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INTRODUCTION 

The papers that are being presented in these proceedings were the subject 
of lectures delivered at a Technical Meeting of the Committee for Hydrolo- 
gical Research TNO in december 1965. This meeting was organized with a 
view to confront the relatively young surface water hydrology in the Nether- 
lands with recent developments abroad. 

In the greater part of this country people can only live by the grace of a 
strictly controlled water table and for this reason the study of groundwater 
flow has a long history in the Netherlands. The discharge of excess water 
was usually regarded as runoff of ground water through a system of natural 
channels or ditches. Small wonder that the analytical approach of the rain- 
fall runoff relations is mainly based on our knowledge of groundwater flow 
and not much attention has been paid to the process of overland flow and 
the runoff process just below the soil surface. In other parts of the world 
however the situation is more or less the reverse and the efforts were directed 
towards the socalled direct runoff whereas the baseflow, which was usually 
identified with groundwater flow, received hardly any attention. 

As was to be expected of two approaches which both have a rational basis, 
a number of identical trends could be detected in the broad field of their 
overlap and it was found that one approach was essentially in direct line 
with the other. It was therefore felt that both approaches could profit by a 
confrontation and the authors have attempted to provide the links between 
various methods and to bring forward the fundamental concepts behind them. 

Evidently the papers presented here mainly reviews the recent literature 
but they also include some material that is not generally available to the av- 
erage worker in this field. It was therefore decided to publish these procee- 
dings in English so that they might also contribute to the discussion of hydro- 
logy outside this country. 





I. RAINFALL AND RAINFALL EXCESS 

F. E. SCHULZE 

International Institute for 
Land Reclamation and Improvement 

The amount of precipitation falling as rain or snow on a drainage basin 
may leave this basin in two ways viz. in vaporised or liquid form. That part 
of the precipitation which leaves the basin in liquid form is called excess 
rainfall. The runoff process describes how the total rainfall as a function of 
time ultimately results in the discharge of the amount of excess rainfall as a 
function of time. In this process two stages can be discerned, firstly the pro- 
cess whereby precipitation results in an amount of excess rainfall and se- 
condly the way in which the excess rainfall ultimately manifests itself in a 
hydrograph of outflow (the discharge as a function of time). In  the first case 
one is interested in the rainfall excess occurring locally throughout the drai- 
nage basin, in the second case in the shape of the hydrograph at the point of 
outflow. Not always does the total amount of excess rainfall pass the point 
of outflow of the drainage basin: in some cases part of it may leave the basin 
as deep seepage. 

In the following, attention will be paid only to the rainfall excess/rainfall 
relation as it occurs at every point of the drainage basin. The way in which 
the locally formed rainfall excess ultimately results in an outflow hydro- 
graph is not discussed here. I t  is important to know, however, in what form 
the excess rainfall is occurring. 

To clarify this concept let us consider a small drainage basin where a 
storm occurs. The following losses may occur: 

(a) part of the rainfall remains on leaves and grass blades, and eventually 
evaporates: these are interception losses, 

(b) part of the rainfall evaporates from depressions in the soil surface or in- 
filtrates and is used to neutralize soil moisture deficiency in the upper 
horizons from where it evaporates or is withdrawn by the plant roots, 

(c) part of the rainfall percolates down into the groundwater reservoir rais- 
ing the level of the water table, 



(d) part of the rainfall infiltrates and percolates along horizontal strata to 
emerge again: this is sub-surface flow or interflow, 

(e) part of the rainfall moves overland to the main stream. 

As regards runoff, (a) and .(b) are total ,,lossesM. The remaining portion of 
the rainfall is the rainfall excess, provided that no capillary rise of water 
from the groundwater reservoir is considered. So, in case of a deep ground- 
water table, the water has escaped evapotranspiration when it has reached 
the groundwater reservoir. This rainfall excess can be further split up into 
groundwater runoff or base flow (c) and direct runoff caused by (d) and (e), 
usually considered together. In  many cases the main cause of floods is the 
direct runoff; in these situations the part of the rainfall which percolates 
into the groundwater reservoir is also considerd as a loss, which is only cor- 
rect viewed from the angle of direct runoff. 

To describe quantitatively the process whereby, starting from a given 
amount of precipitation a certain amount of excess rainfall is attained, one 
applies many, often very differing ways of approach. In the following, a 
survey of these methods illustrated by a number of typical examples is at- 
tempted. 

The ultimate aim is to reduce a given rainfall histogram to a histogram of 
excess rainfall. This histogram of excess rainfall serves as a basis for the se- 
cond part of the runoff process; starting from this histogram one tries to ob- 
tain the ultimate outflow hydrograph. This is attempted by developing mathe- 
matical models that provide the linkage between measured quantities of pre- 
cipitation and the resulting quantities of runoff. The latter are equal to the 
appropriate quantities of excess rainfall transformed but not reduced in the 
second part of the process. Since as a rule precipitation data are available over 
much longer periods than runoff observations, it is possible with the aid of a 
developed mathematical model to construct the rainfall excess histogram over 
longer periods. 

The time interval of the rainfall histogram which has to be considered is 
often determined by the available precipitation data. In the cases where only 
daily rainfall data are available it is impossible to get information over pe- 
riods shorter than 24 hours. In  that case one is compelled to consider one or 
more days as the time interval of the rainfall histogram. The requirements to 
he made for the choice of a time interval are determined by the characteris- 
tics of the process whereby the excess rainfall results in an outflow hydro- 
graph. For practical reasons a minimum time interval can be considered. If 
for example a time interval is chosen equal to 114 to 115 of the so called basin 
lag (time difference between the centre of area of the histogram of excess 



rainfall and the centre of area of the resulting runoff) then it appears that 
the time distribution of excess rainfall within this period hardly influences 
the time distribution of the runoff. So under these circumstances it would be 
senseless to consider a smaller time interval for the reduction of rainfall to 
rainfall excess. 

As has been stated above, the rainfall excess usually manifests itself as 
direct runoff or as groundwater runoff. It is characteristic for nearly all kinds 
of approaches that they confine themselves to either the one or the other 
form of runoff. The most striking example is the infiltration approach which 
aims exclusively at determining the direct runoff whereby the rainfall which 
percolates into the ground water is considered as a loss. For situations where 
a great part of the rainfall excess leaves the drainage basin as direct runoff 
this approach is indeed justified since the influence of the groundwater run- 
off on the shape of the outflow hydrograph in that instance will be insignifi- 
cant (at least inasmuch as peak discharges are concerned). The base flow then 
has the character of a correction to the hydrograph or may sometimes be dis- 
regarded altogether. 

In some cases, however, a deliberate separation is made between base flow 
and direct runoff i.e. the total rainfall histogram is reduced to a histogram 
of rainfall that becomes direct runoff and another histogram of rainfall ex- 
cess that becomes groundwater runoff. In  the second phase of the runoff pro- 
cess this separation is taken into account Ly following both components of the 
rainfall excess separately on their way to the point of outflow. 

A second feature of the models cited is that the second phase of the runoff 
process (the way in which the rainfall excess is led to discharge) does not in- 
fluence the first phase (the reduction of rainfall tot rainfall excess). This is 
why models as developed by CRAWFORD and LINSLEY (1961), HAMON (1963) 
and MAKKINK and VAN HEEMST (1966) will not be fully discussed. 

The bookkeeping method is one of the most common methods to establish, 
starting from a certain amount of rainfall, an amount of rainfall excess. I n  
agriculture, especially in irrigation agriculture, this method has been used for 
many years (not, as a matter of fact, to establish rainfall excesses, but to cal- 
culate the water requirements in cases of supplemental irrigation). Yet this 
method has been used in hydrology as well, though with less success than in 
its application with regard to irrigation. 

In  its most simple form the functioning of the drainage basin with regard 
to the transformation of rainfall to rainfall excess is represented schemati- 



cally by one single reservoir with a maximum capacity S. The quantity of 
water present in the reservoir at a certain moment is S-d, where d is called 
the deficit. Now in principle, one starts from the assumption that runoff will 
occur only if the reservoir is full, in other words when the deficit has been 
replenished. If the deficit equals d, then a precipitation P, where P exceeds 
d, will result in an amount of runoff Q = P - d. Consequently, the relation 
Q versus P is for a given value of d a simple straight line parallel to the line 
Q = P (as in fig. 1). 

a 
mm 

a - P - d  

FIG. l. The bookkeeping method or threshold concept. 

Evapotranspiration draws at a known rate from this moisture storage and 
it is possible now to convert long series of rainfall observations into rainfall 
excesses if one disposes, for example, of the daily rainfall amounts on the one 
hand and if on the other a sufficiently exact prediction can be made with 
regard to the value of the deficit at a given moment. This prediction of the 
value of the moisture deficit is one of the most characteristic features of the 
bookkeeping method. Several variations to the above theme have been deve- 
Ioped suggesting various methods for the prediction of the value of d. De- 
rived purely from irrigation practices, VAN BAVEL (1953) states that the value 
of d can be calculated by putting actual evapotranspiration equal to potential 
evapotranspiration until the moment when the storage value S is exhausted. 
For irrigation purposes this assumption works out satisfactorily in general, 
probably because in irrigation practice the soil will never dry out to extreme 
values. 

In  hydrology, on the contrary, one will usually have to allow for the drying 
out of the soil which causes the actual evapotranspiration to be lower than 
the potential evapotranspiration. 



For Dutch conditions DE ZEEUW (in print) applies monthly rates of evapo- 
transpiration as determined by ELINK STERK from the water balance of the 
Haarlemmermeer. However, DE ZEEUW does not start from a certain charac- 
teristic value S for the basin, but makes this value depend on the maximum 
value of the deficit (d,,,) to be calculated from precipitation and evapora- 
tion according to ELINK STERK. 

Let us say, for example, that the calculated maximum deficit, occurring 
under Dutch conditions at the beginning of August, is 150 mm, whereas the 
first increase in runoff is observed mid-October with a calculated deficit of 
50 mm. If one does not proceed from the calculated maximum deficit of 
150 mm but from a deficit of 150 - 50 = 100 mm at the beginning of 
August then the moment at which the increase in runoff occurs according to 
the calculation coincides with the moment at which this happens in reality. By 
plotting for a series of years the calculated maximum deficit against the va- 
lue required of coincidence DE ZEEUW obtains the relation: 

where a and b are constants. So the value of S is not constant but may vary 
from year to year. The variations in the value of S may be ascribed to the 
cxtent to which the real evaporation deviates from the evaporation according 
to ELINK STERK. AS the actual evaporation in a watershed area wilI generally 
be smaller than the evaporation according to ELINK STERK, the values of a 
and b will be such that S is less than d. 

For calculating the actual evapotranspiration in the Rottegatspolder MAK- 
KINK and VAN HEEMST (1966) have developed a model in which the soil pro- 
file is imagined to consist of three zones i.e. the evaporation zone, the transi- 
tion zone and the groundwater zone. In this rather complicated model the eva- 
poration from the evaporation zone is made proportional to the quantity of 
water in the evaporation zone which is left for evaporation, or 

where E, is the actual and E, is the potential evaporation and where S - d 
represents the quantity of water actually present in the evaporation zone and 
S the maximum possible amount. The model as developed by MAKKINK 
and VAN HEEMST was basically meant for the calculation of the actual eva- 
poration and not for calculating the rainfall excess. Since the upward flow 
of moisture from the water table into the root zone is also considered, the mo- 
del is considerably more complicated than might be presumed from the a- 
bove. Basically it can however be classified as a bookkeeping method. 



KOHLER (1957) has developed a two-level accounting model by allowing 
for on the one hand a decrease of the actual evapotranspiration if the mois- 
ture deficiency in the drainage basin increases and on the other hand the 
fact that notwithstanding a rather large total moisture deficit the actual eva- 
potranspiration may temporarily have a relatively high value because of mois- 
tening of the uppermost layer of the soil profile. Represented diagrammati- 
cally this model consists of two reservoirs one placed on top of the other, with 
maximum capacities of S1 and Sg respectively (fig. 2). 

Available 
moisture 

a I b 

FIG. 2. The two-level accounting model 
a: schematically, 
h: soil moisture depletion curve. 

The upper level of storage represents the upper layer of the soil profile 
and may be compared with the evaporation zone as visualized by MAKKINK 
and VAN HEEMST. KOHLER, however, assumes that this reservoir always loses 
moisture at a rate equal to the rate of potential evapotranspiration. The evapo- 
transpiration from the lower level occurs only when there is no water left in 
the upper level and it is then proportional to the amount of water available 
in the second reservoir: 

The lower level is replenished only after the moisture deficiency in the upper 
level has been filled up completely. 

VAN SCHILFGAARDE (1965) has used a model in the field of drainage which 
on the one hand has elements resembling the model developed by MAKKINK 
and VAN HEEMST (1966) and on the other hand resembles the two-level ac- 
counting model of KOHLER (1957). According to WISER and VAN SCHILFGAAR- 
DE (1964) the assumption was made that the soil does not hold moisture above 
a given moisture content, which may be considered to be field capacity, and 
that the water supplied by precipitation moves further down from a certain 
level into the soil only if all the soil abovd this level is at field capacity. If at 



the outset of a rainfall the moisture content of a soil profile is uniform and 
below field capacity, it is assumed that after a rainfall the top layer of the soil 
will be at field capacity, the depth of this layer depending on the amount of 
water supplied. It was further assumed that the soil i.e. the wettest (top) layer 
supplies water for evapotranspiration uniformly with depth. When the eva- 
potranspiration taking place from this layer has been such that its moisture 
content has been reduced to that of the layer below, then the two layers merge 
into one. Under these assumptions the process of periodic precipitation with 
daily evapotranspiration is likely to result in the formation of a series of soil 
layers at moisture contents decreasing with depth. The actual evaporation is 
made proportional to the moisture content of the upper layer: 

S M C E E, =- 
M S C  P 

where S M C  is equal to the soil moisture content of the upper layer and MSC 
the maximum moisture storage capacity of the same layer (defined as the dif- 
ference in moisture content between oven dry soil and field capacity). VAN 
SCHILFGAARDE (1965) considers for drainage purposes an arbitrary upper li- 
mit to be the total soil moisture storage capacity of the whole profile; this is 
comparable with the value used by WISER (1964) who uses the same ap- 
proach for watersheds ranging from 460 to 5 sq. miles and considers the va- 
lue of S as a basin parameter. WISER, however, is more interested in total 
monthly volumes of runoff for the design of farm ponds than in the runoff 
volumes over shorter periods. 

I t  is clear that the bookkeeping method as described before is strongly re- 
lated to physical soil properties, particulary to the moisture holding capacity 
of the soil. If one considers a drainage basin as a whole then there is probably 
within the basin a great variety of soil conditions. This concept has been.re- 
presented by KOHLER and RI~HARDS (1962) in their method of multi-capacity 
accounting. Instead of representing the basin as one single reservoir different 
parts of the area are introduced as separate reservoirs, each reservoir having 
its own maximum capacity, e.g. 2, 5, 10, 20 inches. The evaporation for each 
reservoir is put equal to the potential evaporation until the storage is exhaust- 
ed. For the basin as a whole the rate of soil moisture depletion gradually 
decreases, as shown in figure 3. 

Obviously the bookkeeping method is most suitable in those cases where 
the natural conditions are in good agreement with the principles of the 
method i.e. where there is a subsurface removal of the rainfall excess. On the 
other hand it can be reasoned that if there is a confining horizon in the profile 
the rainfall excess is being discharged over the land surface after saturation 
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FIG. 3. The multi-capacity accounting model 
a: schematically, 
b: soil moisture depletion curve. 

of the layers above this horizon. In that case the threshold concept could con- 
sequently be applied for water flowing over the land surface as well. Appli- 
cations in this direction in general do not yield satisfactory results since the 
rainfall intensity per se is not considered. The threshold concept, as a matter 
of fact, is characterized by the-fact that runoff can occur only if the moisture 
deficiency is replenished completely. The multi-capacity accounting model 
suggested by KOHLER and KICHARDS already partly eliminates this difficulty. 
This drawback will be felt especially in situations in which a great part of the 
rainfall excess is removed over the land surface. For situations in which the 
total amount of rainfall excess drains through the soil MAKKINK and VAN 

HEEMST (1966) also take into account discharges that are possible before the 
moisture deficit in the soil is fully replenished. 

The methods mentioned operate on the basis of daily precipitation with the 
exception of the models developed by VAN BAVEL and by WKKINK and VAN 

HEEMST which were not intended for the calculation of rainfall excess as 
such. For situations in which runoff process takes place mainly through the 
subsoil this daily interval may be sufficiently small. In places where the run- 
off occurs as overland flow, however, one should as a rule consider much 
smaller intervals of time. 

Lastly one may wonder in the light of recent investigations in the field of 
actual evaporation (RIJTEMA, 1965), whether it would be possible to strength- 
en the physical basis of predicting moisture deficiency. 

In hydrology frequent use is made of graphical techniques in order to 
represent the relation between rainfall and rainfall excess. This applies es- 



pecially in situations where the greater part of the rainfall excess occurs as 
overland flow, i.e. water which does not penetrate into the soil. Here one 
is less interested in the physical background of the runoff process but at- 
tention is paid almost exclusively to factors that obviously influence the 
rainfalllrainfall excess relation. Those factors are quantified by means of 
graphical correlation techniques based on a great number of observations. 

One of the most important factors influencing the rainfalllrainfall excess 
relation is the moisture condition of the drainage basin at the moment the pre- 
cipitation starts. With the bookkeeping method the influence of this factor 
was manifested in the value of the moisture deficit d. In the graphical 
method, by contrast, indices are used. The most common index with regard 
to the moisture condition of the drainage basin is the antecedent precipitation 
index APZ. The antecedent precipitation index at a certain moment depends 
exclusively on the precipitation in the preceding period. The A P I  may be 
defined in a great many ways, e.g. as the total precipitation over the prece- 
ding 10-day period. In general, however, one would prefer to attribute less 
weight to Plo, the rainfall which has, for example fallen 10 days ago, than to 
Pt the rainfall of the day preceding the day for which the APZ must be de- 
termined. Usually this is accomplished by putting A P I  = PO + k P i  + k2 P2 
+ k n  P,  (k <l). This idea is analogous to the assumption that the outflow 
from a reservoir is proportional to the storage; it corresponds with the book- 
keeping method in which the evaporation is proportional to the amount of 
water left available for evaporation. Arithmetically the A P I  defined above 
has great advantages. 

The value of the coefficient k depends on the potential evapotranspiration 
and consequently on the time of the year. In practice this influence is obvi- 
ated by including time of year as a variable to be considered. As one is in- 
terested in the moisture conditions of the drainage basin it would be equally 
obvious to consider an ,,antecedent precipitation minus runoff" index instead 
of an API .  Such refinements however are usually not considered as in fact 
one has to deal with an index and not with a physically measurable factor. 

Besides the A P I  and time of year one uses in many cases storm duration as 
a third variable. 

Although the graphical method has been frequently applied, recently, for 
example, by SOCZYNSKA (1963), LUGIER et al. (1963), or BRUNET-MORET (1965) 
and RODIER and AUVRAY (1965), it is apparent (especially in the U.S.A.) that 
one tries to develop models with the aid of the available data which prefer- 
ably have a strong physical base and which can reproduce the observed 
amounts of rainfall excess as closely as possible. 



Obviously in areas where much overland flow occurs attempts have been 
made to determine the amount of rainfall excess on the basis of the infiltra- 
tion capacity of the soil. I n  these cases the infiltration approach can be ap- 
plied advantageously, with the reservation of course that the majority of the 
rainfall excess occurs as overland flow. The principle of the infiltration ap- 
proach is rather simple, i.e. runoff occurs when the precipitation intensity 
exceeds the rate of infiltration. 

The most straightforward method based on the principle of the infiltration 
approach is the infiltration index method. As the name implies this method 
does not so much deal with the infiltration process as such but is a simple 
index for the infiltration capacity of the basin. 

One starts from the assumption that the average infiltration rate in the 
basin has a constant value during the whole infiltration process. For each 
storm period one can assume an infiltration index such that the rainfall ex- 
cess is indeed equal to the measured quantity of runoff. The difficulty of the 
method lies in the prediction of the value of the infiltration index (also called 
the basin recharge capacity). If, for instance, the prediction of the infiltration 
index were made with the aid of the antecedent precipitation index then 
there is hardly any reason why one should not derive the rainfall excess di- 
rectly from the antecedent precipitation itself. Apart from this the method 
has the drawback that it suggests a distribution of the excess rainfall within 
the storm period which may be incorrect, since the basin recharge capacity 
may be decreasing in the course of the storm period. 

Undoubtedly HORTON was the great promotor of the infiltration concept in 
hydrology. HORTON (1939) found from runoff plot experiments that the infil- 
tration rate as a function of time decreases during the infiltration process 
according to: 

where f is the actual infiltration capacity, f ,  the minimum infiltration capa- 
city which is reached if the infiltration process continues indefinitely and k a 
constant. From this the well known HORTON-formula may be derived: 

where f, is the initial infiltration capacity a t  the beginning of the infiltra- 
tion process. The formula assumes an adequate and continuous supply of 
water to be available for infiltration. 



The great advantage of HORTON'S method over the infiltration index 
method will be clear: by expressing the infiltration capacity as a function of 
time one gains insight into the distribution of the rainfall excess during a 
storm period, which as has been argued, is particulary important for small 
drainage basins subjected to rather long periods of rainfall. 

Nevertheless the HORTON method presents two difficulties viz. the predict- 
ion of the value of f ,  at  the moment precipitation starts and the phenomenon 
that there are moments during a storm period when the precipitation inten- 
sity is smaller than the infiltration rate. In  such a case the infiltration capa- 
city will decrease at a lower rate than is expressed by the HORTON-formula. 
Probably these two problems dominate the question of whether the use of 
physically more acceptable infiltration formulas would be preferable to the 
more or less empirical HORTON-relation, at least for the rainfall runoff pro- 
cess. 

To avoid this difficulty arising when one expresses the infiltration capacity 
as a function of time, HOLTAN (1961) tries to express the infiltration capacity 
as a function of the remaining volume of potential storage above the confi- 
ning horizon (this is the volume of pores to be filled before the rate of in- 
filtration becomes constant) and the permeability of the confining horizon. 
He found the following experimental relationship: 

f - f c = a  F," 

Here f is the actual infiltration capacity, f ,  a constant which depends on 
the permeability of the confining horizon, comparable with the HORTON-mi- 
nimum infiltration capacity. The coefficients a and n are constants for a cer- 
tain soil-vegetation complex, and F,  is the remaining volume of potential stor- 
age above the confining horizon (fig. 4). Experimentally HOLTAN found 
that n = 1.387 whereas the value of a varies from case to case. 

The great advantage of this approach is of course that one can allow for 
the fact that during short time intervals in a storm period the precipitation 
intensity is smaller than the infiltration capacity of the soil. The difficulty of 
a correct estimation of the value of F, at the beginning of the storm period 
remains. 

As observed by OVERTON (1964) it is interesting in this respect to note that 
when n = 1, one again arrives at the HORTON-infiltration formula provided 
that the infiltration process takes place without any interruptions. Under 
such conditions: 

f - f . = a F  P 

d F  -- 
d t 

= f - f ,  (continuity equation) 



from which the H O R T O N - ~ O ~ ~ U ~ ~  can be derived with a = K. 

Rate of 
infrltratron 
mrn/hr Horton : f = f c  +(fo-fc)e-at 

or : f - f c=a  F~ 

Holtan : f - f c=a  

(With nz1.387) 

I 

I 

Time 

FIG. 4. The infiltration approach. 

At the same time it will be seen, starting from the equations: 

d 
and f - fc = - (Fpo - F,) d t 

where F,, is the volume of potential storage for t = o, one gets the infiltra- 
tion equation developed by PHILIP (1957) on a physical basis: 

Here the value of a again appears to depend on the initial soil moisture 
content. 

The infiltration approach usually renders good service if very small drai- 
nage basins are considered where one is interested in the precipitation defi- 
cits during parts of a storm period. The main difficulty of the method, how- 
ever, remains the prediction of the infiltration capacity at the beginning of a 
storm. If estimates have to be made for this by correlation analyses, for ex- 
ample with the aid of the antecedent precipitation index, it may be remarked 
that (especially for the larger basins) the rainfall excess is preferably corre- 
lated directly with such an  index. 

Lastly it may be noted that the rainfall excess as determined by the infil- 
tration approach refers only to overland flow. So in order to obtain the total 
rainfall excess it may be necessary to add part of the precipitation penetra- 
ting into the soil. 



Starting from the "principles of the above-mentioned bookkeeping method 
or the threshold concept it may be deduced that the relation between preci- 
pitation (P)  and rainfall excess (Q)  is represented by Q = P - d,  where d re- 
presents the moisture deficit present at a certain moment. Consequently no 
runoff will occur as long as there exists a moisture deficit. With the data 
available KOHLER and RICHARDS (1962) find that generally the relation be- 
tween rainfall and rainfall excess closely approximates the following expres- 
sion: 

1 - 
Q = (P" + dn) " - d 

where d is again the moisture deficit at a certain moment and n a coefficient 
depending on the value of d. This relation has the property that as P becomes 
larger the equation asymptotically approaches the straight line Q = P - d. 
Also the line goes through the origin: Q = 0 if P = 0 (fig. 5). 

FIG. 5. Runoff equations 
a: after KOHLER and RICHARDS (1961), 
b: after U.S. Soil Conservation Service (1957). 

To achieve a correct estimate of d at the beginning of a precipitation again 
forms the difficulty of using such a relation. KOHLER and RICHARDS (1962) 
solved this problem by using the above relation in combination with their 
multi-capacity accounting model. The principle, of course, is completely the 
same: instead of calculating the rainfall excess according to Q = P - d 
(where the threshold concept in practice leads to) one uses the above-men- 



tioned asymptotic relation presuming that it refers to the direct runoff. The 
value of d at each moment follows from multi-capacity accounting whereas 
the value of n is calculated with the aid of the following experimental rela- 
tion: 

n = 2 + 0.5 d where the moisture deficit d should be expressed in inches. 
Thus one profits from the advantage of the threshold concept in being able 

to estimate d, yet the disadvantage of this method, being that no runoff can 
occur as long as there exists a moisture deficit, is avoided. 

A much used method developed by the U.S.D.A. Soil Conservation Ser- 
vice (1957) is the so-called curve number method. This method can be classi- 
fied as a functional relationship as well. The relation between Q and P is 
determined by starting from a certain initial abstraction (Ia), a potential 
maximum retention (d) and the assumption that the ratio of actual retention 
(P - I, - Q) and potential maximum retention (d), equals the ratio of ac- 
tual runoff (Q) and potential maximum runoff (P - I,), or algebraically: 

from which follows: 

This line asymptotically approaches Q = P - (I, + d), but does not pass 
through the origin. The initial abstraction I, is, on the basis of practical expe- 
rience, set by the Soil Conservation Service equal to 20010 of the maximum re- 
tention d. The value of d is related to the so-called runoff curve number (from 
which the name of the method originates) according to the equation: 

(for the case when d reaches infinity or CN = 0, no runoff occurs at all, 
while for d = 0 or CN = 100, the rainfall excess is equal to the precipita- 
tion, assuming I, = 0.2 d) .  

Again the main difficulty is to make a correct estimate of CN (or of d) .  
For practical design purposes the Soil Conservation Service has developed tables 
for different soil vegetation complexes and antecedent moisture classes. The 
latter are classed with the aid of an  antecedent precipitation index. 

Undoubtedly one could mention other examples which can be classified 
under ,,functional relationships". The most characteristic features of the 
methods, however, are demonstrated sufficiently with the above examples in 



which the endeavour is to avoid the disadvantage of the threshold concept 
(viz. that runoff can only occur if there is no moisture deficit left in the drai- 
nage basin), and to avoid a purely rectilinear relation between P and Q by 
starting from a rather arbitrary curve asymptotic to a rectilinear relation- 
ship. 

One of the main difficulties the infiltration approach encounters is how 
to make a correct estimate of the infiltration rate of the soil at the beginning 
of a storm period. By relating the infiltration capacity to the remaining vo- 
lume of potential storage HOLTAN (1961) could take into account time inter- 
vals occurring during the storm period where the precipitation intensity was 
smaller than the infiltration rate. One difficulty remained however, viz. the 
estimation of the volume of potential storage at the beginning of the rainfall. 

KOHLER (1963) has further elaborated the same idea by on the one hand 
relating the initial infiltration capacity to the existing soil moisture deficit 
and on the other hand predicting this moisture deficiency with the aid of the 
multi-capacity accounting technique. Thus this method somewhat resembles 
the functional relationship methods, but one tries to provide a more physical 
basis by starting from the infiltration process rather than arbitrarily choosing 
the form of the runoff equation as is done in the functional relationship 
methods. 

KOHLER starts his approach from a slightly modified form of HORTON'S in- 
filtration equation. This modification is related to the fact that HORTON'S 
equation can exclusively be applied for the determination of surface runoff. 
For determining the total runoff however, one is more interested in the rate 
at which the soil profile can absorb water (recharge of soil moisture). This 
capacity rate of absorption must approach zero as precipitation and storm 
duration increase while the total amount of soil moisture storage is limited. 
Then in conformity with HORTON'S approach one gets: 

where as a consequence f is not the infiltration rate but the capacity rate of 
absorption. From the above formula it may be deduced that a t  any moment 
the capacity rate of absorption is proportional to the then existing moisture 
deficiency d: 

f = kd or with t = 0: f, = kd, 



The equation furthermore shows that the recharge of soil moisture (r) 
equals: 

Assuming a maximum soil moisture deficiency (S) and corresponding maxi- 
mum rate of soil moisture recharge (fk) from which the value k = fk/S can be 
calculated it is possible in principle (for example with the multi-capacity ac- 
counting technique) to calculate for every storm period or part thereof the 
soil moisture recharge and consequently the rainfall excess over that period as 

where Q is the rainfall excess and P is the precipitation. 
A difficulty here is that during the drying out of a saturated soil, for in- 

stance, the capacity rate of absorption can reach its maximum value before 
the soil has reached its maximum soil moisture deficit (S). Apart from the 
total amount of moisture, the capacity rate of absorption also depends on the 
moisture distribution within the soil profile. In order to take this phenomenon 
into account, KOHLER makes the initial capacity rate of absorption of an area 
with a moisture capacity S not only depend on the initial moisture deficiency 
of this area but also on the moisture deficiency of an area with a moisture 
capacity of 2 inches. The procedure may be illustrated in figure 6 .  

FIG. 6.  Threshold concept and infiltration approach. 

Take an area A with moisture capacity 2 inches and an area B with mois- 
ture capacity S. For both areas the maximum capacity rate of absorption is 
equal to f k .  For the area A, the following equation is always applicable: 



Consequently the above procedure may be applied and the moisture distri- 
bution plays no part. The value of d A  can therefore be calculated at any 
moment. 

For the area B, it is assumed that during the wetting phase (starting from 
dB  = S )  the following equation is applicable: 

It is further assumed that for the drying out process in a saturated soil the 
maximum capacity rate of absorption is reached after a drying out of 2 
inches. 

Thus the value of dB as such is inadequate to determine the initial value of 
f B  ( f B o ) .  Therefore the value of f~~ is related to both the values dA  and d~ by 
the assumption that every combination of dA and dB originates from a situa- 
tion following complete saturation and in which precipitation occurs at a mo- 
ment where dA = 2 and d B  = mS (where mS is greater than or equal to 2). 
Now it is possible to demonstrate that starting from such a situation at any 
moment of the storm period, the following equation applies: 

Starting from certain values of dA  and dB  it is possible to reconstruct the 
hypothetical original situation, i.e. to calculate the value of mS. In view of 
the form of the above equation this should be done graphically. With a deficit 
of mS greater than or equal to 2 inches and following complete saturation 
f B  = f k  and as it is generally assumed that f = kD, it follows that f k  = kmS. 
During the hypothetical rainfall, as soon as the hypothetical initial deficit 
mS will have been reduced to d ~ ,  the following equation will apply: 

Thus with the aid of d A  and d~ the calculated value of f B  is assumed to re- 
present the real yalue of the initial capacity rate of absorption for area B. 
With the aid of this value the recharge of soil moisture is calculated and as a 
consequence the quantity of runoff. 

KOHLER (1963) applied the above procedure to small intervals during a 



storm period and determined the values of dA and dB for longer periods with- 
out rainfall by multi-capacity accounting. 

The moisture capacity of 2 inches chosen for area A is arbitrary; under 
different circumstances another value may be more justified. 

The method developed by KOHLER is, despite a number of assumptions, a 
very interesting one. On the one hand one profits by the advantages offered by 
the threshold concept with regard to predicting this moisture deficit; on the 
other hand one attemps to use the advantages of the infiltration approach con- 
cerning the predicting of rainfall excesses for parts of a storm period. 

W e  have seen already that KOHLER and RICHARDS (1962) base the calcula- 
tion of the rainfall excess on a rather arbitrary asymptotic relation between 
precipitation and rainfall excess and use this relation with their multi-capa- 
city accounting model. It is assumed thereby that the rainfall excess occurs as 
overland flow. Both DE ZEEUW (in print) and WISER and VAN SCHILPGAARDE 
(1964) apply functional relationships in order to distinguish between the rain- 
fall excess occurring as overland flow and the rainfall excess occurring as 
groundwater runoff. As such, this concept differs fundamentally from the 
model proposed by KOHLER and RICHARDS. 

DE ZEEUW starts from the relation: 

where Q, is the rainfall excess occurring as overland flow, P the rainfall for 
the day in question while m and I, are constants depending on the moisture 
condition of the basin whereby one distinguishes periods with excess rainfall, 
periods with an increasing precipitation deficit and periods with a decreasing 
precipitation deficit. 

The value of Q, so calculated is subtracted from the precipitation P. The 
value P - Q, is then regarded as input in the water balance model used by 
DE ZEEUW. 

WISER like DE ZEEUW corrects the precipitation for surface runoff before 
applying the model proposed by him (likewise based on the threshold con- 
cept) to the calculation of the rainfall excess. He starts from the earlier men- 
tioned runoff equation of the Soil Conservation Service. 

where Q, represents the amount of surface runoff. 



The value of CN which was defined as 

is connected by WISER experimentally with the moisture content of the upper- 
most layer of the soil profile according to the equation 

S  M  C 
CN = 39 $ 50------ M S C  

where S M C represents the soil moisture content of the upper layer of the 
soil profile and M S C the maximum storage capacity of the same layer de- 
fined as the difference in moisture content between oven dry soil and field 
capacity. 

The value of S M C results from the accounting model proposed by WISER 
and VAN SCHILFGAARDE (1964). 

Prior to every storm period on,e knows by application of the water balance 
method the value of S M C, while M S C has a certain value. 

The remaining quantity of P - Q, is regarded as the input to the accoun- 
ting model developed by WISER and VAN SCHILFGAARDE (1964). 

The foregoing is an attempt to give a review of the various ways of ap- 
proaching the part of the runoff process which deals with the relation rain- 
fall/rainfall excess. The way in which this rainfall excess occurring through- 
out the drainage basin ultimately becomes a certain outflow hydrograph is 
not discussed nor are those models where both phases of the runoff process 
influence each other. The models referred to above supply the basic data con- 
cerning the expected amounts of rainfall excess needed for the practical ap- 
plication of constructions or calculations of hydrographs (such as the method 
of the unit hydrograph). 

An attempt has been made to arrange conveniently the frequently very 
different approaches. The threshold concept is a theme on which many varia- 
tions have been worked out. In general the water balance method is particu- 
larly appropriate where the rainfall excess runs off via the subsoil. On the 
other hand the infiltration approach is the obvious method when by far the 
greater part of the rainfall excess occurs as overland flow. The same applies 
to graphical correlation techniques and functional relationships, alth.ough the 
application to surface runoff alone is less fundamental in that case. I t  is cha- 
racteristic of both methods, however, that they deal with one component of the 



discharge only, either the surface runoff or the groundwater runoff. Only the 
infiltration approach and the threshold concept following the method of 
KOHLER (1963) knowingly take both components together. WISER and VAN 

SCHILFGAARDE (1964) and DE ZEEUW (in print), on the contrary, make an 
intended division of the rainfall excess among surface runoff and ground- 
water runoff. 

The introduction of digital computers will no doubt play a dominant r81e in 
the further development of models concerning the relation rainfalllrainfall 
excess. On the one hand they create th'e possibility of shortening the time in- 
terval considered; on the other hand it is feasible to compare different models 
with each other. 

The most important development in the use of the digital computer is pro- 
bably to be found in models developed by CRAWFORD and LINSLEY (1961) in 
which both phases of the runoff process i.e. the relation rainfalllrainfall ex- 
cess and rainfall excess-outflow hydrograph are directly connected. This does 
not mean to say that the models described will consequently lose their signifi- 
cance: the contrary is true. In hydrology the process rainfall excess/outflow 
hydrograph has always received most attention, especially from the theoretical 
hydrologists. By relating both components of the runoff process, it may now 
be expected that the relation rainfalllrainfall excess will ultimately receive 
also the attention it has been deserving for a long time. 
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11. RUNOFF MODELS W I T H  LINEAR ELEMENTS 

D. A. KRAIJENHOFF VAN DE LEUR 
Agricultural University of Wageningen 

The basic assumption underlying the unit hydrograph method is that a 
drainage basin fed with a unit depth of excess rainfall, uniformly spread both 
in space and in time, will produce a discharge wave of a certain shape corres- 
ponding to the particular duration of excess rainfall that caused the discharge. 

The fundamental implications of this assumption have been investigated 
by DOOGE and NASH. They have provided the theoretical tools for the ana- 
lysis and evaluation of rainfalllrunoff relations developed in the past and 
have generalized the study of linear runoff systems. In the following presen- 
tation a number of basic notions introduced by these hydrologists will be 
used. 

A unit depth of excess rainfall uniformly distributed over a T-hour period 
causes a T-hour unit-hydrograph (TUH), to be expressed mathematically as 
u(T, t). The drainage process can be considered as a system in which the in- 
put is excess rainfall and the output is the discharge a t  the basin outlet. I t  
can then be stated that the system transforms a unit block input of duration 
T into an  output to be described as U( T, t). 

When the input duration T is reduced the input rate must increase accor- 
dingly since the total volume of block input must remain unity. The effect on 
u(T, t) will be that the peak of this T-hour unit hydrograph becomes earlier 
and higher (fig. 1). It is found however that it gradually merges into its limi- 
ting shape, the instantaneous unit hydrograph (IUH), indicated as u(o, t ) .  
This ZUH is the result of an instantaneous input of unit volume into the 
system. 

I t  may be recalled at this point that in the graphical application of the unit 
hydrograph method the time distribution of excess rainfall is broken up into 
unit intervals of steady input rates. These intervals are chosen so short that 
the corresponding u(T, t )  deviates only slightly from the u(o, t )  for the basin 
under consideration. This implies that the deviation from uniformity of the 
real distribution of input over this ,,unit storm period" does not affect the 
shape of the unit hydrograph. 

In the theory of linear system analysis (ASELTINE, 1958) the response of a 
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FIG. 1. Shape of the unit hydrograph for various duration5 of excess rainfall. 

system to an infinitesimal input of unit volume or unit impulse (8-function) 
is called the indicial response to unit impulse or the impulse response of the 
system. 

The unit hydrograph method presupposes a drainage basin that can be ty- 
pified by a constant IUH, invariant in time (t) and independent of preceding 
events in the runoff process. Consequently any instantaneous input of unit 
volume will be transformed into the same fundamental ,,building element" of 
discharge. In the light of the theory of system analysis such a drainage basin 
may be considered as a constant coefficient linear system to be described by: 

dny 
n-l 

+ . . . . . Aoy = ~ ( t )  An - + An-l- d tn dtn-' 
Such a system indeed has a time-invariant impulse response h(t). This 

equation also implies that the response to a sum of inputs is identical to the 
sum of the respons'es to these inputs applied separately, which essentially is 
the property of superposition. 

Figure 2 shows that a general input can be considered as a succession of 
infinitesimal instantaneous inputs of volume x(z)dz. Each of these infinitesi- 
mal inputs will add its contribution h (t-z)x(z)dz to the rate of output y at 



the time t .  It follows that the total rate of output equals the sum of all these 
infinitesimal components: 

0 

This is the so-called convolution integral which is another characteristic of 
a linear system, determined by its kernel h(t-z). 

FIG. 2. A linear time-invariant operation. 

A reverse reasoning leads to the conclusion that any rainfalllrunoff rela- 
tion that can be described by a constant coefficient linear differential equa- 
tion satisfies the conditions of the unit hydrograph method. NASH and DOOGE 
have shown that a variety of so called runoff routing procedures can be con- 
sidered as applications of unit hydrographs of predetermined shapes. In  this 
presentation a similar evaluation procedure will also be applied to a number 
of rainfalllrunoff relations that have been developed in the Netherlands. 

Although the unit hydrograph method has found a world wide application 
all hydrologists agree that a strictly linear and time-invariant relation be- 
tw,een rainfall and runoff cannot exist. The greatest source of non-linearity 
undoubtedly lies in the procedure of substracting losses and basin recharge 
from rainfall in order to obtain rainfall excess that will become overland 



flow and leave the basin as surface runoff at the outlet. According to the 
usual procedure, base flow, the relatively slow reaction of groundwater run- 
off, is separated from the outflow hydrograph and the resulting hydrograph 
of surface runoff is then considered as the result of the operation performed 
on rainfall excess by the runoff process. 

Even if only this transformation into surface runoff is taken into considera- 
tion the hydraulic equations which express component flow processes indicate 
the improbability of strictly meeting the basic requirements of the unit hydro- 
graph method: open channel flow, spatially varied overland flow and many 
types of storage are non-linear. Another question is, however, to what degree 
of overall non-linearity may these various non-linear components combine. 
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FIG. Q. Linear area-discharge relationships (DE JAGER, 1965). 

I t  should be realized in this connection that channels in nature sometimes 
show an unexpected linearity as shown in figure 3, taken from DE JAGER'S 

thesis (1965). The reason for this straight line relationship between discharge 
and wetted cross section could be the increased channel roughness caused by 
heavy growths of weeds on the channel slopes. 

I t  can also be imagined that overland flow may run through a string of 



small storages of which some have sub-linear and others supra-linear rela- 
tions between storage and outflow rate (fig. 4). 

Finally it is a well known fact that the occurrence of overbank flow will slow 
down the propagation of a flood wave wh'ereas its celerity had been increa- 
sing with flow during the preceding period of rise. In a channel network 
overbank flow at different places will occur at different times and here again 
a source of compensating non-linearities may exist. 
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FIG. 4. Different types of non-linear storage. 

More research into these components of the runoff process is needed, be- 
cause the traditional sheet-flow and unsteady flow in prismatic channels can 
present only a simplified pictur'e of overland flow and flow through the 
channel system. 

Many hydrologists hold the view that the transformation of excess rainfall 
into surface runoff can in many cases be described by a constant coefficient 
linear system with a sufficient degree of accuracy. 

AMOROCHO and ORLOB (1961), AMOROCHO (1963) and AMOROCHO and HART 
(1964, 1965) are working along other lines. They state that the assumption of 
linearity and time invariance must in many cases lead to serious errors and 
suggest that the principal excuses for maintaining faulty linear procedures 
are: 

(a) Lack of data accurate enough to disprove these methods. 

(b) Variable non-uniform distribution of rainfall excess over the drainage 



basin. Here difficulties will arise for the application of both linear and 
non-linear systems since in both systems one parameter represents the 
input and another parameter stands for the output. If no seepage losses 
occur there is no objection to "lumping" the output. A lumped input how- 
ever can only represent an input that is uniformly spread over the drai- 
nage basin or at least according to a certain fixed pattern. Now it is only 
too easy to ascribe bad fits of computed and observed hydrographs to the 
effect of variance in the rainfall distribution and thus pass over another 
source of errors, the assumption of linearity. 

( c )  The intricacy of non-linear systems analysis as compared with the relative 
simplicity of linear systems analysis. 

AMOROCHO (1963) distinguishes three types of systems: 

1. The linear, time-invariant system where the relation between input x and 
output y can be expressed as follows: 

t 
y(t) = x ( ~ ) h ( t - T ) ~ T  (3) 

0 

Here the operator is a fixed function of t-z, the distance in time between 
the moment of the infinitesimal input x(z)dz and the time at which the 
outflow is considered (fig. 2). 

2. The linear, time-variant system, to be expressed by the functional: 

t 
y(t) = j x ( ~ ) h ( ~ , t - T ) ~ T  (4) 

0 

This is a more general form of the convolution integral that goes with a 
variable coefficient linear differential equation: 

d"-'Y 
A"(t) d"y + An-,(t) -- + . . . . .  

dt" dtn-' 
Ao( t )y  = x(t) 

The operation expressed in the above convolution integral is illustrated 
in figure 5. It shows the operator as a variable function of t-z which 
function depends on the moment z of the infinitesimal input x(z)dz. This 
means for a runoff system that the IUH changes with time; in other words 
the transformation of a unit of excess rainfall is time-dependent, possibly 
in the short term (during a storm) or in the long term (with change of 
season). 



FIG. 5. A linear time-variant operation. 

3. The non-linear time-variant system. A rigorous treatment of such systems 
was not presented, but AMOROGHO suggests that a complex non-linear 
system which is a polynominal system can be expressed as a series of 
functionals: 

The first term on the right hand side expresses a first approximation 
by a linear system. The errors caused by the interaction of input elements 
in the operation are accounted for in the following terms which are con- 
volution integrals of progessively higher dimensions. 

A characteristic feature of a non-linear system is that the principle of 
superposition no longer applies: 

y = x2 means yl = x12 and y2 = xZ2 but y1 + y2 # (xl + x ~ ) ~  

y = sin x means yl = sin x, and y2 = sin x2 but yl + y2 # sin (xl + x2) 

Hydrologic systems are non-linear time-variant: the transformation of 
rainfall into runoff is dependent both on the season and on the antece- 
dent rainfall. The latter is not only an important factor in the relation 
between rainfall and excess rainfall but it also determines the initial con- 
ditions in non-linear storages and channels when a new wave of runoff is 
on its way through the drainage basin. 

Although it appears that AMOROCHO and his co-workers have made de- 
finite advances on their way to a systematic analysis of non-linear sys- 
tems, they have not yet arrived at a routine procedure for the study of 
rainfall/runoff relations. Among their achievements to date are impres- 
sive contributions to an insight into hydrograph analysis and new alleys 



of research which they have explored making use of modern methods in 
the analysis of non-linear systems. 

Along with such efforts to develop a fundamental non-linear approach, 
much work has been done to find new and better linear models to repre- 
sent the transformation of excess rainfall into discharge. In many cases 
such linear models have been successful and it seems possible to make use 
of recently gained insight into sources of non-linearity and introduce 
local time-variant units and non-linearities into mainly linear models in 
order to broaden their scope and inc~ease their degree of generality. 

A typical feature of such linear models is that they are made up of 
linear units, either linear storages or linear channels. 

In the theory of system analysis the symbols x and y usually indicate input 
and output. In the following, when this theory will be applied to hydrologic 
systems, however, p will be used for rate of inflow and q will represent the 
rate of outflow in correspondence with practice in these fields. 

FIG. 6. A hydraulic and an electric analog for a linear storage. 

Figure 6 shows a hydraulic linear unit consisting of a cylinder that drains 
through a capillary and its electrical counterpart, the so-called RC-circuit. 
The differential equation relating output q(t) to an input function p(t) is a 
constant coefficient linear equation so that this unit will have a constant 
time-invariant impulse response which can be written as: 

In the hydraulic analog in figure 6 the latter equation applies to the de- 
pletion of unit storage with P(t) = o for t  > o. 



This simple linear storage model was first introduced by ZOCH (1934). In 
order to find the "routing 'equation" for one linear storage the IUH can be 
convoluted with a constant input rate PI: 

At the end of the first interval of unit duration: 

According to the superposition principle the outflow rate at the end of the 
next unit interval of inflow rate b2 is: 

Thus for a simple linear storage typified by its proportionality factor k, the 
outflow rate at the end of an interval can be derived from the outflow rate 
at the end of the former interval and the inflow during the considered inter- 
val. In general: 

When a linear storage discharges into another linear storage the system 
may be considered as a cascade of two linear storages with respective pro- 
portionality factors k1 and kz. An instantaneous input of unit volume into the 
first storage causes outflow into the second storage: 

The outflow from the system can be found through a convolution of the 
IUH of the second storage with this inflow: 



This expression for the IUH shows that the sequence of the two successive 
operations does not affect the result: k1 and k2 in equation (9) can be inter- 
changed. This model was published by SUGAWARA and MARUYAMA in 1956. 

Following the same procedure expressions for the IUH can now be derived 
for cascades with increasing numbers of equal storages. 

For two equal storages: 

For three equal storages: 

0 

For n equal storages: 

n- l 
1 t  1 - t /k 

u(o,t) =- (-) --- e k k  (n- l ) !  

NASH (1957) suggested that such a cascade of n storages is a sufficiently 
general model of the catchment mechanism and that equation (12) could 
therefore be taken as the general equation of the IUH. To allow non-integral 
n values NASH substituted the factorial by a Gamma function: 

One may consider the IUH as the frequency distribution of the times of 
arrival at the outlet of water particles after the instantaneous application of 
the unit volume of excess rainfall uniformly spread over the drainage basin 
at zero time. The expectation value E(t) is the distance in time between the 
centre of area of the outflow graph and the centre of area of the instantane- 
ous input (which is zero). This mean time of arrival is also called the "lag" 
of the system. 

For the NASH Gamma distribution of (12), 

i n-l 1 - t / k  
E(t) = u(o,t) . t . dt =. t($ -- 

(n-l)! 
e d t / k  



Here the integrand represents another Gamma distribution of order n 4- 1 
and its area equals unity. It follows: 

Lag = n k (13) 

The spreading of these times of arrival about their mean value nk can be 
expressed by the second moment of the I U H  about this centre of area. W e  
thus find the variance of the arrival time: 

Var (t) - = E(t2) - [E@)]' 

Here again the integral equals unity because the integrand is a Gamma 
distribution of the order n + 2. It follows that 

Var ( t )  = k2n2 t k% - k2n2 = k2n - (14) 

DOOGE (1959) introduced the "linear channel". When a wave passes 
through a linear channel there is pure translation only and no attenuation 
occurs. The shape of input and output waves is the same and the lag in a 
linear channel equals the time of travel of a wave. 

DOOGE made the important observation that this linear channel can be con- 
sidered as a cascade of an infinite number of infinitesimal storages. I n  this 
case in the expression lag = nk the number n approaches infinity and k ap- 
proaches zero. It follows from eq. (14) that the variance approaches zero which 
means that an instantaneous input of unit volume will cause a similar instan- 
taneous outflow from the system after the expiration of the lag nk. If a wave 
is considered as a succession of instantaneous inflows, it follows that the wave 
will pass unaltered through the linear channel without change of shape. 

NASH (1960) proved that the lag of the IUH also represents the distance in 
time between the centres of area of any inflow graph and the resulting out% 
flow graph (fig. 7). When the inflow graph is broken up in unit intervals of 
short duration each strip can be substituted by a vertical vector representing 
its " weight". These strips are subsequently transformed into elements of the 
outflow wave and each of these elements can also be replaced by a vector re- 
presenting its "weight". 
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FIG. 7. The lag between inflow and outflow. 

It follows that the transformation of inflow into outflow causes the "weight" 
vector of each element to be shifted in time over the period of lag and there- 
fore the distance between the total "weight" of input and output graphs must 
also be the lag of the IUH. 

Another feature of the IUH which is frequently used is the time to peak 
(t,). The IUH reaches its maximum when the first derivative equals zero: 

it follows that (n-l) - tlk = 0 and t ,  = (n-l)k.  



A final question is how to derive a T-hour unit hydrograph from a known 
ZUH. For this purpose NASH (1958) makes use of another indicial response of 
a system, the so-called S-curve, which is the response to a "unit step input". 

a: from an S-curve, 
b: from an ZUH. 

This input is a constant inflow of unit intensity starting at zero time. The 
S-curve pictures the growth of the outflow rate to its final unit value (fig. 8). 
Its mathematical expression follows from the convolution: 

t 
S, = / a (o,t-.)d. . 

0 

Substituting t-z = o and dz = -do 



An S-curve starting at the time T can be expressed by 

It follows that a block input of duration T and intensity 11T causes the T- 
hour unit hydrograph: 

t 
= f / w(o,~)do 

t-T 
(valid for t 3 T .  For t < T the lower limit becomes zero). 

1 t n- l 1 -tlk 
For a cascade of n equal storages: u(o, t )  = - (-) - k k  

e 
(n-l) ! 

and the integrals St and St-T represent incomplete Gamma functions which 
have been tabulated (Pearson's Tables of Incomplete Gamma Functions). 

Figure 8 also shows the graphical interpretation of equation (18): the ordi- 
nate u(T, t )  of the TUH equals the mean ordinate of the IUH over the inter- 
val from t-7' to t. 

After this discussion of the general features of the Gamma distribution 
which is the mathematical expression of the transformation due to a cascade 
of linear storages, there follows a review of some linear runoff models. 

4. RUNOFF MODELS 

In the history of rainfalllrunoff models it is possible to discern two devel- 
opments, one based on the concept of storage between inflow and outflow and 
the other taking translation as the basic feature of movement to the basin 
outlet. 

a. Storage approach 

LYSHEDE (1955) in his study of Danish watercourses called attention to the 
various forms of storage through which rainfall excess has to pass on its way 
to the outlet. He describes the rainfalllrunoff relations with a sum of expo- 
nential functions which should represent the effect of a cascade of linear sto- 
rages. LYSHEDE however adds the observation that any curve can be fairly 
accurately described by the sum of several exponential functions and there- 



fore the possibilities of a physical interpretation of such models should not be 
overestimated. In a note he mentions the Gamma distribution as suggested by 
EDSON (1951) that could well describe the approximate form of unitgraphs. 

SATO and MIKKAWA (1956) published a runoff routing method for the 
transformation of successive hourly rainfall rates into a discharge hydrograph 
for a small river in Japan. This routing equation is based on the second 
order Gamma distribution as a fundamental runoff function: 

Making use of equation (17) SATO and MIKKAWA'S expression for a one 
hour unit hydrograph can be derived as follows: 

C t- l 
.(i,t) = J i .%(o,T)~T - J i .a(o,r)dr = j u(o,r)dr 

0 0 t-l 

1 7  -T/k 
t 

=/ g z e  d = J - d e  -'=/h 

t-l 
k 

t-l 

t-l t 
7 -7/k / - J  e-7/k -- 

- k e  d(-'=l k )  
t t-l 

t-l -- 
k t-l 

= e + -tik (r + 1 )  valid for t 3 l (18) 

For an inflow of for units per hour the flow rate ( t  3 l )  can be written as: 

t-l  

k t-l + 1 -  e -t/k ( % +  t l ) ]  

Here f ,  is a runoff coefficient. 
SATO and MIKKAWA found that a series of terms like (19) could well des- 



cribe the discharge from the drainage basin caused by a one hour rain of 
depth r:  

q = Fl(t) + F2(t) + . . . . . . . . 
t-l  

kl t-l  
(--- + 1 )  - e 

kl 

t-l  -- t - 

r27- {e 
k2 (-+ t - l  1 1 - 0  h2 (- t  + 1 ) )  + .  . . . . . . .(20) 

k2 k2 

This runoff system can be simulated by the hydraulic analog in figure 9. 
The terms of this series of second order Gamma distributions are of de- 
creasing magnitude and SATO and MIKKAWA found that two or three terms 
gave results of sufficient accuracy. 

FIG. 9. Parallel cascades of equal storages 
a: SATO and MIKKAWA (1956), 
b: DISKIN (1964). 

In a final note the writers state that the n-order Gamma distribution is a 
suitable element for the characterization of runoff in any river basin. 

In their 1956 paper SATO and MIKKAWA indicate that k1 is to be found as 
the time to peak in the hydrograph. I t  follows from equation (15) that this is 
true for the second order Gamma distribution which is the expression for the 



ZUH of each separate branch of two equal storages. The writers apparently 
assumed that the time of inflow is so short that the hydrograph is practically 
identical to an instantaneous hydrograph and that the peak caused in the first 
branch of the model will be dominant. In  1959 TAKENOUCHI describes SATO'S 
method and he states that k1 should be computed from the equation 

which is the time to peak for a one-hour hydrograph of the first branch of 
the model. 

In  the example given by SATO and MIKKAWA the time to peak varied be- 
tween 2 and 5 hours depending on the initial flow rate before the flood wave 
passed and on the total amount of preceding rainfall. The writers found cer- 
tain relationships for this dependency so that kl could be varied in a step by 
step computation according to these relationships. It should be noted that 
here the introduction of a non-linear element into a linear system is sug- 
ges ted. 

No further details will be given here of the actual curve-fitting by trial 
and error as presented in the paper; suffice it to draw the following conclu- 
sions: 

(1) The Gamma distribution was adopted as a basic element of the system 
response. It is interesting to note that EDSON (1951), NASH (1957) and 
KALININ and MILYUKOV (1958) arrived at the same conclusion. 

(2) As a consequence of (1) the unit hydrograph was represented by a series 
of Gamma distributions. DOOGE'S research has brought him to the same 
conclusion. In his recently published analysis of linear systems he used 
Laguerre functions to analyse the inputloutput response. This method 
leads to a Gamma distribution series expansion to represent the impulse 
response of a heavily damped system. 

(3) A non-linear feedback procedure of parameters that are determined by 
the output from the system is indicated. I t  has already been suggested in 
the beginning of this paper that this line of enquiry could be pursued 
further along with AMOROCHO'S non-linear approach. 

(4) Recently DISKIN (1964) proposed a model which consists of two "NASH- 
cascades" in parallel which is very similar to SATO and MIKKAWA'S model. 
DISKIN also suggests elements of non-linearity, one of them is that the 



lag would vary with the base flow. He does not indicate, however, how his 
model could account for such non-linearity. 

b. Translation approach 

According to DOOGE (1959) it was MULVANEY who in 1851 proposed a 
method that is known as the rational nzetlzod. This method is based on the 
assumption that the effect of rainfall on the most remote part of the basin 
takes a certain period, the time of concentration T,, to arrive at the outlet. 
This time of concentration can either be derived from correlations with basin 
characteristics or it can be computed from the times of flow in successive 
"bank-full" reaches of the main channel. It is further assumed that a con- 
stant intensity of excess rainfall Cp occurs, uniformly spread over the 
area A, where C is a runoff coefficient. If this rate of input, a step func- 
tion, continues until the time of concentration T ,  has expired, the excess 
rainfall that fell on the remotest point of the drainage basin will just begin 
to cause a reaction at the outflow so that the latter wil have reached its ulti- 
mate and maximum rate Q = CpA. 

If it is decided that the design flow rate Q may be exceeded on an average 
of once in N years, rainfall intensit~lduration formulas or graphs are used 
to find the average rainfall rate p for the period T, to be exceeded with an 
average return interval on N years (fig. 10). 

p 2  
P I  

30min. 6 0  min. 

FIG. 10. Rational method. 

One fundamental weakness of this method comes out when the growth of 
Q over the period T,  to its final value Q = CPA is considered. This growth 
can be represented by an S-curve the ordinates of which have been multi- 



plied by CpA. The shape of this curve is determined by the basin's geome- 
try and topography. 

Figure 10 shows the T ,  hydrograph and the l/zT, hydrograph, both caused 
by rainfall intensities of the same probability 11N. Obviously the average rain- 
fall rate p2 with the same recurrence interval of N years but for a period of 
l/zT, will result in a higher outflow rate because this rate p2 is considerably 
higher than the rate PI for the total time of concentration T ,  . 

The modified rational method or time area method can be considered as 
the next step in the translation approach. Using the hydraulic features of the 
"bank-full" channel system the travel times to the outlet are determined for 
a number of points in the drainage basin and time contour-lines with equal 
time intervals are drawn. If it is assumed that an instantaneous excess rain- 

----- 
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FIG. 11 .  Modified rational method. 

fall of unit depth occurs simultaneously on all points of the basin, the excess 
rainfall on the elementary area between the time contourlines t and t + 1 
will arrive at the outlet between t and t + 1 and will be represented by the 
appropriate part of the instantaneous hydrograph situated over this interval. 
This hydrograph can be called the time area diagram or curve. Dividing all 
ordinates by the number of surface units A will yield the ZUH according to 
the modified rational method. 

A number of finite period TUH's are now tried and their ordinates multi- 
plied by the appropriate rates from the rainfall intensitylduration curve in 
order to find the highest ~ e a k  flow value (fig. 10). This method certainly 
shows a marked improvement when compared with the rational method. Of 



course the method is not restricted to a constant input over the critical period 
and any design storm can be transformed to an outflow hydrograph. 

The topography of the basin may indicate that a certain pattern of area1 
distribution instead of a uniform rain must be considered as critical. For that 
case the elementary areas between the time contour lines should be weighted 
accordingly and this will result in a time area diagram that is adjusted for 
the variation in rainfall intensity (DOOGE, 1959). 

The lag of this linear translation model is the distance in time between the 
origin and the centre of area of the time area diagram. 

Within the scope of this presentation of runoff models with linear elements 
it is relevant to note that in both the rational method and the modified ratio- 
nal method the translation of excess rainfall is supposed to occur through a 
system of linear channels. In these channels the travel times are independent 
of discharge rates. 

The channel system can be represented by a system of conveyor belts each 
moving with its own constant speed independent of the load that is dumped 
on it. To simplify the picture further the system of conveyors can be re- 
placed by one string of conveyors along the main channel. Each elementary 
area between two time contour lines dumps its load of excess rainfall into the 
line of conveyors at the point where it crosses this elementary area. The local 
translation on the line is slower as the time contour lines are closer together 
and it follows from continuity reasons that "congestions" of storage will oc- 
cur at these points. To return to the runoff process this would mean that 
there is more storage in regions where the velocity of propagation is relatively 
low. This seems to be natural, but it must be added that the assumption of a 
constant velocity independent of the discharge rate is not realistic in most 
cases, since usually the one increases with the other. 

N A ~ H  (1958) applied the modified rational method to a number of natural 
drainage basins where actual time distributions of excess rain and outflow 
rates were available. Comparison of computed and observed hydrographs 
however, showed a serious overestimation of flood peaks. 

c. Combined approach 

In a series of papers (1934, 1936, 1937) ZOCH presented a runoff model 
which consisted of one linear storage that was fed by a rectangular block in- 
put of uniform excess rain. He  also presented solutions for triangular and 
elliptic inputs. 

These inputs can be considered as the efffect of translation in particular 



basins (which have the appropriate shape and topography) on an instantane- 
ous excess rainfall. In that case the input diagrams represent the respective 
time area curves. 

Indeed CLARK (1954) used this same idea and presented an ZUH that was 
obtained by routing the time area curve through a single linear storage. He 
first calculated translation times and drew the time contour lines in order to 
find the time area curve. This curve is usually approximated by a bar dia- 
gram (fig. 12) and the successive flow rates of this diagram can be routed 
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FIG. 12. Combined translation and storage models. 



through the linear storage by the use of the routing equation: 

O'KELLY (1955) concluded from his study of a number of Irish drainage 
basins that the smoothing effect of storage on the time area curve was so 
great that the latter could be replaced by an isosceles triangle without loss of 
accuracy. The base of this triangle was the time of concentration T ,  and its 
area represented the unit depth of input. O'KELLY routed this input through 
one linear storage in order to find the IUH. 

DOOGE (1959) presented a general theory for the linear runoff model. I t  is 
based on the assumption that the composite effects of storage and translation 
in a linear drainage basin can be represented by the transformation performed 
by a cascade of linear channels connecting equal linear storage elements. The 
rainfall excess from the elementary areas between successive contour lines is 
fed into this cascade and subsequently routed through the appropriate length 
of linear channel and the corresponding number of equal linear storage ele- 
ments. DOOGE shows that CLARK'S and NASH'S methods are special cases of 
his generalized model. 

Attention should be drawn to the fact that DOOGE'S time area concentration 
curve represents translation effects which include the delay time due to over- 
bank storage, whereas the classical method of computing travel times to the 
outlet is based on the assumption of a bankfull channel system. 

SINGH (1964) presented a model where the time area curve is routed through 
two linear storages respectively representing the effects of overland flow and 
channel flow. Both the second storage parameter k2 and the time concentra- 
tion T,  vary with the "equivalent instantaneous rainfall excess" which is the 
ratio of the reconstructed peak discharge and the peak ordinate of the IUH 
used in reconstructing the discharge hydrograph. Since this ratio determines 
the IUH it is a trial and error procedure which introduces a non-linear ele- 
ment into the model. This and a number of other models have been reviewed 
by VEN TE CHOW (1 964). 

LAURENSON (1962) discussed a number of runoff models and especially 
called attention to the fact that separation of translation from attenuation is 
unreal since any storage produces both. An underlying misconception is to 
apply the time of travel concept to a "drop of water" whereas the true impli- 
cation or lap is the time it takes the effect of an element of rainfall excess to 
reach the outlet. LAURENSON also studied the effect of non-linearities on the 
relation between rainfall excess and discharge from a drainage basin. 



In the Netherlands with its flat topography, its deep soils and long lasting 
rains of relatively low intensity, surface runoff is not a common phenomenon 
in natural drainage basins. This was the reason why primary attention was 
given to the hydrograph of groundwater flow. Little thought was given to 
unit hydrograph theory since groundwater flow had been explicitly excluded 
from practical unit hydrograph studies. 

In order to arrive at rules that express the relation between rainfall and 
groundwater runoff efforts were directed towards finding mathematical ex- 
pressions for the flow system. Considering that the subsoil in this country has 
been deposited in horizontal layers and the fact that straight parallel drains 
are frequent, the linearized two dimensional DUPUIT-FORCHHEIMER model was 
expected to provide a reasonable approximation: 

According to this model, non steady groundwater flow to drains is analogous 
to one dimensional heat-flow and, following BOUSSINESQ, a number of mathe- 
matical techniques that were developed in this field were applied with ad- 
vantage to the study of groundwater flow. 

When applying the classification suggested by AMOROCHO and HART (1964) 
it might be stated that zlhe study of groundwater runoff should be ranged 
under physical hydrology since it tries to give a quantitative description of a 
natural hydrologic system based on the laws of hydrodynamics. 

I t  should be noted that such a model of groundwater flow is very simple 
as compared with any model that would describe, within a reasonable degree 
of accuracy, the intricate process of direct runoff. The complete runoff pro- 
cess is a system of interconnected component processes with complicated in- 
teractions and it is not yet susceptible to a full quantitative description. There- 
fore the general type of runoff model as presented in this paper, belongs to 
the field of system investigations applied to hydrology, what has been called 
L& parametric" hydrology that is aimed solely at finding an input-output rela- 
tionship that can be used for the reconstruction of past events or the predic- 
tion of future events. 

Dutch hydrologists have so far been reluctant to leave the safe ground of 
physical hydrology: they try to stretch their solutions obtained for simplified 



models to fit hydrologic situations that deviate considerably from their simple 
basic models. It would seem that in this fitting process a certain amount of 
subjective judgement is used, based on qualitative and semi-quantitative in- 
sight in the role of a number of complicating factors. The main object of hy- 
drologic research in this country has been the improvement of this insight 
through studies of nature and models. 

The unit hydrograph method clearly belongs to the domain of parametric 
hydrology and moreover it deals exclusively with direct runoff and pays 
hardly any attention to groundwater flow. For these reasons the theoretical 
implications of the unit hydrograph method as brought forward by NASH. 
DOOGE, O'DONNELL and others, at first went by unheeded until it was dis- 
covered some years ago that the basic assumptions of linearity and invariance 
which underlie the unit hydrograph methods are in complete accord with the 
nature of the simplifying assumptions that have been accepted in order to 
find analytical solutions for the equations describing the flow of groundwater. 

At this moment of discovery it was found that concepts developed in phy- 
sical groundwater hydrology also played important roles in parametric hy- 
drology. It appeared that these concepts had been developed systematically 
in parametric hydrology and the results could be used with advantage in the 
study of groundwater flow from polders and natural drainage basins. 

In the following sections a number of Dutch models for rainfalllrunoff 
studies will be discussed and special attention will be given to parallels with 
parametric hydrology. 

EDELMAN (1947) developed equations for the two-dimensional free surface 
flow of ground water from an infinite stretch of land into a channel where 
specified level variations and rates of withdrawal occur (fig. 13a). He  also 
noted that the approximating assumption of a constant transmissibility be- 
tween the free groundwater surface and the impermeable layer, causes the 
water level variations in the canal to have the same (computed) effect on 
groundwater flow as appropriate rates of rainfall and evaporation which 
cause variations of the groundwater level while the water in the channel is 
kept at the same level. 

Although EDELMAN repeatedly uses the superposition principle in his line- 
arized model he derives separate analytical solutions from his equation for 
the cases of instantaneous and gradual lowering of the water level in the 
canal. Through the use of the convolution integral the latter solution can be 
derived simply from the former. This will be shown in the following appli- 
cation of linear model concepts to the flow of ground water to a channel with 
a fixed level as caused by percolation of rain into the phreatic zone. 



FIG. 13. Models for non-steady groundwater runoff 
a: EDELMAN (1947), 
b: KRAIJENHOFF (1958). 

EDELMAN'S equation for one sided flow to a unit length of channel follow- 
ing an instantaneous lowering g, of the water level in th.e channel is: 

here p = active porosity and KD = transmissibility. 
An instantaneous supply of unit depth of rainfall causes the water table to 

rise I lp. The resulting flow to the unit length of channel is 

We can now apply the convolution integral in order to find the expression 
for the increase of groundwater flow as caused by a constant rate p of per- 
colation into the phreatic zone: 

In order to apply this equation to flow from a drainage basin, flow from 



two sides into a channel must be considered; this means multiplication by a 
factor 2. Then allowance must be made for the fact that a unit length of 
channel in a drainage basin only drains a limited stretch of land. The ave- 
rage length of these stretches is the reciprocal of the drainage density L = 
A/X l, where A = basin area and X l = the total length of channels in the 
basin. 

The flow to the channel system expressed as flow per unit area is 

Since the underlying E D E L M A N - ~ ~ U ~ ~ ~ O ~  was derived for flow from an in- 
finite stretch of land, this formula is only valid as long as flow to one channel 
is not being influenced by the presence of the other channels in the system. 
For a system of equidistant parallel channels this influence can be neglected 
until a period 

has expired since the beginning of percolation to a horizontal water table 
(fig. 14). All factors which determine the nature of the soil and the nature 

FIG. 14. Growth of butflow rates caused by a step function of inflow according to 
(a) EDELMAN and (b) KRAIJENHOFF. 



and density of the drainage network are incorporated in this "reservoir coef- 
ficient" which typifies the drainage situation (KRAIJENHOFF, 1958). In fig. 
14 equation (a) is identical with equation (24) and (b) represents the outflow 
from a stretch of land which has a limited width between two parallel 
channels (to be discussed in the next section). 

Introduction of the reservoir coefficient into eq. (24) indeed yields 

If j is expressed in unit intervals the rate of outflow at the end of the third 
interval for example must be: 

Because of its restricted applicability this simple formula can be used only 
to calculate groundwater flow caused by intensive short duration inputs of 
effective rainfall. 

GLOVER (1954) studied the falling groundwater table between equidistant 
parallel ditches or drains following an instantaneous application of a depth 
S of irrigation water: 

S 4  n = -  
H 1 -n2t/j  . n n x  . . 1 pL2 

y ( x , t )  = - - - e sin - L wlth I = 
p'n n=1,3,5.. rt 7~ KD 

KRAIJENHOFF (1958) derived from this equation the instantaneous hydro- 
graph of flow to the drainage channels. I t  can be expressed by: 

In analogy with the technique of influence lines this "influence function" 
was integrated in order to find the expression for flow caused by a continuous 
rate of steady percolation. It is apparent that here the concepts of the ZUH 
and the convolution integral were used. 



To pursue this parallel, (27) can be written as follows: 

Substituting kl = j, k2 =j/9 and k3 = jl25 etc. 

It can be shown that eq. (28) expresses the impulse response of a model 
that consists of parallel linear storages of decreasing magnitude, the respective 
storages being fed with decreasing parts of the input (fig. 13b). I t  should be 

1 1  
noted that 8/n2 ( l  + - + - + . .) = 1. A certain similarity with figure 9 

9 25 
is apparant. 

In order to find the lag of this model it should be realized that the various 
parts of input passing through the respective linear storages each undergo 
their appropriate lag. Since the total input volume is unity, it follows from 
the first moment about the origin: 

DE JAGER (1965) used this model for the synthesis of flood hydrographs of 
basins in alluvial soils. In cases of flat areas which were well drained by a 
system of parallel drains he obtained excellent fits with observed hydro- 
graphs. Here the drainage situation corresponded closely with the physical 
basis of the model. With a number of natural basins the agreement proved 
to be good. In some cases two parallel models were used, one with a relatively 
small and the other with a relatively large reservoir coefficient. 

In his search for a hydrological characteristic for a polder area, HELLINGA 
(1952) found an approximately constant ratio of the daily quantities of water 
pumped out of the polders and the amounts of rainfall excess that still re- 
mained to be pumped out. In other words this is an approximate proportio- 
nality of outflow rate and storage (fig. 15). 

DE ZEEUW and HELLINGA observed that storage in a polder area is mainly 



FIG. 15. Quasi-steady model of DE ZEEUW and HELLINGA (1952, 1958). 

the ground water stored below the groundwater table between the parallel 
tile drains or ditches. The mathematical expression for the ratio between 
outflow rate and storage was found from a combination of the continuity 
equation and the steady-state relationship between the rate of flow to par- 
allel drains and the storage below a groundwater table of elliptic shape 
(fig. 15). 

q= as 

KD 
and a = 10- 

kLa 

This is the expression for a single linear storage with a proportionality 
factor k =lla. Consequently the lag of this model is lla and the IUH can be 
expressed by 

By its very nature this quasi-steady solution is suited to describe relatively 
slow variations of flow. 

In his most recent models for natural drainage basins DE ZEEUW (in print) 
sometimes uses two or three parallel linear storages, whereas in other cases 
he places KRAIJENHOFF'S model parallel to one or two linear storages. The 
contributions from these parallel storages to the total outflow are functions 
of the flow rate from the biggest storage which represents groundwater flow 
from higher grounds. Here a non-linear element of feed-back is introduced 
and consequently neither an IUH nor a constant time lag can be indicated. 
DE ZEEUW and HELLINGA were the first to use one compound hydrologic 
factor to typify a drainage situation. This factor expressed in (30) was based 



on the shapes of the groundwater table that were observed in the field by 
KIRKHAM and DE ZEEUW (1952). 

WESSELING (1959) and VAN EYDEN (1959) developed quasi-steady routing 
methods based on the theoretical steady-state relation between groundwater 
storage and outflow. Their solutions obtained from a linearized equation for 
permanent flow to parallel drains are basically similar to those obtained by 
DE ZEEUW and HELLINGA but they find the proportionality factor: 

When these writers start from the full non-linear equation for permanent 
flow they arrive a t  complicated non-linear routing equations. These and 
other formulas for groundwater flow have been discussed by VAN KREGTEN in 
his excellent compendium (1963). 

WEMELSFELDER (1963) studied the persistence of Rhine discharges on a 
basis of monthly flows. He neglected any carry-over of direct runoff from 
one month to the other and he assumed that only the slow component of 
groundwater flow is subject to the effect of linear storage. WEMELSFELDER 
further assumed that a certain fraction of direct runoff will replenish the 

I or@-G) Q-G 

FIG. 16. Model for the relationship between river base flow and direct runoff( WEMELS- 
FELDER, 1963). 

ground water storage. This enabled him to calculate the "safe yield" of 
groundwater G from the successive values of monthly total discharge Q. Fi- 
gure 16 shows the model in an adjusted notation. Using this notation the 
c c  routing equation" can be written: 

a = G,e -l1' + - Qt(l-e -111 k 
Gt+1 1 where L = - 

l +a l +a 



WEMELSFELDER varied the distribution factor a depending on the rate of 
total discharge Q, which implies the introduction of a non-linear element 
into this model. 

The starting point for rainfall/runoff models in this country is the use of 
mathematical expressions for simplified non-steady groundwater flow pro- 
cesses. In many practical cases, however, the actual situation is far removed 
from these simplified basic models. In  such cases many new factors interfere, 
rendering the model unfit for a sufficiently accurate description of the runoff 
process. In this situation new components are added to the model as a result 
of a more or less subjective evaluation of these various hydrological factors 
and then the initial advantage of a physically based runoff model rapidly 
fades away. 

It is interesting to note that models developed in the sphere of physical 
hydrology appear to have a certain structural similarity with the models that 
arise from the field of linear system investigations where a good fit is the 
sole objective and the only physical argument may be that the runoff pro- 
cess is a heavily damped system (DOOGE, 1965). 

In recent years a number of methods have been presented that eliminate 
subjective judgement to a high degree. They provide analytical ways to derive 
the ZUH from the distribution in time of rainfall excess on one hand and the 
hydrograph of runoff on the other. In  fact these methods perform analytically 
what is done graphically in the unit hydrograph method, but then they are 
free from subjective averaging procedures and the system response can be 
derived from any individual event of rainfall excess and its subsequent dis- 
charge. 

O'DONNELL (1960) applied Fourier methods and DOOGE (1965) Laguerre 
functions to analyse input and output of a time invariant linear system and 
to define the impulse response. These methods will be extremely useful for 
the reconstruction of discharge hydrographs out of rainfall excess and thus 
for the determination of flood frequencies, but they leave the underlying phy- 
sics of the runoff process out of consideration and therefore can give no in- 
sight into the changes in the regime to be expected from human interference. 
Since this is a major aspect of drainage ~roblems in the Netherlands, physical 
hydrology will loose nothing of its importance along with the rapid develop- 
ment of new methods in systems analysis. The search for better ~hysical  
models will have to continue. 



LITERATURE 

AMOROCHO, J. and 
G. T. ORLOB 

AMOROCHO, J. and 
W. E. HART 

AMOROCHO, J. and 
W. E. HART 

GLOVER, see DUMM, L. D. 

HELLINGA, F. 

KALININ, G. P. and 
P. I. MILYUKOV 

KIRKHAM, D. and 
J. W. DE ZEEUW 

"Non-linear analysis of hydrologic systems". Water Resources 
Center, University of California. Contribution No. 40, Berke- 
ley, 1961. 

"Measures of the linearity of hydrologic systems". Journal 
Geological Research 68, pp 2237-2249, 1963. 

"A critique of current methods in hydrologic systems investi- 
gation". Trans. Am. Geophys. Union, 25, pp 307-321, 1964. 

"The use of laboratory -catchments in the study of hydrologic 
systems". Journal of Hydrology, Vol. I11 No. 2, pp 106-123, 
1965. 

"Transform method in linear system analysis". MC Graw-Hill 
New York, London, 300 pp, 1958. 

"Storage and the unit hydrograph". ASCE Trans. Vol. 100, 
pp 1416-1446, 1945. 

"A basic study of the linearity of the rainfull-runoff process 
in watersheds". Ph. D. Thesis Univ. of Illinois Urbana, Illi- 
nois, 160 pp, 1964. 

"A general theory of the unit hydrograph" Journal Geophy- 
sical Research 64, No. 2, pp 241-256, 1959. 

"Analysis of linear systems by means of Laguerre functions". 
Journal SIAM Control Ser. A, Vol 2 No 3, pp 396-408, 1965. 

,,Over de berekening van grondwaterstromingen". Doctor's 
Thesis, Delft, 1947. 

"Parmeters for relating unit hydrograph to watershed char- 
acteristics". Trans. Am. Geophys. Union Vol. 32 No 4, pp 
591-596, 1951. 

,,De algemene vergelijking voor de niet-stationaire afvoer van 
een drainage- of stroomgebied". Nota R.W.S. afd. Waterhuis- 
houding, 1959. 

"Drain spacing formula". Agric. Engin. pp 726-730, Oct. 1954. 

,,Enige aspecten van de inrichting van polders." De Ingenieur 
Vol. 64 No. 16, pp B33-B36, 1952. 

,,Hoge afvoeren van enige Nederlandse stroomgebieden". Doc- 
tor's Thesis, Centrum voor landbouwpublicaties en landbouw- 
documentatie Wageningen, 167 pp, 1965. 

"Approximate calculations of the unsteady flow of water 
masses". Trudy Ts.1.P. Issue 66, 1958. 

"Field measurements for tests of soil drainage theory". Soil 
Science Proc. Vol. 16 No. 3, pp 286-293, July 1952. 



SATO, S. and H. MIKKAWA 

SUGAWARA, M. and 
F. MARUYAMA 

"A study of non-steady groundwater flow with special refer- 
ence to a reservoir coefficient". De Zngenieur Vol. 70 No. 19, 
pp B87-B94, 1958. 

,,Analytische methoden berustende op de stromingswetten van 
het grondwater". Chapter 5 of ,,Interim Rapport Werkgroep 
Afvloeiingsfactoren", 1963. 

"Hydrograph synthesis by runoff routing". The University of 
New South Wales, Water Research Laboratory Report No. 66, 
Dec. 1962. 

"Hydrologic studies of Danish watercourses". Folia Geografih- 
ica Danica, Tome VI, 155 pp, 1955. 

"The form of the instantaneous unit hydrograph". ZASH As- 
sembUe Gknkrale de Toronto, Tome 111, pp 114-121, 1957. 

"A note on an investigation into two aspects of the relations 
between rainfall and storm runoff". IASH Publication NO. 
51, Commission of Surface Waters, pp 568-578, 1960. 

"Determining runoff from rainfall". Proc. Inst. Civ. Eng. Vol. 
10, pp 163-184, 1958. 

"Instantaneous unit hydrograph derivation by harmonic ana- 
lysis." IASH Publication No. 51, Commission of Surface Waters, 
pp 546-557, 1960. 

"The employment of unit hydrographs to determine the flows 
of Irish drainage channels". Proc. Inst. Civ. Eng., pp 365-412, 
1955. 

"A method of estimating runoff from rainfall." Proc. Regional 
Technical Conference on Water Resources Development in 
Asia and the Far East. Flood Control Series W M O  No. 9, pp 
152-155, 1956. 

"Non-linear instmtaneous unit-hydrograph theory." ASCE 
Journ. Hydr. Div. Vol. 90 No. HY2, pp 313-347, 1964. 

"A method of prevision of the river discharge by means of a 
rainfall model". Publ. No. 42 de 1'Ass. Internat. d'Hydr. 
Symposia Darcy, Tome 111, pp 71-76, 1956. 

"Study of flood estimation methods in Japan." Trans. Inter- 
regional Seminar on Hydrologic Networks and Methods, Bang- 
kok (1959). Flood Control Series W M O  No. 15, pp 123-128, 
1960. 

"Handbook of Applied Hydrology." Chapter 14 (1964). 

"The persistency of river discharges and groundwater storage." 
IASH Publication No. 63, Commission of Surface Waters, pp 
90-106, 1963. 

,,Vergelijkingen voor de niet-stationaire beweging." Nota voor 
de Werkgroep Afvloeiingsfactoren, 1959. 



ZEEUW, J. W. DE en ,,Neerslag en afvoer". Landbozcwkundig Tijdschrift 70, pp 
F. HELLINGA 405-421, 1958. 

ZEEUW, J. W. DE ,,Analyse van het afvoerverloop van gebieden met hoofdza- 
kelijk grondwaterafvoer." Doctor's Thesis Wageningen (in 
print). 

ZOGH, R. T. "On the relation between rainfall and stream flow." I, I1 and 
111, Monthly Weather Review Vol. 62 No. 9, pp 315-322, 
Vol. 64 No. 4, pp 105-121, Vol. 65, No. 4 pp 135-147 (1934, 
1936, 1937). 



111. METHODS OF COMPUTATION I N  HYDROGRAPH ANALYSIS 
AND SYNTHESIS 

T. O'DONNELL 

Imperial College, University o f  London 

The hydrograph of total streamflow at the outlet from a catchment is the 
overall continuing response of that catchment to the whole history of precipi- 
tation on the catchment. It has proved very beneficial in recent years to re- 
cognise that catchment behaviour is but one case of a general set of similar 
problems. This set is characterised by the presence of a system of some sort 
from which an output occurs as a response of the system to an input. "Systems 
engineering" has made remarkable progress in the last decade or so but hy- 
drologists have been slow to adopt the powerful techniques made available 
by that progress. It is the purpose of this paper to present an  account of the 
application to streamflow analysis and synthesis of certain computational 
techniques developed in systems engineering. 

The treatment given, by no means a comprehensive one, describes some of 
the techniques available. In outline, the paper falls into two parts correspon- 
ding to the two broad classes into which systems can be divided: linear 
systems and non-linear systems (fig. 1). The first part of the paper is mostly 
concerned with those linear systems whose response is time-invariant, but also 
includes a brief mention of time-variant linear systems. The second part 
deals with non-linear systems. In both parts the techniques described are di- 
vided into (a) those in which the input to and output from a system can be 
treated by methods of analysis to yield information on the response charac- 
teristics of the system, and (b) those in which synthesis or simulation tech- 
niques that in effect provide mathematical models of catchment behaviour 
are used. 

For the sake of completeness, the main body of the paper is   receded by a 
brief discussion of what constitutes a linear or a non-linear system. The 
author begs the indulgence of those to whom this discussion is superfluous 
and hopes that others will welcome an initial clarification of the division that 
is basic to the rest of the paper. 



catchment systems 

Anal ysi S Synthesis 

FIG. 1. Catchment studies via systems engineering methods. 

A system is said to be linear if its behaviour can be described by a linear 
differential equation. If x(t)  represents (as a fuction of time t )  an input to 
a system and y(t)  the corresponding output from that system, then the system 
is linear if y( t )  is related to x( t )  by an equation2$ of the form 

If y or any differential of y appeared other than to the first power, the 
system described by such an equation would be non-linear. 

* Equation (1) is not the most general form of a linear differential equation and hence does 
not represent a general linear system. The use of a single equation restricts the system to a 
single inputlsingle output system. The use of an ordinary differential equation means that 
the input and output are concentrated at  definite points. The right-hand side of the equa- 
tion will contain derivatives of x if there are return loops in the system. The discussion 
here, however, will he confined to linear systems described by an equation of the form (1). 



The coefficients Ai (i = 0,l . . . . n) may be constants or may themselves be 
functions of t. A time-invariant linear system is one described by an equation 
of the form (1) in which all the Ai coefficients are constants; if any or all 
coefficients are functions of t, the system described would be a time-variant 
linear system. 

The outstanding property of all linear systems is that they obey the prin- 
ciple of superposition. If the output y1 from a linear system described by an 
equation of the form (1) is caused by an input xi (i.e. y = yl is the solution of 
equation (1) when x =xl), and y2 is another output from the system due to 
another input x2, then the output y8 from an input (xl + x2) can be seen to be 
given simply by ys = yl i- y2. Also, if x2 = A.xl then yz = A.yl (this pro- 
portionality property is a particular case of the additive property). 

Such direct arithmetic superposition would not be permissible for a non- 
linear system. Put another way, in a linear system yz would be determined 
entirely by xz and would be independent of xl; in a non-linear system y2 
would depend on x1 as well as x2. 

For a time-invariant linear system, the output yl would always be the same 
whenever xl was applied. If the system were time-variant, however, then y1 
would depend on the time a t  which xi started as well as on xi itself. Generally 
speaking, non-linear systems are also time dependent with respect to start of 
input, but one must be careful to avoid the converse: a system which exhibits 
time dependence with regard to start of an input is not necessarily non- 
linear. 

FIG. 2. A simple single-reservoir system. 

To exemplify these concepts in a simple way, consider a system as in fi- 
gure 2, consisting of a single reservoir for which the storage, S, is related to 
the output, y, by the relationship: 

Then for an input x, we can write: 



dS dy If in equation (2) we put n = l ,  K = a constant, then - = K-; inser- 
dt d t 

ting into equation (3) we get: 

Thus for K constant and n = 1, the reservoir is a time-invariant linear 
system whose behaviour is described by equation (4). 

If now n = l  but K = K(t), a function of time, then we have: 

and insertion into equation (3) now gives: 

So for K dependent on time and n = 1, we have a time-variant linear 
system whose behaviour is described by equation (5). 

Finally, consider the case when n # 1 and, for simplicity, K = a constant. 

dS 
Then - = Kny "-l - 

d t  
d y  and the equation describing the system is: 
dt 

d y  Knyn-l. - + y = X 
d t (6)  

i.e. for n # l ,  whatever K, the reservoir is a non-linear system. 
In conclusion, it requires only one non-linear component in a system of 

many components to make that system non-linear. 

Two of the basic assumptions of the unit hydrograph method of relating a 
rainfall excess on a catchment to the resulting hydrograph of direct runoff 
are: 

(1) invariance of response - the same rainfall excess, whenever it is applied, 
will always produce the same direct runoff hydrograph; 

(2) superposition of responses - the runoff due to two or more different 
rainfalls applied together is the arithmetic sum of the separate runoffs 
caused by each of the rainfalls applied separately. 

Unit hydrograph theory is therefore based on the assumption that the 



catchment is a time-invariant linear system, at least so far as rainfall excess 
and direct runoff are concerned. 

The T-hour unit hydrograph (TUH) of a catchment, written u(T, t), may 
be defined as the direct runoff hydrograph due to unit volume of rainfall 
excess falling uniformly over the catchment in a period of T hours. If we 
make T smaller, keeping the volume of rainfall excess constant at unity, in 
the limit (as T approaches zero) the T U H  approaches the instantaneous unit 
hydrograph (IUH). In systems engineering terms, the I U H  is the impulse res- 
ponse of the catchment system, i.e. the output from the system due to an 
instantaneous impulse input of unit size. 

FIG. 3. The convolution operation. 

The impulse response of a time-invariant linear system is the key charac- 
teristic of that system. From it the response due to any other input can be 
derived. If we write h(t) for the I U H  of a catchment, then the direct runoff 
output, y(t), is related to its causative rainfall excess input, x(t), analytically 
by equations (7) (known as the convolution operation) and diagrammatically 
by figure 3. 

The first version of the convolution integral in equation (7) is the limiting 
case of the usual finite-period unit hydrograph procedure (illustrated in fig. 



FIG. 4. The unit hydrograph procedure. 

4) i.e. given a block rainfall histogram of mean intensities over intervals 
T (go, zl, X2. - . . Xi. . . . ) 

In the limit, as T --+ 0, the summation of (7a) is replaced by the integral 
in (7). 

An interesting case using the second version of the convolution integral in 

1 
(7) is to put x(t-z) = - for 0 (t-z) T but zero outside this range. This T 
implies a unit volume of rainfall excess occurring uniformly over a period T 
i.e. the runoff will be, by definition, the TUH. For this case, the range of z . 

is effectively from (t-T) to t (x(t-z) being zero otherwise) so these limits 
appear on the integral. We then get equation (8) which relates ordinates of 
the TUH to partial areas of the IUH: 

(with the lower limit replaced by zero if t < T). 
So, given the IUH, any design storm having specified volumes of rainfall 

excess occurring in intervals of length T can be found by first finding the 
TUH and then performing the usual finite-period unit hydrograph summation 
of equation (7a). This can be done for any desired value of T, thus permitting 
storm data from intensity/duration/frequency curves to be examined for a 
6 L  worst" case. 



Clearly, then, the I U H  is of great interest and the question of how to find 
an  I U H  is an important one. It will be appreciated that equation (7) can rea- 
dily be used to find the output, y(t), from a given input, x(t), and a known 
impulse response, h(t). However, the problem of finding h(t) from given y(t) 
and x(t) is not straightforward. Earlier work on this problem invoked the 
use of linear catchment models which, when fitted to catchment data, were 
then taken to have an impulse response equal to the I U H  of the catchment. 
This indirect synthesis approach has been followed by more direct analysis 
methods which endeavour to yield the I U H  directly from catchment data 
without postulating any specific model mechanism. 

It is relevant to emphasise again that unit hydrograph theory implies a 
linear mechanism for the transformation of rainfall excess into surface run- 
off. Should evidence be produced that the groundwater system also discharges 
baseflow into the stream via a linear transformation of percolation, then tech- 
niques of analysis of linear systems would be applicable to the whole of 
streamflow (making due allowance for "loss" of part of the total input via 
evapotranspiration). The fact that such total streamflow may never drop 
completely to zero merely implies that parts of the linear system have extre- 
mely long "memory" times. Appropriate steps can be taken in applying linear 
analysis methods to such long memory systems. The simplest might be to ter- 
minate the hydrograph after a drought period by some simple objective cri- 
terion on magnitude of discharge, i.e. assume that the total streamflow, when 
it is suitably small, has become zero. 

a. Linear system synthesis 

a. l. Time-invariant linear models 

T h e  N a s h  c a s c a d e  m o d e l  

NASH (1960) made a most significant contribution to unit hydrograph the- 
ory by showing that although it might be difficult to find the precise shape 
of the I U H  it is a very simple matter to derive certain overall properties of 
that shape, viz. its moments of area (fig. 5). 

For a time-invariant linear system described by an equation of the form 
(l), NASH showed that the first moments (about the origin) of the impulse 
response of that system, any input to the system and the corresponding out- 
put from the system ( H ; ,  Xi and Y; respectively) are related by: 

H ;  = Y; - X; (9) 
and that the second moments (about the centres of area), H2, X 2  and Y2, are 
related by 

H2 =Y2 - X2 (10) 



FIG. 5. Moments of area for a linear system. 

Similar relations, getting somewhat more complex, exist for the higher 
moments. 

These moment relationships, stemming purely and simply from the as- 
sumption that the catchment behaves as a time-invariant linear system, in- 
volve no approximation whatsoever - they are fundamental proporties af any 
such system. 

It is a simple matter to calculate the moments of area of rainfall and runoff 
curves, so the moments of an IUH for a given catchment can be found simply 
and directly from storm data recorded on that catchment via moment equa- 
tions such as (9) and (10). 

In order to complete the search for the IUH i.e. estimate its shape, NASH 
set out to develop a sufficiently general linear model of catchment behaviour. 
Any such model has an impulse response for which some general analytical 
equation, expressed in terms of the parameters of the model, can be derived. 
From this equation, expressions for the moments of area of the model impulse 
response can also be derived, again in terms of the parameters of the postu- 
lated model. 

For any given actual catchment data, numerical values of the ZUH mo- 
ments got from equations such as (9) and (10) when equated to the general 
expressions for the moments of the model impulse response will yield nume- 
rical estimates of the model parameters. These estimates, if substituted back 
into the general analytical equation for the model impulse response, will give 
a specific version of that equation. This is taken to be an approximation to 
the IUH of the catchment in question. 

In other words, a general model of a class of linear systems is fitted to any 
specific member of that class by matching the moments of area of the general 
model impulse response to those of the specific system impulse response (got 



directly from a set of input and output data for that system). Clearly, though 
there is no approximation (in principle) in finding the moments of the im- 
pulse response of the real system (inevitably, data errors will enter into the 
matter), there is an approximation implicit in the matching process: the model 
response can only be as good a representation of a real system response as the 
model itself is a good representation of reality. 

After considerable investigation, NASH (1960) chose as a sufficiently ade- 
quate general model of linear catchments a cascade of n identical linear reser- 
voirs in series, all having the storage characteristic: 

S =  K . y  (11) 

This two-parameter model calls for only two moment equations in order to 
solve for the values of the parameters n and K when matching any given 
catchment. 

The impulse response of the NASH-model is: 
n-l -t /k 

in which F is the gamma function and is tabulated (F = w ) . ( n - l )  and, 
if n is an integer, F = (n - I)!). For equation (12), the first moment (about 
the origin) is nK while the second moment (about the centre of area) is nK2, 
so the process of finding n and K values from catchment data via equations 
(9) and (10) is extremely simple: 

Once specific parameter values have been found for equation (12) for any 
given catchment, equation (8) calls for integration of the I U H  to yield any 
TUH. As NASH remarks, this can be done with tables of the incomplete gam- 
ma function, but of course numerical integration would be just as satisfactory 
and would be the natural choice for any computer usage of the NASH-tech- 
nique. In fact just the tedious repetitiveness of moment calculations on catch- 
ment data alone demands a digital computer solution of the NASH-technique. 
Such a solution might follow the general flow diagram shown in figure 6. 

A second and highly practical topic treated extensively by NASH (1960) is 
the question of estimating the IUH (and TUH's) of an ungauged catchment. 
Taking various physical features (area, slope, channel length etc.) of 90 
gauged catchments in the United Kingdom, NASH established good correla- 
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FIG. 6. Flow diagram for Nash technique. 



tions between these factors and dimensionless groupings of the various IUH 
moments (got directly from the measured rainfall and runoff data via the 
moment relationships). For any ungauged catchment, one would enter the 
correlation equations with values of the relevant physical factors for the 
catchment and so derive numerical estimates of its IUH moments. These 
would yield the n and K values necessary to carry out the required evaluation 
of the IUH (and any TUH) .  

T h e  D o o g e  m o d e l  

One of the criticisms that can be made of the NASH-model is that it allows 
for reservoir storage effects but not for channel translation effects present in any 
catchment. In  his brilliant fundamental study of the general theoretical basis 
of the unit hydrograph method, DOOGE (1959) developed a model technique 
which allows for translatory as well as storage effects in catchments. 

In brief, DOOGE'S general analysis of linear catchment systems postulates 
that the output from an element of a catchment incurs a translation delay 
time, z, and also passes through n linear reservoirs in its passage to the catch- 
ment outlet, n being dependent on z. The resulting rather unwieldy general 
equation for the impulse response of such a system is greatly simplified (with- 
out, as DOOGE shows, appreciable effects on the results) by two assumptions: 
(a) all elements having the same z value have the same chain of linear sto- 
rages to the outlet and (b) all the storages have the same storage characte- 
ristic, K. These assumptions yield a model system that can be represented 
diagrammatically as in figure 7.  

isochrone of constant T 

FIG. 7. The Dooge general catchment model. 

d A  
Bearing in mind that both n and - are functions of z, DOOGE'S final 

dz 
equation for the impulse response of this model to a non-uniformly distri- 
buted input can be written: 



in which m = -, (g) is the ordinate of the time-area curve at time r 
K T 

and i the average rainfall intensity along each isochrone (varying only with 
distance from the outlet). 

A procedure for evaluating equation (13) is presented by DOOGE (1959). 
The quantity in square brackets (the Poisson probability function) is avail- 
able in tables and so the integral can be evaluated numerically for any given 
t value by taking increments of z from 0 to t .  The distribution of linear re- 
servoirs (as a function of z) must be known or assumed and the time-area 
curve has to be found (again as a function of T) in order to carry out the in- 
tegration. The n ( ~ )  distribution may be found by a moments technique out- 
lined by DOOGE (1959) or, possibly, by a Laguerre function analysis, similar 
to the one described in section 3.b.2. 

a. 2. Time-variant linear models 

All the published work known to the author on linear systems analysis of 
catchment behaviour has followed the classical unit hydrograph approach 
with regard to invariance of response. The linear catchment mechanism has 
always been taken to be time-invariant. Much encouraging work, some of it 
described in section 4, has been reported by hydrologists working with non- 
linear techniques of synthesis and analysis, usually time-variant. There would 
seem to be room for study of the missing area - time-variant linear sys- 
tems - before abandoning the very powerful principle of superposition, as 
is necessitated by non-linear studies. In particular, those linear systems in 
which the time variance is of a cyclical or seasonal nature might well prove 
worthy of study. 

The author has made some tentative preliminary studies of one approach 
to this field of study. Though not yet very useful as a practical tool for hy- 
drograph computations, a brief discussion of the approach may indicate a 
potential usefulness. 

A t i m e - v a r i a n t  c a s c a d e  m o d e l  

The starting point of these studies was to take the NASH-type model con- 
sisting of a cascade of equal linear storages and allow the storage characte- 
ristic, K, to become time-dependent. Thus for the rth reservoir in the cascade, 
the equation of continuity relating input, X,, output, y,, and rate of change 

i dS 
=*. of storage, - is: e dt ' 



Now X, is the output from the (r-l)th reservoir, and, if S = K.y, where 
K =K (t), equation (14) becomes: 

1 d K  
in which P = - (1 + -). 

K d t 

Equation (15) has the integration factor K.e Putting Q =g 
integration of (15) yields: 

yr. K. Q = ~,~.Q.dt + a constant S (16) 

in which both K and Q are functions of t .  
To evaluate the impulse response, h(t), of any such system of n linear time- 

variant storages to an instantaneous input of unit volume into the first sto- 
rage, one must solve equation (16) recursively from r = 1 to r = n when, by 
definition, h(t) = y,. To do this one must know how K depends on t .  

For simple cases, a solution by formal analysis is possible. For example, if 
K = K,  +at, in which K,  is a given initial value of K at t 0, then Q = 
K1/a and formal recursive integration of (16) gives: 

In  this equation, t is measured from the instant at which the unit impulse 
is applied, at which time K = K,. In  convoluting the impulse response of (17) 
with any arbitrary input X, one must make due allowance for the fact that 
h(t) is different for impulses applied at different times. Defining t = 0 now 
as the start of the input X, with K = K, at  t = 0, the element of input x(z).dz 
applied at time t = z (fig. 8) must be associated with the impulse response 
appropriate to that time z. The impulse response may now be written h(z, E )  

in which the running time, E, is measured from a zero at the instant z and for 
which K,  in (17) must be replaced by KT = K,  C a z i.e. 



t 
- t  

FIG. 8. Time-variant linear convolution . 

The output y at time t is now given by: 

Using (18), this eventually reduces to: 

(in which Kt = K ,  + at).  

The simple moment relationships for the input, output and impulse re- 
sponse of a time-invariant linear system (equation (9) and (10)) do not hold 
for a time-variant system, so the question arises as to how one would set 
about finding the parameters of a time-variant model from records of input 
and output data. One possible method might be the optimisation technique 
described in section 4.a.2. Such a technique would start with some initial 
estimates of the parameters of a model (e.g. n, K, and a of the above case) 
and automatically adjust them to yield a "best-fit" set. 



The simplest possible case of time-variant storage in only one class of 
model has been presented above, largely as an  illustration of a possible line of 
enquiry. Even with this single cascade model, more complex parametric equa- 
tions for cyclical or seasonal variation of K with time generally prohibit for- 
mal solution of equation (16) to find h(t) .  However, once numerical values 
are allotted to a set of model parameters, one can always switch to numerical 
integration techniques to solve for Q and then y, recursively in (16) in order 
to evaluate h(t) numerically. Convolution can also be performed by numer- 
ical integration. Optimisation of the model parameters could thus be carried 
out over the whole process, not just from a formal result like equation (20). 
This approach could, of course, be applied to models other than the single 
cascade model having equal storages considered above. 

b. Linear system analysis 

To repeat an earlier comment, deriving a catchment I U H  by invoking the 
aid of some catchment model is bound to lead to an approximation to the 
real IUH, the goodness of the approximation being dictated by the goodness 
of the simulation by the model of reality. One would like to use methods of 
deriving an IUH or a TUH that by-pass the need for a model, i.e. operate 
directly on the rainfall excess and direct runoff data to yield the IUH or 
TUH. Such methods have, in fact, been used and require only that the system 
be linear and time-invariant. 

One such method involves the use of orthogonal functions to derive an 
I U H  or a TUH; another uses matrix techniques to derive a TUH. Other tech- 
niques of analysis of linear systems (time-variant as well as time-invariant) 
are available and either have been or are waiting to be explored, Laplace 
transform methods (DISKIN, 1964) being one such technique. The discussion 
here will be limited, however, to two orthogonal function techniques and one 
matrix technique. 

In general a function g(t) can, for all values of t, be represented exactly 
by the sum of an infinite series of other functions: 

in which the c, coefficients are constants. Examples are the polynomial 
series: 

g(t) = c, + clt + czt2 4- . . . . 



and the Fourier series: 

g(t) = a, + a1 cos cot + a2 cos 2wt + . . . . 
+ bl sin cot + b g  sin 2wt + . . . . 

Amongst many such series, there are some in which the f,(t) functions havk 
the property: 

/:fm(t).fn(t). d t  = O if m f n 
but = K if m = n 

Such functions are called orthogonal functions.* The limits on the integral 
in (22) and the value of the constant, K, depend on the particular class of 
orthogonal function being used. (If K = 1, the functions are then said to be 
orthonormal). 

The great value of orthogonal functions lies in the ease with which the 
coefficients cm in equation (21) can be obtained. If we multiply both sides 
of (21) by f,(t), integrate between the limits a and b and make use of (22), 
we get: 

Turning now to the time-invariant linear system problem, let us write the 
input, x(t), the output, y(t), and the impulse response h(t) as follows: 

" Equation (22) differs slightly from the form usually presented in that a weighting factor 
normally present inside the integral has been assumed to be absorbed into the functions 
themselves. In addition, (22) defines orthogonality with respect to integration: there is a 
separate but corresponding definition with regard to summation. 



in which the same orthogonal functions, f,(t), are used for all three expansions 
(and, since the system is time-invariant, all the coefficients are constants). 

Our problem is, knowing x(t) and y(t), how do we find h(t)? Put another 
way, if we know the coefficients (c,), and (c,), - and we do, from equation 
(23), if we know x(t) and y(t) - can we find the coefficients (cl,), (and hence 
the impulse response, h(t))? 

The obvious line of attack is to make use of the fundamental relationship 
of any linear system, viz. the convolution integral of equation (7): 

~ ( z ) .  h (t-z). dz (7 bis) 

We can hope that insertion of equations (24) into equation (7) will yield 
useful simple algebraic relationships between the known (c,), and (c,), and 
the unknown (c,,),. 

Two specific types of orthogonal fuctions have been examined for this 
purpose and have yielded useful results. 

b. l .  Inversion via Fourier series 

A function g(t) that exists within the range 0 < t L can be represented 
exactly at every point in that range by the infinite Fourier series: 

2 x  t  COS r - + br. sin r - 
r= l L 22f ) 

The cosine and sine functions of this series are orthogonal to one another 
for any pair of limits L apart, yielding a K value (equation (22)) equal to L/2 
Thus the coefficients in equation (25) are given by: 

2 L  27tt 
T 

a, = - / g(t) .cos r -- dt  but do = 
L L L 

Referring back to figure 1 ,  consider a time-base L greater than or equal 
to the length of the direct runoff hydrograph, y(t). Let the three functions 



x(t), y(t) and h(t) be represented by Fourier expansions of the form of (25), 
all over the same time-base L. Using coefficients [a, b] for x(t), [A, B] for 
y(t) and [a, l] for h(t), O'DONNELL (1960) has shown that substitution into the 
convolution integral (equation (7)) yields the following simple algebraic re- 
lationships between the coefficients: 

L 
An = F bnan - bnPn) but A~ = L.aoao 

L 
1 ( 2 1  

B. = , (an an + bnan) 

Solving for a, and B,: 

In principle, then, given an x(t) and the corresponding y(t) for a time-in- 
variant linear system, one can use equations (28) to find the Fourier coeffi- 
cients of the impulse response of that system from the coefficients derived 
from the x(t) and y(t) via equations (26). One can then either synthesise h(t) 
itself from its coefficients (via an equation of the form (25)) or use these coeffi- 
cients with those of a new (design) input in equations (27) to derive the 
coefficients of the corresponding new output. From the latter, the output itself 
would be synthesised. 

In practice, two restrictions arise when applying the Fourier technique to the 
catchment problem. As with any experimentally observed system, the input 
and output can only be samfiled, i.e. they can be measured at only a finite 
number of observation points (even a continuous chart record can be read 
only at discrete points). Furthermore, the input data in the catchment pro- 
blem is usually given as a block histogram (volumes in equal periods of time) 
not as a continuous intensity function (the output data usually does consist 
of spot intensity values read from a continuous chart record or recorded at 
discrete instants of time). 

When we know only a finite number of (equally spaced) ordinates on a 
continuous but unknown function g(t), we cannot   er form analytically the 
integrations of equations (26) to find the Fourier coefficients (g ( t )  is not 



known) nor can we expect to establish the infinite series of equation (25) to 
define everywhere the (unknown) g(t). However we can fit the known ordi- 
nates with a finite trigonometric series having a form similar to (25) and, in 
order to find the coefficients of this finite series, we can replace the integrals 
of (26) by sums. 

Let the known g(t) be sampled at n equidistant data points in the range 
O t L i.e. we know 

Further let n be odd, = 2p + 1 say, and let L = nh (it is convenient, 
though not neccessary, to make g(O) = g(L) = 0). 

Then we can fit the n data points exactly by the finite harmonic series of 
?a terms: 

P 2ni 2ni 
= a. + 2 (a,. COS r - + br.sin r --) 

r= l n n 

(This is, in effect, a set of n simultaneous equations (for i = 0, 1, 2 . . . . 
(n-l)) with n "unknown" coefficients a,, a1 . . . . a,; bl, b2 . . . . bp.) The or- 
thogonality property, this time with respect to summation, permits us to find 
the n coefficients: 

2 n-l 2ni 1 n-l 1 

ar = - 2 g(&) . cos r -- but a. = - 2 g(ih) 
i;O 12 iZo 

2 n-l 2ni 
bT = - 2 g(ih).sin r -- 

i=o n I 

The series (29) can hardly be expected to fit g(t) exactly between the given 
data points where in fact g(t) is not known but it does fit the n data points 
exactly. The n harmonic coefficients of the finite series fitting n points on a 
continuous function will, as n is increased, approach the Fourier coefficients 
of the finite series fitting the function everywhere. 

The implications of this sampling restriction are twofold. W e  can use only 
harmonic coefficients as approximations for the Fourier coefficients (a,, b,) 
and (A,, B,), in equations (28) and we can find only a finite number of such 



approximate Fourier coefficients. We must therefore accept errors in the a,, 
coefficients of the IUH response and be limited to a finite number of such 

coefficients. Errors will therefore appear in the synthesis of the IUH ordinates 
due both to the approximations in the coefficients and to the fact that we can 
find only a finite number of them. 

However, when we turn to consider the second restriction (that the input 
data for catchments usually comes as a histogram) some measure of relief 
from the sampling restriction is possible. At first sight it would seem unpro- 
mising that instead of a continuous intensity curve of input (sampled every h 
units of time) we have available only the volumes of this input integrated 
over successive time periods of length h. But in the absence of any other 
knowledge of the true input intensity curve, the only proper assumptions we 
should make are that the input truly does occur in a series of constant inten- 
sities, xi, over those time intervals, and that the recorded output is the true 
result of such an input. This supposition immediately frees us from having 
to use harmonic coefficients for the input since we can now make use of equa- 
tions (26) (with g( t )  = xi a constant) for ih t (i + 1)h) to find as many 
true Fourier coefficients of the histogram of input as we like. In  addition, we 
are now free to read off from a continuous chart, if available, many more 
output data points within the intervals of length h and do not have to restrict 
ourselves to fewer points spaced h apart. This will yield harmonic coefficients 
which are much better estimates of the Fourier coefficients of the output and 
so improve the definition of the IUH. 

It is not essential that n should be odd, as defined in the above discussion, 
but there are some slight advantages in manipulation and programming if n 
is kept odd. Of greater usefulness is the deliberate addition of "extra data" 
in the form of zeros at the end of the real (non-zero) runoff data. By choos- 
ing n in equations (29) and (30) such that L is, say, 25"/11 greater than the 
actual time basis of the runoff hydrograph, and so ending the sequence of 
runoff ordinates with a number of zeros, some spurious oscillations near the 
tail of the computed IUH due to truncation of the infinite series are dis- 
placed away from that region to later ordinates. The latter, it is known, 
should be zero so the oscillations can be ignored in that region. 

In concluding this account of the Fourier technique of deriving an ZUH, it 
is of interest to note that the same form of manipulation may be used to find 
a T U N  directly and exactly without first finding the relevant IUH. Consider 
again the usual form of presentation of the unit hydrograph method as given 
in figure 4. y(rT) is, as before, taken to be the true resulting output due to an 
input given exactly by the histogram shown viz. 

x(t) = xifor i T  t (i + 1) T i = 0, 1, 2 . . . . 



That is to say: 

(7a bis) 

and in which u(T, KT) (k = 0, 1, 2 . . . . (n-l)) is the TUH. 
Let us now define three finite harmonic series, each of n terms (and having 

the common fundamental time base L = nT) viz. 

(1) one for the input, having coefficients [c, 4, and fitting exactly rz data 
points consisting of the mean intensity values, xi, taken at the start of 
each interval; 

(2) the second for the output, having coefficients [C, D], and fitting exactly 
the ordinates y(rT); 

(3) the third for the T U H  having coefficients [y, S] and fitting exactly the 
ordinates u(T, kT). 

(None of these series does more than pass through n points spaced T apart 
on its respective function; beiween the data points each series will generally 
differ from the true function on which those data points lie.) 

Substitution of such series into equation (7a) leads eventually to the fol- 
lowing relationships for the [y, S] coefficients of the TUH: 

Equations (31) are of precisely the same form as equations (28). It will be 
seen, however, that there are now no approximations involved in evaluating 
the harmonic [y, S] coefficients from the harmonic [c, d] and [C, D] coefficients. 
Further, we are now no longer troubled by the Fourier series truncation prob- 
lem since we can find exactly all the n coefficients of the finite n-term har- 
monic series passing through n equidistant points on the TUH, and these n 
coefficients are sufficient to synthesise exactly the n TUH ordinates. 

I t  should be pointed out that the method just described does not give the 
whole of the TUH; it merely gives n ordinates on the TUH, but gives them 
exactly (in principle). The method described earlier for deriving an I U H  (using 
Fourier coefficients for xi) yields an equation for the ZUH, one which may be 
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taken as an approximation to the whole of the IUH; if evaluated at n equidis- 
tant intervals, the calculated ZUH ordinates will differ from their true values 
due to the approximation inherent in finding the IUH Fourier coefficients 
from approximations to the y(t) Fourier coefficients and also to the fact that 
we can find and use only a finite number of the approximate IUH Fourier 
coefficients. 

It hardly needs saying that the Fourier technique would be impracticable 
to use without the aid of a digital computer. The calculations must be carried 
out with a large number of significant figures, not less than thirty or so terms 
in the various series are needed to achieve satisfactory results and most of 
the calculations are repetitive. All these features demand a computer solution 
along the lines indicated in the flow diagram of figure 9. 

b. 2. Inversion via Laguerre functions 

Another class of orthogonal functions, not so well known as the Fourier 
series, is that defined by: 

n ! 
in which (:) = nC, = 

r! (n-r)! 

These are known as Laguerre functions and are in fact orthonormal over 
the range 0 to i.e. 

Thus the coefficients, c,, indicated in a series expansion such as equa- 
tion (21): 

00 

d t )  = = cm.im(t) m= 0 
(2 1 bis) 

that used Laguerre functions would be given simply by (c.f. equation (23)): 

cm = Tg(t)  . jm (t) dt (34) 
0 



Equation (32) can be written: 

n 
where L,(t) = 2 

r=O 

The L,(t) are called Laguerre polynomials and can be shown to obey the 
recurrence formula: 

Thus the higher Laguerre polynomials (and so the higher Laguerre func- 
tions) can be built up successively. The first few polynomials are: 

L, ( t )  = l 
L, ( t )  = 1 - t  

I 
I 

L, ( t )  = 1 - 2t + -t2 2 
3 1 

L, ( t )  = 1 - 3t + -t2 - -t3 
2 6 

etc. 

DOOGE (1965) has studied the use of Laguerre functions in deriving the 
impulse response of time-invariant linear systems. Using equation (21), let an 
input, x( t ) ,  to such a system have coefficients a,, let the corresponding out- 
put, y(t), have coefficients A, and let the impulse response, h(t), have coeffi- 
cients a,. DOOGE showed that the substitution of such series into the convolu- 
tion integral (equation (7)) yields an equation for the nth order coefficient 
of the output: 

If we now sum Ao, AI . . . . A, using equation (381, it will be seen that 



all other terms cancelling. W e  can thus take the term with a, (when r =n) 
from the R.H.S. of (39) and arrive at: 

In principle, then, given an x(t) and the corresponding y( t )  for a time-in- 
variant linear system, one can use equation (40) recursively to find one by 
one, starting from ao, all the coefficients of h(t) having first found all the ai 
and Ai coefficients from x(t) and y( t )  via equation (34). As before, one can 
then either synthesise ordinates of h(t) via equation (21) or, given a new (de- 
sign storm) x(t), derive the new ai, find the Ai coefficients of the new output 
from equation (38) and finally synthesise ordinates of that new output from 
equation (2 1). 

In practice, as with the Fourier technique, there are restrictions on the 
Laguerre technique. The fact that catchment data can be sampled at only a 
finite number of data points means that we cannot formally integrate equa- 
tion (34) to derive the Laguerre coefficients. Also, the Laguerre representa- 
tion of each of the functions must be limited to a finite series. 

However, DOOGE (1965) showed in his studies using synthetic data that 
numerical integration of (34) with an adequate number of data points gives 
acceptably close estimates for the c, coefficients and that a relatively small 
number of terms in the Laguerre function series suffices to give a good fit to 
the various functions he used. 

In a recent private communication to the author, DOOGE has shown that 
there is a set of "discrete" Laguerre operations that yields the T U H  as opposed 
to the continuous Laguerre operations described above (that lead to the IUH). 
This is a satisfying parallel to the harmonic series and Fourier series analysis 
described in 3.b.l that also lead to the T U H  and IUH respectively. 

Figure 10 shows a flow diagram for a computer solution of the Laguerre 
approach to the inversion problem; in this, the TUN is shown as being got by 
numerical integration of the I U H  not by the "discrete" Laguerre analysis 
mentioned above. 

As pointed out by DOOGE (1965), the Laguerre functions method has the 
e-flz.t' 

attraction of being physically meaningful. The factor -----. of equation 
r ! 

(32) can be seen to be of the same form as equation (12) (in fact, when di- 
vided by Zr+' , this factor will be seen to be the impulse response of a NASH- 
type cascade of (r + 1) linear storages each having a storage characteristic 
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K = 2 units). The terms of the Laguerre expansion of the impulse response 
can, in fact, provide a guide to a model of the catchment system. If that 
system actually consists of equal storages in parallel branches, each branch 
being a cascade, then the Laguerre technique would yield the size of the sto- 
rages and the number in each branch. (It is necessary to find the size, K, by 

2 trial transformations of the real time scale with a factor -; this converts the 
K 

real system to one with equal storages of size 2 units i.e. one suitable for 
Laguerre analysis.) 

b. 3. Inversion via matrices 

The conventional techniques of finite period unit hydrograph derivation 
were, for the most part, developed for desk-machine or graphical solution. 
One could convert these techniques to electronic computer use but such con- 
version may not yield the most efficient way of using a computer, which is 
much more than a high-speed calculating machine. I t  might be better to start 
with a fresh look at the basic process of unit hydrograph usage to see if we 
can find the best way of presenting the problem to an electronic computer. 

This concept is exemplified in a T.V.A. study (1961) by SNYDER. Examina- 
tion if the process,involved in the "discrete" convolution of a rainfall excess 
with a TUH to produce a direct runoff hydrograph (equation (7a)) shows 
that basically the process is a multiplication of a matrix by a vector. Though 
this knowledge has little practical value in desk machine procedures, it is 

FIG. 11. The equation relating rainfall and unit hydrograph ordinates to runoff. 



highly relevant to the employment of digital electronic computing since such 
computing is very well suited to matrix algebra. A set of matrix subroutines 
is almost invariably a major part of the programme libraries associated with 
digital computers. Clearly then, one ought to recognise and make use of the 
basic unit hydrograph process (i.e. matrix multiplication) when employing a 
digital computer to derive a TUH. 

As a bonus to this method of analysis, the matrix technique suggested in 
the T.V.A. study (1961) automatically provides a "least squares" solution for 
the TUH-ordinates. If there are m volumes of rainfall excess X I ,  X2  . . . .  X ,  
in successive T-hour periods and the TUH has n ordinates ul, up . . . .  U,, 
spaced T apart, then the direct runoff hydrograph will have (n -l- m - 1) 
ordinates y ~ ,  y2 . . . .  Y ,+,-l 2 also spaced T apart. In  fact given the rain- 
fall and runoff data and wanting the TUH-ordinates means solving (n + m 
- 1) equations for n unknowns (fig. 11). Clearly any technique of solution 
must incorporate a "best fit" device since any real data is bound to yield a 
set of incompatible equations. Any technique that does this automatically is 
obviously a good one to use. 

The matrix equivalent of the equations of figure l 1  is given in figure 12. 

X2 X,  0 0 . . .  

X j  X 2  X, 0 . . .  

X,X,, xw2 ..... 
0 X, x,,j .-... 

0 0 0 O . . .  

0 0 0 o . . .  

FIG. 12. The matrix form of the unit hydrograph procedure. 

In the usual notation, the matrix equation can be written 

1x1. IuI = I Y I  



To solve this equation for /'U\, one must first make the rectangular matrix 
\'X.] a square one. This can be done by multiplying both sides of (42) by the 

transpose of 1x1 viz. 'xlT, which is the matrix formed by interchanging the 
rows and columns of I XI. 

Thus we get: 

whence 

Equation (43) gives the procedure for finding the TUH-ordinates directly 
from rainfall excess and direct runoff data using standard computer matrix 
routines. Hidden in the manipulations of the matrix algebra on the R.H.S. 
of (43) is the "least squares" curve-fitting technique mentioned above. 

An extension of this technique to permit the evaluation of improved esti- 
mates of rainfall excess data (i.e. the determination of a "loss curve") was 
also represented in the T.V.A. study (1961). This extension uses the TUH- 
ordinates got from a first application of (43) to estimate errors in the first 
assessment of the rainfall data. Differences between the observed direct run- 
off data and the runoff computed with the first TUH-estimate and the initial 
rainfall data are used as the criterion of error. The improved rainfall data is 
now used to find a better estimate of the TUH and the whole process is re- 
peated. Such an iterative procedure is, of course, admirably suited to a "loop" 
programme on a digital computer. 

Any account of computational methods that allow for non-linearity of 
catchment behaviour must draw very heavily from the publications of AMO- 
ROCHO and his collaborators (1 961, 1963, 1964). Following AMOROCHO and 
HART (1964) in classifying studies of the hydrological cycle, hydrological 
studies may be divided into the two areas of "physical hydrology" and "sys- 
tem investigations". The former deals with studies in the physical sciences of 
individual phenomena related directly or indirectly to the hydrological cycle. 
The latter is concerned with the investigation of hydrological systems con- 
sidered as complete units in themselves, for the specific purpose of establishing 
quantitative relationships between precipitation and runoff. In  physical hy- 
drology the emphasis is on the topics of study while in system investigations 
it centres on the methods of study. The two areas are highly interdependent: 



system investigations must rely on some knowledge of hydrological phe- 
nomena for a rational choice of system elements or techniques of analysis, 
while the demands of system investigations will focus attention on topics 
needing more detailed or intensive study. 

The interest here lies in system investigations - more specifically in this 
section of the paper, in non-linear system investigations. Again, to recapitu- 
late, a twofold classification can be made: general system analysis and 
general system synthesis. In the former, the relationship between input and 
output is established by a mathematical process that uses input and output 
data only, without any attempt at explicit description of the system mecha- 
nism. In  the latter, the operation of the system is described by a combination 
of and linkages between components whose functions are known or assumed 
and whose presence in the system is presumed. 

Although the non-linear system analysis approach holds great promise, it 
cannot yet be said to offer as practical and effective a working technique for 
hydrograph computation as does the synthesis approach even though the 
latter has certain weaknesses that will be difficult to eradicate. In  conse- 
quence, the following accounts will deal rather more fully with the synthesis 
methods but more briefly with the analysis techniques. 

a. Non-linear system synthesis 

Synthesis techniques usually begin with the postulation of a general con- 
ceptual model of catchment behaviour, the structure of the model and its 
functioning being based more or less subjectively on qualitative and semi- 
quantitative knowledge of the phenomena involved in the hydrological cycle. 
The basis of operation of such models is the principle of continuity, i.e. main- 
taining at all times a complete balance between all inputs, outputs and inner 
storage changes. On that basis, a general model is fitted to a specific catch- 
ment in some systematic way using recorded input and output data for that 
catchment. The fitting is done by making adjustments to the parameters 
governing the performance of the model until the output computed by the 
model when supplied with the recorded input agrees with the recorded out- 
put (within some specified tolerance). 

Such quantitative models must inevitably be complex and yet they must 
be feasible to operate. Modern highspeed digital computers have provided the 
means of going a long way towards satisfying both these requirements; con- 
siderable progress in synthesis techniques in recent years has been made with 
the aid of computers. Before embarking on an  account of two such tech- 
niques, some general cautions on the use of synthetic models are called for 



(a further discussion has been given by AMOROCHO and HART (1964)). 
Clearly such models can only be as good as knowledge gained in the area 

of physical hydrology will permit; in many features they cannot as yet match 
even that imperfect knowledge. For example, it is usual to model the catch- 
ment mechanism as if it were a system with "lumped" input and output and 
'L lumped" components whereas it is, of course, a "distributed system with 
certainly a distributed input (variable area1 rainfall pattern) and distributed 
flow processes even if the output at the catchment outlet may reasonably be 
treated as lumped. Another cause for care is the presence of errors in the 
recorded data used for adjusting a model: small data errors may result in 
large errors in those model parameters for which the model response is in- 
sensitive, thus leading to spurious conclusions. A third reason for caution 
arises from the considerable simplifications necessary in postulating a model 
structure in order that the model be workable: many of the fine details of 
the natural catchment system may get lost in the simplified model structure. 
Finally, although many different models might be adjusted to fit a given 
record equally well, there is, at present, no way of assessing which model is 
the 'best" one: until a technique for evaluating an optimum model structure! 
is evolved, synthesis techniques must be viewed somewhat cautiously. 

The two reviews of synthesis techniques presented below both postulate 
subjective catchment models of the type discussed above. The first summa- 
rises work on perhaps the most highly developed study yet made in which a 
quite sophisticated computer model has been fitted to more than thirty catch- 
ments of widely different types (and thereafter used as an  aid to engineering 
design studies on those catchments). Its success has undoubtedly been largely 
due to the great experience, judgement and skill of its originators guiding 
their choice of parameter adjustments. The second review is of a more explo- 
ratory study using a much simpler model and mainly aimed at examining the 
possibility of employing an automatic objective technique of parameter ad- 
justment. 

a. I .  The  Stanford watershed model 

LINSLEY and CRAWFORD at  Stanford University have given full accounts 
(1962, 1964) of their notable computer study of streamflow synthesis. The 
Stanford watershed model aims at simulating the whole of the land phase of 
the hydrological cycle in any catchment. It is usually programmed to produce 
hourly streamflow data using hourly precipitation data and daily evapo- 
transpiration data. For small catchments, shorter intervals may be used if the 



data is adequate. Full details being available in the references quoted, only a 
short summary of the Stanford model will be given. 

EVAPORATION 'i 
RUNOFF FROM 

nterception and 

SUBSURFACE HOURLY OR DAILY 
GROUNDWATER STREAMFLOW I FLOW 1 1 1 

FIG. 13. The Stanford watershed model. 

Figure 13 shows the general arrangement and components of the Stanford 
model. The characteristics of the component storage and routing elements are 
determined by relationships, expressed in terms of certain parameters, that 
represent as rationally as possible the behaviour of the various segments of 
the hydrological cycle. 

After setting estimates of initial storage volumes hourly (or shorter) in- 



detailed knowledge of the elements of the hydrological cycle from studies in 
physical hydrology and the resulting more precise specification of their be- 
havioural relationships will lead to more sophisticated, but inevitably more 
complicated, models than those used hitherto. Without denying the power 
and advantages of using engineering judgement and acquired skills, it is 
likely that adjustment of the larger number of parameters of more complex 
models by subjective trial and error procedures will become very difficult, if 
not impracticable. 

Finding a set of "best fit" parameter values for given physical systems, 
given input and output data, is a frequently met problem in many fields of 
activity. Optimisation or "hill climbing" techniques have been developed that 
determine values of system parameters which maximise or minimise some 
function dependent on those parameters. Such techniques are completely ob- 
jective. They make many useless tests of situations that would be dismissed 
out of hand by an experienced and skilled human investigator, but the tre- 
mendous speed with which a computer can make such tests compensates for 
such inefficiency. 

In the catchment model context, an obvious parameter-dependent func- 
tion to be optimised (minimised) is the difference between an observed out- 
flow and the outflow computed by the model when supplied with the corres- 
ponding observed input. Other error criteria could be used (e.g. height or 
timing of peak flows) or, in fact, any combination of such criteria. 

The author has been working on techniques for automatic optimisation of 
catchment model parameters and has published (DAWDY and O'DONNELL, 
1965) some preliminary findings. Again only a brief account of this work 
will be given here. 

The model postulated for these studies was deliberately made much simpler 
than the Stanford model but it follows the general outlines of figure 13. The 
emphasis was not on getting the "best" model but on the feasibility (or not) of 
the optimisation approach. Briefly, there were four storage elements whose 
behaviour and whose linkages were controlled by nine parameters in various 
simple control "rules". By assuming a long dry period prior to the start of 
a synthesis, all four initial storage values could be taken to be zero. To avoid 
the inevitable distortion due to the errors in real input and output data, the 
feasibility studies were carried out with sets of compatible error-free data. 
Such sets of data were synthesised with the model by allotting a set of values 
to the model parameters and finding the output generated by the model from 
an arbitrary input. Not only did this manoeuvre provide error-free data - 
the "correct" parameter values for each set of compatible inputloutput data 
were known a ~ r i o r i .  Thus, with an input to the computer consisting of a 



crements of rainfall are entered into the model. The incoming rainfall 
either becomes direct runoff or is detained in upper and lower soil moisture 
storages, the latter feeding a groundwater storage. The three storage zones 
combine to represent the effects of highly variable soil moisture profiles and 
groundwater conditions. The upper zone storage absorbs a large part of the 
first few hours of rain in a storm. The lower zone storage controls long-term 
infiltration. The groundwater storage controls baseflow in the stream. Evapo- 
ration is permitted at the potential rate from the upper zone storage and a t  
less than the potential rate from the lower zone storage and groundwater sto- 
rage. 

The direct runoff is split into two components, surface runoff and inter- 
flow, which have separate translation and routing procedures. Total streafi- 
flow is the sum of surface runoff, interflow and baseflow. 

In applying the model, the typical procedure is to select a five to six year 
portion of rainfall and runoff records for a catchment. This period is used 
to develop estimates of the model parameters that fit the general model to 
the given catchment. A second period of record is then used as a control to 
check the accuracy of the parameters obtained from the first period. Compa- 
rison in the control period is based on such things as total monthly flows, 
daily flow duration curves, and hourly hydrographs of the two maximum 
floods each water year. 

The numerical values both of the initial volumes in the storages and of the 
parameters that control the operation of the various model components are 
selected on the basis of previous experience and on a judgement of what is 
considered reasonable. Some of the parameter and initial storage values can 
be estimated quite closely simply from a preliminary study of the runoff 
records (e.g. recession curves for groundwater storage characteristics) or by 
choosing the end of a dry spell as a starting point (soil moisture storage at or 
near zero). Adjustment of the parameter values during the fitting stage is 
done in two ways. Most are adjusted by the operator, via a combination of 
experience and intuition, using clues provided by the timing and magnitude 
of the difference between the synthesised and recorded streamflow hydro- 
graphs. Some of the parameters are evaluated by the computer itself, using 
an internal looping routine of successive approximations. 

a. 2. Automatic parameter adjustment 

The successful operation of a digital computer model in which the para- 
meter values are adjusted by the operator relies to a considerable extent on 
the skilled experience and personal judgement of that operator. Increases in 



compatible set of input and output data and an initial set of parameter values 
displaced from the "correct" set, both the absolute progress and the rate of 
progress of the parameter values towards that correct set could be observed 
and measured during any optimisation run. 

The paper referred to gives some results of using a modified version of an 
optimisation procedure developed by ROSENBROOK (1960). The basis of this 
procedure consists of a search in an n-dimensional vector space formed by n 
orthogonal axes (n being the number of parameters being optimised) until 
some function, U, dependent on the parameters is optimised. 

The search is made in a number of recursive stages. During each stage, 
movement is made along each orthogonal axis in a series of steps. A step of 
arbitrary length e, is attempted first. This is treated as a success if the resul- 
ting new U value is an improvement on or equal the previous U value. If 
a success. the step e is allowed and a new step ae is attempted (where a > 1); 
if a failure, the step e is not allowed and a new step Be is attempted (where 
- 1 < < 0) (in the end an attempt must succeed for each axis because e 
becomes so small after repeated failures that it causes no change in U). The 
stage is terminated as soon as at least one successful step followed by one step 
has been made along each of the n axes. 

At the end of each stage, a new set of n orthogonal axes for the next stage 
is evaluated. This reorientation of axes is based on the magnitudes of the 
movements made along the n axes of the current stage in such a way that the 
first component of the new system of orthogonal axes lies along the direction 
of fastest advance in the current stage. Only for the first stage do the ortho- 
gonal axes lie along the parameter axes. 

For the catchment model, U was defined as the sum of the squares of the 
differences between the recorded (compatible) output and the output gene- 
rated with the current set of parameter values; the optimum value of U was 
thus zero. The same quantity was used to examine the sensitivity of the model 
response to each of nine parameters by finding the U value computed with 
eight "correct" parameters but with the ninth displaced by 1°/o from its 
correct value. 

It was found that, as applied to the catchment model, there was a tendency 
for the optimisation search to stagnate after a number of stages but that the 
search could be stimulated again by starting a new "round" of stages with 
the arbitrary steps, e, set back to their start-of-run values. 

Table 1 shows some results of a typical optimisation run for a certain 
record and, in the final column, the 1°/o sensitivity of the model for the 
6 6 correct" parameter values of that record. 

The U values (and sensitivity figures) as defined above have been transfor- 
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TABLE 1 

med in table 1 into root-mean-square values expressed as a percentage of the 
mean runoff of the given record. This dimensionless mean form is possibly 
more directly informative than the absolute multi-step sum of squares, U, 
which is a criterion adequate only as a measure of optimisation progress. 

The main conclusions to be drawn from table 1 are: 

(1) the greater the sensitivity of the model response to a parameter, the closer 
and sooner will that parameter be optimised; 

1°/o 
sensit- 
ivity 

0.58 

0.26 

0.12 

0.16 

0.16 

0.045 

0.026 

0.012 

0.012 

O P T I M I S A T I O N  

(2) the less sensitive parameters have insignificant influence on the fitting 
of a record and could be dropped from the model (at least for that record); 

(3) the final matching of the output, to within 0.05O/o on average, is extremely 
close considering the mean initial error of nearly 20°/0. 

Parameter Correct 

No. value 

l 10.0 

2 0.2 

3 2.0 

4 2.0 

5 2.0 

6 40.0 

7 0.1 

8 4.0 

9 0.1 

R.M.S. error 

These results and conclusions are based on synthetic error-free data and the 
use of one optimisation technique. A further study using synthetic data to 
which controlled amounts of "noise" have been added will be necessary 

Starting 

value 

15.0 

0.1 

3 .O 

1 .O 

1 .O 

35.0 

0.15 

6.0 

0.15 

Mean Q 
X 100°/o 18.4 

Residual 
difference 

(OtO) 

0.15 

1.4 

1.5 

1.7 

2.7 

9.9 

14.0 

380 

460 

End-of-round values 

0.78 0.28 

Round l 

10.17 

0.1721 

2.931 

1.952 

1.815 

31.32 

0.3059 

5.834 

2.049 

0.060 

Round 2 

10.13 

0.1700 

2.113 

1.943 

1.886 

57.10 

0.2615 

18.03 

0.6363 

0.044 

Round 4 

10.011 

0.1973 

1.983 

1.972 

1.936 

45.17 

0.1174 

19.82 

0.5282 

Round 6 

10.015 

0.1972 

1.970 

1.967 

1.947 

43.96 

0.1143 

19.27 

0.5574 



before there can be any test with real data. Other studies comparing the speed 
of convergence of different techniques have been started. 

Rapid progress is being made by applied mathematicians in providing im- 
proved optimisation techniques capable of handling larger numbers of para- 
meters and having rapid convergence. Modern computers are several orders 
of magnitude larger in storage and faster in operation than those of even a 
few years ago. As studies in physical hydrology permit more faithful model- 
ling of catchment behaviour, the inevitably more complex models that result 
should be capable of automatic fitting by optimisation techniques. 

b. Non-linear system analysis 

What such analysis aims at is the determination of the system response 
function from recorded input and output data. This is analogous to the in- 
version problem of the unit hydrograph method. However, general methods 
of direct non-linear inversion are not yet available. Some indirect approxi- 
mation of the inversion operation has to be used. 

One such method examined by AMOROCHO (1963) is the use of a functional 
series representation. The convolution integral (equation (7)) for a linear 
system written in the form: 

can be called the "functional" of that system. This is the most elementary 
case of a general functional: 

which is a multi-dimensional generalisation of the convolution integral. 
In the functional series approach, it is assumed that the action of a complex 

non-linear system is equivalent to the summation of the actions of separate 
elemental systems of progressively higher order and described by (44) with 
n =  1 , 2  .... 

00 

i.e. y(t) = 2' f, (t) 
n=l 

(45) 



is taken to be an equivalent functional series representation of non-linear sys- 
tems. The first term of the series (45) is the familiar linear convolution: the 
kernel hl(z) operates one-dimensionally on all elements of the input x(t-z) 
with no interaction between these elements i.e. the kernel has a unique value 
for each z value and the operation at time z is unaffected by input elements 
a t  other times. For the other terms in the series the h, (zi, 22 . . . . z,) are 
called the "system functions7' and are multidimensional kernels which, along 
with the products x(t-z~).x(t--zz) . . . . x(t-z,) indicate that interaction exists 
between elements of input occurring at different times. 

Pending the arrival of techniques, still under development, that will permit 
the derivation of multiple system functions by direct inversion using complex 
input and output data, AMOROCHO (1961, 1963) investigated various simple 
input situations, both analytically and with laboratory catchment experi- 
ments. Much remains to be done before the considerable advantages of gen- 
eral non-linear analysis techniques will be available in standardised proce- 
dures of hydrograph computation but there can be little doubt that the pio- 
neering work to date of AMOROCHO and his colleagues is going to yield sub- 
stantial future rewards. The main advantages of the non-linear system ana- 
lysis approach are: 

(1) freedom from subjective bias insofar as nothing need be known or speci- 
fied (in the physical sense) about the system; 

(2) it is not necessary that the systeln should satisfy physical continuity con- 
ditions between total input, total output and inner storage, i.e. one can 
operate with recorded precipitation and recorded streamflow without ha- 
ving to account for evapotranspiration, loss of ground water from the 
catchment etc. 
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