
Table 9.4 The rise in the watertable at x = 25 m shown at 5-day intervals from the beginning of the rise 
in the canal stage 

~ ~ 

Time after U E4 S0.t ‘25.t 
t = O  

(d) (-1 (-) (m) (m) 
1 1.25 O. 0224 0.04 0.00 
5 0.56 0.2353 0.20 0.05 
10 0.40 0.3699 0.40 o. 15 
15 0.32 0.4583 0.60 0.28 
20 0.28 0.5085 0.80 0.41 
25 0.25 O. 5492 1 .o0 0.55 

where 

E~(u)  = E~(u)  - U JZ E,(u) 

Values for the functions E,(u) and E4(u) are given in Table 9.1, as well as by Huisman 
(1972). Equation 9.43 gives the discharge for one side of the canal. If the drop in 
the canal stage induces groundwater flow from two sides, the discharge given by 
Equation 9.43 must be multiplied by two. 
The solution is also valid for a linearly rising canal stage. 

Example 9.5 
Suppose that in the situation described in Example 9.3 the canal stage had not risen 
suddenly at  t = O, but has risen as a function of time, reaching a rise of 1 m after 
25 days. Calculate the rise in the watertable at a point x = 25 m from the canal after 
1, 5, 10, 15, 20, and 25 days. Also calculate the seepage from one side of the canal 
per metre length on the 5th day. 

For so = 1 m and t = 25 days, the proportionality factor a in Equation 9.41 is 

1 
25 a = - = 0.04 

For the distance x = 25 m and the given times t for which the watertable rise is to 
be calculated, the value of u is computed with Equation 9.35. For each value of u, 
the corresponding value of E4(u) is read from Table 9.1. The water level in the canal 
at  time t is found from Equation 9.41, with the proportionality factor ci = 0.04. 
Substituting this value and the value of E4(u) into Equation 9.42 gives the rise in the 
watertable (Table 9.4). 

9.6 Periodic Water-Level Fluctuations 

9.6.1 Harmonic Motion 

In some instances, the variations in the level of bodies of surface water are periodic. 
Examples are the twice-daily variation in the level of oceans, seas, and coastal rivers 
due to the tide. 
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The rise and fall of the sea level induces corresponding variations in groundwater 
pressure in underlying or adjacent aquifers. If the sea level varies with a simple 
harmonic motion, which is usually expressed as a sine or cosine function, a sequence 
of sinusoidal waves is propagated inland from the submarine outcrop of the aquifer. 
Water levels in observation wells placed in the aquifer at different distances from the 
coastline or river bank will therefore show a similar sinusoidal motion. However: 
- The amplitude of the sinusoides decreases with the distance from the sea or river; 

- The time lag (phase shift) of a given maximum or minimum water level increases 
in other words, the waves are damped inland; 

inland. 

It is clear that there must be a relationship between the damping and the phase shift 
on the one hand and the aquifer characteristics on the other. An analysis of the 
propagation of tidal waves through an aquifer allows these characteristics to be 
determined. The only data required are water-level records from some observation 
wells placed at various distances in a line perpendicular to the coast or river. The 
records must cover at least half a cycle so that phase shift and damping can be 
determined. Preferably, several full cycles should be recorded and their average values 
used, because the damping and phase shift may be different for the maximum and 
the minimum of the curve. 

The harmonic motion of the sea level (Figure 9.1 O) can be described by 

yo = 7 + A s i n o t  

where 

yo = water level with respect to a certain reference level (m) 
y = mean height of the water level with respect to the same reference level 

A = amplitude of the tidal wave, i.e. half range of the sea level change (m) 
o = 2x/T = wavefrequency(d-I) 
T = period required for a full cycle (d) 
t 

- 

(m) 

= time elapsed from a convenient reference point within any cycle (d) 

The analysis of tidal waves will be discussed in Chapter 24. 

ra 
fl l  - - ~ ~ ~ u ~ ~ , , l ~ /  ti;l ran; 2A ~ 

watertable - - - - - mean sea level ---_ 
amplitude, A sea 

unconfined aouifer 

Figure 9.10 Watertable fluctuations induced by ocean tides 
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Assuming that the storage of water' throÚgh compression effects in the aquifer is 
negligible, Steggewentz (1933) derived the following equation for the hydraulic head 
in an aquifer at a distance x from the coast or tidal river, and at  a time t 

h(x,t) = + A e-ax sin (a t  - bx) (9.46) 

where 

h(x,t) = hydraulic head in the aquifer at distance x and at  time t (m) 
h = mean hydraulic head in the aquifer at  distance x (m) 
bx = phase shift, expressed in radians (-) 
e-ax = amplitude reduction factor (-) 

- 

Both damping and phase shift depend on the distance x from the open water (x = O 
at the boundary of land and water). 

Differentiating Equation 9.46 with respect to x and t, and substituting the result 
into the differential equation describing the groundwater flow, yields the relation 
between the constants a and b, and the aquifer characteristics, as shown in the 
following sections. 

9.6.2 Tidal Wave Transmission in Unconfined Aquifers 

Steggewentz (1933) found for the relation between a, b, and the aquifer characteristics 
of an unconfined aquifer that 

a = b =  J$& (9.47) 

where 

a = amplitude damping coefficient (m-l) 
b = phase shift coefficient (m-l) 
p = specific yield of the aquifer (-) 
KD = transmissivity of the aquifer (m2/d) 
o = frequency of the tidal wave (d-I) 

Note that in an unconfined aquifer the damping and the phase shift are the same. 
If this is not so, the aquifer is semi-confined. 

9.6.3 Tidal Wave Transmission in a Semi-confined Aquifer 

When considering the propagation of a tidal wave through confined or semi-confined 
aquifers, we must take into account the compressibility of the water and the solid 
medium. In doing so, Jacob (1940, 1950) derived expressions for the propagation of 
tidal fluctuations through a completely confined aquifer. Bosch (1951) extended 
Jacob's theory to semi-confined aquifers by including the effect of leakage through 
the confining layer covering the aquifer. The situation is similar to that shown in Figure 
9.1 except that the water level in the river, yo, fluctuates periodically with a range 
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2A. (The half range or amplitude of the tidal wave is thus A). The differential equation 
that describes this flow problem reads as follows 

a2h h - h’ S ah 
a x 2  K D ~  KD at = O (9.48) 

where 

h = the hydraulic head in the aquifer (m) 
h’ = the watertable elevation in the confining layer (which is assumed to 

S = the storativity of the aquifer (-) 
x = the distance from the river, measured along a line perpendicular to the 

t = time(d) 

remain constant) (m) 

river (m) 

All other symbols are as defined earlier. 

The storativity of a saturated confined aquifer was defined in Chapter 2.3.1. In 
unconfined aquifers, the storativity, S, is considered equal to the specific yield, p, 
because the effects of aquifer compression and water expansion are generally 
negligible. 

A decrease in hydraulic head infers a decrease in hydraulic or water pressure, Ph, 
and an increase in intergranular pressure, pi (see Chapter 13.3). If h decreases, the 
water released from storage is produced by two mechanisms: 
1 The compression of the aquifer caused by increasing pi; 
- The expansion of the water caused by decreasing Ph. 

The first of these mechanisms is controlled by the compressibility of the aquifer, a, 
and the second by the compressibility of the water, J3. This leads to the concept of 
specific storage 

ss = Pg(a + EP)  

S, = specific storage (m-’) 
a = compressibility of the aquifer (Pa-’) 
P = compressibility of the water (Pa-’) 
p = density of water (kg/m3) 
g = acceleration due to gravity (m/s’) 
E = porosity of the aquifer material (-) 

(9.49) 

where 

The storativity of the aquifer is then defined as 

S = SsD 

which, when substituted into Equation 9.49, becomes 

S = pgD (a + EP) 
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Since the compressibility is the inverse of the modulus of elasticity, Equation 9.5 1 
may also be written as 

Example 9.6 
The horizontal propagation of tidal fluctuations emanating from the River Waal in 
The Netherlands has been measured in an adjacent semi-confined aquifer. The 34 
m thick aquifer consists of coarse sands with intercalations of fine sand. The aquifer 
is overlain by a 12 m thick confining layer of clayey fine sands and heavy basin clays, 
with intercalations of peat. It is underlain by a layer of heavy clay, which is assumed 
to be impermeable. 

Figure 9.11 shows the hydrographs of some of the piezometers that were placed 
in the aquifer along a line perpendicular to the river. 

From these hydrographs, we read the amplitude A and, by comparing the 
hydrographs of the piezometers with the hydrograph of the river, we can determine 
the time lag of each piezometer. To express the phase shift in radians, we multiply 
the time lag t by 24T .  

1 

~ 

(9.52) 
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where 

E, = modulus of elasticity of the aquifer material (Pa) 
E, = modulus of elasticity of water (Pa) 

The compressibility CL of sand is in the range of lo-' to 
of water, p, can be taken as 4.4 x lO-'O Pa-'. 

Pa-', and the compressibility 

The solution of Equation 9.48 is 

h(x,t) = h' + A e-ax sin (cot - bx) (9.53) 

Differentiating with respect to x and t and substituting the result into Equation 9.48 
yields 

(a' - b') sin (a t  - bx) + 2ab cos (ot  - bx) - -!-sin (a t  - bx) KDc 

(9.54) OS 
K D  - -COs(ot - bx) = O 

For this equation to be valid for all values of x and t, the constants a and b must 
satisfy the following conditions 

1 
KDc 

a2 - b2 = __ 

OS 2ab = - KD 

(9.55) 

(9.56) 

These relations indicate that if the constants a and b can be determined from field 
observations, the hydraulic characteristics KDc and S/KD can be calculated. 



amDlitude in m 

i l l l l l  I I I I I I I  I I I I 
8 10 12 14 16 18 20 22 24 

hour of  the day 26-2-’59 

Figure 9. I 1  Hydrographs of the River Waal and of two piezometers at 163 and 390 m from the river (after 
Wesseling and Colenbrander 1962) 

Note that the time lag after low tide is less than that after high tide. The average 
time lag and the average amplitude are therefore used in the calculations. 

From Equation 9.53, it is clear that the amplitude A, at x = O and the amplitude 
Ax at any arbitrary value of x are related as follows 

A, = A, e-ax 

In other words, the amplitude ratio is 

or 

I n k =  -ax (9.59) 
A0 

This expression indicates that, when plotting the natural logarithm of the amplitude 
ratio as a function of the distance x to the river, we find a straight line whose slope, 
a, can be determined. Theoretically, this line should pass through the origin, since 
at x = O, A, = A,, and In A,/A, = In 1 = O. In practice, this hardly ever happens 
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because of the entry resistance at the river. A thin resisting layer may be present at 
the outcrop, or the river may only partially penetrate the aquifer. 

When we plot the phase shift (in radians) against the distance x to the river, we 
obtain a straight line whose slope b can be determined. Figure 9.12 shows these plots 
of the amplitude ratios and phase shifts for three piezometers at different distances 
from the river. 

From Figure 9.12, we find that the slope of the amplitude ratio line 

1 
430 a = ~ = 2.3 x IO” 

and the slope of the phase shift line 

0.9 
600 b = - = 1.5 x 10-3 

O 

O 

O 

amplitude ratio 
AxIA, In(A,IAo) 

i - c  phase shift 
radians 

1.8 

1.6 

1.4 

1.2 

1 .o 

D.8 

0.6 

1.4 

1.2 

distance x to the river In m 

Figure 9.12 Relation between amplitude ratio and phase shift, and the distance of three piezometers placed 
in a row perpendicular to the River Waal (after Wesseling and Colenbrander 1962) 
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With a and b known, we can now calculate the leakage factor L = m, using 
Equation 9.55 

-- - a2 - b2 = (2.3 x 10-3)2 - (1.5 x 10-3)2 = 3.04 x 1 
KDc 

KDc = 328 947 m2 

L = J328947 = 574m 

From Equation 9.56 we find 

S - 2ab - 2 x 2.3 x x 1.5 x = 5.5 10-7d,m2 - K D - o  2 x (3.1410.5) 

Remarks 
For accurate determinations of the maximum and minimum water levels in the sea, 
in a tidal river, and in piezometers, frequent observations must be made at high and 
low tide. Accurate hydrographs (as shown in Figure 9.1 1) can be obtained with 
automatic water-level recorders. If, for some reason, water-level measurements cannot 
be made in the sea or tidal river, the data from the piezometer nearest to the sea or 
river can be used as a reference for calculating the amplitude ratios and phase shifts 
of the piezometers farther inland. 

9.7 Seepage from Open Channels 

In irrigation areas, the water level in the canals is, in general, higher than the watertable 
of the adjacent land. Owing to this head difference, seepage occurs from the canals 
to the adjacent land. Analytical solutions for steady-state seepage from open channels 
have been developed by a number of investigators. For instance, Vedernikov (1934) 
gave solutions to the problem of seepage from trapezoidal channels to drainage layers 
at finite and infinite depths. Dachler (1936) presented a solution for the seepage from 
a canal embedded in uniform soil with a shallow watertable, consequently causing 
the watertable to merge with the water level in the canal. Kozeny (1931) treated the 
seepage from canals with a curvilinear cross section in infinitely deep soil without 
a watertable. 

Bouwer (1965, 1969) studied the seepage from open channels, using electric 
resistance network analogs. Bouwer’s approach covers a wider range of soil conditions, 
depths and shapes of the channel, and watertable positions than the earlier studies. 
He also presented graphs that are more readily applicable. We shall therefore review 
part of his work. For more details, we refer the reader to Bouwer’s papers cited above. 

9.7.1 Theoretical Models 

Seepage from channels is a dynamic process that is complicated by a variety of factors: 
e.g. non-uniformity of soil, water quality, erosion, sedimentation, soil permeability, 
fluctuating watertables and water levels in the canals, and periodic filling and drying 
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T h 

CONDITION c 

watertable 

Figure 9.13 Geometry and symbols for Seepage Conditions A, A’, B, and C (after Bouwer 1965, 1969) 

up of the canals. To obtain solutions to seepage problems, Bouwer recognized that 
simplifications of the actual field situations must be introduced. Accordingly, he 
distinguished the following basic seepage models (Figure 9.13). 

Condition A: The soil in which the channel is embedded is uniform and is underlain 
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by a layer that is more permeable than the overlying soil. (That layer is considered 
infinitely permeable.) If the watertable is at or below the top of the permeable 
underlying layer, Condition A reduces to the case of seepage to a free-draining layer, 
where h = y + D. This will be referred to as Condition A‘. 

Condition B: The soil in which the channel is embedded is uniform and is underlain 
by a layer that is less permeable than the overlying soil. (That layer is considered 
impermeable.) 

Condition C: The soil in which the channel is embedded is much less permeable than 
the original soil, because sedimentation has formed a thin layer of low permeability 
at the channel perimeter (clogged soil, compacted soil linings). 

9.7.2 Analog Solutions 

Bouwer’s studies of canal seepage with a resistance network analog included analyses 
of Conditions A, A‘, and B. The solutions he found apply to steady-state conditions. 
In reality, however, canal seepage is seldom steady because of changing water levels 
in the canal, changing watertables, etc. Thus, the steady-state conditions covered by 
the analyses represent individual pictures of a system which, in reality, tends to be 
continuously unsteady. 

Mathematically, the above seepage problems are treated with lateral boundaries 
at infinity. In reality, this is impractical because physical barriers, e.g. other canals 
or streams, may be present. Finite lateral boundaries should be used instead. 

For Condition A: The slope of the watertable decreases as the distance from the canal 
increases, and reaches zero at infinity. For practical purposes, the slope of the 
watertable can be considered zero at a finite distance from the canal. Bouwer used 
an arbitrary distance L = lob, from the centre of the canal. The head at this point 
is h. The watertable is considered a solid boundary, i.e. it is assumed that the movement 
of the watertable over the distance 10b is sufficiently small for flow components normal 
to the watertable to be insignificant. 

For Condition A, the lower limit of the watertable is at the top of the permeable 
layer, where h = y + D, and Condition A’ is reached. Even if the watertable were 
to be below the top of the permeable layer, the pressure at the top of this layer would 
still be zero (atmospheric). 

For Condition B: As the flow approaches uniform flow, the slope of the watertable 
at a sufficient distance from the canal becomes essentially constant. Thus the lateral 
boundary for the flow system can be represented by a vertical equipotential, which 
Bouwer also took at a distance of 10b from the centre of the canal. From test results, 
he found that this distance was sufficiently long for the establishment of an essentially 
horizontal watertable for Condition A, and a watertable with essentially constant slope 
for Condition B. The practical implications are that at L = 10b the direct effect of 
the seepage on the watertable is insignificant, and that the position of the watertable 
at that point can be regarded as indicative of the ‘original’ watertable position 
controlling the flow system adjacent to the canal. 

334 



For practical purposes, the underlying layer can be treated as infinitely permeable 
(Condition A) if its hydraulic conductivity, K, is ten times greater than that of the 
overlying layer. The underlying layer can be treated as impermeable (Condition B) 
if its hydraulic conductivity, K, is ten times less than that of the overlying material. 
In the analog studies, the values of y, h, and D were varied. The ‘seepage for the 
condition of an infinitely deep, uniform soil (D = co) was evaluated by extrapolating 
D to infinity for the analysis of Condition A. 

The analog analyses were performed for trapezoidal canals with a 1 : 1 side slope 
(R = 45 O )  and three different water depths (expressed as y/b). 
The seepage rates, measured as electric current, were converted to volume rate of 
seepage, qs, per unit length of canal. These rates were divided by the water-surface 
width of the canal, B, to yield the rate of fall, I,, of the water surface due to seepage, 
as if the canal were ponded. The term I, is expressed per unit hydraulic conductivity 
of the soil, K, in which the canal is embedded to yield the dimensionless parameter, 
IJK. To yield dimensionless terms, all length dimensions are expressed as ratios to 
the bottom width b of the canal. 

Figure 9.14 shows the graphs of IJK-versus-h/b for different values of D/b for three 
different water depths, expressed as y/b. 

Example 9.7 
Calculate the seepage from a trapezoidal canal embedded in a soil whose hydraulic 
conductivity K = 0.5 m/d. The soil layer is underlain by a highly permeable layer 
at 8 m below the bottom of the canal. The water depth in the canal is 1 m, the bottom 
width of the canal is 2 m, and the surface water width is 4 m. The watertable at 20 m 
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Figure 9.14 Results of seepage analyses with electric analogs for trapezoidal canal with 1:1 side slopes 
(a = 45") at three different canal stages (after Bouwer 1965, 1969) 
A: y/b = 0.75; B: Y/b = 0.50; C: y/b = 0.25 
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from the canal is 5 m below the water surface in the canal. Thus: h = 5 m, y = 
l m , b = 2 m , D = S m a n d B = 4 m .  
Hence, h/b = 512 = 2.5, and D/b = 812 = 4. Since y/b = 0.5, we use Figure 9.14B 
and find that IJK = 1.4, which, for K = 0.5 m/d, and B = 4 m, gives a seepage 
loss per metre length of canal: 

qs = 1.4 x 0.5 x 4 = 2.8m2/d 

Figure 9.15 shows examples of flow systems (streamlines and equipotential lines) for 
Conditions A, A', and B, as obtained by electric analog analyses. 

The curves for Condition A' in Figure 9.14 are the loci of the end points of the 
curves for Condition A. At these points, h = D + y, and any further lowering of 
the watertable will not increase the effective value of h. Thus, for Condition A', the 
h/b-values at the abscissa should be interpreted as (D + y)/b. 

The curves for Condition A in Figure 9.14 indicate that the effect that a permeable 
layer at  depth has on seepage becomes rather small if that layer is deeper than five 
times the bottom width of the canal (D > 5b). High values of IJK are obtained for 
relatively small values of D, particularly if h approaches D + y. 

For Condition A', the graphs show that the seepage rate remains almost constant 
at  a wide range of depths of the permeable layer (effective head h = D + y). If this 
depth becomes less than three times the water depth in the canal (D < 3y), the seepage 
increases rapidly. 

For Condition B, we can make similar observations on the position of the 
impermeable layer. The graphs show that, for a given watertable position, the seepage 

. "  
L.. 

<impervious 
, d Y Y V V  

Figure 9.15 Flow systems for seepage under different conditions, obtained by electric analog analysis; 
equipotentials expressed as fraction of total head (after Bouwer 1965, 1969) 
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initially increases linearly as the depth of the impermeable layer (D) increases, but 
that the rate of increase diminishes as D becomes relatively large. For D > 5b, IJK 
is already relatively close to the values for D = co. Obviously, an impermeable layer 
only has a significant effect on seepage if its depth below the canal bottom is less 
than five times the bottom width of the canal. As we have seen above, the same applies 
to a permeable layer. A practical implication of these findings is that exploratory 
borings to determine the potential seepage from new irrigation canals need not 
penetrate deeper than approximately 5b below the projected elevation of the canal 
bottom. 

The effect of the watertable on seepage shows a similar trend. Consider, for instance, 
the curve for D = co. Initially, the seepage (IJK) increases almost linearly with h, 
but for relatively large values of h the increase of the seepage diminishes. If h has 
reached a value of approximately three times the width of the water surface in the 
canal (h = 3B), the value of IJK is already close to that of h = co. Thus, a general 
lowering of the watertable, e.g. by pumping from wells, would result in a significant 
increase in seepage only if the initial depth of the watertable were considerably less 
than 3B below the water surface in the canal. 

To apply the graphs of Figure 9.14 to canals of other shapes, we can compute b 
from the actual values of B and y, as if the canal were trapezoidal with c1 = 45O, 
or we can replace the cross-section with the best-fitting trapezoidal cross-section with 
CL = 45O. For water depths other than those of Figure 9.14, values of IJK can be 
evaluated by interpolation. 

9.7.3 Canals with a Resistance Layer at Their Perimeters 

Some canals have a relatively thin layer of low permeability along their wetted 
perimeter (Condition C, Figure 9.13). Such a resistance layer may be natural in origin 
(e.g. sedimentation of clay and silt particles and/or organic matter, or biological 
action), or artificial (e.g. earthen linings for seepage control). 

If the hydraulic conductivity of the resistance layer (KO) is sufficiently small to cause 
the rate of downward flow in the underlying soil to be less than the hydraulic 
conductivity K of this soil, then the soil beneath the resistance layer will be unsaturated 
(provided that the watertable is sufficiently deep for the canal bottom to be well above 
the capillary fringe, and that air has access to the underlying soil). Under these 
conditions, the flow beneath the resistance layer will be due to gravity alone - and 
thus at unit hydraulic gradient - and the (negative) soil-water pressure head, h,, in 
the zone between the resistance layer and the top of the capillary fringe will be uniform. 
The infiltration rate, i, at any point of the canal bottom can therefore be described 
with Darcy’s equation as 

Y + Do - hl 
D O  

i = KO 

where 

(9.60) 

i = infiltration rate (m/d) 
KO = hydraulic conductivity of the resistance layer (m/d) 
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Do = thickness of the resistance layer (m) 
y 
h, = soil-water pressure head (m) 

I , = depth of the water above the resistance layer (m) 

This equation can be simplified if we consider that resistance layers are usually thin 
(clogged surfaces, sediment layers), so that Do will be small compared with y - h, 
and can be neglected in the numerator. If the thickness of the resistance layer is small, 
it may be difficult to determine the actual value of Do. The same is true for KO. Under 
these circumstances, the hydraulic property of the resistance layer is more conveniently 
expressed in terms of its hydraulic resistance, Co, defined as Do/Ko (dimension: time). 
Equation 9.60 then reduces to 

(9.61) 

Applying this equation to the seepage through the bottom and the sides of a trapezoidal 
canal, and assuming that Co is uniform and that the flow through the layer on the 
canal sides is perpendicular to the bank, we obtain the following equation for the 
seepage 9 s  

(9.62) 
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