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General introduction





Preface
This thesis is entitled “A physiologically based kinetic model for the 
prediction of plasma cholesterol concentrations in mice and man.” Two 
main phrases in this title are “plasma cholesterol” and “physiologically 
based kinetic model”. This chapter introduces both. The paragraph 
“Cholesterol”  introduces cholesterol and its importance as a risk factor 
in cardiovascular disease (CVD). The general concept of modeling is 
introduced in the paragraph “Mathematical modeling”. The paragraph 
“Mathematical modeling of cholesterol” describes the present state of 
modeling efforts on cholesterol metabolism. The last section of this 
introduction describes the outline of the thesis.
 

Cholesterol
Cholesterol is a hydrophobic molecule that plays important roles in the 
membranes of mammalian cells and the transport of triglycerides (1). 
Cholesterol attracts attention  because of  the role of elevated plasma 
cholesterol concentrations as a risk factor in cardiovascular disease (CVD) 
(2,3). CVD is a class of diseases that involves the heart or the vascular 
system. It includes cardiovascular events like myocardial infarction (heart 
attack) and stroke. In 2010, CVD caused almost 40.000 deaths in the 
Netherlands (4). This is on average 4.5 deaths per hour. 
 The main cause of cardiovascular events in Western societies is 
atherosclerosis (3). This is a disease of lipid accumulations (plaques) in the 
walls of the main arteries. Plaques result in narrowing of blood vessels and 
reduced blood flow to important organs, like heart and lung (3,5). 
 These plaques contain cholesterol derived from lipoproteins 
in plasma. These lipoproteins are cholesterol-carrying particles that 
additionally contain proteins and triglycerides. Lipoproteins are 
discriminated based on their density resulting in definition of Very Low 
Density Lipoprotein (VLDL), Intermediate Density Lipoprotein (IDL), 
Low Density Lipoprotein (LDL), and High Density Lipoprotein (HDL). 
More specifically, plaques result from LDL particles that diffuse through 
the endothelial layer of arteries (3). The cholesterol in these LDL particles 
present in plasma will be referred to as LDL-C. 
 The body has a mechanism to counteract this LDL-C inflow in 
the arterial wall: Monocytes, a type of white blood cells, migrate through 
the endothelial layer (2,6), where they differentiate into macrophages (2), 
take up LDL, and transfer the cholesterol to HDL. Next, HDL particles 
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transport cholesterol to the liver (7), after which cholesterol is secreted in 
the bile and excreted in feces. The process of cholesterol transport from 
the vessel wall to the feces is called reverse cholesterol transport. The 
cholesterol in the HDL particles present in plasma will be referred to as 
HDL-C.
 In healthy individuals, a balance exists between the LDL-C 
diffusing into the vessel wall and the cholesterol transport out of the wall 
to HDL. If, however, the concentration of LDL-C in plasma is elevated, 
the influx of LDL-C will dominate over the outflow and then cholesterol 
might accumulate into the wall and form a plaque.
 Plaques can cause cardiovascular events as follows. Usually, these 
events are initiated by a thinning of the cap on the plaque, due to erosion 
by the blood flow. When the cap is thin and unstable, this may result into 
a cap rupture (3). Platelets in the blood recognize this rupture as an injury 
and coagulate to form a thrombus inside the vessel. This thrombus can 
occlude the artery, causing a stroke or cardiac infarction (3,5). 
 Since treatment of cardiovascular events is not always effective, 
prevention is important. To select which subjects require preventive 
measures, predictive biomarkers are needed. The LDL-C concentration 
is such a biomarker: individuals with high LDL-C have a high risk of 
getting CVD (2,3). HDL-C is also used as a biomarker for cardiovascular 
events: individuals with high HDL-C have a low risk of getting CVD (8). 
For this reason, HDL-C is referred to as “good cholesterol”, while LDL-C 
is referred to as “bad cholesterol.” Other risk factors for CVD risk include 
smoking, elevated body weight, and elevated blood pressure.
 After the discovery of cholesterol as a biomarker for CVD, 
pharmaceutical industry responded by developing drugs that target 
LDL-C as a surrogate biomarker for CVD (9). Several types of these 
lipoprotein-modifying drugs are on the market, and more are in (pre)
clinical development (5). The best known drug class for LDL-C lowering 
is the class of 3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitors, 
also called statins (10). These drugs block synthesis of cholesterol in the 
liver. Upon statin administration, the liver responds by increasing the 
expression of the LDL-receptor (LDLR) to increase uptake of LDL-C 
(11). This results in a reduction of LDL-C. Other strategies of LDL-C 
lowering include inhibition of intestinal cholesterol absorption (e.g. 
by ezetimibe or dietary plant sterols and stanols) (12-14) and reduction 
of the  production of lipoproteins in the liver (e.g. by niacin) (15). 
Currently, the pharmaceutical industry is also developing drugs that aim 
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to increase HDL-C, for example Cholesterol Ester Transport Protein 
(CETP) inhibitors such as torcetrapib (16). These drugs are often used in 
combination with a statin to simultaneously affect HDL-C and LDL-C. 
 Unfortunately, current therapies are often not sufficiently 
effective. It is known that only 40% of the individuals treated for a 
high LDL-C concentration, reach their LDL-C targets (17). The lack of 
treatment success warrants the development of new treatment strategies. 
More insight into the mechanisms that underlie differences in plasma 
cholesterol concentrations and statin treatment success might accelerate 
this development.
 It is known that the response to statins is associated with genetic 
variants in cholesterol-associated genes. This implies that differences in 
cholesterol metabolism influence the response to statins. Subjects with 
a different genetic makeup might react to drugs with different targets in 
cholesterol metabolism in a different way. 
 Fortunately, much is already known about the metabolism of 
cholesterol on the molecular and the cellular concentration (11,18-20). It 
is for example known that cholesterol concentrations are influenced by 
hereditary factors (21). A large Genome Wide Association Study (GWAS) 
with more than 100,000 subjects found 95 genetic loci determining 
plasma lipid concentrations (22). Yet together, these loci only explained 
10-12% of the total variance of cholesterol concentrations and 25–30% of 
the variance attributed to genetic factors (22). This means that a large part 
of the variation in cholesterol concentrations remains unexplained. More 
specific, questions to be answered include the following:

• What are the most important biochemical reactions in the body for 
determining plasma cholesterol concentrations and what is the relation 
between these reactions? 

• What causes the large individual variation in the cholesterol response 
to cholesterol lowering therapies? 

• What is the influence of genetic mutations and pharmacological 
interventions on cholesterol concentrations in non-plasma 
compartments? 

• What is the effect of combinations of cholesterol lowering drugs as 
compared to the effect of single drugs? 
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These questions can be addressed with a predictive simulation tool. As 
introduced in the next paragraph, mathematical models are such a tool. 
Therefore, the primary aim of this thesis was to develop a mathematical 
model, including the most important reactions that determine plasma 
cholesterol concentrations, that allows the prediction of the effects 
of genetic, pharmaceutical, and nutritional variations on these 
concentrations. Secondly, to use that model to address the questions raised 
above.
 

Mathematical modeling
One of the dictionary entries for the word “model” is “A simplified 
description of a system, process, etc., put forward as a basis for 
theoretical understanding” (23). When we apply this definition to our 
everyday life, everyone is using models. Not only people who use 
model trains and other scale models; but also those who use a subway 
map, talk about left wing political parties, or about a 4-3-3 formation in 
football. In every day life, the purpose of these models is often brevity. 
It takes a lot of time to explain all positions of a political party in terms 
of immigration, protection of the environment, and equality in wealth; 
instead it is often more convenient to call it a left, or right wing political 
party.

In science, people are more explicit in their model use, and 
examples can be found in the field of molecular models (24), in vitro 
models (25), and mouse models (26). The power of modeling is that 
models allow us to predict scenarios that are hard to measure, for ethical, 
and/or practical reasons. Mouse models, for example, are used when 
(invasive) experiments in humans are considered unethical. 

Another type of models are mathematical models, which are 
descriptions of a system in a mathematical language. These models 
are usually made in situations where the human mind cannot oversee 
all implications of the assumptions made. A mathematical model can 
integrate all assumptions and test their consistency, implications, and 
validity. A model will help to select useful hypotheses, suggest useful 
experiments, and obtain mechanistic insight. 

This thesis will focus on mathematical models of biochemical 
reaction systems having cholesterol plasma concentrations as model 
output. These models are referred to as kinetic models. A special type 
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of kinetic modeling is physiologically based kinetic (PBK) modeling. 
This type of modeling includes “discrete tissues (…) with appropriate 
volumes, blood flows, and pathways for metabolism of (…) chemicals 
(27).” PBK modeling’s close link with physiology allows easier 
interpretation and, therefore, improved understanding of the system.

In general, PBK modeling (like most scientific modeling) will 
follow a procedure called the modeling cycle (see Figure 1.1). Other 
versions of this modeling cycle have been published (e.g. (28,29). Here, 
the modeling cycle contains 8 steps. In other occasions, steps may be 
combined or split up, leading to a different number of steps. In general, 
the procedure itself is consistent.

Observation

GoalAnalysis

Validation

Calibration Mathematical model

Conceptual model

Implementation

Figure 1.1. Schematic overview of the modeling cycle.

Step 1) Experimental observations.
In the first step, a pattern is observed and identified to be important or 
interesting, but it is not fully understood or it is so complex that human 
intuition is not sufficient to see all implications. In our case the paragraph 
“Cholesterol” in this chapter describes these experimental observations.
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Step 2) Setting a goal. 
In the second step, the goal of the model is formulated. Ideally, models 
are not (only) made for fun, but are made with a specific goal in mind, in 
most cases to answer a specific question. Examples of these questions can 
be:

• Will there be rain tomorrow? 

• What is the maximum velocity of a ball dropped from 1   
meter high? 

• Will the sea level rise in the next century?

Or in biology:

• Which factors determine penicillin production (30)? 

• How does the bioactivation and detoxification of estragole depend on 
estragole dose (31)?

In our case, the goals are given at the end of the paragraph “Cholesterol” 
in this chapter.

Step 3) Defining a conceptual model.
After defining the goal, it is time to start building the model. A model that 
contains every piece of detail requires lots of data to construct and, due 
to excessive complexity, does not provide any insight. Therefore, for a 
model to be useful it must be a simplification of reality and thus some 
factors have to be left out. In this third step it should be decided which 
factors are important enough to be included in the model. These factors 
are summarized in a conceptual model. It is most convenient to represent 
the conceptual model in a graphical representation, often called “model 
structure”. Figure 1.2 shows an example of a conceptual model. This 
model integrates pools of chemicals (represented as boxes) and reactions 
(represented as arrows). 
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Blood UrineLung

GI

Brain

Muscle

Kidney

Liver

Oral
dosing

IV
dosing

Feces

Delay

Figure 1.2. Example of a conceptual model, adapted from (32).

Step 4) Mathematical model formulation.
In this step the conceptual model is converted into mathematical 
equations. All types of equations can be used in this step. Models can be 
as simple as amF ⋅=  and as complex as a set of thousands of equations 
(33). 
 In PBK modeling, a change in the amount of a chemical Xi in time 
t can be described as follows:

 
ji

i vv
td

Xd
−=   (Eqn. 1.1)

 
where vi and vj represent the rate of reactions i and j. Equation 1.1 
can be read as: in a small time step, the net change of chemical Xi is 
the difference of the amount of Xi produced, minus the amount of Xi 
consumed. 
 If it is assumed that the rate vi is constant and that the rate vj is 
proportional to the amount of the chemical Xi, then equation 1.1 leads to 
equation 1.2.

 
iji

i Xkk
td

Xd
−=  

  
(Eqn. 1.2)
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where ki and kj are reaction rate constants. The parameter kj is called a 
first order rate constant, since it appears in the rate expression multiplied 
by Xi to the power 1. The parameter ki is called a zero order rate constant, 
since it appears in the rate expression multiplied by Xi to the power 0. The 
form of the rate equations (zero order, first order) is also called the kinetic 
format of the model.
 Sometimes small differences in the model can lead to large 
differences in model predictions. A method to study this is to produce 
a library of submodels, each one slightly different from the others. The 
difference in predictions of the submodels is a measure of the impact of 
these small changes. This approach is called ensemble modeling, because 
it combines different submodels. This thesis will use ensemble modeling 
in a similar approach as outlined by Kuepfer et al. (34).
 Kuepfer et al. (34) applied ensemble modeling to the TOR-
pathway of Saccharomyces cerevisiae. For this pathway, and generally 
in biology, there are large uncertainties in the network structure (which 
components do interact and which do not) and kinetics of the reactions. 
Kuepfer et al. have developed a library of submodels each having a 
different network structure. Every model was validated independently and 
as could be expected some submodels better described the experimental 
data than others did. It is likely that the network structures of the best 
performing submodels better reflect the network structures of the 
biological system under study than the network structures of the worst 
performing submodels.
 Generally in biology, not only interactions are unknown, but also 
the kinetic format. This kinetic format describes how the reaction rate 
depends on the measured concentrations. Determining the kinetic order of 
biological processes in vivo requires the measurements of reaction rates in 
various situations which in many cases are not feasible. We used a similar 
approach to the approach of Kuepfer et al. Whereas Kuepfer et al. used 
submodels with different network structure, we used submodels with 
different kinetics. See Chapter 3 for more details.

Step 5) Model implementation.
For a few cases, writing model equations is enough to see all implications 
just by looking at them. In most cases, however, model equations are 
too complex to grasp in that way. In these cases, model equations are 
implemented in specific software to allow more extensive operations and 
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analysis. In this thesis, all model implementations were performed in 
MATLAB (35). 
 In PBK modeling, it is possible to calculate the pool sizes with 
two different methods: by analytical integration of Eqn. 1.2 or by using 
so called stepwise integration with a computer. In the latter procedure, 
one assumes an initial amount of chemical in every pool in the system. 
With these amounts, reaction rates vi can be calculated. In a minor time 
step (Δt), a small amount of chemical (viΔt) is changed in the pools. We 
now can calculate the amount of chemical after this time step. In the 
second small time step, reaction rates are slightly different. After many of 
these time steps, the concentration development in time for each pool is 
obtained. This simulation can be performed to a specific point in time, or 
until a situation occurs where none of the concentrations change in time 
anymore. This situation is referred to as a ‘steady state’. In the present 
thesis we applied the stepwise integration approach to solve the equations.

Step 6) Calibration of the model.
Usually, the implemented model contains several constants: the 
parameters. In order to reach the goal set in step 2, the values of these 
parameters must be known. Parameter values can be measured, taken 
from literature, or fitted to experimental data. In the last case, the 
parameter combination is used that yield model predictions that best 
resemble experimental data. The process of setting parameter values 
is called “model calibration” or “model training”. A data set used in the 
calibration step is called the calibration data set or training data set.

Step 7) Validation of the model.
The model developed needs to include elements of reality. Frequently 
the question is raised how good the model mimics reality. There are two 
strategies to answer this question. One strategy is to discuss the validity of 
all model assumptions. This answer will become very lengthy and is often 
very difficult to give. Often it is more convenient to answer this question 
by the other strategy: compare model predictions with reality. If model 
predictions are similar to available experimental data, then the model 
might be valid in other situations not yet studied by experiments. 
 If the comparison is made with the data used for model calibration 
(step 6), it is possible that the model is only good for these specific data. 
Consequently, validation with a data set independent of the training set 
answers the question more convincingly. The independent data set used in 
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this validation step is called the validation set.

Step 8) Model analysis.
In the next step, the validated model can be used to answer the questions 
raised in the second step of the modeling cycle, and additionally reveal 
unexpected model characteristics. This step is called model analysis, and 
can include sensitivity analysis, stability analysis, or time scale analysis. 
Sensitivity analysis can identify factors that influence model predictions 
(32). Stability analysis can identify instabilities, oscillations, and switch-
like behavior (36,37). Time scale analysis can identify how long it takes 
before events occur (38). This provides hints for sampling time and 
frequency in experiments. 
 Another way to analyze mathematical models is to simulate 
various scenarios and evaluate model predictions. In this thesis, these 
scenarios will include genetic mutations and drug treatment.
 The next step is then to validate the determined model 
characteristics and the generated model predictions to experimental data. 
Usually, this involves the performance of new experiments. This leads 
to new observations, completing the modeling cycle. Thereafter, the 
modeling cycle can be repeated.
 The next section describes the current state of modeling of 
cholesterol metabolism.

Figure 1.3. Structure of the model of Goodman and Noble, adapted from (48).

20

Chapter 1



Mathematical modeling of cholesterol
The aim of this thesis was to develop a mathematical model, including 
the most important reactions that determine plasma cholesterol 
concentrations, that allows the prediction of the effects of genetic, 
pharmaceutical, and nutritional variations on these concentrations. 
 From the aim specified, at least three model requirements 
arise, the model should 1) include a plasma compartment, 2) contain 
the important genes and targets of pharmaceutical and nutritional 
interventions, and 3) be simple enough to calculate all model parameters. 
Below, mathematical models from literature are reviewed and compared 
with the list of requirements. 
 Cholesterol metabolism was included in modeling: in mouse 
models (26,39), in conceptual modeling (5,40-47), but also in 
mathematical modeling (48-58). Mathematical models were already 
made in the 1960’s. Goodman and Noble (48), for example, used a two 
compartment model shown in Figure 1.3. This model was able to describe 
the decay of labeled cholesterol in plasma after an intravenous injection. 
The model contains a rapidly turning over pool of plasma cholesterol (A) 
and a slowly turning over pool of plasma cholesterol (B), but the model 
does not include drug targets and reactions are not linked to genetic 
factors.
 In recent years, more sophisticated models were constructed to 
analyze isotope tracer data (reviewed by De Graaf and Van Schalkwijk 
(49)). These models do not focus on cholesterol, but merely on proteins 
in the lipoproteins that carry cholesterol. This type of models aid 
interpretation of isotope tracer experiments, as they predict until then 
inaccessible biological parameters that underlie lipoprotein metabolism 
(49-52). Van Schalkwijk et al. (52) have found that some of these 
parameters aid the diagnosis of CVD risk. Pools in these models are 
directly biologically relevant, but these models still lack known drug 
targets, such as hepatic cholesterol synthesis. Therefore, these models can 
predict the effect of genetic, pharmaceutical, and nutritional differences 
on plasma cholesterol only to a very limited extent. 
 Hübner et al. (53) have developed a model solely of plasma 
lipoproteins that considers the entire protein and lipid composition 
spectrum of individual lipoprotein complexes, of both ApoB-100- and 
ApoA1- containing lipoproteins. This model also lacks many known drug 
targets and is consequently not ideal for our goal.
 Three models were reported that focus primarily on the molecular 
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and cellular level, particularly of liver cells (54-56). Figure 1.4 gives 
the structure of one of these models. As seen in Figure 1.4, the model 
contains various intracellular reactions, and lacks several reactions that 
are important for the determination of plasma cholesterol concentrations, 
like dietary cholesterol absorption.

  

Figure 1.4. Structure of a model for cellular cholesterol. The model includes 
LDL receptors (LR), intracellular cholesterol IC, extracellular cholesterol 
(VLDL, IDL, and LDL). Taken from (54) with permission.

The models described in the literature that are including drug targets 
and plasma cholesterol are rather detailed and tend to be very complex, 
with many reactions and parameters (57,58). Reich and Knoblauch (57) 
described an elegant model including various cholesterol fractions in 
blood (Figure 1.5). Due to their complexity, these models are hard to 
calibrate and validate. Reich and Knoblauch, for example, did not explain 
why certain parameter values were chosen (57). Also, despite their 
complexity, many relevant drug targets are not included in these models.
 Thus, to the best of our knowledge, there exists no adequate 
model that meets all our requirements. Consequently, such a model was 
developed and validated in this thesis.
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Outline of the thesis
The aim of this thesis was to develop a PBK model that allows the 
prediction of the effect of genetic, pharmaceutical, and nutritional 
variations on plasma cholesterol concentrations. The setup of this thesis 
will follow the modeling cycle. The first two steps in this modeling cycle, 
biological observations and setting a goal, are described in Chapter 1. 
 Chapter 2 describes the definition of a conceptual model, based 
on the function of so-called ‘key genes’ that determine plasma cholesterol 
concentrations in the mouse.
 In Chapter 3, this conceptual model was converted to a 
mathematical model for the mouse. This chapter also includes model 
calibration, implementation, validation, and analysis. In this chapter, 14 
different knockout mouse strains were simulated, including the frequently 
used Apoe-/- and Ldlr-/- mouse.
 Chapter 4 describes the conversion of the model for the mouse 
to a model for humans. This chapter also includes model calibration, 
implementation, validation, and analysis. Validation was done by 
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Figure 1.5. Structure of a complex model of plasma cholesterol. Boxes represent 
pools of the model, in this case various plasma species. Reactions include tar-
gets of CETP inhibitors (reaction 7), but not dietary cholesterol absorption, the 
target of ezetimibe. Taken from (57) with permission.



comparing the predicted effects of mutations in genes involved 
in cholesterol metabolism to literature data on plasma cholesterol 
concentrations.
 Chapter 5 reports on the simulation of pravastatin treatment and 
on an analysis of the variation in response to statin therapy using the 
human model developed in Chapter 4. 
 Chapter 6 shows the simulation of treatment with torcetrapib, and 
with the combination with torcetrapib and pravastatin, and an analysis of 
the variation in response to torcetrapib therapy, all using the human model 
developed in the previous chapters.
 Finally, results and further opportunities for the use of the model 
are discussed in Chapter 7.
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Abstract
Elevated plasma cholesterol, a well known risk factor for cardiovascular 
diseases, is the result of the activity of many genes and their encoded proteins 
in a complex physiological network. We aim to develop a minimal kinetic 
computational model for predicting plasma cholesterol levels. To define 
the scope of this model, it is essential to discriminate between important 
and less important processes influencing plasma cholesterol levels. To this 
end, we performed a systematic review of mouse knockout strains and used 
the resulting dataset, named KOMDIP, for the identification of key genes 
that determine plasma cholesterol levels. Based on the described phenotype 
of mouse knockout models 36 of the 120 evaluated genes were marked 
as key genes that have a pronounced effect on the plasma cholesterol 
concentration. The key genes include well-known genes, e.g. Apoe and 
Ldlr, as well as genes hardly linked to cholesterol metabolism so far, e.g. 
Plagl2 and Slc37a4. Based on the catalytic function of the genes a minimal 
conceptual model was defined. A comparison with nine conceptual models 
from literature revealed that each of the individual published models is less 
complete than our model. Concluding: we have developed a conceptual 
model that can be used to develop a physiologically based kinetic model to 
quantitatively predict plasma cholesterol levels.
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Introduction
Cholesterol is an important molecule in fat metabolism, a precursor for 
vitamin D and is involved in maintaining cellular integrity (1). Elevated 
plasma concentrations of LDL-cholesterol (LDL-C) have been correlated 
with the risk of atherosclerosis and cardiovascular diseases (2), which are 
leading causes of death in Western societies (3). A large part of cholesterol 
research uses the mouse as a model organism (4) to benefit from many 
practical advantages such as short generation times and reduced genetic 
variation (inbred strains). Additionally, several modern biological 
techniques are applicable in mice, but not in humans. A very powerful 
one is the gene knockout technology (5) which allows direct study of 
the effect of individual genes in vivo. Using knockout mouse models, 
the involvement of many genes in cholesterol metabolism and plasma 
cholesterol levels has been studied. From these studies, it has become clear 
that a complex system of biochemical processes is involved in the enzymatic 
conversions and transport of cholesterol in the body. Unfortunately, the 
quantitative interplay of these processes in vivo is not fully understood. As 
a consequence, it is generally difficult to predict the effect of interventions 
on plasma cholesterol.
 Physiologically based kinetic (PBK) models can be effective tools 
to assess this issue. PBK models allow to predict the effect of system 
perturbations (e.g. genetic defects, therapies), help to gain quantitative 
insight, and can play a role in translational research (6-8). These 
computational models are generally built from conceptual models that 
present knowledge in an integrated fashion (9). 
 Several conceptual models of whole body cholesterol metabolism 
have been published (4,10-12). These models are graphical representations 
of the set of organs, metabolite pools and fluxes that together comprise 
the most important enzymatic conversions in cholesterol metabolism and 
pathways of cholesterol transport between different organs. However, the 
conceptual models on cholesterol metabolism defined so far (4,10,12-18) 
do not explicitly focus on plasma cholesterol.
 Therefore, the aim of the present study was to construct a 
comprehensive minimal conceptual model of cholesterol metabolism 
in the mouse, explicitly focusing on processes that will affect plasma 
cholesterol. This will subsequently allow the development of a quantitative 
PBK model for prediction of plasma cholesterol concentrations, and of the 
effect of cholesterol lowering therapies in preclinical research. In order to 
avoid overparameterization, this model should contain as few processes 
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and parameters as possible (i.e. it should represent a minimal conceptual 
model). The choice of the processes to be included in the model was made 
on the basis of key genes. To discriminate key genes in determining plasma 
cholesterol concentrations from less important ones, we systematically 
reviewed the cholesterol phenotype of available knockout mouse models. 
These key genes were defined in two different ways: 1) genes were marked 
key genes type A if the cholesterol plasma level of the knockout mouse of 
the gene is highly affected compared to the wild type level and 2) genes 
that lead to lethality early in embryogenesis when knocked out (i.e. no 
plasma cholesterol data available for the knock out) were labeled key genes 
type B, if the primary function of the gene could be assumed to directly 
affect plasma cholesterol concentrations.
 The outcomes were used to construct a minimal conceptual model 
for plasma cholesterol levels that was subsequently compared with 
conceptual models described in literature (4,10,12-18).

Methods
Data set construction
To rank the impact of genes on cholesterol plasma levels and to define 
key genes type A (highly affecting plasma cholesterol levels in knockout 
strains compared to the wild type), an inventory of all relevant knockout 
mouse models was made using the Mouse Genome Database (available via 
http://www.informatics.jax.org) (19). The database was searched for alleles 
that correspond to the phenotypic categories 1) ‘abnormal cholesterol 
homeostasis’ and 2) ‘abnormal bile salt homeostasis’. The second search 
term was included since bile salts are a degradation product of cholesterol 
and bile salt metabolism is closely related to cholesterol metabolism (4). 
These two categories are the most comprehensive phenotypic categories 
having a direct link with cholesterol. They comprise the following 16 
different daughter categories: 1)‘decreased cholesterol level’, 2) ‘increased 
cholesterol level’, 3) ‘abnormal circulating cholesterol level’, 4) ‘decreased 
circulating cholesterol level’, 5)‘increased circulating cholesterol level’, 6) 
‘abnormal circulating HDL cholesterol level’, 7) ‘decreased circulating 
HDL cholesterol level’, 8) ‘increased circulating HDL cholesterol level’, 
9) ‘abnormal circulating LDL cholesterol level’, 10) ‘decreased circulating 
LDL cholesterol level’, 11) ‘increased circulating LDL cholesterol level’, 
12) ‘abnormal circulating VLDL cholesterol level’, 13) ‘decreased 
circulating VLDL cholesterol level’, 14) ‘increased circulating VLDL 
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cholesterol level’, 15) ‘abnormal bile salt level’ and 16) ‘increased bile salt 
level’. The final database search was performed on August 28th 2008. To 
increase the homogeneity of the data set, knockin and transgenic mouse 
strains were not included and this also holds for mouse strains that carried 
alleles with non-targeted mutations. The latter included Quantitative Trait 
Loci, chemically induced and spontaneous mutations. For all alleles, data 
on the wild type strain and the reference to the literature source were 
obtained from the Mouse Genome Database. This information was linked 
to data on diet, gender, total plasma cholesterol for both wild type (wt) 
and knockout (ko), plasma LDL-C levels (wt + ko) and plasma HDL-C 
levels (wt + ko) extracted from the original publications. This resulted 
into a manually checked KnockOut MouseData Inventory of cholesterol 
Phenotype of models (KOMDIP) containing plasma cholesterol phenotype 
data together with data on the experimental design.

Key genes type A identified from plasma data in KOMDIP
To distinguish the most important genes affecting plasma cholesterol 
concentrations, a gene effect (E) was calculated for every experiment with 
a given knockout strain present in KOMDIP. 

 wt

ko
TC
TCE

][
][log2  

  (Eqn. 2.1)

where, [TC]ko stands for the reported average total plasma cholesterol 
concentration of the knockout mouse and [TC]wt for the average total plasma 
cholesterol concentration of the wild type counterpart. E is based on a 2-log 
ratio as commonly used in gene expression analysis, because it produces 
a continuous spectrum of values for increased and decreased cholesterol 
concentrations as compared to wild type (20). Genes corresponding to 
absolute values of E larger than a cut off value are henceforth referred 
to as key genes type A. Since plasma cholesterol levels typically vary 
approximately a factor of two between background strains (21), we chose 
the cut off value to be 1 or -1. An E value larger than +1 means that the 
knockout mouse has more than twofold higher cholesterol levels than the 
wild type and an E value smaller than -1 means that the knockout mouse 
has a more than twofold lower cholesterol concentration than the wild type.



Impact of gender and diet
To judge the importance of gender and dietary effects, wild type total 
plasma cholesterol data (knockout data were not considered since these 
would focus on the genetic factors) were distributed in different groups 
according to the reported experimental design. Differences in average total 
plasma concentrations between the groups were tested for significance 
using the Wilcoxon rank sum test as implemented in the Statistics toolbox 
of MATLAB (version 7.5 R2007b). Tests for normality were performed 
using the Lillietest as implemented in the same toolbox. Differences with p 
< 0.05 were considered significant.

Key genes type B identified from non viable knockout mice
An obvious reason why genes might be missed in the previous analysis 
is that the corresponding knockout mouse is not viable. To find the 
genes which lead to a non viable mouse strain and are tightly linked to 
plasma cholesterol levels, the Mouse Genome Database was searched for 
targeted alleles that were grouped in the categories ‘embryonic lethality 
at implantation’, ‘embryonic lethality before implantation’, ‘embryonic 
lethality before turning of embryo’,‘embryonic lethality before somite 
formation’ and ‘embryonic lethality during organogenesis’. References 
to the corresponding literature sources were obtained from the Mouse 
Genome Database. To verify whether these genes can be considered a key 
gene type B, Pubmed was used to search the titles and abstracts of these 
publications for the term ‘cholesterol’. If the term cholesterol is present and 
the gene was not integrated in the KOMDIP data set and the hypothetical 
function of the gene is directly related to (plasma) cholesterol, the gene was 
marked as a key player type B.

Conceptual model
The key genes of both types which resulted from the aforementioned 
analyses were used to construct a conceptual model including the processes 
which influence plasma cholesterol. The choices on which processes are 
relevant enough to include in the model were made based on the (suggested) 
functions of the key genes. Since we aim to construct a minimal conceptual 
model, we chose to include only those genes that can be directly appointed 
to a specific metabolic process in cholesterol metabolism or to a cholesterol 
transport process. As regulatory genes often affect different processes, they 
were not included. Also, genes that affect cholesterol metabolism indirectly, 
for example by affecting triglyceride metabolism, were not included.
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 A representation of the conceptual model was made by drawing 
boxes that represent the organs wherein the key genes that code for 
metabolic enzymes or transport proteins are known to be active. Within 
these organs, separate pools of free cholesterol and/or cholesterol esters 
were defined as necessary. Arrows that represent the transport processes of 
cholesterol or cholesterol esters from one organ to another interconnect the 
boxes (organs).
 A major concern while constructing the conceptual model was to 
avoid so called dead-end pools i.e. pools that are connected to either only 
processes that decrease the pool size, or to only processes that increase the 
pool size. This would mean that in the corresponding computational model, 
the pool size would decrease to zero or increase to infinity, which does 
not occur in real life (4). Therefore, in cases where such pools occurred 
in the model resulting from the procedure described so far, the model was 
extended by including the missing processes.

RESULTS
KOMDIP data set construction
The manually checked data set KOMDIP containing information on genes, 
alleles, background strains, diet, sex and plasma cholesterol concentrations 
is supplied as supplementary information. The data set is based on 168 
publications and contains information on 122 different targeted genes, and 
includes over 600 total cholesterol concentration data entries. In total 311 
pairs of total cholesterol concentrations of the knockout and corresponding 
wild type are present. As not all publications consistently list standard 
deviations and group sizes, only reported average values were used for 
further analysis.

Impact of gender and diet
The results of the quantification of the effects of gender and diet on 
cholesterol concentrations are given in Table 2.1. 
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Table 2.1. Total plasma cholesterol concentrations of the wild type counterparts 
of knockout mouse models considered in the KOMDIP data set. The experiments 
were sorted in diet and gender groups according to their experimental design. 
Data are expressed as average ± standard deviation, of the concentration values 
reported in different original publications. The chow diet group includes data 
obtained from publications indicating diets as chow, standard chow, standard lab 
diet, and data from studies that do not indicate the diet. The non-chow group 
contains data on different diets including, high fat diet, western type diet and 
fasting. 
Diet Gender Number data 

points
Total cholesterol con-
centration (mM)

All Both e 313 2.94 ± 1.45
Male 113 3.19 ± 1.56
Female b 88 2.63 ± 1.19

Chow Both a 194 2.40 ± 0.88
Male 70 2.57 ± 0.81
Female b 59 2.18 ± 0.72

Non-chow d Both c 119 3.82 ± 1.75
Male 43 4.22 ± 1.92
Female d 29 3.56 ± 1.41

a P = 6.5·10-17 versus chow, b P = 0.0013 versus male, c P = 0.0045 versus male, 
d P = 0.1157 versus male, e Sum of the number of data points in the males and 
females groups are smaller than the number of data points in the groups with both 
males and females, since some publications do not mention gender or mention 
mixed gender groups.

Differences between the averages of the chow and non chow groups are 
larger than 50% of the average cholesterol concentration in the chow 
group, while differences between the averages of the male and female 
groups are smaller than 25% of the average cholesterol concentration in 
males. This indicates that male mice have higher total plasma cholesterol 
concentrations than females, but also that this gender effect is smaller than 
the diet effect (Table 2.1).

Key genes type A identified from plasma data in KOMDIP 
In order to discriminate the processes associated with key genes from 
the others, key genes were identified using the KOMDIP data set. In the 
KOMDIP data set, 311 pairs of total cholesterol concentrations of the 
knockout and corresponding wild type are present. This is slightly less than 
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the total of wild type entries (Table 2.1), since some publications only give 
data for wild type and heterozygote and not for the full knockout. The 311 
calculated E values (Eqn 2.1) are presented in Figure 2.1. It can be seen that 
the E values are distributed in bell shape (average is 0.2, standard deviation 
is 1.3), although the distribution did not pass the test for normality (p < 
0.001).
 Gene effects vary from -5.8 to 6.0, while 71% of all E values are 
between -1 and 1, which shows that many of the genes only have a minor 
effect compared to the high impact genes (Figure 2.1). Figure 2.2 shows 
results for the key genes identified. 
 Data corresponding to 31 genes were observed to lead to an E value 
higher than 1 or lower than -1. This set includes several genes that are 
directly involved in lipoprotein metabolism, like apolipoproteins (Apoa1, 
Apoe), lipoprotein receptors (Ldlr and Scarb1), as well as some genes that 
have hardly been linked to cholesterol metabolism so far like G6pc and 
Slc37a3.
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Figure 2.1. Histogram of the frequency distribution of calculated gene effects 
(E, see Eqn. 2.1) for the 311 experiments (pairs of total cholesterol levels of the 
knockout and corresponding wild type) present in the KOMDIP data set (n = 
311). 
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Figure 2.2. Calculated gene effects (E) that are larger than the cut off 
value (E < -1 and E > 1) for mouse knockout experiments. The effects are 
presented in alphabetical order of the corresponding gene names. Multiple 
bars can correspond to a single gene (e.g. Apoe). These bars refer to separate 
experiments, for example differing in diet, gender or age of the mice used.
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Recently, Su et al. (22) have demonstrated that the observed effect in 
the Soat1 knockout mouse (23) was due to differences between different 
background strains used to construct the Soat1-/- mouse and not to the 
impact of Soat1 itself, consequently Soat1 is not treated as key player type 
A.

Key genes type B identified from non viable knockout mice
Since the analysis of the KOMDIP data base described above would not 
find key genes that would lead to non viable knock-out mouse strains, an 
additional analysis of non viable knockout mouse strains was performed. 
The search of the Mouse Genome Database for non viable knockout 
mice yielded 3246 publications containing information on 4626 different 
genotypes. In total, 46 of those publications have the term ‘cholesterol’ in 
their title and/or abstract, indicating that the gene might be a key gene in 
determining plasma cholesterol concentrations. Again, to ensure specificity 
of our analysis, only the 28 genes leading to non viable mice carrying a 
single, non transgenic targeted mutation as given in Table 2.2 were included 
in further analysis. 
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Table 2.2. The genes corresponding to a non viable knockout mouse 
strain that are described in publications that include “cholesterol” 
in their abstract. The second column indicates whether the gene is 
present in the KOMDIP data set and the third indicates whether it 
was marked as a key player of type A or B. The numbers in the last 
column correspond with the numbers of a motivation presented in the 
Results section Y, Yes; N, No; A, key player type A; B, key player type B. 
Gene name In KOMDIP? Key player? Motivation
Abca1 Y A 1
Abca3 N N 3
Apob Y B 1, 2
Atxn2 Y N 1
Cyp11a1 N N 4
Cyp7a1 Y N 1
Dhcr24 Y A 1
Dhcr7 Y A 1
Disp1 N N 5
Fasn Y A 1
Fdft1 N B 6
Hmgcr N B 6
Hnf4a N B 7
Hsd17b7 N B 6
Lpl Y A 1
Lrp2 N N 1
Mttp N B 8
Nr5a2 Y N 1
Por Y N 1
Psen1 N N 9
Sc5d Y N 1
Scarb1 Y A 1
Shh N N 5
Sptlc1 N N 10
Sptlc2 N N 10
Srebf1 Y N 1
Star N N 4
Vcam1 N N 10

 The motivation to mark a gene as key player type B is based on 
arguments specific to each case or small set of cases. The sections below 
presenting those motivations are numbered and the last column of Table 2.2 



refers to these numbers for the various genes listed. 

1. Out of the 28 genes in Table 2.2, 13 were already in the KOMDIP 
data set (see 2nd column) and were, therefore, already included in the key 
gene type A analysis. Data on the effect of these genes have often been 
obtained from plasma analysis of newborn mice. In total, 6 out of these 13 
genes were already identified as a key player type A (Figures 2.2 and 2.3), 
namely Abca1, Fasn, Dhcr24, Dhcr7, Lpl, and Scarb1. 

2. The gene Apob is present in the KOMDIP data set and was not marked 
as key gene type A. The Apob gene codes for 2 different proteins, which 
are splice variants. The Apob knockout models in the KOMDIP data set 
are specifically modified to retain one of the functional Apob proteins. 
When both splice variants are disabled, the mouse is not viable and the 
plasma cholesterol concentration of the heterozygote is highly affected 
(24). Since Apob is the main structural protein in LDL, chylomicrons 
and VLDL (25), we consider Apob a key gene (type B) of cholesterol 
metabolism.

3. Both Lrp2 and Abca3 knockout mice died shortly after birth due to 
respiration complications (26,27). It has been claimed that this might 
be due to a defect of lipids in the alveolar fluid. Since no link with 
cholesterol plasma concentrations is given and plasma cholesterol 
concentrations are not reported in both articles, the genes were assumed 
not to be a type B key player.

4. Two of the genes in Table 2.2 play a role in the conversion of 
cholesterol to steroid hormones (Cyp11a1 and Star). Since both mouse 
strains can only stay alive when injected with steroids, these strains are 
assumed to be non viable due to defects in the hormone system rather 
than in cholesterol metabolism (28,29). The genes were, therefore, not 
marked as a key player type B.

5. Two genes in Table 2.2 include genes that are involved in hedgehog 
signaling (Shh and Disp1), an important mechanism in embryonic 
development. Cholesterol is required for Shh processing. There is, 
however, very little evidence that the hedgehog pathway affects plasma 
cholesterol concentrations in the adult mouse (30,31). The genes Shh and 
Disp1 were therefore not marked as key player type B. 
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6. Three genes are enzymes in cholesterol biosynthesis: Hmgcr (32), 
Fdft1 (33), and Hsd17b7 (34). Since the principal function of these genes 
is related to cholesterol, it can be assumed that the observed lethality is 
indeed due to defects in cholesterol metabolism. The genes were therefore 
labeled as key player type B.

7. Hnf4a is central to the maintenance of hepatocyte differentiation 
and is a major in vivo regulator of genes involved in the control of 
lipid homeostasis (35). It is pointed out (35) that the role of Hnf4a 
in lipid homeostasis includes a role in regulating plasma cholesterol 
concentrations. Hnf4a was therefore marked as a key player type B. 

8. Mttp is a gene involved in the secretion of lipoproteins. Mutations 
in the Mttp gene are the cause of the disease abetalipoproteinemia, an 
inherited disease of extremely low plasma concentrations of cholesterol 
(36). Therefore Mttp was marked as key player type B. 

9. Cholesterol is mentioned in the article on Psen1 (37) as an analogy 
only. No argument for the affection of cholesterol metabolism is given. 
Consequently, this gene was not marked as key player type B.

10. In the article about Sptlc1 and Sptlc2 (38), plasma cholesterol is 
mentioned as a control parameter in which no change was detected. This 
is also the case for the publication on Vcam1 (39). These genes were 
therefore not labeled as key player.

In summary, 6 additional genes were marked as key player (type B): 
Apob, Mttp, Hnf4a, Hmgcr, Fdft1, and Hsd17b7. Since 30 key genes type 
A were defined by analysis of the KOMDIP data set, in total 36 different 
genes were marked as key genes. 

Functions of the key genes.
Table 2.3 presents an overview of the biological functions associated with 
the key genes thus identified. The key processes include several transport 
proteins, like (Scarb1 and Abca1), apolipoproteins (Apoa1, Apoc1 and 
Apob), several metabolic enzymes (Fasn, Hmgcr) as well as regulation 
factors (Nr1h3, Arhgdia). More details on the key gene functions are given 
in the discussion section. 
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Table 2.3: Short summary of the function of the key genes. TF, Transcription 
factor, G6P glucose-6-phosphate, CM chylomicron, TG triglyceride, PL 
phospholipid. 

Nr Gene name Function of gene product Ref

1 Abca1 Cholesterol transport into HDL (40)

2 Abcb4 Biliary phospholipid transport (41)

3 Abcg8 Biliary cholesterol transport (42)

4 Aebp1 Regulatoin of adipose tissue homeostasis (43)

5 Angptl3 Inhibition of Lpl activity (44)

6 Angptl6 Circulating peptide induces angiogenesis (45)

7 Apoa1 HDL building block (46)

8 Apoc1 Regulation of lipoprotein metabolism (47)

9 Apoe Regulation of LDL and CM uptake (48)

10 Arhgdia Regulation of cytoskeleton dependent functions (49)

11 Dhcr24 Enzyme in cholesterol synthesis (50)

12 Dhcr7 Enzyme in cholesterol synthesis (51)

13 Fasn Enzyme in the synthesis of fatty acids (52)

14 G6pc Catalyzing conversion of G6P into glucose and phosphate (53)

15 Gpihbp1 Lipolytic processing of CM (54)

16 Hnf1a TF controlling genes expressed preferentially in liver (55)

17 Il1rn Agonist of the interleukin 1 receptor (56)

18 Lcat Catalyzing HDL associated cholesteryl esterification (57)

19 Ldlr Uptake of Apob containing lipoproteins (58)

20 Ldlrap1 Increasing catabolism of LDL (58)

21 Lipg Involved in lipoprotein metabolism, function unknown (59)

22 Lpl Catalyses the hydrolysis of TG in VLDL and CM (60)

23 Npc1l1 Intestinal cholesterol absorption (61)

24 Nr1h3 Oxysterol sensor that regulates several genes in cholesterol metabolism (62)

25 Pcsk9 Targets Ldlr for degradation (63)

26 Plagl2 TF in adipocyte metabolism (64)

27 Pltp Transfer of PL between different plasma lipoproteins (65)

28 Scarb1 Tranport for the hepatic uptake of HDL C and CE (66)

29 Slc37a4 Transport of G6P (67)

30 Soat2 Cellular cholesterol esterification enzyme (68)

31 Apob Building block of (V)LDL and CM (25)

32 Fdft1 Enzyme in cholesterol synthesis (33) 

33 Hmgcr Enzyme in cholesterol synthesis (32)

34 Hnf4a TF in regulation of lipid metabolism (35)

35 Hsd17b7 Enzyme in cholesterol synthesis (34)

36 Mttp Loads Apob with cholesterol and TG to form VLDL and CM (36)
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Conceptual model
Based on the key genes, a conceptual model for describing cholesterol 
plasma concentrations with a minimum amount of essential parameters 
was defined to serve as a basis for a future kinetic model. Therefore, 
we chose to include only those genes in our model that can be directly 
appointed to a specific metabolic or transport process in the cholesterol 
metabolism. These are the genes: Dhcr7, Dhcr24, Fdft1, Hmgcr, Hsd17b7, 
Ldlr, Scarb1, Abca1, Mttp, Soat2, Abcg8, and Npc1l1. To make the 
model, we first review the functions and locations of these key genes. 
 The gene Npc1l1 is only expressed in the intestine (69) and 
plays a role in the uptake of dietary and biliary cholesterol. This biliary 
cholesterol is transported into bile by the protein that is coded for by gene 
Abcg8 that is expressed in the liver and the intestine (69). Cholesterol 
biosynthesis (genes: Dhcr7, Dhcr24, Hsd17b7, Fdft1, and Hmgcr) occurs 
in every cell in the body (70). The key gene for esterification of this 
cholesterol (Soat2) is only expressed in the liver and the intestine (69). 
The esterified cholesterol is packed into Apob containing lipoproteins 
by the product of gene Mttp. The liver and the intestine are the tissues 
that primarily express this gene (69). Cholesterol in Apob containing 
lipoproteins is taken up (gene Ldlr) by the liver and peripheral tissues, 
while Apoa1 containing lipoproteins are primarily taken up (gene: Scarb1) 
by the liver (70). The cholesterol in these particles originates from 
hepatic, intestinal and peripheral sources (related gene: Abca1) (71). The 
enzyme Lcat associated with HDL in the plasma esterifies this cholesterol.  
 Currently there is an ongoing debate on the origin of HDL 
cholesterol (HDL-C). The classical picture is that HDL-C originates from 
peripheral tissues (4). Contrasting evidence from organ specific knockout 
mouse strains suggests however that HDL-C mainly originates from the 
liver and the intestine (71). Data in the mouse gene atlas (69) on the location 
of gene expression of Abca1 strongly supports the hepatic and peripheral 
origin of HDL-C. To be in agreement with all literature, we have included 
all three sources in our model. Based on the locations of these genes, 
plasma, intestine, and liver were included as important compartments in 
our model. The other tissues were lumped into the peripheral compartment. 
Although the key genes were defined on total plasma cholesterol data, we 
have found genes that are related to either LDL cholesterol (i.e. Ldlr) or 
HDL cholesterol (i.e. Lcat) and therefore, the plasma compartment was 
split up into two compartments (HDL and LDL). The model based on 
these biological processes is represented with solid arrows in Figure 2.3. 
 Pools that are only connected to processes that increase the pool 
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size and not to processes that decrease the pool size are undesired in a 
good kinetic model (see Methods for motivation). In the conceptual 
model defined so far (Figure 2.3, solid arrows), the total body 
cholesterol pool is increased by dietary absorption and de novo synthesis 
while a reaction that removes cholesterol from the body is missing. 
 In mammals, cholesterol is lost due to various processes including 
a) fecal excretion, b) bile acid formation from cholesterol in the liver and 
c) skin shredding (4). These processes were not identified in our analysis, 
since 1) the final removal of cholesterol from the intestine via the feces is not 
catalyzed by a single transport protein, but is rather dependent on peristaltic 
movement, a multifactorial process i.e. no specific gene can be linked to 
this process, 2) several alternative pathways for bile acid formation (76) 
exist and 3) skin shredding is not catalyzed by a single transport protein. 
 To allow for a realistic description of the total body pool balance 
we therefore included three different reactions: fecal cholesterol excretion, 
hepatic cholesterol loss, and loss of cholesterol from the peripheral 
compartment. These additional processes are indicated with dashed arrows 
in Figure 2.3. The full model including this extension is given by the total 
of solid and dashed arrows in Figure 2.3.

DISCUSSION
In this work, we have collected data that allowed identification of 
the most important processes determining total plasma cholesterol 
concentrations. We have chosen to assemble data on knockout mouse 
models, since these mouse models, unlike transgenic mutations or 
(human) SNPs, carry a defined biological perturbation, allowing a better 
comparison between different genes. The constructed data set KOMDIP 
is a manually checked integration of quantitative mouse cholesterol 
phenotype data and as such provides information on genes likely to be 
related to cardiovascular diseases. Since not for every mouse gene a 
knockout phenotype is available, the screening of the genes cannot be 
fully comprehensive at the present stage but new information can be 
added as additional knockout strains become available. Based on this new 
database, ranking of the genes and associated processes having a large 
effect on plasma cholesterol concentrations became feasible.
 Analysis of the KOMDIP data set assigned 30 genes with the label 
“key player type A” (Figure 2.2) including some genes well-known to be 
involved in modulating cholesterol plasma concentrations (like Apoe and 
Ldlr, see (48,58)). Surprisingly the data set of key player type A genes 
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also included some genes not so prominently linked to cholesterol plasma 
concentrations (like Gpihbp1 (54) and Plagl2 (64)). The gene Soat1 was 
excluded from this list, since the cholesterol phenotype of the knockout 
mouse was due to experimental artifacts (22). Currently, there is no 
evidence that this also holds for other genes identified in this analysis to 
be of importance for regulating cholesterol plasma levels.
 Since plasma cholesterol in the mouse is mainly localized in 
HDL, it can be expected that the identified genes play a role in HDL 
metabolism. While our analysis indeed identified genes related to HDL 
as key player (like Apoa1, Lipg, Abca1, Scarb1, Lcat), several genes that 
are considered to be related to VLDL and LDL metabolism (like Apoe, 
Ldlr, Gpihbp1, Lpl) were also marked as key player type A. Therefore, 
our analysis indicates that lipoprotein metabolism in its entirety must be 
considered for a correct understanding of the factors that influence total 
plasma cholesterol concentrations. 
 Since plasma cholesterol in the mouse is mainly localized in 
HDL, it can be expected that the identified genes play a role in HDL 
metabolism. While our analysis indeed identified genes related to HDL as 
key player (like Apoa1, Lipg, Abca1, Scarb1, Lcat), several genes that are 
considered to be related to LDL metabolism (like Apoe, Ldlr, Gpihbp1, 
Lpl) were also marked as key player type A. Therefore, our analysis 
indicates that lipoprotein metabolism in its entirety must be considered 
for a correct understanding of the factors that influence total plasma 
cholesterol levels.
 Nonviability of knockout mice can obviously lead to mice not 
being included in KOMDIP and hence to missing potential high impact 
genes. After case-specific analysis of the non viable knockout models 
present in the Mouse Genome Database, six additional genes were 
marked as key player. Three of them are enzymes in the cholesterol 
biosynthesis pathway, including Hmgcr, the target of statins. The 
cholesterol biosynthesis pathway comprises over a dozen enzymes 
(72), seven of the genes coding for these enzymes have been a target of 
a knockout strategy and five of these genes are marked as key player. 
They are Hmgcr (type B), Dhcr7 (type A), Dhcr24 (type A), Fdft1 (type 
B), and Hsd17b7 (type B). Surprisingly, the knockout mice for the two 
other cholesterol biosynthesis genes, Tm7sf2 and Sc5d, did not display 
severely altered plasma cholesterol concentrations. Plasma levels of 
the Tm7sf2-/- mouse were normal (73) and the Sc5d-/- mouse, that died 
shortly after birth, displayed only a relatively mild change in cholesterol 

46

Chapter 2



A conceptual minimal model of cholesterol

Figure 2.3. Conceptual minimal model of cholesterol metabolism developed 
in this study. Circles and boxes indicate compartments (such as organs), solid 
arrows indicate biological processes directly inferred from key genes identified 
in our analysis. The dashed arrows indicate the processes that were included to 
balance the total body cholesterol pool (see Methods). Included processes are 
hepatic cholesterol synthesis (CBS); peripheral cholesterol synthesis (CBS); 
intestinal cholesterol synthesis (CBS); biliary cholesterol excretion (Abcg8, 
Npc1l1); hepatic uptake of cholesterol from LDL (Ldlr); peripheral uptake of 
cholesterol from LDL (Ldlr); peripheral cholesterol transport to HDL (Abca1); 
hepatic cholesterol transport to HDL (Abca1); intestinal cholesterol transport to 
HDL (Abca1); Intestinal cholesterol esterification, (Soat2); Hepatic cholesterol 
esterification, (Soat2); HDL associated cholesterol esterification (Lcat); hepatic 
HDL cholesterol uptake (Scarb1, both free cholesterol and cholesterol ester); 
Intestinal chylomicron production (Mttp); Hepatic VLDL production (Mttp); 
dietary cholesterol intake (Npc1l1) and fecal cholesterol excretion. C stands 
for Cholesterol; CE for Cholesteryl ester. CBS includes Dhcr7, Dhcr24, Hmgcr, 
Hsd17b7, and Fdft1.
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plasma concentration (E = -0.69 for Sc5d-/- compared to E = -5.76 for 
the Dhcr24-/- mouse) (74). Tm7sf2-/- may not be essential in cholesterol 
synthesis (73) and Sc5d may be affecting cholesterol levels more severely 
later in life.
 As a step in building a conceptual model, the 36 (type A and B) 
key genes were associated with several biological functions (Table 2.3). 
These genes include 11 genes that code for proteins that catalyze an 
enzymatic conversion, 4 genes that code for apolipoproteins, 9 genes 
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coding for proteins that are involved in transport reactions and 12 genes 
that code for regulatory factors. These groups are discussed below.
 The enzymatic conversion group includes 11 members, some 
of them playing a role in the biosynthesis of cholesterol (Hmgcr, Fdft1, 
Hsd17b7, Dhcr7, and Dhcr24) or in the synthesis of fatty acids (Fasn). 
The others are involved in the esterification of cholesterol (Soat2 and 
Lcat), the hydrolysis of triglycerides (Lipg, Lpl) or the conversion of 
glucose-6 phosphate (G6pc).
 The 4 key genes in the apoliprotein class (Apoa1, Apoc1, Apob, 
and Apoe) are building blocks of lipoproteins and play a role in their 
assembly, remodeling and uptake.
 The 9 transport proteins are known to mediate the transport 
of several compounds including cholesterol (Abca1, Abcg8, Npc1l1), 
cholesterol ester (Scarb1) and lipid droplets (Mttp), lipoproteins (Ldlr), 
but also phospholipids (Abcb4, Pltp) and glucose-6-phosphate (Slc37a4). 
The transport genes not only code for proteins that transport cholesterol 
to and from the plasma (like Abca1 and Scarb1), but also via the bile 
to the intestine or between the intestinal lumen and the enterocytes 
(Npc1l1, Abcg8). The Abcg8 gene codes for a protein that functions in 
a heterodimer together with the gene Abcg5. Interestingly, Abcg8 was 
marked as key player (E value is -1.1), whereas Abcg5 was not (E value is 
-0.8).
 Finally 12 key genes are classified as regulatory genes, clearly 
illustrating that plasma cholesterol levels are highly regulated. They 
include several transcription factors (Aebp1, Nr1h3, Hnf1a, Hnf4a, and 
Plagl2) as well as receptor associated genes (Arhgdia, Angptl3, Angptl6, 
Gpihbp1, Pcsk9, Ldlrap1, Ilr1n). The list also contains several genes 
involved in the regulation of Lpl activity (Gpihbp1, Angptl3). 
 In this analysis two genes involved in glucose metabolism were 
identified as key genes (G6pc, Slc37a4). This indicates that cholesterol 
metabolism is closely linked to glucose metabolism, probably via acetyl-
CoA, an end product of glycolysis and the building block for cholesterol 
(75). The link with triglyceride and fatty acid metabolism (for example: 
genes Lpl, and Fasn) is not surprising, since cholesterol functions in 
triglyceride transport in cholesterol containing lipoproteins (17). A very 
interesting gene is the interleukin 1 receptor agonist (Ilrn1) clearly 
showing a direct influence of inflammation on cholesterol metabolism.
 The observation that the key genes are indeed important genes for 
determining total plasma cholesterol concentrations is corroborated by the 
observation that our list includes nine genes that are targets of cholesterol 



modifying drugs currently in development (Mttp, Fdft1, Apob, Pcsk9, 
Lpl, Nr1h3, Apoa1, Lcat, and Lipg) (16), as well as two genes that are 
targets of drugs already on the market (Hmgcr, Npc1l1) (32,52). This 
indicates that the conceptual model defined in the present paper provides 
a promising starting point for future quantitative physiologically based 
kinetic (PBK) modeling of plasma cholesterol levels and the effects of 
intervention therapies. In order to ensure that the model is a minimal 
model, only the 12 genes, (type A + B) that can be directly appointed to 
a specific metabolic or transport process in cholesterol metabolism were 
used to construct a conceptual model.
 To assess the scope of the model, it was compared with previously 
published models. For this purpose, nine other models were evaluated 
as to which organs and biological processes are included. Table 2.4 
summarizes these findings. Although our model contains largely the same 
processes as the other models, each of these individual models misses 
several processes that we have defined as being important. Another key 
aspect why our model is different is that it focuses on steps determining 
plasma cholesterol levels, whereas most previously described models 
aimed at providing an overview of steps that may be involved in the 
overall metabolic fate of cholesterol.
 Our model has as features that are absent in some of the other 
models: 1) the liver and intestine as source of HDL-C, reflecting the 
outcome of recent experiments (71), 2) an explicit plasma compartment, 
reflecting our focus on plasma cholesterol; 3) the absence of macrophages 
in the model (Although macrophage specific genes like Abcg1 were 
included in our analysis, they were not identified as a key player, (E = 
0.15 and -0.17 for males and females respectively). This cell type is 
involved in the development of atherosclerosis, but contributes little 
to plasma cholesterol levels (70); and 4) a peripheral compartment, an 
important contributor to total body cholesterol synthesis (70).
 In this paper we have developed a method to systematically 
identify the key genes and associated processes that determine plasma 
cholesterol levels in the mouse. We are confident that our conceptual 
model includes a good selection of relevant biological processes that 
determine plasma cholesterol levels. Concluding, we have successfully 
constructed a conceptual minimal model that can be used as a basis for 
the development of a quantitative kinetic model for the prediction of total 
plasma cholesterol levels and the effect of cholesterol lowering therapies 
in preclinical research.
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Table 2.4: Comparison of the conceptual model developed in this paper (Figure 
2.3) with previously published conceptual models. For each model it is indicated 
whether or not it explicitly includes the organs and processes listed in the first 
column. C, Cholesterol; M, Mouse; G, general; H, human; Y, Yes; N, No.

Reference Conceptual Model

Our model

Figure 2.3 (4) (12) (13) (14) (10) (18) (17) (15) (16)

Organism M M G H H H G H H H

Processes

Hepatic C synthesis Y Y Y Y N Y N N N N

Peripheral C synthesis Y Y Y N N N N N Y N

Intestinal C synthesis Y N Y N N N N N N N

Dietary C intake Y Y Y Y Y Y Y N Y Y

Hepatic uptake of C from LDL Y Y Y Y Y Y Y Y Y Y

Hepatic VLDL -C secretion Y Y Y Y Y Y Y Y Y Y

Peripheral uptake of C from LDL Y Y N Y Y Y N Y Y Y

Transport of C from periphery to HDL Y Y N Y Y Y N Y Y Y

HDL associated C esterification Y Y N N N Y N Y Y Y

Hepatic HDL-CE uptake Y Y N N N Y N Y Y Y

Intestinal CM-c secretion Y Y Y Y Y Y Y Y Y Y

Intestinal C esterification Y N N N N Y N N Y N

Hepatic HDL-FC uptake Y N N Y N N N Y N Y

Biliary C excretion Y Y N Y Y Y Y Y Y N

Fecal C excretion Y Y Y Y N Y N N Y N

Transport of C from intestine to HDL Y N N N Y N N Y N Y

Transport of C from liver to HDL Y N N N N N N Y N Y

Hepatic cholesterol esterification Y Y Y N N Y N N N N

CETP activity N N N N Y Y N Y Y Y

Peripheral C esterification N Y N N N Y N N N N

Compartments

Liver Y Y Y Y Y Y Y Y Y Y

Intestine Y Y Y Y Y Y Y Y Y Y

Plasma Y N N Y N N Y N N Y

Periphery Y Y Y N Y Y N Y Y Y

Macrophage N N N Y N N N Y N Y
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CHAPTER

3
A physiologically-based kinetic 
model for the prediction of plas-
ma cholesterol concentrations in 
the mouse.





Abstract
The LDL cholesterol (LDL-C) and HDL cholesterol (HDL-C) 
concentrations are determined by the activity of a complex network 
of reactions in several organs. Physiologically-based kinetic (PBK) 
computational models can be used to describe these different reactions in 
an integrated, quantitative manner. 
 A PBK model to predict plasma cholesterol concentrations in 
the mouse was developed, validated, and analyzed. Kinetic parameters 
required for defining the model were obtained using data from published 
experiments. To construct the model, a set of appropriate submodels 
was selected from a set of 65,536 submodels differing in the kinetic 
expressions of the reactions. A submodel was considered appropriate if 
it had the ability to correctly predict an increased or decreased plasma 
cholesterol concentration for a training set of 5 knockout mouse strains. 
The model thus defined consisted of 8 appropriate submodels and was 
validated using data from an independent set of 9 knockout mouse strains.
 The model prediction is the average prediction of 8 appropriate 
submodels. Remarkably, these submodels had in common that the rate 
of cholesterol transport from the liver to HDL was not dependent on 
hepatic cholesterol concentrations. The model appeared able to accurately 
predict in a quantitative way the plasma cholesterol concentrations of all 
14 knockout strains considered, including the frequently used Ldlr-/- and 
Apoe-/- mouse strains. 
 The model presented is a useful tool to predict the effect of 
knocking out genes that act in important steps in cholesterol metabolism 
on total plasma cholesterol, HDL-C and LDL-C in the mouse.
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Introduction
Elevated plasma cholesterol is an important risk factor for cardiovascular 
diseases (1-3). The pharmaceutical industry is aiming to find new 
strategies to prevent these diseases. This search might be advanced with a 
better understanding of the factors and mechanisms that determine plasma 
cholesterol concentrations. Since these mechanisms involve complex 
multiple metabolic and transport reactions in various organs, it is difficult 
to obtain an integrated, quantitative insight in which factors mainly 
influence plasma cholesterol concentrations most and in what way (4-7). 
Mathematical modeling to integrate the many individual steps involved 
is, therefore, needed to predict the overall effect of genetic mutations, 
pharmacological or dietary interventions, and interspecies differences on 
plasma cholesterol concentrations. 
 There are only a few published mathematical models on plasma 
cholesterol (8-10). These models consider only plasma-associated 
processes and do not include the processes that are targets of drugs in 
organs, like hepatic cholesterol synthesis or cholesterol uptake. A better 
suited model would be a physiologically-based kinetic (PBK) model 
incorporating the cholesterol pools in the relevant compartments. A key 
aspect of PBK modeling is that the compartments denote real organs 
with real organ volumes (11,12) and that the model includes kinetic 
constants for real enzymatic activities. Thus, we chose to develop a PBK 
computational model for plasma cholesterol.
 The modeling process can be subdivided into several steps 
(13,14). In the present paper five steps are considered. At first, a 
simplified representation of the biological system of interest is generated: 
the conceptual model. Secondly, the conceptual model is translated into 
a mathematical model by formulating mathematical equations to describe 
the different parts of the system as included in the conceptual model. 
Thirdly, the model is calibrated by setting parameter values. In this step, 
parameters are taken from literature or are fitted to experimental data 
using a parameter fitting procedure. The fourth step is testing whether the 
predictions of the integrated model are correct. For this purpose, model 
predictions are compared with experimental data not yet considered in the 
calibration step. This step is denoted as model validation. The fifth and 
final step is to perform simulations, and to analyze the model predictions 
as well as the model properties to obtain insights in the behavior of the 
biological system. 
 The present study describes steps 2-5 in the modeling approach: 
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a mathematical model formulation, calibration, model validation using 
published experimental data, and model analysis. The first step of the 
modeling approach, the construction of a conceptual model of cholesterol 
metabolism, was carried out previously (15). To this end relevant 
knockout mouse models were screened for altered plasma cholesterol 
concentrations compared to the wild type. If the alteration was more than 
two-fold (up or down), the corresponding gene was marked as key gene. 
Based on the function of a subset of 12 from these key genes, metabolic 
and transport reactions were included in the conceptual model. As a 
result, this conceptual model is based on a selection of relevant biological 
processes that determine plasma cholesterol concentrations (15). Figure 
3.1 presents this conceptual model previously described in more detail 
(15). 
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Figure 3.1. Conceptual model or reactions determining cholesterol plasma 
concentrations used to set up the computational model of the present study. 
Process numbers stand for: 1, Hepatic cholesterol synthesis; 2, Peripheral 
cholesterol synthesis; 3, Intestinal cholesterol synthesis; 4, Dietary cholesterol 
intake; 5, Hepatic uptake of cholesterol from LDL; 6, Hepatic VLDL secretion; 
7, Peripheral uptake of cholesterol from LDL; 8, Peripheral cholesterol 
transport to HDL; 9, HDL-associated cholesterol esterification; 10, Hepatic 
HDL-CE uptake; 11, Intestinal chylomicron cholesterol secretion; 12, 
Peripheral cholesterol loss; 13, Hepatic HDL-FC uptake; 14, Biliary cholesterol 
excretion; 15, Fecal cholesterol excretion; 16, Intestinal cholesterol transport to 
HDL; 17, Hepatic cholesterol transport to HDL; 18, Hepatic bile acid synthesis 
to balance fecal bile acid loss; 19, Hepatic cholesterol esterification; and 20, 
Intestinal cholesterol esterification. C stands for cholesterol; CE for cholesteryl 
ester. Based on (15).
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It contains 4 different compartments (liver, plasma, periphery, 
and intestine), 8 different cholesterol pools located within these 
compartments, and 20 reactions that transfer cholesterol among the 
different pools. Three of the cholesterol pools are present in plasma: High 
Density Lipoprotein (HDL) free cholesterol (HDL-FC), HDL cholesterol 
ester (HDL-CE), and non-HDL cholesterol (here referred to as Low 
Density Lipoprotein cholesterol LDL-C) that together form the total 
plasma cholesterol (TC) pool. The remaining 5 pools are intra-organ pools 
representing hepatic free cholesterol (Liv-FC), peripheral cholesterol 
(Per-C), intestinal cholesterol ester (Int-CE), hepatic cholesterol ester 
(Liv-CE), and intestinal free cholesterol (Int-FC).
 In the present paper, the model was formulated and calibrated 
for the mouse, since the mouse is frequently used as model organism 
in cholesterol research (16). The model was validated by simulating 
different knockout mouse models and comparing the model predictions 
of plasma cholesterol with measurements reported in literature. The 
model obtained was able to describe the phenotype of 14 knockout mouse 
strains. In the analysis step, the model was analyzed with the aim to find 
kinetic properties in the model that can provide novel insights in the 
regulation of cholesterol metabolism.
 
Methods
Mathematical model formulation
Having defined the conceptual model (Figure 3.1) (15), mathematical 
model formulation was the next step in development of the PBK model 
for plasma cholesterol concentrations in the mouse. The conceptual model 
(Figure 3.1) contains 20 metabolic and transport reactions converting 
cholesterol from one pool to another. Each of the 8 pools in the model 
can be a substrate of multiple reactions, while at the same time being a 
product of other reactions. The symbols of variables and parameters that 
were used to formulate the mathematical model are given in Table 3.1. 
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Table 3.1. List of symbols representing variables and parameters used in the 
model description.

Symbol Description Unit

Vj volume of compartment j with j = liv, pla, per, and int for liver, plasma, 
periphery, and intestine 

liter

vi reaction rate of reaction number i defined in Fig. 1 (i=1 - 20) mmol/(kg day)

vi
ss steady state reaction rate of reaction i mmol/(kg day)

[C]j concentration of pool j, with j = Liv-FC, HDL-FC, HDL-CE, LDL-C, 
Per-C, Int-FC, Liv-CE, and Int-CE for liver free cholesterol, HDL 
free cholesterol, HDL cholesterol ester, LDL cholesterol, peripheral 
cholesterol, intestinal free cholesterol, liver cholesterol ester, and 
intestinal cholesterol ester.

mmol/liter

[C]j
ss steady state cholesterol concentration in pool j mmol/liter

k0,i zero-order rate constant of reaction i mmol/(kg day)

k1,i first-order rate constant of reaction i 1/(day)

k0,i
ko zero-order rate constant of reaction i in a knockout strain mmol/(kg day)

k1,i
ko first-order rate constant of reaction i in a knockout strain 1/(day)

t time day

fko rate constant modification factor [-]

Mbw body weight kg

The PBK model was formulated as a set of differential equations 
each describing the time behavior of one of the modeled cholesterol 
concentrations as a function of the reaction rates. For practical reasons, 
the reaction rates (expressed by v), were numbered with the numbering 
corresponding to Figure 3.1. The differential equations are formulated in 
Table 3.2 (Eqn. 3.1-3.8).
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Table 3.2. Equations used in model development, parameter calculation, and simulation.
Differential equations Number
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For the model it is essential to describe the reaction rates by kinetic 
equations. Most reactions represent lumped sets of enzymatic- and/or 
transport reactions that may be regulated at the activity concentration 
and/or the expression concentration. This regulation in turn comprises 
potentially complex networks of nuclear receptors, transcription factors. 
Therefore, in virtually all cases, the various reactions can best be 
presented by kinetic equations containing apparent rate constants and 
apparent KM values. The general solution is to use Michaelis-Menten 
kinetics as a prototype kinetic expression for biological reactions and 
defining apparent Vmax and apparent KM values. In the present approach, 
however, in order to keep the number of parameters as limited as possible, 
it was additionally assumed that each reaction operates either in the 
linear part of a Michaelis-Menten kinetic curve (substrate concentration 
much lower than the apparent KM), or in the saturated part (substrate 
concentration much higher than the apparent KM). At low substrate 
concentrations Michaelis-Menten kinetics effectively reduces to first 
order kinetics (Eqn. 3.9, Table 3.2). At high substrate concentrations, 
Michaelis-Menten kinetics reduces to zero-order kinetics, i.e. becomes 
independent of substrate concentrations (Eqn. 3.10, Table 3.2). Also, 
to warrant model simplicity, feedback inhibition was not taken into 
consideration for any reaction.
 For some of the 20 reactions included in the model, a decision 
could be made up-front to use zero or first order kinetics. This holds 
for reactions 1-3 in Figure 3.1, because it has been demonstrated that 
cholesterol can ultimately be synthesized from glucose and that there 
is no increase in the rate of cholesterol synthesis after the addition of 
glucose-6-phosphate (17), indicating that the synthesis of cholesterol is 
not substrate controlled. Therefore, the cholesterol biosynthesis reactions 
in the liver, intestine and the peripheral compartment (reactions 1-3 in 
Figure 3.1) were considered to be zero-order, and it is recognized that 
such a first approximation does not include feedback inhibition. 
 Reaction 4 denotes dietary intake of cholesterol. The amount 
of cholesterol a mouse eats varies over the day, since periods of feeding 
are followed by periods of not eating. However, when bearing in mind 
that mouse drug experiments usually take weeks, the dietary intake of 
cholesterol (reaction 4) can be considered relatively constant over time. 
Therefore, the dietary intake was also treated as a zero-order reaction 
(reaction 4 in Figure 3.1). For the remaining 16 reactions (reactions 5-20) 
it was not possible to decide beforehand whether the reaction would 
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follow zero or first-order kinetics. Therefore, for the other 16 reactions, 
ensemble modeling (18) was used. 
 Thus, rather than formulating one model with a set of kinetic 
constants, a model set (ensemble) with multiple submodels with all 
possible combinations of first and zero-order for the remaining 16 
reactions was constructed. This resulted in a model consisting of 216 (or 
65,536) submodels. Not all submodels were considered to be equally 
valid, since some of them were expected to give unrealistic predictions, 
i.e. negative or infinite concentrations. Therefore, the calibration step 
described below, was used to select the subset of appropriate submodels. 
The overall model prediction was calculated as the average of the model 
predictions of these appropriate submodels. 
 In this study, only steady state predictions on cholesterol 
concentrations in the various pools were considered. In steady state, 
none of the concentrations of cholesterol in the 8 model pools change 
in time and, therefore, the left hand sides of equations 3.1-3.8 in Table 
3.2 all reduce to zero. The right hand sides of these equations then 
reduce to a set of 8 linear equations for v1

ss to v20
ss. Since, however, all  

vss’s can be expressed in terms of the 8 unknown steady-state cholesterol 
concentrations included in the model (Eqn. 3.11 and 3.12, Table 3.2), 
this essentially results in a system of 8 equations with 8 unknowns. This 
allowed calculating the steady state concentrations using standard matrix 
algebra from MATLAB version 7.5 (R2007b).
 The initial purpose of the model is to predict the phenotype of 
knockout mouse strains. In a knockout mouse, the reaction corresponding 
to the disrupted gene will be absent. In biological practice, however, 
compensatory mechanisms often operate, resulting in the activation 
of a backup reaction that performs the same or a similar function as the 
reaction targeted by the knockout. To account for these backup reactions 
in the model simulations of knockout strains, so-called knockout factors 
fko were introduced, representing the fraction of activity of a specific 
reaction left after a knockout. The fko were implemented as multiplication 
factors of the specific reaction rate constants for the reactions modulated 
by the gene knockout, as specified by equations 3.13 and 3.14 (Table 3.2). 
The value of fko was constrained between 0 and 1, which corresponds 
to a full reduction and no reduction, respectively, of the reaction rate 
affected by the specific knockout. The values for fko were chosen based on 
literature data as described in the results.
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Model calibration
The model calibration contained two steps: setting the model parameters 
using literature data and selecting the appropriate submodels from 
the ensemble of 216 submodels. The kinetic parameters ( 0

ik , 1
ik ) in the 

model were calculated using experimental data on wild type steady 
state concentrations and fluxes found in the literature as detailed in the 
results. Data from male wild type mice on a standard chow diet were 
used where available. In case vi was represented by first-order kinetics, 
the corresponding rate constant was calculated with the pool sizes and 
steady state reaction rates according to Eqn. 3.11 (Table 3.2). When vi  
was represented by zero-order kinetics, the corresponding rate constant 
was calculated according to Eqn. 3.12 (Table 3.2).
 As a second calibration step, the appropriate submodels among 
the total of 65,536 submodels were selected. Submodels were regarded 
appropriate if able to correctly predict an increased or decreased 
concentration in the relevant cholesterol pool for a knockout mouse strain 
compared to the wild type. For this selection, 5 knockout mouse strains 
were used. These were selected from a set of 14 knockout mouse strains 
including strains deficient in 5 classes of genes: 1) genes responsible for 
LDL metabolism (Ldlr-/-, Apoe-/-), 2) genes for cholesterol synthesis 
(Dhcr24-/-), 3) genes for HDL metabolism (Abca1-/-, Abca1-L/-L, Abca1-
I/-I, Scarb1-/-, and Apoa1-/-), 4) genes for intestinal cholesterol uptake 
and biliary cholesterol secretion (Npc1l-/-, Abcg5-/-, Abcg8-/-, Abcb4-/-
), and 5) genes for cholesterol esterification (Lcat-/-, Soat2-/-). These 14 
strains were divided into a model selection set and a model validation set. 
The selection set included one randomly selected strain from each of the 
five strain classes mentioned above, i.e. the Ldlr-/-, Dhcr24-/-, Apoa1-
/-, Abcg8-/-, and Soat2-/- mouse strains. An independent validation set 
comprised the remaining 9 strains. In order to define the PBK model and 
to make a selection of the appropriate submodels from the set of 65,536 
submodels, in first instance 7 qualitative criteria were defined using 
data from the 5 mouse strains of the selection set. Table 3.3 presents 
these criteria, which are based on HDL-C, LDL-C, and TC as possible 
predicted endpoints. 
 An example is the criterion on the Apoa1-/- mouse, which 
comprised the following: “Is the plasma HDL-C concentration predicted 
for the Apoa1-/- mouse lower than that predicted for the HDL-C 
concentration of the corresponding wild type mouse?”. A submodel 
fulfilled this criterion if it predicted that the HDL-C concentration in the 
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Apoa1-/- mouse was indeed lower than that in the corresponding wild 
type mouse. 

Table 3.3: Criteria for the selection of appropriate submodels. A submodel 
fulfills the criterion, if the prediction of the submodel for the relevant cholesterol 
pool affected in the specified mouse strain matches the experimental observation 
(increase or decrease with respect to the wild type). See text for details.

Criterion nr Strain Cholesterol pool 
affected

Experimental 
observation

1 Ldlr-/- TC Increase

2 Ldlr-/- LDL-C Increase

3 Dhcr24-/- TC Decrease

4 Apoa1-/- TC Decrease

5 Apoa1-/- HDL-C Decrease

6 Abcg8-/- TC Decrease

7 Soat2-/- TC Decrease

A submodel failed to fulfill a criterion if it: 1) failed to reach a unique 
steady state, 2) predicted a steady state with one or more negative 
concentrations, 3) predicted a decreased plasma cholesterol concentration 
compared to the wild type while an increased concentration was reported, 
4) predicted an increased plasma cholesterol concentration compared 
to the wild type while a decreased concentration was reported, or 5) 
predicted an unchanged plasma cholesterol concentration whereas a 
changed concentration was reported in the literature. Only the submodels 
fulfilling all 7 calibration quality criteria were considered appropriate and 
were kept for further validation and analysis steps.
 What is henceforth referred to as “the model prediction” consists 
of the unweighted average of the predictions of the individual appropriate 
submodels that passed the selection procedure; “the model” accordingly 
designates the ensemble of appropriate submodels. 

Model validation
The model validation consisted of a comparison of experimental data 
reported in literature with the model prediction 1) for the mouse strains 
included in the selection set; and 2) for the mouse strains included in the 
fully independent validation set. As a measure of accuracy of the model 
prediction, the relative change of cholesterol plasma concentrations in 
these knockout mice vs their wild type counter parts was considered.
 As an additional aspect of the validation the values for fko derived 
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from literature data were compared with optimal values of fko, i.e. those 
fko values that would lead to predictions closest to the experimentally 
observed plasma cholesterol concentrations, for all 14 strains. These 
optimal fko values were obtained by minimizing the difference between 
model predictions and experimental data using a constrained optimization 
routine. The optimization of fko was performed with the function 
‘fminbnd’ in MATLAB. This function minimizes the squared difference 
between the predicted and the measured ratio of the knockout and the 
wild type TC concentration. The values of fko during optimization were 
constrained between 0 and 1. 

Model analysis
The goal of the model analysis was to find indications for in vivo 
kinetics of reactions included in the model. Central is the assumption 
that the in vivo system more likely has kinetic properties similar to the 
best performing (i.e. appropriate) submodels than to poorly performing 
submodels. Therefore, for all reactions, the tendency of the appropriate 
submodels from the ensemble to show preferential zero or first order 
kinetics was evaluated. The results were compared with literature data on 
kinetic reactions in vivo or in vitro.
 

Results
Model calibration
The conceptual model given in Figure 3.1 is converted to a mathematical 
model involving variables and parameters (Table 3.1) as described in 
the results. The first part of model calibration was the setting of model 
parameters using compartmental volumes, the steady state concentrations, 
and reaction rates as obtained from literature. Many of the data were 
obtained from a recent paper by Xie et al. (19) which describes a large set 
of experiments on the synthesis, and the uptake of HDL-C and LDL-C in 
mice maintained on a low cholesterol diet. Of special interest is Figure 2 
in (19) where the authors report organ-specific cholesterol concentrations. 
All data in (19) were assumed to be representative for the steady state. 
From this paper, also cholesterol synthesis and LDL-C and HDL-C uptake 
data were obtained. The steady state rates on the dietary cholesterol 
intake, hepatic VLDL-C secretion, chylomicron cholesterol secretion, and 
biliary cholesterol excretion were obtained from other sources (Table 3.4).
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Table 3.4. Numerical values for the PBK model constants and steady state variables used in the 
calculations along with their literature sources. Symbols as in Table 3.1.

Organ Symbol Value Obtained from

Volumesa (ml)

Total body VTB 25.1 (20)

Liverc Vliv 1.4 (20)

Small intestinec Vint 0.6 (20)

Plasmac Vpla 1.5 (21)

Periphery Vper 21.6 b

Steady state concentrations (mM)

Liver free cholesterol [C]ss
Liv-FC 3.98 (19)d

HDL free cholesterol [C]ss
HDL-FC 0.56 (19)e

HDL cholesterol ester [C]ss
HDL-CE 1.12 (19)e

LDL cholesterol pool [C]ss
LDL-C 0.52 (19)f

Peripheral cholesterol [C]ss
Per-C 5.74 (19)

Intestinal free cholesterol [C]ss
Int-FC 4.13 (19)g

Liver cholesterol ester [C]ss
Liv-CE 3.26 (19)d

Intestinal cholesterol ester [C]ss
Int-CE 3.38 (19)g 

Steady state reaction rates (mmol/(kg day))

Hepatic cholesterol synthesis v1
ss 0.18 (19)

Peripheral cholesterol synthesis v2
ss 0.12 (19)

Intestinal cholesterol synthesis v3
ss 0.09 (19)

Dietary cholesterol intake v4
ss 0.08 (22)

Hepatic uptake of cholesterol from LDL v5
ss 0.12 v5

ss = v11
ss + v6

ss - v7
ss

Hepatic VLDL secretion v6
ss 0.10 (23)

Peripheral uptake of cholesterol from LDL v7
ss 0.01 (19)

Peripheral cholesterol transport to HDL v8
ss 0.09 v8

ss = v2
ss + v7

ss - v12
ss

HDL associated cholesterol esterification v9
ss 0.12 V9

ss = v10
ss

Hepatic HDL-CE uptake v10
ss 0.12 (19)

Intestinal chylomicron cholesterol secretion v11
ss 0.04 (24)

Peripheral cholesterol loss v12
ss 0.04 v12

ss = v1
ss + v2

ss + v3
ss + v4

ss –v18
ss –v15

ss

Hepatic HDL-FC uptake v13
ss 0.06 (25)

Biliary cholesterol excretion v14
ss 0.02 (26)

Fecal cholesterol excretion v15
ss 0.14 (19)

Intestinal cholesterol transport to HDL v16
ss 0.01 v16

ss = v4
ss +v3

ss + v14
ss - v15

ss - v20
ss

Hepatic cholesterol transport to HDL v17
ss 0.08 v17

ss = v9
ss + v13

ss - v8
ss -v16

ss

Hepatic cholesterol catabolism v18
ss 0.28 (19)

Hepatic cholesterol esterification v19
ss 0.10 v19

ss = v6
ss

Intestinal cholesterol esterification v20
ss 0.04 v20

ss = v11
ss

a Volumes were calculated from body and organ masses assuming a tissue density of 1 kg/L. b The peripheral mass was 
obtained by subtraction of the plasma, liver, and intestinal masses from the total body mass.  c The indicated references 
mention organ masses as a percentage of the total body mass. Absolute masses were calculated using a total body mass 
of 25.1 g for the mouse (19,20). d Ratio between Liv-FC and Liv-CE was assumed to be 1:1.22 (27) e Ratio between 
HDL-FC and HDL-CE was assumed to be 1:3 (28). f The concentration of LDL-C was calculated as the difference 
between TC and HDL-C. g The ratio of Int-FC and Int-CE was assumed to be identical to that ratio in the liver for the 
wild type mouse. 



The other reaction rates had to be indirectly derived from the data i.e. they 
were calculated using mass balance equations. As an example, the rate 
for hepatic cholesterol esterification (reaction 19) was calculated using 
the hepatic cholesterol ester balance. All numerical values thus obtained 
for the model constants and steady state variables, along with their source 
(direct or indirect), are given in Table 3.4.
 To define the PBK model in first instance a set (ensemble) of 
65,536 submodels was constructed, all based on the model setup in Figure 
3.1, but unique in their kinetics (each submodel presenting a unique 
combination of first or zero-order kinetics for reactions 5-20, while 
reactions 1-4 were defined to be zero order in all submodels for reasons 
explained in the methods. Once a reaction was considered to be zero- or 
first order, its kinetic constant was calculated from the corresponding 
steady state concentration and reaction rate values in Table 3.4 using Eqn. 
3.11 and 3.12 in Table 3.2. The kinetic parameters thus obtained (Table 
3.5) can give insight in time constants involved in cholesterol metabolism. 
 For instance, the peripheral cholesterol pool was predicted to have 
the slowest turnover rate, since reactions 12 and 8 had the lowest first 
order rate constants (Table 3.5). The turnover time of the peripheral pool 
was 25 days, while the other turnover times were between 0.1 days (for 
HDL-FC) and 3.0 days (for the Int-CE pool).
 The second part of the model calibration consisted of the selection 
of the appropriate submodels. For this reason, all submodels were tested 
for their ability to correctly predict in a qualitative way a higher or lower 
concentration of HDL-C, LDL-C, or TC for a selection set of 5 knockout 
mouse models compared to the corresponding wild types. To this end, a 
set of 7 quality criteria given in Table 3.3 was used.
 In the simulations, the various knockout mouse strains were 
modeled by multiplying the specific reaction rate constant of the affected 
reaction by a strain-specific knockout factor (fko) (Eqn. 3.13, 3.14 in Table 
3.2). These fko values were obtained from data reported from biological 
experiments, like cannulations and isotope flux studies. Table 3.6 gives 
the definition and values of the fko for the various strains. 
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Table 3.5. First and zero-order kinetic parameters used to define the submodels. 
Kinetic parameters were calculated according to eqn. 3.11 and 3.12 (Table 3.2) 
using the data given in Table 3.4.

Reaction nr  (mmol/(kg day)) (1/day)

1 0.18

2 0.12

3 0.09

4 0.08

5 1.46 2.80

6 2.01 0.62

7 0.17 0.32

8 0.10 0.02

9 1.38 2.47

10 1.38 1.24

11 0.77 0.23

12 0.05 0.01

13 0.74 1.32

14 0.42 0.10

15 2.65 0.64

16 0.24 0.06

17 1.68 0.42

18 5.95 1.49

19 2.01 0.50

20 0.77 0.19

 For the Abcg8-/- mouse for example, the value of fko has been 
set to the ratio of the biliary sterol secretion rate of the Abcg8-/- strain 
and the control mouse as determined in biliary cannulation experiments 
(29). Within the series of the 14 knock out strains, the fko values thus 
determined ranged from 0.01 for the Lcat-/- to 0.30 for the Abcg8-/-
, and Npc1l1-/- strain. For the Dhcr24-/- mouse, deficient in 3-beta-
hydroxysterol delta-24-reductase, no value for fko could be found in 
the literature. However, given that no alternatives for this reaction are 
expected in vivo, the value of fko was set to zero.
 Figure 3.2 shows the number of criteria that were fulfilled by 
the submodels. Many submodels fulfilled none of the criteria. Only 
8 submodels (0.01% of the total of 65,536) fulfilled all 7 qualitative 
selection criteria. The overall model prediction was, therefore, defined as 
the average of the predictions of these 8 appropriate submodels.
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Model validation
As an initial validation, the 8 submodels were used to quantitatively 
predict the TC, LDL-C, and HDL-C cholesterol concentrations of the 5 
knockout models included in the selection set. Re-using the set that was 
also used for model calibration is considered a valid procedure since the 
selection procedure only involved qualitative aspects (higher/lower than 
wild type). All model predictions agreed well with the experimental 
data (Figure 3.3). The model correctly predicted a large decrease in TC 
concentration for the Dhcr24-/- mouse. For the other mouse strains, the 
TC concentrations were correctly predicted within an average accuracy of 
a factor 1.27.
 As a second validation, the model was used to predict the 
phenotype of an independent set of 9 knockout mouse strains (i.e. the 
validation set). This simulation used values for the parameter fko obtained 
from literature as shown in Table 3.6. For many strains, the values for fko 
were close to zero, but for several strains fko was considerably larger than 
zero, for example the Scarb1-/- strain had fko 0.42 indicating the presence 
of Scarb1-independent transport of cholesterol from HDL to the liver 
(reactions 10 and 13).

Figure 3.2. Histogram of the number of submodels that fulfilled the indicated 
number of selection criteria as defined in Table 3.3 (15).
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Figure 3.3. PBK model predictions (open bars) compared to experimental data 
(closed bars) for the 5 different knockout mouse strains of the selection set. The 
figure indicates the TC of the knockout mouse as a fraction of the wild type TC 
concentration (top panel), the fraction of TC in HDL in the knockout strains 
(middle panel), and the fraction of TC in the non-HDL pool (bottom panel). 
Error bars on predicted values indicate the standard deviation of the predictions 
of the 8 different submodels. Error bars on experimental data were based on the 
standard deviations reported in literature. For Dhcr24-/-, Soat2-/-, and Abcg8-/-
, no literature HDL-C data were available. NA, not available. Experimental data 
were obtained from (22,29-32).

For all mouse strains in the validation set, the model correctly predicted 
whether the plasma TC concentrations were higher or lower compared to 
the wild type (Figure 3.4). 
 Quantitatively, the model performed adequately for the mouse 
strains deficient in lipoprotein-related genes (Abca1-/-, Apoe-/-, and 
Scarb1-/- mouse), but a somewhat less accurate prediction was obtained 
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for the effect produced by knockout of the biliary cholesterol related gene 
Abcb4-/- and organ-specific Abca1 knockout strains. For all the 9 strains, 
the model was able to predict the fold-change in plasma TC concentration 
with an average deviation of less than a factor 2. Another different ability 
of the model is to correctly predict the distribution of cholesterol between 
HDL and non-HDL in the mouse strains (Figures 3.3 and 3.4, middle and 
bottom panel). An exception to this good model performance is the Lcat-
/- mouse strain.
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Figure 3.4. PBK model predictions (open bars) compared to experimental 
data (closed bars) for the validation set of 9 mouse knockout strains. The 
figure indicates the TC of the knockout mouse as a fraction of the wild type TC 
concentration (top panel), the fraction of TC in HDL in the knockout strains 
(middle panel), and the fraction of TC in the non-HDL pool (bottom panel). 
Error bars on predicted values indicate the standard deviation of the predictions 
of the 8 different submodels. Error bars on data were based on the reported 
standard deviations in literature. For the Abcg5-/- strain, no literature HDL-C 
data were available. NA, not available. Experimental data were obtained from 
(33-40).

As a final aspect of the validation of the model, the model was used to 
calculate which values of fko provided the best fit between predicted and 
experimental TC concentrations. Table 3.6 presents the fko values thus 
obtained (fko fitted). 
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Table 3.6. Reactions affected by specific knockouts as well as corresponding 
knockout factors fko (taken from literature and fitted to plasma cholesterol 
concentrations) used for the model selection (selection set) and model validation 
(validation set). NA, Not Available.

Strain Affected reaction (values in parentheses 
refer to Fig .1)

fko from 
literature

fko 
fitted

Definition of fko The ratio of the: Ref

Selection set

Ldlr-/- Hepatic uptake of cholesterol from LDL 
(5) and peripheral uptake of cholesterol 
from LDL (7)

0.24 ± 0.08 0.12 plasma clearance rate of labeled retinol 
from Apob containing lipoproteins for 
the knockout vs the wild type.

(41)

Dhcr24-/- Hepatic cholesterol synthesis (1), 
peripheral cholesterol synthesis (2), 
intestinal cholesterol synthesis (3)

NA 0.00 See text

Apoa1-/- Peripheral contribution to HDL 
biogenesis (8), intestinal contribution 
to HDL biogenesis (16), and hepatic 
contribution to HDL biogenesis (17)

0.14 ± 0.05 0.03 HDL-CE transport rate for the knockout 
vs the wild type

(31) 

Abcg8-/- Biliary cholesterol excretion (14) 0.30 ± 0.16 0.00 sterol secretion rate into the bile for the 
knockout vs the wild type

(29)

Soat2-/- Hepatic cholesterol esterification (19), 
Intestinal cholesterol esterification (20)

0.08 ± 0.09 0.39 incorporation rate of oleoyl-CoA into 
CE for the knockout vs the wild type 

(32) 

Validation set

Apoe-/- Hepatic uptake of cholesterol from LDL 
(5) and peripheral uptake of cholesterol 
from LDL (7)

0.08 ± 0.02 0.04 plasma clearance rate of labeled retinol 
from Apob containing lipoproteins for 
the knockout vs the wild type.

(41) 

Npc1l1-/- Intestinal cholesterol uptake (20 and 16) 0.30 ± 0.02 0.67 intestinal cholesterol absorption rate for 
the knockout vs the wild type

(42)

Abca1-/- Peripheral contribution to HDL 
biogenesis (8),intestinal contribution 
to HDL biogenesis (16), and hepatic 
contribution to HDL biogenesis (17)

0.02 ± 0.01 0.06 cholesterol efflux rate for knockout 
macrophages to Apoa1 vs the wild type

(43)

Abca1-
L/-L (Liver 
specific)

Hepatic contribution to HDL biogenesis 
(17)

0.02 ± 0.01 0.00 cholesterol efflux rate for knockout 
macrophages to Apoa1 vs the wild type

(43) 

Abca1-I/-I 
(intestinal 
specific)

Intestinal contribution to HDL biogenesis 
(16)

0.02 ± 0.01 0.00 cholesterol efflux rate for knockout 
macrophages to Apoa1 vs the wild type

(43) 

Lcat-/- HDL associated cholesterol esterification 
(9)

0.01 ± 0.00 0.00 the conversion rate of [14C]cholesterol 
into HDL-CE for the knockout vs the 
wild type

(36)

Abcg5-/- Biliary cholesterol excretion (14) 0.19 ± 0.10 0.00 sterol secretion rate into the bile for the 
knockout vs the wild type

(44)

Abcb4-/- Biliary cholesterol excretion (14) 0.04 ± 0.05 0.00 cholesterol output rate into the bile for 
the knockout vs the wild type 

(45)

Scarb1-/- Hepatic HDL-CE uptake (10) and hepatic 
HDL-FC uptake (13)

0.42 ± 0.07 0.52 hepatic uptake of HDL-CE from plasma 
in the Scarb1-/- mouse vs in the wild 
type

(46) 
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Comparison of these values to the ones derived from literature shows 
that the difference between the optimized fko and the literature value was 
generally less than 2 times the standard deviation of the literature value 
(Table 3.6). The largest differences between the fitted fko and literature 
fko values were found for the Soat2-/-, Npc1l1-/-, and Abcg5-/- mouse. 
Using the optimized fko values, the model was able to exactly predict the 
TC concentrations for 6 out of 14 mouse strains (Figure 3.5). The largest 
differences between experimental data and model predictions were found 
for knockouts of genes involved in cholesterol synthesis (Dhcr24), biliary 
cholesterol secretion (Abcg5, Abcg8, and Abcb4), and HDL-associated 
cholesterol esterification (Lcat). Also with optimized fko, the model was 
able to correctly predict the fraction of cholesterol in HDL and non-HDL 
for many strains (Figure 3.5 bottom panels).
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Figure 3.5. PBK model predictions with optimized values of fko (open bars) 
compared to experimental data (closed bars) for the wild type strain and 14 
different knockout strains. The figure indicates the TC of the knockout mouse as 
a fraction of the wild type TC concentration (top panel), the fraction of TC in 
HDL in the knockout strains (middle panel), and the fraction of TC in the non-
HDL pool in the different knockout mouse strains (bottom panel). For Dhcr24-/-, 
Soat2-/-, Abcg5-/-, and Abcg8-/-, no literature HDL-C data were available. NA, 
not available. Experimental TC data were obtained from (22,29-39).

Model analysis
In the model analysis step, the properties of the 8 best kinetic submodels 
were compared with the other submodels. The selected appropriate 
submodels were characterized by the nature of their rate constants, i.e. 
zero order for reactions 1-4, and zero or first order for reactions 5-20, as 
shown in Figure 3.6.
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1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 0

2 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0

3 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

4 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1

5 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1

6 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1

7 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 0 1

8 0 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0 0 1 0 1
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Figure 3.6. The kinetic orders (zero or first order) of the reactions in 8 
appropriate submodels from the total ensemble of 65,536 submodels. The 
horizontal axis shows the 20 reactions (reaction numbers corresponding to 
those presented in Figure 3.1). The vertical axis indicates the reaction kinetic 
pattern of the 8 different submodels. A white box with a 0 indicates a zero-order 
reaction, a grey box with a 1 indicates first order kinetics. The first 4 reactions in 
Figure 3.1 were always zero-order (see Methods, for explanation).

Most (66%) of the 160 reactions (20 reactions for 8 appropriate 
submodels) appeared to be first order, while only 54 reactions (34%) were 
zero-order. Interestingly, the submodel with reactions 5-20 all having 
first-order kinetics was not in the selected set of 8 appropriate submodels, 
since this submodel failed to fulfill the criterion of the Abcg8-/- strain. 
One single reaction was zero-order in all 8 selected submodels (Figure 
3.6), this reaction describes the cholesterol transport from the liver to 
HDL (reaction 17, Figure 3.1). 
 In the selected appropriate submodels, only 4 reactions show 
both first and zero-order kinetics. These reactions are biliary cholesterol 
excretion, cholesterol transport from the intestine to HDL, and hepatic 
and intestinal cholesterol esterification (reaction numbers 14, 16, 19, and 
20 in Figure 3.1). The other 11 reactions follow first order kinetics in all 8 
submodels. This set includes all lipoprotein uptake reactions from plasma 
(reaction numbers 5, 7, 10, and 13 in Figure 3.1) and all reactions that 
remove cholesterol from the body (reactions 12, 15, and 18 in Figure 3.1).
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Discussion
This paper describes the formulation, calibration, validation, and analysis 
of a computational model for cholesterol plasma concentrations in the 
mouse. The presented computational model was able to predict the 
effects of genetic mutations on total plasma cholesterol in the mouse, as 
demonstrated by simulating 14 knockout mouse strains. To the best of 
our knowledge, there is presently no PBK model available that is able 
to quantitatively predict the effects of these 14 mutations on plasma 
TC, HDL-C, and non-HDL-C concentrations (since most non HDL-C is 
present in LDL, this is also named LDL-C) . These clinically relevant risk 
factors are important biomarkers in for the development of new drugs and 
dietary intervention studies. 
 The model was validated by comparing model predictions of 
plasma concentrations of 14 knockout strains with experimental data. The 
model predicted the correct plasma TC concentrations of knockout mouse 
strains, using literature values of the defined rate constant modification 
factor fko, within an accuracy of a factor 2. This is considered highly 
successful within the present state-of-the-art of PBK modeling, where 
quantitative predictions may generally be correct within one order of 
magnitude (47-50). In addition to validating our modeling approach, 
starting with the definition of a conceptual model based on key genes 
(15), this result supports the feasibility and validity of the approach 
of using apparent simple zero and first order kinetics instead of more 
complex kinetic models derived from in vitro data.
 Generally, the model predictions were within the range of the 
experimental data variation. For the Apoe-/- mouse, for example, the TC 
prediction was 6.2 times the wild type TC (Figure 3.4). This is well within 
the experimental range of 2.8 and 9.3 times the wild type concentration 
reported by Guo et al. (51) and Ishida et al. (52) respectively (all data on a 
standard diet).
 A considerable part of the differences between predictions 
and experimental data could be eliminated by model simulations with 
optimized instead of literature values of fko. The differences that remained 
after these simulations can obviously be due to the simplifications of 
the model structure. The model could miss an essential mechanism (e.g. 
transcriptional regulation of genes in response to changing conditions) 
and the kinetics could have been simplified too much by only including 
zero and first order and not considering feedback mechanisms. Also, 
due to inter-individual variation in the steady state reaction rates, the 
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used steady state reaction rates (Table 3.4) could differ from the actual 
values in individual mice. In particular, the chylomicron production rate 
(reaction 11) as determined from lymphatic cannulation is highly variable 
between mice (24).
 Studying the kinetics of cholesterol metabolism in vivo is very 
difficult, therefore in the present study an ensemble modeling-based 
approach is used to infer kinetic aspects of cholesterol metabolism. The 
simplified apparent kinetic properties of the 8 appropriate submodels 
seem well-suited to reproduce experimental data. This suggests that 
these submodels have properties in common with the in vivo system. The 
kinetics of the selected 8 submodels were in some cases in agreement 
with in vitro data. As an example reaction 9, representing the enzyme 
Lcat, was first order in the 8 appropriate submodels, which is in 
agreement with the finding of Collet and Fielding (53) that the in vitro 
determined KM for cholesterol of this reaction is much higher than the 
HDL-FC concentration of 0.56 mM (Table 3.3). 
 Disagreement between the kinetics of the 8 appropriate submodels 
and in vitro data was observed for reaction 18 that represents hepatic 
bile acid synthesis to balance fecal bile acid excretion. The finding 
that reaction 18 was first order in the 8 appropriate submodels is not in 
agreement with the finding of Ozasa and Boyd (54) that the apparent KM 
(15 µM) for cholesterol for the enzyme Cyp7a1 is considerably lower 
than the hepatic free cholesterol concentration (3.98 mM, Table 3.4). 
Two of the possible explanations for the difference between the in vitro 
findings and the in vivo situation in this case are 1) the transcriptional 
regulation: if, in response to the cholesterol concentration, the 
transcriptional regulation causes the enzyme concentration to increase 
in response to a rising hepatic free cholesterol concentration (55), the 
dependency of the rate of reaction 18 on the substrate concentration 
could apparently become first order and 2) localization of this enzyme: 
the hepatic free cholesterol concentration that figures in the model as 
the substrate concentration for reaction 18 is not necessarily equal to 
the true CYP7A1 substrate concentration in the cytosolic compartment 
where the enzyme is active (56). If the transport of cholesterol from a 
hepatic storage pool to the cytosolic compartment is a rate controlling 
step, the cytosolic cholesterol concentration would remain below the KM 
of CYP7A1. Under this condition and if the cholesterol transport to the 
cytosol is proportional to the total hepatic cholesterol concentration, the 
dependency of reaction 18 on the total hepatic cholesterol concentration 
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could apparently become first order.
 Analysis of the features of the appropriate submodels that best 
describe the in vivo situation, can generate hypotheses for a mechanistic 
explanation of the cholesterol phenotype of the knockout models used. An 
example is the plasma cholesterol concentration in the Abcb4-/- mouse. 
The phospholipid transporter Abcb4 is required to transport cholesterol 
into bile. Knocking out Abcb4 results in a lower cholesterol flux into bile. 
It could be expected that this would result in a higher hepatic cholesterol 
concentration (as has been experimentally observed (57)) and a lower 
intestinal cholesterol concentration than in the wild type, which in turn 
could lead to a lower fecal cholesterol secretion and higher cholesterol 
concentrations in the body and plasma. The latter is, however, the 
opposite of what is observed in vivo (58): the total plasma cholesterol 
concentration in the Abcb4-/- mouse is decreased compared to wild type 
controls. Our model provides a mechanistic hypothesis that can explain 
this observation. If the transport of cholesterol to HDL is more sensitive 
to the intestinal cholesterol concentration than to the hepatic cholesterol 
concentration, as suggested by our results (Reaction 17 is zero-order 
and reaction 16 is first order in 6 of the 8 models), plasma HDL-C 
concentrations will be reduced rather than increased upon knockout of the 
Abcb4 gene, as predicted by the model.
 It seems likely that the model can provide predictions on the 
effects of drug interventions and SNPs in a similar way as performed for 
knockout mutations in the present paper. The intervention or SNP can be 
incorporated in the model by multiplying the rate constant of an affected 
reaction (e.g. hepatic cholesterol synthesis for statins) by a factor that 
reflects the efficacy of the drug or the effect of the mutation, i.e. similar 
to the fko used in this paper. Incorporating the influence of environmental 
factors other than drugs, like diet, is more complex and requires further 
adaptations in the model which is beyond the scope of the present study.
 In summary, a quantitative model is presented that is able to 
accurately predict the effect of knocking out genes that act in important 
steps in cholesterol metabolism and transport on plasma cholesterol 
concentrations. The model provided a mechanistic explanation for the 
hitherto unexplained cholesterol phenotype of the Abcb4-/- mouse.
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Abstract
Increased plasma cholesterol concentration is associated with increased 
risk of cardiovascular disease. This study describes the development, vali-
dation, and analysis of a physiologically based kinetic (PBK) model for 
the prediction of cholesterol plasma concentrations in humans. This model 
was adapted from a PBK model for mice, by incorporation of the reaction 
catalyzed by CETP, and contained 21 biochemical reactions and 8 different 
cholesterol pools.
 The model was calibrated using data from published kinetic stud-
ies and validated by comparing model predictions on plasma cholesterol 
concentrations of subjects with ten different genetic mutations (including 
Familial Hypercholesterolemia, and Smith-Lemli-Opitz syndrome) with 
experimental data on these concentrations. 
 Average model predictions on TC were accurate within 36% of the 
experimental data, within the experimental margin. Sensitivity analysis of 
parameters in the model indicated that the High Density Lipoprotein cho-
lesterol (HDL-C) concentration was mainly dependent on hepatic transport 
of cholesterol to HDL, CE transfer from HDL to non-HDL, and hepatic 
uptake of cholesterol from non-HDL-C.
 Thus, the presented PBK model is a valid tool to predict the effect 
of genetic mutations on cholesterol concentrations, opening the way for 
future studies on the effect of different drugs on cholesterol concentrations 
in various subpopulations in silico.
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Introduction
In silico modeling has proven to be a useful tool in biology as it allows to 
study interspecies variation, to study the regulation of homeostasis, and to 
integrate information from various sources (1-3). There are several model-
ing efforts on cholesterol (4-7), an important biomarker for the risk for car-
diovascular events (8-10). Most of these cholesterol modeling studies pres-
ent models that focus on LDL cholesterol (LDL-C) metabolism in plasma 
(4-6), or on cellular cholesterol metabolism (7). These models thus do not 
represent all relevant components of whole body cholesterol homeostasis, 
because they lack reactions like cholesterol absorption and biosynthesis in 
organs, which are the reactions targeted by important cholesterol-lowering 
drugs, such as statins. This implies that the models cannot fully explain 
how relevant plasma cholesterol-associated biomarkers are influenced by 
these drug interventions. 
 We have, therefore, developed an in silico Physiologically Based 
Kinetic (PBK) model for plasma cholesterol in the mouse that includes all 
relevant reactions and that correctly predicts the plasma cholesterol con-
centrations of a large variety of mouse strains with gene knockouts related 
to cholesterol metabolism (11). The model, of which the structure is given 
in Figure 4.1, is able to predict HDL cholesterol (HDL-C), LDL-C (also 
denoted as non-HDL-C), and total plasma cholesterol (TC) concentrations 
(12), as well as the intra-organ pools representing hepatic free cholesterol 
(Liv-FC), peripheral cholesterol (Per-C), intestinal cholesterol ester (Int-
CE), hepatic cholesterol ester (Liv-CE), and intestinal free cholesterol (Int-
FC) in the mouse. A similar model for humans will be of considerable value 
in predicting effects of drugs and genetic variations on plasma cholesterol 
concentrations in humans. Therefore, the aim of this work is to adapt our 
model to a human version.
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Figure 4.1. Conceptual model for pathways determining cholesterol plasma con-
centrations used as a basis to set up the in silico model of the present study. Pro-
cess numbers stand for: 1, Hepatic cholesterol synthesis; 2, Peripheral choles-
terol synthesis; 3, Intestinal cholesterol synthesis; 4, Dietary cholesterol intake; 5, 
Hepatic uptake of cholesterol from LDL; 6, Hepatic Very Low Density lipoprotein 
cholesterol (VLDL-C) secretion; 7, Peripheral uptake of cholesterol from LDL; 8, 
Peripheral cholesterol transport to HDL; 9, HDL-associated cholesterol esteri-
fication; 10, Hepatic HDL-CE uptake; 11, Intestinal chylomicron cholesterol se-
cretion; 12, Peripheral cholesterol loss; 13, Hepatic HDL-FC uptake; 14, Biliary 
cholesterol excretion; 15, Fecal cholesterol excretion; 16, Intestinal cholesterol 
transport to HDL; 17, Hepatic cholesterol transport to HDL; 18, Hepatic choles-
terol catabolism; 19, Hepatic cholesterol esterification; 20, Intestinal cholesterol 
esterification and 21, CE transfer from HDL to LDL. C stands for cholesterol; CE 
for cholesterol ester. Based on (11).

 Apart from this qualitative difference, there are many quantitative 
differences between mouse and human with respect to parameters that in-
fluence cholesterol turnover, such as dietary intake, transport and synthesis 
rates of cholesterol, as well as organ sizes (13,19). Some of these differenc-
es persist even after correcting for differences in body mass. For example, 
according to Dietschy and Turley (13), the amount of cholesterol absorbed 
from the diet per kg body mass is 30 mg cholesterol /kg body mass /day in 
the mouse compared to only 5 mg cholesterol / kg body mass /day for hu-
man. Consequently, translational modifying the available mouse model for 
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human subjects is not straightforward. This study describes this translation, 
as well as a validation of the resulting model, by simulating human muta-
tions and comparing the model predictions on HDL-C and non-HDL-C in 
plasma concentrations with experimental data.

Methods
The development of the in silico model was subdivided into the following 
steps: development of a conceptual model (model structure), mathematical 
formulation of the model, model calibration, and model validation. After 
development, a sensitivity analysis was performed to obtain more insight 
into the factors that determine plasma cholesterol concentrations.

Conceptual model development
The conceptual model for the human PBK model was modified from the 
conceptual model for the mouse, previously developed (11). Briefly, the 
mouse model has been constructed as follows: relevant knockout mouse 
models were screened for altered plasma cholesterol concentrations com-
pared to the concentrations in the wild type mouse. If the alteration was 
more than two-fold (up or down) compared to the wild type, the corre-
sponding gene was marked as key gene. Based on the function of a subset 
of 12 of these key genes that code for metabolic enzymes producing or 
consuming cholesterol and transport protein transporting cholesterol, meta-
bolic and transport reactions were included in the mouse conceptual model 
(11). The conceptual model for the human was developed from the mouse 
model by adding human specific features (see Results section).

Mathematical model formulation
As the second step in the model development, the conceptual model was 
converted into mathematical equations. Similar to the mouse model, the 
human model was formulated as a set of differential equations each de-
scribing the time behavior of one of the cholesterol pools in the conceptual 
model as a function of the reaction rates. 
 Equations were slightly altered compared to the mouse model: for 
the human model, reaction rates were expressed as mmol/man/day, leading 
to more simple equations (12). For practical reasons, reaction rates (ex-
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pressed by v), were numbered according to the numbering in Figure 4.1. 
All symbols of variables and parameters that were used to define the model 
are given in Table 4.1. 

Table 4.1. List of symbols and parameters used.
Symbol Description Unit

Vi volume of compartment i with i = Liv, Pla, Per, and Int for liver, plasma, 
periphery, and intestine.

L/man

vi reaction rate of reaction i mmol/(man•day)

vi
ss steady state reaction rate of reaction i mmol/(man•day)

[C]i tissue or plasma concentration of pool i, with i = Liv-FC, HDL-FC, 
HDL-CE, non-HDL-C, Per-C, Int-FC, Liv-CE and Int-CE for liver free 
cholesterol, HDL free cholesterol, HDL cholesterol ester, non-HDL 
cholesterol, peripheral cholesterol, intestinal free cholesterol, liver 
cholesterol ester, and intestinal cholesterol ester.

mmol/L

[C]i
ss steady state concentration of pool i mmol/L

ki
z zero-order rate constant of reaction i mmol/(L•day)

ki
f first-order rate constant of reaction i 1 /day

ki
s second-order rate constant of reaction i L /(mmol•day)

ki
mut,j jth-order rate constant of reaction i in a human carrying a mutation that 

affects reaction i.

ki*
,k kth-order reaction rate constant of reaction i that has been altered 

compared to the normal values

[C]*i
ss steady state concentration of pool i, in case the reaction rate constant 

of reaction i that has been altered compared to the normal values
mmol/L

t time day

fmut rate constant modification factor [-]

The differential equations, one for each cholesterol pool in the model, are 
given in Table 4.2 (Eqn. 4.1-4.8). Equation 1, for example, can be interpret-
ed as: the change in time of the concentration of hepatic free cholesterol is 
determined by the balance of the rates of the reactions producing (ν1, ν5, ν10, 
ν13) and consuming (ν14, ν17, ν18, ν19) hepatic free cholesterol. 
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Table 4.2. Equations used in model development (Eqns 4.1-4.11), model calibration 
(Eqns 4.12-4.14), for simulation of the effect of human mutations (Eqns 4.15-4.17), 
and sensitivity analysis (Eqn. 4.18).

Differential Equations

[ ]( )
81714191310151 vvvvvvvv

td
CVd CFLivLiv −−−−+++=

⋅ −
Eqn. 4.1

[ ]( )
31971618 vvvvv

td
CVd CFHDLPla −−++=

⋅ −
Eqn. 4.2

[ ]( )
12019 vvv

td
CVd ECHDLPla −−=

⋅ −

Eqn. 4.3

[ ]( )
1275116 vvvvv

td
CVd CHDLnonPla +−−+=

⋅ −
Eqn. 4.4

[ ]( )
21872 vvvv

td
CVd CPerPer −−+=

⋅ −

Eqn. 4.5

[ ]( )
5161024143 vvvvvv

td
CVd CFIntInt −−−++=

⋅ −
Eqn. 4.6

[ ]( )
691 vv

td

CVd ECLivLiv
−=

⋅ −
Eqn. 4.7

[ ]( )
1102 vv

td
CVd ECIntInt −=

⋅ −
Eqn. 4.8

Rate equations

Vkv z
ii ⋅=  (zero-order kinetics)

Eqn. 4.9

[ ]CVkv f
ii ⋅⋅=

 (first-order kinetics)
Eqn. 4.10

[ ] [ ] VCCkv CHDLnonECHDL
s ⋅⋅⋅= −−1212  (second-order kinetics)

Eqn. 4.11
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Model calibration

Vvk ss
i

z
i /=  (zero-order kinetics)

Eqn. 4.12

VC
v

k ss
i

ss
if

i ⋅
=

][ (first-order kinetics)

Eqn. 4.13

pla
ss

CHDLnon
ss

ECHDL

ss
s

VCC

v
k

⋅⋅
=

−− ][][
12

12

   (second-order kinetics)

Eqn. 4.14

Mutation simulation
z
imut

zmut
i kfk ⋅=,

   (zero-order kinetics)
Eqn. 4.15

f
imut

fmut
i kfk ⋅=,

   (first-order kinetics)
Eqn. 4.16

s
mut

smut kfk 12
,

12 ⋅=    (second-order kinetics)
Eqn. 4.17

Sensitivity analysis

k
i

k
i

k
i

ss
j

ss
j

ss
j

ji kk
k

C

CC
CS *,

*,

][

][][

−

−
=

Eqn. 4.18

In a kinetic model, the reaction rates are calculated using kinetic equations 
that express the reaction rate as a function of concentrations and kinetic 
parameters. Most reactions in our model represent a set of lumped enzy-
matic- and/or transport reactions. Often, such a composite reaction can be 
conveniently represented by a kinetic equation that contains apparent rate 
constants and apparent KM values. A general solution is to use Michaelis-
Menten kinetics as a prototype kinetic expression for biological reactions. 
In the present approach, in order to keep the number of parameters as limit-
ed as possible, it was additionally assumed that the reactions operate either 
in the linear part of a Michaelis-Menten kinetic curve (substrate concentra-
tion much lower than the apparent KM), or in the saturated part (substrate 
concentration much higher than the apparent KM). At low substrate concen-
trations Michaelis-Menten kinetics effectively reduce to first order kinetics 
(Eqn. 4.9, Table 4.2). At high substrate concentrations, Michaelis-Menten 
kinetics reduce to zero-order kinetics, i.e. the reaction becomes indepen-
dent of the substrate concentration (Eqn. 4.10, Table 4.2). 
 Reaction 21, catalyzed by CETP, was assumed to have different 
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kinetics than the other reactions. CETP transfers CE from HDL to LDL and 
it requires the binding of both a donor (HDL) and acceptor particle (non-
HDL) to exchange cholesterol (20,21). Therefore, the rate of this reaction 
was dependent on both HDL-CE and non-HDL-CE. It was assumed that 
the reaction rate was linear with respect to both concentrations as given by 
equation 11 (Table 4.2).
 The kinetic formats of reactions 1 - 20 were obtained from the pre-
viously defined mouse model. Instead of developing one optimal model, 
the mouse model consists of a set (ensemble) of 8 submodels, each having 
a different combination of first and zero order kinetics for the various reac-
tions. The model prediction is calculated as the average of the predictions 
of the submodels. These 8 submodels have been selected from a larger set 
of 65,536 alternative submodels. Each of the suitable submodels has been 
selected on the basis of a correct prediction of a higher or lower plasma 
cholesterol concentration of 5 knockout mouse strains compared to the wild 
type controls (12). For the human situation, not enough data were avail-
able to apply an identical selection procedure. Therefore, it was decided 
to use the kinetic formats of the reactions 1 - 20 in the 8 submodels for the 
mouse also for the corresponding reactions in the human model. Thus, the 
8 mouse submodels were converted to 8 human submodels, retaining the 
kinetic orders of reactions 1 - 20 and adding reaction 21. As in the mouse 
model, the human model prediction was defined as the average of the pre-
dictions of the resulting 8 submodels. The predicted TC concentration was 
calculated as the sum of all three types of plasma cholesterol (non-HDL-C, 
HDL-FC, and HDL-CE), whereas the predicted HDL-C concentration was 
calculated as the sum of HDL-FC and HDL-CE. 

Model calibration
The model was calibrated by assigning values to the kinetic parameters (ki

z, 
ki

f, and ki
s). The values of the parameters were calculated from steady state 

concentrations of cholesterol pools and reaction rates of the reactions ob-
tained from literature. Literature data on reaction rates and pool sizes were 
taken from a wide range of experiments including cannulations, dietary 
surveys, and in vitro tests as explained in detail below. 
 As usual in PBK modeling (3,19), the model was developed for a 
standard human, for which we chose the 70 kg “reference man” as defined 
by the International Commission on Radiation Protection. 
 Data on 70 kg adult male subjects (19) were taken as much as pos-
sible. In case the data were obtained from people with different body mass-
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es, reaction rates were normalized per unit of organ volume and after that 
multiplied by the organ mass of the reference man to obtain the reaction 
rate for the standard human. 
 In case that in a specific submodel a rate was calculated for a first 
order reaction, the corresponding rate constant was calculated using the 
pool sizes and steady state reaction rates according to Eqn. 4.12 (Table 
4.2). In the case of a zero-order reaction, the corresponding rate constant 
was calculated according to Eqn. 4.13 (Table 4.2). To calculate the rate 
constant of reaction 21, Eqn. 4.14 was used (Table 4.2).

Model validation
To validate the model, the model predicted the plasma cholesterol concen-
trations of humans carrying genetic mutations and these predictions were 
compared with experimental data. A genetic mutation was simulated by a 
model run with a case-specific set of parameters different from the normal 
situation, as follows. The rate constants for the reaction(s) primarily af-
fected by the given mutation was/were multiplied with a specific parameter 
(fmut), according to equations 15, 16, or 17 (Table 4.2). This multiplication 
reflects the impact of the mutation on the reaction rate constant (i.e., -fold 
reduction or increase). All other parameters were assumed to be unaffected 
by the given mutation. The values for fmut for each individual mutation were 
defined based on literature data as described in the Results section.
 Model predictions were derived as follows: the differential equa-
tions (Eqn. 4.1-8), were solved by numerical integration with the normal 
concentrations as initial values. Integration was performed using routine 
ode15s as implemented in MATLAB version 7.5 (R2007b) with the appro-
priate parameter value(s) for each subject (normal or mutant). The simula-
tion was performed until steady state of all cholesterol pools in the model. 
Model predictions were defined as these steady state concentrations ob-
tained.

Sensitivity analysis
To identify which reactions had a large influence on the 8 predicted cho-
lesterol pools in the model, a sensitivity analysis was performed. One by 
one, all kinetic constants were increased by one percent (leaving all other 
parameters unchanged) and the model was used to predict the effect of this 
increase on all 8 cholesterol pools that figured in the model. The effect of 
the increase in parameter of rate i on pool j was expressed in a sensitivity 
coefficient (SC) defined in Eqn. 4.18. The SC of the model was defined as 
the average of the SC’s calculated with the 8 submodels.
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Results
Conceptual model development
Figure 4.1 presents the conceptual model for human plasma cholesterol 
concentrations. The model contains 8 pools and 21 reactions, for example 
hepatic cholesterol synthesis (reaction 1), biliary cholesterol excretion (re-
action 14), and fecal cholesterol excretion (reaction 15).

Model development and calibration
The human PBK model formulated as differential equations (Eqn. 4.1-4.8, 
Table 4.2) and rate equations (Eqn. 4.9-4.11, Table 4.2), based on the con-
ceptual model given in Figure 4.1. The model was calibrated using com-
partmental volumes, steady state cholesterol concentrations, and rates of 
cholesterol-involving reactions derived from literature. A detailed descrip-
tion of how data were derived, transformed into the correct units, and scaled 
to the 70 kg “reference man” as defined by the International Commission 
on Radiation Protection (19) can be found in the supplementary material. 
Concerning plasma cholesterol, the total plasma cholesterol concentration 
was 5.25 mM for TC and 1.19 mM for HDL-C as was obtained from an 
inventory of data from 8809 US adults (22). Plasma cholesterol not present 
in the HDL-C pool (4.03 mM) was considered to be present in the non-
HDL-C pool. Total HDL-C concentration (HDL-C, 1.19 mM) consists of 
HDL-FC and HDL-CE. The HDL-FC:HDL-CE ratio was 1:3 as obtained 
from (23). This ratio was applied to the HDL-C data above to obtain the 
HDL-FC and HDL-CE concentration, resulting in 0.30 mM for HDL-FC 
and 0.89 mM for HDL-CE.
 A summary of these results is presented in Table 4.3. Several steady 
state reaction rates were not directly obtained from data, but instead were 
calculated from the other reaction rates using mass balances as indicated in 
Table 4.3 for vss

5, v
ss

7, v
ss

8, v
ss

10-12, v
ss

17, and vss
19-20.

 The model predicted a steady state that matched all the data in Table 
4.3, which indicates that the data, taken from various sources were mutu-
ally consistent.
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Table 4.3. Numerical values for the compartmental volumes, steady state concen-
trations, and steady state reaction rates for a 70 kg reference man. More details can 
be found in the text and in supplementary material.

Organ Symbol Value Obtained from

Volumes (L/man)

Liver Vliv 1.80 Calculated assuming liver mass is 2.57% of total body mass and 
organ density is 1 kg/L (19).

Intestine VInt 0.64 Calculated assuming intestinal mass is 0.91% of total body mass 
and organ density is 1 kg/L (19).

Plasma VPla 2.79 Calculated assuming plasma volume is 39.9 ml/kg body mass 
(44).

Periphery VPer 64.8 Calculated by subtracting liver, intestinal and plasma mass from 
the 70 kg total body mass and assuming density is 1 kg/L.

Steady state concentrations (mmol per L tissue or plasma)

Hepatic free C [C]ss
Liv-FC 8.00 Measured using needle liver biopsies (45).

HDL free C [C]ss
HDL-FC 0.30 See text (22,23).

HDL C ester [C]ss
HDL-CE 0.89 See text (22,23).

Non-HDL C [C]ss
non_

HDL-C

4.03 See text (22).

Peripheral C [C]ss
Per-C 1.20 Measured in biopsies from large organs in sudden death individu-

als (46).

Intestinal free C [C]ss
Int-FC 1.99 Determined from biopsies from sudden death individuals. (47). 

Ratio Int-FC:Int-CE was assumed to be equal to that ratio in 
CaCo2 cells (48). 

Intestinal CE [C]ss
Int-CE 0.25 Determined from biopsies from sudden death individuals. (47). 

Ratio Int-FC:Int-CE was assumed to be equal to that ratio in 
CaCo2 cells (48).

Hepatic CE [C]ss
Liv-CE 5.30 Measured using needle liver biopsies (45).

Steady state reaction rates (mmol/(man•day))

Hepatic C syn-
thesis

v1
ss 0.44 Determined with ex vivo studies on liver biopsies (13,49,50).

Peripheral C syn-
thesis

v2
ss 3.79 Calculated from total body (determined from squalene kinetics), 

hepatic, and intestinal cholesterol synthesis rates (49).

Intestinal C syn-
thesis

v3
ss 0.18 Determined with ex vivo studies on intestinal biopsies (51).

Dietary C intake v4
ss 1.09 Calculated using 7 day food recall (52).

Hepatic uptake of 
C from non-HDL

v5
ss 11.42 Sum of the uptake rates of non-HDL-C (reactions 5 and reaction 

7) was calculated with the LDL-C balance: v5
ss + v7

ss = v21
ss + v6

ss 
+ v11

ss. The ratio between hepatic (v5
ss) and extrahepatic uptake 

(v7
ss) in the human was assumed to be identical to that ratio in the 

mouse (53).

Hepatic VLDL-C 
secretion

v6
ss 4.76 Calculated from stable isotope study (54) and lipoprotein compo-

sition data (55).

Peripheral uptake 
of C from non-HDL

v7
ss 1.31 See v5

ss
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Organ Symbol Value Obtained from

Peripheral C trans-
port to HDL 

v8
ss 2.48 Calculated with the peripheral cholesterol balance (v8

ss = v2
ss + 

v7
ss – v12

ss).

HDL-associated C 
esterification

v9
ss 7.86 Determined with ex vivo test with endogenous substrates (56,57).

Hepatic HDL-CE 
uptake

v10
ss 2.93 Calculated with the HDL-CE balance (v10

ss = v9
ss – v21

ss)

Intestinal chylomi-
cron-C secretion

v11
ss 3.04 Calculated with the intestinal cholesterol ester balance (v11

ss = 
v20

ss) 

Peripheral C loss v12
ss 2.62 Calculated with the total body balance v12

ss = v1
ss + v2

ss + v3
ss + 

v4
ss – v18

ss – v15
ss  

Hepatic HDL-FC 
uptake

v13
ss 1.57 Calculated by assuming that the ratio between v10 and v13 is simi-

lar in human and mouse (12).

Biliary C excretion v14
ss 3.66 Measured using bile that was collected with a swallowed tube 

(58).

Fecal C excretion v15
ss 1.85 Measured by fecal collection and analysis (52).

Intestinal C trans-
port to HDL

v16
ss 0.03 Measured using in an in vitro assay with Caco2 cells (59) 

Hepatic C transport 
to HDL

v17
ss 6.91 Calculated with the hepatic free cholesterol balance (v17

ss = v1
ss + 

v13
ss + v10

ss + v5
ss - v6

ss - v18
ss -v14

ss).

Hepatic C catabo-
lism

v18
ss 1.03 Assumed to be equal to fecal loss of bile acids, measured by fecal 

collection and analysis (52).

Hepatic C esterifi-
cation

v19
ss 4.76 Calculated with the hepatic cholesterol ester balance (v19

ss = v6
ss) 

Intestinal C esterifi-
cation

v20
ss 3.04 Calculated with the intestinal free cholesterol balance (v20

ss = v3
ss 

+ v4
ss + v14

ss - v16
ss - v15

ss) 

CE transfer from 
HDL to non-HDL

v21
ss 4.93 Measured ex vivo with radiolabeled CE (non-HDL) (21).

Model validation
As a model validation, 10 genetic variations known to affect cholesterol 
metabolism were simulated and model predictions for TC, HDL-C, and 
non-HDL-C were compared with experimental data. The 10 mutations in-
clude mutations that cause Familial Hypercholesterolemia (FH), Fish Eye 
Disease, Smith-Lemli-Opitz syndrome (SLOS), and other diseases. Details 
on all 10 mutations (numbered with roman digits) are given in Table 4.4 
and are explained below. In the list of 10 mutations, two genes were in-
cluded twice, APOB and LCAT, both as homozygote and as heterozygote 
variant.
 Each mutation was simulated by multiplying the rate constant of 
the reaction affected with a specific parameter fmut defined for that mutation 
(see Eqn. 4.15-4.17, Table 4.2). The parameter fmut is generally defined as 

Chapter 4



the ratio of the value of a specific variable in carriers of the mutation to the 
value of that specific variable in controls. The specific affected variables 
for all mutations are given in Table 4.4. 

Table 4.4. Description of the 10 human mutations used for model validation. The 
table includes the name of the gene carrying the mutation, the plasma cholesterol 
concentrations (TC, HDL-C, and non-HDL-C) of the subjects carrying the muta-
tions (expressed as –fold increase relative to the control group), the number of the 
reaction(s) affected by specific mutations, the severity of the affection expressed 
as fmut (Eqn. 4.15-4.17) and the name of the variable used to determine fmut. Reac-
tion numbers correspond to numbers in Figure 4.1. NA, Not Available. 

Nr Gene TC 
(Rela-
tive to 
control)

HDL-C 
(Rela-
tive to 
control)

non-
HDL-C 
(Rela-
tive to 
control)

Reac-
tion 
affect-
ed

fmut Experimentally measured 
variable used to determine 
fmut  (see text for details)

Ref

I LDLRa 1.85 0.86 2.17 5,7 0.38 The fractional catabolic rate 
of APOB in LDL

(54)

II APOBb 1.36 0.85 1.52 5,7 0.31 The fractional catabolic rate 
of APOB in LDL

(54)

III APOBc 1.97 1.12 2.24 5,7 0.32 The fractional catabolic rate 
of APOB in LDL

(54)

IV ABCA1d 1.07 0.22 1.42 8, 16, 
17

0.41 The cholesterol efflux rate to 
APOA1 

(60)

V APOEe 2.80 NA NA 5,7 0.45 The residence time of the 
carrier or control form of 
APOE in a normal subject

(61)

VI CETPf 1.01 1.10 0.98 21 0.65 The plasma level of CETP (15)

VII LCATg 0.81 0.79 0.97 9 0.62 The in vitro determined activ-
ity of LCAT

(39)

VIII LCATh 0.77 0.19 0.82 9 0 The in vitro determined activ-
ity of LCAT

(39)

IX DHCR7i 0.20 NA NA 1,2,3 0.00 The cholesterol synthesis 
activity in cultured fibroblasts

(62,63)

X CYP7A1j 1.74 0.97 2.09 18 0.05 The bile acid content of the 
stools

(24)

a Heterozygote Familial Hypercholesterolemia (FH), b Heterozygote familial de-
fective APOB (FDB), c Homozygote familial defective APOB (FDB), d Hypoal-
phalipoproteinemia, e Type III hyperlipoproteinemia, f  heterozygote in exon 15, 
g Heterozygote Familial LCAT deficiency (incl. Fish eye disease), h Homozygote 
familial LCAT deficiency (incl. Fish eye disease),i Smith-Lemli-Opitz syndrome 
(SLOS), and j Bile acid synthesis defect.
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The parameter fmut, for the simulation of a bile acid synthesis defect in the 
gene CYP7A1 (mutation X), for example, was defined as the ratio of the 
bile acid contents of the stools from carriers of the mutation to that in con-
trols. The affected individuals had 5% of the amount of bile acids in their 
stools compared to healthy controls (24). The value of fmut was, therefore, 
set to 0.05 (Table 4.4). Values of the parameter fmut range from 0.00 for the 
SLOS mutation and the homozygote LCAT mutation to 0.65 for a variant 
of the CETP gene, implying that the list contained mutations that cause 
both mild and severe phenotypes. Model predictions and experimental data 
are given in Figure 4.2 (for TC), Figure 4.3 (HDL-C), and Figure 4.4 (non-
HDL-C). 

 Apart from LCAT deficiency (mutation VIII, Table 4.4), the model 
correctly predicted whether the TC, HDL-C, and non-HDL-C concentra-
tions were decreased, increased, or relatively unchanged by the mutations. 
The average relative deviations between model predictions and experimen-

Figure 4.2. PBK model predictions compared to experimental data for TC con-
centrations (relative to control) for 10 different human mutations. Mutation num-
bers correspond to the numbers in Table 4.4.
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tal data were 36%, 49%, and 43% for TC, HDL-C, and non-HDL-C, re-
spectively. This is considered successful within the present state-of-the-art 
of PBK modeling, where quantitative predictions may generally be correct 
within one order of magnitude (25-28). Also these model predictions are 
generally within the experimental error margin, given small patient groups 
sizes (generally N < 20).

Figure 4.3. PBK model predictions compared to experimental data for HDL-C 
(relative to control) for 10 different human mutations. Mutation numbers corre-
spond to the numbers in Table 4.4. NA, No data available.

Model analysis
An important step in modeling is model analysis, this is the step in which 
novel biological insight can be obtained. Sensitivity analysis was per-
formed to analyze which cholesterol concentrations are affected by which 
biological reactions. Please note, this procedure is not linked to assessing 
the sensitivity of a diagnostic test. Figure 4.5 presents the sensitivity coef-
ficients (SC, Eqn. 4.18) that express the sensitivity of the 8 concentrations 
in the model towards changes in the kinetic parameters of each of the 21 
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Figure 4.5. Color representation of the sensitivity coefficients that quantify the 
influence of changes in the rate constants of the different reactions on the different 
concentrations. See text for details. Reaction numbers correspond to the numbers 
in Figure 4.1.

Figure 4.4. PBK model predictions compared to experimental data for non-HDL-
C (relative to control) for 10 different human mutations. Mutation numbers cor-
respond to the numbers in Table 4.4. NA, No data available.
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reactions. A positive SC indicates that an increase in the reaction rate con-
stant results in an increase of the predicted concentration. A negative SC 
indicates that an increase in the reaction rate constant results in a decrease 
of the predicted concentration. 
 Some concentrations responded to changes in many different rate 
constants (e.g. hepatic free cholesterol (Liv-FC)), while other concentra-
tions were sensitive to changes in only a few reactions. HDL free choles-
terol (HDL-FC), for example, was only sensitive (SC < -0.25 or SC > 0.25) 
to changes in HDL-associated cholesterol esterification (reactions 9), and 
hepatic cholesterol transport to HDL (reaction 17, Figure 4.5). Figure 4.5 
indicates that some reactions strongly influenced many concentrations. The 
rate of hepatic uptake of cholesterol from non-HDL (reaction 5) influenced 
(again |SC| > 0.25) 4 of the 8 pools. In contrast, intestinal cholesterol syn-
thesis (reaction 3) or intestinal cholesterol transport to HDL (reaction 16) 
did not influence any concentration.
 An increased free cholesterol concentration (Liv-FC and Int-FC) 
is associated with membrane damage and cytotoxicity (29). This model 
analysis might, therefore, be relevant to predict cytotoxicity: if a reaction 
highly affects one of these pools, then substances that alter the activity of 
that reaction may induce cell death.
 From Figure 4.5 it can be seen that Liver FC (Liv-FC) was not only 
sensitive to changes in the reactions that directly produced or consumed 
hepatic free cholesterol, like biliary cholesterol excretion (reactions 14) 
and hepatic cholesterol catabolism (reaction 18), but also to peripheral cho-
lesterol synthesis (reaction 2) and intestinal cholesterol esterification (reac-
tion 20). Int-FC was primarily sensitive to changes in intestinal cholesterol 
esterification (reaction 20), biliary cholesterol excretion (reactions 14), and 
fecal cholesterol secretion (reaction 15).
 Of special biological interest are the SC values for cholesterol con-
centrations in plasma (HDL-FC, HDL-CE, and non-HDL-C) that are cor-
related with the risk for coronary heart disease (10). The influence of the 
different reactions on TC is not directly visible from Figure 4.5, because 
TC is the sum of three different concentrations in the model (HDL-FC, 
HDL-CE, and non-HDL-C). Sensitivity coefficients for the influence of the 
different reactions on TC are given separately in the left plot in Figure 4.6.
 Hepatic uptake of cholesterol from non-HDL (reaction 5), hepatic 
transport of cholesterol to HDL (reaction 17), and hepatic cholesterol ester-
ification (reaction 19) were the reactions that showed the largest influence 
on TC, resulting from the combined influence of these reactions on HDL-C 
(Figure 4.6, middle panel) and non-HDL-C, (Figure 4.6, right panel). Reac-
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tions 6, 11, and 16 had the smallest effect on TC. The model predicted that 
non-HDL-C was highly dependent on hepatic uptake of cholesterol from 
non-HDL (reaction 5) and further mainly on hepatic cholesterol esterifica-
tion (reaction 19, see Figure 4.6 right panel). The HDL-C concentration, on 
the other hand, was mainly dependent on hepatic transport of cholesterol to 
HDL (reaction 17), CE transfer from HDL to non-HDL (reaction 21), and 
hepatic uptake of cholesterol from non-HDL (reaction 5, Figure 4.6 middle 
panel).
 In general, sensitivity coefficients for TC were more similar to those 
for non-HDL-C, than to those for HDL-C, because only a small fraction of 
plasma cholesterol is present in HDL-C.
 Finally, this sensitivity analysis revealed that according to the mod-
el, there are several efficient ways to lower non-HDL-C concentrations and 
increase HDL-C concentrations simultaneously by modulating only one 
single reaction (middle and right panel Figure 4.6). The most potent re-
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Figure 4.6. Sensitivity coefficients (see Eqn. 4.18) for the different reactions to-
wards TC (left panel), HDL-C (middle panel), and non-HDL-C (right panel). Re-
action numbers correspond to the numbers in Figure 4.1.
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actions seem hepatic uptake of non-HDL-C (reaction 5) and CE transfer 
from HDL to LDL (reaction 21). The first reaction is targeted indirectly by 
statins (30), the latter reaction is targeted by CETP inhibitors, a drug class 
of which several members, for example dalcetrapib, are currently in clini-
cal trials (16,31,32).

Discussion
In silico models have been used for various purposes in the study of choles-
terol metabolism, for example in the interpretation of isotope labeling stud-
ies (4-6), in the analysis of the regulatory pathway of cholesterol synthesis 
(33), or in making predictions of the effect of genetic mutations, food, and 
drug interventions (34,35). These models, however, could predict the effect 
of only a few genetic mutations. The aim of this study was to develop a 
model that can be applied in the prediction of a wide variety of genetic, nu-
tritional, and pharmaceutical effects on plasma cholesterol concentrations. 
 As all models, our model is a compromise between simplicity and 
complexity (36). A too simple model is not useful to simulate multiple 
interventions, because such a model will lack the targets of at least part 
of these interventions. A too complex model is not useful either, because 
insufficient experimental data will be present to calculate the parameters 
(calibration) or to validate the model.
 The level of complexity of the model described here was apparently 
an acceptable compromise, because the model could be calibrated from 
literature data (See supplementary information), and was able to predict 
the effects of 10 human mutations (Figures 4.2-4.4) including a mutation in 
the LDLR gene (mutation I, responsible for Familial Hypercholesterolemia 
(FH)) and the DHCR7 gene (mutations IX, responsible for the Smith-Lem-
li-Opitz syndrome (SLOS)). While simulating this latter syndrome, nega-
tive concentrations were predicted for several submodels, consistent with 
the clinical observation that SLOS can lead to death in infants (37).
 Model predictions for TC deviated on average less than 40% from 
experimentally observed values which is relatively good compared to the 
current state of the art for PBK models of exogenous substances (26-28,38). 
This is all the more remarkable since the model was obtained via a rela-
tively straightforward translational adaptation of our previously developed 
mouse model. 
 There is one large deviation between model predictions and experi-
mental data (HDL-C concentration in LCAT deficiency: mutation VIII). 
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The model predicts an increase in HDL-C, while a decrease was observed 
in reality (Figure 4.3). This increase is in the form of HDL-FC and not in 
HDL-CE (data not shown). The shift in CE/FC ratio is similar as seen in lit-
erature (39). An explanation may be given for the deviation between model 
predictions and experimental data: in reality, a maximum of HDL-FC might 
exist. If this maximum is reached, the transport of free cholesterol to HDL 
(reactions 8, 16, and 17) will reduce the transfer to HDL, thereby causing 
HDL-C lowering. The model is too simple to take this into account. 
 As given in Figure 4.6, the model predicted that an increased dietary 
intake of cholesterol (reaction 4) will lead to an increased TC concentra-
tion, an increased non-HDL-C concentration and a slightly lowered HDL-
C concentration. This is in agreement with findings in nutritional studies 
(see meta-analysis in (40)). The model also predicted that non-HDL-C is 
mostly affected by hepatic cholesterol esterification (reaction 19) and he-
patic uptake of cholesterol from LDL (reaction 5). This confirms that the 
liver is a dominant organ in determining the plasma cholesterol concentra-
tions (13). 
 A decrease in hepatic cholesterol synthesis (reaction 1) resulted in a 
decrease of the non-HDL-C (Figure 4.6, right panel), and in an increase of 
HDL-C. This is in agreement with the outcome of statin-mediated inhibi-
tion of hepatic cholesterol synthesis (41). In reality, statin therapy will also 
cause an upregulation of the LDLR and thereby the activity of hepatic non-
HDL-C uptake, increasing the non-HDL-C lowering effect.
A decrease in the activity of CETP (reaction 21) has a larger relative effect 
on HDL-C than on non-HDL-C (Figure 4.6). This is in agreement with the 
outcome of torcetrapib-mediated CETP inhibition (42) and CETP muta-
tions (mutation VI, Table 4.5). Taken together these findings illustrate that 
the described model could be helpful to predict effects of both dietary and 
pharmaceutical interventions.
 A recent genome wide association study (GWAS) has found 95 
SNPs that correlated with altered TC, HDL-C, LDL-C, or triglycerides 
concentrations (43). At least 19 of these SNPs were near genes that are 
involved in one or more of the reactions in the model. The gene ABCA1, 
for example, is involved in the transport of cholesterol to HDL (reactions 
8, 16, and 17).
 We compared effect sizes of the 19 SNPs given in (43) with the 
sensitivity coefficients of associated reactions (Figure 4.6) by Spearman 
correlation, and found a positive correlation between our findings and the 
ones in literature for HDL-C, LDL-C, and TC (all p < 0.05). This is an 
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additional validation of the present model and implies that the developed 
model is useful to study the implications of genetic variations on choles-
terol metabolism.
 The GWAS study (43) also reports several SNPs correlating with 
cholesterol concentrations in plasma near genes that could not be directly 
linked to a specific reaction in our model (Figure 4.1), like in HNF4A, 
CILP2, and ANGPTL3. This absence of a direct link is the result of essen-
tial simplifications needed to construct the model.
 We conclude that the approach of first developing a computational 
PBK model for the mouse and then translating it into a human model as de-
scribed in this paper resulted in a usefully accurate model to predict plasma 
cholesterol concentrations in humans. Sensitivity coefficients derived from 
the model correlated well with recent independent GWAS data on plasma 
cholesterol. Based on the model performance we expect that the model can 
also be used for the prediction of the effects of pharmacological and dietary 
interventions on plasma cholesterol concentrations in humans, which will 
be the subject of a following study. 
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Abstract
Individuals vary in the response of their plasma cholesterol concentrations 
to statins, due to variation in multiple processes including cholesterol syn-
thesis and cholesterol absorption. The objective of this study was to iden-
tify and quantify the contribution of 21 of these processes using a physio-
logically based kinetic (PBK) model for plasma cholesterol concentrations 
in humans. To reach this goal, we investigated whether this model could 
predict the effect of pravastatin intervention on plasma cholesterol. With 
our PBK model, pravastatin therapy was simulated, taking into account 
pravastatin pharmacokinetics, potency, and influence on expression of the 
Low Density Lipoprotein Receptor. Variation in response between subjects 
was studied using 10,000 virtual subjects, each with a unique combination 
of rate constants for the different reactions.
 The model predicted the effect of pravastatin treatment on Total 
Cholesterol (TC), High Density Lipoprotein-Cholesterol (HDL-C), and 
non-HDL-C at several doses (0 - 40 mg/d). At 40 mg/d, TC was predicted 
to decrease by 15% (vs. 22% reported for human subjects in literature), 
non-HDL-C was predicted to decrease by 22% (vs. 25% in literature), and 
HDL-C was predicted to increase by 10% (vs. 5.6% in literature).
 The model also predicted that rates of hepatic cholesterol synthesis, 
peripheral cholesterol synthesis and hepatic cholesterol esterification were 
major determinants of the non-HDL-C response to pravastatin.
 Concluding, we have developed a model that accurately predicted 
effects of pravastatin treatment and can be useful to provide insight in fac-
tors influencing the individual response to statins.
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Introduction
Prevention of cardiovascular events is highly relevant in modern medicine, 
because these events are a major cause of death and morbidity in the West-
ern World (1-3). Important biomarkers for the risk of these events are plas-
ma concentrations of total cholesterol (TC), high density lipoprotein cho-
lesterol (HDL-C), and low density lipoprotein cholesterol (LDL-C) (1-3). 
Subjects with a high concentration of TC or LDL-C have an increased risk 
of developing cardiovascular complications. Alternatively, subjects with a 
high concentration of HDL-C have a reduced risk (4). These biomarkers 
are often used as substitute markers to measure the effect of therapy on 
mortality rates, because using mortality rates as output takes a long follow 
up period and large patient groups to find significant effects in mortality 
rates (5,6).
 The most commonly prescribed drugs to target these biomarkers 
are 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMG-CoA reductase) 
inhibitors or statins (7). Since the discovery of the first statin in fungi (See 
historical review of Endo (8)), several compounds in this drug class have 
been produced and marketed, including pravastatin, simvastatin, and ro-
suvastatin (7). These drugs share the same working mechanism of LDL-C 
lowering, but differ in their metabolism, absorption, and potency (7,9).
 Statins act through inhibition of the hepatic activity of HMG-CoA 
reductase, an essential enzyme in hepatic cholesterol synthesis. To com-
pensate for the resulting reduction of hepatic cholesterol, hepatic expres-
sion of the LDL Receptor (LDLR) is increased, accelerating the uptake of 
LDL-C from plasma, which reduces the LDL-C concentration in plasma 
(7). 
 In large clinical trials, statins decreased LDL-C concentrations, in-
creased HDL-C concentrations, and decreased the risk of cardiovascular 
events (5,7,10). However, a large group of patients only had a minor re-
sponse to statins in terms of cholesterol concentrations (11,12). Hereafter 
the term ‘response’ will be used for the response of cholesterol concentra-
tions to statin treatment, rather than for cardiovascular events. In fact, only 
40% of subjects receiving statin therapy reach their LDL-C targets (13). 
Subjects that have a large response are called hyper-responders. Subjects 
that have a small response are called hypo-responders.
 There are two indications that this variation in response can in part 
be explained by variation in cholesterol metabolism. The first indication is 
that subjects who obtain a relatively large proportion of their cholesterol 
from de novo synthesis respond better than subjects who obtain a relatively 
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large proportion from dietary absorption (11,14). The second indication is 
that genetic analyses revealed that variations in key genes in cholesterol 
metabolism (like APOE, which is involved in the hepatic uptake of LDL-C, 
and ABCA1, which transports cholesterol to HDL) are associated with the 
response (15,16). These genetic studies indicate that differences in multiple 
processes including cholesterol synthesis and cholesterol transport contrib-
ute to variation in the response to statins.
 Genetic analyses provide associations of genetic variants with the 
response, but not necessarily more mechanistic insights in how these fac-
tors contribute to the response. If we know which reactions are important 
for the response to statins and why they are important, the search for bio-
markers that predict the effect of treatment in humans could be better tar-
geted and accelerated. These markers could be more generally applicable 
than tests that only characterize a single genetic variant. This insight can be 
used for personalized medicine or personalized health, i.e. tailoring therapy 
to subject-specific properties.
 Computational models have been used to study differences between 
hypo-responders and hyper-responders arising from variations in statin 
pharmacokinetics and pharmacodynamics (17), but not for studying differ-
ences arising from variations in cholesterol metabolism. We hypothesized 
that a computational model of cholesterol metabolism that focuses on plas-
ma cholesterol concentrations can enhance current insights in differences 
between hypo-responders and hyper-responders arising from differences in 
cholesterol synthesis, transport, and catabolism.
 Our previously developed physiologically based kinetic (PBK) 
model for predicting plasma cholesterol concentrations in humans (18,19) 
includes the two required ingredients for simulating statin treatment: the 
target reaction of statins and a plasma compartment. As a result, this model 
is suitable to study the variation in statin response. The model describes 
8 different cholesterol pools in the body influenced by 21 metabolic and 
transport reactions. The 8 cholesterol pools include HDL free cholesterol 
(HDL-FC), HDL cholesterol ester (HDL-CE), and non-HDL-C (total of 
plasma cholesterol that is not present in HDL), but also hepatic free choles-
terol, hepatic cholesterol ester, intestinal free cholesterol, intestinal choles-
terol ester, and peripheral cholesterol.
 The objectives of the present study were to test how accurate our 
cholesterol PBK model predicted the effect of a statin treatment, and to 
investigate which reactions in cholesterol synthesis, transport, catabolism, 
and excretion determine the variability in the response to statins. 
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Methods
Model development
The cholesterol PBK model for a standard subject (“reference man” as de-
fined by the International Commission on Radiation Protection) was de-
scribed previously (19), in short: the model consists of a set of 8 differential 
equations each describing the dynamics of a cholesterol pool. These equa-
tions describe the effect of 21 metabolic and transport reactions on the size 
of the 8 included cholesterol pools. The rate of each reaction is described 
using a rate equation with a single parameter: the rate constant.
 The model consists of a set (ensemble) of 8 submodels, each hav-
ing a different combination of first and zero order kinetics for the various 
reactions, instead of one optimal model. Details on the selection of these 8 
submodels can be found elsewhere (19). The model prediction is calculated 
as the average of the predictions of the submodels (19). 

Model simulations
The effect of pravastatin was simulated by reducing the rate constant of the 
reaction for hepatic cholesterol synthesis (reaction 1, (19)) according to:

  ⋅= untreated
act

treated kfk 11   (Eqn. 5.1)

where k1 is the rate constant for reaction 1, either in standard condition 
(superscript: untreated) or after pravastatin treatment (superscript: treated), 
and fact is the treated hepatic cholesterol synthesis rate over the day rela-
tive to the untreated rate. If the cholesterol synthesis rate in the liver is, 
for example, halved by statin treatment, then fact has a value of 0.5. This 
factor fact is dependent on the statin dose administered and was determined 
in the present study using pharmacokinetic and pharmacodynamic data as 
described in the Result section. All other parameters in the cholesterol PBK 
model were assumed to be unaffected by statin treatment. The model pre-
dictions were obtained by solving the model with the new set of parameters 
(including k1

treated instead of k1
untreated) by numerical integration with the stan-

dard concentrations as initial values. The simulation was performed until 
steady state of all cholesterol pools in the model was reached. Model pre-
dictions were defined as these steady state concentrations (19). Integration 
was performed using routine ode15s as implemented in MATLAB version 
7.5 (R2007b) (20).
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Virtual subjects 
To determine which reactions are important for the response to statins we 
used a Monte Carlo simulation: a group of 10.000 virtual subjects was con-
structed, each differing in the values of the kinetic parameters in the 21 
reactions. Each kinetic parameter was drawn randomly from a normal dis-
tribution with a specified average and standard deviation. The average was 
set to the rate constant in the standard subject and the standard deviation 
was set to 25% of this average. The model was used to calculate a baseline 
concentration and then statin treatment was simulated as described in the 
section on Model simulations with a fixed fact. For some virtual subjects, 
one or more of the 8 submodels predicted one or more negative concentra-
tions (even if all rate constants were positive). These subjects were not 
taken into account. 

Reaction importance
The relation between the response and the reaction rate constant for each of 
the 21 reactions (all continuous variables) was assessed using linear regres-
sion (21): 

  ninn ky εββ ++= ,10
~   (Eqn. 5.2)

where yn is the response to statins (expressed relative to baseline) for sub-
ject n, 0β , and 1β  are the regression coefficients fitted to experimental 
data by minimizing the sum of the squared error terms ( nε ), and ink ,

~  is the 
(scaled) rate constant of subject n for reaction i. In order to compare reac-
tion effects for different reactions, reaction constants for a given reaction 
were autoscaled (22):

  
i

iin
in

kk
k

σ

−
= ,

,
~   (Eqn. 5.3)

where ink ,  is the rate constant of subject n for reaction i, ik  the average rate 
constant for all subjects for this reaction, and iσ  the standard deviation of 
the rate constants for reaction i over all subjects.
 The second regression coefficient ( 1β ) is called the reaction effect. 
Regression was performed using the function regress as implemented in 
MATLAB. Because responses were not normally distributed, Johnson cor-
rection was applied using the function johnsrand as implemented in MAT-
LAB (20).
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 Interactions between reactions were tested using linear regression 
with a multiplicative interaction term (23): 

  njninjnjinin kkkky εββββ ++++= ,,int,,0
~~~~

  (Eqn. 5.4)

where yn  is the response to statins of subject n (relative to baseline), and 
0β , iβ , jβ , and intβ  are the regression coefficients that are fitted to the 

data minimizing the sum of the squared error terms ( nε ). An interaction 
is considered significant if the 95% confidence interval of intβ  does not 
contain zero.

Results
Model adaptation
Before we investigated which reactions in cholesterol metabolism deter-
mine the variability in the response to pravastatin, we first studied whether 
our previously defined model (19) could predict the effect of pravastatin 
treatment on plasma cholesterol. If it was assumed that statins fully block 
hepatic cholesterol synthesis (fact = 0, see Eqn. 5.1), then our previously 
described model predicted non-HDL-C to be reduced by 4%, whereas in 
literature reductions of 20-50% are observed (7). Therefore, an adaptation 
of the model was required. 
 The adaptation was based on the mechanism of action of statins: 
statins cause a decrease in hepatic cholesterol followed by upregulation of 
the LDL Receptor (LDLR) involved in the hepatic uptake of LDL-C (7). 
We, therefore, included the upregulation of the LDLR in the model. The 
updated conceptual model is given in Figure 5.1. 
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Figure 5.1. Conceptual model for pathways determining plasma cholesterol con-
centrations used as a basis to set up the PBK cholesterol model of the present 
study. Process numbers stand for: 1, Hepatic cholesterol synthesis; 2, Periph-
eral cholesterol synthesis; 3, Intestinal cholesterol synthesis; 4, Dietary choles-
terol intake; 5, Hepatic uptake of cholesterol from non-HDL; 6, Hepatic Very 
Low Density lipoprotein cholesterol (VLDL-C) production; 7, Peripheral uptake 
of cholesterol from non-HDL; 8, Peripheral cholesterol transport to HDL; 9, HDL 
associated cholesterol esterification; 10, Hepatic HDL-CE uptake; 11, Intestinal 
chylomicron cholesterol secretion; 12, Peripheral cholesterol loss; 13, Hepatic 
HDL-FC uptake; 14, Biliary cholesterol excretion; 15, Fecal cholesterol excre-
tion; 16, Intestinal cholesterol transport to HDL; 17, Hepatic cholesterol trans-
port to HDL; 18, Hepatic cholesterol catabolism; 19, Hepatic cholesterol esterifi-
cation; 20, Intestinal cholesterol esterification, and 21, CE transfer from HDL to 
non-HDL. C stands for cholesterol; CE for cholesterol ester. Adapted from (35). 
Dashed line indicates the regulation of the LDLR in response to the hepatic cho-
lesterol concentration.

It includes downregulation of the LDLR when hepatic cholesterol (Sum of 
FC and CE) is increased. This also implies upregulation when the hepatic 
cholesterol concentration is decreased.
 The LDLR regulation was included in the rate expression for hepat-
ic uptake of cholesterol from non-HDL-C (reaction 5) that was previously 
defined as (19):
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 ][55 CHDLnonkv −−⋅=   (Eqn. 5.5)

where v5 is the rate of reaction 5, k5 is the rate constant, and [non-HDL-
C] is the non-HDL-C concentration. The effect of hepatic cholesterol on 
LDLR expression levels was quantified using several studies that reported 
both the LDLR gene expression and the cholesterol content of HepG2 cells 
(24-26). Measurements in these studies were performed in situations where 
cellular cholesterol concentrations were increased by incubating the cells 
with various concentrations of LDL, or decreased using statins. Figure 5.2 
shows that a higher cholesterol concentration in HepG2 cells correlates 
with a lower LDLR expression. 

Figure 5.2. Cholesterol content vs. LDLR expression of HepG2 cells (both rela-
tive to untreated conditions). Data were obtained from (24-26). The line is a one-
parameter exponential function (Eqn. 5.7) fitted to the data (see text for details).
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The model included this LDLR regulation in the rate equation for reaction 
5 (see Eqn. 5.5) that was modified into Eqn. 5.6:

  LDLREkv ⋅−⋅= ]CHDLnon[55   (Eqn. 5.6)

where ELDLR is the expression of the LDLR relative to the untreated situa-
tion, calculated according to:

  3.92

c
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=  (Eqn. 5.7)

where 







untreated
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liv
c

c

 is the ratio of the total hepatic cholesterol concentration 
(sum of free and unesterified), relative to the untreated standard steady 
state condition. The value of 3.92 was obtained by fitting to the data in Fig-
ure 5.2 using the relation in Eqn. 5.7. In the untreated condition, the gene 
expression of the LDLR is defined as being equal to one (Figure 5.2) such 
that, the rate equation of reaction 5 reduces to the expression in Eqn. 5.5.
 The model without LDLR upregulation (19) was validated previ-
ously by simulating the effect of genetic mutations on plasma cholesterol 
values. Without upregulation, model predictions on TC deviated 36% from 
experimental values (19). With upregulation, model predictions deviated 
39% from experimental values ((19), data not shown). With upregulation 
of the LDLR, model performance was, therefore, comparable to the previ-
ous model. Thus, the adapted model was still able to accurately describe 
the effects of mutations on plasma cholesterol concentrations.

Effect of pravastatin on hepatic cholesterol synthesis; determination 
of fact
For the simulation of a pravastatin treatment in our PBK cholesterol model, 
a relation between the hepatic cholesterol synthesis rate and the pravastatin 
dose administered orally had to be obtained. This relation was obtained 
in three steps. In step 1, a dose-response curve was constructed from a 
study that relates the cholesterol synthesis rate in human hepatocytes to the 
pravastatin concentration added in vitro. In step 2, the pharmacokinetics 
and pharmacodynamics of pravastatin were studied using the PBK model 
of pravastatin developed by Watanabe et al. (17) (hereafter: the model of 
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Watanabe et al. is referred to as pravastatin PBK model as opposed to the 
developed cholesterol model that is referred to as cholesterol (PBK) model 
or just model). In step 3, the in vitro response curve was coupled to the 
pravastatin PBK model and various orally administered pravastatin doses 
were simulated to calculate their effect on hepatic cholesterol synthesis. As 
the pravastatin PBK model requires adaptations to describe other statins, 
this work is henceforth limited to pravastatin. 
 The first step described above was to reconstruct an in vitro dose-
response curve from literature. Data obtained from Van Vliet et al. (9) in-
dicate that the pravastatin mediated inhibition of cholesterol synthesis fol-
lows a Hill type response (9). Parameter values in this dose-response curve 
were determined by curve fitting to be 0.82 (dimensionless) for the Hill 
coefficient and 2.0 nM for the IC50 for pravastatin added to human hepato-
cytes (9). Figure 5.3 shows the experimental data and dose-response curve 
obtained with these parameters.

Figure 5.3. Concentration response curve of the effect of increasing concentration 
of pravastatin added to the hepatocytes on the rate of cholesterol synthesis (rela-
tive to untreated). Squares indicate data from Van Vliet et al. (9).
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Of all predicted concentrations in the pravastatin PBK model, the hepatic 
extracellular pravastatin concentration was considered to be the best ap-
proximation of the concentration applied to hepatocytes in an in vitro as-
say. Therefore, in the second step, the pravastatin PBK model was used to 
predict the hepatic extracellular concentration of pravastatin in time after 
an oral pravastatin dose of 40 mg. The results (Figure 5.4A) show that after 
administration, the pravastatin concentration increased to a peak value at t 
= 0.9 h, followed by a gradual decrease with time.

Figure 5.4. Time courses following an oral pravastatin dose of 40 mg at time = 0 
of A) hepatic extracellular pravastatin concentration calculated with the pravas-
tatin PBK model from Watanabe et al. (17) and B) hepatic cholesterol synthesis 
rate in man relative to control, calculated from the concentration profile using 
Figure 5.3.

In the third and final step, the time dependent hepatic extracellular pravas-
tatin concentration predicted by the pravastin PBK model to occur upon 
an oral dose was linked to the cholesterol synthesis rate using the dose-
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response curve depicted in Figure 5.3. Figure 5.4B shows the time course 
of this cholesterol synthesis rate (relative to untreated) after a dose of 40 
mg pravastatin. The cholesterol synthesis rate first decreased steeply and 
then increased more smoothly in time. The synthesis rate did not reach the 
untreated rate within a day (relative cholesterol synthesis rate equal to 1), 
because a small amount of pravastatin was still present in the body. Given 
the low IC50 of 2.0 nM for the inhibition of the cholesterol synthesis rate by 
pravastatin (9), this small amount was sufficient to result in residual inhibi-
tion (See supplementary information: details on pravastatin PBK model).
 Pravastatin (40 mg) decreased the average rate of cholesterol syn-
thesis, calculated as AUC24/24, to 0.35 (relative to the untreated rate). This 
means that the 24 h cholesterol synthesis was reduced by 65%. The factor 
of 0.35 is referred to as fact (See Eqn. 5.1). In a similar way the factor fact was 
calculated for various doses of pravastatin (0 - 80 mg). The result, shown 
in Figure 5.5, indicates that the average daily cholesterol synthesis rate 
decreased non-linearly with increasing pravastatin dose.

Figure 5.5. Calculated average hepatic cholesterol synthesis rate over the day 
(relative to the untreated rate, fact¸ see Eqn. 5.1) as a function of pravastatin 
dose.
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Upon a dose of 10 mg pravastatin, the average rate of cholesterol synthesis 
was decreased by 47% compared with the untreated situation. Increasing 
the dose from 40 mg (65% reduction in cholesterol synthesis) to 80 mg, 
only reduced hepatic cholesterol synthesis rate by a further 8% (73% re-
duction). The obtained values of fact were used to simulate pravastatin treat-
ment using our cholesterol model (see Eqn. 5.1).
 It is computationally demanding to take the daily rhythm of cho-
lesterol synthesis inhibition (Figure 5.4B) into account in the cholesterol 
model. For a pravastatin dose of 40 mg/d, simulations were made with the 
dynamic rhythm of cholesterol inhibition or with the constant 24h inhibi-
tion (65%). Results were identical. Therefore, for other simulations, it was 
assumed that the reduction of hepatic cholesterol synthesis was constant 
over the day at the value corresponding to the constant 24h inhibition.

Plasma cholesterol prediction
Figure 5.6 presents model predictions of TC, HDL-C, and non-HDL-C 
concentrations in response to pravastatin applied in doses of 0, 10, 20, and 
40 mg/d. Predictions were compared with data obtained in the STELLAR 
trial (27), because in this trial several dose groups of pravastatin were test-
ed (See Figure 5.6).
 The model correctly predicted a decrease in TC and non-HDL-C 
and a slight increase in HDL-C upon pravastatin treatment (Figure 5.5). 
 At 40 mg/d, TC was predicted to decrease by 15% (vs. 22% report-
ed for human subjects in literature), non-HDL-C was predicted to decrease 
by 22% (vs. 25% reported for human subjects in the literature), and HDL-C 
was predicted to increase by 10% (vs. 5.6% reported for human subjects in 
the literature).
 Hillebrant et al. (28) performed liver biopsies from gallstone pa-
tients receiving either both 40 mg pravastatin and 1 g ursodeoxycholic acid 
(UDCA, a treatment for gallstones), or UDCA alone and did not observe a 
difference in hepatic cholesterol between the two groups (28). These find-
ings can be compared with model predictions, because the model contains 
a liver compartment (Figure 5.1). The model predicted that a dose of 40 
mg/d of pravastatin reduced hepatic cholesterol from 13.3 mM to 12.6 mM, 
a reduction of only 6%.
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Figure 5.6. Model predictions (predicted) vs. literature data (measured, as re-
ported in Jones et al. (27)) of the effect of pravastatin treatment (0 - 40 mg/d) 
on TC, HDL-C, and non-HDL-C concentrations. All concentrations are reported 
relative to baseline (BL).

This minor decrease would be hard to pick up experimentally and, there-
fore, the model prediction is in agreement with the findings of Hillebrant 
et al. (28). In response to the aforementioned small change in total hepatic 
cholesterol, the LDLR expression was predicted to be upregulated by 24% 
(fill in 1.06 for 








untreated
liv

liv
c

c

 
in Eqn. 5.7).

 The model also predicted the time scale of non-HDL-C reduction: 
50% of the non- HDL-C reduction was reached after 11 days. This time 
scale is fully in agreement with the statement of Jones et al. (27) that “it is 
well established that statins exhibit most of their LDL cholesterol reducing 
effects within 2 weeks and produce full effects by 4 to 6 weeks” (27).
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Individual statin response
In a next step, the model was used to study the impact of interindividual 
variation in response to statins with a Monte Carlo approach. Therefore, a 
virtual population was created with 10,000 subjects differing in the kinetic 
parameters of the 21 reactions included in the model. For each subject, 21 
parameters were randomly drawn from a normal distribution (See Meth-
ods). All virtual subjects were treated with 40 mg/d pravastatin, assum-
ing no differences in pravastatin pharmacokinetics and dynamics (identical 
fact). In this simulation, 2,391 subjects had one or more negative concentra-
tions in one or more submodels and were, therefore, not taken into account.

Figure 5.7. Histograms of the predicted non-HDL-C (Figure 5.7A) and HDL-C 
(Figure 5.7B) concentrations at baseline (BL) and after 40 mg/d pravastatin treat-
ment for 7609 subjects (Figures 7C and 7D). For clarity, the x-axis was cut off at 
3 mM for HDL-C and 20 mM for non-HDL-C. With these cut offs, 99.6% of the 
virtual subjects were included in the graph for HDL-C and 98.7% of the virtual 
subjects were included in the graph for non-HDL-C. 
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The remaining group of 7.609 subjects had baseline concentrations of 7.01 
± 4.28 mM for TC, 1.27 ± 0.42 mM for HDL-C, and 5.92 ± 4.48 mM for 
non-HDL-C (average ± SD). As in the standard subject (see Figure 5.6), 
pravastatin treatment decreased non-HDL-C (see Figure 5.7A and 7C) and 
increased HDL-C (see Figure 5.7B and 7D).Figure 5.8A shows the non-
HDL-C reduction in response to pravastatin vs. the baseline non-HDL-C 
concentrations. Each dot in Figure 5.8A represents a single virtual subject.
 

 
Figure 5.8. Predicted non-HDL-C response A) vs. baseline (BL) non-HDL-C con-
centration and B) vs. the rate constant of hepatic cholesterol synthesis (k1, relative 
to average k1). X and y axes cutoffs have been adjusted for clarity, therefore, 95% 
(for Figure 5.8A) and 99% (for Figure 5.8B) of the virtual subjects were included 
in the graphs. Grey lines indicate trend lines (first order polynomial fitted to the 
data).

As indicated in Figure 5.8A, subjects with a high baseline non-HDL-C 
showed, in general, a smaller relative decrease in non-HDL-C than subjects 
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with a lower baseline concentration. As can be seen by the large scatter 
in Figure 5.8A, the model predicted large interindividual variation in the 
non-HDL-C response to pravastatin, as has also been found in clinical tri-
als (29). As an example, for subjects with a baseline non-HDL-C concen-
tration of 5 mM, some hyper-responders had a response of 40%, whereas 
some hypo-responders had a response of only 5%. 
 To identify the factors that caused this variation, the impact of all 21 
reactions on the pravastatin response was assessed. As an example, Figure 
5.8B shows the relation between the non-HDL-C response to pravastatin 
and the autoscaled rate constant of hepatic cholesterol synthesis (reaction 
1). Subjects with a high rate constant for this reaction had (on average) a 
higher treatment effect of pravastatin.
 The impact of having an unusual value of each of the 21 reactions 
on the non-HDL-C reduction by statins was studied by calculating the re-
action effect (i.e. 1β  in Eqn. 5.3). If no correlation occurred between rate 
constants of a particular reaction and the statin response, the reaction effect 
was zero, implying that the reaction was not important for the response to 
pravastatin. 
 The reaction effect for reaction 1 (hepatic cholesterol synthesis) 
was negative, indicating that subjects with a larger than average hepatic 
cholesterol synthesis rate had, in general, a higher than average reduction 
of non-HDL-C in response to statins (See also Figure 5.8B). The three re-
actions with the largest (positive and negative) effects in Figure 5.9 were 
found for hepatic cholesterol synthesis (reaction 1), peripheral cholesterol 
synthesis (reaction 2), and hepatic cholesterol esterification (reaction 19). 
 A similar procedure was performed for HDL-C and the resulting 
reaction effects are shown in Figure 5.10. In this case, reaction 1 had a posi-
tive reaction effect, indicating that a higher hepatic cholesterol synthesis 
rate was correlated with a larger HDL-C increase upon statin treatment. 
The three reactions with the largest (positive and negative) effects in Fig-
ure 5.10, were found for hepatic cholesterol synthesis (reaction 1), hepatic 
HDL-CE uptake (reaction 10), and peripheral cholesterol synthesis (reac-
tion 2).
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Figure 5.9. Reaction effects of all 21 reactions in determining the non-HDL-C 
response to pravastatin and their 95% confidence interval. Reaction numbers cor-
respond to numbers in Figure 5.1.

The important reactions are catalyzed by known genes and, therefore, 
these model predictions could be compared with effects of genetic varia-
tions affecting the cholesterol response to statins as reviewed by Schmitz 
and Langmann (15). They cluster influential genes in the groups: ‘Lipid 
metabolism’, ‘Drug metabolism and transporters’, and ‘Others’. As the 21 
reactions in our model focus on reactions in cholesterol metabolism, only 
the genes in the category ‘Lipid metabolism’ were considered. These genes 
are HMGCR, FDFT1, CYP7A1, LDLR, APOB, APOE, APOA-I, CETP, 
ABCG8, PON1, and LPL (15). With the exception of PON1, these genes 
were generally associated with the reactions with a significant reaction ef-
fect in the model. The importance of the gene PON1 could not be tested, 
because the associated reaction is not known (30).
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Figure 5.10. Reaction effects of all 21 reactions in determining the HDL-C re-
sponse to pravastatin and their 95% confidence interval for the response. Reac-
tion numbers correspond to numbers in Figure 5.1.

Schmitz and Langmann (15) also reported that a variant in CYP7A1 (reac-
tion 18) and a variant in ABCG5/G8 (reaction 14) interact with respect to 
their influence on the LDL-C lowering response to atorvastatin. This means 
that the variant in CYP7A1 has a different effect in the presence of the vari-
ant of ABCG5/G8, than in the absence of that variant of ABCG5/G8 (31). 
We investigated the interaction of the parameters on the associated reac-
tions (see Methods). The interaction of reactions 14 and 18 was significant 
(95% CI of intβ  was 0.0004 to 0.0174). Thus our model also reproduced 
this interaction.
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Discussion
We first investigated how accurate our cholesterol PBK model predicted 
the effects of statin treatment, then we investigated which reactions in-
cluded in the model determine the variability in the response to statins. 
After adaptation to include LDLR upregulation in response to hepatic cho-
lesterol concentration, the PBK model provided accurate predictions for 
pravastatin modulation of HDL-C, TC, and non-HDL-C (Figure 5.6). Other 
statins differ from pravastatin in their absorption, distribution, metabolism, 
and excretion (7), but share the same mechanism of LDL-C lowering. This 
suggests that the developed cholesterol PBK model is able to make predic-
tions for other statins as well, provided that the relation between statin dose 
and rate of cholesterol synthesis in the liver is known. The cholesterol PBK 
model also contains reactions that are the targets of other drugs, like CETP 
inhibitors, and cholesterol uptake inhibitors. Therefore, the cholesterol 
PBK model can be used as a basis to predict responses to other cholesterol 
modulating drugs. This is, however, beyond the scope of the present study 
and will be a topic for future research.
 There is a large interindividual variation in the response to statins, 
some hyper-responders show a non-HDL-C response of 4 mM (29), while 
other subjects have almost no response. This variation can be caused by 
variations in statin metabolism, compliance, nutrition, and cholesterol 
metabolism (15,32,33). Watanabe et al. (17) studied the first category and 
found that variations in the statin transporter OATP1B1 might have an ef-
fect on statin efficacy. Further information on the second and third category 
can be found in literature (32,33), whereas our model analyzed the last 
category of variation: the variation caused by variation in cholesterol me-
tabolism.
 Our model predicted that the rates of hepatic and peripheral cho-
lesterol synthesis (reactions 1 and 2), and the rate of hepatic cholesterol 
esterification (reaction 19) were determinants of the non-HDL-C reduction 
by statins (Figure 5.9). It is, therefore, suggested to test biomarkers cor-
related with these reaction rates for their power to predict individual statin 
response. 
 Reaction effects are also dependent on which subjects are selected 
and thus on the inclusion criteria of the study (data not shown). As sev-
eral studies use patients with Familial Hypercholesterolemia (FH) to study 
determinants in statin response (reviewed in (15)), it should be taken into 
account that findings for subgroups in patients with FH might not apply for 
the general population. 
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 Finally, our model was able to reproduce the finding that variants 
in CYP7A1 and  variants in ABCG5/G8 interact with respect to their influ-
ence on the LDL-C lowering response to atorvastatin (31). There is grow-
ing evidence that gene-gene interactions are ubiquitous in determining bio-
logical properties, such as the susceptibility to common human diseases 
(34). Identifying these gene-gene interactions is difficult as the number of 
potential interactions in the genome can be large (34). Our model can be 
used to improve the discovery of novel gene-gene interactions by predict-
ing the most influential interactions between reactions. Testing for gene-
gene-interactions in statin trials can subsequently be targeted to genes im-
portant in the interacting reactions in the model. As a result less statistical 
tests have to be performed, leading to more statistical power (34).
 In conclusion, we have developed a model that is able to accurately 
predict the effect of pravastatin treatment and can be useful to provide in-
sight in the individual response to statins.
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Abstract
Differences between individuals in the response of plasma cholesterol con-
centrations to the CETP inhibiting drug torcetrapib are highly relevant for 
the interpretation of recent clinical trials and may impact therapeutic ap-
plication. The objective of this study was to identify factors that contribute 
to this variation in torcetrapib response, applying a physiologically based 
kinetic (PBK) model for cholesterol plasma concentrations in humans. 
 The model predicted the effect of several doses of torcetrapib treat-
ment (0 - 240 mg/d) on Total Cholesterol (TC), High Density Lipoprotein-
Cholesterol (HDL-C), and non-HDL-C. The model correctly predicted an 
unchanged TC concentration, an increased HDL-C concentration, and a 
decreased non-HDL-C concentration. At 240 mg/d, HDL-C was predicted 
to increase by 79% (vs. 92% reported for human subjects in literature).
 With our PBK model, differences in response between subjects 
were studied using 4,000 virtual subjects, each subject having a unique 
combination of rate constants for the different reactions included in the 
PBK model. 
 The model predicted that hepatic HDL-CE uptake, HDL associated 
cholesterol esterification, and CE transfer from HDL to non-HDL were the 
reactions that most strongly effected the HDL-C increase upon treatment 
with torcetrapib. Further analysis indicated that these reactions were also 
important for response to torcetrapib, when given on top of a statin.
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Introduction
Several drugs have been developed to reduce the risk of cardiovascular 
diseases (CVD)(1). These drugs generally affect known risk factors, such 
as blood pressure, low density lipoprotein cholesterol (LDL-C), and high 
density lipoprotein cholesterol (HDL-C). The best known drugs prescribed 
to improve cholesterol profiles are 3-hydroxy-3-methyl-glutaryl-CoA re-
ductase inhibitors, also known as statins. Statins decrease LDL-C, increase 
HDL-C, and decrease CVD risk (1). Another class of drugs that affect 
LDL-C and HDL-C is the class of cholesterol ester transfer protein (CETP) 
inhibitors. These inhibitors were developed with the objective to increase 
HDL-C by inhibiting the transport of cholesterol esters (CE) from HDL 
to triglyceride rich lipoproteins like LDL (2). The best known drug in this 
class is torcetrapib, which increases HDL-C and decreases LDL-C com-
pared to a placebo (3). Currently, other CETP inhibitors are in development 
(4).
 Recently, however, due to off-target effects, torcetrapib failed in 
clinical trials, even though it increased HDL-C (5). Treatment with torce-
trapib plus a statin (“on top of a statin”) resulted in an increased risk of 
mortality and morbidity compared to a statin alone (5). 
 For many drugs, 50-75% of subjects get the desired response (6), 
they are called “responders”. Others are “non-responders”. Identification 
or prediction which subjects will not respond to drug treatment, can help to 
develop and analyze clinical trials and tailor drug treatment to the right pa-
tient. In order to discriminate responders from non-responders in advance, 
better insight is required in the factors involved in the response to CETP in-
hibitors. As cholesterol concentrations are quantified on a continuous scale, 
we will talk about “hyper-responders” and “hypo-responders” instead of 
responders and non-responders.
 Previously, we have shown that our previously developed computa-
tional model for plasma cholesterol concentrations in humans (7) was able 
to identify factors that discriminate hyper-responders from hypo-respond-
ers to statins in terms of their HDL-C increase and non-HDL-C decrease 
(8). Figure 6.1 shows the conceptual model used to set up this computa-
tional model. The model describes 8 different cholesterol pools in the body 
influenced by 21 metabolic and transport reactions. The cholesterol pools 
are hepatic free cholesterol, hepatic cholesterol ester, peripheral cholester-
ol, intestinal free cholesterol, intestinal cholesterol ester, and also HDL free 
cholesterol (HDL-FC), HDL cholesterol ester (HDL-CE), and non-HDL-C 
(i.e., the total of plasma cholesterol that is not present in HDL). Reaction 

Chapter 6

144



21 denotes CE transfer from HDL to LDL, the reaction catalyzed by CETP. 
 In the present study, we aimed to obtain insights into the factors 
that determine the response to torcetrapib. First we investigated whether 
the model correctly predicted the effects of torcetrapib monotherapy, then 
we studied the effects of torcetrapib when applied on top of a statin, and 
compared the outcomes to those obtained when torcetrapib was applied in 
monotherapy.

CCE

C

C

CE

C

LiverIntestine Plasma Periphery

HDL

Non-HDL

2

8

7

1 9

5

11
3

14
13

6

16

10

CE

19

CE
20

4

17

12

15

18

21

Figure 6.1. Conceptual model for pathways determining cholesterol plasma con-
centrations used as a basis to set up PBK cholesterol model of the present study. 
Process numbers stand for: 1, Hepatic cholesterol synthesis; 2, Peripheral cho-
lesterol synthesis; 3, Intestinal cholesterol synthesis; 4, Dietary cholesterol in-
take; 5, Hepatic uptake of cholesterol from non-HDL; 6, Hepatic Very Low Den-
sity lipoprotein cholesterol (VLDL-C) production; 7, Peripheral uptake of 
cholesterol from non-HDL; 8, Peripheral cholesterol transport to HDL; 9, HDL 
associated cholesterol esterification; 10, Hepatic HDL-CE uptake; 11, Intestinal 
chylomicron cholesterol secretion; 12, Peripheral cholesterol loss; 13, Hepatic 
HDL-FC uptake; 14, Biliary cholesterol excretion; 15, Fecal cholesterol excre-
tion; 16, Intestinal cholesterol transport to HDL; 17, Hepatic cholesterol trans-
port to HDL; 18, Hepatic cholesterol catabolism; 19, Hepatic cholesterol esterifi-
cation; 20, Intestinal cholesterol esterification, and 21, CE transfer from HDL to 
non-HDL. C stands for cholesterol; CE for cholesterol ester. Taken from (8). 
Dashed line indicates the regulation of the LDL Receptor (LDLR) in response to 
the hepatic cholesterol level. Process 21 is targeted by CETP inhibitors.
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  Finally, an analysis was performed to identify the factors that dis-
criminate hyper-responders from hypo-responders to torcetrapib. As other 
CETP inhibitors, which are still in clinical trials, share the same target reac-
tion in the model (reaction 21), insights in the factors involved in the effects 
with respect to torcetrapib are directly relevant for other CETP inhibitors, 
like dalcetrapib or anacetrapib (9).

Methods
Model description
The cholesterol PBK model for a standard subject (“reference man” as de-
fined by the International Commission on Radiation Protection) was de-
scribed previously (7), in short: the model consists of a set of 8 differential 
equations each describing the dynamics of one of the 8 cholesterol pools. 
These equations describe the effect of 21 metabolic and transport reactions 
on the size of the 8 included cholesterol pools. The rate of each reaction is 
described using a rate equation with a single parameter: the rate constant. 
The steady state cholesterol concentrations calculated by the model are re-
ferred to as the predicted concentrations.
 The model consists of a set (ensemble) of 8 submodels, each having 
a different combination of first and zero order kinetics for the various reac-
tions, instead of a single optimal model. The model prediction is calculated 
as the average of the predictions of the 8 submodels (7). 

Model simulations
The effect of torcetrapib was simulated by reducing the rate constant of the 
reaction of CE transfer from HDL to non-HDL-C (reaction 21) according 
to:

  untreated
act

treated kfk ⋅=    (Eqn. 6.1)

where k is the rate constant for the targeted reaction, either in standard con-
dition (superscript: untreated) or after drug treatment (superscript: treated), 
and fact is the reduction factor, determined as described in the Result sec-
tion.
 The effect of pravastatin was simulated by reducing the rate con-
stant of the reaction for hepatic cholesterol synthesis (reaction 1, (7)) as in 
Eqn. 6.1. For 40 mg/d pravastatin, this fact had a value of 0.65 (8).
 Treatment with both statins and torcetrapib was simulated by ap-
plying Eqn. 6.1 to both the rate constant for reaction 21 and reaction 1 each 
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with their respective fact.
 The model predictions were obtained by running the model with the 
new set of parameters (including ktreated instead of kuntreated) by numerical in-
tegration with the concentrations of the reference man (7) as initial values. 
The simulation was performed until steady state of all cholesterol pools 
in the model was reached. Model predictions were defined as these steady 
state concentrations (7). Integration was performed using routine ode15s as 
implemented in MATLAB version 7.5 (R2007b).

Virtual subjects
To determine which reactions are important for the response to torcetra-
pib, a group of 4.000 virtual subjects was constructed, each differing in 
the values of the kinetic parameters in the 21 reactions. Each kinetic pa-
rameter was drawn randomly from a normal distribution with a specified 
average and standard deviation. The average was set to the rate constant in 
the standard subject and the standard deviation was set to 25% of this aver-
age. The model was used to calculate a baseline level and then treatment 
was simulated as described above (in the section on Model simulations), 
using the relevant fixed fact values. The model was used to calculate base-
line concentrations and concentrations after treatment with 1) pravastatin, 
2) torcetrapib, and 3) the combination of both pravastatin and torcetrapib. 
For some virtual subjects, one or more of the 8 submodels predicted one 
or more negative concentrations (even if all rate constants were positive). 
These subjects were not taken into account, just as subjects with a base-
line non-HDL-C larger than 50 mM, because these values were considered 
unphysiological (this deviates more than 20 SDs from the mean LDL-C 
concentration as found by Carroll et al. (10)). 

Reaction importance
The relation between the response and the reaction rate constant for each 
of the 21 reactions (all continuous variables) was assessed in the virtual 
subjects group using linear regression (11): 

  ninn ky εββ ++= ,10
~   (Eqn. 6.2)

where yn is the response to the drug for subject n (expressed relative to 
baseline), 0β , and 1β  are the regression coefficients fitted to experimental 
data by minimizing the sum of the squared error terms ( nε ), and ink ,

~  is the 
autoscaled rate constant of subject n for reaction i. This autoscaling (12) 
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was applied to enable the comparison of the fitted regression coefficients 
for different reactions.
 The term 1β  in Eqn. 6.2 is called the reaction effect (8). Regression 
was performed using the function regress as implemented in MATLAB. 
Because responses were not normally distributed, Johnson correction was 
applied using the function johnsrand as implemented in MATLAB (13).
 
Results
Torcetrapib simulation
We aimed to obtain insight in the differences between hyper-responders 
and hypo-responders to CETP inhibitors, like torcetrapib. First it was in-
vestigated whether the model correctly predicted the effect of torcetrapib 
on cholesterol concentrations. In a next step the effect of torcetrapib on top 
of a statin treatment was investigated using pravastatin as model statin, be-
ing a statin for which we previously demonstrated that model predictions 
were close to clinical data (8).
 Model predictions on the effect of torcetrapib monotherapy made 
in the present study were compared to data from Clark et al. (3), who re-
ported a multidose phase 1 trial with 5 doses of torcetrapib (0 - 240 mg/d) 
and described the resulting plasma cholesterol concentrations as well as the 
inhibition of CETP activity for 4 dose groups.
 CETP inhibitors block the activity of CETP that catalyzes CE trans-
fer from HDL to non-HDL (reaction 21, Figure 6.1). Table 6.1 shows the fact 
values (See Eqn. 6.1) derived from the data on CETP activity in the treated 
condition relative to the untreated case for the 4 doses of torcetrapib in 
Clark et al. (3) .

Table 6.1. Derivation of the parameter fact based on CETP inhibition measured in 
plasma samples by Clark et al. (3).
Dose (mg/d) 0 30 60 120 240#

CETP inhibition % 0 12 35 53 80
fact 1.00 0.88 0.65 0.47 0.20

# 120 mg/d twice daily

These fact values were used in the model to predict the TC, HDL-C, and 
non-HDL-C concentrations in response to torcetrapib applied in the doses 
described. Figure 6.2 presents these model predictions. The model correct-
ly predicted a decrease in non-HDL-C and a large increase in HDL-C upon 
torcetrapib treatment, whereas also the absence of an effect on TC was 
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correctly predicted. At the highest dose, HDL-C was predicted to increase 
by 79%, while a value of 91% was measured. This model prediction is defi-
nitely within the experimental error given in Clark et al. (standard deviation 
of the relative effect is generally >50% of the average effect (3)), and thus 
we concluded that the model correctly predicted the effect of torcetrapib on 
HDL-C, non-HDL-C, and TC. 

Figure 6.2. Model predictions (predicted) and literature data (measured), as re-
ported in Clark et al. (3) of the effect of torcetrapib treatment (0 - 240 mg/d) 
on TC, HDL-C, and non-HDL-C concentrations. All concentrations are reported 
relative to baseline (BL).

In clinical trials, adding torcetrapib on top of a statin, additionally increased 
HDL-C compared to a statin alone (14). Figure 6.3 shows that an additional 
HDL-C increase by torcetrapib of 21% was observed for the model predic-
tions (not shown: from 1.31 mM for statin alone to 1.59 mM for statin plus 
torcetrapib) vs. 55% in experimental data (not shown: from 1.36 mM for 
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statin alone to 2.11 mM for statin plus torcetrapib). The model also pre-
dicted the observed additional decrease in non-HDL-C, and unchanged TC 
level compared to statin alone (See Figure 6.3). 

Figure 6.3. Model predictions (predicted) and literature data (measured), as re-
ported in Kastelein et al.(14) of the effect of torcetrapib treatment (60 mg/d) on 
top of a statin on TC, HDL-C, and non-HDL-C concentrations. All concentrations 
are reported relative to baseline (BL). 

Virtual trial
An analysis was performed to identify the factors that discriminate hyper-
responders from hypo-responders to torcetrapib. A group of 4,000 virtual 
subjects was constructed. For each subject 4 predictions were obtained 
for HDL-C, non-HDL-C, and TC: 1) at baseline, 2) after 40 mg/d pravas-
tatin, 3) after 60 mg/d torcetrapib, and 4) after the combination of 40 mg/d 
pravastatin and 60 mg/d torcetrapib.
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In this simulation, 958 subjects had one or more negative concentrations 
or had unphysiologically high LDL-C concentrations (> 50 mM) and were, 
therefore, not taken into account. This resulted in 3,041 (76%) useful vir-
tual subjects. These 3,041 subjects had baseline concentrations of 7.03 ± 
4.14 mM for TC, 1.23 ± 0.43 mM for HDL-C, and 5.80 ± 4.35 mM for 
non-HDL-C (average ± SD). 

 
Figure 6.4. Histograms of the predicted non-HDL-C (Figure 6.4A) and HDL-C 
(Figure 6.4B) concentrations at baseline (BL) and after 60 mg/d torcetrapib (torc) 
treatment (Figures 4C and 4D). X-axes cutoffs have been adjusted for clarity, 
therefore, 97.4% of the virtual subjects were included in the graph for HDL-C and 
98.6% of the virtual subjects were included in the graph for non-HDL-C.

Figure 6.4 shows histograms of the distribution in HDL-C and non-HDL-
C concentrations before and after torcetrapib treatment. It can be seen that 
plasma cholesterol concentrations are not normally distributed. In addition, 
subtle shifts in distributions upon torcetrapib treatment can be observed. 
Torcetrapib treatment was predicted to increase HDL-C by 20 ± 6% (mean 
± SD) and to slightly decrease non-HDL-C.
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Figure 6.5. Predicted responses to 60 mg/d torcetrapib (torc) vs. baseline (BL) for 
A) HDL-C and B) non-HDL-C. X and y-axes cutoffs have been adjusted for clar-
ity, therefore, 97.4% (for Figure 6.5A) and 98.6% (for Figure 6.5B) of the virtual 
subjects were included in the graphs.

 In a previous study the effect of pravastatin on non-HDL-C was 
shown to be dependent on the non-HDL-C baseline concentrations (8;15). 
For torcetrapib, this relation was also studied (Figure 6.5). Subjects with a 
high baseline non-HDL-C level have a smaller relative reduction in non-
HDL-C than subjects with a low baseline non-HDL-C level (Figure 6.5B). 
The relation between baseline concentrations and effect size is more dif-
fuse for HDL-C (Figure 6.5A) compared to non-HDL-C (Figure 6.5B).
 The impact of a reaction on the HDL-C increase by torcetrapib was 
studied by calculating the “reaction effect” (i.e. 1β  in Eqn. 6.2). If no cor-
relation occurred between the rate constant of a particular reaction and the 
torcetrapib response, then the reaction effect was zero, implying that the re-
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action was not important for torcetrapib response. In Figure 6.6, we report 
the reaction effects (i.e. 1β  in Eqn. 6.2). The three reactions with the larg-
est (positive and negative) effects in Figure 6.6 were found to be hepatic 
HDL-CE uptake (reaction 10), HDL associated cholesterol esterification 
(reaction 9), and CE transfer from HDL to non-HDL (reaction 21). 

 
Figure 6.6. Reaction effects of all 21 reactions in determining the HDL-C re-
sponse to torcetrapib and their 95% confidence interval. Reaction numbers cor-
respond to numbers in Figure 6.1.

A similar procedure was performed for non-HDL-C and the resulting reac-
tion effects are shown in Figure 6.7. The three reactions with the largest 
(positive and negative) effects in Figure 6.7 were found to be hepatic cho-
lesterol catabolism (reaction 18), hepatic cholesterol esterification (reac-
tion 19), and fecal cholesterol excretion (reaction 15).
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Figure 6.7. Reaction effects of all 21 reactions in determining the non-HDL-C 
response to torcetrapib and their 95% confidence interval. Reaction numbers cor-
respond to numbers in Figure 6.1.

In clinical trials, torcetrapib and other CETP inhibitors were generally not 
only studied in monotherapy, but on top of a statin. The question is whether 
or not the important reactions for torcetrapib response (Figures 6.6 and 6.7) 
are also important when torcetrapib was given on top of a statin. In other 
words: are the hyper-responding virtual subjects on torcetrapib mono-
therapy also hyper-responders to torcetrapib treatment on top of a statin 
therapy? To answer this question, Figure 6.8 shows the effect of torcetrapib 
on top of pravastatin vs. the effect of torcetrapib monotherapy for HDL-C 
(Figure 6.8A) and non-HDL-C (Figure 6.8B). For HDL-C, the effect of 
torcetrapib added to statin therapy was generally smaller (lower positive 
change) than the effect of torcetrapib added in monotherapy (Figure 6.8A). 
For non-HDL-C the effect of torcetrapib added to statin therapy was gener-
ally larger (larger negative change) than the effect of torcetrapib added in 
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monotherapy (Figure 6.8B). This is a sign of a slight drug-drug interaction. 
However given that this interaction is small compared with the individual 
variation in response, these drug-drug interactions are almost certainly not 
clinically significant.
 From Figure 6.8 it can also be seen that there is a clear relation 
between the effect of monotherapy and the effect of torcetrapib on top of a 
statin (linear regression: R2 > 0.95 for HDL-C and for non-HDL-C). There-
fore, the determinants of torcetrapib response (Figures 6.6 and 6.7) are also 
valid when torcetrapib is given on top of a statin.

Figure 6.8. Effect of 40 mg/d torcetrapib on top of pravastatin (60 mg/d) vs. the 
effect of torcetrapib monotherapy for HDL-C (Figure 6.8A) and non-HDL-C (Fig-
ure 6.8B). The line of identity is also given for comparison.
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Discussion
Our model correctly predicted the effect of torcetrapib on HDL-C and TC 
in a quantitative way and also predicted the observed decrease in non-
HDL-C. As shown for pravastatin in (8), this model also allows the predic-
tion of the effect of torcetrapib on other aspects of cholesterol metabolism, 
like hepatic cholesterol concentrations and time required to see an effect 
(8)(data not shown). 
 With the presented model, we have identified several factors that 
determine the response to torcetrapib (Figures 6.6 and 6.7). We found that 
hepatic HDL-CE uptake (reaction 10), HDL associated cholesterol esteri-
fication (reaction 9), and CE transfer from HDL to non-HDL (reaction 21) 
had the largest effect on HDL-C increase upon treatment with torcetrapib 
(Figure 6.6). The activity of the last two reactions (reactions 9 and 21) can 
be determined based on analysis of plasma samples, providing a possible 
biomarker for torcetrapib response (5,14).
 As a model prediction is always a simplification of reality, our mod-
el is lacking regulation mechanisms, like upregulation of CETP upon statin 
treatment. Therefore, before applying this knowledge into patient care, 
model predictions should be validated in vivo. For statins, we were able to 
perform a first validation by comparing our model predictions to polymor-
phisms known to be correlated with statin response (8). For torcetrapib, 
this is harder to perform, because to the best of our knowledge no SNPs 
are presently known to affect the response to torcetrapib (16). Therefore, 
we limited our validation to the average effect of torcetrapib on plasma 
cholesterol concentrations, both in monotherapy (Figure 6.2) and on top 
of a statin (Figure 6.3). Future research should include a validation of the 
proposed markers for the torcetrapib response (plasma tests of the activ-
ity of reactions 9 and 21). This can be done with a posthoc analysis of a 
previously performed torcetrapib trial. Subjects in this trial can be divided 
into multiple groups according to their biomarker levels before treatment, 
followed by an assessment of the efficacy of torcetrapib in the separate 
subgroups.
 Other CETP inhibitors, which are investigated in clinical trials (dal-
cetrapib and anacetrapib), differ from torcetrapib in their molecular struc-
ture and potency (9). But, since they share the same target reaction in our 
model (reaction 21, Figure 6.1), insights with respect to torcetrapib are di-
rectly relevant for the other CETP inhibitors as well and can help to set-up 
clinical trials and interpret data from clinical trials with these compounds.
We conclude that our PBK model of cholesterol metabolism is able to pre-
dict effects of torcetrapib treatment. Additionally, markers were identified 
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of several reactions that determine the individual responsiveness to torce-
trapib in humans.
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Chapter 7 General Discussion

Summary of the results
Elevated cholesterol is an important risk factor for cardiovascular diseas-
es (CVD). The aim of this thesis was to develop a mathematical model, 
including the most important reactions that determine plasma cholesterol 
concentrations, that allows the prediction of the effects of genetic, phar-
maceutical, and nutritional variations on these concentrations. In Chapter 
2 a conceptual model was systematically constructed that could serve as 
a basis for a mathematical model for cholesterol in the mouse. The model 
was based on the function of key genes that determine plasma cholesterol 
concentrations, and which were discriminated from less important genes 
based on the described phenotype of mouse knockout strains. The con-
ceptual model contained 20 reactions that connect 8 cholesterol pools in 
plasma, liver, intestine, and peripheral organs.
 In Chapter 3 the conceptual model was converted to a PBK model 
to predict plasma cholesterol concentrations in the mouse. Kinetic param-
eters required to calibrate the model were obtained using data from pub-
lished experiments. To construct the model, a set of appropriate submodels 
was selected from a set of 65,536 submodels differing in the kinetic expres-
sions of the reactions. A submodel was considered appropriate if it had the 
ability to correctly predict an increased or decreased plasma cholesterol 
concentration for a training set of 5 knockout mouse strains. The model 
defined as such consisted of 8 appropriate submodels and was validated 
using data from an independent set of 9 knockout mouse strains.
 The model accurately predicted in a quantitative way the plasma 
cholesterol concentrations of the 14 knockout strains, including the fre-
quently used Ldlr-/- and Apoe-/- mouse strains. 
 In Chapter 4 the PBK model for plasma cholesterol in the mouse 
was translationally modified into a model for humans by incorporation of 
the reaction catalyzed by Cholesterol Ester Transfer Protein (CETP). The 
adapted model contained 21 biochemical reactions and 8 different choles-
terol pools. The model was calibrated using data from published kinetic 
studies and validated by comparing model predictions with experimental 
data on plasma cholesterol concentrations of subjects with ten different 
genetic mutations (including Familial Hypercholesterolemia).
 In Chapter 5 it was demonstrated that the model correctly predict-
ed the effect of pravastatin treatment at various doses (0 - 40 mg/d). At 40 
mg/d, Total plasma Cholesterol (TC) was predicted to decrease by 15% 
(vs. 22% reported for human subjects in literature), High Density Lipopro-
tein Cholesterol (HDL-C) was predicted to increase by 10% (vs. 5.6% in 
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literature), and non-HDL-C was predicted to decrease by 22% (vs. 25% in 
literature).
 Additionally, based on a virtual study population, the model also 
predicted that rates of hepatic cholesterol synthesis, peripheral cholesterol 
synthesis, hepatic cholesterol esterification, and peripheral uptake of cho-
lesterol from non-HDL discriminated hyper-responders to pravastatin from 
hypo-responders.
 Chapter 6 describes the simulations of torcetrapib treatment. For 
several doses of torcetrapib, the model correctly predicted an unchanged 
TC concentration, an increased HDL-C concentration and a decreased non-
HDL-C concentration. At 240 mg/d torcetrapib, HDL-C was predicted to 
increase by 79% (vs. 92% reported for human subjects in literature). Fur-
thermore, based on a virtual study population we found that rates of hepatic 
HDL-CE uptake, HDL associated cholesterol esterification, and CE trans-
fer from HDL to non-HDL determined the cholesterol response to torcetra-
pib treatment.
 The present chapter will first discuss general modeling consider-
ations. Then, four important questions in cholesterol research (defined in 
Chapter 1) will be discussed, including the role of the developed model in 
answering them. There also indications for future research are given. The 
last part of this chapter will contain general concluding remarks.
 

Modeling considerations
An early classical kinetic model on cholesterol used hypothetical choles-
terol pools ‘A’ and ‘B’ (1), see Chapter 1. Because these cholesterol pools 
are hypothetical, it becomes difficult if not impossible to relate model pre-
dictions to physiological observations. Our model, on the other hand, is a 
physiologically based kinetic (PBK) model (2), wherein compartments link 
to real organs and reactions link to 21 physiologically relevant enzymatic 
conversions and transport reactions in cholesterol metabolism. 
 Moreover, models with hundreds of reactions are hard to interpret, 
even if these reactions are directly linked to physiology. Therefore, we 
chose to develop a simple model. Our model, with 21 reactions is simple 
enough to be interpreted and to be visualized as a conceptual model (Figure 
7.1).

162



Chapter 7 General Discussion

CCE

C

C

CE

C

LiverIntestine Plasma Periphery

HDL

Non-HDL

2

8

7

1 9

5

11
3

14
13

6

16

10

CE

19

CE
20

4

17

12

15

18

21

Figure 7.1. Conceptual model for pathways determining cholesterol plasma con-
centrations used as a basis to set up the PBK cholesterol model of the present 
study. Process numbers stand for: 1, Hepatic cholesterol synthesis; 2, Periph-
eral cholesterol synthesis; 3, Intestinal cholesterol synthesis; 4, Dietary choles-
terol intake; 5, Hepatic uptake of cholesterol from non-HDL; 6, Hepatic Very 
Low Density lipoprotein cholesterol (VLDL-C) production; 7, Peripheral uptake 
of cholesterol from non-HDL; 8, Peripheral cholesterol transport to HDL; 9, HDL 
associated cholesterol esterification; 10, Hepatic HDL-CE uptake; 11, Intestinal 
chylomicron cholesterol secretion; 12, Peripheral cholesterol loss; 13, Hepatic 
HDL-FC uptake; 14, Biliary cholesterol excretion; 15, Fecal cholesterol excre-
tion; 16, Intestinal cholesterol transport to HDL; 17, Hepatic cholesterol trans-
port to HDL; 18, Hepatic cholesterol catabolism; 19, Hepatic cholesterol esteri-
fication; 20, Intestinal cholesterol esterification, and 21, CE transfer from HDL 
to non-HDL. C stands for cholesterol; CE for cholesterol ester. Adapted from (3). 
Dashed line indicates the regulation of the LDLR in response to the hepatic cho-
lesterol concentration.

Our model, like any model is a simplification of reality and, therefore, lacks 
some aspects of reality. These simplifications are the result of assumptions 
that are not only made in defining the conceptual model (Chapter 2) and 
mathematical model formulation (Chapters 3 and 4), but also in the simula-
tion of various scenarios. For example, for the simulation of mutations and 
interventions, assumptions had to be made on the definition of the factors 
fko (Chapter 3), fmut (Chapter 4), or fact (Chapter 5 and 6). This chapter will 
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not discuss all assumptions that were made, but will concentrate on two 
important ones.
 The most important assumption in the model is that the reactions 
included in the model are targeted and limited to cholesterol. HDL-C and 
LDL-C are used as biomarkers of cardiovascular events (4-6), but recent 
clinical trials showed that certain therapies did have a beneficial effect on 
these cholesterol concentrations, but not on atherosclerotic plaque size or 
on mortality (7,8). This clearly demonstrates that HDL-C and LDL-C are 
imperfect biomarkers for cardiovascular events. HDL-C and LDL-C will 
continue to play an important role in the development of new therapies, 
particularly in the preclinical and early clinical stages (4), but it is impor-
tant to keep in mind that the presented model predicts disease risk indi-
rectly. 
 Another important assumption is made in the development of a 
mathematical model for humans (Chapter 4) based on the model for the 
mouse (Chapter 3). It was assumed that the kinetic format for the mouse 
model as described in Chapter 3 was appropriate for the human model. 
Although the mouse is frequently used as a model species in cholesterol 
research (9), it is known that there are differences between the cholesterol 
metabolism in man and in mouse (10). Nevertheless, this assumption is 
frequently made, also in drug development: in case of a lack of human data, 
it is assumed that humans resemble animals.
 To test the validity of these and other model assumptions, the model 
was validated by comparing model predictions with independent experi-
mental data. As predictions were comparable, the assumptions appeared to 
be valid. Therefore, the model is a useful tool to address current questions 
in cholesterol research. The next paragraphs describe four of these ques-
tions (See Chapter 1) and will also describe how the presented model can 
contribute in answering them. 
 
Determinants of plasma cholesterol concen-
trations
What are the most important biochemical reactions in the body for deter-
mining plasma cholesterol concentrations and what is the relation between 
these reactions?

Presently, only 25–30% of the variance in plasma cholesterol concentra-
tions that is determined by genetic influences could be attributed to specific 
genes (11). Accordingly a large gap (70-75%) still remains in our knowledge 
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on how cholesterol concentrations are determined. Chapter 4 describes an 
analysis of the reactions important for plasma cholesterol concentrations. It 
was found that the concentration of High Density Lipoprotein cholesterol 
(HDL-C) was mainly dependent on hepatic transport of cholesterol to HDL 
(reaction 17 Figure 7.1), CE transfer from HDL to non-HDL (reaction 21), 
and hepatic uptake of cholesterol from the non-HDL-C pool (reaction 5). 
The non-HDL-C concentration on the other hand, was mainly dependent 
on hepatic uptake of cholesterol from non-HDL (reaction 5) and hepatic 
cholesterol esterification (reaction 19). 
 Supporting evidence for these findings can be found in genetic 
studies like Genome Wide Association Studies (GWAS) (11,12), because 
the effect sizes of 19 SNPs (11) were in line with the sensitivity coefficients 
of their associated reactions (Chapter 4). 
 There are two views on the nature of the large unexplained variance 
in plasma cholesterol concentrations. One view is that rare genetic vari-
ants may be disproportionately important (13), and that part of the variance 
can be explained by taking more gene variants into account by using more 
data points per subject (for example using sequencing) and more subjects 
per study (14). The other view is that this approach will be unsuccessful, 
because genes do not function independently (15). This second view states 
that a large proportion of the variation is due to interactions, like gene-
environment interactions or gene-gene interactions (15). The first type of 
interactions includes epigenetic mechanisms (16). The latter, the gene-gene 
interactions, also called epistasis, occur when the effect of one gene on a 
trait depends on another gene (15). In fact, gene-gene interactions seem im-
portant for various properties, such as the susceptibility to common human 
diseases (17).
 To assess the impact of interactions between reaction rate constants 
on cholesterol concentrations in our model, we studied the group of virtual 
subjects defined in Chapter 5. In this group, we know that all the variation 
between subjects was caused by variation in 21 rate constants (that is the 
only variation that was included in the definition of these subjects). 
 We determined how much variation in the cholesterol concentra-
tions could be explained by taking into account only the linear effects of 
the 21 reactions (without interactions). To this end, we used the Eqn. 7.1 
(parallel to Chapter 5) that contains a constant term and a linear term:

165



Chapter 7 General Discussion

  n
i

inLCn ky
i

εββ ++= ∑
=

12

1
,

~

   
(Eqn. 7.1)

where yn is the response to statins for subject n, ink ,
~  is the (scaled) rate 

constant of subject n for reaction i, Cβ  and 
iLβ  are the regression coef-

ficients fitted to experimental data by minimizing the sum of the squared 
error terms ( nε ). In order to compare reaction effects for different reac-
tions, reaction constants for a given reaction were autoscaled (See (18) and 
Chapter 5).
 We fitted the parameters Cβ  and iLβ , and obtained the fraction of 
variance explained (R2) in cholesterol concentrations at baseline and the 
lowering of cholesterol upon pravastatin treatment, using the function re-
gress as implemented in MATLAB.
 All 21 linear effects together account for 93% of the variation in 
baseline non-HDL-C to 69% of the variation in HDL-C increase upon 
pravastatin treatment (Table 7.1). The remaining 7% (baseline non-HDL-
C) to 31% (HDL-C response to statins) of the variance in cholesterol con-
centrations is consequently due to interactions between rate constants. 
 We studied these interactions in our model, using a standard multi-
plicative term (19). There are 21 reactions and 210 multiplicative interac-
tions between 2 reactions (calculated by 0.5m(m-1), where m is the number 
of reactions). To asses the impact of these reactions, Eqn. 7.2 was used. 
This Eqn. was derived from Eqn. 7.1 by including the 210 interactions:
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where 
jiI ,

β  is the regression coefficients of the interaction term of reactions 
i and j. Again the constants Cβ , 

iLβ , and jiI ,
β  were fitted and the fraction of 

variance in the plasma concentrations of the different cholesterol pools that 
can be explained by the relation given in Eqn 7.2 is the primary outcome 
and is depicted in Table 7.1. Adding interactions further increased the frac-
tion of variance explained for example from 93% to 97% for baseline non-
HDL-C concentrations and variance in HDL-C increase after pravastatin 
treatment from 69% to 88% (Table 7.1). 
 Adding second order effects instead of the first order interactions 
(using Eqn. 7.3 instead of Eqn. 7.2) also added to the fraction of variation 
explained. For example from 69% to 72% for the HDL-C increase after 
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statins (Table 7.1).
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where 
iSβ is the regression coefficients of the second order term. Adding 

both the first order interactions and the second order interactions (Eqn. 7.4) 
further improved the fraction of variance in cholesterol concentrations ex-
plained. 
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For example to 92% in the HDL-C increase upon statin treatment and to 
99% of the variance in baseline concentrations for non-HDL-C (Table 7.1). 
Thus, it appears that interactions play an important role in determining cho-
lesterol concentrations in our model. This implies that interpreting GWAS 
data (see for example (11)) by only investigating effects of genes in isola-
tion will not fully close the 70-75% gap in our knowledge.
 Until now, few gene-gene interactions have been found in vivo. One 
example is that variants in CYP7A1 interact with variants in ABCG5/G8 
with respect to their influence on the LDL-C lowering response to atorvas-
tatin (20). Our model was able to reproduce this finding (Chapter 5). Iden-
tifying these gene-gene interactions is difficult as the number of potential 
interactions in the genome is large (17) causing a large number of statistical 
tests required. This requirement would, after multiple testing correction, 
reduce the power of the study (17).
 Our model can be used to discover these novel biological inter-
actions. The model can predict the most influential interactions between 
reactions, which remain to be validated. Subsequent testing for gene-gene-
interactions in human data can be targeted to genes important in these reac-
tions. With this approach fewer statistical tests are required which results in 
more statistical power than the current approach (17). Our model was able 
to predict several interactions between reactions (data not shown), but the 
search for gene-gene interactions is reserved for future research.
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Table 7.1. Fraction of variance explained (R2) in plasma concentration (HDL-C 
and Non-HDL-C, baseline concentration and the effect of pravastatin thereon) 
by regression using models Eqn. 7.1 to 7.4. Concentrations were corrected using 
Johnson correction. For further details, see text and Chapter 5.

Model Eqn. BL Non-
HDL-C

Non-HDL-C 
lowering 

BL 
HDL-C 

HDL-C 
increase

Constant term (C)+ All linear effects (L) 7.1 0.93 0.79 0.91 0.69

C+ L + First order interactions (I) 7.2 0.97 0.90 0.95 0.88

C+ L + Second order effect (S) 7.3 0.96 0.81 0.94 0.72

C+ L + S + I 7.4 0.99 0.92 0.98 0.92

BL, Baseline; L, All linear effects; I, First order interactions; S, Second order ef-
fect; Eqn., Equation.
 
Variation in therapy outcome
What causes the large individual variation in the cholesterol response to 
cholesterol lowering therapies?

There is a large interindividual variation in the response to statins, reflected 
by the fact that some hyper-responders show a non-HDL-C response of 
4 mM, while other subjects have almost no response (21). This variation 
can be caused by variation in statin metabolism, compliance, nutrition, and 
cholesterol metabolism (22-24). 
 It is known that the response to statins is determined by variants in 
genes in cholesterol metabolism (Chapter 5). For several genes, variants 
are associated with a higher than average response. The genetic studies that 
discover these associations, however, do not always provide full mecha-
nistic insight. It is, for example, not generally known whether the high re-
sponse is due to a higher or to a lower activity of the gene. Our model does 
provide this insight. 
 In Chapter 5, our model predicted the impact of all 21 reactions 
on the response to pravastatin. The model, thereby, enabled the selection 
of biomarkers that predict individual statin response (Chapter 5). If these 
biomarkers are proven to be predictive for the response to statin therapy, 
extreme hypo-responders can be identified up-front. This would result in a 
prevention of side effects, because this group of hypo-responders would no 
longer be treated with the drug.
 The association between genes and the response to statins is studied 
with the response either expressed as % change with respect to baseline 
(e.g. Van Venrooij et al. (25)) or expressed as difference in concentration 
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in mM or in mg/dl (e.g. Jukema et al. (26)). The model can analyze both 
relative and absolute data. To asses the impact of using absolute or relative 
responses, we repeated the analysis from Chapter 5, but now based on the 
response to pravastatin expressed either absolute or relative to baseline. 
 The relation between the response and the reaction rate constant for 
each of the 21 reactions (all continuous variables) was assessed using linear 
regression (27): 

  ninn ky εββ ++= ,10
~    (Eqn. 7.5)

where yn is the response to statins (expressed in mM or relative to baseline) 
for subject n, 0β , and 1β  are the regression coefficients fitted to experi-
mental data by minimizing the sum of the squared error terms ( nε ), and 

ink ,
~  is the (scaled) rate constant of subject n for reaction i. 
 The second regression coefficient ( 1β ) is called the reaction effect. 
Regression was performed using the function regress as implemented in 
MATLAB. Because responses were not normally distributed, Johnson cor-
rection was applied using the function johnsrand as implemented in MAT-
LAB (28).

Figure 7.2. Squares are the 95% CI of the reaction effects calculated with the ef-
fect of HDL-C response to pravastatin expressed as % (x-axis) or in mM (y-axis). 
Each square indicates a separate reaction.
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 Figure 7.2 shows the reaction effects (i.e. 1β  in Eqn. 7.5) calculated 
for the HDL-C response to pravastatin expressed in mM plotted against the 
reaction effects obtained with the response expressed in %. It can be seen 
that there is a clear correlation (R2 = 0.73) between the reaction effects 
expressed in mM and expressed in %. For the non-HDL-C response this is 
not the case (see Figure 7.3). 
 For the non-HDL-C response to pravastatin, there is no correlation 
between the reaction effects calculated with a response in mM and the re-
sponse expressed relative to baseline. For several reactions in Figure 7.3, 
the reaction effect is positive in one case and negative in the other.  This 
implies that the way in which the response is quantified may have a pro-
found influence on what is perceived as an important factor influencing the 
response. This observation obviously requires further attention in future 
studies.

Figure 7.3. Squares are the 95% CI of the reaction effects calculated with the 
effect of non-HDL-C response to pravastatin expressed as % (x-axis) or in mM 
(y-axis). Each square indicates a separate reaction.
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 After extreme hypo-responders are identified, the next step would 
be to use our model in order to select another treatment for the subgroups 
of non-responders to statins. Our model could also play a role in this step. 
We could simulate various drug treatments, specifically in non-responders. 
However, before investigating treatments with drugs in specific subgroups, 
these treatments should be simulated in the standard subject as was done 
for pravastatin (Chapter 5) and torcetrapib (Chapter 6).
 For simulation of pravastatin treatment in the human model, an 
evaluation of pharmacokinetic (PK) data was required to define the param-
eter fact (Chapter 5). For other drugs, these PK data are often not present 
in literature. In such cases, predictions can not be made in a quantitative 
way. Nevertheless, predictions can be made in a qualitative way, because 
we know whether drugs act as agonist or as antagonist, and thus whether 
they increase or decrease the activity of a reaction (fact smaller or larger than 
1, see Eqn 5.1). We, therefore, used our model to predict whether plasma 
cholesterol concentrations were increased or decreased compared to the 
control for 9 different intervention classes. These 9 classes include 1 class 
of food components (plant sterols and plant stanols) and 8 drug classes 
(like statins and ACAT inhibitors), which are currently on the market, with-
drawn from the market, or in clinical trials (29,30).
 Table 7.2 shows the results. The model was able to predict all 18 
significant effects found in literature. This means that for all these drug 
classes an analysis can be made to discriminate between hyper-responders 
and hypo-responders. These experiments can help clinical decisions, help 
the design of clinical trials, and improve insights in drug action.
 The next step is to include the PK data of the other drugs in the 
model and study the response of the responders and non responders to these 
drugs and to study the effect of these drugs in the subgroup of statin non 
responders. These investigations are the subject of future research.
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Table 7.2. Model predictions on the effect of 9 different classes of interventions on 
non-HDL-C, HDL-C, and TC, compared to experimental data. Arrows indicate an 
increased (↑) or decreased (↓) cholesterol concentration compared to the control. 
Reaction numbers correspond to those mentioned in Figure 7.1. The first Ref col-
umn indicates references that link the drug to the reaction specified. The second 
Ref column indicates references that contain plasma cholesterol data. 

TC Non-HDL-C HDL-C

Drug or food 
class

Example Reac-
tion nr

Ref Pred Exp Pred Exp Pred Exp Ref

Statins Pravastatin 1 (31) ↓ ↓ ↑ ↑ ↓ ↓ (32)

CETP inhibi-
tors

Torcetrapib

21 (33)

↓ ↓ ↑ ↑ ↑ N.S. (33)

Bile acid 
sequestrant

Cholestyr-
amine 18 (34)

↓ ↓ ↑ ↑ ↓ ↓ (35

ACAT inhibitor Avasimibe 19 (36) ↓ N.S. ↑ N.S. ↓ N.S. (37)

Cholesterol 
absorption 
inhibitor

Ezetimibe

20 (38)

↓ ↓ ↑ N.S. ↓ ↓ (38)

SR-B1 inhibi-
tor

ITX5061
10, 13 (39)

↑ N.S. ↑ ↑ ↑ N.S. (39)

Apolipoprotein 
B Synthesis 
Inhibitor

Mipomersen

6, 19 (40)

↓ ↓ ↑ N.S. ↓ ↓ (40)

ABCA1 inhibi-
tor

Probucol 8, 16, 
17 (41,42)

↓ ↓ ↓ ↓ ↓ ↓ (43)

Plant sterols 
& Stanols β Sitosterol 20 (44)

↓ ↓ ↑ N.S. ↓ ↓ (45)

Pred, Predicted; Exp, Experimental data; Ref, Reference; nr, number; N.S., not 
significant.

Non-plasma compartments
What is the influence of genetic mutations and pharmacological interven-
tions on cholesterol concentrations in non-plasma compartments?

Non-plasma compartments are relevant in cholesterol research, because 
they are the target organs for most of the cholesterol lowering drugs (Ta-
ble 7.2). Drastic changes in cholesterol concentrations in these organs can 
cause toxic effects (46). These relevant compartments can be difficult to 
access for sampling, but model predictions can easily be obtained.
 Our model was able to make predictions on hepatic cholesterol, 
intestinal cholesterol, and peripheral cholesterol and the effect of mutations 
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and interventions on the cholesterol concentration in these compartments. 
However, due to a lack of data, the model is far less validated for the non-
plasma compartments compared to the plasma compartment. We made two 
comparisons between experimental data and model predictions.
 First, our model predicted that, in Familial Hypercholesterolemia 
(FH), the peripheral cholesterol pool was increased by more than 20% 
(Chapter 4), this is in accordance with the disposition of cholesterol in the 
skin observed in FH patients (47).
 Secondly, Hillebrant et al. (48) performed liver biopsies from pa-
tients with gallstones treated with either both 40 mg pravastatin and 1 g 
ursodeoxycholic acid (UDCA, a treatment for gallstones), or with UDCA 
alone and did not observe a difference in hepatic cholesterol concentrations 
between the two groups (48). The model predicted that a dose of 40 mg/d of 
pravastatin reduced hepatic cholesterol from 13.3 to 12.6 mM, a reduction 
of only 6%. This minor decrease can hardly be picked up experimentally 
and, therefore, the model prediction is in agreement with the findings of 
Hillebrant et al. (48).
 Reason for the small decrease in hepatic cholesterol in humans 
might be that the cholesterol pool in human livers might be replenished 
from the plasma pool by upregulation of the LDLR. 
 More evaluations of the effect of mutations and interventions on 
liver and cholesterol concentrations and other non-plasma cholesterol pools 
may be the subject of future research.
 
Combination therapy
What is the effect of combinations of cholesterol lowering drugs as com-
pared to the effect of single drugs? 

Upon drug intervention, only 40% of the individuals that get statins pre-
scribed reach their LDL-C target concentration (49). One of the strategies 
to increase this percentage is the use of other therapies instead of a statin 
in non-responders (See Chapter 7.4). Other strategies include to increase 
the statin dose or to combine statins with a second drug. Such a combina-
tion therapy might lead to less side effects, compared to a therapy with an 
increased statin dose (50). 
 The effect of a combination of two drugs is not necessarily the sum 
of the effects of the single drugs, reflecting a phenomenon referred to as 
drug-drug interactions (51). These drug-drug interactions might be favor-
able as well as unfavorable for subjects receiving the combination therapy. 
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Usually, these drug-drug interactions are the result of the pharmacokinetic 
properties of both drugs. If both drugs are, for example, degraded by the 
same enzymes, degradation can be slower when both drugs are given.
 As there are multiple interactions between reactions that determine 
plasma cholesterol concentrations, there will also be interactions between 
drugs that target these reactions. Therefore, our model can predict both 
gene-gene , as well as drug-drug interactions.
 In chapter 6, we simulated the combination of pravastatin and torce-
trapib. We found minor differences between the effect of torcetrapib given 
on top of pravastatin compared to the effect of torcetrapib alone (Figure 
6.8). Given that one would expect an effect of torcetrapib independent of 
statin use, this observation indicates there is an interaction. This interaction 
is, however, small compared to the normal variability to torcetrapib therapy 
(Chapter 6).
 As we can predict the effect of at least 9 intervention classes, we 
can predict the effect of at least 36 combinations of 2 drugs. To this end, 
first a quantitative prediction of the effect of treatments in monotherapy 
should be made. As explained previously, this will be a topic for future 
research. 

Concluding remarks
This thesis followed the modeling cycle (Figure 1.1). The first step in this 
cycle, biological observations, were described in Chapter 1. Steps 2-8 rang-
ing from setting modeling goals to model analysis were described in chap-
ters 2-6. The previous paragraphs described additional model analyses and 
also included recommendations for further research. These recommenda-
tions included experimental validation of proposed gene-gene interactions, 
validation of markers for statin response, and other drug interventions. In 
these experiments new phenomena are observed, thereby completing the 
modeling cycle (Figure 1.1). After this cycle, new aims can be formulated 
and another round of the modeling cycle can be started.
 The aim of this thesis was to develop a mathematical model, includ-
ing the most important reactions that determine plasma cholesterol concen-
trations, that allows the prediction of the effect of genetic, pharmaceutical, 
and nutritional aspects on these concentrations.
 Chapter 4 indicates that the model was able to predict the effect of 
10 different mutations on plasma cholesterol concentrations. Chapter 5 and 
6 indicate that the model was also able to quantitative predict the effect of 
pravastatin and torcetrapib, two different drug interventions on these con-
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centrations. Chapter 7 showed that the model was also able to qualitatively 
predict the effects of dietary plant sterols and stanols and several additional 
pharmaceutical interventions on plasma cholesterol concentrations. This 
means that the model was indeed able to predict the effects of genetic, 
pharmaceutical, and nutritional aspects on plasma cholesterol concentra-
tions. Additionally, it was shown that the model can make a relevant con-
tribution to pursuit a better understanding of cholesterol metabolism. 
 Finally, we can conclude that it is possible to describe a complex 
system with a simple PBK model with only a limited number of reactions. 
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BA    Bile Acids
BL    Baseline (often: before treatment)
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CE    Cholesterol Ester
CETP    Cholesterol Ester Transfer Protein
CI    Confidence interval
CM    Chylomicron
CVD    Cardiovascular diseases

FC    Free Cholesterol
FH    Familial Hypercholesterolemia

G6P     Gucose 6 phosphate
GWAS    Genome wide association study

HDL    High Density Lipoprotein
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PBK    Physiologically Based Kinetic
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SC    Sensitivity Coefficient
SNP    Single Nucleotide Polymorphism

TC    Total plasma Cholesterol
TF    Transcription Factor

UDCA    UrsoDeoxyCholic Acid

VLDL    Very Low Density Lipoprotein
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Abbreviations

181





Nederlandse samenvatting





Cholesterol is een belangrijke chemische stof voor mensen en andere 
zoogdieren, waaraan veel onderzoek wordt gedaan. Veel van dit onderzoek 
wordt gedaan, omdat mensen met een verhoogde cholesterolconcentratie in 
het bloed een grotere kans hebben op het krijgen van hart- en vaatziekten. 
Het verlagen van het cholesterolgehalte in het bloed, bijvoorbeeld door 
middel van medicijnen zoals statines, kan de kans op het krijgen van hart- 
en vaatziekten verminderen. Omdat maar een relatief beperkt deel van de 
patiënten met de voorgeschreven behandeling de gewenste daling in het 
cholesterolniveau behaalt, wordt er veel onderzoek gedaan naar nieuwe be-
handelingen. Onderzoek naar mogelijke nieuwe behandelmethoden heeft 
veel inzichten opgeleverd met betrekking tot de productie, de afbraak en 
het transport van cholesterol, met name op moleculair en cellulair niveau. 
Toch zijn er nog onbeantwoorde vragen zoals:

• Welke biochemische reacties zijn het belangrijkste voor het bepalen 
van de hoogte van de cholesterolconcentraties in het bloed? En wat is 
de onderlinge samenhang van deze reacties?

• Mensen reageren verschillend op medicijnen die de cholesterolconcen-
tratie in het bloed veranderen. Wat zijn daar de oorzaken van?

• Wat is het effect van het gebruik van een combinatie van cholesterol 
veranderende medicijnen ten opzichte van de effecten van één medi-
cijn?

• Wat is de invloed van genetische eigenschappen en van farmaceuti-
sche interventies op cholesterolconcentraties in andere delen van het 
lichaam dan het bloed?

 Deze onbeantwoorde vragen kunnen onderzocht worden met een 
voorspellend hulpmiddel. Wiskundige (meer specifiek: kinetische) model-
len zijn zo’n hulpmiddel.
 Wiskundige modellen beschrijven een systeem in een wiskundige 
taal. Deze modellen kunnen gebruikt worden om, meestal met behulp van 
een computer, diverse scenario’s door te rekenen. De modellen die in dit 
proefschrift zijn beschreven, zijn zogenaamde op fysiologie gebaseerde ki-
netische modellen. Dit wil zeggen dat het model bestaat uit wiskundige 
vergelijkingen die snelheden beschrijven van processen die gedefinieerd 
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zijn in de fysiologie van bijvoorbeeld het menselijk lichaam, of van de 
muis die vaak als modelorganisme voor de mens wordt gebruikt.
 Hoofdstuk 1 van dit proefschrift beschrijft de doelstelling en de ach-
tergrond van het onderzoek dat beschreven wordt in dit proefschrift. Het 
doel was om een wiskundig model te ontwikkelen dat het mogelijk maakt 
om het effect van genetische, farmaceutische en voedingskundige aspecten 
op de cholesterolconcentraties in het bloed te voorspellen en daarmee de 
bovengenoemde specifieke vragen te onderzoeken en waar mogelijk te be-
antwoorden.
 In Hoofdstuk 2 wordt een conceptueel model beschreven dat is ont-
wikkeld op basis van de functie van genen van de muis (zgn. sleutelgenen 
in het cholesterolmetabolisme). Als deze genen worden uitgeschakeld re-
sulteert dat in een grote verandering in de cholesterolconcentratie in het 
bloed van muizen  ten opzichte van controlemuizen. Dit conceptueel model 
zal in latere hoofdstukken dienen als basis voor de wiskundige modellen 
voor zowel muis als mens. Het model bevat 20 reacties en beschrijft 8 ver-
schillende cholesterolconcentraties in, onder andere, bloedplasma, lever en 
darm. De totale cholesterolconcentratie in het bloedplasma wordt onder-
verdeeld in HDL-C en non-HDL-C, die model staan voor respectievelijk 
het zogenaamde “goede cholesterol” (High Density Lipoprotein choleste-
rol) en het “slechte cholesterol” (Low Density Lipoprotein cholesterol).
 In Hoofdstuk 3 wordt de omzetting van het conceptuele model in 
een wiskundig model voor de muis beschreven. De parameters, nodig om 
het model te kalibreren, werden bepaald op basis van gegevens uit de lite-
ratuur. Het model werd opgezet als een set van 8 submodellen die geselec-
teerd zijn uit een groep van 65,536 submodellen die allemaal verschillen in 
hun kinetische vergelijkingen. Een submodel werd geselecteerd als het in 
staat was om correct te voorspellen of 5 muizenstammen waarin een gen is 
uitgezet, een verhoogde of verlaagde cholesterolconcentratie in het bloed 
hadden vergeleken met de controlemuizen. De modelvoorspelling werd 
gedefinieerd als het gemiddelde van de voorspelling van de 8 submodel-
len. Daarna werd het model gevalideerd door het simuleren van 9 andere 
muizenstammen waarin sleutelgenen waren uitgezet en door de voorspel-
lingen van het model voor deze muizen te vergelijken met gegevens uit de 
literatuur.
 In Hoofdstuk 4 wordt de aanpassing van het model voor de muis dat 
ontwikkeld werd in hoofdstuk 3 tot een model voor de mens beschreven. 
Hiervoor werd er een mens-specifieke reactie (gekatalyseerd door CETP, 
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cholesterol ester transfer protein) aan het model toegevoegd en werd het 
model opnieuw gekalibreerd met gegevens uit de literatuur . Het model 
werd gevalideerd door het vergelijken van simulaties van 10 genetische 
mutaties in een van de sleutelgenen beschreven bij de mens (waaronder 
Familiaire Hypercholesterolemie, een ziekte die leidt tot erfelijk bepaald 
verhoogd cholesterol) met literatuurgegevens.
 In Hoofdstuk 5 wordt de behandeling van mensen met verschil-
lende doseringen van het medicijn pravastatine gesimuleerd met het model 
uit hoofdstuk 4. Het model voorspelde dat een dosis van 40 mg pravasta-
tine per dag de totale bloed cholesterolconcentratie verlaagt met 15% (in 
de literatuur werd in onderzoek met patiënten een verlaging gevonden van 
22%), het cholesterol in HDL verhoogt met 10% (5.6% werd beschreven 
in de literatuur) en non-HDL-C verlaagt met 22% (25% werd beschreven 
in de literatuur). De voorspelde waarden liggen dus dicht bij de experimen-
teel gevonden waarden, hetgeen het vertrouwen in de modelvoorspellingen 
versterkt. Bovendien werd gevonden dat de snelheden van met name de 
cholesterolsynthese in de lever en perifere weefsels, van de cholesterolver-
estering in de lever en van de opname door perifere weefsels van choles-
terol uit non-HDL bepalend zijn voor het effect van statines op de plasma-
cholesterolgehalten. 
 Als de belangrijke reacties bekend zijn voor verschillende medicij-
nen en je de snelheden hiervan kan meten in mensen, kun je voor individu-
ele mensen de meest geschikte therapie kiezen. Deze verkregen inzichten 
kunnen dus van belang zijn voor het ontwikkelen van een therapie die op 
maat is gemaakt voor de individuele patiënt.
 In Hoofdstuk 6 wordt de behandeling van mensen met verschil-
lende doseringen van het medicijn torcetrapib gesimuleerd. Het model 
voorspelde dat torcetrapib nauwelijks effect heeft op de totale cholesterol-
concentratie in bloedplasma, dat het cholesterol in HDL sterk verhoogt en 
dat het overige plasmacholesterol verlaagt. Ditzelfde werd ook gevonden 
in gepubliceerd klinisch onderzoek.
 Bovendien voorspelde het model dat met name de snelheden van 
de cholesterolopname uit HDL in de lever, van de cholesterolverestering 
in HDL en van het cholesterolestertransport van HDL naar non-HDL be-
palend zijn voor het effect van torcetrapib. Ook werd er een simulatie ge-
maakt van een combinatietherapie waarbij een dosis torcetrapib wordt toe-
gevoegd aan een statinebehandeling. Er werd gevonden dat de reacties die 
het effect bepalen van torcetrapib zonder statines, ook het effect bepalen 
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van torcetrapib toegevoegd aan een statinebehandeling.
 In Hoofdstuk 7 worden de resultaten uit de voorgaande  hoofdstuk-
ken samengevat, waarna er wordt teruggekomen op de vier in hoofdstuk 1 
geformuleerde belangrijke vraagstellingen. Zo wordt  aangetoond dat het 
model in staat is om kwalitatief (verhoging of verlaging) het effect van 8 
klassen van medicijnen en van plantensterolen in het dieet op cholesterol-
concentraties in bloedplasma correct te voorspellen. Dit betekent dat het 
model in staat is om voorspellingen te doen over het effect van deze medi-
cijnen en de verschillen tussen mensen daarin. Bovendien is het model in 
staat het effect van 36 combinaties van twee medicijnen te voorspellen. 
 In hoofdstuk 7 wordt voorts aangetoond dat er interacties kunnen 
optreden tussen de reacties van de verschillende sleutelprocessen in het 
model. Zo kan bijvoorbeeld de relatie tussen de reactiesnelheid van een 
bepaalde reactie en het effect van statines afhangen van de snelheid van 
andere reacties. 
 Voorspellingen in Hoofdstuk 7 tonen aan dat deze interacties voor 
een aanzienlijk deel verantwoordelijk kunnen zijn voor de variatie tussen 
mensen in het effect van statines.
 De belangrijkste conclusie uit dit proefschrift is dat het mogelijk is 
om het complexe systeem van reacties die invloed hebben op cholesterol-
concentraties in plasma te modelleren met een relatief beperkt aantal reac-
ties en dat dit model gebruikt kan worden om nieuwe inzichten te verwer-
ven in het effect van (combinaties van) cholesterolverlagende medicijnen.
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