Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T07:33:20.128Z Has data issue: false hasContentIssue false

Effect of ileo-rectal anastomosis and post-valve T-caecum cannulation on growing pigs

1. Growth performance, N-balance and intestinal adaptation

Published online by Cambridge University Press:  09 March 2007

T. KÖhler
Affiliation:
Department of Animal Nutrition, Agricultural University, Haagsteeg 4, 6708 PM Wageningen, The Netherlands Institute of Animal Nutrition and Feed Science, University of Kiel, D-2300 Kiel, Germany
R. Mosenthin
Affiliation:
Institute of Animal Nutrition and Feed Science, University of Kiel, D-2300 Kiel, Germany
M. W. A. Verstegen
Affiliation:
Department of Animal Nutrition, Agricultural University, Haagsteeg 4, 6708 PM Wageningen, The Netherlands
J. Huisman
Affiliation:
TNO Institute for Animal Nutrition and Physiology (ILOB), PO Box 15, 6700 AA Wageningen, The Netherlands
L. A. Den Hartog
Affiliation:
Research Institute for Pig Husbandry, PO Box 83, 5240 AB Rosmalen, The Netherlands
F. Ahrens
Affiliation:
IS Research Institute for Animal Physiology and Animal Nutrition, D-2362 Wahlstedt, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effects of post-valve T-caecum (PVTC) cannulation and end-to-side ileo-rectal anastomosis (IRA) on growth performance, nitrogen retention and intestinal fermentation were measured in growing pigs by comparison with a control group of intact animals. There were no differences between PVTC-pigs and intact pigs in growth performance and N balance. In IRA-animals reduced growth (P < 0.01), less efficient feed conversion (P < 0.01) and decreased N retention (P < 0.001) were found. Indices of fermentation measured in deal digesta of PVTC- and IRA-pigs were considerably different. In IRA-animals the concentration of volatile fatty acids (VFA) was about 112–162 mmol/l, higher (P < 0.001) than in digesta of PVTC-pigs (20–31 mmol/l). The molar proportions of acetate and propionate depended (P < 0.01 and P < 0.001 respectively) on the digesta-collection technique. Concentrations and ratios of VFA measured in PVTC-pigs were similar to reported values. Diaminopimelic acid (DAPA) concentration and N:DAPA ratios measured in digesta were significantly (P < 0.05 and P < 0.001 respectively) different between treatments. All digesta variables measured showed increased microbial activity in digesta of IRA-pigs; thus, an influence on digestibility measurement can be assumed.

Type
Nutritional Consequences of Gastrointestinal Modification
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Agricultural Research Council (1981). The Nutrient Requirements of Pigs. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Ahrens, F. & Kaufmann, W. (1985). Messungen zur Fermentation im Dickdarm am Modell Miniaturschwein unter besonderer Berücksichtigung der Eiweiβumsetzungen (Investigations on hind-gut fermentation in mini pigs with particular regard to protein metabolism). Journal of Animal Physiology and Animal Nutrition 53, 150169.Google Scholar
Argenzio, R. A. & Southworth, M. (1975). Sites of organic acid production and absorption in the gastrointestinal tract of the pig. American Journal of Physiology 228, 454460.CrossRefGoogle ScholarPubMed
Clemens, E. T., Stevens, C. E. & Southworth, M. (1975). Sites of organic acid production and pattern of digesta movement in the gastrointestinal tract of swine. Journal of Nutrition 105, 759768.CrossRefGoogle ScholarPubMed
Darcy, B., Laplace, J. P. & Villiers, P. A. (1980). Obtention des digesta parvenant au gros intestin par fistulation iléo-colique post-valvulaire: Note préliminaire (Collection of digesta flowing into the large intestine after post-ileocolic valve fistulation: preliminary results). Reproduction Nutrition Développement 20, 11971202.CrossRefGoogle ScholarPubMed
Darcy-Vrillon, B. & Laplace, J. P. (1985). Ileal amino acid digestibility measurement in pigs fed high-fibre diet: ileo-rectal anastomosis versus ileo-colic post-valve fistulation. In Digestive Physiology in the Pig, pp. 184187 [Just, A., Jørgensen, H. and Fernandez, L. A., editors]. Report no. 580. Copenhagen, Denmark: National Institute of Animal Science.Google Scholar
Drochner, W. (1984). Einfluβ wechselnder Rohfaser-und Pektingehalte im Futter auf einige Praecaecale und postileale Verdauungsvorgänge beim wachsenden Schwein (Effect of varying amounts of crude fibre and pectin on some precaecal and postileal digestive processes in growing pigs). Fortschritte in der Tierphysiologie und Tierernährung 14, 125.Google Scholar
Green, S. (1988). A note on amino acid digestibility measured in pigs with pre- or post-valve ileorectal anastomoses fed soyabean, pea and meat meals. Animal Production 47, 317320.Google Scholar
Hennig, U., Noel, R., Herrmann, U., Wünsche, J. & Mehnert, E. (1986). Ernährungsphysiologische Untersuchungen an Schweinen mit Ileo-Rektal-Anastomosen. 1. Mitteilung (Nutritional physiological studies in pigs with ileo-rectal anastomoses. I. Communication). Archiv für Tierernährung 36, 585596.CrossRefGoogle Scholar
Herrmann, U., Jentsch, W., Hennig, U., Schiemann, R. & Wünsche, J. (1989). Results of comparative energy metabolism investigations in intact and ileorectomized pigs. Proceedings of the 11th Symposium of Energy Metabolism of Farm Animals. European Association of Animal Production. Publication no. 43, 183186. Wageningen, The Netherlands: PUDOC.Google Scholar
Just, A., Andersen, J. O. & Jørgensen, H. (1980). The influence of diet composition on the apparent digestibility of crude fat and fatty acids at the terminal ileum and overall in pigs. Journal of Animal Physiology and Animal Nutrition 44, 8292.Google Scholar
Just, A., Jørgensen, H. & Fernandez, J. A. (1985). Correlation of protein deposited in growing female pigs to ileal and faecal digestible crude protein and amino acids. Livestock Production Science 12, 145159.CrossRefGoogle Scholar
Kaufmann, W. & Hagemeister, H. (1969). Das Puffersystem in den Vormägen von Rindern (The buffer system in the forestomachs of cattle). Journal of Animal Physiology and Animal Nutrition 25, 157168.Google Scholar
Kik, M. J. L., van Leeuwen, P., van Dijk, J. E. & Mouwen, J. M. V. M. (1988). A small intestinal mucosal biopsy technique in cannulated pigs. Journal of Animal Physiology and Animal Nutrition 60, 123127.CrossRefGoogle Scholar
Köhler, T., Huisman, J., Den Hartog, L. A. & Mosenthin, R. (1990). A comparison of different digesta collection methods to determine the apparent digestibilities of the nutrients at the terminal ileum in pigs. Journal of the Science of Food and Agriculture 53, 465475.CrossRefGoogle Scholar
MacRae, J. C., Smith, J. S. & White, F. (1982). Effects of gastrointestinal cannulation and jugular vein catheterization on the metabolism in sheep. British Journal of Nutrition 47, 637644.CrossRefGoogle Scholar
Mason, V. C. (1984). Metabolism of nitrogen compounds in the large gut. Proceedings of the Nutrition Society 43, 4553.CrossRefGoogle ScholarPubMed
Mosenthin, R. (1987). Untersuchungen zum Einfluβ pflanzlicher Kohlenhydrate in Rationen wachsener Schweine auf die endogene Stickstoff- und Enzymsekretion in den Verdauungstrakt sowie auf praecaecale und postileale Umsetzungen N-haltiger Verbindungen (Studies on the effect of dietary carbohydrates on the endogenous nitrogen and enzyme secretion into the digestive tract and on the metabolism of nitrogenous compounds in the small and large intestines of the pig). Habilitationsschrift der Universität Kiel, Germany.Google Scholar
Münchow, H., Häger, H., Hasselmann, L. & Finger, M. (1989). Untersuchungen zum Einsatz von teilhydrolisiertem Strohmehl in der Fütterung von Absatzferkeln (Studies of the use of partly hydrolysed straw meal in the feeding of weaned piglets). Archiv für Tierernährung 38, 375385.CrossRefGoogle Scholar
Oslage, H. Y., Farries, F. E. & Fliegel, H. (1987). Über die Exaktheit von Stickstoffbilanzen bei langfristigen Stoffwechselversuchen (Accuracy of N-balances in long-lasting metabolism trials). Archiv für Tierernährung 37, 10211028CrossRefGoogle Scholar
Picard, M., Bertrand, S., Genin, F. & Maillard, R. (1984). Digestibility of amino acids: interest of the ileo-rectal shunt technique in pig. Journées de la Recherche Porcine en France 16, 355360.Google Scholar
Sauer, W. C. (1976). Factors influencing amino acid digestibility of cereal grains and their components for growing monogastric animals. PhD Thesis, University of Manitoba.Google Scholar
Sauer, W. C., Mosenthin, R., Ahrens, F. & Den Hartog, L. A. (1991). The effect of source of fiber on amino acid digestibility and bacterial nitrogen excretion in growing pigs. Journal of Animal Science 69: 40704077.CrossRefGoogle ScholarPubMed
Souffrant, W. B., Schumann, B., Matkowitz, R. & Gebhardt, G. (1985). Untersuchungen zur Stickstoff- und Aminosäurenresorption im Dünndarm von wachsenden Schweinen (Studies on the absorption of nitrogen and amino acids in the small intestine of growing pigs). Archiv für Tierernährung 35, 781789.CrossRefGoogle Scholar
van Leeuwen, P., Sauer, W. C., Huisman, J., van Weerden, E. J., van Kleef, D. J. & Den Hartog, L. A. (1987). Methodological aspects for the determination of amino acid digestibilities in pigs fitted with ileocecal re-entrant cannulas. Journal of Animal Physiology and Animal Nutrition 58, 122.CrossRefGoogle Scholar
van Leeuwen, P., Huisman, J., Verstegen, M. W. A., Baak, M. J., van Kleef, D. J. & Den Hartog, L. A. (1988). A new technique for collection of ileal chyme in pigs. In Proceedings of the IVth International Symposium on Digestive Physiology in the Pig, pp. 289296. [Buraczewska, L.Buraczewski, S.Pastuszewska, B. & Zebrowska, T., editors]. Jablonna, Poland: Polish Academy of Science.Google Scholar
van Leeuwen, P., van Kleef, D. J., van Kempen, G. J. M., Huisman, J. & Verstegen, M. W. A. (1991). The post-valve T-caecum cannulation technique in pigs applied to determine the digestibility of amino acids in maize, groundnut and sunflower meal. Journal of Animal Physiology and Animal Nutrition 65, 183193.CrossRefGoogle Scholar
Walz, O. P. & Pallauf, Y. (1989). Untersuchung zum Vergleich des Bilanzverfahrens und der Tierkörperanalyse zur Messung des Protein-. Energie- und Mineralstoffansatzes von Aufzuchtferkeln (Comparative measurement of protein, energy and mineral retention of piglets using balance and carcass techniques). Journal of Animal Physiology and Animal Nutrition 61, 275288.CrossRefGoogle Scholar
Zebrowska, T. (1973). Digestion and absorption of nitrogenous compounds in the large intestine of pigs. Roczniki Nauk Rolniczych 95, 80.Google Scholar