties
(Table 6.4). The trend models are identical, except for the peat thickness model in the
FPA with density 0.12 ha−1, and the variance parameters have similar magnitude.
The ranges are fairly constant and the spatial dependence parameter varies between
0.35–0.40. Only the variance parameters of the peat thickness models vary consid-
erably between the sampling intensities. As peat layer thickness is a spatially much
more heterogeneous property in the study area than SOM, it is not surprising that
this effect first becomes apparent for this property.

Costs

Table 6.5 shows the cost of each component for the different mapping methods and
sampling intensities. Total cost of the conventional soil type map is 156 ke or 11.3
e ha−1, which is 1.17 times or 1.6 e ha−1 more expensive than the digital soil map.
As in CSM (e.g. Bie and Beckett, 1971; Bregt, 1992a; Finke, 2000), fieldwork is the
largest cost component in DSM. Collection of field data makes up 86% of the total
costs for conventional soil type mapping and between 75% and 88% of the total costs
for digital soil type mapping, depending on sampling intensity. A reduction of the
number of field days has therefore great effect on the total cost of soil mapping. The
costs of digital soil type mapping decreased by a factor 2.8 from 9.7 e ha−1 for a
density of 0.30 observations ha−1 to 3.4 e ha−1 for a density of 0.04 observations
ha−1. Compared with conventional soil type mapping, digital soil type mapping at
a density of 0.04 observations ha−1 decreases total costs by a factor 3.3 for the study
area.

It is worth noting that because of the fixed costs for geostatistical modelling, the
cost-savings DSM compared to CSM increase with the size of the survey area. For
example if the size of the area increases with a factor 22 (roughly the size of the area
with peat soils in the Netherlands that requires updating) then the total cost of CSM
would increase by a factor 22 as all cost components are a function of area, whereas in
our example the total cost of DSM would increase by a factor 16 for a density of 0.04
observations ha−1 making DSM 4.5 times cheaper than as CSM (3.5 Me vs 0.77 Me).
However, if the size of the area decreases with a factor 10 then the cost of DSM for
a density of 0.04 observations ha−1 would decrease by roughly a factor 5, making it
more expensive than CSM. The question that now remains is how reducing mapping
costs by reducing the number of sampling locations affects map accuracy.
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Table 6.5: Costs in ke of the soil mapping components. ST refers to soil type and SP to soil
property.

Cost component Sampling intensity
0.30 obs ha−1 0.12 obs ha−1 0.08 obs ha−1 0.04 obs ha−1

ST SP ST SP ST SP ST SP

CONVENTIONAL SOIL MAPPING

Fieldwork preparation 2.8 2.8
Soil mapping 112 112
Operational costs fieldwork 23 23
Soil profile dataset compilation 1.5 1.5
Mapping in GIS 17 17
Application RPD/MUM methods 0.8
Total Costs (ke) 156.3 157.1
Costs (e ha−1 ) 11.3 11.4

DIGITAL SOIL MAPPING

Fieldwork preparation 2.8 2.8 2.8 2.8 2.8 2.8 2.8
Environmental data collection 4 4 4 4 4 4 4
Data collection 97.3 65.1 65.1 49.9 49.9 29.2 29.2
Operational costs fieldwork 20 13.4 13.4 10.3 10.3 6 6
Digitizing plotting observations 3
Soil profile dataset compilation 1.5 1.5 1.5 0.8 0.8 0.4 0.4
Preparation point dataset 0.8 0.8 0.8 0.8 0.8 0.8 0.8
Geostatistical modelling 3.8 3.8 5.3/0.8 3.8 5.3/0.8 3.8 5.3/0.8
Total Costs (ke) 133.2 91.4 92.9/88.4* 72.4 73.9/69.4 47 48.5/44
Costs (e ha−1 ) 9.7 6.6 6.7/6.4 5.2 5.4/5.0 3.4 3.5/3.2

* Costs for FPA/CPA.

6.3.4 Mapping efficiency: effects of method and effort on accuracy

Soil type mapping

Table 6.6 contains the validation results of the soil type maps. Overall purity of the
conventional map is 55.7% while that of the digital map is slightly lower (54.9%). The
difference is not significant (p = 0.430). The overall purity of the original 1:50 000
soil map (Fig. 6.1) was estimated as only 27.4% and confirms the necessity to up-
date. The large difference between the calibration (83.3%) and overall purity of the
conventional map is striking. It is an effect of the preferential selection of observa-
tion locations during survey. The soil surveyors selected locations they judged rep-
resentative and avoided for example field edges and small terrain features such as
depressions. Occasionally sampling locations were discarded because the observed
soil did not fit the soil surveyor’s general picture of soil variation in the field un-
der investigation. This shows the importance of validation with independent data
collected by probability sampling (Brus et al., 2011).

The equal performance of the two mapping methods for soil type is rather surprising
as beforehand was expected that CSM would outperform DSM given the 22% differ-
ence in calibration purity. Both methods mapped the general patterns of soil distri-
bution but failed to capture the details. The reason for that is the complexity of soil
spatial variation. Soil conditions can be very heterogeneous, even at short distances,
as a result of reclamation and cultivation methods (see section 6.2.1). The landscape
and soils are man-made and as a result soil-landscape relations are often disturbed
or even absent. This makes it very challenging to map soils on the basis of point ob-
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servations and landscape features, even with CSM at scale 1:50 000, and makes large
impurities in the map units inevitable. For this reason I think that an overall purity
between 55 and 60% is an adequate result, despite the fact that a purity of 70% is the
generally accepted standard for the 1:50 000 soil map in the Netherlands. It will be
hard to improve on these results at the scale level of the survey.

Reducing mapping effort in three steps from 9.7 e ha−1 to 3.4 e ha−1 did not have a
negative effect on the accuracy of the digital soil type maps produced. On the con-
trary, the overall purities of the maps created with reduced sampling intensities were
larger than the purity of the full dataset map: 6.7% (p = 0.005) for the 0.12 ha−1 map,
3.6% (p = 0.100) for the 0.08 ha−1 map, and 0.9% (p = 0.381) for the 0.04 ha−1 map.
Since the four prediction models had different trend models, autocorrelation struc-
tures and calibration data, it is hard to pinpoint the cause of these purity differences.
More important is that a soil type map could be produced with DSM at 30% of the
costs of CSM but with similar accuracy.

Table 6.6: Validation results for the soil type maps. The standard errors of the estimated
purities are between brackets.

Sampling intensity Conventional soil mapping Digital soil mapping
(ha−1) Costs (e ha−1) Purity Costs (e ha−1) Purity

0.30 11.3 55.7 (4.5) 9.7 54.9 (4.4)
0.12 6.6 61.6 (4.3)
0.08 5.2 58.5 (4.4)
0.04 3.4 55.8 (4.4)

Soil property mapping

The mean sub-sampling variance of SOM was 8.3%2 and that of the peat layer thick-
ness 27.3 cm2. The estimated MSEs were corrected for this sub-sampling variance.
Table 6.7 shows the validation results for the conventional and digital soil property
maps.

Bias. The estimated global mean errors show that predictions of SOM with the
conventional MUM-method and with both DSM methods are severely biased (p <
0.000). The source of the bias are the (hand-estimated) SOM contents in the point
dataset, which were used to calibrate the geostatistical models and to estimate the
map unit means. Measured SOM contents at the 125 validation locations were on
average 3.7% larger than the hand-estimates at the same locations, which almost ex-
actly equals the bias. As the field observations on SOM at the validation locations
were consistent with those at the calibration locations, it was assumed that the cali-
bration data were equally biased. Because the bias component makes up 10–15% of
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the MSE reported for the DSM and CSM-MUM, it was decided to report not only the
MSE in Table 6.7 but also the variance component of the MSE: the variance of the
prediction error (VPE). The VPE is calculated by subtracting the squared ME from
the MSE. This measure allows a more objective evaluation of the accuracy of the dif-
ferent prediction methods and of the effect of mapping effort on accuracy as the bias
is not caused by the methods. Note that the reported RMSEs are computed from the
MSEs. Furthermore, the MSEs are used for statistical comparison of the maps. There
was no evidence for bias in the predicted peat thicknesses.

Conventional Soil Mapping. The conventional MUM method outperformed the RPD
method for both SOM (p = 0.120) and peat (p = 0.054) based on MSE. For SOM the
difference in prediction performance was mainly attributed to map unit V (MSE dif-
ference: 145, p = 0.178). MUM also outperformed RPD for the other map units but
absolute MSE differences were small and not significant for map units iV (p = 0.374)
and iW (p = 0.219). For peat thickness MUM outperformed RPD for all map units
(each with p < 0.060), except map unit V. Predictions of SOM and peat thickness
using RPDs and the old 1:50 000 soil map were also validated. Predictions were se-
riously biased (ME-SOM: 7.3%, ME-PEAT: 38 cm) and RMSEs were twice as large as
those obtained with predictions with RPDs and the updated soil map (RMSE-SOM:
22%, RMSE-PEAT: 53 cm).

Digital Soil Mapping. For SOM the FPA results in smaller MSE than CPA for each of
the three densities. Only for density 0.08 ha−1 the difference was found to be sig-
nificant (p = 0.048). For peat thickness CPA outperformed FPA in terms of MSE but
the differences were weakly significant only, with p ≈ 0.200 for each case. These
results show that soil property prediction with FPA did not benefit from the (much)
better fitting trend models compared with CPA (Table 6.4). The merits of FPA to soil
property mapping strongly depend on how well actual soil type is represented by
the location-specific probability distributions. If prediction uncertainty of soil type
is large, i.e. predicted probabilities are marginally different from each other, then
the benefit of soil type-specific predictions of soil properties with a geostatistical
model calibrated on observed soil type followed by weighted-averaging with soil
type-specific probabilities as weights is lost. In the study area the uncertainty about
the actual soil type is fairly large, especially in the agricultural areas dominated by
mineral soils and shallow peat soils (Chapter 5), which might explain why FPA did
not outperform CPA in all cases. Although the FPA did not result in more accu-
rate maps of peat thickness, the method has some additional advantages compared
with CPA such as a supposedly more realistic representation of the prediction error
variance. Moreover, FPA allows to quantify the proportion of the prediction error
variance that arises from uncertainty about the actual soil type at a prediction loca-
tion (Chapter 3). It is questionable, however, whether these advantages are worth
the extra investment of approximately 0.30 e ha−1.
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For SOM mapped with FPA, the effect of mapping effort on accuracy is not unam-
biguous. Reducing sampling intensity from 0.12 ha−1 to 0.04 ha−1 did not signifi-
cantly affect the MSE (p = 0.256). The accuracy of the map based on the dataset with
0.08 observations ha−1 is larger than the 0.12 ha−1 map (p = 0.083) and the 0.04 ha−1

map (p = 0.096). Closer examination of the validation data, however, reveals that the
MSE difference between the 0.08 ha−1 map and the other two maps can be attributed
to a single validation location with an extreme error for the 0.12 ha−1 and 0.04 ha−1

maps. For SOM-CPA the 0.12 ha−1 and 0.08 ha−1 maps have similar accuracy, while
the accuracy of the 0.04 ha−1 map is smaller than that of the other maps (p = 0.054).
For peat-FPA the accuracy steadily decreases as mapping effort decreases. The MSE
of the 0.04 ha−1 map is 16% smaller than that of the 0.12 ha−1 (p = 0.013) and the
RMSE is 8% smaller. The accuracy of the peat-CPA maps show a similar trend with
p = 0.054 for the MSE difference between the 0.12 ha−1 and 0.04 ha−1 maps. Based
on these results peat thickness mapping seems more affected by reduction of map-
ping effort than SOM mapping. This is not surprising since the spatial variation in
peat thickness is much larger than the variation in SOM content, as illustrated by
the validation sample. For the agricultural soils Hn, iV, iW and pZ the average SOM
contents are reasonable similar: 10.0%, 13.5%, 12.4% and 9.8%. For unreclaimed peat
soil V this is 81%. For peat thickness the soil-type averages are much more variable:
6 cm for Hn, 68 cm for iV, 27 cm for iW, 8 cm for pZ and 116 cm for V. In general
a spatially more variable soil property requires more observations for geostatistical
modelling than a less variable property to achieve a similar level of accuracy.

So far the effects of DSM method and mapping effort on map accuracy were evalu-
ated on basis of statistical significance. I will now shortly evaluate the results based
on relevance for practice. For SOM the difference in RMSE between the 0.12 ha−1

and 0.04 ha−1 maps is less than 0.5%, which is hardly relevant considering the aver-
age SOM content in the study area is 18.8% (estimated from the validation sample).
The same is true for peat thickness. Here the difference in RMSE between the 0.12
ha−1 and 0.04 ha−1 maps only is 1.7 cm, while the average peat thickness is 39 cm.
Doubling the mapping effort in terms of costs ha−1 results in a small, statistically
significant but not relevant increase in map accuracy and is certainly not worth the
extra effort.

Conventional versus Digital Soil Mapping. I first compare conventional soil property
maps with the digital maps created with the largest mapping effort. I focus here on
the digital maps created with CPA because this method was more efficient than FPA.
SOM predictions by the RPD approach were slightly better than those obtained by
CPA, although the difference in MSE was not significant (p = 0.341). The MSE of the
MUM map is less than half of that of the digital soil map. Despite being quite large,
the difference in MSE is only moderately strong significant (p = 0.113). This is the
result of the large variance of the squared prediction errors for DSM caused by two
extremes. These extreme errors are located in anthropogenic artefacts resulting from
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the agricultural reclamation of the former highmoor. One location is located on top
of a small remnant of the former highmoor in the middle of agricultural fields. The
other location is located on a small stretch of reclaimed land in the large highmoor
nature reserve in the southeast of the study area. At these atypical locations soil con-
ditions strongly differ from those in the immediate surroundings. If these artefacts
are not captured by environmental covariates in DSM, then prediction errors can be
very large. In CSM anthropogenic artefacts, such as two meter-high peat ridges in
flat agricultural land, can be easily recognized by the soil surveyor and drawn on
a soil map. Peat thickness predictions by DSM were substantially better than those
by CSM. The MSE obtained by DSM was 24% lower than the MSE obtained by the
MUM method (p = 0.105) and 32% lower than that of RPD method (p = 0.033).
Location-specific predictions of peat thickness clearly are more accurate than predic-
tions by a constant mean or representative value of a map unit. This can be explained
substantial short-range spatial variation of peat thickness: the five map units of the
conventional soil map explain only 51% of the total variance of peat thickness in the
validation dataset (for SOM this is 69%). This type of variation is better modelled by
a continuously varying surface (e.g. as obtained by kriging) than by a discrete model
of spatial variation.

Reducing the effort in terms of costs ha−1 by 50% increases the MSE for peat thick-
ness, but the MSE is still smaller than of those conventional methods, although the
difference with the MUM method was not significant (p = 0.304). For SOM, reducing
costs by 50% did not have effect on the performance of DSM compared with CSM.
These results show that DSM is much more efficient in generating up-to-date soil
property maps than CSM. DSM generates maps that are as good (SOM) or slightly
better (peat thickness) than the conventional maps at less than one-third of the costs
of CSM. For the study area this means that digital soil property mapping is 112 ke
cheaper than conventional soil property mapping.

The results presented here compare well with findings in studies from the 1980s
and early 1990s (Van Kuilenburg et al., 1982; Bregt and Beemster, 1989; Leenhardt
et al., 1994; Brus et al., 1996). In these studies relatively simple pedometric (krig-
ing) methods—no use is made of environmental covariates—were compared with
conventional methods. All these authors found no significant differences in map
accuracy between predictions by (ordinary) kriging and predictions based on (large-
scale, 1:10 000-1:50 000) conventional soil maps. This study also shows that a large-
scale soil map can be as good a model of spatial variation than the geostatistical
model. However, conventional soil maps come at a cost. If existing soil maps are
in need of updating, such as in the Dutch cultivated peatlands, then DSM is a much
more efficient choice than CSM.

Mean versus Median Squared Error. If the (squared) error distribution is (strongly)
skewed then the mean might be a misleading measure of the ‘average’ error. For
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such distribution the median error is a more robust statistic of the ‘average’ error.
The squared error distributions of SOM and peat thickness are both strongly skewed,
mainly resulting from reclamation artefacts in the landscape, as explained above.
These artefacts are part of study area and thus validation locations from these arte-
facts should not be excluded from the validation sample. Another source of skew
is the presence of two distinct sub-populations of errors with very different means
and variances. One sub-population comprises the agricultural areas and the other
the highmoor areas. The median squared errors are reported in Table 6.7. Striking
are the large differences with the MSEs. Separate validation statistics were computed
for the two sub-populations of errors (data not shown). Separate analysis for the two
sub-populations, however, does not result in noteworthy differences with the con-
clusions regarding the effect of methods and effort on mapping efficiency presented
earlier. The same is true for analysis on basis of the median squared error instead of
the MSE.

Table 6.7: Validation results for the soil property maps with estimates of the mean error
(ME), mean squared error (MSE), variance component of the MSE (VPE), Median is the
median of the squared errors, root mean squared error (RMSE) and the coefficient of determi-
nation R2 of fitting measured against predicted values. The standard errors of the estimates
of the ME and MSE are between brackets.

Sampling intensity
0.30 ha−1 0.12 ha−1 0.08 ha−1 0.04 ha−1

SOM Peat SOM Peat SOM Peat SOM Peat

CONVENTIONAL SOIL MAPPING - RPD

ME -0.72 (0.91) 1.7 (2.5)
MSE 109 (37.3) 697 (127)
VPE 108 694
Median 18.5 196
RMSE 10.8 26.4
R2 0.76 0.62
Costs (e ha−1 ) 11.3

CONVENTIONAL SOIL MAPPING - MUM

ME -3.15 (0.73) 2.5 (2.3)
MSE 66.5 (15.6) 624 (119)
VPE 56.6 618
Median 21.2 131
RMSE 7.5 24.9
R2 0.86 0.64
Costs (e ha−1 ) 11.3

DIGITAL SOIL MAPPING - FPA

ME -3.78 (1.03) 2.16 (2.09) -3.75 (0.95) 2.52 (2.15) -4.68 (1.12) 2.46 (2.25)
MSE 134 (56) 505 (102) 125 (51) 534 (113) 142 (56) 585 (121)
VPE 119 500 111 527 120 579
Median 16.8 149 19.4 199 19.4 219
RMSE 11.6 22.5 11.7 23.1 11.9 24.2
R2 0.75 0.68 0.77 0.66 0.73 0.63
Costs (e ha−1 ) 6.7 5.4 3.5

DIGITAL SOIL MAPPING - CPA

ME -3.67 (0.99) 0.92 (2.03) -3.68 (0.99) 0.73 (2.09) -3.49 (1.02) 0.71 (2.18)
MSE 138 (58) 470 (86) 138 (57) 500 (98) 147 (63) 543 (104)
VPE 124 469 124 499 135 543
Median 22.1 121 23.0 159 19.4 168
RMSE 11.7 21.7 11.7 22.4 12.1 23.3
R2 0.76 0.70 0.76 0.68 0.75 0.66
Costs (e ha−1 ) 6.4 5.0 3.2
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6.3.5 Relevance

The Dutch Ministry of Economics, Agriculture and Innovation has commissioned an
update of the 1:50 000 soil map for the areas with peat soils. This area covers 365 000
ha. Resources available for the nationwide update are not sufficient to carry out the
soil survey with conventional methods. More efficient methods, such as digital soil
mapping, will have to be used or will have to be integrated with conventional soil
mapping to accomplish the update with the given resources. Outside the Nether-
lands, integration of DSM methods within conventional soil survey is already be-
coming common practice (Bui, 2007; Howell et al., 2008; Moore et al., 2010). In the
Netherlands however, DSM is in an exploratory phase but it has to move forward
now to the operational phase. Insight in efficiency of DSM for updating soil type as
well as soil property maps is essential to plan update strategies in the near future.

The presented results apply to peatlands that are under intensive cultivation and one
must be careful with generalizing the results to other landscapes and other areas in
the world. Yet, this study provided valuable insights for future (digital) soil mapping
in general. It put DSM to the test and showed that, at least for updating, state-of-
the-art DSM methods do not necessarily produce more accurate maps than CSM.
Still, DSM is attractive for updating because it is much more efficient than CSM.
Finally, cultivated peatlands are of global interest and are the focus of a great variety
of research projects such as carbon stock inventory and monitoring (Beilman et al.,
2008; Grønlund et al., 2008; Leifeld et al., 2011), carbon sequestration potential of
soils (Freibauer et al., 2004) and estimation of greenhouse gas emissions and balances
(Maljanen et al., 2010; Berglund and Berglund, 2010, 2011). Such studies require
accurate and up-to-date information on soil conditions and their spatial distribution.
It is up to the (pedometric) soil mapping community to provide these data.

6.4 Conclusions

The study presented in this chapter evaluated and compared the mapping efficiency
of conventional and digital soil mapping for updating soil maps for a cultivated
peatland in the Netherlands. Validation of the created soil maps with independent
probability sample data generally showed little difference in prediction performance
between the two metods. Differences in accuracy that were found to be statistically
significant were often not relevant for practice.

For soil property mapping with conventional methods the ‘map unit means’ method
gave better results than the ‘representative profile method’. For digital soil map-
ping the conventional pedometric approach (classical universal kriging) performed
as well as the full pedometric approach (soil type-specific prediction of soil proper-
ties followed by probability-weighted averaging using probabilities derived from a
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pedometric soil type map) for SOM content and better than the full pedometric ap-
proach for peat thickness. Updating the soil type map first and then using this map
for spatial prediction of soil properties did not seem worth the extra mapping effort.

For SOM mapping CSM performed as well as DSM, while DSM performed slightly
better for peat thickness. Although differences in accuracy were small, the DSM
maps were produced much more efficiently. Costs per ha were a factor three to
four smaller than for CSM. This shows that DSM exploits the available information
much more efficient than CSM. The digital soil type map had similar accuracy as the
conventional soil type map but was produced at less than one-third of its costs. These
results were somewhat surprising and counter-intuitive. It was anticipated that for
soil type mapping CSM would outperform DSM but that for soil property mapping
DSM would produce better results given the assumed superiority of DSM in terms
of accuracy and representation of spatial variation. Based on these results I conclude
that it is challenging in a data-rich country such as the Netherlands where detailed
and high-quality (yet outdated) soil information is available, to improve on maps
made with conventional methods by using state-of-art methods for soil mapping.
Nevertheless, DSM is still an attractive alternative to CSM for updating soil maps
because of its much greater mapping efficiency.
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7.1 Introduction

In the Netherlands there is a growing demand for quantitative, up-to-date and reli-
able soil information to support policy-making for a wide variety of environmental
and agro-economic issues. The general-purpose 1:50 000 soil map with nationwide
coverage, originally designed for soil suitability analysis and central to the Dutch soil
information system BIS, is the main source of soil information to date. Yet, this map
increasingly fails to provide the type of information desired by the current genera-
tion soil data users. First, the national soil map is becoming outdated in areas with
peat soils and so are soil property maps that are typically derived from this map.
Second, most recent soil data application require (raster) maps with quantitative in-
formation on the spatial distribution of soil properties, preferably with quantified
accuracy and at various spatial scale levels. In 2009 the Dutch national government
commissioned a six-year research programme, BIS2014, with the aim to update and
upgrade soil information in BIS. Digital soil mapping (DSM) might be very use-
ful to resolve current shortcomings of soil spatial information in the Netherlands.
However, the merits of using DSM methods for updating soil spatial information
as well as the efficiency of these methods compared with conventional methods has
not been investigated and evaluated yet. This thesis aimed to address these issues
and assessed whether DSM can be a viable alternative to conventional soil mapping
(CSM) for updating soil information in the Netherlands.

This chapter summarizes and discusses the main research findings of this thesis and
their implications for the future of DSM for Dutch soil mapping in section 7.2. Sec-
tion 7.3 takes a somewhat broader perspective and discusses implications of oper-
ational DSM for soil information systems, with special attention to BIS. Finally, the
main conclusions are presented in section 7.4.

7.2 Updating soil information with digital soil mapping

It is estimated that 60% of the area mapped as peat soils on the national 1:50 000 soil
map (or 365 000 ha) requires updating. The dire need for updating is exemplified by
the low purity (27%) of the generalized 1:50 000 map of the study area in Chapters
5 and 6, and the substantial bias and large prediction errors in soil property maps
derived from this map (section 6.3.4). This thesis therefore focussed on the devel-
opment, exploration and evaluation of several DSM methods for updating soil type
and soil property maps in the Netherlands. Subsection 7.2.1 summarizes the main
research findings for each of the sub-objectives defined in section 1.4.1 and answers
the research questions on a general level. In the three ensuing subsections, several
aspects related to operational DSM that merit further attention are discussed. These
are relevant environmental covariates for updating, the use of legacy data, and the
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validation of soil maps. Finally, some further thought is given on operationalizing
DSM for updating the 1:50 000 soil map based on the findings in this thesis (subsec-
tion 7.2.5).

7.2.1 Methodological contributions and research findings

Updating the 1:50 000 soil type map

Chapters 2 and 5 explore the use of respectively simple and state-of-the-art DSM
methods for updating the 1:50 000 map. In Chapter 2, a framework is presented for
soil type mapping with multinomial logit model (MLM). In this framework special
attention is given to the important role of pedological knowledge in the process of
selecting a DSM model. MLMs were used to re-map the soil within ten map units of
the generalized 1:50 000 map. No additional fieldwork was done for data collection.
Only legacy soil point data obtained from BIS were used to investigate the utility of
these data for updating. Soil mapping not only focussed on the areas with peat soils
but also on the mineral soils as it was hypothesised that DSM with high-resolution
covariates and a large point dataset could also be used to increase the purity of the
mineral map units by mapping out impurities. The latter can be regarded as upgrad-
ing of the soil map through disaggregation of the map units. The validation results
(Table 2.7) showed that improvement in map purity (6%) compared with the existing
generalized 1:50 000 map was modest and mainly attributed to better representation
of soil distribution within the peat map units of this map. However, map unit pu-
rities and class representations for the four peat soils depicted on the updated map
were still small, particularly those of the shallow peat soils. Disaggregation of min-
eral map units to increase detail did not seem to be a worthwhile effort based on the
Drenthe case study. A reason for this can be the high level of detail already present
in the existing 1:50 000 map. The median size of the map delineations in Drenthe is
21 ha, which is only 3.5 times larger than the minimum delineation size based on
cartographic principles. The map units themselves reflect regional and local effects
of topography and parent material. Disaggregating map units would therefore ap-
ply soil mapping on field-scale level, given the small size of the map delineations.
At this scale level not only short-range variation in (micro)topography and parent
material affect soil distribution but also anthropogenic factors such as levelling of
microrelief, raising the soil surface to increase its bearing capacity, topsoil removal
and deep cultivation, the effects of which cannot be properly captured by the bio-
physical covariates that were used for modelling.

The MLM ignores spatial dependence in the data, and might therefore be subopti-
mal for soil type mapping. Chapter 5 addresses this issue and investigates if a soil
map generated by a spatial model is more accurate than one generated by a non-
spatial model. This chapter introduces the generalized linear geostatistical model
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(GLGM) and shows how this model can be used for soil type mapping. The GLGM
is central to the methodological framework of model-based geostatistics (Diggle and
Ribeiro Jr., 2007), which can be considered state-of-the-art in DSM (Lark et al., 2006).
A pragmatic approach was adopted in which the five soil types in the study area
were modelled separately with binomial logit-linear GLGMs. This has the advan-
tage that for each soil type a different set of covariates can be used. In the MLM
one set of covariates is used, which may result in sub-optimal models for the in-
dividual logit functions. Prediction with soil type-specific GLGMs resulted in five
binomial probabilities at each prediction location, which were scaled to multinomial
probabilities by dividing the binomial probabilities by their sum. Validation showed
that for the cultivated peatlands use of the GLGM did not result in more accurate
predictions than use of the non-spatial MLM. The implications of these results in
the context of operational digital soil type mapping within the BIS2014 project are
further discussed in section 7.2.5.

Digital soil type mapping methods predict probability distributions of soil type at the
nodes of a prediction grid. A soil map can then be derived from these distributions
as well as measures that quantify the uncertainty associated with the predictions
such as the Shannon entropy (Chapter 2) and the confusion index (Chapter 5). The
former has the advantage that it takes the entire probability distribution into account,
while the latter has a more intuitive interpretation. Furthermore, up-to-date digital
soil type maps that represent soil type by probability distributions can be used to
generate soil property maps (Chapters 3 and 4).

Updating soil property maps

It is beyond doubt that general-purpose soil type maps provide valuable information
on the spatial distribution of soil properties and that these maps should be used, if
available, for geostatistical modelling of soil properties (e.g. Goovaerts and Journel,
1995; Brus et al., 1996; Liu et al., 2006). First updating a soil type map with DSM and
then using this map for soil properties mapping might therefore be advantageous.
In addition, digital soil type maps represent soil type by probability distributions
and this offers new possibilities for spatial prediction of soil properties that fully
exploit the information provided by these maps. Availability of a full probability
distribution of soil types at sampling locations means that instead of mapped soil
type, observed soil type can be used as covariate. This has the advantage that the
relationship between soil property and soil type is not confounded by impurities in
the map units, which might result in more accurate predictions of the target property.

In Chapter 3, a model for spatial prediction of quantitative soil properties is devel-
oped that exploits the information provided by an updated digital soil type map.
The model was applied to map the topsoil organic matter content, using the soil
type map created in Chapter 2. Validation of the results showed that there was no
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strong evidence for better prediction performance of the proposed model over the
conventional kriging method. Similar results were found in Chapter 6; this time for
two different soil properties and for trend models that included additional covari-
ates to soil type. These results indicate that success of the method depends on how
well the probability-based soil type map represents the actual soil type. If there is
large uncertainty about the prevailing soil type at prediction locations then the ad-
vantage of prediction based on a strong, informative relationship between soil type
and property (as was shown in Chapters 3 and 6) is undone by probability-weighted
averaging of the soil type-specific predictions with marginally different probabili-
ties. Despite little improvement in prediction performance, the model developed
in Chapter 3 has some advantages related to quantification of prediction accuracy
compared to the conventional kriging method that might favour its use (section 3.5).

Current need for quantitative, up-to-date information on the spatial distribution of
soil properties is not only restricted to two dimensions. Data on variation of soil
properties with depth is becoming increasingly important in agro-environmental
modelling and soil resource assessment and monitoring (e.g. de Groot et al., 2005;
Kros et al., 2011). An important objective of this thesis therefore was to develop a
method for modelling the three-dimensional spatial distribution of soil properties.
Chapter 4 presents such method and illustrates its use for the soil organic matter
(SOM) content mapping. It makes use of the methodology developed in Chapter
3 and a digital soil type map (for the illustrative case study the map developed in
Chapter 2 was used). The presented approach combines pedological knowledge
with geostatistical modelling, which is an important difference with previous studies
on the topic of three-dimensional soil mapping (Minasny et al., 2006; Malone et al.,
2009; Mishra et al., 2009). The method predicts not a single predicted depth func-
tion at each prediction site but a probability distribution of soil-type specific depth
functions. Modelling probability distributions of soil-type specific depth functions
is conceptually appealing. The methodology is closely related to the conventional
approach for three-dimensional modelling of soil variation. As in the conventional
approach, a soil type map forms the starting point. For each of the soil types depicted
on the map a model for the soil property depth profile is defined. In the conventional
approach discontinuous (stepped) functions derived from representative soil profile
descriptions are used as depth model. In the presented pedometric approach these
functions are refined for each soil type individually based on characteristics of the
depth profile of the soil property of interest. This refinement likely better represents
the true depth profiles. Additional advantages compared to the conventional ap-
proach are described in section 4.4. However, despite these advantages SOM stocks
predicted with conventional depth functions derived from representative profile de-
scriptions were of similar accuracy as predictions by more sophisticated pedometric
depth functions.

The proposed methodology for three-dimensional modelling of soil spatial variation
is data-demanding but this is not likely to hamper application in other areas in the
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Netherlands given the data-rich environment. Application might rather be limited
by the number of soil types, or better, by the number of functional depth profiles that
are required to model the vertical variation of a specific soil property—in Chapter 4,
five functional depth profiles were defined to model the vertical variation of SOM
in ten soil types (Table 4.3). Applying the presented method for soil mapping in an
area with a great number of functional profiles might become tedious.

One aspect of three-dimensional mapping of depth functions that has not been con-
sidered in this thesis is the uncertainty associated with the predicted depth func-
tions. Recently, Malone et al. (2011) proposed to use prediction intervals to quantify
the accuracy of predicted continuous depth functions. Perhaps more interesting than
the accuracy of the predicted functions itself, is to quantify the effect of the uncer-
tainty associated with the predicted function parameters on properties derived from
the functions (e.g. the SOM stock). This can be done using Monte Carlo stochas-
tic simulation of the depth function parameters. Another issue regarding digital soil
property mapping that has not been addressed in this thesis but that is worth further
research, is DSM of soil property dynamics. Soil point data in BIS are mainly used for
generating ‘static’ soil property maps, i.e. the spatial distribution of soil properties
when the data were collected. Environmental policy questions, however, increas-
ingly focus soil dynamics, i.e. on quantifying and mapping temporal change of soil.
For instance change in SOM content (Reijneveld et al., 2009; Hanegraaf et al., 2009),
peat thickness, phosphate saturation degree, or soil subsidence rate (Hoogland et al.,
2011). Future soil mapping activities will likely shift more and more from ‘static’ soil
mapping to soil monitoring and mapping soil change. This requires methods for
spatio-temporal DSM, of which Webster and Heuvelink (2006), Heuvelink and Grif-
fith (2010) and Minasny et al. (2011) provide recent examples.

Accuracy and efficiency of digital and conventional soil mapping for updating

DSM methods are nowadays widely applied to produce soil maps (e.g. Boettinger
et al., 2010). Despite these efforts little is known about the efficiency of DSM methods
in terms of cost per ha mapped, the relationship between costs and map accuracy
and its relation to the efficiency of CSM methods. McBratney et al. (2003) and more
recently Grunwald (2009) identified the economics of DSM as a relevant topic for
further research since DSM is gradually becoming operational. Issues on accuracy of
DSM products and DSM efficiency become also increasingly important to soil survey
in the Netherlands. Whether DSM can be an alternative to CSM for updating is
partly determined by the efficiency of DSM compared to that of CSM, which was
investigated in Chapter 6.

Accuracy assessment of soil maps is an important topic in this thesis. Soil maps are
of little value if their accuracy is unknown. Validation of soil maps should therefore
be an integral part of any DSM procedure. Nevertheless, Grunwald (2009) found in
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a DSM review study that more than one third of ninety recent DSM studies did use
any performance test. Information on map accuracy is also imperative for evalua-
tion and comparison of different soil mapping methods, which is key to each chap-
ter in this thesis. Each of the digital soil maps created in this thesis was validated
with independent data. The importance of using independent data for validation
was illustrated by large differences between calibration purity and actual purity in
Chapters 2 and 5. Comparing predictions with observations at calibration sites gen-
erally over-estimates the actual purity. Also the theoretical purity does not always
provide a good measure of actual purity as is shown in Chapter 2 and for example
by Brus et al. (2008). The validation datasets used in this thesis were all collected by
a design-based sampling strategy involving probability sampling and design-based
estimation of accuracy measures, which is preferred over other methods because es-
timators of map quality and associated standard errors are unbiased and model-free
(Brus et al., 2011). An important aspect when designing the sampling strategy is the
support of the validation observations; these should be equal to the support of the
predictions (Chapter 6). Map quality measures used for soil type maps were overall
purity, map unit purity and class representation. Those for soil property maps were
the mean error (ME), which is a measure for bias; and the (root) mean squared error
((R)MSE), which is a measure for accuracy.

Chapter 6 investigates the efficiency of DSM with respect to CSM for updating soil
type and property maps. The digital soil type map created for a small part of the
cultivated peatlands (Chapter 5) had similar accuracy as the conventional soil map
(Table 6.6) but mapping costs per ha were a factor 1.2 lower (Table 6.5). Further anal-
ysis on the effect of mapping effort on accuracy of digital soil maps revealed that a
soil type map produced with roughly one-seventh of the observations used in con-
ventional mapping, had similar accuracy as the conventional map, while costs per
ha were a factor 3.3 lower. This shows that DSM much more efficiently exploits the
information in the data than CSM. The purities of the digital soil type maps in Chap-
ters 5 and 6 roughly varied between 55% and 60%. These results may seem modest at
first, but comparison with the purity of the updated conventional map (55%) shows
that these purities are roughly what can be realistically expected in the cultivated
peatlands given the invested effort. The highly heterogeneous nature of soil spatial
variation in this landscape and disturbed relationships between soil and landscape
features complicates soil mapping. In this respect, map purities reported in Chapters
5 and 6 are quite adequate. Furthermore, the validation results in Chapters 2, 5 and
6 showed that the prediction models were able to capture the general patterns of soil
spatial variation. The models differentiated peat and mineral soils very well but had
difficulty in predicting the type of peat soil, which is determined by thickness of the
peat layer and topsoil lithology.

Evaluation of accuracy and efficiency for soil property mapping gave results sim-
ilar to those for soil type mapping. The difference in accuracy between the two
methods is small for both SOM content and peat thickness. Differences that were
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found, were generally not relevant for practical purposes. Updating soil property
maps with DSM, however, was roughly three times more efficient than with CSM.
The results from Chapter 6 also showed that 1:50 000 soil map is a very adequate
model for predicting the spatial distribution of soil properties—assuming the map is
up-to-date—which can be attributed to the high level of detail in the map in combi-
nation with the generally strong association between (basic) soil properties and soil
type. The predictive capability of the map is exemplified by an example from the
study area in Chapter 6. Here the updated conventional soil map explains 90% of
the variation in SOM content in the validation dataset and 73% of the variation in
peat thickness.

Concluding, validation results in Chapters 4 and 6 show that it is very challeng-
ing in a data-rich country such as the Netherlands, where detailed and high-quality
soil information are available, to improve on predictions made with conventional
methods by using state-of-art DSM methods. The fact that soils and landscapes in
the Netherlands are intensively managed (disturbed) contributes to this challenge.
Nevertheless, the results of Chapter 6 indicate that DSM can be a cost-effective alter-
native to conventional methods for updating without compromising map accuracy.
This makes it an attractive alternative to CSM. Mapping with DSM methods is three
times more efficient as mapping with CSM methods. These findings are encouraging
for future update activities. It should be kept in mind, however, that these findings
apply to the cultivated peatlands. One should be careful with generalizing the re-
sults to other soilscapes and even to other types peatlands, such as for example the
fen meadow landscape in the western and northern part of the Netherlands.

7.2.2 Covariates for digital soil mapping

Throughout this thesis a great variety of (biophysical) environmental covariates were
used as predictors in the DSM models. The strongest covariates for DSM proved to
be, not surprisingly, covariates derived from the existing 1:50 000 soil map. Despite
the fact that the map is outdated, it still is an extremely valuable source of ancil-
lary information for DSM. The availability of this map sets DSM in the Netherlands
apart from most DSM in other areas around the world, where often only very coarse,
small-scale soil maps are available (e.g. Bui and Moran, 2003; Henderson et al., 2005),
if at all. The results and conclusions presented in this thesis should therefore be in-
terpreted in the context of DSM where a large-scale general-purpose soil type map
is available. The importance of land cover history for refining soil information from
the 1:50 000 soil map was shown by Sonneveld et al. (2002) and Schulp and Veld-
kamp (2008). Also in this thesis land cover (history) covariates proved to be valu-
able predictors. Relevant, but less important covariates were derived from ground-
water class maps, landform maps and a DEM. In a relatively flat country such as the
Netherlands, DEM derivatives are generally of less importance for spatial prediction
than elsewhere (e.g. McKenzie and Ryan, 1999; Chaplot et al., 2001; Florinsky et al.,
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2002). This is another important difference between DSM in the Netherlands and
other countries.

Strong human impact on soil formation and spatial distribution complicates DSM
in the Netherlands in general and in the cultivated peatlands in particular, as dis-
cussed in Chapters 5 and 6. Currently the only available information on mechanical
disturbance of the original soil profile is stored in the attribute table of the soil map.
This attribute was used as a covariate in one of the prediction models in Chapter 4,
but is neither up-to-date nor complete. An ongoing project aims to collect all avail-
able spatial data on soil disturbances from the various agencies that hold these data.
Once collected, the data will be compiled into a GIS-layer and stored in BIS. This
layer might be of great value for DSM in the human-dominated landscapes of the
Netherlands.

7.2.3 Legacy soil data for digital soil mapping

Legacy soil data are existing data, stored in soil databases. These data comprise soil
maps but also soil point data. The latter were often collected during conventional
soil surveys, typically without a clear sampling design, and are of different qual-
ity and reliability (Carré et al., 2007; Finke, 2011). The Netherlands is a data-rich
country with a wealth of legacy soil data: over 300 000 soil profile descriptions and a
nationwide 1:50 000 soil map are stored in BIS. The relevance of the soil map for DSM
was highlighted in previous sections; point data contain a wealth of information as
well. These data, however, are not perfect: point data can be outdated and unevenly
distributed over geographical space, locations recorded before the introduction of
hand-held GPS devices may have large positional errors, profile descriptions may
have missing data, recorded soil property values have different degrees of accuracy
as a result of different measurement methods. Legacy point data were used for DSM
in Chapters 2, 3 and 4 without paying much attention to its inherent imperfections.
Point data were only screened for age using an arbitrary threshold. However, qual-
ity assessment of legacy data to ensure proper use of these data for DSM becomes
ever more important now that DSM becomes operational for soil mapping across
the globe, with many countries having extensive soil resource databases filled with
legacy data (Rossiter, 2004). This requires development of procedures for efficient
updating of outdated point information, for combining data from different sources
and with different uncertainties and for assessing the effect of positional error on the
accuracy of the predictions.

Most profile descriptions of peat soils in BIS are one or more decades old. The cur-
rent peat layer thickness is likely to be smaller than the recorded thickness. Outdated
profile descriptions should not be used uncritically for DSM. These should either be
discarded from the legacy dataset (like in this thesis) or updated. Updating is pre-
ferred over discarding because it makes the most out of existing data, but is only
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attractive when updating is more efficient than collecting new data. Updating can
be done by revisiting a selected set of sampling locations. New soil profile descrip-
tions from these locations can then be used to derive an empirical model of the rate of
decline of peat thickness. This model can then be used to update additional outdated
point observations. Issues that must be dealt with are censored observations (the ini-
tial thickness of the peat layer is unknown) and absence of peat at the time of revis-
iting (the decline rate cannot be estimated). Updating point observations introduces
additional uncertainty in the recorded soil properties which should be accounted for
when using the updated observations for spatial interpolation. Grimm and Behrens
(2010) and Nelson et al. (2011) propose methods to study the effect of positional error
on inferred relationships between soil and covariates and its contribution to predic-
tion uncertainty, while Walvoort et al. (2011) are currently developing a method for
combining legacy soil data from different sources and with different uncertainties
for soil mapping.

7.2.4 Validation of soil maps

The overall purity of soil type maps is a general and commonly used accuracy mea-
sure. It signifies the proportion of the map in which the mapped soil type equals
the actual soil type. It is, however, a very strict assessment in which every error in
the validation set is given equal weight: confusing two mineral soils receives the
same penalty as confusing a mineral soil with a peat soil, which are taxonomically
farther apart. It can therefore be questioned if the overall purity is the most sensible
accuracy measure. Furthermore, soil type itself is almost never of direct interest in
agro-environmental research. Users want interpreted information: soil type maps
are (still) used to derive other data layers such as soil suitability maps or output of
dynamic models that use the soil type map as input. Validation should therefore ide-
ally assess the effect of a wrong classification on these end products. For example,
confusing soil type Hn with pZ or iW with iV in the soil maps in Fig. 5.3 does not
affect the accuracy of a topsoil organic matter map derived from these maps since
these soils have topsoils with similar properties. The ‘functional purity’ of the map
for topsoil organic matter mapping is 77.3% (section 5.4.3; its overall purity is 54.9%).
Functional purities are more informative and perhaps more relevant to practitioners
such as modellers and policy-makers than the overall purity that is traditionally re-
ported. I therefore recommend, as long as soil type maps are created and used, to
report functional purities for soil properties most relevant for policy making, in ad-
dition to the overall purity.

The ME and (R)MSE are commonly reported and generally accepted accuracy mea-
sures for quantitative soil maps. However, these are summary measures and in some
cases evaluation of map accuracy only on these measures might fall short. For exam-
ple, validation of the soil property maps in Chapter 6 shows the limitations of using
the (R)MSE as a single measure of accuracy when the error distribution is (strongly)
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skewed. In such case the median squared error is a more robust statistic of the ‘aver-
age’ squared error. It is therefore recommended to express the quality of quantitative
soil maps by the cumulative distribution function (CDF) of the (squared) error (Brus
et al., 2011). The CDF is more informative than a single statistic derived from this
function. From the CDF several parameters can be computed such (e.g. the mean)
or a percentile (e.g. the median).

7.2.5 Operational DSM for updating soil type maps

One of the objectives of the BIS2014 programme is a nationwide update of the 1:50 000
soil map for the areas with peat soils. The update project started in 2009 in Drenthe
using the CSM approach. By 2011 roughly 22 000 ha was completed (of which Fig.
6.4 shows 16 800 ha). In spring 2011 the national government, who funds the pro-
gramme, decided that progress was too slow and mapping too expensive. They
aimed at a nationwide update to be completed by 2014, with the first part—the
northern fen peat landscape—to be delivered early 2012. Resources made available
are not sufficient to carry out the soil survey with conventional methods. More effi-
cient (DSM) methods shall have to be used or integrated with conventional methods
to accomplish the update for the given budget and within the given time frame.
The studies in Chapters 2, 5 and 6 were of an explorative nature and aimed to gain
insight in the efficiency of different DSM methods in terms of accuracy and costs
for updating the 1:50 000 soil map. The experiences obtained from this thesis can
guide further development of DSM methods for updating and the development of
a methodological framework for integrating DSM with conventional methods for
large-scale (1:10 000) mapping. Such maps are still produced on regular basis for
rural land restructuring projects. Based on the findings in this thesis the following
observations can be made on the utility of DSM for updating the 1:50 000 soil type
map.

The MLM is preferred to be used for predictive mapping of soil type for two reasons.
First, the MLM is a much simpler model and the benefit of GLGM for map updating
in the peatlands was not proven. Second, use of the GLGM for soil mapping is still in
experimental stage with several methodological issues left to be addressed (section
5.5). It is premature to employ the GLGM for nationwide updating.

In Chapter 2, two serious drawbacks of MLM were identified that might hamper its
use for operational soil type mapping. The first drawback is that certain structures
in the data can cause numerical problems when fitting the model in presence of cate-
gorical covariates (see section 2.4.1). This limits the number of soil types that can be
modelled, and hampers the use of potentially strong covariates, as was frequently
encountered when fitting the MLMs in Chapter 2. The second drawback concerns
the number of soil types that can be handled practically—apart from the fact that
a large number of them can cause numerical problems. Nationwide, the 1:50 000
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map legend discerns 57 peat map units. Added to this number are several types of
mineral soils that are now found in the peatlands at locations where peat has disap-
peared. Not all these soils will occur in one peat landscape but even for a relatively
small area the number of map units can potentially be large. For example, the up-
dated conventional soil map of the cultivated peatlands for the study area in Chap-
ters 5 and 6 already has 25 map units (18 peat and 7 mineral). The first drawback
of MLM can be solved by clustering soil types and/or factor levels of the covariates,
or by discarding covariates from the model. This can limit, however, utility and pre-
dictive capability of the MLM when relevant soil types cannot be distinguished by
the model or when relevant covariates cannot be used. The second drawback can
be solved by focussing on predictive mapping of generalized soil types that are dif-
ferentiated on the basis of key diagnostic soil properties that require updating, such
as thickness of the peat layer. In peatland areas prediction of three soil types might
then suffice: mineral soils (absence of peat), shallow peat soils and deep peat soils.
The full 1:50 000 legend can then be reconstructed by refining the predicted soil types
with information obtained from the original soil map such as texture class, topsoil
lithology and peat type, under the assumption that these diagnostic properties have
not changed over time.

An entirely different approach to updating soil type maps through DSM is updat-
ing by mapping key diagnostic (continuous) soil properties. The soil types of the
1:50 000 legend are defined by a set of measurable soil properties. Some of these
properties are static and existing soil maps are satisfactory, while others are dynamic
and existing maps have become outdated. The idea is to map only those diagnostic
properties that are subject to change, such as the thickness of the peat layer, and next
construct a soil type map from the soil property maps. Spatial prediction of contin-
uous soil properties is more straightforward than that of categorical properties and
does not share many of its drawbacks. Furthermore, Chapter 6 shows that mapping
soil properties in the (cultivated) peatlands gave fairly reasonable results. I will now
provide some thoughts on how map updating via DSM of diagnostic soil properties
could be implemented.

Key diagnostic properties to classify soils in the peatlands are starting depth and
thickness of the peat layer. In some peat landscapes, such as the fen meadow land-
scape in the western part of the Netherlands, topsoil organic matter content can be
added to the list, but here I will only consider starting depth and thickness of the
peat layer. After fitting a geostatistical model for these two properties, Monte Carlo
stochastic simulation can be used to generate a sufficiently large number of real-
izations of these two properties from recent legacy point data in BIS and a suite of
environmental covariates. From each simulated combination of starting depth and
thickness of the peat layer, the main soil type—mineral soil, shallow peat soil, deep
peat soil—can be determined through a set of decision rules based on the soil classi-
fication system. The series of simulations thus yields as many simulated soil types at
each prediction location from which a probability distribution can be derived. The
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soil type according to the 1:50 000 legend can then be reconstructed by augmenting
the predictions with information on static properties obtained from the original soil
map. Recent soil legacy point data from BIS can be used for mapping key diagnos-
tic properties. In areas with sparse or outdated point data or in areas with large
prediction uncertainty based on some preliminary mapping, additional data can be
collected. For this use can be made of techniques to optimize sampling patterns such
as proposed by Brus and Heuvelink (2007a) and Walvoort et al. (2010). Fig. 7.1 gives
a schematic representation of the methodological framework for updating soil type
maps via mapping key diagnostic soil properties. I am aware that this framework is
not complete and that there are many details that need to be worked out before it can
be made operational. This framework should therefore be considered as a guideline
for further research on this topic.

It should be noted that the proposed framework deviates from the general approach
followed in this thesis: soil property mapping using an updated soil type map as
covariate. Nevertheless, I think that the framework merits further exploration and
evaluation, which should include a comparison with the approach presented in this
thesis.

7.3 Implications of operational digital soil mapping for
soil information systems

Soil survey in the Netherlands is at a crossroads. The 1:50 000 soil map was com-
pleted almost twenty years ago. Since that time, methods for collecting and pro-
cessing soil information have not changed much. Soil survey kept its qualitative
character until to date. This is now inevitably going to change. Soil information
stored in BIS must be updated, which requires re-mapping 365 000 ha of peatlands.
Limited funds and capacity makes updating of such an extensive area with conven-
tional methods unfeasible. In addition, a strongly increasing demand for soil prop-
erty maps with quantified accuracy for environmental risk and uncertainty analyses
requires development and formalization of systematic methodologies that can gen-
erate such soil information from data stored in BIS. This makes that DSM is moving
forward to the operational phase, not only in the Netherlands but across the world
(e.g. Sanchez et al., 2009; Boettinger et al., 2010).

Operationalizing DSM does not only influence the way soil maps are generated. It
has implications for each step in the soil survey process (Bregt, 1992b) and requires
rethinking the role of soil information systems (SIS). BIS, like many other contem-
porary SIS (Rossiter, 2004), is based on 20th-century concepts of soil survey and is
not designed to adequately provide soil information necessary to address current
environmental issues. This means that effective and successful operational DSM not

187



Chapter 7. Discussion and conclusions

Spatial data
BIS: legacy point data
Covariates

Diagnostic properties 
to be updated

Digital soil mapping 
model v0.0

Soil property 
maps v0.0

Uncertainty 
maps v0.0

Sampling strategy 
additional data collection

Additional 
point data

Digital soil 
mapping model 

v1.0

Sampling strategy 
validation data 

collection

Validation  
data

Quantified accuracy

1:50,000 
Soil Map

Simulated
Soil property maps v1.0

Updated
1:50,000 Soil Map

Figure 7.1: Proposed framework for updating the 1:50 000 soil map via mapping of key diag-
nostic soil properties

only requires a set of prediction models but also requires new methods for collect-
ing, storing, processing, visualizing and disseminating soil information. In other
words, a next-generation BIS is required based on a new paradigm of quantitative
soil survey that better fits the new role of soil in today’s environmental research. In
such system, the (point) data and the methods to generate soil information from the
data are central instead of soil classification and soil type maps. Furthermore, DSM
introduces new mapping concepts unfamiliar to many soil data users. This poses
additional challenges to successful adoption of DSM by practitioners. In this section
I will give these issues some further thought and give my view on how DSM can
be used and further developed to aid the development and implementation of the
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next-generation BIS. Although this section takes a somewhat Dutch perspective, the
issues discussed here apply to SIS in general.

Collection of soil data

Conventional methods for collecting soil data (section 1.2.1) are generally sub-optimal
for DSM. In CSM sampling sites are selected on the basis of representativeness for a
specific field or map unit. DSM makes other demands on sampling designs. Sam-
pling locations should ideally cover covariate feature space as well as geographical
space (e.g. Hengl et al., 2003; Minasny and McBratney, 2006a; Brus and Heuvelink,
2007a). Ideally, the locations of legacy point data should be taken into account when
designing sampling strategies for DSM (e.g. Carré et al., 2007; Walvoort et al., 2010).
In addition, spatial sampling can be optimized for estimation of the spatial depen-
dence structure, required for geostatistical modelling (e.g. Lark, 2002; Zhu and Stein,
2006; Diggle and Ribeiro Jr., 2007). Demand for quantitative information on map
accuracy requires design of efficient sampling strategies for validation (Brus et al.,
2011), which typically differ from sampling strategies for calibration of DSM mod-
els. This means that besides DSM models, a toolbox is needed with efficient sam-
pling designs and protocols for collection of field data for calibration of DSM models
on the one hand, and validation of DSM products on the other hand. Development
of efficient sampling strategies does not only apply to sampling in space but also
to sampling in time to quantify and map soil property dynamics. This requires de-
sign of soil monitoring networks and development of methodologies to infer spatio-
temporal trends from monitoring data (e.g. Brus and de Gruijter, 2011).

Efficient methods for data collection also include remote and proximal sensing tech-
niques. Soil sensing can be a cost-effective method to populate soil databases with
quantitative data on soil properties that are otherwise expensive to measure. It
gained wide-spread popularity the last decade (e.g. Ben-Dor et al., 2002; Gomez
et al., 2008; Lagacherie et al., 2008; Viscarra Rossel and Chen, 2011). Yet, remote
and proximal sensing for soil data collection and mapping is still in its infancy in
the Netherlands. van der Klooster et al. (2011) provide the first example from the
Netherlands with some promising results. Remote sensing of soil in temperate areas
is hampered by presence of vegetation. New methods for filtering the influence of
vegetation from the spectral signal (Bartholomeus et al., 2011) might improve appli-
cability of remote sensing in these areas. In-situ sensing technology (Viscarra Rossel
and Walter, 2004; Viscarra Rossel et al., 2009) may facilitate more efficient and more
accurate data collection in the field.

Operational DSM does not mean that the soil surveyor becomes redundant. Expe-
rienced, qualified field pedologists remain indispensable in the DSM-age, although
their role in the soil survey process will change. The focus will be more on data
collection—filling BIS with high-quality, up-to-date field observations, collected ac-
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cording a statistical sampling design—and less on mapping in the field. Soil survey-
ors should also be trained in DSM so that they can effectively employ their extensive
knowledge on soil forming processes and soil spatial variation to develop and im-
prove DSM models (e.g. Lark et al., 2007; Orton et al., 2011), and to critically analyze
the maps that these models generate.

Storage and processing of soil data

Current soil information systems (SIS), including BIS, store information about the
soil as point observations and maps. DSM allows new, more efficient ways of stor-
ing soil information. A next-generation SIS stores soil information as pedometric
models instead of maps. Maps are generated at the moment a request is submitted
by a user. A SIS that stores models instead of maps has several important advan-
tages compared to a conventional SIS (Heuvelink et al., 2010). First, it allows on the
fly production of soil maps with quantified accuracy, customized to the requirements
submitted by the user. Second, it enables easy updating of existing maps when new
data come available. Third, it automatically documents how a map was made, in-
cluding which point data were used and which covariates. Fourth, storing models
instead of maps saves storage capacity. Currently a prototype SIS that stores models
instead of maps is being developed for the Netherlands (Brus and Heuvelink, 2007b;
Brus et al., 2009; Heuvelink et al., 2010). The procedure comprises six steps: (i) im-
porting point observations from BIS, (ii) processing of profile descriptions (derive
soil properties for user-defined depth interval), (iii) exploratory data analysis, (iv)
building of a model of spatial variation, (v) geostatistical prediction or simulation
and (vi) exporting resulting map(s). This prototype system will be further devel-
oped in the near future.

Visualization and dissemination of soil information

Open-source software for statistical computing such as R (R Development Core Team,
2008) and online mapping applications such as Google Earth offer new opportunities
to access SIS and visualize digital soil survey data. The Australian soil information
system ASRIS1 already allows a large set of data layers to be viewed through Google
Earth. A more advanced web-mapping application was recently developed in the
US. SoilWeb2 is an online soil survey browser with Google Earth and Google Maps
interfaces (Beaudette and O’Geen, 2009). Google Earth is also used in the Global-
SoilMap.net project to visualize and disseminate soil spatial information (Hengl et al.,
2011). Compared to these examples of state-of-the-art techniques for visualization
and dissemination of soil databases, BIS is a rather archaic system. As important

1www.asris.csiro.au
2casoilresource.lawr.ucdavis.edu/map
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as the development of sophisticated DSM toolboxes are proper and efficient tools to
deliver the data to end-users. This is not only true for new DSM products but also
for existing soil data. Google Earth and Google Maps are web-mapping applications
many people are familiar with, which make them excellent platforms to circulate and
deliver soil data in digital format to the public. The possibilities that these applica-
tions offer should be fully exploited to transform BIS into a modern, 21st-century
SIS.

DSM and the next-generation SIS do not only generate soil maps, but also maps
with the associated prediction accuracy. Research on visualization methods for soil
data should therefore also focus on methods for presentation and communication of
accuracy information (e.g. Hengl et al., 2004; Hengl and Toomanian, 2006). Hereby
it is important that this information is presented in a way that is comprehensible to
end-users and that shows its practical relevance, for example through data-worth
analysis (Knotters et al., 2010b).

Adoption of new mapping concepts

Conventional soil maps are based on the polygon data model and are made at a
specific scale. In the digital-era ‘map scale’ loses its meaning: in a GIS maps can be
depicted at any scale. Furthermore, the polygon data model is a somewhat outdated
model for representing soil spatial information. DSM introduces new mapping con-
cepts. Digital soil maps are typically (but not necessarily) raster-based maps with a
given resolution, extent and support (McBratney, 1998). Extent is the areal expanse
over which predictions are made. Resolution is the pixel size with which the digital
soil map is displayed with predictions made at the nodes. Support is the volume
or area on which observations and predictions are made (Webster and Oliver, 2007).
Digital soil maps are typically on point support, where the value of the pixel rep-
resents the value at the centre point within that cell (e.g. Chapters 3 and 4), or on
block support, where the value of the pixel represents the average value within that
cell (Chapter 6). Extent, resolution and support are independent concepts that can
be chosen in any combination. Note that extent, resolution and support also apply
to the depth and time dimensions of soil mapping.

Many soil data practitioners, especially in the non-modelling community, are used
to working with conventional soil maps. They are not familiar with new map-
ping concepts that are introduced by the ‘new-generation’ digital soil maps and
might therefore have difficulty in comprehending and accepting these. In addition,
the advantages of DSM compared to CSM, particularly its efficiency and capability
to provide estimates of prediction accuracy, and their practical relevance for agro-
environmental policy making are often insufficiently clear to practitioners. Herein
lies perhaps the greatest (and most important) challenge for the (digital) soil map-
ping community in the near future: to take away potential scepticism among prac-

191



Chapter 7. Discussion and conclusions

titioners and to convince them of the merits of DSM. Widespread adoption of oper-
ational DSM as a credible and valuable alternative to CSM and the development of
next-generation SIS is only possible with broad support among practitioners from
various disciplines. Convincing them requires careful communication, for exam-
ple through organizing user symposia, through publications in professional journals
(e.g. Mol et al., 2005; Knotters et al., 2010a) and with practical examples on how
DSM products can support and benefit the decision-making process (e.g. Knotters
et al., 2010b). In addition, DSM should become an integral part of soil science curric-
ula taught at higher and academic education institutions, as the current and coming
generation of students are the soil scientists and practitioners of the future.

7.4 Conclusions

Digital soil mapping has come a long way since the introduction of geostatistics
in soil science in the early 1980s. The 1990s saw fast-paced methodological devel-
opments in pedometrics, which was assisted by the rapid increase in computation
power and information technology. These developments helped DSM mature in the
first decade of the 21st century. Currently, DSM is moving towards the operational
phase in which maps are produced on a routine and verifiable basis for regions,
countries and continents. Operationalizing DSM requires rethinking the function of
soil information systems and their role in today’s environmental-centered research
approach. Traditionally these systems store only soil data, but operational DSM re-
quires that their functionality is extended with toolboxes for collecting and visualiz-
ing soil data and for transforming soil data to soil information.

In the Netherlands, lack of structural funding has delayed maintenance and exten-
sion of BIS and slowed strategic research on soil survey methods for nearly one
decade. Recently, pedometric research regained momentum, initiated by the BIS2014
research programme. This programme demands a thorough update of soil data
stored in BIS and is a first step towards operational DSM and the next-generation
BIS. This thesis contributes to the development of methods for digital soil type and
property mapping in general and to the necessary evaluation of these methods for
updating soil information in BIS. Summarizing, based on the work presented in this
thesis it can be concluded that:

• Updating the soil map of the peatlands with digital soil type mapping proves
to be challenging (Chapters 2 and 5). The multinomial logistic model as well as
the GLGM were able to capture the general patterns of soil distribution but not
the details. Challenges are not only methodological but also practical. Soil con-
ditions in peatlands are highly heterogeneous at short distances as a result of
reclamation and intensive soil cultivation practices, the effects of which cannot
be adequately captured by available environmental covariates.
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• Use of a spatial model for soil type mapping, in form of the GLGM, did not
improve prediction performance in the peatlands compared to a non-spatial
model (Chapter 5).

• Soil maps that represent soil type by probability distributions offer opportuni-
ties for the development of DSM methods for two- and three-dimensional soil
property mapping that fully exploit this information (Chapters 3 and 4). These
methods have several operational advantages compared to conventional DSM
methods, although these did not result in improved predictions in the case
studies of this thesis (Chapters 3 and 6).

• Validation with independent data indicates that updating soil type and prop-
erty maps with DSM does not result in maps of larger accuracy than updat-
ing with conventional methods. Nevertheless, DSM is attractive for updating
because it is much more efficient than CSM in terms of costs in relation to ac-
curacy. Fieldwork effort can be greatly reduced compared to CSM, without
compromising accuracy (Chapter 6).

• Effective and successful operational DSM for updating and upgrading soil in-
formation in BIS cannot be solely achieved by developing a toolbox with state-
of-the-art methods for soil mapping. It also requires new strategies for collect-
ing, storing, processing, visualizing and disseminating soil information, i.e. it
requires a next-generation soil information system based on a new paradigm
of quantitative soil survey (Chapter 7).

In this chapter several suggestions were made for follow-up research: procedures
for efficient use of legacy data; use of remote and proximal sensing methods for
soil data collection and mapping; design of efficient sampling strategies for spatial
data collection; extension of the soil information system toolbox with more advanced
(dynamic) geostatistical models; development of state-of-the-art tools for visualizing
and disseminating soil data. Additionally, further attention should be given to meth-
ods for updating, both on a fundamental level, such as the development of a spatial
model for multinomial data (section 5.5), and a more applied level, such as updat-
ing via mapping key diagnostic properties (section 7.2.5 and Fig 7.1). In addition to
scientific challenges there are also practical hurdles that need to be overcome, such
as convincing practitioners of the merits of DSM that is necessary for its widespread
adoption and operational success.

Soils are back on the global political agenda, fuelled by increased awareness of the
important role of soils in sustainable development. Also on national level there is
renewed appreciation for the soil, which has resulted in new demands for accurate,
up-to-date soil information. With this thesis I hope to have made a significant con-
tribution towards a 21st-century soil information system based on a new paradigm
of quantitative soil survey.
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Summary

Soils are back on the global political agenda. Renewed interest of the soil resource is
fuelled by an increasing awareness about the importance of sustainable soil manage-
ment to secure production of food and fiber for a quickly growing world population,
and about the major role of soils in the global carbon cycle. With this has come great
demand for accurate, up-to-date and detailed geographical soil information. The
current generation soil information systems typically store data from conventional
surveys. Besides soil data at points, these systems contain soil maps that are often
restricted to soil type; thematic soil maps are mostly missing. The maps are fre-
quently outdated, lack detail and quantitative information on accuracy, or have no
full spatial coverage. Consequently, these data are of limited use in today´s soil data
applications.

The Dutch soil information system BIS is no exception to this situation. The main
source of soil information in the Netherlands, the nationwide 1:50 000 soil map, is
becoming outdated, particularly for the areas with peat soils, and needs to be up-
dated. Furthermore, maps of basic soil properties with quantified accuracy are lack-
ing. Such maps are essential input for environmental process models that predict
the effect of policy measures on for example soil acidification, pesticide leaching and
greenhouse gas emission. Now the urgent need is felt to update the national soil map
and to extend BIS with full-coverage thematic maps of all major soil properties with
quantified accuracy. Efficient, quantitative methods for (geo)statistical modelling of
soil maps, referred to as digital soil mapping (DSM), might be very useful for this
purpose. Yet, despite growing global popularity DSM has not been applied in an
operational way in the Netherlands so far. The main objective of this thesis is there-
fore to investigate and evaluate the merit of DSM for updating soil information in
the Netherlands. Research focuses on DSM methods for updating soil type maps as
well as maps of continuous soil properties. The province of Drenthe with large areas
of peat soils is selected as case study area to illustrate and evaluate the developed
methods.

After the general introduction in Chapter 1, Chapter 2 describes a study on the pos-
sibility of updating the 1:50 000 soil map using a simple generalized linear regression
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model and legacy soil point data from BIS. Map unit-specific multinomial logit mod-
els (MLM) were used to predict probability distributions of soil types within ten map
units of the simplified soil map 1:50 000. For this purpose a framework for selecting
an MLM was taken from the literature and adapted for soil mapping. Updating not
only focused on peat soils but also on mineral soils to investigate if the purity of
these map units could be increased through disaggregation with high-resolution co-
variates. Validation showed a modest 6% improvement in map purity compared to
the existing, outdated soil map. This improvement was mainly attributed to better
representation of soil distribution within the peat map units of the simplified map.
However, map unit purities and class representations of the four peat soils as de-
picted on the updated map were still small.

Digital soil type maps offer new possibilities for mapping individual soil properties.
Chapter 3 describes the development of a model that exploits the information from
such soil type map for spatial prediction of continuous soil properties. This model
has important advantages compared to the conventional geostatistical model. First,
actual (observed) soil type at sampling locations can be used as covariate instead
of the mapped soil type. This has the advantage that the relationship between soil
property and soil type is not confounded by impurities in the map units. Second,
using actual soil type as covariate in the model makes it possible to quantify the
proportion of the prediction variance that arises from uncertainty of the actual soil
type at prediction locations. The developed model is applied to map the soil organic
matter (SOM) content using the digital soil type map created in Chapter 2. Validation
showed that the prediction performance of the proposed model was slightly better
than that of the conventional geostatistical model.

In Chapter 4 a method is proposed for three-dimensional mapping of SOM that com-
bines general pedological knowledge with geostatistical modelling. A conceptual
SOM depth profile was constructed by stacking building blocks (model horizons)
for each soil type depicted on the updated digital map from Chapter 2. The ver-
tical distribution of SOM within each building block was described by a function.
The combination of building blocks—stacked in pre-defined order—with their asso-
ciated parameters (thickness, average SOM content, exponential decay parameters)
describes a soil type-specific depth profile. The parameters of each of these depth
profiles were spatially predicted by geostatistical interpolation with covariates. A
probability distribution of soil type-specific depth functions was then obtained by
combining these predictions with the digital soil type map from Chapter 2. The
depth functions and their associated probabilities were used to map the SOM stock
for four depth intervals using the methodology described in Chapter 3. Validation
of the predicted stocks with an independent probability sample showed accurate re-
sults for the topsoil. Results for deeper soil layers, however, were modest. Prediction
performance of pedometric depth functions was comparable to that of conventional
depth functions.
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The main drawback of the MLM, which was applied for soil type mapping in Chap-
ter 2, is that spatial dependency in the data is not exploited for spatial prediction.
Chapter 5 addresses this issue and investigates if a soil type map predicted by a
spatial model is more accurate than one predicted by a non-spatial model. As spatial
model the generalized linear geostatistical model (GLGM) was chosen. The GLGM is
central to the methodological framework of model-based geostatistics, which is con-
sidered state-of-the-art in DSM. A pragmatic approach was adopted in which each
of the five soil types in the case study area in the cultivated peatlands was modelled
separately with a binomial logit-linear GLGM. Predictions with the soil type-specific
GLGMs resulted in five binomial probabilities at each prediction location, which
were scaled to multinomial probabilities so that they sum to one. Validation showed
that use of a spatial model for digital soil type mapping did not result in more accu-
rate predictions of soil type than those with the non-spatial MLM.

Chapter 6 compares the efficiency of DSM methods with that of conventional soil
mapping (CSM) methods for updating soil type and property maps. In addition,
the effect of mapping effort (expressed in a monetary unit per ha) on accuracy is
assessed for digital soil type and property maps. For digital soil type mapping the
GLGM was used. For soil property mapping (SOM content en peat thickness) two
methods are considered for both DSM and CSM. For DSM these are the method from
Chapter 3 and the conventional geostatistical method (universal kriging). For CSM
these are the representative profile descriptions (RPD) and map-unit-means (MUM)
methods. For DSM both methods gave similar results in terms of accuracy. The
MUM method gave better results than the RPD. For CSM the MUM method gave
better results than the RPD. Validation results further showed that DSM produced
soil type and property maps that were of similar accuracy as those produced by
CSM. Furthermore, DSM maps were produced much more efficiently than the CSM
maps: costs per hectare were a factor three to four smaller without compromising
accuracy. This shows that for future updating of soil information DSM can be an
attractive alternative to CSM.

Finally, Chapter 7 presents a synthesis of the results and the main findings of Chap-
ters 2 to 6. Implications of the results for the soil information system BIS and future
updating of soil information in the Netherlands are discussed and an outlook on fu-
ture research is given. It is argued that soil survey is shifting from conventional, qual-
itative soil survey to quantitative soil survey. This means that a toolbox with quan-
titative, state-of-the-art methods for soil mapping is not sufficient for effective and
successful operational use of DSM. It requires the development of a next-generation
soil information system based on new strategies and methods for collecting, storing,
processing, visualizing and disseminating soil information. This thesis presents a
first step on the road towards such system.
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Samenvatting

Bodems zijn terug op de wereldwijde politieke agenda. Hernieuwde interesse in de
bodem wordt gevoed door een groeiend bewustzijn voor het belang van duurzaam
bodemmanagement voor het veiligstellen van de productie van voedsel en vezels
voor een snel groeiende wereldbevolking, en van de belangrijke rol die de bodem
speelt in de globale koolstofcyclus. Dit heeft geleid tot een sterk toenemende vraag
naar actuele en gedetailleerde geografische bodeminformatie. De huidige genera-
tie bodemkundige informatiesystemen bevatten voornamelijk gegevens afkomstig
van conventionele bodemkarteringen. Naast bodemgegevens van puntlocaties, be-
vatten deze systemen bodemkaarten die meestal alleen het bodemtype aangeven;
thematische bodemkaarten ontbreken meestal. De kaarten zijn vaak verouderd, be-
vatten geen detail en kwantitatieve informatie over de nauwkeurigheid of dekken
de ruimte niet volledig. De bodemgegevens zijn daaroor beperkt bruikbaar voor de
huidige toepassingen.

Het Nederlandse bodemkundig informatiesysteem BIS is geen uitzondering op deze
situatie. De belangrijkste bron van bodeminformatie in Nederland, de landelijke
1:50 000 bodemkaart, raakt verouderd, vooral voor de gebieden met veengronden,
en moet daarom worden geactualiseerd. Daarnaast ontbreken kaarten van basale bo-
demkenmerken met gekwantificeerde nauwkeurigheid, die essentieel zijn als invoer
voor procesmodellen die het effect van beleidsmaatregelen op bijvoorbeeld bodem-
verzuring, uitspoeling van pesticiden en uitstoot van broeikasgassen voorspellen.
Daarom is er nu de dringende behoefte om de nationale bodemkaart te actualiseren
en om BIS uit te breiden met landsdekkende, thematische kaarten van alle belang-
rijke bodemkenmerken met gekwantificeerde nauwkeurigheid. Efficiënte, kwanti-
tatieve methoden voor het (geo)statistisch modelleren van bodemkaarten, oftewel
digitale bodemkartering (DBK), kunnen hiervoor uitermate geschikt zijn. Ondanks
groeiende wereldwijde populariteit wordt in Nederland DBK tot nu toe niet ope-
rationeel toegepast. Het hoofddoel van dit proefschrift is daarom te onderzoeken
wat de waarde van DBK is voor het actualiseren van bodeminformatie in Neder-
land. Het onderzoek richt zich op DBK-methoden voor het actualiseren van zowel
bodemtypekaarten als thematische bodemkaarten. De provincie Drenthe, met grote
gebieden met veengronden, is gekozen als studiegebied om de ontwikkelde metho-
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den te illustreren en beoordelen.

Na een algemene introductie (Hoofdstuk 1) beschrijft Hoofdstuk 2 het onderzoek
naar de mogelijkheid om de 1:50 000 bodemkaart te actualiseren gebruikmakend van
een eenvoudig gegeneraliseerd lineair regressie model en puntwaarnemingen uit het
BIS. Multinomiale logit-modellen (MLM) voor specifieke kaarteenheden werden ge-
bruikt om kansverdelingen van bodemtypes te voorspellen binnen tien kaarteenhe-
den van een vereenvoudigde bodemkaart 1:50 000. Hiervoor werd een raamwerk
voor selectie van een MLM uit de literatuur genomen en aangepast voor bodemkar-
tering. Actualisatie richtte zicht niet alleen op veengronden maar ook op minerale
bodems, om te onderzoeken of de zuiverheid van deze kaarteenheden kon worden
verhoogd door desaggregatie met hulpvariabelen van hoge resolutie. De validatiere-
sultaten toonden een bescheiden verbetering in kaartzuiverheid van 6% ten opzichte
van de bestaande, verouderde bodemkaart. Deze verbetering was voornamelijk toe
te schrijven aan een betere representatie van de ruimtelijke spreiding van bodemty-
pen binnen de veenkaarteenheden van de bestaande, vereenvoudigde bodemkaart.
De zuiverheden van de kaarteenheden en de klassevertegenwoordiging van de vier
veengronden zoals afgebeeld op de geactualiseerde kaart waren echter nog steeds
laag.

Digitale bodemtypekaarten bieden nieuwe mogelijkheden voor het in kaart brengen
van afzonderlijke bodemkenmerken. Hoofdstuk 3 beschrijft de ontwikkeling van
een model dat informatie uit een dergelijke bodemtypekaart benut voor ruimtelijke
voorspelling van continue bodemkenmerken. Dit model heeft belangrijke voorde-
len ten opzichte van het conventionele geostatistische model. Ten eerste kan het ei-
genlijke (waargenomen) bodemtype op bemonsteringslocaties worden gebruikt als
hulpvariabele in plaats van het gekarteerde bodemtype. Dit heeft als voordeel dat de
relatie tussen bodemkenmerk en bodemtype niet verstoord wordt door onzuiverhe-
den binnen de kaarteenheden. Ten tweede maakt gebruik van het eigenlijk bodem-
type als hulpvariabele in het model het mogelijk om te kwantificeren welk aandeel
onzekerheid over het eigenlijke bodemtype op de voorspellingslocaties heeft in de
voorspellingsvariantie. Het model is toegepast om het organischestofgehalte (OS) in
de bovengrond in kaart te brengen, gebruikmakend van de digitale bodemtypekaart
uit Hoofdstuk 2. Validatie liet zien dat voorspellingsprestatie met het voorgestelde
model iets beter was dan die van het conventionele geostatistische model.

In Hoofdstuk 4 wordt een methode voorgesteld voor driedimensionale kartering van
OS, die algemene bodemkundige kennis combineert met geostatistisch modelleren.
Voor elk bodemtype, afgebeeld op de geactualiseerde digitale kaart uit Hoofdstuk
2, werd een conceptueel OS-diepteprofiel geconstrueerd door middel van het stape-
len van bouwstenen (modelhorizonten). De verticale verdeling van OS binnen elke
bouwsteen wordt beschreven door een functie. De combinatie van bouwstenen—
gestapeld in voorgedefinieerde volgorde—met hun bijbehorende parameters (dikte,
gemiddeld OS-gehalte, exponentiële afname parameters) beschrijft een bodemtype-
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specifiek diepteprofiel. De parameters van elk van deze diepteprofielen werden ver-
volgens ruimtelijk voorspeld door geostatistische interpolatie met hulpvariabelen.
Door combinatie van deze voorspellingen met de digitale bodemkaart uit Hoofd-
stuk 2 werd een kansverdeling van bodemtype-specifieke dieptefuncties verkregen.
Deze dieptefuncties met hun bijbehorende kansen werden vervolgens gebruikt om
de OS voorraad voor vier diepte-intervallen in kaart te brengen, gebruikmakend van
de methode die in Hoofdstuk 3 is beschreven. Validatie van de voorspelde voorra-
den met een onafhankelijke kanssteekproef liet nauwkeurige resultaten zien voor de
bovengrond. Resultaten voor diepere bodemlagen waren minder nauwkeurig. De
voorspellingen met pedometrische dieptefuncties waren even nauwkeurig als die
met conventionele dieptefuncties.

De belangrijkste tekortkoming van het MLM, gebruikt voor digitale bodemtypekar-
tering in Hoofdstuk 2, is dat ruimtelijke afhankelijkheid in de gegevens niet wordt
benut bij het ruimtelijk voorspellen. Hoofdstuk 5 richt zich op deze kwestie en
onderzoekt welke ruimtelijke voorspellingen van bodemtypen nauwkeuriger zijn:
voorspellingen met een ruimtelijk model, of voorspellingen met een niet-ruimtelijk
model? Als ruimtelijk model werd het gegeneraliseerde lineaire geostatistische mo-
del (GLGM) gekozen. Het GLGM staat centraal in het methodologische raamwerk
van model-gebaseerde geostatistiek, welke beschouwd wordt als state-of-the-art in
DBK. Uit pragmatische overwegingen werd elk van de vijf bodemtypes in een stu-
diegebied in de veenkoloniën individueel gemodelleerd met een binomiaal logit-
lineair GLGM. Voorspellingen met de bodemtype-specifieke modellen resulteerden
in vijf binomiale kansen op iedere voorspellingslocatie, die werden geschaald tot
multinomiale kansen zodat deze optellen tot één. Validatie liet zien dat met een
ruimtelijk model voor bodemtypekartering de bodemtypen minder nauwkeurig wer-
den voorspeld dan met het niet-ruimtelijke MLM.

Hoofdstuk 6 vergelijkt de efficiëntie van DBK-methoden voor het actualiseren van
kaarten van bodemtype en -kenmerken met die van conventionele methoden voor
bodemkartering. Daarnaast is het effect van karteringsinspanning (uitgedrukt in een
monetaire eenheid per ha) op nauwkeurigheid onderzocht voor de digitale kaarten
van bodemtypen en bodemkenmerk. Voor digitale bodemtypekartering werd het
GLGM gebruikt. Om de bodemkenmerken OS-gehalte en veendikte in kaart te bren-
gen werden voor zowel DBK als conventionele bodemkartering (CBK) twee metho-
den onderzocht. Voor DBK zijn dit de methode uit Hoofdstuk 3 en de conventionele
geostatistische methode (universal kriging). Voor CBK zijn dit de representatieve pro-
fielbeschrijving (RPB) en methoden die zijn gebaseerd op kaarteenheid-gemiddelden
(KEG). Voor DBK gaven beide resultaten van vergelijkbare nauwkeurigheid. Voor
CBK presteerde de KEG-methode beter dan de RPB-methode in termen van voor-
spelnauwkeurigheid. Validatieresultaten toonden verder aan dat kaarten van bo-
demtype en bodemkenmerken, geproduceerd met DBK, even nauwkeurig waren
als kaarten, geproduceerd met CBK. Bovendien werden de DBK-kaarten een stuk ef-
ficiënter geproduceerd dan de CBK-kaarten: de kosten per hectare waren een factor
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drie tot vier lager. Deze resultaten laat zien dat voor toekomstige actualisaties van
bodeminformatie DBK een aantrekkelijk alternatief voor CBK kan zijn.

Ten slotte presenteert Hoofdstuk 7 een synthese van de resultaten en de belangrijk-
ste bevindingen van Hoofdstukken 2 tot en met 6. Naast een bespreking van de
implicaties van de resultaten voor het bodemkundig informatiesysteem BIS en voor
toekomstige actualisatie van bodeminformatie in Nederland blikt Hoofdstuk 7 voor-
uit op toekomstig onderzoek. Er wordt betoogd dat de bodeminventarisatie in Ne-
derland verschuift van conventionele, kwalitatieve bodeminventarisatie naar kwan-
titatieve bodeminventarisatie. Dit betekent dat een gereedschapskist met kwanti-
tatieve, state-of-the-art-methoden voor bodemkartering niet genoeg is voor effectief
en succesvol operationeel gebruik van DBK. Het vereist de ontwikkeling van een
nieuw bodemkundige informatiesysteem dat is gebaseerd op nieuwe strategieën en
methoden voor het verzamelen, opslaan, verwerken, visualiseren en ontsluiten van
bodeminformatie. Dit proefschrift presenteert een eerste stap op de weg naar zo’n
systeem.
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