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Applications of Neural Networks and Fuzzy Logic  
to Integrated Water Management 

Project Summary 

Introduction 

Management and control of water resources is a complex multi-disciplinary task requiring 
the adequate approaches and techniques. During the last decade considerable changes have 
been observed in approaches to tackling the problems of management and control. Most 
important were: 
• introduction of the advanced information technology - personal computers and software, 

GPS systems, telecommunication networks.  In water management this allowed for large-
scale data collection campaigns, building data banks with the water-related data, 
increased level of automation of various tasks in control, etc.  

• quantum leap in the amount of computer-based modelling. Modelling systems became an 
important part of the instrumentarium of engineers and managers providing the 
possibilities for model-based control.  

• shift to more economical, optimal solutions. The increased competitiveness of various 
areas of human activities and political pressures lead to seeking optimal managerial and 
control actions where previously simply actions that are "good enough" would do.  Flood 
management decisions for example, should follow the multi-objective approach, 
balancing various interests in minimizing damage. 

 
All the mentioned shifts inevitably change the way water resources are managed and 
controlled, giving rise of attention to the so-called hydroinformatics systems. Such systems 
incorporate the latest advances in telecommunications, computing, computer-based 
modelling, artificial (computational) intelligence, machine learning, data analysis and 
processing, optimization and the associated decision support systems (DSS).  
 
Traditional modelling of physical processes is often named physically-based modelling 
because it tries to explain the underlying processes (eg., hydrodynamic models based on 
Navier-Stockes partial differential equations numerically solved using finite-difference 
scheme). On the contrary, the so-called data-driven models, borrowing heavily from 
artificial intelligence (machine learning) techniques, are based on a limited knowledge of the 
modelling process and rely on the data describing input and output characteristics. Data-
driven modelling uses results from such overlapping fields as data mining, artificial neural 
networks (ANN), rule-based type approaches such as expert systems, fuzzy logic concepts, 
rule-induction and machine learning systems. Sometimes "hybrid models" are built 
combining both types of models.  
 
In this project, applications of two mostly widely used particular types of data-driven 
models, namely artificial neural networks (ANN) and fuzzy logic-based models, to 
modelling in the water resources management field are considered.  
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Neural network and fuzzy logic have been successfully applied to a wide range of problems 
covering a variety of sectors. Their practical applications, especially of neural networks 
expanded enormously starting from mid 80s till 90s partly due to a spectacular increase in 
computing power. During the last decade ANN evolved from being only a research tool into 
a tool that is applied to many real world problems: physical system control, various 
engineering problems, statistics, medical and biological fields. Consequently they are applied 
more and more in water management field as well.  
 
There is a number of other methods attributed to artificial intelligence (machine learning): 
decision and model trees, Bayesian methods etc.  Whatever models used, they are just 
techniques, methods of analysis and prediction that assist decision makers in making 
decisions.  Models enhance these decisions only if used by experts in a proper way.  

Objectives of the project 

The objectives of this project were: 
• to review the principles of various types and architectures of neural network and fuzzy 

adaptive systems and their applications to integrated water resources  management. Final 
goal of the review was as exposing and formulating progressive direction of their 
applicability and further research of the AI-related and data-driven techniques application 
in the water resources management field.  

• to demonstrate applicability of the neural networks, fuzzy systems and other machine 
learning techniques in the practical issues of the regional water management. Two case 
studies were selected for that: Hoogheemraadschap van de Alblasserwaard en de 
Vijfheerenlanden (particularly, watersystem of Overwaard) and the Waterschap Groot 
Salland.  

 

Main results and conclusions 

Review of applications 

Total of 85 papers, 14 theses and 15 books were reviewed.  The published sources and the 
experience of the authors allow to formulate the advantages and recommendations of using 
ANN and fuzzy logic concepts for water related problems as follows: 
• they give a possibility to complement or even to replace traditional (physically-based) 

methods  
• the domain specific knowledge is required to a lesser accuracy than that for building 

physically based models 
• data-driven models are much faster than physically-based models based on numerical 

solutions of partial differential equations 
• application of data-driven methods require proper preparation of modelling exercises - 

analysis of logical relations between dependent and independent variables, choice of 
these variables, non-stochastic character of these relations, proper data collection and 
pre-processing, etc. They are considered in the report.  

• methods like ANN and FRBS and many other methods of artificial intelligence, machine 
learning and data mining are in fact mathematical and modelling apparatus that have a 
general nature and can be applied practically in any area (as, for example differential 
equations). The success of their application depend mainly on the amount of available 
relevant data and on the experience of a modeller, leaving a lot to the "art of modelling"  
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• in the area of process modelling and/or simulation, these techniques were found useful 
for approximating the conventional models for saving computational power and for 
identification and learning the relationships and patterns on the basis of measured data 
for processes which are too complex to be described by physically-based models. 

 
ANNs are extensively applied for assessment purposes like rainfall-runoff modelling, water 
quality prediction in natural flows, approximating ecological relations. They have also been 
applied for optimal reservoir operation. A remarkable number of publications on application 
of fuzzy logic approach for process control in wastewater treatment plants for deriving 
optimal control actions are available. Problem of real-time optimal operation of water related 
systems has been investigated by using neural networks, fuzzy logic approach and with 
neuro-fuzzy approach. 
 
Fuzzy-based methods are applied successfully for identifying optimal control actions of 
wastewater treatment plant, determining optimal dosage thereof and determining leakage. 
They often are used in combination with the expert knowledge. Fuzzy rule-based systems 
(FRBS) (capable of building rules automatically) have been applied for drought prediction, 
determining optimal control action of polder pumping station and filling in gaps in the 
measured data. They have proven its ability to learn as good as ANNs. 
 
Neuro-fuzzy systems has been applied successfully for detecting and identifying faults due to 
any measurement error, leakage or wrong valve status in water distribution system.  

Case studies 

Case study 1.  
Artificial Neural Networks for Reconstruction of Missing Data and Runoff Forecasting: 
Application to Catchments in Waterschap Groot Salland  

 
Several time-series data on precipitation, evaporation, surface water level were available for 
this catchment. Preliminary data analysis showed that the hydrological time series has 
significant number of missing values and inconsistencies. The final application was focussed 
on two drainage areas (Rietberg and Stuw 7A) and time periods with reasonably consistent 
data. The outflow weir at Rietberg drains an area of 6,646 ha while stuw 7A drain areas 
13,697 ha. Salland is generally a gently sloping area where water management is carried out 
with the help of fixed weirs, controlled weirs and irrigation pumping units operated by the 
water board of Groot Salland. 
 
Two methods of using ANN, namely global neural network (GANN) and local neural 
networks (LANN) were considered. GANN considers all available time series data in its 
entirety while to be able to build LANN models, the complete time-series data has to be split 
into more homogeneous sub-sets so that the highly non-linear behaviour of the entire runoff 
process is captured in different classes for which the input-output relationships can be 
relatively simple. In general, LANNs have outperformed the GANNs for both problems of 
filling missing data and runoff forecasting. Moreover, using short-term history of water 
system variables as inputs to the network gave the best results. Once the ANN models are 
built, they are used to estimate values for missing runoff data and forecast a one-day ahead 
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discharge on the basis of available meteorological data such as measured rainfall, 
evaporation and discharge.  
 
It must be mentioned that the operation of weirs and pumping stations in the area affects very 
much the homogeneity of input-output relationships in the data sets. As a result, ANN 
prediction of runoff values may not always match the monitored values. This could be due to 
the fact that manually operated weirs and discharge outlet structures control the flow in the 
drainage area and interfere with the natural flow and this, in its turn, affects the predictability 
of system behavior. However, the success of these ANN models in replicating the systems 
behaviour could be further improved by including information about the operational data of 
those regulating structures. The results could also be improved by classifying the data, not 
only by seasonal variations, but also by the magnitude of runoff events in the database. 
Moreover, it is important to frequently update the models by additional training or complete 
retraining every time new data set is available so that the models reflect the latest state of the 
system being modelled.  
 
In general, the case studies on the catchments in Salland clearly demonstrated the 
applicability of artificial neural networks for runoff forecasting and filling of missing data in 
hydrological time series based on meteorological and other hydrological data.  

Case study 2. 
Artificial Neural Networks and Fuzzy Logic Systems for Model Based Control: Application 
to the Water System of Overwaard (Hoogheemraadschap Alblasserwaard en de 
Vijfheerenlanden) 

 
Overwaard is a drainage basin located in South-Holland. The water system at Overwaard 
comprises of 22 drainage areas covering a total surface area of approximately 15,000 ha. 
First, a physically based distributed model of the water system was built (with the modelling 
system AQUARIUS) and calibrated with measured water levels and discharge data. The 
AQUARIUS model was found to be very effective in simulating the water system of 
Overwaard. Calibration results were acceptable since the simulated water level and discharge 
values were very much comparable to the observed ones. It has also been demonstrated with 
this model that central dynamic control can perform better than local control in cases of 
extreme precipitation events. Therefore, ANN and FAS were trained with the data generated 
by AQUARIUS model (run under central dynamic control mode) to replicate the central 
dynamic control’s optimal pumping strategy for the main pumping station. External 
controllers were then designed using the trained ANN and FAS.  
 
Online implementation of the trained ANN and FAS as external controllers was very 
successful and they were able to reproduce the centralised behaviour (in terms of water 
levels and corresponding discharges) of optimal control action by using easily measurable 
local information. The main advantage of the external intelligent controller is that it needed 
only one tenth of the simulation time of the one required by the central optimal controller of 
AQUARIUS. Replacing the slow computational component by the fast-running intelligent 
controllers in the way described in this study is believed to enhance the use of AQUARIUS 
in real time control tasks.  
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In general, the study clearly demonstrated the applicability of artificial neural network and 
fuzzy logic technologies for water management and control by considering the water system 
of Overwaard as an example.  

Conclusion 

Overall, the objectives of the project have been reached: applicability of the neural networks, 
fuzzy systems and other machine learning techniques in the practical issues of the regional 
water management has been demonstrated. It can be also concluded that the cooperation 
between STOWA and the project “Data mining, knowledge discovery and data-driven 
modelling” of the Delft Cluster was beneficial to both parties: it allowed to combine the 
technologies developed and tested in the Delft Cluster project and to apply them to complex 
problems of water management and modelling that are encountered by the waterboards.  

Recommendations for the future 

One of the recommendations is to make an inventory of other data-driven and machine 
learning techniques e.g. induction trees, advanced cluster analysis methods, non-linear 
dynamics (chaos theory), wavelet analysis, statistical learning theory (support vector 
machines) which has already proved to be effective data analysis and modelling methods.  
 
Another potentially efficient approach is the so-called reinforcement learning. It is especially 
applicable in the problems of control.  Our experience shows that the accuracy of a data-
driven model used in water control can be significantly improved when different approaches 
are combined, e.g. ANN being complemented by reinforcement learning techniques.  
 
In spite of the multiple successful experiments and applications described in the literature, it 
can be stated that acceptance of artificial neural networks (ANN) and fuzzy rule-based 
systems (FRBS) in water-related industries is slower than in other industries (chemical 
processing, electrical engineering, electronics, oil and gas exploration, military etc.). Still 
much to be done in “bringing the message” to the practitioners through refined research into 
less explored areas of data-driven modelling and machine learning, demonstrations of 
convincing experiments and promising prototype applications in various areas of water 
management.  
 
Based on the successful applications of ANN, Fuzzy systems and other machine learning 
methods in this project it is therefore recommended to continue research in the area of data-
driven and machine learning techniques, with applications to the problems of regional water 
systems management.  
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Chapter 1 Introduction 

1.1 General  

Management and control of water resources is a complex multi-disciplinary task requiring the 
adequate approaches and techniques. During the last decade considerable changes have been 
observed in approaches to tackling the problems of management and control. We will 
mention only three of them. 
 
1. Introduction of the advanced information and communication technology (ICT) devices - 
personal computers, GPS systems, telecommunication networks and associated processors.  
In water management the power of these devices and the associated software allowed for 
large-scale data collection campaigns, building data banks with the water-related data, 
increased level of automation of various tasks in control, etc.  
 
2. Quantum leap in the amount of computer-based modelling. Modelling systems became an 
important part of the instrumentarium of engineers and managers providing the possibilites 
for model-based control. Important decisions in water management are now impossible 
without the enhanced systems and scenario analysis based on modelling various alternatives.  
Models of surface and ground water flows have become more accurate due to the amount of 
the refined modelling techniques, the availability of data for their calibration and the 
computing power allowing for more accurate schematization, finer grid etc.  
 
3. Shift to more economical, optimal solutions. The increased competitiveness of various 
areas of human activities and political pressures lead to seeking optimal managerial and 
control actions where previously simply actions that are "good enough" would do.  Flood 
management decisions for example, should follow the multi-objective approach, balancing 
various interests in minimizing damage. 
 
All the mentioned shifts inevitably change the way water resources are managed and 
controlled, giving rise of attention to the so-called hydroinformatics systems (Fig. 1). Such 
systems incorporate the latest advances in telecommunications, computing, computer-based 
modelling, artificial intelligence, data analysis and processing, optimization and the 
associated decision support systems (DSS).  Several examples of hydroinformatics 
applications for flood warning and risk assessment projects could be mentioned (eg., resulting 
from EU projects TELEFLEUR and EUROTAS with Dutch participation). 
 
In case of TELEFLEUR design, such system receives signals from rain gauges through 
communication lines, and data from meteorological models, this data is fed into the 
hydrological models and data-driven predictive models which produce predictions of water 
levels, this information is combined with the facts from knowledge-based systems and given 
to the decision makers.  A similar system could be foreseen in the context of water 
management in polder areas.   
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Figure 1.1: Typical hydroinformatics system 

1.2 Physically-based and data-driven models 

Traditional modelling of physical processes is often named physically-based modelling (or 
knowledge-driven modelling) because it tries to explain the underlying processes. An 
example of such a model is a hydrodynamic model based on Navier-Stockes partial 
differential equations numerically solved using finite-difference scheme.  
 
On the contrary, the so-called data-driven models, borrowing heavily from Artificial 
Intelligence (AI) techniques, are based on a limited knowledge of the modelling process and 
rely on the data describing input and output characteristics. These methods, however, are able 
to make abstractions and generalizations of the process and play often a complementary role 
to physically-based models. Data-driven modelling uses results from such overlapping fields 
as data mining, artificial neural networks (ANN), rule-based type approaches such as expert 
systems, fuzzy logic concepts, rule-induction and machine learning systems. Sometimes 
"hybrid models" are built combining both types of models.  
 
A simple example of a data-driven model is a linear regression model. Coefficients of the 
regression equation are identified (“trained”) on the basis of the available existing data. Then 
for a given new value of the independent (input) variable it gives an approximation of an 
output variable value. More complex data-driven models are highly non-linear, allowing 
many inputs and many outputs (Figure 1.2) They need a considerable amount of historical 
data to be trained, and if this is done properly, they are able not only to approximate 
practically any given function, but also to generalise, providing correct output for the 
previously “unseen” inputs.  
 
Apart from function approximation and regression data-driven techniques are widely used in 
solving classification problems, that is grouping data into classes. Unsupervised  learning 
methods often incorporate self-organizing features, enabling them to find unknown 
regularities, meaningful categorization and patterns in the presented input data. Supervised 
learning allows to train classifiers able to attribute new data to known classes.  
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Linear regression
Y = a1 X + a2

Neural network approximation
Y = f ( X, a1,…, an )

X

Y Y

X

 
Figure 1.2: Data-driven models: linear regression and ANN. Data-driven models are based 
on pure relationships between input (X) and output (Y) data and not the physical principle 
linking X and Y.  
For a regression equation, coefficients a1 and a2 have to be identified (trained) by solving 
optimization problem on the basis of the available data.  For ANN, many more coefficients 
have to be trained but it can reproduce non-linear multi-dimensional relationships. 
 
Scientific and engineering community has acquired already an extensive experience in 
developing and using data-driven techniques (details on the experience of IHE-Delft, can be 
found on Internet at  www.ihe.nl/hi/sol). Not all sectors of water industry, however, have used 
advantages of these methods.  
 
In this review, applications of two mostly widely used particular types of data-driven models, 
namely artificial neural networks (ANN) and fuzzy logic-based models, to modelling in the 
water resources management field are considered.  
 
Artificial neural network (ANN) is an information processing system that roughly replicates 
the behaviour of a human brain by emulating the operations and connectivity of biological 
neurons. From a mathematical point of view ANN is a complex non-linear function with 
many parameters that are adjusted (calibrated, or trained) in such a way that the ANN output 
becomes similar to the measured output on a known data set.  
 
The origin of fuzzy logic approach dates back to 1965 since Lotfi Zadeh’s introduction of 
fuzzy-set theory and its applications. Since that period fuzzy logic concept has found a very 
wide range of applications especially in the industrial systems control that are very complex, 
uncertain and cannot be modelled precisely, even under various assumptions and 
approximations.  An example of a fuzzy rule is: 
 

IF precipitation = high AND Reservoir-level = medium  
 THEN water-release = medium 
 

(here precipitation, reservoir-level and water-release are so-called linguistic variable with 
fuzzy values medium, high etc.). In this review two main types of fuzzy rule-based systems 
(FRBS) are considered: (a) fuzzy inference systems, which work on already constructed rule-
base mainly on the basis of expert knowledge, and (b) fuzzy adaptive systems, which can also 
build and adjust rule-base automatically on the basis of a given training set. 
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Neural network and fuzzy logic have been successfully applied to a wide range of problems 
covering a variety of sectors. Their practical applications, especially of neural networks 
expanded enormously starting from mid 80s till 90s partly due to a spectacular increase in 
computing power (Kappen, 1996). During the last decade ANN evolved from being only a 
research tool into a tool that is applied to many real world problems: physical system control, 
various engineering problems, statistics, medical and biological fields. Consequently they are 
applied more and more in water management field as well.  
 
It should be noted that water resources management is a complex issue having a wide range 
of activities. It is an application of structural and nonstructural measures to control natural 
and man-made water resources systems for beneficial human and environmental purposes 
(Crigg, 1996). It becomes much more complex than any other management problem due to 
interdependence of several sectors of water resources. In order to have a systematic review, 
the application of ANN and fuzzy logic approach to water resources management problem 
has been classified into several distinctive activities and application sectors.  

1.3 Objective of the study 

The objective of this review relates to understanding the principles of various types and 
architectures of neural network and fuzzy adaptive systems and reviewing their applications 
for integrated water resources management. Final goal of the review can be described as 
exposing and formulating progressive direction of further research of the data-driven and AI 
techniques application in the water resources management field.   

1.4 ANN and Fuzzy logic techniques for water management 

A wide range of application of ANN and Fuzzy logic techniques has been investigated in the 
field of water resources management. As mentioned before, the water resources management 
is a highly complex issue covering a wide spectrum of activities in the field of assessment, 
planning, designing, operation and maintenance (Figure 1.3). As in any other management 
field, all the above activities take place in institutional, social and political environment, 
which is not intended to emphasize in this report. From more general point of view, AI 
techniques can be applied for prediction, simulation, identification, classification and 
optimization. For water resources management field those can be described as follows: 
 
Simulation (physically-based) models. Deterministic models are used for simulation of 
various processes related to the management of water such as hydrodynamic, morphological, 
ecological, water quality, groundwater flow etc. All these models use detailed description and 
fine quantization of the undergoing processes. On the contrary, neural networks do not 
require the explicit knowledge of physical processes and the relations can be fitted on the 
basis of measured data. At the same time, the neural networks or fuzzy adaptive systems can 
approximate any logical condition action pairs with reasonable accuracy. In many or most 
occasions it was shown that the neural networks tend to give better result than the 
deterministic models, provided that the process under consideration is not changed in time.  
  
Prediction.  If significant variables are known, without knowing the exact relationships, ANN 
is suitable to perform a kind of function fitting by using multiple parameters on the existing 
information and predict the possible relationships in the coming future. This sort of problem 
includes rainfall-runoff prediction, water level and discharge relations, drinking water 
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demand, flow and sediment transport, water quality prediction etc. Also filling or restoring of 
missing data in a time series can be considered as a kind of prediction.  
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Figure 1.3: Schematization of different activities and sectors in water management 
 
Identification and classification. In order to represent data more efficiently, it is needed to 
extract the most important features in the data set. The final goal of feature extraction in fact 
is a classification. Unsupervised neural networks often incorporate self-organizing features, 
enabling them to find unknown regularities, meaningful categorisation and patterns in the 
presented input data.  
 
Optimization. The common task of making decisions in water resources management 
problem normally includes multiple objectives to be optimised taking into account many 
different constraints. Neural networks or fuzzy logic approaches are not optimization 
techniques. However, by making use of their generalization ability they approximate either 
the optimal solution or optimise through continuously training their weights (neural 
networks) or their membership functions (fuzzy logic approach). 
 
As mentioned earlier there are 5 main activities in water resources management and each of 
them can have its subactivities. The activities can be described briefly as follows: 
 
1. Assessment  

a. Resources or quantity assessment In this sub-activity the quantitative aspects such as 
estimation of resources in surface and groundwater system are included. For example, 
rainfall-runoff modelling is one of the areas where neural network is mostly applied. 
Modelling the physics of process such as of forming streamflow from rainfall in the 
area may not always be feasible. The reasons for that might be most of the 
quantitative processes are complex and dynamic. The processes vary in time and 
space and lack necessary data for modelling. On the other hand, if it is modelled 
precisely a lot of effort is required for model calibration, which makes AI applicable. 

b. Ecological relations Ecological models use a mathematical description of physical 
and chemical processes, which are very complex and non-linear in nature. Usually the 
relationships of ecological variables are derived empirically and most of the time they 
are linear approximation of the processes, where all the influencing effects may not be 
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considered. Although the results of deterministic modelling are adequately good, in 
case of modelling measurable ecological variables, the neural networks are found to 
be better to generalize the complex relationships.  

c. Water quality management Water quality management problem is mostly based on  
imprecise and insufficient information. Most of the time, goals or constraints may not 
be defined precisely due to the fact that they are based on ill-defined and subjective 
requirements of human judgement or preferences. Although, the numerical models are 
available for water quality simulation, the uncertainties and imprecision are not well 
covered in those models. Furthermore, the need for calibration of water quality 
models makes the neural networks advantageous over these models. Range of this 
type of problem varies from water quality of subcatchment surface water to water 
quality of the urban drainage and drinking water supply systems. 

 
2. Designing  

This activity includes the analysis and design of engineering structures for water 
resources management. Structures for water management can be classified into 
several classes according to their purpose or function: water supply, wastewater, 
storm water, hydropower, navigation and environmental protection. The designing of 
these structures should not be considered as a modelling problem where difficulties 
are encountered in describing it mathematically. Engineers design the structures on 
the basis of given conditional data. However, the simple structure design might be 
learnt by AI techniques. Hitherto no application of AI techniques for structure 
designing is published. 
 

3. Planning  
Planning activities considered in this class are operational planning such as water 
demand prediction, reservoir operation etc.  In other words, the problems of 
operational planning have been classified it this category. As an example, analysing 
the influencing parameters for operational planning and consequently predicting the 
future action is one of the important issues for planning and management for water 
authorities. The performance of statistical prediction models is not satisfactory in 
many cases. Use of AI techniques possibly makes it more reliable for these kinds of 
problems where traditional techniques are not very successful. At the same time, AI 
techniques can be used to replicate the optimal operation planning from optimization 
problem or can be used in optimization loop.  

 
 
4. Operation  

These activities include the operation and real-time control of water systems. The 
relation between the optimal decision or action and the influencing parameters can be 
learned by neural networks. Also it is possible to use these relations for deriving the 
decision and control actions in real-time. The regional or subcatchment water 
resources system management and control, urban water management problems such 
as water and wastewater treatment and drinking water supply can be included in this 
field of activities. 
 

5. Maintenance 
A common example of maintenance problem is fault detection in the water system, 
such as distribution system or treatment plant system. The faults are very uncertain in 
nature and create difficulty in distinguishing the cause of fault. There can be many 
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different criteria to cause faulty operation such as leakage, wrong valve status and 
measurement error due to the telemetry system failure. By using AI techniques it is 
possible to identify the possible cause of failure in the system. 

 
In order to classify the applications of ANN and Fuzzy Adaptive Systems systematically, we 
distinguish the following application sectors (figure 1.1) in this review: 

- drinking water systems (quality and quantity in piped community water distribution) 
- sewerage systems (storm water collection systems, drinking water purification plants, 

sewer water treatment plants)  
- inland water systems (quality and quantity issues in surface and groundwater 

resources systems including engineering structures such as reservoir, dams, irrigation 
systems etc)  

- coastal water systems (quantity aspects in coastal water management problems, 
navigation and related engineering structure problems)   

1.5 Outline  

The overview is organised in five chapters.  
Chapter 2 introduces the basic understanding of various neural network topology and learning 
algorithms and their application in specific application sectors of integrated water resources 
management such as drinking water systems, sewerage systems, inland water systems and 
coastal water systems. This chapter also includes some practical hints for working 
successfully in neural network based projects.  
 
Chapter 3 gives the basic introduction to the general fuzzy logic approach and Fuzzy 
Adaptive Systems with function approximation and learning capability. Moreover, the 
application of the techniques in the water management field is reviewed.  
 
Chapter 4 introduces the neuro-fuzzy approach, which takes advantages of neural network as 
well as fuzzy logic approaches. Most of the literature reveals that the approach is becoming 
an interesting field of artificial intelligence research. The chapter also includes the overview 
of the application in the related area.  
 
Chapter 5 gives a conclusion and recommendation for possible research.  
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Chapter 2 Neural networks and their applications 

2.1 Introduction 

One of the most popular data-driven techniques attributed by various authors to machine 
learning, data mining, soft computing etc. is an Artificial Neural Network (ANN). An ANN is 
an information processing system that roughly replicates the behaviour of a human brain by 
emulating the operations and connectivity of biological neurons (Tsoukalas and Uhrig, 1997). 
It performs a human-like reasoning, learns the attitude and stores the relationship of the 
processes on the basis of a representative data set that already exists. Therefore, generally 
speaking, the neural networks do not need much of a detailed description or formulation of 
the underlying process.  
 
Depending on the structure of the network, usually a series of connecting neuron weights are 
adjusted in order to fit a series of inputs to another series of known outputs. When the weight 
of a particular neuron is updated it is said that the neuron is learning. The training is the 
process that neural network learns. Once the training is performed the verification is very 
fast. Since the connecting weights are not related to some physical identities, the approach is 
considered as a black-box model. The adaptability, reliability and robustness of an ANN 
depend upon the source, range, quantity and quality of the data set.  
 
During the last decade ANNs evolved from only a research tool into a tool that is applied to 
many real world problems: physical system control, engineering problems, statistics, even 
medical and biological fields. The number of European patents obtained in the last decade 
corroborates the trend of increased applications of ANNs (Kappen, 1996). This chapter starts 
with a brief introduction of different structures and learning algorithms of neural networks. 
However, it is not aimed to cover the theory of each learning algorithm in detail. Applications 
of neural networks in the respective water resources management field are overviewed later 
in this section. At the end of the chapter, some practical hints on using neural network models 
are given, based on the handbooks written by experts. 

2.2 Basic elements in neural network structure 

As has been mentioned before, the ANN performs fundamentally like a human brain. The cell 
body in the human neuron receives incoming impulses via dendrites (receiver) by means of 
chemical processes (Figure 2.1). If the number of incoming impulses exceeds certain 
threshold value the neuron will discharge it off to other neurons through its synapses, which 
determines the impulse frequency to be fired off (Beale and Jackson, 1990).  
 
Therefore, processing units or neurons of an ANN consists of three main components; 
synaptic weights connecting the nodes, the summation function within the node and the 
transfer function (see Figure 2.4). Synaptic weights characterise themselves with their 
strength (value) which corresponds to the importance of the information coming from each 
neuron. In other words, the information is encoded in these strength-weights. The summation 
function is used to calculate a total input signal by multiplying their synaptic weights and 
summing up all the products.  
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   Figure 2.1: Schematisation of biological neuron 
 

Activation function (or sometimes called a threshold function) transforms the summed up 
input signal, received from the summation function, into an output. The activation function 
can be either linear or non-linear. The type of activation function characterises the neural 
network. The most commonly used type of activation function is shown in Figure 2.5. An 
ANN consists of distinct layers of processing units and connecting weights. 

2.3 Network topology and learning algorithms 

2.3.1 Neural network structures 

Structure of an ANN can be classified into 3 groups as per the by arrangement of neurons and 
the connection patterns of the layers: feedforward (error backpropagation networks), 
feedback (recurrent neural networks and adaptive resonance memories), self-organizing 
(Kohonen networks). Also neural networks can be roughly categorized into two types in 
terms of their learning features: supervised learning algorithms, where networks learn to fit 
known inputs to known outputs, and unsupervised learning algorithms, where no desired 
output to a set of input is defined. The classification is not unique and different research 
groups make different classifications. One of the possible classifications is shown in Figure 
2.2. 
 
The feedforward neural networks consist of three or more layers of nodes: one input layer, 
one output layer and one or more hidden layers. The input vector x passed to the network is 
directly passed to the node activation output of input layer without any computation. One or 
more hidden layers of nodes between input and output layer provide additional computations. 
Then the output layer generates the mapping output vector z. Each of the hidden and output 
layer has a set of connections, with a corresponding strength-weight, between itself and each 
node of preceding layer. Such structure of a network is called a Multi-Layer Perceptron 
(MLP). Figure 2.3 shows a typical multi-layer perceptron. 
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   Figure 2.2: Neural network classification  
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Figure 2.3: A fully connected multi-layer perceptron 

 
The feedback neural networks have loops that feedback information in the hidden layers. In 
Self-Organising Feature Maps (SOFM) the multidimensional input space is mapped into two 
or three dimensional maps by preserving the necessary features to be extracted or classified. 
An SOFM consists of an input layer and an output map. Some of the commonly used 
feedforward and feedback neural networks are briefly discussed below.  

2.3.2 Error backpropagation networks 

The error backpropagation network (EBP) is one of the most commonly used types of neural 
networks. The EBP networks are widely used because of their robustness, which allows them 
to be applied in a wide range of tasks. The error backpropagation is the way of using known 
input-output pairs of a target function to find the coefficients that make a certain mapping 
function approximate the target function as closely as possible. 
The task faced by a backpropagation neural network is that of learning supervised mapping: 
given a set of input vectors and associated target vectors, the objective is to learn a rule that 
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captures the underlying functional relationship between the input vectors and the target 
vectors. Mathematically, each target vector 

→

z is a function, f, of the input vector 
→
x : 

                                                     )(
→→

= xfz                                                                       (2.1) 
 
The task of the backpropagation network is to learn the function f. This is achieved by 
finding regularities in the input patterns that correspond to regularities in the output patterns. 
The network has a weight parameter vector, whose values are changed to modify a function f′ 
computed by the network to be as close as possible to f. 

 
The backpropagation network operates in two modes: mapping and learning. In mapping 
mode, each example is analysed one by one and the network estimates the outputs based on 
the values of the inputs. For every example, each input node passes a value of an independent 
variable xi to all the nodes of the hidden layer. Each hidden node computes a weighted sum 
of the input values based on its weights ai (Figure 2.4). The weights are determined during the 
learning mode. Finally, from this value of the weighted sum, the hidden nodes compute a 
sigmoid output yi of the hidden nodes. The sigmoid function provides a bounded output of 
the hidden node. Each of the output nodes receives the outputs of the hidden nodes yi, 
computes a weighted sum of the inputs based on the weights bi and finally, determines the 
sigmoid output zi of the node. The output of the output node, zi, is the estimated value of the 
ith dependent variable. The output from the output node is compared with the target output 
and the error is propagated back to adjust the connecting weights a as well as b and this 
procedure is called backpropagation. 
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Figure 2.4: Computations within a single node 

 
For an MLP, given the input vector X=(x1, x2, …, xn),  the output from the hidden node will be 
as follows: 
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             (2.2) 

 
Where j=1..Ninput and aij is the weight of the ith node for the jth input. The outputs from the 
hidden nodes would be the input to the next hidden layer (if there is more than one hidden 
layer) or to the output nodes. The outputs of the output nodes should be calculated as follows:   
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              (2.3) 

Where k=1.. Noutput and bjk is the weight of the jth node for the kth output. The transfer 
function, mostly used a sigmoid or a logistic function (Figure 2.5), gives values in the range 
of [0,1] and can be described as: 
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The mean square error is the way of measuring the fit of the data and is calculated as: 
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where N is the number of examples in the data set, K is the number of outputs of the network, 
zkn is the kth actual output for the nth example and tkn is the kth  target output for the nth 
example. For more details see Smith (1993). 

 
Figure 2.5: Sigmoid or logistic transfer function 

 
In the learning mode, an optimization problem is solved to decrease the mean square error 
and it finds such a value for a and b to bring the E to minimum. By solving the optimization 
problem and knowing the slope of the error surface, the weights are adjusted after every 
iteration. As per the gradient descent rule the weights are adjusted as follows: 
 

∆ ∆w t
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w

w t( ) ( )= − + −η
∂
∂

µ 1               (2.6) 

 
where η is the learning rate and µ is the momentum value. 

2.3.3 Radial-basis function networks 

A Radial Basis Function (RBF) is another type of feed-forward ANN. Typically in an RBF 
network, there are three layers: one input, one hidden and one output layer. Unlike the 
backpropagation networks, the number of hidden layer can not be more than one. The hidden 
layer uses Gaussian transfer function instead of the sigmoid function. In RBF networks, one 
major advantage is that if the number of input variables is not too high, then learning is much 
faster than other type of networks. However, the required number of the hidden units 
increases geometrically with the number of the input variables. It becomes practically 
impossible to use this network for a large number of input variables. 
 
The hidden layer in RBF network consists of an array of nodes that contains a parameter 
vector called a ‘radial centre’ vector (Schalkoff, 1997). The hidden layer performs a fixed 
non-linear transformation with non-adjustable parameters. The approximation of the input-
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output relation is derived by obtaining a suitable number of nodes in the hidden layer and by 
positioning them in the input space where the data is mostly clustered. At every iteration, the 
position of the radial centres, its width (variation) and the linear weights to each output node 
are modified. The learning is completed when each radial centre is brought up as close as 
possible to each discrete cluster centres formed from the input space and the error of the 
network’s output is within the desired limit.  
 
The centres and widths of the Gaussians are set by the unsupervised learning rules, and the 
supervised learning is applied to the output layer. For this reason RBF networks are called 
hybrid networks. 
 
The learning algorithm is formulated as follows: 
1. Find the centres for an RBF. In order to do that the following procedure is followed: 

a. The number of the hidden nodes is chosen beforehand and the centres are assigned 
(wj) which are equally set to the randomly selected input vector xj where in both cases 
j=1..J.  

b. All the remainder of the training pattern is clustered into a class or cluster j of the 
closest centre wj and the locations of each centre are calculated again using the 
Nearest Neighbour Rule.  

c. The above steps are repeated until the locations of the centres stop changing. 
2. The width σ of the radial centre for each hidden neuron is calculated. The distance 

between the centres of the clusters defines the width or variance.  
3. Calculate the output from each hidden neuron as a function of a radial distance from the 

input vector to the radial centre. Calculated distance between the centre and the input 
vector is passed through a non-linear mapping function. Then the output can be written as 
yi = φ(δj). A distance measure, to determine how far is an input vector from the centre, 
usually is expressed as an Euclidean distance measure (Taylor, 1996). The distance δj 
between the input vector X=(x1, x2, …, xk) and the radial centre Xj=(w1j, w2j, …, wmj) is written 
as:  
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This mapping function on each hidden node is usually a Gaussian function of the 
following form: 
 

   φ δ λδ( ) exp( )j = − 2                (2.8) 
      
4. Weights (bj) for the output layer are calculated using methodologies such as the Least  

Square Method or the Gradient Descent Method. The output node then receives the values 
indicating how far is the example from each of them and combines the outputs linearly. 
The output from the output node can be described by the following equation: 
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where  bjk – the weight on the connection from the hidden node j to the output node k,  
  yj  - the output from the hidden node  j 
5. Calculate the error between the network’s output and the target output and if the error of 

the network’s output is more than the desired limit then the number of the hidden units 
are changed and all the steps are repeated again.  

 
The advantage of this network is that the learning process can be faster than the 
backpropagation networks, although the accuracy of the solution is highly dependent on the 
range and quality of data (Dibike, 1997).   

2.3.4 Recurrent neural networks  

Recurrent neural networks (RNN) have a closed loop in the network topology. They are 
developed to deal with the time varying or time-lagged patterns and are usable for the 
problems where the dynamics of the considered process is complex and the measured data is 
noisy. Specific groups of the units get the feedback signals from the previous time steps and 
these units are called context unit (Schalkoff, 1997). The RNN can be either fully or partially 
connected. In a fully connected RNN all the hidden units are connected recurrently, whereas 
in a partially connected RNN the recurrent connections are omitted partially (see Figure 2.6). 
Examples of recurrent neural networks are Hopfield networks, Regressive networks, Jordan-
Elman networks, and Brain-State-In-A-Box (BSB) networks.  

outputs

Context
units

inputs

 
 
Figure 2.6: Example of partially connected recurrent neural network (Schalkoff, 1997) 
 
All types of recurrent neural networks are normally trained with the backpropagation 
learning rule by minimizing the error by the gradient descent method. Mostly they use some 
computational units which are called associative memories or context units, that can learn 
associations among dissimilar binary objects, where a set of binary inputs is fed to a matrix 
of resistors, producing a set of binary outputs. The outputs are '1' if the sum of the inputs is 
above a given threshold, otherwise it is zero. The weights (which are binary) are updated by 
using very simple rules based on Hebbian learning. These are very simple devices with one 
layer of linear units that maps N inputs (a point in N dimensional space) onto M outputs (a 
point in M dimensional space). However, they remember the past events.  

Jordan-Elman networks 

Jordan and Elman networks combine the past values of the context unit with the present input 
(x) to obtain the present net output. The Jordan context unit acts as a so called lowpass filter, 
which creates an output that is the weighted (average) value of some of its most recent past 
outputs (see Figure 2.7). The output (y) of the network is obtained by summing the past 
values multiplied by the scalar parameter τn. The input to the context unit is copied from the 
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network layer, but the outputs of the context unit are incorporated in the net through their 
adaptive weights (see equation 2.10).  

∑x(n) y(n)

τn n
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u

 
 

Figure 2.7: Parameters for Jordan-Elman network (NeuroSolutions manual) 
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In these networks, the weighting over time is inflexible since we can only control the time 
constant (i.e. the exponential decay). Moreover, a small change in time is reflected as a large 
change in the weighting (due to the exponential relationship between the time constant and 
the amplitude). In general, we do not know how large the memory depth should be, so this 
makes the choice of τ problematic, without having a mechanism to adopt it.  
 
In linear systems, the use of past input signals creates the moving average (MA) models. 
They can represent signals that have a spectrum with sharp valleys and broad peaks. The use 
of the past outputs creates what is known as the autoregressive (AR) models. These models 
can represent signals that have broad valleys and sharp spectral peaks. The Jordan net is a 
restricted case of a non-linear AR model, while the configuration with context units fed by 
the input layer is a restricted case of non-linear MA model. Elman’s net does not have a 
counterpart in linear system theory. These two topologies have different processing power 
(Beale and Jackson, 1991).  

Hopfield networks 

Hopfield networks are the recurrent neural networks with no hidden units. The idea of this 
type of network is to get a convergence of weights to find the minimum value for energy 
function, just like a ball going down to the hill and stops when energy is converted to other 
form due to friction and other forces (Gurney, 1999). Also it can be compared to the vortices 
in a river. Taking input vector X, the system state and the network dynamics converge the 
energy function into a stable state or equilibrium point denoted as P (see Figure 2.8). After 
the network has learned and a new ball is presented on the top of the hill, it should remember 
where the ball has to stop. 
 
Every node of the Hopfield net is connected to all other nodes but not to itself, so that the 
flow is not in a single direction. Even a node can be connected to itself in a way of receiving 
the information back through other nodes. Weights, the connection strengths are symmetric 
so that the weights from node i to node j are equal to the weight from node j to node i, which 
means wij=wji and wii=0.  



Chapter 2   Neural networks and their applications 

IHE-Delft  Part 1. Review of theory and applications 21 

 
 
     Figure 2.8: Simplified description of Hopfield network learning (NeuroSolutions manual) 
 
The state of the network at given time is expressed by the vector of node outputs. At any 
given state the nodes are selected randomly and the output of the node is updated when the 
node is fired. The fired node evaluates its activation in a normal way and output of the node 
is '1' if it is greater or equal to zero and '0' otherwise. The network now finds itself exactly in 
the same state or in a new position, which is in a certain Hamming distance from the old one. 
In the next iteration, a node is chosen randomly which updates its weight and the system 
state. The procedure is repeated till the system reaches a stable state or minimum energy 
value, where no more update is desirable. The energy of the system for each pair of node is 
defined as follows: 

 

jiijij xxwe −=              (2.11) 
      
where xi and  xj are node outputs and the wij is a weight. From equation (2.11) one can see the 
minimum system energy is achieved when both node outputs take a value of '1'. The total 
system energy is then found by summing all the energy for all pairs of nodes.  
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where N is a number of pairs. The last expression is defined by the fact that the sum includes 
all the pairs twice. The network usually starts in some initial state and continues the 
simulation by choosing the nodes in random order. However, there is another possibility that 
some of the nodes in the network get their outputs fixed and the remainder is to be updated. If 
the fixed part forms a part of a stable state, the remainder of the nodes will complete the 
pattern stored in that state. It is similar to the way human brain remembers the things when it 
is given some partial information on a subject as a hint. 
 
The weights for given stable state vector ),...,,( 21 nxxx are determined as follows: 
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It should be noted that there is no self activation, which means wii=0. The algorithm can be 
summarized simply as follows: 
 
1. Define the training set and the weight vector 
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2. Test for desired stable state using the training set to verify the stored stable patterns. 
3. Check the energy function for the current iteration 
4. Modify the network, energy function and the training set if the result is not satisfactory 

and repeat the procedure from the beginning. 

Brain-State-in-a-box  

Brain-State-in-a-box (BSB) network can be seen as a version of Hopfield network with the 
continuous rather than discrete and synchronous updating. Apart from this there is no other 
restriction on the weights. The model consists of a set of neurons or units, which are 
symmetrically interconnected (wij=wji) as in a normal Hopfield network and fed back upon 
themselves. At each time step the units are computed as a weighted sum of the units and this 
weighted sum is used to update the activation value. A simple non-linearity is added so that 
the activation value of each neuron remained bounded between min and max values. The 
state of neural network is represented as a pattern of activation over the neuron units, which 
is amplified if the activation pattern is 'familiar' to the net and rejected otherwise (Golden, 
1993). 
 
If we have X input patterns with D dimension, every activation pattern (activation level, 
consequently firing rate) over model neurons is trapped into a 'box' in D dimensional hyper 
region bounded by [+1;-1] or minimum or maximum activation values. Each of the model  
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(f1,F2)

(f1,f2)

(F1,F2)

(F1,f2)

x(2)

x(1)

 
Figure 2.9: Two dimensional state-box (Golden, 1993) 

 
neuron simultaneously adds a weighted sum of inputs and outputs and a bias to its current 
activation value. In case the range of min and max values is exceeded, it is truncated to the 
max and min values correspondingly. For example, Figure 2.9 illustrates the two dimensional 
case and how two distinct system states (s1,s2) can be mapped into the same hyperbox vertex 
(F1,F2).  

 
The learning in the BSB model is formulated as follows: 
 
  x k S x k ki i i i i( ) [ ( ) ( )]+ = −1 γρ η                    (2.14) 
 
where, 
γ,ρ - positive scalar constants  
S  - sigmoid activation function 
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ηi(k)  - net input 
xi(k) - activation level or real-valued scalar state 
 
The net input should be defined as follows: 
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where, 
bi -bias weight 
wij  - weight connecting unit i to unit j in the model 
 

2.3.5 Self-Organising feature maps and other cluster analysis techniques 

Self-organising Feature Maps (SOFM) is another type of neural network developed by 
Kohonen (Kohonen, 1977) which acts upon the theory of associative memory. In associative 
theory, pairs of patterns are stored so that presentation of one of the patterns in a pair directly 
evokes the associative pattern. This type of neural network is mostly suitable for pattern 
recognition and classification. 
 
SOFM uses an unsupervised learning algorithm to map high dimensional data into one or two 
or at the most three dimensional data space by preserving the key features. SOFM consists of 
two main parts: input layer and output map (Figure 2.10).  
 
SOFM transforms the input data of arbitrary dimension into a one or two-dimensional 
discrete map subject to a topological (neighbourhood preserving) constraint. The feature 
maps are computed using Kohonen unsupervised learning. This network's key advantage is 
that the clustering produced by the SOFM reduces the input space into representative features 
using a self-organizing process. Hence the underlying structure of the input space is kept, 
while the dimensionality of the space is reduced. 
 
Pattern recognition can be defined mainly as a process of automatic derivation of logical 
pictures of facts underlying the problem domain by categorisation and identification. They 
work with two steps: feature extraction and the classification. The feature is a kind of 
measurement taken on the pattern to be classified and transformed into the real numbers. The  
selected features should provide the characteristics of the input type to the classifier (Beale 
and Jackson, 1991). 
 
Suppose we have a measurement in the input pattern, each of which is a unique feature. The 
set of these input vectors is called as a feature vector. The dimensionality of the vector n 
defines the n dimensional feature vector.  In the data set in the form of X matrix (k  x  n) each 
row contains n variable values for each of the k object under analysis. The feature vectors are 
fed into the Kohonen network, which consists of two layers. The weight values assigned 
beforehand between the input and output nodes are modified every time the data vectors are 
loaded to the network. In the end the weight vectors' convergence adopts the information that 
is provided by the input. The learning procedure mainly takes place within the weight 
elements and especially the input layer is used just to pass the input. 
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Figure 2.10: Basic structure of SOFM (Beale and Jackson, 1990) 

 
The learning procedure in Kohonen map is a competitive learning. Only the winning node 
and its neighbouring nodes are updated during the learning and the winning node is 
considered to be fired. The winning output node is determined by a similarity measure, which 
can be Euclidean distance measure or dot product of two vectors. The best match or the 
minimum distance measure obtained from the comparison of the input vector and defines the 
winning node in the output layer. The weight vectors are updated for the winning node and its 
neighbouring nodes proportional to the value of the difference between the input and weight 
vectors and a neighbourhood function. The learning procedure continues until no significant 
changes occur in the feature map. 
 
The learning algorithm can be described as follows (Beale and Jackson, 1990): 
 
1. Assigning the weight values. The equal number of weights to the output node is assigned 

with small random values. The dimension of the weight vectors should be the same as the 
equal dimension of n input vector.  

 
2. Input vectors are presented to the network sequentially.  
 
3. The similarity measure has to be done in order to find the winning neuron. As mentioned 

before it can be either the Euclidean distance measure or the dot product of two vectors. 
Winning node will be the one which shows the greatest similarity with the input vector. 
The Euclidean distance that is mostly used for the similarity measure is calculated as 
follows: 
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n

N
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            (2.16) 

 
Input vector X has K patterns and the number of elements of weight vector is equal to the 
number of the processing elements in the output layer. In case the Euclidean distance 
measure is used, the weight to the node which minimises D most will be the winning 
node. 

 
4. The values of weight vectors are updated for the winning node and its neighbours. The 

weight vectors should be updated according to the learning algorithm as follows: 
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where, 
t - number of iteration 

 c - number of cycle 
 η(t)- learning rate  
 N(c,r)- neighbourhood function 

r- neighbourhood radius  
 

5. Repeat all the steps starting from 2 till the network reaches the stable weight 
configuration. But the term of iteration and cycle have to be distinguished, one iteration is 
fulfilled when all the input patterns are presented to the network. On the next iteration the 
input vectors are presented to the network again one by one.  But the cycle is the measure 
of how many iterations has to be done for one neighbourhood radius. It is defined by 
neighbourhood reduction factor. For example, for the feature map with 8x8 with the 
reduction factor defined as 2, there will be 5 cycles (8,6,4,2,0). 

 

Figure 2.11: Weight vector projection (Vesanto, 1998) 
 
After the training, the result will be the clusters formed by their spatial closeness and this 
feature is reserved in the weight vector. The analysis of the result of the SOFM is not as 
simple as in other types of networks. The analysis can be done by visual inspection of the 
output and the weight connections in 2D or 3D. Different options are available for visual 
inspections (Vesanto, 1998): 

 
- Count maps, which is the easiest and mostly used method. These maps are formed by 

winner counts for each output node for the entire data set and it can be interpolated into 
colour shading as well. The node, which represents the high rate of activation or firing, 
represents the cluster. It can be plotted in three dimensions in order to make clear 
visualization. 

 
- Vector position or cluster maps, on which the position of winning nodes for each input 

vectors are displayed by processing the weight vector. Figure 2.11 shows the projection 
of the weight vector of the trained SOFM into different dimensions. Colours are coded 
according to their similarity in the input space. Each dot in Figure 2.11.a corresponds to 

a) 2D projection 
b) 3D projection 
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one output map unit and the reader can see the concentrations of dots at several locations. 
Each map unit is connected to its neighbours by line. However, a projection in 3D 
expresses the phenomenon more clearly than a projection in 2D as shown in Figure 
2.11.b. 
 

The distance matrix, which is an Euclidean distance of each output unit to its immediate 
neighbouring units, can be used for visualization. Then the colours and sizes of representation 
can be assigned to units with similar property. Minimum, maximum or median of distances 
between particular unit and its immediate neighbours as well as other cluster properties such 
as correlation for each pair of units can be used for map visualization. For example Figure 
2.12 shows the visualization where the distance matrix is used. In Figure 2.12.a the size of 
each output unit on the map is proportional to the average distance from its immediate 
neighbours, so that one can distinguish the different clusters by looking at the areas separated 
by the larger hexagon. In Figure 2.12.b the same information is being transformed into 
colours, which means that the similar colours are close to each other in the input space. For 
more details see Vesanto (1998). 

Figure 2.12: Distance matrix for visualization (Vesanto, 1998) 
 
Other than SOFM, there are other numerical and statistical cluster analysis and classification 
techniques available, such as: 
 
- Adaptive Resonance Theory, which is classified sometimes as a unsupervised, vector-

clustering, competitive learning algortihm like SOFM. It also consists of two layers 
(comparison and recognition layer) and the learning process is executed winner-takes-all 
manner. The main difference relates to the fact that the classification can be dynamic and 
there is extensive feedback mechanism between the input and the output layers. When a 
completely unknown pattern, which cannot be classified into existing clutsers, is 
presented to the network, it can create a new cluster (see Schalkoff, 1997 for details). 

 
- Fuzzy clustering technique, where clusters are defined as a subset of a dataset. Usually 

the data sample belongs to only one class or cluster but in fuzzy clustering technique 
sample can belong to several clusters by having different degree of membership to each 
of them.  

 
-  

a) Distance matrix b) Similarity coding 
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- Nearest neigbour method, where any new sampling point is classified to the class to 
which it is located closer in the Euclidean space. In the input space, the classes are 
determined by certain radius defined beforehand. The method is applied better if the 
patterns are well separated (see Beale and Jackson, 1990 for details).  

-  
- Optmization partitioning, which classify the data set into groups by optimizing some 

predefined criterion. The difficulty occur to find the global optima of the defined 
criterion. As an example, support vector mashines algorithm can be mentioned. (Vapnick, 
1995)  

-  
- C-means clustering, which improves the homogeniety within the groups by minimizing  

the sum of squares of the patterns. After carrying out an iterative procedure, a certain 
number of cluster centres are found.    

-  
- Linear classifier method, which is applied for linearly separable problems. The linear 

decision boundary to separate classes is defined by descriminant function. Value of 
discriminant function is used for classifying given sample pattern on the basis of the 
weight vector (see Beale and Jackson, 1990 for detail). 

2.3.6 Principal component NN 

This type of neural network is based on the standard or linear Principal Component Analysis 
(PCA), which is a multivariate data analysis technique used for data reduction in terms of 
dimensionality and noise reduction (generalization). The standard PCA technique is in fact an 
orthogonal coordinate transformation (Diamantaras and Kung, 1996). 
 
In PCA, n dimensional redundant data vectors, which are correlated to each other, are 
transformed into certain s dimensional data vectors (s < n) orthogonal to each other. These 
vectors  give the  principal  directions  along  which  the  data  cloud  mostly  stretched.  The  

 
principal components are the projection of the data set on eigenvectors of principal directions 
(Figure 2.13). This is equivalent to drawing a regression line through the points described by 
the original data pairs, and describing a new point as the distance along that line (Swingler, 
1996). The eigenvalues for given eigenvector give an indication about the information of that 
particular principal component. In other words, the first principal components ranked with 
their eigenvalues in descending order explains the most variance of the data set and the last 
explains the least.  
 

First
principal
axis

Least
principal
axis

 
Figure 2.13: Linear principal component showing the most and least variance of data set 
(Diamantaras and Kung, 1996) 
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By ignoring the last principal component, data reductions can be made as long as the data set 
still contains the most valuable information. Principal Component Neural Networks (PCNN) 
are mainly used for classification and feature extraction. The reason is PCA makes it easier 
for classification by extracting the most important information for classification and 
removing the correlation between the attributes, which possibly slows down the identification 
of the classes. PCA and PCNN are explained in a bit more detail below. 
 
Principal component analysis 
 
The PCA analysis of a data set in fact is a rotation of given data vectors. The new axes as a 
result of the PCA analysis should form the principal directions in the orthogonal data-space. 
Let us assume that the data set of k observations of n variate variables that can be represented 
in a form of X matrix (kxn). The algorithm of transforming data into uncorrelated set using 
standard PCA can be formulated as follows:  
 
1. Calculate the covariance matrix of the data matrix. In order to find it, the original data 

matrix should be centred around their mean value first. It can be obtained by calculating 
first the mean and their variance:  
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Then the covariance matrix is calculated from the centred matrix Y as follows:  
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2. Calculate the eigenvectors of the obtained covariance matrix, which should fulfil the 

following condition:  
 

S X X⋅ = ⋅' 'λ               (2.21) 
 

where X’- eigenvector and λ- eigenvalue of the covariance matrix  
The determined eigenvalues should be the fraction of the total system variance. The 
eigenvectors orthogonal to each other are principal directions.  

 
3. Projection of data set on the eigenvectors determines the principal component. Which 

means the transformed data set can be obtained by multiplying the original matrix by the 
eigenvector matrix.  

 
Z X A= ⋅               (2.22) 

 
where X- is original data matrix and A-is columnwise eigenvector matrix  
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Principal component neural networks 

 
Sanger and Oja proved that one-layered linear neural network is equivalent to the linear 
standard PCA. And the neural networks which implement this learning algorithm is called 
Principal Component Neural networks (PCNN). For details see Diamantaras and Kung 
(1996). If the network has p inputs (or given sample has p components) and m<p outputs, the 
learning named as Hebbian is as follows: 
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where α is the step size 
 
The Hebbian rule is characterized with involving the product of a pair of node activation or 
outputs. By doing this procedure we are calculating the eigenvectors of the correlation 
function of the input without computing the correlation function. It was also shown that this 
learning converges to the solution where the weights of the PCA network approach the first 
principal component of the data matrix. Also by this learning procedure one can reduce the 
dimensionality of the original data set (m<p).  
 
Disadvantage of using the PCNN remains in the outlying data points, which distort the 
eigenvalue estimation and causes skewed data projections. Also if the classes are on the top 
of each other it does not guarantee of the class seperability. If the PCNN is used for 
dimensionality reduction purposes, it may destroy the non-linear relations attempted to be 
modelled.  

2.4 Applications of Neural networks in the water sector 

2.4.1 Drinking water systems 

Prediction of drinking water consumption  
 
Prediction of community water consumption is not an easy task, there might be many 
influencing factors on the subject. Only few water supply companies in the Netherlands use 
automated prediction models. Moreover, the accuracy of the prediction by these models is not 
always satisfactory, particularly during the peak consumption period on the daily basis, the 
error level reaches 25%. Aafjes et al (1997) investigated a short term prediction of 
community water consumption by ANN, traditional expert system and combination of ANN 
and expert system. Water consumption data of Friesland for two years have been used for the 
study.  
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For neural network model development, 5 variants have been studied to relate the predicted 
water consumption to the previous 1 to 7 days’ consumption data. The hourly consumption 
data for previous day and hourly consumption of the same day one week before, together as 
input variables gave the best result. Also the day of week is given as input because the water 
consumption may vary on different days of week. Obviously the climate characteristics are 
one of the influencing factors for water consumption. Therefore, the measured data such as 
air pressure, global radiation, temperature and the precipitation are included as well. The 
climatic data during daytime, between 9.00-19.00 hours improved the network performance. 
The inclusion of difference between global radiance of the current day and previous day 
significantly improved the performance. Neural network models allowed decreasing the 
prediction error by two times.  
  
Expert systems have been developed for the days with big prediction error of neural network: 
national holidays, school holidays and day after holidays. Before developing the rule base for 
expert system, the fault analysis has been carried out. The case based reasoning of expert 
system is used for fitting the predicted water consumption by neural networks. After making 
neural network prediction, the expert system is used for selecting the same holiday in the past 
from the case library. The difference in water consumption is used for correcting the error of 
neural network output. The error is corrected up to 75% by use of case based reasoning.  
 
The accuracy of neural network based prediction of water consumption is considered as fair 
to good. For short-term prediction, the comparison of ANN model’s result with the 
conventional statistical analysis based model’s (ARIMA) result shows an improvement in the 
ANN model. Climatological data can significantly improve the model performance. If 
training data includes longer time series then the result can be improved by including more 
data on water consumption during holidays in the case library of expert system. In this case 
study, the neural networks are trained off-line. On-line training option must be implemented, 
so that the neural networks can be trained on the basis of newly measured data.   
 
Drinking water quality 
 
In water quality control, the estimation of water quality evolution from the treatment plant to 
the consumer's tap is an important issue. During the water transportation through the 
distribution network, the residual chlorine concentration guarantees microbiologically safe 
water quality. The residual chlorine concentration diminishes due to the reactions within the 
pipeline. The comparative study of conventional first order modelling approach and ANN 
model on the residual chlorine evolution is carried out by Rodriguez et al (1997). The 
conventional model with first order semi-empirical equation is as follows: 
 
   CD=CU e-KT               (2.25) 

 
Where CD and CU denote the chlorine concentration at the downstream and upstream point in 
the system respectively, T is the travel time and K denotes the coefficient of chlorine decay, 
successful determination of which makes the model reliable. K may vary in time and space 
depending on many parameters. Therefore, a lot of work on accurate estimation of the 
coefficient is needed. The error backpropagation neural network model takes time lagged and 
delayed values of CU , water temperature, water flow rates measured on-line, travel time as 
input and produces CD - downstream chlorine concentration as an output. The travel time is 
calculated from the first order flow equation by assuming the flow rate as constant with  
space. The models were built for both steady and unsteady flow conditions taking seasonal 
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variations into account. The obtained results of ANN model show high accuracy and make 
the combinations of the two approaches as promising in this particular field of research.  
 
Zhang and Stanley (1997) investigated the problem of forecasting of raw water quality 
coming to the treatment plant using neural network model. In order to meet the changes in 
incoming water quality and supply high quality water to the consumers by adjusting the 
treatment processes in an optimal manner, it is desirable to know the quality of incoming 
water in advance. By previous research it was found that the colour of raw water and 
turbidity are the most important parameters to affect the treatment processes. To predict the 
colour of water, the inputs to the neural network model are turbidity, river flow rate, 
precipitation at a meteorological station located upstream in the basin and their derivatives. 
The result of ANN model is found to be promising and it may serve as a solid ground for 
real-time operation such as computerised coagulation dosing control. 

2.4.2 Sewerage systems 

Floc classification  
 
Classification of floc is a very important issue in water purification process. The floc size and 
its structure are directly related to the technical process parameters such as dewatering 
behaviour or settling ability of sludgy wastes (Nagel, 1999). The classification of floc usually 
is done by numerical clustering techniques, but for analysing their result particularly for 
overlapping or dense cloud of sample, the efficiency must be improved. Use of neural 
network classification may be one of the possible alternatives.      
 
Water treatment process control 
 
Water treatment process control, especially determining all the different micro scale physical 
and chemical reactions numerically, which are highly non-linear processes, is a complex task. 
The mathematical descriptions of the processes give rather limited success in controlling the 
processes in real-time, therefore the chemical dosage for different stages of treatment is 
decided by expert's judgement. ANN is used for controlling coagulation-flocculation-
sedimentation processes and in determining the optimal chemical dosage on the basis of the 
water quality parameters of incoming water (Zhang and Stanley, 1999). 
 
In treatment plant, the water quality parameters to represent the state variables are pH, 
turbidity, colour and temperature. The control variables are chemical doses for alum, 
Powered Activated Carbon (PAC) and the clarifier overflow rate. Proposed feedforward 
control scheme with optional feedback loop is shown in Figure 2.14. The control scheme 
consists of three main parts.  
 
a) Neural network process reference model, which takes the measured water quality 

parameters, intended dosage for alum and PAC and produces the turbidity of water 
coming into the clarifier 

b) Noise filter for calculating, selecting and passing the preferred control information from 
sources such as process standards or feedback, and the prediction from the previous plant 
reference model to the next unit. In other words, its purpose is to check whether the 
predicted turbidity of effluent water matches the standard. Also it enables and disables the 
feedback flow of information. If the actual turbidity is greater than the reference, then the 
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difference is subtracted from the desired turbidity. Otherwise the difference is added to 
the desired value and that value is passed to the inverse model.    

c) Neural network inverse model works completely the other way. It accepts the raw water 
quality parameters, the desired PAC dosage, predicted turbidity to the clarifier and 
generates the proper alum doses.  

 
Figure 2.14: Control scheme 

 
i - Intended dosage of alum and PAC 
u - the alum dosage  
y - output of the process, turbidity 
ym - the turbidity difference  
 
The control algorithm determines the alum dosage to bring the difference between the desired 
turbidity and actual turbidity to minimum. If the alum and PAC dosages at the previous 
sampling time step are good for current condition, those are passed to the process reference 
model with the present water quality parameters to predict the turbidity. The filter unit  
determines whether the turbidity is above the limit (the alum dose value should be changed) 
or not (the turbidity is passed to the inverse model to find the corresponding alum dosage). 
The performance of the control scheme is highly dependent upon the accuracy of two neural 
network models. It is concluded that the models perform well, however, with less noisy data 
and implementation of on-line measurement, the performance should be improved.  
 
Emulation of sewer flows 
 
Simulation of sewer flows in the Netherlands using ANN has been investigated by Proano 
(1998). Nearly 90% of sewer systems in the Netherlands are combined systems, where the 
storm water and the wastewater are transferred to the sewage treatment plant with the same 
pipeline. When combined sewer discharge exceeds the capacity of the treatment plant the 
excess sewer is discharged directly to the delivered water, causing serious environmental 
pollution every year. The situation is known as Combined Sewer Overflow (CSO) problem. 
The data set for training and testing the network is generated by SOBEK-Urban package 
developed at Delft Hydraulic Institute.    
 
The problem of simulating the sewer overflows was investigated first on simplified scheme 
and encouraged by promising result, the real sewer system of Maartensdijk town in the centre 
of the Netherlands was considered. This is a flat and large system with 445 branches, 406 
nodes, with three overflow weirs and one pumping station. Rainfall events were chosen to run 
SOBEK-Urban model under certain assumptions in terms of their duration and depth from 
measurement data of 10 years. Result of SOBEK model simulation forms a training data set 
for neural networks. Thus ARNN models were built for each overflow structures taking 
precipitation and water depth at previous time step to produce the discharge and water level 
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at the following time step. The resulting water level becomes an input along with the 
predicted precipitation to produce the water depth for the next time step and discharge at the 
current time step. The approach has been concluded as 7 times faster than the SOBEK 
simulation. The result of considering two simultaneous overflows at two different points has 
also shown a reasonable accuracy. However, further investigation is needed to improve the 
accuracy of solution.   
 
Water treatment plant parameter prediction 
 
Another application of error backpropagation network for predicting water treatment plant 
parameters was investigated by Hanisch and Pires (1998). Determining those parameters at 
each processing level such as plant input, input to the primary settler, input to the secondary 
settler and as plant output, allow a better process control and management. The network 
models take past and present values of 9 parameters such as total water capacity, pH, 
conductivity, Zn, BOD, COD, settleable solid concentrations etc. as input variables and 
predict their future values in total of 29 output variables. The error of the obtained result 
shows somewhat high value for the purpose of the study, and the study should be continued 
to improve the results. 
 
Selection of wastewater purification plant type 
 
The problem of determining the class of appropriate wastewater purification plant when a set 
of parameters of pollutant types and their characterization are given was investigated by 
Vermeersch et al (1999). Modelling of ill-defined problem such as water purification process 
usually consists of three phases: relationship detection, model structure characterisation and 
parameter estimation. Structure characterization that is considered in this study is a 
specification of parts of functional relationships between variables. The property of the 
approach considered in this study is to identify certain characteristics or features of the 
system. Features are compared to the corresponding feature of each known class of candidate 
models. Those candidate models are assumed to be based on the set of candidate structures; 
the parameters of each structure required to be estimated are given a value within certain 
limit. 
 
If the feature of the system to be modelled is resembled to one of the structure, then that 
particular class of candidate models can characterize the system. Therefore, features of a 
candidate class are input to the network and the corresponding class is an output from the 
network. The neural network learnt the features of the specific classes and finally, the net 
returns the suitable technology of water purification process by taking the real-world values. 
Different techniques and different structures of the neural networks are tested in this study; 
error backpropagation networks, SOFM, recurrent neural networks, Brain-State-in-a-Box 
(BSB) models, learning vector quantization and nearest neighbourhood methods. The data for 
classification are pre-processed beforehand in order to keep the magnitude of the network as 
small as possible and also to get the data well separated in the input space which prevents 
overlapping of classes.  
 
Each parameter for wastewater purification process has value a within a certain range that is 
chosen experimentally. The efficient control of wastewater purification requires a clear view 
of the components of the influent water - how many pollutants are incorporated in the water, 
and whether the pollutant is degraded under saturating or non-saturating conditions etc. 
Training data is obtained by processing measured data by bio-sensors using four different 
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transformation techniques: Fourier series, fast wavelet transform, Karhunen-Loeve transform 
and simple decimation technique.  
 
In total 23 data patterns, each of which consist of 600 data points, are used as training data for 
classification. The result of neural classification is compared with the classification of real-
life data classified by human experts. Within the 5 different classification methods the BSB 
model and backpropagation networks achieved the best result using the simple decimation 
method and fast wavelet transformation methods for data preprocessing. Therefore, it has 
been concluded the data preprocessing is essential for better functioning of neural network. 
The BSB models have advantage of having their architecture fixed and not having a training 
phase so that there is no danger of overtraining. Also all the neural networks proved to 
outperform statistical classifiers such as nearest neighbourhood method. 
 
Sewer water quality 
 
Models for water quality simulations are normally based on a number of simplifying 
assumptions about the process and they need a lot of effort for calibration in order to get an 
accurate result. Nouh (1996) used error backpropagation network to simulate the sewer water 
quality using measured data for rainfall duration and intensity, the catchment characteristic 
data, and pollutograph, which is suspended solids, nitrates, total phosphates, total particulate 
suspended solids concentrations. Pollutographs used for NN simulation and verification were 
generated by SWMM model after proper calibration. The NN accuracy is satisfactory only 
for simulation of peak suspended solid concentration in small catchments. Also the 
proportion between the depth and duration of storm events and spatial and time variation of 
the storm event have to be considered carefully.   
 
Waste water treatment process  
 
Zhao and McAvoy (1996) reported the result of application of neural network and First 
Principle Method (FPM) combination for activated sludge processing problem. FPM is same 
as the Principle Component Analysis (Section 2.3.6). Activated sludge technology is used 
widely in waste water treatment plants, which is a very complex bio-chemical process. The 
models describing the dynamics of the process are available, however, the calibration of 
number of variables and parameters is costly and time consuming. The authors assumed that 
the lack of on-line measured data makes it preferable to use a control structure of neural 
network combined with the FPM.  
 
The control scheme (Figure 2.15) implemented should take plant inputs such as raw water 
BOD, total nitrogen, ammonia nitrogen, and external data such as temperature, pH etc. and 
produces the parameters (BOD, and other nitrogen compounds) at the effluent to the clarifier. 
The FPM part produces the parameter values at the effluent from the plant inputs only, then 
the neural network part takes all the plant input, external disturbance data, the time delayed 
inputs and the residual value. The residuals (e(t)) are the differences between the desired 
value of plant output and FPM output, which is an error of FPM. Once the training is finished 
the switch is turned to the position P and outputs of the network are fed back with time delays 
(z-1) to the neural network. Then output of the NN is the residuals.  Finally, the control 
system output is the summation of FPM and the residuals predicted by the recurrent neural 
network model.  
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Figure 2.15: Hybrid model structure 

 
For NN part of the scheme, an error backpropagation network and a recurrent neural network 
are used. The scheme was tested with both simulated and measured plant data. Combining the 
neural network to FPM, which is accurate for steady state, makes it possible to make 
predictions in process dynamics and add the external data. The resulting accuracy of the two 
combined techniques is explicitly higher than the singular models. Moreover, the proposed 
approach significantly reduces the task of calibrating the FPM and the hybrid modelling 
approach can be used for other complex processes as an accurate and cost-effective 
modelling tool. 
 
Urban runoff  
 
Loke et al (1997) studied application of neural networks for prediction of runoff coefficient 
by using simple catchment data, while regression model for this sort of task requires rarely 
available data such as soil moisture deficit or soil structure. The input data for error 
backpropagation network consists of conventional catchment characteristics such as 
catchment size, percentage of impervious area, which can be easily derived from normal 
topographic maps. The percentage of pervious and impervious area and the sum of 
impervious and semi-pervious area are found to be the most suitable input variables. The 
result of verification illustrates the prediction error within 10-20% range, with average 
deviation of about 4%. If the number of training example is sufficient the performance should 
be improved. 
 
The authors applied neural networks for filling in gaps of measurement data as well. By the 
measurement of two rain gauges in Copenhagen, the measurement of the third one was 
restored. The result is compared with the simple substitution method and a satisfactory result 
obtained illustrates the neural network’s ability to deal with this type of problem.  
Urban runoff prediction 
 
Sincak et al (1998) used Radial Basis Function (RBF) network and Cascade Correlation (CC) 
networks for predicting the sewer flow on the basis of historical rainfall data. Data for sewer 
flows are continuously measured by ultrasonic level sensors at three cross-section points in 
the sewer system. Rainfall data is measured from the gauge in the town centre. Different 
network topology was investigated with time lagged or moving average values of rainfall 
data as input and sewer flow as output. CC neural networks, which is a special type of error 
backpropagation networks showed higher performance above RBF network for prediction of 
sewer flow ahead. The advantage of CC neural networks is that it optimizes the topology by 
itself.  
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Urban storm drainage 
 
Storm water is usually collected by the sewer system and is discharged to the rivers after the 
treatment, in order to prevent the washing up of pollutants such as heavy metal, hydrocarbon, 
micro-pollutants etc, from the impervious area. The optimal management of the treatment 
plant consists of minimising the operational cost while assuring the quality of discharged 
water. A STORMNET connectionist model was built with two specific recurrent neural 
network models to simulate runoff and solid transfer in the sewer system (Gong et al, 1996). 
Data was generated by HYPOCRAS conceptual model.  
 
The first part of a model uses the rainfall intensity and accumulated rainfall depth and 
generates the effective rainfall intensity. It is necessary to determine the effective rainfall 
intensity because the runoff forms only after attaining certain level and not all the rainfall 
turns into runoff. Then the effective rainfall is used to produce the flow rate by recurrent 
neural network model.  
The second part takes the flow rate and produces the solid transport with some simplifying 
assumptions. STORMNET was tested for different urban catchment sites of different size and 
for different intensity of rainfall events, the results are very promising and accurate. It is 
concluded that for a larger catchment the number of rain gauges to collect data has to be 
increased.  
 
Control strategy selection system for urban drainage  
 
The main goal of real-time control of urban drainage system is the full utilization of the 
existing infrastructure and resources by satisfying the operational objectives. Operational 
objectives are multiple in nature such as reducing operation management cost, equalizing 
treatment plant inflows, reduction of surface flood or Combined Sewer Overflows (CSO), 
consequently reduction of environmental effects due to flooding etc.  Possibly the objectives 
are conflicting with each other. Wilson (1995) investigated the suitability of a rule-based 
learning classifier system technique for urban drainage system control.  
 
The considered technique in this study as a basic learning mechanism is a so-called Q-type 
learning. Each rule maintains Q function, which calculates an estimated future cost for given 
state and action. The function can be formulated as follows  (Kavehercy, 1996): 
 

                  Q x a q x a J yu u( , ) ( , ) ( ),= + γ                 (2.26) 
 

 
where  
y  - state resulting from applying action a u x= ( ) to state x, Ju - evaluation function and γ  - 
discount factor 
 
The action decisions are based on cost prediction, where the minimum cost will lead to the 
objective achievements. The system learns from hydraulic simulation. During the learning 
phase, rule that matches the event provides the future cost predictions, and if an event has no 
set of match, then the classifiers are generated for each possible action. The classifier system 
is considered to be available for application to many types of engineering control problems, 
and it does not suffer from simplified constraints. Genetic algorithm is used in this technique 
for background rule induction and updating. For data generation MOUSE system of DHI is 
used. The technique has been successfully applied to a large urban drainage system. 
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However, the learning itself demands large computing power in order to get a desired 
accuracy.  

2.4.3 Inland water systems 

Predicting water level 
 
Problem of predicting water level and the delivery amount from the low lying polder areas to 
the alien water has been investigated on the specific case of South Holland province water 
authority (Lint and Vonk, 1999). The water authority is responsible for three distinct regions, 
from which excess water is delivered to the Lek River. One of the regions, named as 
Overwaard region, comprises of 22 polders and has to discharge water into one low lying 
reservoir, which in turn discharges to another high lying reservoir. Finally, the high lying 
reservoir discharges to the river by sluice (Figure 2.16). There is a possibility of minimizing 
the cost of energy consumption by pumping during the night hours (between 23.00-7.00). In 
order to do that it is important to know the following parameters 24 hours ahead: 
- delivery amount from each 22 polder areas 
- expected water level in the high lying reservoir 
- expected water level of the Lek river at the sluice gate  

 
Figure 2.16: Scheme for water delivery (Lint and Vonk, 1999) 

 
The expert system developed for above purpose is considered to be inaccurate, therefore 
neural network technique (MLP) is investigated as an alternative methodology. The training 
data set is built on the basis of the SCARK database, which is an automatically operated 
measurement system. Two distinct neural networks were built with the following inputs with 
1 hour time step: 
- water level for preceding 12 hours 
- precipitation for preceding 12 hours 
- temperature for preceding 12 hours 
- pump status for preceding 12 hours 
- predicted temperature for 1 hour ahead 
- predicted precipitation for 1 hour ahead 
Water level and pump status for the following hour is obtained as output of the neural 
network models. For normal situation the error backpropagation networks and for extreme 
precipitation situation the radial basis function networks were found to be suitable. The 
obtained result is considered to be satisfactory and the model is being applied for 
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Rijkswaterstaat. However, more input variables such as upstream water level and  
precipitation data at the Lek river have to be included.    
 
Prediction of lake water level 
 
Auto Regressive Neural Network (ARNN) has been applied for predicting water level of the 
lake IJsselmeer at the North-Holland on the basis of incoming river discharge, water level at 
the sea-side of the sluices and wind event (Gautam, 1999). Although precipitation over the 
lake and evaporation influences the lake water level, the effect is negligible compared to 
other parameters mentioned above. The lake discharges water through the sluices during the 
low tide and it is important to know the water level and the amount of discharge to the Sea. 
The storage and discharge of the lake, wind speed and direction, water level at the sea side, 
the daily low tide water level are considered as inputs to the networks. Trained on the 
measurement data, ARNN has been found to be a promising tool to predict the water level, 
showing a slightly better result than the numerical modelling technique.        
 
Classification of river discharge patterns 
 
SOFM is used for classifying the discharge patterns of Mekong river using time series data 
(van Boogaard et al, 1998). Classification is based on the normalised 62 years of data 
(patterns) with 12 dimension (monthly discharge). Normalisation has been made with special 
attention so that: 
- patterns getting the residuals with respect to the yearly average discharge  
- components having the same spread.  
As a result, 4 distinct classes of discharge patterns were found: dry years, wet years, dry years 
for the first half and wet for last half and finally wet years for first half and dry for last half. 
 
Identification of pollutant source  
 
Götz et al (1998) carried out comparative study on identification of possible sources of 
overwhelming dioxin contamination in the river and harbour sediments using Kohonen neural 
network and multivariate statistical technique. The data used for classifications are samples 
from sources of possible contamination along the river reach such as sludge processing, 
pesticide factory copper slag and were collected in the form of soil samples, air samples, 
sediment and suspended particle sample, surface water sediment, samples from the flood 
plain etc. The preprocessed sample data consists of 407 exemplars, each of which contains 18 
different parameters.  
 
By analysing the clusters formed, it is possible to identify the sources of contamination for 
each subreach. Clusters formed by 2 approaches were nearly identical, however, Kohonen 
networks give more consistent classification and proved its high potential for classifying the 
environmental data and identifying the source of contamination.  
 
Water quality management in river basin 
 
Water quality management in river basin is a multiple objective decision making focusing on 
goals to find a reasonable allocation of waste loading for each pollutant source, to enable 
environmental quality for living organisms in the river by determining the maximum possible 
mass loading to the river. However, the problem does not give an appropriate solution as long 
as the solution is based on the decision maker’s preference, which is necessary but is always 
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ill-defined in all planning procedures. In multiobjective optimization, high non-linearities 
exist between the values of objectives and their relative weights, because decision maker’s 
preferences may not be clearly defined. At the same time, multiple and non-commensurate 
objectives are difficult to classify in terms of their priorities and weights. Also sometimes 
different objectives could lead to the same weight combination. The ANN application for 
prediction problem of decision maker’s preferences in the objective-weight relationships was 
studied by Wen and Lee (1998).  
 
The study focused mainly on the environmental quality, treatment cost of wastewater, 
assimilative capacity of a river to provide a solution to water quality problem in the basin. 
Also the study is based on the method of minimising the distances of the real and the ideal 
objective solutions within the feasible region by using payoff table. Furthermore, the 
following compromise programming model is solved by non-inferior method: 
 

Min d 
   Subject to:                      (2.27) 
 
 
 
In which d the maximum weighted deviation of each objective from the ideal solution, x is a 
vector of decision variables, X is a feasible region, Zk(x) is the kth objective function, Zk

m is 
the maximum of the kth objective found from the payoff table and πk is the kth weight 
indicating the relative importance of the deviation that may be indicated by the decision 
maker’s preference.  
 
The optimization scheme proposed in this study consists of a neural network, which produces 
the weights of the objective function. This is trained on the decision maker’s preference 
database and multiobjective optimization phase. Data sets to train the error backpropagation 
network were developed by random generation from the database. In this case study, there are 
3 objectives and constraint sets: minimize BOD concentration of the first reach of the river, 
minimize the water treatment cost for whole river basin and maximize the total allowable 
loading rate to every reach of the river.  The constraints of optimization are the water quality 
standards, water quality model results and the equitable removal of wastewater.  
 
The neural network takes the actual values for all three objective functions and it produces 
the suitable weights for each objective function. Then the weights are used for obtaining the 
non-inferior solution from the general compromise optimization problem. The result 
concludes that the neural network model based multiobjective optimization approach can be a 
powerful and promising tool for water quality management in a river basin.   
 
Controlling polder water level 
 
The problem of using AI techniques such as neural networks and Fuzzy Adaptive Systems 
(FAS) for Real Time Control (RTC) of regional water resources system was addressed by 
Bhattacharya (1998) and further by Bazartseren (1999). In this study Aquarius DSS model 
(Lobbrecht, 1997) was used as a reference model in model reference adaptive control. Neural 
network trained in off-line mode and FAS tools were used for reproducing the simulation 
results of Aquarius model, in determining control actions for regulating structures (see figure 
2.11).  
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The MRAC is supposed to work as a conventional feedback control scheme. The desired 
value y(t)d or target water level in the polder area passes through the intelligent controller and 
gets the control signal u(t) or pumping rate of the drainage station, which results the system 
output y(t) or water level in polder area (Figure 2.17). The resulting water level then should 
be compared back with the target value. The output error should be manipulated through the 
controller and a new water level is obtained in the polder area through the redefined control 
actions. 

 
 Figure 2.17:  Model Reference Adaptive Control scheme (Bazartseren, 1999) 

 
The input variables for intelligent controllers were chosen by pre-processing of data. The 
accuracy of control actions replicated by neural network and FAS are satisfactory and 
comparable for not only local control but also for centralised dynamic control mode. 
Therefore it was concluded that ANN and FAS could make the use of Aquarius DSS practical 
for RTC. The study is concentrated on one type of regulating structure, which is pumping 
station. Problem of controlling water levels by determining the suitable pumping rate in 
several different water resources system models in the Netherlands were considered. Further 
investigation of this approach is suggested in terms of improving the performance by 
selecting suitable state variables as inputs. 
 
The study further developed to use the trained ANN or FAS parallel to the Aquarius DSS 
(Lobbrecht et al, 2000). It implies that the intelligent controllers are implemented into the 
control loop to produce the required control actions on-line. The result proves their ability to 
reproduce the local and centralized control actions on the basis of locally measurable 
information only. However, the study should be extended to investigate the application of 
intelligent controllers into larger water system models and also for other types of control 
structures.  
Control strategy in multi-reservoir system 
 
Determining the quasi-optimal control strategy for a multi-reservoir system, using error 
backpropagation network was addressed by Solomatine & Torres (1996). The optimal use of 
water resources within river basin (Apure river basin, Venezuela) had to be achieved by 
increasing the navigable period without decreasing the energy production. The 
hydrodynamics and hydrology of the basin was simulated using MIKE-11 modelling system. 
In order to solve optimization problem in a shorter time the model result was approximated 
by neural network generator NNN. And NNN generated code for independent run was used 
in optimization loop. The multi-objective problem was formulated as dynamic programming 
problem taking a navigability constraint as a ‘soft’ constraint and it was first solved with only 
one control variable - energy release of a reservoir. The problem is solved by increasing the 
non-energy release (bottom outlet release) from zero at every run of optimization problem 
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until the water level along the river reach becomes high enough for navigation. Proposed 
scheme for deriving optimal control strategy is shown in Figure 2.18. The proposed approach 
of model approximation was suggested for various schemes of water resources optimization.  
 

 
Figure 2.18: Scheme for deriving optimal control strategy (Solomatine and Torres, 1996) 
 
Raman & Chandramouli (1996) used Multi Layer Perceptron (MLP) for a similar problem of 
determining control strategy in reservoir system. The operation policy was determined by 
solving dynamic programming, stochastic dynamic programming algorithms and linear 
regression procedure. The dynamic programming problem of minimizing the squared deficit 
of the release from the irrigation demand was solved for 20 years of historical data. Also 10 
years of meteorological data was used to find the irrigation demands. The neural network 
model was trained on the basis of data generated by dynamic programming. The inputs to the 
neural network model were initial storage, inflows and demands. The results from NN were 
compared with the result from stochastic dynamic programming. The standard operation 
policy determined by linear regression. The three-year's simulation performance of all four 
models were compared and the squared deficit obtained by ANN was the least within these 
models. It was concluded that the use of neural networks for this kind of problem has a 
potential and has to be investigated further. 
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Application of ANN for optimal reservoir operation has been investigated by Lee (1997).  
ANN is applied as a part of the optimization model and it has been used for approximating 
flood routing model. The obtained result has made the real-time reservoir operation easier. 
 
Non-linear ecological relations  
 
Cyanabacteria (algae bloom specie) mass is one of the criteria of deterioration of river water 
quality and significant percentage of these blooms are found to be toxic (Maier et al, 1997). 
Formation of these species is not well understood, therefore, it was an appropriate area of 
using ANN as a predictive tool for incidence of cyanobacteria. The research focused on 
estimation of effects of water quality variables to the growth of cyanobacteria and the 
possibility to forecast the species’ growth 4 weeks in advance. The data used for prediction of 
the bacterial growth is species’ population, watercolour, turbidity, temperature, daily flow, 
phosphorus, total iron and oxidised nitrogen in the water.  
 
ANN models were able to predict the population of cyanobacteria with above water quality 
variables with high accuracy (average of 325 cells/ml). ANN model also could predict the 
most important variable that has greatest effect on timing and the incidence of the specie. The 
most influencing variables were found to be colour representing light attenuation and light 
availability rather than other chemical substance concentrations.  
 
The similar application of ANN for prediction of algae blooms on the basis of water quality 
parameters for 4 different freshwater systems was studied by Recknagel et al (1997). The 
output of the network models was 10 different species of algae blooms and different water 
quality variables were obtained to be the most influencing variables for each freshwater 
systems. The study revealed ANN’s ability to model very complex non-linear ecological 
phenomena.   
 
Lek et al, (1996) used error backpropagation networks to identify the non-linear relations 
between the physical habitat variables and the density of a brown trout redds in the stream 
bed. The habitat variables are measurable variables such as wetted stream width, surface 
velocity, water gradient, mean depth, bottom velocity, area with suitable spawning gravel for 
trout etc. The output is a single variable representing a density of brown trout spawning redds 
per unit length of the stream on the basis of 6 mountain stream data. Performance of a neural 
network model is compared with the stepwise multiple regression analysis result. For 
regression models, the variables have to be transformed, however, neural network model 
performed better than the regression model with raw data.  
 
The comparison of ANN model and Regression Model (RM) in predicting attributes of 
terrestrial ecosystems by temporal prediction of functional attributes at regional scale was 
addressed by Paruelo and Tomasel, 1997. Total of 6 functional attributes are predicted using 
generated data from the seasonal course of Normalized Difference Vegetation Index (NDVI) 
taking monthly precipitation and temperature data as inputs. The data generation is based on 
the simple relations between each attribute and climatic variables. In all cases neural 
networks performed better than RM and they have shown the ability to deal with the non-
linear dynamic systems, complex in both time and space.   
 
The models were trained for different locations in the catchment, different size of catchment 
and different rainstorm and duststorm events. The temporal distribution of rainstorm and 
duststorm was measured by coefficient of kurtosis. From the obtained result it was concluded 
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that the accuracy of the neural network models decrease with the increase in the size of        
catchment as well as with increase in the period between the two successive rainfall events. 
The best model result was obtained for the prediction of total suspended solid concentration.   
 
Rainfall runoff modelling  
 
This type of application is one of the areas where ANN is applied most often. The traditional 
techniques to model rainfall-runoff process are mainly computationally demanding. ANN 
approach is used for replicating those models. In case of more complicated catchments the 
ANN models are used to simulate the rainfall-runoff process on the basis of measurement 
data. Minns and Hall (1996) investigated the use of multi-layer perceptron NN for rainfall- 
runoff modelling successfully.  
 
Minns and Fuhrman (2000) are also studied the rainfall-runoff modelling in snow covered 
catchment on the basis of measurement data. Most of such process modelling do not take into 
account the influence of snowmelt water. The study focused on choosing appropriate input 
variables for a rainfall-runoff model for a river, where the majority of runoff is due to 
snowmelt processes. Study shows that the raw measured data cannot guarantee the good 
model performance. The study also demonstrates how the simple hydrological measurement 
can be manipulated and can improve a performance of ANN model remarkably without 
requiring additional measurements.  
 
The RBF network was used for rainfall runoff modelling in drainage system (Mason et al, 
1996). See also Mason and Price (1998). Comparatively good results were obtained by RBF 
network with radial centers fixed by a data clustering technique much rapidly than the error 
backpropagation network. The advantage of RBF network is much faster than the error 
backpropagation network and the traditional physically based modelling technique (average 
of 500 times). 
 
See et al (1999) applied soft computing techniques including ANN and fuzzy inference 
model optimized by genetic algorithm for flood forecasting warning system. The applied 
ANN technique here is a hybrid of SOFM and MLP network. SOFM pre-classified the events 
into five groups prior to training with a set of 5 individual MLP networks. Training different 
networks for each event type is helpful for avoiding the errors caused by peak events. 
 
Gautam (1998) applied regressive neural networks for modelling and forecasting the rainfall 
runoff relations in a Sieve river basin, Italy. Normal error backpropagation networks trained 
with data insertion is studied for the same case study as well. From the correlation analysis it 
was obtained that six-hour time lag and moving average value till 48 hours have high 
correlation with the runoff. The comparison of two different algorithms shows advantage of 
RNN above the training with data insertion for modelling rainfall streamflow relations.  
 
The river flow prediction at certain sampling station of Huron river catchment in Germany by 
making use of measured discharges at three other sampling stations in the same catchment 
was addressed by Karunanithi et al, 1994. The cascade correlation networks used for the 
study and simulation result is compared with the two-station power model where model 
coefficients are estimated by least square regression. Two different neural network models 
were built: with current daily discharges at each three measuring stations (three inputs) and 
with 5 day non-overlapping average discharge for each station (total of 15 input nodes) as 
input variable. Different structures of neural networks are studied by trial and error in order to 
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get the best result. The result of the power model and neural network approach indicated that 
the neural network performs better than the power model in case of extreme flow situations. 
However, in low flow situations the two techniques perform with the same magnitude of 
accuracy. The neural network structure with input variables of 5-day discharge window 
without averaging performs better than the other structures.      
 
Another application of ANN for filling in gaps in measurement data and for rainfall-runoff 
modelling was investigated by Kusumastuti (1999). MLP with error backpropagation 
learning algorithm is used for filling in missing data of one rain gauge station from daily 
rainfall data (antecedent, present and next day) of surrounding stations. The result obtained is 
not really satisfactory, however, on monthly basis the obtained result is more promising than 
daily data. Then Radial Basis Function (RBF) network is used for modelling streamflow on 
natural catchment in Indonesia and the result is compared with Chaos theory, Nearest 
neighbour technique and Marginal Storage Loss model. The inputs for neural network model 
to determine monthly average runoff of the catchment were monthly rainfall from 
surrounding stations. The result confirms the ability of neural network to identify the rainfall 
runoff relations, however, the chaos theory gives better result for prediction. Regression 
Nearest Neighbour method also performs better than the RBF network.    
 
Yan (1999) studied the use of data driven modelling techniques for improving accuracy of 
flood forecasting. The following methods have been used on two natural catchments Bird 
Creek, USA and Yangtze River, China:  
- chaos theory  
- Ensemble Kalman filter in NAM model 
- Mike 11 error prediction model in flood forecasting module 
- ANN combination with NAM model  
The Time Lag Recurrent Networks (TLRN) with precipitation, measured discharge and NAM 
simulated discharge as input variables are trained to predict the precipitation at two time step 
ahead (t+2). The comparison of different techniques reveals that the chaos theory is the best 
for flood prediction. TLRN result for flood prediction is not yet acceptable especially for a 
complex river system like Yangtze river, but its combination with NAM model improves the 
accuracy significantly.     
 
Reservoir inflow prediction 
 
Raman and Sunilkumar (1995) investigated the problem of modelling of monthly inflow to 
reservoir by ANN and statistical techniques. The study is based on the measured monthly 
inflow data of two reservoirs for a period of 14 years in Kerala, India. The input data for 
feedforward neural network model is organized in a way that the whole data set is divided 
into 12 monthly input data sets. No other input data is considered. The neural network model 
is built with 4 input nodes for two consecutive receding inflow for each reservoir and 2 
output nodes, which are the third consecutive inflow for each reservoir. The autoregressive 
model for inflow performs well. However, in terms of the skewness analysis the ANN 
approach preserved the mean of the generated series better than the statistical technique. 
 
Stage-discharge relationship 
 
A comparative study of conventional and the ANN techniques on discharge prediction from 
stage-discharge relationship has been carried out (Bhattacharya et al, 2000). The case study 
focused on a river in West Bengal, India, of which the measurement location has some odd 
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features to make a prediction more complicated. A backpropagation neural network model 
with 4 input variables was built for emulating the stage-discharge relationship. The 
measurement data of 6 years have been used for training and 3.5 years of data have been used 
for verification of the network. The comparison of the obtained result shows that the neural 
network model outperforms the traditional technique. In case of ANN model, 79.6% of 
validation data were within 5% of prediction error whereas for the traditional method it was 
only 57.6%.  
 
Cleanup of groundwater contamination 
 
Cleanup of contaminated aquifer is a very complex and expensive problem. Usually pump-
and-treat method is used for this purpose by installing and operating a set of 
extraction/injection wells for pumping out and treating the groundwater. The travel time of a 
contaminant is calculated on the basis of a so-called 'particle tracking' method and is a highly 
non-linear and convex function of pumping/injection rates and well locations. Therefore the 
global optimization techniques are used for determining the optimal pumping rates. The 
technique should be coupled with the running simulation model, which is a particle tracking 
models in this case. This kind of coupled model is computationally very demanding. The 
possibility to apply ANN for replicating the simulation model has been investigated (Maskey 
et al, 2000). The ANN model has been trained on the basis of the simulation data (pumping 
rates) to produce the optimal clean-up time or clean-up cost. The global optimization tool is 
then run parallel with the error backpropagation neural network model model, taking its 
output at each iteration to determine the optimal pumping strategy. The obtained result by 
ANN model shows a reasonable accuracy and the application of ANN reduces the required 
simulation time of the physically based model remarkably. The ANN must be trained on finer 
interval of decision variables in order to produce accurate result. The research can be 
extended further for a case with increased number of wells. Also it is advised to use ANN for 
finding the regions in the search space associated with higher probability of finding the global 
minimum in order to make the global optimization faster and more accurate.  

2.4.4 Coastal water systems 

Controlling water level of drainage basin 
 
Auto Regressive Neural Networks (ARNN) have been used for determining water level at the 
control location of Rijnland drainage basin in the north-east Netherlands  (Werner and van 
den Boogaard, 1999). Excess water from the drainage area is discharged through the sluice 
gate to the North Sea. Thus water level must be maintained within a certain control band. 
Moreover, water is discharged by the sluice gate during the low tide, when the outside water 
level is 10 cm lower than the inside water level.  
 
The system load as a consequence of precipitation is determined by rainfall-runoff model of 
Rijnland drainage basin. Hydrodynamic channel routing models are used to determine the 
water level at the control point. Using this load of the system, the control actions are 
determined at the control structure (opening of the sluice, pumping status). The system state 
obtained is coped with the actual state by data assimilation technique, which is not always 
robust and computationally demanding. On the other hand the prediction is based on a short-
term rainfall forecast which is uncertain. Therefore ANN is used for rapid evaluation of the 
control procedure.  
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Water level is predicted by ARNN as a function of historical rainfall records (up to 96 hours),  
gate opening and outside water level. Inside water level and change of water level are 
determined as output. The network structure is defined with one hidden layer of 4 neurons. 
After simulation with different seasonal data, ANN results RMSE in order of 2-5 cm. The 
multiple simulation is performed in forecasting rainfall distribution and control action of 
sluice gate. If the water level exceeds minimum/maximum band then the control action is 
adjusted and the procedure is repeated until the probability of exceeding the band set is 
acceptably low. Due to rapid evaluation of the iterative procedure and the more reliable 
control strategy, this approach is concluded to be suitable for real-time operation. 
  
Current prediction in shallow coastal waters 
 
A problem of finding an appropriate and reliable technique to predict current velocities in 
shallow coastal channel has been investigated by Wüst (Wüst, 1995). Several shallow channels 
at the Southern Bight, 25 km west of Amsterdam are dredged in order to make them 
accessible for the ships coming from the North Sea. The relatively strong cross channel 
current, which is important for navigational safety of ships, exceeds the safety standard of 50 
cm/s at almost every tidal cycle. As a result the ship navigation is postponed up to one tidal 
cycle. The numerical models available are not yet used for operational forecast of current 
velocities. Neural network approach was successfully applied and is implemented for 
prediction of current velocities at the Hydro Meteo Centre, Hook of Holland.  
 
The neural network prediction operates on-line and prediction for coming 24 hours is made 4 
times a day. Frequency increases in case of stormy situations. The output is averaged from 4 
separately trained network’s outputs on different input variables. The training data set is 
developed with current, wind and water level measurements for a period of 9 months from 
the years 1988, 1989, 1992 and 1993 including several extreme hydrological situations. The 
current under investigation is nearly perpendicular to the channel axis. Therefore, special 
importance is given to the choice of the wind and current measurement point. Input variables 
for training neural networks include current velocity, water level, average wind velocity for 2 
preceding tidal cycle and the deviation vector for wind over periods of increasing length 
going back in time (1,4,8 and 16 hours back).  
 
The network’s performance can be described through Root Mean Square Error (RMSE) 
which was, on an average, 13.4 cm/s. Under the astronomical current conditions it gets a 
value of 8 cm/s. However, the performance is poor during the high winds and during the ebb 
tide. Neural network model predicts the current velocities from the wind and water level 
measurements successfully. It should be noted that during extreme hydrological situations, 
which is not well represented in the training data set, would result in poor performance of the 
model. 
  
Water tide prediction 
 
Prediction of tidal level at the big harbours is an important task not only for storm surge 
situations but for daily management tasks as well. The prediction system with highly complex 
modelling programs involves a huge amount of data and it requires a personal experience 
(Breitscheidel et al, 1998). Therefore, one way to incorporate the domain knowledge into the 
numerical modelling technique can be the use of neural network and other artificial 
intelligence techniques. In this study, neural network is used first to find an association 
between data sets at different locations along the Dutch coast in order to explain the reason 
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behind the repeated appearance of faulty signal. Secondly, the neural network is applied for 
predicting water level and wind components at certain locations. The accuracy of the result of 
neural networks for above purposes was satisfactory.  
 
The authors stressed the importance of developing the integrated classification and prediction 
support tool for operational management for storm surge department. Neural networks learn 
the similar storm situations characteristics on the basis of past information and produce the 
expert an indication how the storm situation may develop and what water level it should 
cause etc. The integrated tool should have common user interface with three different 
modules or tools: 

- model evaluation tool, which is numerical model part 
- neural network tool,  which also will be manipulated on the existing data base  
- decision support tool, which will be knowledge based and rules should be updated 

after each event for future use 
 
The advantage of such integrated tool is that it connects the numerical modelling technique 
with the AI technique to include the advantages of both. The tool integrates itself in a way of 
updating the knowledge base at each time the new storm situations occur and this serves as  
the principal advantage of this tool.  
 
Determining the erosion of field sediment  
 
The sediment erosion of the groyne field is one of the important issues in large cargo 
handling ports like Rotterdam. The probable relation between the characteristics of 
navigating vessels and the quantity of erosion in the groyne field has been investigated by 
using error backpropagation ANN with two hidden layers (Schulze and Salverda, 1999). The 
study is based on a total of 9 measured and derived characteristics such as water depth, 
wetted cross section of the river, speed, length, width, corrected speed and wetted cross 
section of the ship, the distance of the vessel from the groyne and duration of navigation.  
The erosion rate is obtained as an output of the network. It has been concluded that ANN’s 
quantification of the erosion of groyne field from the vessel characteristics is adequate 
enough.  
 
Prediction of error in the solution of hydrodynamic model 
 
The choice of appropriate spatial and temporal resolution is one of the key steps in ensuring 
accuracy in mathematical modeling. It is impossible to find an ideal resolution as long as the 
flow variables vary spatially throughout the simulation period. Some advanced commercial 
modeling packages deal with this problem by altering the time step depending on the 
parameters such as celerity, convergence, etc. This solution is usually computationally 
demanding. Abebe et al (2000) have shown the possibility of using ANN to reproduce the 
discrepancy in the water level prediction as a result of inappropriate fixed computational time 
steps. The study considered a 1D model of an estuary solved using the full de Saint Venant 
equation. The Radial Basis Function network was trained to predict error between the 
solutions with the fixed and the variable time step intended to keep the Courant number close 
to unity (assumed to be the exact solution). The input variables are the depth and discharge at 
the current time step and outputs are the error at the next time step. After being trained the 
network is used parallel with the physically based model for the rest of the computation. The 
neural network can predict the discrepancy of the solution with a high accuracy (correlation 
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coefficient of r2=0.971). The result shows that the ANN can be used as an integrated 
complementary component to mathematical models. 

2.5 Practical issues of using NN for engineering applications 

2.5.1 Introduction 

Where processes to be modelled are complex enough to be described mathematically, neural 
networks are considered to outperform the conventional, deterministic models most of the 
time. However, one should be aware of the applicability of neural networks to a specific 
problem and the basic conditions for getting the best performance out of it. In many cases 
neural networks for research are used 'blindly' by choosing all the possible input variables 
and without considering much of the possibilities to maximize the performance.  
 
The purpose of this section is to provide the reader some practical information of taking the 
maximum advantage of the neural network models. Moreover, it should be noted that it was 
not aimed to give a complete recipe of using neural networks, the reader should get from this 
section rather a general view of what are the most important issues to be taken care of, in 
order to work successfully with neural networks. Mainly the section is based on Swingler 
(1996) and partly on Kolb (1999) and the reader may refer them for more details.   

2.5.2 Analysing the problem  

In general, neural networks are suitable for problems where the underlying process is not 
known in detail and the solution can be learned form the input-output data set. Nevertheless, 
the following points has to be stressed: 
 
1. It has to be made sure that the problem is difficult to be solved by conventional method 

and neural network can be used as a good alternative.  
2. If there are logical nonchaotic relationships or structural properties that similar initial 

configurations indicate mapping to the similar solutions, one can expect a generalization 
by neural network. It simply means, the same input should always result in the same 
output. 

3. If the data set to train the network is impossible to be represented or coded numerically, 
the problem cannot be solved by a neural network approach 

4. Non-linearity and the change of variables in time are possible to be dealt with neural 
networks. 

2.5.3 Data preparation and analysis 

This is one of the most important stages of neural network application because the accuracy 
of solution for most of the networks depend on the quality and quantity of training data set. 
Although neural networks can accept a wide range of inputs, they work with data of certain 
format encoded numerically. There are two main issues in data preparation:  
- The number of variables to be used, which determines the dimensionality 
- Explicitness or data resolution and in what extent and amount the data has to be presented 

to the network 
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To avoid of analysis of large amount of data, a sample data set may be used by choosing it 
randomly from the complete database. For input and as well for output variables the data 
must be analysed and prepared with the following sequence, which is sometimes called as 
data pre-processing: 
 
1. Determining the data type (discrete or continuous)  
2. Data generation. The data to train the network can be generated by measurement, by 

simulation of relevant models or by derivation of virtual examples by introducing noise 
into the existing data set. Also it is good if the data set evenly covers the input data 
subspace. In other words the data has to be normally distributed. 

3. Calculations of simple statistics such as mean, standard deviation for continuous data and 
the number of different events for discrete data.  

4. Removal of outliers. By outlier we mean the data points lay outside of two standard 
deviations from the mean. Two standard deviations cover 95% of normally distributed 
data. If such data example exist, those are preferably to be removed, unless those are 
significantly important for the given problem. For some of the dynamic systems (chaotic) 
those outliers are important. 

5. Quality and quantity check. What amount of data has to be collected is mainly decided by 
the network size (number of variables), required data resolution etc. Concerning the 
network size it is advisable to collect training data set of equal number to (1/target error) 
x number of weights. Also as a quality check statistical tests can be carried out in order to 
make sure the corresponding data set contains a required information.  

6. Dimensionality reduction.  Large number of input variables increases the training time 
considerably. It is advisable to reduce the number of input variables, which are the most 
important and best representing the output variable while maintaining the correct level of 
network complexity. The covariance or correlation between the variables can help to 
decide which variable is the most useful. 

7. Data scaling has to be done when data set has too different order of magnitudes. It is also 
advisable to have all the input data within the same range of scaling.  

8. Data encoding has to be done in the end of data preprocessing in case of necessity. 
Categorical data must always be encoded.  

2.5.4 Model selection and building 

Because of its accuracy and fault tolerance capability error backpropagation network is the 
mostly used type of neural network. However, there are different types of learning algorithms 
that are quite suitable for specific problems. For time dependencies the recurrent neural 
networks and for classification the Kohonen networks are well suited. Also for feature 
extraction and classification purpose Principal Component Neural Networks (PCNN) are 
applicable etc. 
 
For classification almost all types of networks are applicable. Supervised learning algorithms 
classify the data into predefined groups while unsupervised neural networks have self-
organising features to find unknown regularities and patterns in the presented input data and 
they are capable of finding the hidden features. Kohonen networks map the input vectors into  
one or two dimensional topology preserving output layer, Hopfield network find the nearest 
match among the stored patterns. Learning Vector Quantization classifiers use non-linearly 
separable vectors and the Adaptive Resonance Theory defines its own classification groups.  
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In case of too many input and output variables, the training of the network become 
computationally demanding. Therefore, one way to solve this sort of problem is to divide the 
problem into several small sub-problems that can be solved separately by the network. There 
is no specific rule for building a network, however, some practical hints on this aspect is 
listed below.  
 
Network structure approximation 
 
Multi-layer Perceptron 
- The training examples should be at least equal to 1/ε , where ε  is a target value for error 
- The maximum number of hidden units should be guided by the formula h≤2i+1, where h 

and i are number of hidden and input units respectively 
- Number of weights can be related to the number of training patterns w=ilog2p, where p 

and w are number of training patterns (exemplars) and number of weights respectively 
- For feature extraction, number of hidden nodes should be less than the number of input 

variables 
- For classification, the number of hidden units is increased with the number of expected 

classes 
- Number of hidden layers should be as less as possible and usually one or two layers are 

used in most of the published applications. It was shown that any function could be 
approximated by at most 4 hidden layers (Swingler, 1996).  

- It is suggested that the activation function in the specific neuron has to be chosen as non-
linear for non-linear process model. In case of more than one hidden layers, the activation 
function for one of the layers has to be linear, in order to discard the linear components 
that may be existing in non-liner models.  

 
Self Organising Feature Maps 
 
SOFM consists of the input layer and the output map. Concerning the size of the network 
following rule is mainly suggested:  
 
 2Nclass < Nunits << Npattern 

 
Nclass  - the number of expected class or cluster (user must have some primary expectation) 
Nunits  - Number of processing units in the output layer 
Npattern - Number of input pattern 

2.5.5 Training and testing the network 

Training is the learning process of neural networks. Training stage can be started when the 
network is designed, data sets are collected and encoded. After the training is fulfilled, the 
testing phase starts.  
 
Defining the topology Training the network has to be started by defining the topology of the 
neural network. The best topology is found by adjusting the parameters by trial and error, 
therefore it is better to start with a small network which learns fast and is easy to change the 
parameters. Initial weights are also defined by trial and error method. When the appropriate 
network topology is defined, it is possible to speed up or slow down the process by changing 
the learning rate and make fine-tuning.  
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Stopping criterion There is no specific rule signifying when to stop the training and the 
stopping criteria are different for different type of the network. In general, the stopping 
criterion can be the minimum value for a learning rate or if applicable, it is also advisable to 
use target value of training error and also an option of cross validation, which allows you to 
know whether the error in verification phase starts to increase.  
 
Testing Once the network is considered to be sufficiently trained, the network needs to be 
tested under realistic circumstances. However testing is not necessarily applicable for every 
type of neural networks. The final integration or implementation of the neural network has to 
be delayed till sufficient confidence is achieved, so that the network can work by all means 
and without damaging the system in case of its failure.   

2.5.6 Output and error analysis 

Errors do not always mean the network parameters are chosen wrong. If the network is built 
and organised systematically then the reason for large error can be found by changing few 
parameters by small amount between the two configurations. But if the problem cannot be 
found, the reason is not in the initial configurations. Sometimes errors or unsuccessful results 
can not be simply termed as errors as they might be caused by uncertainty.  
 
Error criteria can be a maximum net output error, which is the difference between the net 
output and the target output. Average error and moreover, the total distribution of error are 
good performance criteria. If network makes error in some cases and not in others, it means 
the data balance is proper. In order to prevent the accumulation of rounding error, training  
the network with too large or too small numbers should be avoided. 
 
For noisy and overlapping classification problems it is impossible to get zero error level. 
Function mapping is more difficult than the classification problem and the different parts of 
the input space can give a different degree of error. Certain parts of a data set can represent  
non-linearity function that can be learned easily. Also there can be more variance in training 
data set than in the other parts. In short, the inadequate generalization usually is caused by too 
complex non-linearity of the function, too high variance in data set.  
 
There are different ways to evaluate and analyse the network output error. One easy way to 
analyze the output error is to calculate simple statistics of the network output such as the 
correlation coefficient between the net output and the target output. One more advanced 
method to evaluate and minimize the error is finding the structure of error, which could 
determine the areas with different level of predictability. Even the structure can be the 
function describing the distribution of error in the input space. This goal can be achieved by 
training the second neural network to learn and predict the error of the original model after its 
being trained at certain level (for details see Swingler, 1996).  

2.5.7 Implementation of a neural network based project 

This is the step to build the real product from the neural network prototype. Implementing the 
neural network is the part of the software we need. It includes special requirements such as 
time or space restrictions, porting the neural network solution to an application environment 
and interface development etc. Most of the time the neural network project can be easier than 
to the rule-based approach as the domain specific knowledge is not much required for neural 
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networks. In terms of risk involved in neural network project, the main risk would be the non-
presence of the information necessary for the problem in the data set available.  
 
There are three general steps in implementing a neural network based project, each of which 
consists of small substeps.  
- Project planning stage ( task definition, feasibility study, input/output specification, 

defining data requirement, data coding) 
- Network development stage (data collection and validation, data encoding/recoding, 

network design and training, network testing and error analysis, implementation) 
- Documentation stage (defining data source and conditions, defining the coding method, 

architecture, parameter setting, the number of training epochs, defining the conditions, 
reporting the final results). 

 
 
 
 



 

Chapter 3 Fuzzy logic approach and applications 

3.1 Introduction 

The origin of the fuzzy logic approach dates back to 1965 since Lotfi Zadeh’s introduction of 
the fuzzy-set theory and its applications. Since then the fuzzy logic concept has found a very 
wide range of applications especially in the industrial systems control those are very 
complex, bear uncertainties and cannot be modelled precisely, even with simplified 
assumptions and approximations (Hirota, 1993).  
 
This chapter introduces the basics of the fuzzy logic approach and the Fuzzy Adaptive 
Systems (FAS) followed by a review of their applications in the water management field. 

3.2 Basic concept of fuzzy logic approach 

The fuzzy logic systems can be seen as structured numerical estimators (Lin 1994). In the 
fuzzy logic approach the Boolean logic is extended to handle the concept of partial truth 
which implies that the truth takes a value between a completely true value and a completely 
false value. For example, the partial truth can have values in linguistic variables like not very 
truth, more or less false etc. To accomplish this idea the notion of the fuzzy sets has to be 
introduced, which is the collection of the objects that might belong to the set to a degree, 
taking any values between 0 (full non-belongingness) and 1 (full belongingness), instead of 
taking a crisp value (0 or 1). 
 
As mentioned above, the fuzzy logic approach is particularly a preferable tool for dealing 
with problems with uncertainties and imprecise information. However, the distinction should 
be made between the uncertainty due to randomness and the uncertainty due to the 
imprecision. Imprecision is an absence of a sharp boundary and exactness in the information, 
while the randomness is about the occurrence of the event itself.  
 
The indication of intensity of belongingness is expressed by the membership function, 
assigning each element a number from the unit interval [0, 1]. Let X be a universal set then A 
is called the subset of X if A is a set of ordered pairs.  
 

{ }A x x x X xA A= ∈ ∈( , ( ); , ( ) [ , ]µ µ 0 1            (3.1) 
   
Where the function µA is the membership function of A. µA(x) is the grade of the membership 
of x in A. For example, if the set of young persons is fuzzy then a person with 25 years of age 
can be young with a truth value of µA(x)=0.9 etc. In this way the crisp numbers are fuzzified. 
The shape of membership functions can be of different types, such as triangular, trapezoidal, 
bell-shaped etc.   
 
The basic operations of mathematical sets like complement, intersection and union are also 
performed on fuzzy sets. The Fuzzy rules consist of arguments coupled by logical operators 
and are verbally formulated as: IF the condition is fulfilled THEN the consequence has to be 
true. The logical expressions are usually formulated by logical operators AND, OR, NOT and 
XOR.  The truth value corresponding to the fulfilment rule conditions for a given premise is 
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called the degree of fulfilment (DOF). The most commonly used methods to determine the 
DOF are product  and min-max inferences. Then the rules will be responded in different 
combinations. These combinations are minimum, maximum and additive combinations. As an 
example let us consider the minimum rule response. For details the readers may refer to 
Bardossy & Duckstein, 1995.  
 
The minimum combination method tries to find a rule response, which, at least, remains to a 
certain level in DOF with all the applicable rules. Considering the rule responses B1=(0,2,4) 
with DOF ν1=0.4 and B2=(3,4,5) with DOF ν2=0.5, the minimum combination of responses 
(Bi, νi) is the fuzzy set B with the membership function:  
 

 µ ν µB
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i Bx x
i

( ) min ( )=
>0

              (3.2) 

 
where µB(x) is a membership function of x in fuzzy set B for rule i.  
 
B1 and B2 have intersection [3,4]. The equation taking the minimum of two membership 
functions on [3,4] will be as follows: 
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The graphical representation of this combination is shown in Figure 3.1. The thick line is 
used for the minimum combination and the thin lines for the individual rule consequences.  

 
  Figure 3.1: Membership functions for consequence B using minimum combination 

 (Bardossy and Duckstein, 1995) 
 
A collection of fuzzy rules can be used to form a control algorithm. The basic structure of the 
fuzzy rule based system (FRBS) involves four principal components (Figure 3.2). 
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- fuzzification interface, where the values of the inputs are measured, fuzzified and the 
input range is mapped into the suitable universe of discourse . 

- Knowledge-base, which involves a numeric ‘database’ section and a fuzzy (linguistic) 
rule-base section.   

- Fuzzy inference mechanism or engine, which constitutes the core of the FLC, involves 
the decision making logic (fuzzy reasoning such as product, max-min composition 
etc)  

- Defuzzification interface, which maps the range of output variables into the 
corresponding universe of discourse and defuzzifies the results of fuzzy inference 
mechanism. The defuzzification methods can be maximum of the rule consequence, 
mean and median methods (Bardossy and Duckstein, 1995). 

 
Figure 3.2 Principle of FRBS response (adopted from Abebe et al, 1999) 

 
An example of a simple FRBS with two inputs and one output and the principle of fuzzy rule 
base response is presented in the Figure 3.2 (Abebe, 1999). Input x1 belongs to the high and 
medium and input x2 belongs to the low and medium membership functions at the same time 
with a different degree due to overlapping. Two inputs activate four out of nine rules 
constructed from three input membership functions. The DOF determined by the fuzzy 
inference results the defuzzified numerical output y.  
 
Another example can be a reservoir with a possible water release into a river and the three 
associated so-called linguistic variables: precipitation, water-level and reservoir-release. The 
values of linguistic variables are not exact real ones, but rather fuzzy, like LOW, MEDIUM, 
HIGH, etc. Figure 3.3 presents the variable water-level. Based on the human experience or 
data sets processed one can construct so-called fuzzy rule as: 

 
“IF precipitation = HIGH AND water-level = MEDIUM  

             THEN water-release = MEDIUM 
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3.3 Fuzzy Adaptive systems 

Getting  several  fuzzy rules from  an  expert’s knowledge is not too complicated for a simple 
case. In a complex system, which is usually the case, the scope of construction of the rule-
based  system  is limited  ( manipulation and verbalisation of variable ).  Therefore, the 

  
Figure 3.3: Water level in a reservoir expressed through linguistic variables 
 
possibility of inducing and learning the rules from data has been investigated and 
implemented successfully and these systems are called Fuzzy Adaptive Systems (FAS). On 
the basis of the user defined input membership functions and input-output sets, FAS can 
determine the output membership functions and defuzzified outputs.  
 
There are different methods to derive the rules directly from a data set: counting algorithm, 
weighted counting algorithm and least squares algorithm. The principle of counting and 
weighted counting algorithm is nearly the same, only in the case of weighted counting 
algorithm DOF is used for determining the rule response. A brief description for the counting 
and least squares algorithms is given below (for details see Bardossy & Duckstein, 1995).  
 
Weighted counting algorithm 
 
For a given relevant variables the fuzzy rule based system has to deliver the response close to 
the observed one. The set of training example T has to consist of the input a and output b and 
is written as follows: 
 

{ }T a s a s b s s Sk= =( ( ),..., ( ), ( )); ..1 1            (3.6) 
 

If all the variables and the responses are continuous then the rules can be constructed by 
defining the fuzzy set that supports the fuzzy numbers Ai,k and identifying the corresponding 
responses. The following algorithm is used.  
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1. Define the membership function of the premises. Ai,k is assumed to be a fuzzy number (αi,k
-
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+) where αi,k
1 is the mean of all possible ak(s) values which fulfil at least partially the 

ith rule : 
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where N is the number of elements in Ri . Ri is the set of all those premise value vectors that 
fulfil at least partially the ith rule and it forms the subset of the training set T.  
 

{ }R a s a s b s T a s k Ki k k i k i k= ∈ ∈ =− +( ( ),..., ( ), ( ) ; ( ) ( , ); ,...,, ,1 1α α          (3.8) 

 
2. Calculate the Degree of Fulfilment (DOF) vi(s) for each premise vector (a1(s),…, ak(s)) 
corresponding to the training set T and each rule i of which the premises were defined in the 
previous step.  
 
3. Select a number ε >0 such that only responses with DOF of at least equal to ε will be 
considered in the construction of rule response. And the corresponding response is also a 
fuzzy number (βi

-,βi
1, βi

+) where βi
- is the minimal, βi

1 is a weighted mean and βI
+ is a 

maximal value with a degree of fulfilment of at least ε . 
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The value of ε has to be selected so that sufficient number of elements of the training set is 
considered for each rule.  
 
Least squares algorithm 
 
This algorithm is based on the traditional function fitting method of least squares. The 
algorithm has certain restrictions; for determining the rule response the normed weighted sum 
combination method and for defuzzification the mean method has to be used. The algorithm 
can be formulated as follows: 
 
1. Define the membership function of the premises using the same way as in the weighted 

counting algorithm. 
2. Calculate the rule response by minimising the sum of squared error of rule system R 

resulting from using the rules. The function to minimise should be as follows: 
 

   
 (3.12) 
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where, M is a fuzzy mean of rule response Bi. As long as the rule response for normed 
weighted sum combination method:   
 

(3.13) 
 
 

The final goal of optimization should be fulfilled when the derivative with respect to the 
unknown M(Bj) becomes 0. Differentiation for every index j: 
 
 

(3.14) 
 
 
 
Rearrangement of the equation will give the system of I linear equations for I unknowns 
M(B1)… M(BI). 
 

(3.15) 
 
 

3. The final rule system will be as: 
 

If Ai,1 AND…AND Ak,1 then M(Bi)           (3.16) 
  
The disadvantage of this algorithm can result in the fuzzy mean, which is not reasonable for 
the individual rule response to that particular rule.   

3.4 Fuzzy logic control  

The fuzzy logic control (FLC) has been used much more extensively in practical applications 
than the neural network control. There are different types of FLC distinguished: 
§ self-organizing FLC which measures its own performance and modify the control rules 

according to the error,  
§ supervising the conventional controller, where conventional PID controller is supervised 

by a fuzzy logic supervisor (Tzafestas, 1997).  
 

  Figure 3.4: Fuzzy logic control scheme 
 
Mainly, the FLC is designed for the SISO (Single-Input-Single-Output) and the MISO 
(Multiple-Input-Single-Output) control problems. A basic structure of a fuzzy logic control is 
shown in Figure 3.4. 
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The advantages of a fuzzy logic control (FLC) can be summarized as follows: 
- they can imitate the control actions of human operators through the description of the 

system behaviour using linguistic expressions 
- they are inherently non-linear and therefore, able to perform the control actions that 

are not possible purely with a traditional linear control  

3.5 Application of fuzzy logic approaches 

3.5.1 Sewerage systems 

Controlling activated sludge process  
 
Determining the optimal dosages of chemicals in wastewater treatment plant (activated 
sludge) process has been studied using a fuzzy logic controller built by the Fuzzy toolbox 
MATLAB with a combination of traditional techniques (Kalker et al, 1999). Most of the 
aeration process is controlled through a direct DO (dissolved oxygen) controller. The PID 
controller switches on the aeration on the threshold value of ammonium and nitrate 
concentration. The performance of this type of controller is not always reliable and optimal, 
because the activated sludge is a highly non-linear and dynamic process. The treatment of 
water with heavy nitrogen concentration (up to 0.021 kg N.kg/MLSS.day) with internal water 
re-circulation was considered in the study. The fuzzy logic controller was used to determine 
the optimal aeration rate in order to get the desired concentration of ammonium and nitrate 
from the system. 
  
Aeration zone of the nitrogen removal process consists of the de-nitrification, the intermittent 
and the nitrification zones. The FLC determines the ratio δ between the aerated period and 
the total cycle length T (total time required of aerated and unaerated periods). The scheme is 
shown in Figure 3.5. The input to the FLC is the difference of the desired and the current 
ammonium concentration ∆NH4-N and the change of ammonium concentration in time δNH4-
N. The efficiency of the controller is evaluated by considering the ammonium and nitrate 
concentration of treated water and the energy consumption, which is expressed in airflow 
used in the intermittent zone. 

 
Figure 3.5 Block diagram of FLC  

 
A fuzzy rule base was constructed with 9 fuzzy linguistic rules with input membership 
functions having triangular and parallelogram shapes. The output δ is determined by a crisp 
membership function. The controller was tested for the dry and wet (rainy) periods. The 
result of the simulation is compared with the relay controller and the fixed ratio controller. 
Relay controller is where aeration is started with the exceeded ammonium concentration and 
stopped with the ammonium concentration less than the setpoint. The fixed ratio controller 
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uses the ratio between the fixed total cycle length and a fixed ratio between the aerated and 
unareated periods.    
 
The obtained result shows that the ratio-controller performs better than the other types of 
controllers. Energy consumption for the ratio-controller is reduced by 10-23% compared to 
the feedback controller and the fixed ratio controller, which is expressed by the oxygen flow 
rate. The effluent water quality (of treated water) is improved by 0.6 mg/l than the value 
under the feedback controller and the variation of the effluent water quality is less than that 
under the other controllers, especially for the wet period where the variation is high. This 
type of controller can be successfully utilised for water purification problems. However, the 
direct fuzzy controller can be improved further by considering the multivariable aeration 
control such as choosing different setpoints.   
 
Suspended solid control of activated sludge process 
 
Controlling a suspended solid concentration of the effluent water is a crucial issue in the 
activated sludge process, which is highly non-linear and dynamic in nature. A fixed ratio 
controller that keeps the ratio between the Biological Oxygen Demand (BOD) and the 
suspended solid concentration becomes unreliable especially during the peak load. 
Controlling the suspended solid concentration by implementing an on-line fuzzy logic 
controller is investigated by Tsai et al (1996). The case study considered the municipal 
wastewater treatment plant in the city of Taipei, of which the inflow rate, organic load and 
Chemical Oxygen Demand (COD) concentration vary immensely with the load period during 
a day.  
 
In order to improve the control over suspended solid concentration, the fuzzy controller based 
on Newton’s method is built on the basis of the measured input and output data. The input, 
control and output variables of the fuzzy logic controller are the inflow rate (Qin), the return 
flow rate (Qr) and the effluent suspended solid concentration (SSeff) respectively. In total, for 
each variable 8, 10 and 10 fuzzy clusters are considered. The return flow maintains the 
normal chemical reaction in the aeration tank, so that during the low load period the part of 
the sludge is pumped back to the aeration tank. But there should be no return flow when the 
inflow rate is higher than the daily average inflow rate. The fuzzy relation based on the 
Newton's method is written as follows: 
 

     (3.17)     
 
where Θ denotes the min-max operation in the fuzzy set theory and R denotes the fuzzy 
relational set. The time delay factors introduced for Qr, and Qin are 0.5 and 8.0 hours 
respectively. By using the existing training data the effluent concentration can be predicted 
with high accuracy. At the same time the desired value to be obtained by choosing a correct 
value for the return flow rate (Qr). The optimum control strategy derived from the fuzzy 
model was (Equation 3.17) tested on the automatic pilot scale plant. The obtained result 
clearly shows that the strategy derived by the fuzzy controller is able to reduce the suspended 
solid concentration much more than that with a fixed ratio controller especially during the 
peak loads.  
 
Similarly the fuzzy adaptive model was built for characteristics of the activated sludge 
process (Scheffer, 1999). The model was also able to predict four parameters one time step 
ahead, although the accuracy of the prediction was not satisfactory.   
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Combined Sewer Overflow controlling 
 
Hou and Ricker (1992) established a fuzzy logic control for minimising Combined Sewer 
Overflows (CSO) in a three-reservoir system. During the stormy events, collecting and 
keeping the runoff flows in the reservoirs is one of the ways of preventing sewer overflows. 
However, the load of such system is variable in time and space and there are too many 
variables for dynamic response of the system. Therefore, the low cost control for the system 
to substitute the expert knowledge is desirable. The system in the study represents the 
network of two reservoirs with the same outflow rate connected to the third reservoir 
together. Simplified diagram can be seen in Figure 3.6.  

 
Figure 3.6: Diagram of three reservoir system  

(Note: qin- infow, qout- outflow of the reservoir, V- volume, s- overflow, d- sum of all lateral flows) 
 
The fuzzy logic control was established to minimise the overflow from these reservoirs 
making full use of these reservoirs during the significant storm events. A special variable is 
used for control, which is a relative fullness within the reservoirs, in order to keep the storm 
runoff equally distributed in the area. The relative fullness within the system is calculated as 
follows: 
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Where, Ci - maximum capacity of the reservoir i 

 df1-2 - difference between the fullness of reservoir 1 and reservoir 2 
df1,2-3 - difference between the fullness of reservoir 1 and that of the higher occupied       

one in reservoir 1 and 2 
 
The fuzzy logic controller takes these two inputs and uses 5 input membership functions to 
produce two outputs, which are the outputs of the first two reservoirs by 6 output membership 
functions. For input and output membership functions trapezoidal functions were used. 25 
fuzzy rules were constructed, Mamdani rule was used for implication and centre of gravity 
method was applied for defuzzification. Example of constructed rules is as follows:  
 
 If(df1-2 is PS and df1-2-3 is NL), then (qout1 is L+ and qout2 is M+) 
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The simulation was carried out between two successive events. However, for heavy storms 
the controller lacks in the predictive capability, because it was designed for the instantaneous 
response only. This causes overflow. If weather prediction module is introduced and the 
control actions in certain control horizon are optimised, the scheme would be more 
successful. 
 
Determining water treatment dosage  
 
The general purpose FLC incorporated into one-chip microprocessors and programmable 
controllers, was used to develop the so called FRUITAX system that has been applied for the 
water treatment and rain water pumping processes (Hirota, 1993). FRUITAX performs 
basically max-product, centre of gravity calculation. The result of chemical injection rate 
control in water treatment process was compared with the expert’s decision, and the rain 
water pumping process control was compared with the conventional PID controller. The 
application of the system into these fields of process control shows the reliability of the 
system itself and the study has widened the range of its application.    
 
Pollutant load estimation 
 
The need for an accurate model to estimate water quality of runoff from urban areas or some 
critical sites such as mining and construction sites, are being increased recently. The 
necessity was spurted by the inaccuracy of conventional methods, regression or build-up-
wash-up models and the efforts required for their calibration. The deterministic models do not 
consider the interactive processes such as pollutant transport, in-pipe sedimentation, 
interaction and re-suspension. These processes are indeed less understood. Baffaut and 
Chameau (1990) used the fuzzy set concept as an alternative way for the pollutant estimation 
and prediction. They modified the existing urban wash-up model (called SWMM) by 
including the fuzzy sets to estimate the uncertainty and pollutant load, with its associated 
calibration method and applied into two different watersheds. The obtained result shows an 
improvement on the accuracy of a model, where the original model with correctly determined 
parameters estimated the pollutant load with an error as high as 30%.   
 
De-nitrification process has been controlled by the fuzzy logic controller (Aoi et al, 1992). 
Usually the de-nitrification process is controlled by the indirect components such as DO and 
ORP, whereas the authors included the ammonium as an additional component to monitor. 
Based on these parameters, direct ammonium control using a fuzzy inference has been built. 
The controller uses the above mentioned measured components and produces the air flow 
rate. The controller performed a quick response and high nitrogen removal rate with more 
stability and easy maintenance.  
 
Sequencing wastewater treatment process 
 
The fuzzy expert system was applied for sequencing the treatment processes in the treatment 
plant and was reported by Yang and Kao (1996). Wastewater treatment is a sequence of many 
different unit processes depending on the type of contaminant and their concentrations. The 
sequence of the processes is called a treatment train and designing the appropriate treatment 
train for a given inflow is a three-stage problem. The study concentrated on the first stage, 
which is used for making the list of possible treatment trains.  
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The objective of this technique is to choose the candidate techniques to satisfy the user's 
preference. Preference of the user is defined by the performance efficiency and construction 
cost of techniques. The system first takes the list and identifies the performance efficiency 
and the construction cost for each of the techniques. The user can determine the preference in 
terms of the cost and the efficiency, on which basis the system defines the suitable technique 
for each contaminant under each concentration level. A total of six levels of technique 
selection for the different ranges and types of contaminants are implemented. The effluent 
concentration of each contaminant of current selection level is used as the influent 
concentration for the next level and this process is repeated till all the concentration of the 
waste contaminant meet its desired effluent quality. Thus the optimal treatment train is 
established.  
 
The system requires to determine the various attributes of treatment techniques utilised and 
requires a specific rule-based system built from the treatability database. The rule tree is 
constructed for each type of contaminant so that the rules are formulated like, if the waste 
contaminant type is phenol and the influent concentration is between 100 mg/l to 1000 mg/l 
then the suitable technique is AS and the suitable technique is SS. Here AS stands for 
activated sludge and SS stands for Steam Stripping technique respectively.  
 
After forming the suitable technique list, the preference technique is selected on the basis of  
defuzzification from the user defined membership functions for the construction cost and the 
performance efficiencies. The example of a verbally formulated rule can be if the 
performance efficiency is "low" and the construction cost is "high" then the preference of the 
technique is "low". Nine rules are constructed for this part of the system. The expert system is 
applied to certain cases and has proved the ability to choose the optimal treatment train, 
however, the system requires to be enhanced further with additional knowledge extracted 
from the experts along with the use of more integrated tools to determine the cost 
effectiveness. 

3.5.2 Inland water systems 

Reservoir system operation 
 
The fuzzy adaptive system (FAS) was used to determine the MISO control problem of 
reservoir operations (Bardossy and Duckstein, 1995). In the fuzzy modelling, the antecedents 
were the forecasted demand, incoming flow, present reservoir storage capacity and the time 
of the year. The consequence was a release from the reservoir. Only an observed hydrological 
data set is used for the training and verification of the fuzzy rules without any physically 
based model. The weighted counting algorithm was used for the generation of rule. The result 
was reasonable and it was found to be proving the robustness of the approach.    
 
Panigrahi & Mujumdar (1997) applied the concept of a fuzzy rule-based system for 
determining the releases from a large-scale irrigation reservoir. The rule-base was built on the 
basis of the expert’s knowledge. The MATLAB Fuzzy Logic Toolbox was used for the 
simulation. The storage of the reservoir, demand and inflow were the input variables to the 
fuzzy system. The triangular membership functions and the centroid method were used for 
the fuzzification and defuzzification respectively.  The defuzzification was given by the 
following formula: 
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where, n is the number of elements, G is a centroid of the truncated fuzzy output and mB(yi) is 
the membership value of the element yi in the fuzzy output set B. The reliability and 
resiliency with respect to meeting the target releases were used as the performance criteria. 
The study concluded that the fuzzy logic could be a complement to the mathematical 
optimisation technique rather than a substitution.  
 
The fuzzy logic approach was used for reservoir operations for flood control in the capital 
city of South Korea by Jae Hyun, S et al, (1999). The water release of reservoirs for the flood 
protection is based directly on the current water level and inflow without considering the 
predicted inflow.  The fuzzy controller is developed to increase the efficiency in the flood 
control, while keeping the storage as maximum as possible for the supply of water. The 
results of the model with fuzzy controller on several big flood events are compared with the 
historical operation result. The fuzzy rule base is constructed with 7 categories depending on 
the water level and the storage capacity. Mamdani's min-max operation was used for the 
fuzzy implication and the centre of gravity method was used for the defuzzification. The 
results of the system using the fuzzy control shows successful reduction in water level and 
peak discharge by using preliminary releases. Also it can keep the maximum allowed release, 
while in the historical operation the allowed amount was violated many a time causing flood 
in the downstream area.   
 
Drought forecasting 
 
Forecast of droughts in the U.S Great Plains by using the FRBM has been studied on the 
basis of atmospheric Circulation Pattern (CP) data of El Nino/Southern Oscillation (ENSO) 
phenomena (Pongracz et al, 1999). In this study, monthly value of Southern Oscillation Index 
(SOI) value is used, which is the most widely used indicator of warm and cold ENSO events. 
The drought indicating indices is Palmer Modified Drought Index (PMDI), which is based on 
the principle of a balance between moisture supply and demand without implying man-made 
changes. As input variables, the monthly relative frequency of daily CP types (for 6 different 
time lagged period) and the monthly values of SOI (for 4 different time lagged period) are 
defined and 5 triangular input membership functions for each variable are used for input 
fuzzification. Total of 18 overlapping output membership functions of PMDI are used for 
defuzzification of estimated output. The approach was used for 8 climate divisions of 
Nebraska and the result was found to be reasonable. The average correlation between the 
observed and estimated values is 75-80%. It confirms that the drought can be influenced by a 
large number of atmospheric, hydrological, agricultural phenomena, which were not 
considered in the study. 
 
Also a possibility to apply the adaptive fuzzy controller for time-varying process (pilot plant) 
by direct adaptation without preliminary identification of the process is published by 
Venetsky et al, 1996. The method produces a control signal to compensate error due to a new 
reference signal or change in parameters in the system. It fuzzifies the error, performs 
inferencing and defuzzifies the result of inference to produce the signal. The measured error 
(erry) can be mapped into the vector of membership functions erry à (o1 , …, oi , …, oj …). 
The fuzzification was done using the following equation: 
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where  
erry- single state error 
ci - position of ith  center of bell-shaped membership function 
wi – width of ith membership function 
  
Then it can be said that the erry belongs to fuzzy set ‘i’ with membership oi, or belongs to 
fuzzy set ‘j’ with membership oj … etc, which indicates that more than one rule is fired. The 
centroid method is used for defuzzification. Compared to the conventional adaptive 
controller, the direct adaptive FLC performed better.  
 
Water quality analysis  
 
As mentioned before, water quality problem has many inherent uncertainties and fuzzy logic 
approach is particularly suitable for uncertain problems with imprecise information. Water 
quality standards can be defined by smoother transitions from desirable to unsuitable quality 
levels. Comparative study on the use of fuzzy logic and multiple regression analysis for 
chemical water quality analysis and taste tests are carried out by Iwanaga et al (1997). The 
study was carried out on a data set with several varieties of high quality water in Japan.  
 
The correlation analysis is carried out to investigate whether the standards for chemical 
evaluation confirm the national standard. The multiple regression analysis formula is created 
for four explanatory variables, overall hardness, organic material, iron ions and bicarbonate 
ions, which have a high correlation with the taste tests in all regions of the country. The 
multiple regression formula is used for judging the water quality for the other regions. And 
the fuzzy inference was applied to build a predictive model for judging water for all the 
regions in the country. The both results are compared and it was found that the performance 
of the fuzzy logic approach was better than the conventional predictive model.     
 
For each of the four water quality factors, four triangular membership functions were 
assigned which can be described by three points (equation 3.22). The membership functions 
were tuned using neural net.  
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The initial values to tune the neural network are obtained from the value set by partitioning 
the definition domain based on the data distribution. For fuzzy inference rule the min 
operator is used (equation 3.23 and 3.24).  

 
µ i i i ij jA x A x A x= ∧ ∧ ⋅ ⋅ ⋅ ∧1 1 2 2( ) ( ) ( )           (3.23) 
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The estimation error D and decision coefficient is used as performance indices. Fuzzy logic 
approach performed better than the conventional regression analysis especially for water in 
other regions. The study has proven that the use of fuzzy logic approach can yield a more 
valid water quality judgement system than the multiple regression analysis. However, by 
gathering more data from many other regions the precision of the solution can be increased. 
 
Chemical equilibrium process in a water system, called as hydro-geochemical system, is 
highly uncertain and has been studied by Schulz et al (1999). Fuzzy rule based model has 
been built to deal with the equilibrium of anaerobic sediment in small lake. The fuzzy model 
has shown improvement in analysing uncertainty in thermodynamic calculation schemes in 
chemistry.    
 
Solute transport in unsaturated zone 
 
FAS has been applied for solute transport simulation (Dou et al, 1999). The underlying 
physical processes for solute transport, which are described by differential equations, have 
been captured by fuzzy rule based system from the training set generated through the 2D 
model of water flow and solid transport in a saturated media. The laboratory soil column is 
used for experimentation. FAS optimised by least square algorithm was able to generalise the 
model result very well.  
 
Stream water quality classification 
 
Classifying water quality accurately is one of the major tasks for water quality management 
problem, particularly when there is an increasing concern about ecological impact of water 
pollution. Lee et al (1997) has investigated a classification of stream water quality, its 
toxicity and rarity using Fuzzy Rule-Based System (FRBS). Four classes of water quality are 
distinguished on the basis of ecological information. Physical and biological indicators are 
used to define the classes verbally. A total of 30 if-then rules are constructed by 4 distinct 
input membership functions for each indicator.    
 
For the output, 7 membership functions for classification, 3 for toxicity and rarity were used. 
The application of the FRBS is compared with the application of normal expert system 
classification, which is based on the same rule-base. The result of comparison clearly shows 
that the use of FRBS can deal with the problem quite closer to the reality and can provide a 
smooth curved output instead of a stepwise graph obtained by the conventional expert 
system. The FRBS reduces an inaccuracy caused by crisp set boundaries. 
 
 
Filling in missing data 
 
FAS is used for filling gaps of incomplete precipitation data (Abebe et al, 2000) in a 
catchment of North Italy and compared with the ANN and statistical normal ratio method. 
The least MSE is obtained by FAS and the highest percentage within the tolerance target of 
5% is obtained by MLP. In terms of robustness, normal ratio method was the best.



 

Chapter 4 Neuro-fuzzy and hybrid approaches  

4.1 Introduction 

In the preceding chapter, some of the successful applications of the fuzzy logic approach 
were presented. The applications show the advantages of the fuzzy logic approach where the 
conventional model based approaches are difficult to be implemented. Unfortunately, with 
the increase in the complexity of the process being modelled, the difficulty in developing 
dependable fuzzy rules and membership functions increases. This has led to the development 
of another approach which is mostly known as neuro-fuzzy or fuzzy-neuro approach. It has 
the benefits of both neural networks and fuzzy logic and is attracting an army of researchers 
in this field. Defining the structure and size of neural networks and determining fuzzy rules 
and the membership functions systematically are main research areas concerning this AI 
technique (Lin, 1994). The neuro-fuzzy hybrid system combines the advantages of fuzzy 
logic system, which deal with explicit knowledge that can be explained and understood, and 
neural networks, which deal with implicit knowledge, which can be acquired by learning.  
 
Basically, there are different hybrid development strategies that can be distinguished 
concerning the integration of the techniques. In total, there are five hybrid development 
strategies that have been identified (Medsker, 1995):  
- stand alone (non-interactive, independent software components) 
- transformational (same with the stand-alone, but the system begins with one of the 

technique and finishes with the other type of technique as a result of transformation) 
- loose coupling (separate intelligent systems that communicate through data files, such as 

pre-processors, postprocessors, coprocessors and user interfaces)  
- tight coupling (separate systems pass information through the memory resident data 

rather than the external files, basically the shared data structures that facilitate interactive 
problem solving via the independent agents) 

- full integration (the systems share data structure and knowledge representation. 
Reasoning is accomplished either co-operatively or through a component designated as 
the controller) 

 
Some of the structures of the neuro-fuzzy approach and their applications in the water related 
problems are briefly reviewed here. 

4.2 Neuro-fuzzy hybrid system  

Presently, the neuro-fuzzy approach is becoming one of the major areas of interest because it 
gets the benefits of neural networks as well as of fuzzy logic systems and it removes the 
individual disadvantages by combining them on the common features. Different architectures 
of neuro-fuzzy system have been investigated by number of researchers such as Lin (1994), 
Medsker (1995) and Jana (1996). These architectures have been applied in many applications 
especially in the process control. 
 
Neural networks and Fuzzy logic have some common features such as distributed 
representation of knowledge, model-free estimation, ability to handle data with uncertainty 
and imprecision etc. Fuzzy logic has tolerance for imprecision of data, while neural networks 
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have tolerance for noisy data (Medsker, 1995). A neural network’s learning capability 
provides a good way to adjust expert’s knowledge and it automatically generates additional 
fuzzy rules and membership functions to meet certain specifications. This reduces the design 
time and cost. On the other hand, the fuzzy logic approach possibly enhances the 
generalization capability of a neural network by providing more reliable output when 
extrapolation is needed beyond the limits of the training data (Lin, 1994).  

4.3 Neuro-fuzzy architecture  

The neuro-fuzzy system consists of the components of a conventional fuzzy system except 
that computations at each stage is performed by a layer of hidden neurons and the neural 
network’s learning capacity is provided to enhance the system knowledge. Different 
architectures of neuro-fuzzy system are available out of which two prominent types are 
discussed here. 
 

 
Figure 4.1: Schematic diagram of a neuro-fuzzy system 

 
One possible architecture of a neuro-fuzzy hybrid system is shown in Figure 4.1 
(http://sunflower.singnet.com.sg/~midaz/Neufuzzy.htm). The system contains the following 
three different layers: 
 

§ Fuzzification layer 
§ Fuzzy rule layer 
§ Defuzzification layer 
 

Figure 4.2 Neuro-fuzzy system structure (http://sunflower.singnet.com.sg/~midaz/Neufuzzy.htm) 
 
In a fuzzification layer each neuron represents an input membership function of the 
antecedent of a fuzzy rule (Figure 4.2). In a fuzzy inference layer fuzzy rules are fired and the 
value at the end of each rule represents the initial weight of the rule, and will be adjusted to 
its appropriate level at the end of training. In the defuzzification layer each neuron represents 
a consequent proposition and its membership function can be implemented by combining one 
or two sigmoid functions and linear functions. The weight of each output link here represents 
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the centre of gravity of each output membership function of the consequent and is trainable. 
After getting the corresponding output the adjustment is made in the connection weights and 
the membership functions in order to compensate the error and produce a new control signal. 
 
The neuro-fuzzy control architecture proposed by Lin (1994) has five layers, each of which 
performs fuzzy rule-based system operations (Figure 4.3). This belongs to the fully integrated 
hybrid intelligent system. Computer simulations satisfactorily verified the performance of 
this structure of a neuro-fuzzy control. Like a typical neural network, each node of this neuro-
fuzzy connectionist model has connecting weights for incoming variables and the weighted 
sum is transformed through the activation function as enumerated in equation 2.2. Let us 
consider a single node from each layer as shown in Figure 2.4. Let us denote f as the transfer 
function (which is a weighted sum in a normal neural network), a as the activation function, 
uk

p as the inputs to the node, wk
p  as the input weights and ok

i as the outputs of the node, where 
k=1…5, p and i are the total number of the input and output variables respectively. The 
process of each node can be described as follows: 
 
- Layer 1: consists of the input nodes and directly transmits the input linguistic variables to 

the next layer. The link weight, w1
i, at the layer one is unity.  

            
      (4.1) 

 
- Layer 2: is the input term layer where each node acts as a membership function and 

represents the terms of the respective linguistic variables. Instead of calculating a 
weighted sum as in a normal neural network model, it calculates, for example, in terms of 
a bell-shaped fuzzy membership function,  

 
 

    (4.2) 
 

where, mij and σij are the centres (or mean) and the width (or variance) of the bell-shaped 
function of the jth term of the ith input linguistic variable xi. The link’s weight at the 
second layer (w2

ij) can be interpreted as mij. Also a set of nodes can represent a 
membership function in which case the nodes act as a standard neuron model as in 
equation 2.2.   

 
- Layer 3: this layer is a fuzzy rule layer where each node represents one fuzzy rule. The 

links   in this layer are used to perform antecedent matching fuzzy logic rules and also the 
fuzzy AND operation. The link weight, w3

i, at the third layer is also equal to unity. 
 

     (4.3) 
 
- Layer 4: the links to this layer define consequences of the rule nodes. The links in the 

third and fourth layer, in association, function as a fuzzy inference engine. The nodes in 
this layer have two operation modes: the down-up transmissions and the up-down 
transmission mode. In  the down-up mode, the links in the layer should perform the fuzzy 
OR operation to integrate the fired rules which have the same consequence.   
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The link weight, w4
i, at the fourth layer is also equal to unity. In the up-down mode, the nodes 

in the layer 4 and the layer 5 function exactly the same way of the nodes in the layer 2 except 
that only a single node is used to perform a membership function for the output linguistic 
variables.  

 

 
  Figure 4.3: Neuro-fuzzy connectionist model (Lin, 1994) 

 
- Layer 5: is an output linguistic layer, which has two nodes for each input variable. The 

first type of node is used to feed the networks for training it again.  
 

(4.5) 
 

The second type of node is used for deriving a real output or a decision signal.  
 

      
  (4.6) 

 
  

The details of the above learning algorithm for this structure can be found in Lin (1994).  

4.4 Other hybrid approaches 

There are some other approaches of hybrid intelligent systems, which are combinations of 
different AI (machine learning) techniques such as expert systems and neural networks, fuzzy 
logic and expert systems, genetic algorithms and neural networks, genetic algorithms and 
fuzzy systems genetic algorithms and expert systems etc. It is not intended to cover all the 
hybrid approaches in detail. Further reading of such approaches can be found in Medsker 
(1995), Goonatikale and Khebbal (1995).  
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Many of the possible combinations of different AI approaches have been explored. 
According to the publications between 1988 and 1994, the most studied hybrid approach is 
expert systems and neural networks, expert systems and fuzzy logic (Medsker, 1995). The 
neuro-fuzzy approach is the third in the list. The latest publications show that the applications 
of neuro-fuzzy system and the neural networks with genetic algorithms are increasing, while 
application of expert systems with neural networks and the expert systems with fuzzy logic is 
decreasing.      

4.5 Application of neuro-fuzzy systems 

4.5.1 Drinking water systems  

Estimation of state of water distribution network  
 
In a water distribution network, the system state is estimated on the basis of the telemetry 
measurements and the prediction of consumption (called as pseudo measurements). Both of 
the requirements can have high level of uncertainties. The above measurements are used to 
determine the state of the system through a mathematical modelling, of which the 
performance is not always guaranteed due to uncertainties in the input parameters of the 
model. There are two types of faults or uncertainties in such a system: measurement errors 
caused by equipments and topological errors caused by faults due to the leakage and wrong 
valve status. Measurement errors are not correlated and thus the measurements with error can 
be discarded. But the detection and identification of topological errors are still not studied 
comprehensively. The Generalised Fuzzy Min-Max Neural Networks (GFMM NN) approach 
for clustering and classification is applied for this purpose (Gabrys and Bargiela, 1999). This 
is a fully integrated hybrid structure.  
 
The neuro-fuzzy recognition system is used to identify and detect a leakage in the system. 
The training data set is generated by the system state estimation procedure combined with the 
Confidence Limit Algorithm (CLA) for the quantification of inaccuracies of system state 
estimation due to uncertainties in input data. The state estimation procedure is based on the 
mass balances in each node and the specific measurements taken on the node. The neuro-
fuzzy recognition considered here is based on the hyperbox fuzzy sets. The hyperbox defines 
a region of n-dimensional pattern space and is defined by its min-max points. The hyperbox 
created during the training can represent a distinctive state of the system such as the normal 
operating state, a leakage between two nodes etc.  
 
A neural network that implements the GFMM clustering/classification algorithm is a three- 
layered feedforward network. The input layer has 2xn number of nodes, two for each of the n 
dimensions of the input pattern. Each node in the second layer represents a hyperbox fuzzy 
set. The connections in the 1st and 2nd layer are min-max points and the transfer function is 
the hyperbox membership function.  Each node in the third layer represents a class. The 
connections between 2nd and 3rd layer are binary values: 1 if the second layer hyperbox fuzzy 
set is a part of the class represented by the output layer node and 0 otherwise. They are stored 
in a matrix form. The output can be either fuzzy or crisp.  
 
Generation of the training data set of the networks is done in 3 stages: simulation of the state, 
estimation of accurate measurements and the CLA. Leakage of the system is simulated as a 
demand between two nodes and not as a pressure difference. Reservoir inflows and the other 
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network consumption are adjusted to compensate the additional demand. The wrong 
operation of a valve is simulated in a way that the valves those are usually open, remain as  
closed.  
 
The recognition system developed is a two-level system where the first level is to distinguish 
the typical behaviour of the system (such as night load, peak load etc.) and the second level is 
to detect the anomalies. The result of this approach shows that the neuro-fuzzy system can be 
trained successfully for the estimated system-state as well as the residuals with their 
confidence limit. Both have advantages and disadvantages, however, the simulation of a 
system based on the estimated system state gives better results in terms of accuracy.    
 
Tank level control 
 
The stand alone structure of the hybrid system is applied for controlling the tank level in 
solvent dewaxing (oil refinery) plant (Tani et al, 1994). The controlling purpose is to keep the 
tank level stable and to change the outflow rate from the tank as smoothly as possible in order 
to keep the whole process normal and continuous. The whole dewaxing process itself is 
difficult to be controlled because of uncertainties and complexities, therefore, usually is 
controlled by the experts. The difficulty occurs due to the following reasons: the inflow rate 
to the tank varies with oil filter plugging, feed oil is switched on frequently, the heater has a 
limit in the change of the flow rate, two different states to control (steady and transient) etc. 
The steady state is when the tank level goes down and up periodically by stopping and 
washing one of the oil filters. A transient state occurs when in addition to the above, the feed 
oil is changed completely, which results the tank level to drop down rapidly.    
 
In order to deal with these states, the neuro-fuzzy controller is built with the following three 
components: 
1. a statistical component to calculate long time tendencies of the flow rate from the 

historical operational data. 
2. a correction component (fuzzy logic) for compensating the flow rate from statistical 

component to stabilise the tank level. The rule base is built on the basis of the experts’ 
knowledge. 

3. a prediction component (neural networks) to predict the inflow rate when the oil is being 
changed. That is the target of the fuzzy logic controller. 

 
Application of the neuro-fuzzy controller smoothes the tank levels not only in a steady state, 
but also in transient state when the feed oil is changing. For example, applying the neuro-
fuzzy system the tank level ranges between 35%-75%, while on the basis of experts’ 
knowledge it ranges between 30%-80%.  

4.5.2 Sewerage systems 

Waste water treatment process 
 
Detection of faults in anaerobic process using the fuzzy-neural network has been considered 
by Steyr et al, (1997). The process is very complex as well as unstable and depends on the 
incoming flow rate, influent organic load etc. There are problems that are less predictable 
such as pipe clogging which causes an increase in valve opening, foam forming which 
changes gas flow rate etc. Besides, there are local controllers used to control the individual 
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processes. But there is no technique using on-line measurements and handling an ill-defined 
process as a whole.   
 
The structure of the neuro-fuzzy system is as follows: The measured signals are transferred 
into fuzzy variables depending on whether the variable is deviated from the mean value or 
not. By using additional fuzzy rules, the occurrence of a faulty situation in the system is 
determined. 
  
Another loosely coupled hybrid model of an ANN and fuzzy logic has been applied for 
diagnosis of anaerobic treatment plant (Steyer et al, 1997). The raw data has been processed 
by fuzzy logic to build a pattern vector (training data), where training data set is classified 
into pre-specified categories indicating the state of the system. An ANN is then used to 
classify the process states and to identify the faulty and dangerous states. The hybrid model 
recognises the situations caused by pipe clogging, foam forming and bad temperature 
regulation. The approach can be seen as a tool able to handle with large number of problems 
in a simple frame.  

4.4.3 Inland water systems 

Reservoir system operation 
 
The neuro-fuzzy system has been found to be a suitable approach for a multi-purpose 
reservoir system operation (Hasebe et al, 1999). The study concentrates on the application of 
a fuzzy neural network (stand-alone hybrid structure) and a fuzzy system for reservoir 
operation and presents a comparison of results obtained. The mathematical expression of dam 
operations is difficult and somewhat vague because of the presence of many different 
constraints which need to be considered. On the other hand the inflow can be predicted on the 
basis of abundantly available hydrological information within the catchment. The composed 
system is applied for determining the operation of a reservoir for irrigation and flood control 
purposes.  
 
The operation line is determined on the basis of the water level in the reservoir, changing 
inflow, inflow and precipitation coupled with actual historical operation. The neural network 
used 7 input variables (rainfall, river discharge, predicted flow, changing inflow, water level 
and release discharge), one hidden layer with three nodes (response to dam basin, discharge 
and the state of the reservoir) and an output layer with one neuron (describing release of 
discharge, storage volume or conservation of water level in the reservoir).   
 
For irrigation purposes, the fuzzy control and neuro-fuzzy control give smoother release of 
discharge. The fuzzy control gives better result in terms of storage volume. For flood control 
purpose during the typhoon both the controllers give the maximum release, however, the 
fuzzy neural networks give higher peak value than the fuzzy controller.        
 
Beam balancing system  
 
The above principle was investigated with a six-layered neural network, in which each layer 
performs specific actions to represent the fuzzy inference mechanism (Jana, 1996). The six 
layers are the input layer, a fuzzification layer, two layers for fuzzy inferences, a 
defuzzification layer and an output layer. The designed controller is applied for experimental 
fluid beam balancing system, which balances an unstable beam contained in two tanks, one at 



Neuro-fuzzy hybrid approaches  Chapter 4 

Part 1. Review of theory and applications 74 IHE-Delft 

each end pumping back or forward from the tanks. The problem was formulated as Multiple 
Input and Single Output (MISO) problem and the real-time control was evaluated against a 
PID controller. After a short simulation, the algorithm gave reasonable results compared to 
the PID controller and further investigation of RTC was suggested.  
 
 
 
 
 



 

Chapter 5 Discussion, conclusions and recommendations 

5.1 Discussion 

In the present study, the applicability of some data-driven techniques stemming from 
Artificial Intelligence, Data Mining and Soft Computing in the integrated water management 
field is explored. The data-driven techniques considered are artificial neural networks (ANN), 
the fuzzy logic approach (mainly, fuzzy rule-based systems, FRBS), and the neuro-fuzzy 
approach. Here we summarise the observations. 
 
Traditional vs data-driven models 
 
Traditional physically-based models use mathematical expressions to describe a physical 
process. The desired solution is also achieved mathematically. Let us take the example of a 
regional water system containing polder(s) and pumping station(s). A physically-based model 
uses a large number of system state variables to describe the physical process. Some 
representative system state variables can be water level, precipitation, predicted precipitation, 
evaporation, soil moisture condition, groundwater table etc. The water system is expressed 
through mathematical equations such as continuity equations to describe the physical process. 
A mathematical optimisation problem is solved to determine the pumping strategy. A 
complete knowledge of the physical process is essential. 
 
On the contrary, the AI (machine learning) related techniques require input-output data 
representing any process being modelled. For a water system, the input parameters can be 
water level, precipitation etc. The output parameter can be the pumping strategy. Time series 
data of the input and output parameters are arranged to train a data-driven model. When we 
have sufficient data of the process, a reliable model may be developed. Once the model is 
developed it can be used to determine outputs based on new inputs.  
 
It is noteworthy that to develop the data-driven model of the water system described above, a 
thorough knowledge of the process is not required. This gives an edge over the physically-
based models for complex processes which are difficult to be expressed through 
mathematical equations with a reasonable degree of accuracy. 
 
At some occasions, we may have a dependable physically-based model which requires high 
computing time to solve the problem. The AI (machine learning) techniques are used to 
approximate the conventional model for saving computing power and bring in faster 
computing speed. At most of the occasions, data-driven models run at a much faster speed 
than the conventional models. 
  
In general, the advantage or benefits of using ANN and fuzzy logic concepts for water related 
problems could be described as the possibility to complement the traditional physically-based 
methods, or to replace them if they fail.  
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Source of data 
 
Measured data is the main source of data for developing a data-driven model. If developing a 
data-driven model of a water system consisting of polders and pumping stations is considered 
then time series data of the selected input and output variables are required. The data should 
contain all possible variations of the input and the output parameters. If precipitation is one of 
the input parameters, then a hydrological database containing all possible variations in the 
hydrological conditions is required for developing a dependable data-driven model. This is 
true for all other input and output parameters. 
 
Another possible source of data can be a physically-based model. The model is run to 
generate data of possible conditions. Subsequently, this data is used to develop an AI 
approximation of the physically-based model. Of course, the AI techniques can only pickup 
the required behaviour if the available physically-based model is accurate and describes the 
relevant process in detail.   
 
Artificial neural network 
 
Neural networks are said to perform a human-like reasoning, learn the attitude and store the 
relationship of the processes on the basis of a representative data set that already exists. ANN 
consists of distinct layers of processing units and their weights connecting each unit (node). 
Depending on the structure of the network, usually a series of connecting neuron weights are 
adjusted (called training) to fit a series of inputs to another series of known outputs. Once the 
training is performed, the verification is very fast. An ANN is distinguished by the learning 
principle, the way the information flows within the network, the structure of the layers etc.   
 
Based on the instant review, the choice of a technology to a specific field in the water 
management scenario is summarised in Table 5.1. Among the different ANN structures, the 
Error Backpropagation (EBP) network is widely used and bears a track record of reasonable 
success. Self-organizing Feature Map (SOFM) networks are often used for the classification 
and identification purpose. Some comparisons show that the Brain-State-in-a-Box (BSB) 
network may be preferred to the SOFM network (Vermeersch et al, 1999). The Radial Basis 
Function (RBF) networks are applied to a number of water management problems. Although 
the RBF network learns faster than other networks, its accuracy of solution is often not 
satisfactory. 
  
The applications of the Recurrent Neural Network show its ability to work with noisy data 
set. However, the recurrent neural network is not applied as extensively as the EBP network. 
The Principal Component Neural Network (PCNN) itself is not applied for water 
management field, however, number of published applications on classification and image 
analysis in the water management field using Principal Component Analysis (PCA) show the 
possible potential of this type of neural networks. The PCNN is successfully applied in other 
fields such as gender recognition (Diamantaras and Kung, 1996).  
 
Fuzzy logic approach 
 
The fuzzy logic approach has a long history of industrial applications compared to ANN, 
particularly in the field of process control. A fuzzy logic approach is particularly a preferable 
tool for dealing with problems with uncertainties and imprecise information. The main phases 
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in a fuzzy logic system are fuzzification, fuzzy inference and defuzzification. It works on the 
basis of the fuzzy rules consisting of arguments coupled with logical operators (AND, OR,  
 

Table 5.1: Application preference of considered techniques 
Preference for application   

Techniques suitable not suitable 

1 Neural networks 
- Error 

backpropagation 
 
 
 
- Radial basis 

function 
 
 
 
- Recurrent 
 
 
 
- SOFM 
 
 
 
 
- Principal 

component NN  

 
Model generalization, function approximation, 
pattern recognition, prediction, identification, 
classification, optimal control (approximate 
optimal solution) etc  
 
Generalization, approximation, prediction, 
identification pattern recognition, prediction, 
identification, classification, optimal control, etc  
 
 
Complex dynamic processes with noisy and less 
number of training data, identification, 
classification, pattern recognition 
 
Identification, classification, pattern recognition 
 
 
 
 
Identification, classification, data reduction 
(dimension) or feature extraction, noise 
reduction in data 

 
Problems where 
uncertainty involved 
 
 
 
Problems with less 
number of training 
data, uncertain 
problems 
 
Problems where 
uncertainty involved 
 
 
Model generalization, 
prediction, 
approximation, 
generalization 
 
Prediction, model 
generalization, 
approximation 

2 Fuzzy logic 
approach 
- Fuzzy inference 
 
 
 
- Fuzzy adaptive 

system 

 
 
Processes with uncertainty, optimal control 
(combined with the expert knowledge), 
maintenance, identification, classification  
 
Generalisation, approximation, identification, 
classification, dynamic system control  

 
 
Prediction 
 
 

3 Neuro-fuzzy 
hybrid systems 

Complex system control, maintenance, 
identification, classification, system analysis, 
diagnosis 

 

 
 
NOT and XOR). The rules are verbally formulated such as IF the condition is fulfilled THEN 
the consequence is true. The rules can be elicited from the experts or generated on the basis  
of the available training data. A set of given data is fuzzified according to the membership 
functions assigned to it. The truth value of the fuzzified data corresponding to the fulfilment 
of conditions is determined and is called the degree of fulfilment (DOF). Then the fuzzy rules 
are responded in different combinations to get a fuzzy output from the fuzzy inference 
engine. The output is defuzzified in order to get a crisp output at the end.  
 
The Fuzzy Rule Based System (FRBS) is distinguished into two parts in this review: Fuzzy 
Inference, which works on the constructed rule-base, and Fuzzy Adaptive System (FAS), 
which builds a rule-base on the basis of a given training data set. The fuzzy inferences are 
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applied successfully for identifying the optimal control actions in wastewater treatment 
plants, in determining the optimal dose of chemicals in wastewater treatment plants and in 
determining leakage in a water distribution network. They are often used in combination with 
the expert’s knowledge. FAS have been applied for drought prediction, in determining the 
optimal control action of polder pumping stations and filling in the gap of measured data. It 
has proven its ability to learn as good as the neural networks. 
 
Neuro fuzzy approach 
 
The neuro-fuzzy approach is comparatively a new field and is a growing area of research 
activities. A number of successful applications of this technique in the water management 
field have been published. The neuro-fuzzy systems combine the advantages of fuzzy logic 
system, which deals with explicit knowledge that can be explained and understood, and 
neural networks, which deal with implicit knowledge, which can be acquired by learning. The 
neuro-fuzzy system has been applied successfully for detecting and identifying faults due to 
any measurement error, leakage or wrong valve status in a water distribution system.  
 
Based on the instant review, the suitability of an AI technique to the problems of water 
management field is summarised in Table 5.1. 
 
Applications of AI techniques to water management field 
 
Like in many other fields, these AI techniques are also applied widely in the water 
management problems and are becoming the mainstream research subjects nowadays. In the 
present report, the applications of the Artificial Intelligence (AI) techniques namely ANN, 
fuzzy logic approaches and neuro-fuzzy approaches in an integrated water management field 
have been reviewed. In total 85 papers, 14 theses and 15 books were reviewed. An exhaustive 
list of the applications and their efficacy is presented in Table A.1 (see Appendix). As can be 
seen from the summary Table A.1, the applications of these techniques have shown a 
reasonable accuracy for most of the cases. From the review, it is possible to conclude that any 
logical relationship can be generalised and approximated by neural networks with reasonable 
accuracy if a set of input-output data is available. On the other hand, the FRBS is able to deal 
with the processes which are non-linear and bears a degree of uncertainty. The applicability 
of these techniques is based on a number of parameters but they mostly depend on the quality 
and quantity of the available data set. 
  
The important sub-disciplines of the integrated water management field where applications of 
the AI techniques are noticed are highlighted in the following: 
 
Assessment 
a. Resources or quantity assessment 
- rainfall runoff modelling 
- rainfall prediction 
- urban runoff prediction 
- drought forecasting 
- groundwater flow simulation 
- river bed evolution 
- determining the erosion of groyne field sediment  
- simulation of hydro morphological processes   
- Q-h relationship (rating curve) 
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- Reservoir inflow prediction 
- Classifying discharge pattern 
- Classification of storm and wind events 
 
b. Water quality management 
- sewer water quality 
- quality of urban storm water 
- groundwater quality survey  
- water quality evolution in a pipe network 
- water quality evolution in natural flows 
- water quality classification of river catchment 
- identification of pollutant source in surface water 
- identification of groundwater contaminant 
 
c. Ecological relations 
- species mass prediction 
- determining the eco-regions  
- classification of ecological data 
 
Planning` 
- community water demand prediction  
- reservoir operation planning 
- tidal water current prediction  
- CSO simulation 
 
Operation and real-time control 
- optimal control of water resources system 
- optimal reservoir system operation  
- CSO minimization 
- water treatment process control 
- determining dosage of treatment  
- selection of treatment plant procedure 
- determining tidal water level 
- water bath temperature control of reactor 
 
Maintenance 
- fault detection or distinction in distribution network 
- determining leakage point in the networks 
 
Reviewed applications of these techniques reveal that they are applied mainly to operation, 
assessment and operational planning purposes in the water management field (Figure 5.1). To 
a lesser extent the techniques have been applied to maintenance purposes. No publication on 
the use of these techniques in extremely complex processes like dredging activities is 
published yet. More detailed presentation of the percentage wise applications of the AI 
techniques in terms of the total reviewed papers can be seen in Table 5.2.    
 
ANN is extensively applied for assessment purposes like rainfall-runoff modelling, water 
quality prediction in natural flows, approximating ecological relations. It has also been 
applied for the optimal reservoir operation. A remarkable number of publications on the 
application of the fuzzy logic approach for process control in wastewater treatment plants to 
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determine the optimal control actions are available. Problem of real-time optimal operation 
for water related systems has been investigated by using neural networks, fuzzy logic 
approach and neuro-fuzzy approach. The neuro-fuzzy systems have been applied only for 
operation and maintenance problems. 

   
Table 5.2: Percentage of considered techniques applied in water management 

  
Activity 

ANN 
(%) 

Fuzzy logic 
(%) 

Neuro-fuzzy 
(%) 

1 Assessment 32.4 11.8 0.0 
2 Design 0.0 0.0 0.0 
3 Planning 14.7 4.4 0.0 
4 Operation  13.2 16.2 4.4 
5 Maintenance 0.0 0.0 2.9 
 ∑ 60.3% 32.4% 7.3% 

   

5.2 Conclusions  

1. ANN and Fuzzy logic techniques are applied to a large number of problems in the water 
management field. They are mostly applied in the following areas: 
§ Quantity assessment such as rainfall runoff modelling, urban runoff prediction, 

rainfall prediction etc. 
§ Water quality management such as sewer water quality, urban storm water quality, 

water quality in a pipe network etc. 
§ Ecological relations such as mass prediction of species etc. 
§ Planning such as community water demand prediction etc. 
§ Operation and real time control such as determining pumping strategy in polder water 

level maintenance, optimal reservoir operation etc. 
§ Maintenance such as fault detection a water distribution network etc. 

 
2. The techniques have been most extensively applied for the assessment and operation 

purposes, and to a lesser extent to planning, maintenance and designing problems of 
water resources management. In general, the number of application of the data-driven 
techniques in the water sector is not so high as in other fields. 

 
3. One important advantage of the considered techniques over the physically-based models 

is that the domain specific knowledge of the process being modelled is required to a 

1
44%

2
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3
19%

4
34%

5
3%

Figure 5.1 Percentage of ANN and fuzzy logic for water management 
1- assessment, 2- design, 3- planning, 4- operation, 5- maintenance 
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lesser extent. In the case of the physically-based models, the process has to be expressed 
through mathematical expressions. An in-depth knowledge of the process is required to 
do that. At some occasions, the process may be too complex to be described 
mathematically or the physical process may not be well known. In that case, the data-
driven models based on the measured data can solve the problem. 

 
4. The data-driven models act as a complement to the physically-based models. It may also 

be used to replace the physically-based models. At other occasions, where the physically-
based models cannot be developed due to a lack of proper knowledge of the process, the 
AI techniques provide the way to develop a model of the process. 

 
5. It may take considerable time to develop a data-driven model based on these AI 

techniques. But once the models are developed, they usually run much faster than the 
physically-based models. 

 
6. In developing a data-driven model, preprocessing of data and selecting the right input and 

output variables is an important task. For example, for a water system consisting of 
polder(s) and pumping station(s) then detailed statistical analyses are required to 
determine the right input variables for developing a data-driven model of the system. The 
right input variables may be water level, precipitation etc. selected from the set of system 
state variables. The output variable may be the pumping rate.  

 
7. The efficacy of a data-driven model depends upon the range and quality of the source 

data. If the source data does not cover all possible state conditions, then the data model 
may not perform well. 

 
8. The techniques described in this report (and many other machine learning techniques) are 

in fact mathematical and modelling apparatus that has a general nature and can be applied 
practically in any area (as, for example differential equations). There are many ways of 
applying machine learning and data mining techniques, and selecting the right AI 
technique to a specific problem is important. Applicability of a certain technique to a 
specific problem has to be explored first before attempting to develop a data-driven 
model. This is often more "art of modelling" than the science of it. 

 
9. The field of AI techniques is an active research area with the new developments coming 

up to remove previous bottlenecks. Data acquisition is becoming more and more 
convenient day by day and the computing speed is much less of a problem than before. 
These two phenomena open up new horizons to using AI-related techniques (machine 
learning, data mining, soft computing) in various fields especially in the area of water 
resources management. 

 
 
5.3 Recommendations 
 
1. The applications of the data-driven techniques reviewed in this report show the immense 

potential of these techniques in developing models of any physical process such as that 
within a water system. With the day-by-day increase in the computing speed of personal 
computers and an increase in the convenience of data collection, these techniques are 
going to be the key technologies in modelling practices. The applications of these 
techniques in the water sector are still less compared to the applications in the other 
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sectors. In general, more research on exploring new areas of application of the AI 
techniques in the water sector is recommended.  

 
2. The AI techniques described in this report is not an exhaustive list. There are many other 

suitable techniques such as: support vector machine, chaos theory, reinforcement 
learning, nearest neighbour method, decision rules etc. Every method has its advantages 
and disadvantages and is well suited to some specific problems. A recent study at IHE 
shows that reinforcement learning can be successfully applied to determine the optimal 
pumping strategy in a regional water system. The applicability of these techniques to the 
operational water management may be explored. 

 
3. The present study proves the potential of using these techniques in the water sector and 

accordingly it is felt right to go ahead with exploring these techniques in the water system 
control. A further detailed research on the application of ANN, the fuzzy logic approach, 
the neuro-fuzzy approach, reinforcement learning and the related techniques to the 
operational water management is recommended.  
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Table A.1 Review summary of ANN and FRBS application for water resources management 
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b. Water quality management 
- sewer water quality 
- quality of urban storm water 
- groundwater quality survey  
- water quality evolution in a pipe 

network 
- water quality evolution in natural 

flows 
- water quality classification of river 
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surface water 
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c. Ecological relations 
- species mass prediction 
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- classification of ecological data 
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Operation and real-time control 
- optimal control of water resources 

system 
- optimal reservoir system operation  
- CSO minimization 
- water treatment process control 
- determining dosage of treatment  
- selection of treatment plant 
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- hydro power station structures 
- irrigation systems operation 
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rate for groundwater cleanup wells 
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Note:  AI - Artificial Intelligence, EBP - Error BackPropagation, FRBS - Fuzzy Rule Based Systems, FAS - Fuzzy Adaptive Systems, RBF - Radial Basis Function, 

J-Elman  - Jordan-Elman network, H-BSB - Hopfield and Brain-State-in-a-Box, SOFM - Self Organizing Feature Maps, PCNN - Principal Component Neural Networks 
 
The performance evaluation of each technique for certain application is expressed verbally as e- Excellent, G-good, F-fair and M-moderate  
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1 Introduction 

1.1 General  

For integrated water management, monitoring of water-system behaviour is very important to 
understand the state of the system at any particular time, past and present, and to be able to 
assess the effect of various control actions on the different aspects of the water system that is 
to be managed. In this respect, hydrological models also play an important role in simulating 
water-system behaviour that could help to indicate possible trends in the living environment 
and nature such as flooding, drought and poor water quality. 

Monitoring of data is never perfect and time series of hydrological variables often exhibits 
some form of deficiency due to the presence of gaps, discontinuities, and inadequate length. 
Such deficiencies in hydrological time series are attributable, among other, to the 
malfunctioning of monitoring equipment (electric or mechanical), effects of natural 
phenomena (e.g. earthquakes, hurricanes, landslides, etc.), problems in data transmission, 
storage, and retrieval processes. However, the models used for water-system analysis 
purposes need complete time series of historical data such as rainfall, evaporation, water level 
and catchment discharge, etc. for proper calibration and analysis. This urges to look for 
methods that permit reconstruction of missing data from what ever related information that 
are available so that, on the basis of complete time series, models can be build and calibrated, 
and can subsequently be used for prediction of the water-system behaviour.  

1.2 The study area 

The study area is in the northeastern part of the Netherlands at a place called Salland. The 
drainage areas at Rietberg and other two nearby catchments (as shown in Fig 1 and from now 
on referred by the name of the weirs at the outflow point of these areas, stuw 3A and stuw 
7A) were considered at the initial stage of this study. The weir at Rietberg drains an area of 
6,646 ha while stuw 3A and stuw 7A drain areas of 10,130 ha and 13,697 ha respectively. 
Salland is generally a gently sloping area where water management is carried out with the 
help of fixed weirs, controlled weirs and irrigation pumping units operated by the water board 
of Groot Salland. 

Before 1994, two weirs of each 2.5m wide regulated the outflow from the Rietberg area. 
However a new weir of 3.5m long and 5m wide has replaced this since 1996. A new pumping 
station, which could supply water to the area during dry periods, was also added at that 
moment. Stuw 3A has a width of 6m while stuw 7A consists of two weirs of 2.5m wide each. 
In principle, these weirs are regulated either manually or automatically depending on the 
level of water in the canal upstream of the outlets. If the water level is high, then the weir is 
lowered so as to let water drain out of the area. On the other hand, if water level in the canal 
is low, then the weir is raised so as to keep water from leaving the area.  The weirs are 
connected with automatic devise which keeps records of the water levels upstream and 
downstream of the weirs and the position of the crest of the weir itself. These records will 
later be used to calculate the discharge or quantity of water drained out of the drainage area. 
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 Figure 1 The study area at Groot Salland 
 

1.3 Objective of the study 

As will be shown in the next section of this report, the time series of discharges computed for 
each of the drainage areas has a lot of gaps. Considerable amount of data is missing due to 
various reasons such as reconstruction of the weir (in case of Rietberg), malfunctioning of the 
weirs, etc. Therefore, this research deals with the application of an artificial intelligence 
technique, namely that of artificial neural networks for reconstruction of missing data in 
historic hydrological data sets and building runoff prediction models that are based on the 
observed data. 
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2 Data Preparation  

The first task in any modelling exercise is to collect as much observed data as possible to 
better understand the physical processes involved and get a better insight in to the possible 
relationship that might exist between the different variables that has been observed so far. 
The various types of data collected from the study area are listed in Table 1 and some of them 
are presented graphically in Figures 2 and 3. 

 
Table 1 Overview of available data 
 Station Name Duration Description 

Rainfall Heino 1987 till 2000 Daily data 

Rietberg 1/18/91 till 12/20/99 Hourly data  

Stuw 3A 3/8/91 till 12/25/99 Hourly data 

Discharge or water 
level 

Stuw 7A 3/7/91 till 8/15/99 Hourly data  

Evaporation Twente 1/1/91 till 3/31/2001 Daily data 

Pumping Rietberg 1995 till 2000 Monthly data 

Groundwater Level Approximate 90 Stations inside the research region, most of the 
observation taken twice a month 

Daily groundwater 
level  

18 months of daily groundwater observation during 25, Feb. 1998 
to 29, Aug. 2000 at a location with co-ordinate 220500, 494500 
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Figure 2 Daily Precipitation data at Heino  
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Figure 3 Daily potential evapo-transpiration data at Twente 

2.1 Discharge calculation 

As it has been mentioned earlier, the collected data includes hourly water level observations 
at upstream and downstream of the weir at each outlet of the three drainage areas. The hourly 
discharge values are therefore calculated from the observed water levels using the following 
weir discharge formulae (Brater et al. 1976). 

• For free flow (when the level of the weir is above downstream water level) 

2/3**7.1* HBmQ =          (1) 

• For Submerged flow (when the level of the weir is below downstream water level) 

385.02/3

1

2

1

1



















−=

H
H

Q
Q         (2) 

Where: B  - the width of the weir 

 H - depth above the weir 

 m - weir coefficient 

            Q  -  discharge over the weir 

 H1 -  upstream water depth above the weir 

 H2 -  downstream water depth above the weir  

 Q1 - free discharge with depth of H1 

However, since the rainfall and evaporation data are observed on a daily basis, the hourly 
discharges calculated with the above equations are also further aggregated into daily data. 
This averaging of hourly discharges into daily values is also expected to reduce to some 
extent the influence of the regulating structures (the weirs) on the natural flow regimes at the 
drainage points.  
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The extent of the missing discharge data at Rietberg is shown in Figure 4 while the quality of 
the remaining data can be visualised by plotting the time series of daily discharges at the 
outlet of each drainage areas as shown in Figure 5. 

The following important observations are made from the above plots of the time serious of 
discharges at the outlets of the three drainage areas.  

- There is a considerable difference in the relative magnitude of time series of discharge at 
Rietberg between the measurements taken before June 1994 and the ones taken after 
February 1996. This could be mainly because of the construction of a new weir and 
pumping station which start its operation in February 1996. 

- The calculated discharges at Stuw 3A starting from November 1996 are too high and 
unreasonable. It was later learned that the instrument recording the level of the weir crust 
is malfunctioned and its records are completely erroneous. 

Available and missing daily dischages at Rietberg 
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Figure 4 Available and missing data at Rietberg 
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Figure 5 Time series of Rainfall data and daily discharges at the outlet of each drainage 
areas 
 



Data Preparation  Section 2 

Part 2. Application to Catchments in Salland 102 IHE-Delft 

- Negative discharges have been calculated both at Rietberg and Stuw 7A indicating water 
flowing from downstream up into the respective drainage areas. A closer investigation 
revealed that these phenomena have indeed been witnessed during the flood events of 
October/November 1998.   

Because of this and other considerations, it was decided to discard the data at Stuw 3A and 
consider only the data at Rietberg and Stuw 7A for further analysis and modelling. It was also 
found more appropriate to consider the time series of discharge at Rietberg that was collected 
after the construction of the new weir. The periods with negative discharge values are also 
removed from the time serious before any further analysis. 
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3 Artificial Neural Networks  

3.1 General 

An Artificial Neural Network (ANN) is an information-processing paradigm that is inspired 
by the way biological nervous systems, such as the brain, process information. The key 
element of this paradigm is the novel structure of the information processing system. It is 
composed of a large number of highly interconnected processing elements (neurones) 
working in unison to solve specific problems. ANNs, like people, learn by example. An ANN 
is configured for a specific application, such as pattern recognition or data classification, 
through a learning process. Learning in biological systems involves adjustments to the 
synaptic connections that exist between the neurones, and this is also true for the case of 
ANNs as well.  

Neural networks, with their remarkable ability to derive a non linear relationship from 
imprecise data, can be used to extract patterns and detect trends that are too complex to be 
noticed by either humans or other computer techniques. A trained neural network can be 
thought of as an “expert” in the category of information it has been given to analyse. This 
“expert” can then be used to provide projections given new situations of interest and answer 
“what if” questions. Therefore, generally speaking, the neural networks do not need much of 
a detailed description or formulation of the underlying process. Rather, it follows the method 
of adaptive learning, an ability to learn how to do tasks based on the data given for training or 
initial experience by creating its own organisation or representation of the information it 
receives during learning time.  

3.2 Multi-layer perceptrons (MLPs) 

MLPs is a kind of Feed-forward ANNs which only allow signals to travel one way only from 
input to output. It is the commonest type of artificial neural network consisting of three or 
more layers of units which are commonly called processing elements (PEs): a layer of “input” 
units is connected to a layer of “hidden” units, which is connected to a layer of “output” units 
(see Figure 6). There is no feedback (loops) i.e. the output of any one layer does not affect 
that same layer or any previous layers. Therefore, MLP networks are the simplest types of 
ANNs and they are extensively used in pattern recognition and most of the application in 
water resources resort to this type of ANN (Zealand et al., 1999; Panu, et al. 2000; Robert,  et 
al. 2000). 
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Figure 6 A typical structure of a feed-forward multi-layered perceptron 
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The activity of the input units represents the raw information that is fed into the network. The 
unique role of input layer is offering an interface to the information outside the system while 
the function of each hidden unit is determined by the activities of the input units and the 
weights on the connections between the input and the hidden units. Similarly, the behaviour 
of the output units depends on the activity of the hidden units and the weights between the 
hidden and output units. The weights of the connections between the units in the input and 
hidden layer or between the units in the hidden and output layer determine when each unit is 
going to be active, and so by modifying these weights, an MLP network can determine its 
representation. Each hidden or output unit is consisted of two parts: one is a summation and 
the other is an activation function. Figure 7 is the schematic of such kind of node. 
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Figure 7 A schematic illustration of a neurone  
 

3.3 Back-propagation algorithm 

In order to train a neural network to perform some task, the weights of each connection 
between every units must be adjusted in such a way that the difference between the desired 
output and the actual output from the network is reduced and gradually converge so that the 
final network outputs become as close to the observed output values as possible. This process 
requires that the neural network compute the error derivative of the weights. In other words, 
it must calculate how the error changes as each weight is increased or decreased slightly.  

The back propagation algorithm is the most widely used method for determining the error 
derivative of the weights. Valluru and Hayagriva (1993, cited by Zealand, 1999) estimate that 
over 80% of all neural network application use the BP learning algorithm. The back-
propagation algorithm computes each error derivative of the weights by first computing the 
rate at which the error changes as the activity level of a unit is changed. Considering a 
network with three layers as shown in Fig.6, at the completion of a pass through the entire 
data set, all the nodes change their weights based on the accumulated derivatives of the error 
with respect to each weight and these changes moves the weights in the direction in which the 
error declines most quickly.  

If we let wm represent the value after iteration m of a weight w, which may be either a hidden-
node weight wij or an output node weight wjk, then: 

w + w  w m1-mm ∆=          (3) 

where ∆wm  is the change in the weight w at the end of iteration m and is calculated as: 

d- = w mm ε∆           (4) 
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where ε is the parameter controlling the proportion by which the weights are changed. The 
user sets the value of this parameter and the term dm is given by: 

)
w

E
( = d n

m

N

=1n
m ∂

∂∑          (5) 

 where  N is the total number of examples, and E  is the simulation output error. 

The performance of this algorithm is very sensitive to the proper setting of the learning rate. 
If the learning rate is set too high, the algorithm may oscillate and become unstable. If the 
learning rate is too small, the algorithm will take too long to converge. There are no standard 
methods to determine the optimal setting for the learning rate before training, and, in fact, the 
optimal learning rate changes during the training process, as the algorithm moves across the 
performance surface.  

3.4 Global versus local ANNs (GANN vs LANN) 

In this study, global neural network (GANN) refers to cases where a single ANN is used to 
model all the available input-output data set in a single architecture, where as local neural 
network (LANN) refers to cases where an ANN is used to model each distinct part of the data 
set. Because of its global nature, GANN can not capture specific information which are 
mainly related to specific parts of the data set. As a result, only part of the data, which appear 
more frequently, will be simulated more accurately. The overlap and contradictories existing 
between the different segments of the data set may also “confuse” the GANN and make the 
training processes a difficult and time-consuming task. One of the important properties of 
ANN is its ability to generalise complex non-linear relationship from the training data.  
However, due to its ability of generalisation, some special features in the data may be treated 
as noise and filtered to avoid overfitting. In other words, if one tries to use GANN to model 
the whole data set, the model will only offer the so-called best compromise solution to satisfy 
the generalisation feature. Moreover, if the training data set is very large, then the training 
process is very slow as the network attempts to learn all aspects of the input space in a global 
fashion and achieve the best compromising solution to represent all the cases. 

If we consider rainfall-runoff processes, the low flow is usually dominated by initial loss 
while the high flow is mainly affected by rainfall intensity (Zhang et al. 2000). But, when 
ANN is applied to model such problems where there are different hydrological processes 
involved in generating the flow at the different parts of the hydrograph, a single ANN 
(GANN) usually simulates median events better than extreme (high or low flow) events. So 
before using ANNs to capture the rainfall-runoff relationships, it is better to classify the 
hydrologic sequences into several homogeneously grouped data sets which represent separate 
part of the hydrograph and train local ANN models to map the input and output relationship 
in the range of each individual data set. This will lead to designing several local ANN 
(LANN) models for each group of events where each LANN could have different input 
patterns to contain the main influencing factors. For example, rainfall and previous 
precipitation data will be the main components in the input layer of LANN intended to 
simulate wet periods while for dry periods, the LANN’s input parameters should mainly 
consist of evaporation. Under such situations, a classifier could be introduced before the data 
is fed into the ANN models (see Figure 8). Then several local ANNs are trained using the 
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clustered data sets and for each LANN the optimal input pattern will be determined 
separately. 

Inputs

Classifier

LANN1 LANN2 LANNn

Simulation
 

 

Figure 8 The illustration of a classifier based local ANN model 
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4 Application of Artificial Neural Networks  

Application of data-driven modelling techniques such as ANNs in hydrology and water 
resources modelling is becoming more popular in recent years. They have been applied 
successfully for rainfall-runoff modelling, stream flow forecasting and other similar 
hydrologic problems. In the following section, the applicability of ANNs for reconstruction 
of missing discharge data and runoff forecasting at Rietberg and Stuw 7A is investigated.  

4.1 Data analysis 

There are a number of conditions required for the appropriate selection of hydrological time 
series data. Such conditions included availability of uninterrupted discharge data with 
suitable lengths, availability of discharge data from nearby drainage areas that are subject to 
similar physiographical properties, etc. (Khalil et al, 2001).  

Data visualisation 

Data visualisation and identification of outlayers are some of the primary tasks in data 
analysis for model construction. Graphs could be used to visualise the data and offer some 
insight into the inner structure of variables. Visualising multiple data with the help of scatter 
plots is one way of revealing possible relationships between the different variables. For 
example, the scatter plot between rainfall and runoff at Rietberg (Figure 9) shows an overall 
trend of positive correlation between the two variables. But it is also easy to observe that the 
rainfall-runoff relationship is more complex than a one-to-one correspondence between these 
variables. Instead, there seems to be highly non-linear relationship between the two variables. 
In Figure 10, the scatter plot of Stuw7A shows a more visible relationship between the 
rainfall and runoff at this reference site. 
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Figure 9 Scatter Plot of Rainfall and Discharge of Rietberg 
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Figure 10 Scatter Plot of Rainfall and Discharge of Stuw7A 

 

Correlation coefficient analysis 

Linear correlation coefficients can be calculated between concurrent measurements of 
different variables or between time lagged values of the same variable or time lagged values 
of different variables. However, correlation analysis is not only offering benefits to linear 
application, but also could be used as a way to reveal the structure of a non-linear system. 
The time lag vectors have a strong connection to the internal dynamics of the complex system 
and can be used to detect the non-linearity of the time series and guide the construction of 
optimal neural network models’ architecture. 

In this study, rainfall and evaporation were treated as main influence variables since they are 
among the two principal daily factors influencing discharge (water levels). Moreover, the 
amount of discharge in a day also depends on precipitation that occurred in previous days. 
Therefore, to determine the extent to which the antecedent input values affect the present 
output, statistical correlation analysis were performed and the results are provided in Figures 
11 and 12. These results are used as a reference while designing the proper architecture of 
Artificial Neural Networks models.  
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Figure 11 Correlation Coefficients of different variables with discharge of Rietberg 

Figure 11 shows that the highest correlation between discharge and rainfall occurs for the 
concurrent events (lag of zero days), that is to say, the current rainfall influences runoff 
significantly and the correlation weakens with the increase in the lag time. However, 
significant correlation can still be observed with lag time of one to three days. This point 
could also be supported by the fact the moving average value of rainfall with the window of 4 
days is highly correlated with discharge. So, while setting up a data-driven model, at least 
rainfall data of the past three days should be considered. 

The concurrent and all lagged evaporation data show negatively correlated with discharge. 
The values are also rather small compare with the correlation coefficient between rainfall and 
discharge in an absolute scale. As a result, the net rainfall (rainfall minus evaporation) affects 
discharge almost the same way with rainfall from correlation point of view. While the values 
of the coefficient in Figure 11 are all below 0.5, trends could be obscure even when a large 
number of measurements is available (Allan P. 1999). So a number of numerical tests should 
be performed to find the proper input patterns in the later phase of ANN model building. 

Fore the case of Stuw 7A, Figure 12 shows that the correlation between lagged evaporation 
and the corresponding discharges are more significant. Though the highest correlation is 
obtained for the concurrent values, antecedent rainfall and evaporations of up to five days lag 
are found to be significant. Moreover, the net rainfall (rainfall minus evaporation) with 
different lags show higher correlation with discharge than rainfall alone.  

Figure 13 also shows that the correlation coefficient with 3 days lagged moving average of 
rainfall or rainfall minus evaporation are highly significant, indicating that the cumulative 
effects of the rainfall of current and past two day is the significant influence factors and 
contribute significantly to runoff. 
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Figure 12 Correlation Coefficient of different variables with discharge of Stuw 7A 
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Figure 13 Correlation Coefficient Analysis of moving average values of different variables 
and discharge of Rietberg 

 

Based on the above correlation analysis between rainfall (evapotransporation, rainfall minus 
evaporation) and discharge, different schemes are designed, calibrated and verified to identify 
the optimal neural network architecture.  
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5 Results and Discussions 

5.1 Application of ANN to fill missing data at Rietberg 

To construct ANN models which can be used for the task of filling missing values in the 
discharge time series at Rietberg, the daily data of 1996 to 1998  (with a total of 671 
exemplars) were used for training, while the daily data of 1999 (with a total of 346 
exemplars) were used for testing the performance of the network on a data set which was not 
considered during the training. A large number of ANN models were constructed to find the 
optimal network architecture, and after a through investigation, eight different schemes of 
MLP networks with different combinations of input parameters were finally selected as best 
performing architectures. These schemes and the corresponding input parameters (e.g. input 
patterns) along with the optimal hidden nodes are listed in Table 2. Three numerical 
performance criterion, namely Normalised Mean Square Error (NMSE), Mean Square Error 
(MSE) and Correlation Coefficient (r) between the simulated and observe outputs were used 
to judge the performance of each schemes and identify the most optimal structures. 

 
Table 2  The performance of 8 schemes of Rietberg of data infilling 

NMSE MSE r Input patterns Hidden 
nodes Training Testing Training Testing Training Testing 

Pma4 2 0.46 0.899 0.588 0.206 0.734 0.476 
Pma4, Pt 3 0.454 0.853 0.580 0.196 0.739 0.511 
Pt 3 0.690 1.43 0.882 0.329 0.557 0.384 

Pt, Pt-1 5 0.570 1.424 0.729 0.326 0.656 0.436 

5 0.508 0.725 0.649 0.166 0.701 0.629 Pt, Pt-1, Pt-2,  
Et, Et-1 5(without 

outliers) 
0.317 0.648 0.291 0.149 0.827 0.643 

Pt,Pt-1,Pt-2,  

Pt-3,Pt-4,Pt-5 
4 0.454 0.814 0.580 0.187 0.739 0.516 

Pt, Pt-1, Pt-2, Pt-

3,Et, Et-1, Et-2, Et-3 

10(without 
outliers) 

0.226 0.655 0.208 0.150 0.880 0.622 

8(without 
outliers) 

0.098 0.974 0.133 0.224 0.950 0.579 Pt,Pt-1,Pt-2, Pt-3, 

Q7A,t-3, Q7A,t-4,Q7A,t-5 
8(Monitor) 0.126 0.814 0.170 0.187 0.935 0.567 

The optimal structure can be identified from the above table and be expressed as following: 

),,,,( 121 −−−= tttttt EEPPPfQ         (6) 

where Qt is the runoff for the current day (t); 

           Pt is the concurrent rainfall; 

           Et is the concurrent evaporation; 



Results and Discussions  Section 5 

Part 2. Application to Catchments in Salland 112 IHE-Delft 

          Q7A,t-i is the discharge of Stuw7A with i days lag. 

The value (0, 1 or 2) in the sub-index of input patterns indicates the relevant antecedent 
values that have a significant influence on the runoff value of the current record as it has been 
estimated using cross-correlation between the dependant and independent variables as 
described earlier. Rainfall values from previous records were needed as network inputs 
because the lag time of watershed response was extending up to 3 days. The graphical 
presentation of the results of the optimal network is shown in Figure 14. 
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Figure 14. Comparisons of measured and calculated runoff of the optimal model (upper for 
training; lower for testing) 

The graph in Figure 14 shows that the calculated and measured discharges on the test data set 
fit reasonable well. However, one can not claim this to be a perfect fit. One possible reason 
for this could be the lack of enough measured data which cover the whole range of possible 
rainfall and discharge values. The other reason could be the fact that the drainage area (the 
polder) is highly regulated by the weir at Rietberg and other small structures inside the area. 
Even though aggregating both the rainfall and discharge values on a daily basis could 
minimise the influence of the regulating structures, this may not be enough to completely 
remove the effect this could have on the rainfall – discharge relationship. Therefore, the fact 
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that the effect of this human intervention is not included in the models might be yet another 
factor for the modest performance of the ANN models.  

However, it is still possible to use the identified optimal neural network to carry out the data 
infilling work under the assumption that the generated series still keep the main statistical 
features of the observed series.  

5.2 Application of ANN to fill missing data at Stuw 7A 

Compared to Rietberg, the data from Stuw7A has less missing values and also seems more 
consistent. Nevertheless, similar ANN modelling experiments to that of Rietberg are 
performed to find the relationship between the different hydrological variables of the 
drainage area with the discharge at the regulating structures of Stuw7A. Since we have 
relatively long time series at this location, the data set is divided into two groups: from 1989 
to 1997 (a total of 2398 exemplars) used for training and testing was done with the data from 
1999 to 2000 (a total of 638 exemplars). The different schemes with different input 
parameters investigated are listed in Table 3.  The input patterns for each scheme are formed 
mainly according to cross correlation analysis. Due to the different features illustrated by 
such analysis, the selected input patterns are a little bit different from that of Rietberg. In this 
basin, evaporation has been found to have stronger influence to runoff than that of Rietberg. 

 
Table 3 The performance of the GANN models  

NMSE MSE r Input 
patterns 

Hidden 
nodes 

Training Testing Training Testing Training Testing 
PEma4 4 0.512 0.590 1.202 1.857 0.699 0.651 
PEma4, 
PEma4,t-1 

5 0.464 0.599 1.088 1.866 0.732 0.648 

PEt-1, PEt 6 0.512 0.643 1.204 2.003 0.698 0.616 
PEt-3, PEt-2, 

PEt-1, PEt 
7 0.442 0.586 1.039 1.825 0.747 0.664 

9  0.625 0.534 0.941 1.663 0.774 0.698 PEt-5, PEt-4, 
PEt-3, PEt-2, 

PEt-1, PEt 
8(without 
outliers) 0.402 0.416 0.945 1.016 0.773 0.778 

Pt, Pt-1, Pt-2,  

Et, Et-1 
7 0.423 0.587 0.993 1.620 0.760 0.662 

Pt,Pt-1,Pt-2,  

Pt-3,Pt-4,Pt-5 

5 0.548 0.735 1.205 2.029 0.672 0.522 

Pt,Pt-1,Pt-2,Pt-3, 
Et,Et-1,Et-2,Et-3 

11 0.395 0.586 0.928 1.616 0.779 0.666 

 

The optimal structure can be identified from the above table and be expressed as follows: 

),,,,,( 54321 −−−−−= ttttttt PEPEPEPEPEPEfQ      (7) 

where: Qt is the runoff for the current day (t); 

            PEt is the concurrent rainfall minus evaporation; 
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PEt-1 is the rainfall minus evaporation with lag 1. 

The sub-index values of 0 to 5 in of input patterns indicates the relevance of time lagged 
value up to 5 days in the past as they have a significant influence on the concurrent runoff 
values as estimated using cross-correlation between the dependant and independent variables 
as described earlier. Rainfall minus evaporation values is the dominant factor that influence 
runoff as illustrated by the former correlation analysis. Graphical presentation of the 
simulation results of the optimal network is shown in Figure 15. 
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Filling of missing data at Stuw7A (ANN Testing)
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Figure 15. The comparisons of measured and calculated runoff of Stuw7A  

Both Table 3 and Figure 15, shows that ANN models perform slightly better in the case of 
Stuw7A than that of Rietberg. However, these results are still far from being perfect. This 
could once again be attributed to the same reasons given previously for the case of Rietberg, 
such as the quality of the data and influence of human intervention corresponding to the 
operation of regulating structures. Nevertheless, a closer look at figure 15 shows that for low 
flows, the performance is quiet better than that of high flows. That will serve as a motivation 
to construct more local ANN models instead of one unique singular ANN model to represent 
the rainfall-runoff process over the entire range of the data.  
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5.3 Application of Local ANN model to fill missing runoff data at Stuw7A  

The performance of data - driven models is significantly affected by the proper selection of 
model parameters. For hydrological modelling, segment (local) calibration procedures that 
are capable of simultaneously considering the different portions of runoff generation 
mechanism should be developed. Therefore, this investigation present a classifier based ANN 
(LANN) model for continuous runoff modelling to overcome the shortcoming of global ANN 
models which may experience major problems in capturing all the different components of 
the runoff generation process. 

In case of LANN, all the available data set will be grouped into smaller similar data group 
before constructing ANN models. So several local ANN models will be trained instead of 
unique ANN model in order to cover the different flow regimes that might exist in the 
system. Each LANN will have different input patterns that would contain the main 
influencing factors. For LANN related to wet periods, rainfall and previous precipitation will 
be the main components of input space. For dry periods, the LANN’s input parameters may 
consist mainly of evaporation.  

The effectiveness and relative advantages of LANN is investigated by applying the method 
for modelling the rainfall-runoff processes at Stuw7A. Unlike the case of Rietberg (with 3 to 
4 years data set), Stuw7A has longer data series (about 10 years) and it is more convenient to 
apply LANN on the later than the former in order to make reasonable comparison of the 
methods. To assess the relative performance of LANN approach, NN schemes with the same 
architecture and input variables to that of GANN models are constructed. For continuous 
simulation of runoff, the samples should contain base, low, medium and high flow events 
simultaneously and continuously and the separations of low flow period average flow period 
and high flow period should be performed. For the convenience of carry out forecasting, the 
flow separation in this particular study is done on monthly bases.  

A classification of hydrograph “magnitude” could be derived through clustering analysis of 
bulk flow indices estimated from the discharge observations for each month. Therefore, 
instead of grouping the data set into subset using the original data sorted by month, another 
approach is applied which first subtracted the flow index, then cluster the 12 months into 
different groups using these statistical values. Since there are lot of missing values in the 
data, the months which lost more than 10 days of data are removed from further clustering 
analysis. For the remaining months, bulk flow indices were quantified. (Hannah, et al. 2000). 

Statistical indexes 

A classification of hydrograph “magnitude” could be derived through the cluster analysis of 
flow indices estimated from discharge observations for each month. The indices with the 
hydrological justification for their inclusion are listed in Table 4. (Hannah, et al. 2000).  

 
Table 4. Flow Indexes and their hydrological meaning 
Indices Name and Formula Hydrological Meaning 

Qmean Mean monthly discharge (m3/s) The mean of the discharge sequence. 

Qmax Maximum monthly peak (m3/s) The maximum value of discharge. 

Qmin Minimum monthly discharge (m3/s) Baseflow discharge 
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Qrange minmax QQ −  Represents the maximum amplitude 
of the monthly flow cycle 

Qstd The monthly standard deviation of 
observed discharge  

Provides the monthly variability in 
discharge around mean  

 
Table 5 Indexes of statistical features of 12 months 

 Qmean Qmedian Qstd Qrange Qmin Qmax 

Jan 2.049 1.610 1.706 9.640 0 9.64 
Feb 2.024 1.930 1.227 8.120 0.2 8.32 
Mar 2.016 1.545 1.798 12.290 0 12.29 
Apr 0.845 0.660 1.076 12.520 0 12.52 
May 0.563 0.430 0.539 2.480 0 2.48 
Jun 0.894 0.665 0.851 5.580 0 5.58 
Jul 0.758 0.545 0.882 6.720 0 6.72 
Aug 0.676 0.520 0.622 4.330 -0.13 4.2 
Sep 1.629 1.090 2.397 20.360 0 20.36 
Oct 1.291 0.690 1.886 11.980 0 11.98 
Nov 1.301 0.780 1.409 7.550 0 7.55 
Dec 2.098 1.680 1.913 13.710 0.05 13.76 

 
Table 6. Groups formed based on statistical indexes 

Group Group 1 Group 2 Group 3 Group 4 

Components Dec., 

Jan.,  
Feb. 

Mar.,  
Apr.,   
May 

Jun.,   
Jul.,   
Aug 

Sep.,  
Oct.,  
Nov. 

 LANN label LANN1 LANN2 LANN3 LANN4 

No. of 
exemplars 

785 

 

802 

 

932 

 

792 

 

The basic indices are drawn monthly and listed in Table 5. Tree clustering module of 
STATISTICS is used to carry out the clustering task and then a classifier is formed according 
to the results in Table 6. For each class, a separate ANN model is constructed.  

During wet period, rainfall is the dominant factor and is the significant variable. However, 
during dry period, evaporation contributes high weight and forms the main part of input 
variables. To confirm these assumptions, the cross – correlation analysis between variables of 
different lag time in each group and the corresponding runoff are performed and the results 
are listed in Table 7. 
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Table 7. Correlation analysis between variables of different lag time in each group and the 
corresponding runoff. 

 Lags 0 1 2 3 4 5 

Evaporation -0.321 -.349 -0.333 -0.326 -0.321 -0.305 
Rainfall 0.499 0.396 0.301 0.262 0.206 0.172 

 
All Data 

Rain – E 0.554 0.465 0.370 0.329 0.276 0.242 
Evaporation -0.023 -0.147 -0.121 -0.104 -0.116 -0.102 
Rainfall 0.672 0.548 0.435 0.361 0.309 0.278 

 
Group1 

Rain – E 0.701 0.566 0.444 0.371 0.317 0.289 
Evaporation -0.382 -0.431 -0.405 -0.381 0.373 -0.342 
Rainfall 0.571 0.405 0.286 0.224 0.168 0.120 

 
Group2 

Rain – E 0.603 0.484 0.369 0.294 0.250 0.198 
Evaporation -0.271 -0.315 -0.286 -0.282 -0.259 -0.226 
Rainfall 0.485 0.370 0.340 0.287 0.258 0.224 

 
Group3 

Rain – E 0.513 0.410 0.373 0.324 0.292 0.253 

Evaporation -0.055 -0.118 -0.074 -0.058 -0.052 -0.015 
Rainfall 0.520 0.439 0.311 0.292 0.203 0.163 

 
Group4 

Rain – E 0.522 0.447 0.310 0.287 0.197 0.158 

For Group1 (formed by the data of Dec., Jan., Feb.) and Group4 (formed by the data of Sep., 
Oct., Nov.), the correlation between evaporation and runoff become very small, so in the 
following models design stage, this fact should be considered and less variables from 
evaporation should be put into the input patterns for these two groups. For Group2 (formed 
by the data of Mar., Apr., May), the correlation of E and runoff become larger than that of 
whole data set with runoff, and the input parameters of this group should pay a little bit 
attention to evaporation. 

For each group, two ANN schemes were considered. One scheme only uses net rainfall 
(precipitation minus evaporation); another schemes contain more variables related to 
evaporation than rainfall related. Table 8 listed the related input variables, the optimal hidden 
nodes and the performance.  Two performance criteria, namely, NMSE and correlation 
coefficient (r) are used to measure the LANN models’ performance.  
 
Table 8 The performance of 2 LANN schemes   

NMSE r Models Input 
Patterns 

Hidden 
nodes Training Testing Training Testing 

GANN 9 0.625 0.534 0.774 0.698 

LANN1_1 8 0.200 0.381 0.894 0.889 

LANN2_1 7 0.202 0.474 0.894 0.774 

LANN3_1 6 0.363 0.409 0.798 0.778 

LANN4_1 

PEt, PEt-1,  

PEt-2, PEt-3,  

PEt-4, PEt-5  

 

7 0.354 0.938 0.804 0.277 
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LANN4_1 91-97Training; 

98-00 Testing 
7(NoOutliers) 0.333 0.748 0.817 0.734 

L_JFM  8 0.172 0.196 0.910 0.926 

LANN1_2 8 0.296 0.694 0.839 0.796 

LANN2_2 7 0.205 0.411 0.891 0.839 

LANN3_2 9 0.443 0.568 0.746 0.689 

LANN4_2 

Pt, Pt-1,  

Et, Et-1,  

Et-2, Et-3  

9 0.490 1.242 0.715 0.426 

 

In the above investigation, the training data set was from 1991 to 1998 and the testing data set 
was from 1999 to 2000. And the model L_JFM is the data set from Jan., Feb. and Mar., 
which generate good results, and further confirms the assumption of homogenous data set 
could improve the performance of the ANN models. 

For the first scheme, the performance of each local ANN models is superior to the global 
ANN model except LANN4_1. That is perhaps due to some outliers in this data set. The fact 
of better results of LANNs further proves that clustering data set into more homogenous data 
set would improve the performance of ANN. 

From the above table, the optimal network models for each cluster is identified and listed in 
Table 9. 

 
Table 9.  Optimal Local ANN models 
 Optimal Input Patterns 

GANN PEt, PEt-1, PEt-2, PEt-3,PEt-4, PEt-5 

LANN_1 PEt, PEt-1, PEt-2, PEt-3,PEt-4, PEt-5 

LANN_2 PEt, PEt-1, PEt-2, PEt-3,PEt-4, PEt-5 

LANN_3 PEt, PEt-1, PEt-2, PEt-3,PEt-4, PEt-5 

LANN_4 PEt, PEt-1, PEt-2, PEt-3,PEt-4, PEt-5 

In the summer period, when evaporation usually exceeds precipitation, the input parameters 
to LANN models should add more information about evaporation. While during wintertime, 
less evaporation happen and rainfall is the dominating factors, so the input vector should be 
formed mainly by past rainfall. The performance of LANN using data set of Jan., Feb., and 
Mar. improved further, which signals that data set from these three months are more similar 
than the previous classifications  

Due to the generalisation property of ANN models, it can sometimes fail to simulate 
accurately all of flow stages such as baseflows, low flows, medium flows and high flows 
simultaneously. Therefore, to ensure acceptable results, it may be necessary to have separate 
networks, to forecast the different stage of the runoff, owing to the dynamic nature of the 
non-linear system. Then a local forecasting strategy should be presented, in which the term 
local is taken to mean a forecasting tool that is able to operate effectively at a particular range 
of runoff. In this strategy, runoff process (series) should be divided into several groups, 
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which are more homogenous than mixed all the data together. These groups have their own 
general characteristics. 

The optimal neural network for each class is listed in Table 9. Compared with the results in 
Table 3, it can be seen that for each sub data set, the performance of LANN is better than that 
of the GANN. It can also be seen that there are different input patters for each LANN. (For 
dry period, evaporation is the dominant factor that influences the runoff, at least in our case 
according to the available data; for wet period, rainfall formed the main part of input 
parameters.) 

The comparison of the results of best global ANN model and that of optimal local ANN 
models are illustrated in Figure 16.  
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Filling of missing data at Stuw7A (ANN Testing)
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Figure 16 The hydrographs comparison of GANN and LANN  
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5.4 Application of ANN for runoff forecasting at Rietberg 

Continuous simulation and prediction of runoff plays an essential role in water resources 
management. It could offer information for optimal operation of control structures and 
provide effective support for decision making. There are many driving factors in the process 
of runoff generation and since different mechanisms dominate the different stages, namely 
base flow, low flow, median flow and high flow, the runoff generation process presents a 
higher degree of non - linearity. All those things together may make the work of forecasting 
runoff precisely not an easy matter. 

In the previous section, ANN models are constructed to fill the missing runoff values using 
the continuous rainfall and evaporation series. But now, the past runoff sequences are also 
taken as part of input patterns and artificial neural network models are set up to perform 
runoff prediction task, that is, to predict the future discharge one time step ahead in order to 
carry out continuous forecasting work  

The optimal number of hidden layers and the number of neurones in the hidden layers are 
normally obtained through experimentation with the available data set. Based on the results 
of the auto-correlation and cross-correlation analysis, daily discharge and rainfall values with 
lag-one to lag-five were considered as input to the ANN models. Eight different schemes 
were designed and experiments of trial and error extensively carried out to identify the 
optimal number of hidden nodes and other parameters.  

For Rietberg, a continuous available daily discharge of 1997 was used as training data set, 
while the data between 1st of Dec., 1998 and 31st of Aug., 1999 was selected as testing data 
set to set up a prediction ANN model. The performance of each model is listed in Table 10. 
 
Table 10 The performance of 10 schemes 

NMSE MSE R Input patterns Hidden 
nodes Training Testing Training Testing Training Testing 

Naïve Model  1.015 0.802 0.245 0.214 0.492 0.599 
Qt-1 5 0.624 0.621 0.151 0.166 0.613 0.616 
Qt-1, Qt-2 5 0.462 0.491 0.588 0.113 0.734 0.725 
Qt-1, Qt-2, Qt-3 6 0.620 0.622 0.150 0.166 0.616 0.617 

PEma3,t-1,Qt-1,Qt-2 6 0.321 0.561 0.078 0.146 0.826 0.664 
Pt-1, Et-1,Qt-1,Qt-2 4 0.275 0.766 0.066 0.200 0.852 0.538 
Pt-5, Pt-4, Pt-3, Pt-2, 
Pt-1,Qt-1,Qt-2, Qt-3 

10 0.245 0.813 0.059 0.217 0.870 0.539 

Pt-5, Pt-4, Pt-3, Pt-2, 
Pt-1,Qt-1,Qt-2, Qt-3, 

Qt-4, Qt-5 

10 0.243 0.800 0.059 0.214 0.872 0.558 

Pt-5, Pt-4, Pt-3, Pt-2,  

Pt-1,Pt,Qt-1,Qt-2, 

Qt-3, Qt-4, Qt-5 

13 0.181 0.449 0.044 0.120 0.905 0.760 
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The optimal neural network architecture is chosen based on the result in the above tables as 
the following: 

),( 21 −−= ttt QQfQ          (8) 

Figure 17 shows plots of observed verses simulated discharge values of the optimal network 
output for both the training and testing period. From these results, one could see that the 
performance of the model could be considered satisfactory. Longer duration of training data 
and smaller time interval between the data could have resulted to even better performing 
networks.  
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Runoff Forecasting at Rietberg (GANN Testing)
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Figure 17 Prediction results of optimal MLPs model  

5.5  Application of ANN  to runoff forecasting at Stuw 7A  

A continuous sequence daily discharge of Dec. 1998 to Feb. 2000 is used as training data set, 
while 1997 is selected as testing data set to set up an optimal ANN model for forecasting 
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runoff of Stuw7A. Different network architectures were considered and the performance of 
each model is listed in Table 11. 

The best result is obtained when the input to the network consists of two previous discharges. 
Figure 18 shows the training and testing results of the optimal neural network whose structure 
could be expressed as following: 

),( 21 −−= ttt QQfQ          (9) 

 
Table 11 The performance of 8 schemes 

NMSE MSE r Input 
patterns 

Hidden 
nodes Training Testing Training Testing Training Testing 

Naïve Model  0.319 0.243 0.624 0.195 0.840 0.879 

Qt-1 2 0.270 0.220 0.528 0.177 0.854 0.886 

Qt-1,Qt-2 2 0.253 0.212 0.495 0.171 0.864 0.890 
Qt-1,Qt-2, Qt-3 7 0.228 0.246 0.449 0.198 0.878 0.873 
Qt-1,Qt-2, Qt-3,  

Qt-4 

8 0.215 0.286 0.420 0.230 0.886 0855 

Pt-4, Pt-3, Pt-2,  

Pt-1,Qt-1,Qt-2,  

Qt-3, Qt-4 

9 0.168 0.321 0.328 0.259 0.912 0.839 

This figure shows that performance of the trained ANN in forecasting discharge one-day 
ahead is quite well. The relatively better performance of ANN for runoff forecasting at 
Stuw7A could mainly be attributed to the more homogeneous and longer records of the 
training data. 
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Runoff Forecasting at Stuw 7A (GANN Testing)
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Figure 18 Results of the optimal ANN model  

 

To see if any further improvement could be obtained, all the available data organised together 
to construct LANN models. Table 12 shows the performance of these ANN models.  

 
Table 12. The performance of 2 LANN schemes   

NMSE r Models Input 
Patterns 

Hidden 
nodes Training Testing Training Testing 

LANN1_1 3 0.312 0.405 0.829 0.775 

LANN2_1 3 0.419 0.306 0.762 0.843 

LANN3_1 3 0.278 0.645 0.887 0.598 

LANN4_1 

Qt-1,Qt-2 

4 0.346 0.321 0.810 0.838 

LANN1_2 10 0.295 0.431 0.840 0.756 

LANN2_2 9 0.361 0.217 0.800 0.887 

LANN3_2 10 0.299 0.670 0.864 0.578 

LANN4_2 

Pt-5, Pt-4,Pt-3,  

Pt-2, Pt-1,Qt-1, 

Qt-2,Qt-3 

10 0.326 0.279 0.821 0.851 

From the above table, one could find out that for two of the networks, one (LANN2) 
corresponding to the months of  Mar_Apr_May and the other (LANN4) to the months of 
Sep_Oct_Nov, the performance has been improve when compared to than of GANNs’. 
However, the results of the other two LANNs did not show improvement. 

In general, ANN models forecasts the magnitude of the baseflow quite well, but encounters 
some difficulty in forecasting the magnitude of the peak flows. That perhaps due to the rapid 
runoff compared to the model step size. It was also observed that for Stuw7A, the 
performance of the ANN models is superior to that of Rietberg. 
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6 Conclusion and Recommendations 

In this research the applicability of artificial neural networks to fill missing discharge data 
and to forecast runoff was investigated. The area of application was the Salland region in the 
Netherlands, from which several time-series data on precipitation, evaporation, surface water 
level were available. Preliminary data analysis showed that the hydrological time series of all 
the three drainage areas considered has significant number of missing values and 
inconsistencies. Therefore, the final application was focussed only on two drainage areas 
(Rietberg and Stuw 7A) and time periods with reasonably consistent data. 

Two methods of using ANN, namely global neural network (GANN) and local neural 
networks (LANN) were considered. GANN considers all available time series data in its 
entirety. In cases where relatively long time series data are available and smaller number of 
extreme events occur, this approach appeared not to be the best approach. The reason is that 
during the training process, rare information is considered as noise and is filtered out, while 
these rare events represent the important events for which we would like to obtain more 
accurate ANN model outputs. To be able to build LANN models, the complete time-series 
data has to be split into more homogeneous sub-sets so that the highly non-linear behaviour 
of the entire runoff process is captured in different classes for which the input-output 
relationships can be relatively simple.  

In general, LANNs have outperformed the GANNs for both problems of filling missing data 
and runoff forecasting. Moreover, using short-term history of water system variables as 
inputs to the network gave the best results. Once the ANN models are built, they are used to 
estimate values for missing runoff data and forecast a one-day ahead discharge on the basis of 
available meteorological data such as measured rainfall, evaporation and discharge.  

It must be mentioned that the operation of weirs and pumping stations in the area affects very 
much the homogeneity of input-output relationships in the data sets. As a result, ANN 
prediction of runoff values may not always match the monitored values. This could be due to 
the fact that manually operated weirs and discharge outlet structures control the flow in the 
drainage area and interfere with the natural flow and this, in its tern, affects the predictability 
of system behavior. However, the success of these ANN models in replicating the systems 
behaviour could be further improved by including information about the operational data of 
those regulating structures. The results could also be improved by classifying the data, not 
only by seasonal variations, but also by the magnitude of runoff events in the database. 
Moreover, it is important to frequently update the models by additional training or complete 
retraining every time new data set is available so that the models reflect the latest state of the 
system being modelled.  

In general, the case studies on the catchments in Salland clearly demonstrated the 
applicability of artificial neural networks for runoff forecasting and filling of missing data in 
hydrological time series based on meteorological and other hydrological data. 
Recommendations are also given on how to further improve the result by including additional 
relevant information during the model identification processes.  
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1 Introduction 

1.1 General 

Modern water management is characterised by considering water systems in their entirety 
together with all influencing factors and other related systems. As a result, current policy 
objectives for water management focus on the creation and maintenance of a sustainable 
living environment, taking into account all demands made on the water system by the 
different interest. In general, operation and maintenance of regional water resources system 
concern the optimal resources allocation for various interest groups in the system at the same 
time. Hence, to get an accurate overall picture of a water system state, which can be used for 
optimal operation and maintenance, it is necessary to take the conflicting criteria into 
account. Therefore, the problems of management of water resource systems are usually posed 
as multi-criterial problems which has to be solved (numerically) to arrive at the optimal 
condition.  In order to address such problems, a decision support system (DSS) is usually 
built that is capable of generating several control strategies aimed at optimal control at local 
and centralised level. However, one of the problems in using such DSS is the high 
computational time needed to generate an optimal control strategy, and its sensitivity to some 
of the parameters and its variables.  

Recent development in the field of artificial intelligence (AI) techniques are helping to solve 
various problems of water resources modelling and management. These techniques have 
shown their potential as an alternative approach to conventional controllers. Especially 
artificial neural networks (ANN) and fuzzy adaptive systems (FAS) appear to be efficient 
alternatives to using optimal control algorithms in real-time tasks (a comprehensive literature 
review on applications of ANN and FAS techniques to problems in water management are 
presented in the first project report). The relation between the optimal decision or action and 
the influencing parameters can be learned by neural networks and fuzzy adaptive systems. 
Once identified, then it is possible to use these relations for deriving the decision and control 
actions in real-time. They can also be combined with the conventional controllers to enable 
better handling of complex real-life problems. 

1.2 The study area 

This study is done for an area called Overwaard, a drainage basin located in South-Holland, 
the Netherlands and managed by the water board of “Hoogheemraadschap van de 
Alblasserwaard en de Vijfheerenlanden” (see Fig.1). The Water Board has three water 
management areas in the region with a total of over 38,000 hectares and 210,000 inhabitants 
spread over 13 city councils. Out of this, the Overwaard drainage basin constitutes 
approximately 15,000 hectares. The area is, on average, two meters below sea level and it has 
been protected by elaborate system of dikes since the fourteenth century. The use of 
windmills to pump water out of the low lying polders dates back to 1740 and some can still 
be seen in the area. However, at the present time they are all replaced by a system of pumping 
stations operated by electrical power.  
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Figure 1. Area managed by the water board of Alblasserwaard en de Vijfheerenlanden 

In general, the water system of Overwaard (Fig. 2) consists of the following items: 
• An upper basin (‘hoge Boezem’, ~98 ha) 
• A lower basin (‘lage Boezem’, ~170ha and 58 km long) 
• Main water ways (‘Hoofdwatergangen’  of 280 km long) 
• 22 drainage areas (‘bemalingsgebieden’, total area of ~15,000 ha) 
• 21 polder pumping stations (‘gemalen’, total capacity ~ 24 m3/sec) 
• one main pumping station (total capacity  25 m3/sec) 
• Sluice gate (‘uitwateringssluis’) 

 
Figure 2. Drainage area of Overwaard along with the upper and lower storage basins 
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The soil type in the Overwaard area consists mainly of peat and marine clay. The land use is 
mainly for agriculture and especially livestock farming. During excess precipitation the 
surface water levels in the polders start to rise. When the levels reach a certain (pre-defined) 
level, then each polder pumping station will start pumping water in to the lower basin storage 
area. Similarly, when the water level in the lower basin reaches at a certain pre-specified 
point, then the main pumping station will start pumping water to the upper basin storage area, 
which will in its turn discharge the excess water through the sluice gates to the River Lek 
during low tide. During summer time, the water levels in the polder surface water system 
may reach lower limits. In such cases, the flow direction will be reversed and water is 
supplied from the river into each polder area through inlets.  

1.3 Objective of the study 

There two main objectives for this study and they can be described briefly as follows: 

(i) To build a conceptual simulation model of the water system at Overwaard, which can be 
used for operational management purposes. 

(ii) To investigate the possibilities of using artificial intelligent techniques such as ANN and 
Fuzzy logic systems to improve the operational performance of the model for better control 
of the water system. 
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2 Simulation and Control of Water Systems  

Water systems consist of hydrological units, which interact via natural and artificial water 
flow paths. Several aspects of water systems have to be considered to solve water-system 
control problems. For instance, the introduction of control elements in a water system 
changes the original hydrological system and split it up into separate areas, each consisting of 
one or more subsystems (see Fig. 3).  The major issue is therefore the allocation of scarce or 
plentiful water resources to the various interests at the right time while satisfying the 
requirements of the interests as much as possible. 
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Figure 3. Different hydrological units and external loads in a water system 

2.1 Simulation of Water Systems 

A water system can be described by subsystems and flow elements whereby subsystems 
interact via flow elements. Flow elements can be categorised into controllable flow elements 
(or regulating structures) such as pumping stations and controllable inlets; fixed flow 
elements (or fixed structures) such as fixed weir; and free flow elements such as canals and 
regional groundwater flow. The number of subsystems and flow elements that have to be 
considered depends on the amount of detail needed to describe the corresponding processes.  
Moreover, the hydrology of a particular water system generally cannot be separated 
completely from surrounding water system. Therefore, interaction with neighbouring systems 
are included in the water-system description itself by formulating the boundary conditions 
that influence or are influenced by the water system at the water-system boundary. Figure 4 
shows a typical regional water system, including various elements mentioned above. 

In a regional water system, various types of surfaces can be found each having associated 
runoff processes that are of importance to regional water-system control. For instance, the 
subsystems of an urban area can incorporate rapid and slow runoff processes, such as rapid 
runoff via sewer systems and slow runoff via the permeable subsurface of green belts. In 
general, the main surface types that affect runoff can be distinguished as pervious, semi-
impervious or impervious as shown in Figure 5. Here, such runoff processes are classified on 
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the basis of their specific characteristics and not on the basis of their geographical location in 
the water system. The interaction between the several subsystems are represented by various 
equations such as mass balance equations, equations for saturated or unsaturated flow (Darcy 
or Richards equation) or equations for sewer and surface water flows (For detailed 
mathematical descriptions refer to Lobrecht, 1997) 
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Figure 4 Schematic view of flow elements in a typical water system. 
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Figure 5. Runoff from various surface types 

In addition to the natural interaction between subsystems described above, water systems also 
interact through various flow elements. Pumping stations are the main regulating structures in 
polder areas and large pumping stations usually have several pumping units and pumping 
stations can be either manually or automatically controlled. In general, a locally controlled 
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pumping station operates on the basis of only the upstream or the downstream water level 
(see Fig. 6). In practice, restrictions are incorporated in the control of pumping stations. 
Pumping stations that drain polders and discharge to storage basins generally have extra 
conditions governing their operation. One restriction is the upstream water level in the 
storage basin. If this water level has reached an upper limit and is still rising, the water 
manager of the storage basin can impose a milling stop. As a consequence, pumping stations 
should be switched off. In case the pumps of a pumping station are driven by electrical 
energy, special measures may be taken to minimize energy costs. In general, the night tariff 
for electricity is lower than the day tariff. In that case, automated pumps should preferably 
operate during the night. To accomplish this, lower switching-on and -off levels can be set for 
the night. Some electricity companies apply additional high tariffs for energy use during peak 
hours. In general, pumps are switched off during these hours. Under extreme conditions, the 
water manager may still decide to use these hours for pumping. 

a b

 
Figure 6. Upstream-controlled (a) and downstream-controlled (b) pumping station 

Other flow elements that should also be considered during simulation of a water system are 
weirs, sluices, inlets and outlets. Weirs are used in water management in both polder and hilly 
areas, but they are mainly found in hilly areas. A weir can either have a fixed crest level or an 
automatically controlled crest level. In the latter case, the water level upstream or 
downstream is controlled by means of a mechanical or electrical unit. In general, electrical 
controllers are used these days for weir regulation and this requires on-line water-level 
measuring. The measured signal is fed to the controller, which determines the control action 
of the weir. The control action is electronically sent to the driving device of the weir. This 
device can adjust the weir in an upward or downward direction. 

Sluice structure consists of one or more culverts, each of which can be closed off by a sliding 
gate. Most spill sluices along the coast and tidal rivers in the Netherlands are of the sliding-
gate type. The discharge of a sluice can be described by various water-level situations on both 
the upstream and downstream sides. A controlled sluice can be opened as soon as the 
upstream surface-water level is higher than the downstream water level. An automatically 
operated sluice requires water-level measuring on both sides of the structure. In general, spill 
sluices have several gates which can be operated separately and be fixed at various heights. 
This indirectly allows an operator or computer to determine the discharge.  

Inlet and outlet structures function very similar to sluices. Inlets and outlets are used for 
water-quantity and water-quality control. The function of inlets and outlets is very similar and 
they can be described together using the term ‘inlets’ only. Inlets are generally culvert-type 
structures that can control the downstream or upstream surface-water level. Inlets discharge 
by gravity. If the flow via the inlet depends on the water levels upstream and possibly also 
downstream, the sluice flow element should be used. 
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2.2 Water System Control 

Designing and operating water systems is a matter of capacity allocation. The factual reason 
for water level rise and the subsequent flooding or overflow could be a lack of enough 
storage or discharge capacity in a subsystem such as surface-water, groundwater and sewer 
systems. The occurrence of such undesirable situations could be prevented by larger storage 
or discharge capacities and this will intern reduce corresponding frequency of system failure. 
However, such a reduction in the frequency of system failure can also be achieved by other 
means. Research shows that usually not all the available capacity of a water system is used at 
the moment of failure and that unused capacity usually remain in the system (Schilling, 
1991). All subsystems of a water system rarely fail at the same moment. Therefore, the 
temporarily unused capacity of one subsystem can be used in favour of another subsystem by 
making use of the available regulating structures that is operated regularly, either manually or 
automatically, adjusting the flow in the system.  

Automation of routine tasks is one of the first steps towards improving water system control. 
However, automation alone is not sufficient to meet many of the requirements. The 
awareness is growing that a weighed form of water-system control, in which automation 
plays a role, is necessary. In this respect, three evolutionary steps can be distinguished that 
will eventually lead to weighed control of a water system (see Fig. 7): 
1. local control, 
2. central control, 
3. dynamic control 
 

Local control involves a single regulating structure in a water system and is executed on the 
basis of monitoring data gathered in the vicinity of that structure. Local control take place on 
the basis of the standards that has been set for each subsystem. This form of control is 
practised in many water systems by pumping stations that control surface-water level and 
weirs that control upstream water levels. 

Central control involve one or more regulating structures and is executed on the basis of data 
from more than one location in the water system. Several subsystems can be involved in 
central control. Similar to local control, central control take place on the basis of pre-set 
standards. However, since a better picture is available of the water-system, the required 
water-system state can be determined, avoiding unnecessary or contradictory local control 
actions. Such central control mechanism generally implies logical control rules. 

Dynamic control is a specific mode of central control, in which control actions are based on 
the time-varying requirements of interests in a water system, the water-system load and the 
dynamic process in the water system. For instance, a safety interest may require flood 
prevention, a recreational interest good water quality, industry sufficient cooling water, etc. 
Dynamic control incorporates a mechanism that enables continuous weighing of such 
interests present in the various subsystems. Meeting interest requirements can often be 
expressed in terms of physical water-system variables such as surface and ground water 
levels and water quality requirements. In dynamic control, deterministic optimisation 
technique is used to determine the best control strategy that can meet the requirements of all 
interests as well as possible. The formulation of the objective of control, the water system 
relationships and the limits to water-system variables together form the optimisation problem. 
The control problem for the general water system can be expressed by the following 
equations (Lobbrecht, 1997): 
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Figure 7 Three different types of water system control 

;,..,1,
;,..,1,

;,..,1,0),(Subject to
),,(Minimize

,,

,,

nkuuu
mjxxx
liuxg

uxZ

kukkl

jujl

i

j

∈≤≤
∈≤≤
∈≤

        (1) 

in which  
),( uxZ  :  objective function; 
),( uxgi  :  constrains; 

x   :  vector of state variables; 
u   :  vector of control variables; 

jujl xx ,,,  :  lower and upper limits on state variable jx  
kukl uu ,,,  :  lower and upper limits on control variable ju  

The objective of water-system control is to satisfy the requirements of all interests present in 
that water system. The satisfaction of these interests can be expressed in water system 
variables such as surface and ground water levels. The requirement for each interest can be 
incorporated in the objective function Z by damage functions D of system state variables x. 
Each damage function penalises the deviation of the state which is required by an interest in a 
subsystem. The objective function for one time step ∆t of the control horizon can then be 
written as: 
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where )(, xD ji represents damage function j for water subsystem i ; coefficient  aiW represents 

the weight of an area in the objective function and coefficient jdiR ,  expresses the relative 
importance of interest j in water subsystem i within a particular area. Additional penalties for 
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operation of regulating structures are described by rkW  and can be used to prevent 
unnecessary operation of structural units. Damage can be assigned to important variables 
such as surface and ground water levels (see Fig. 8). One or more damage functions can be 
used to represent an interest and each damage function incorporates a penalty p or a negative 
gain to the overall objective of control. The penalty is zero if a subsystem is in its desired 
state and increases with deviation from the desired state. 
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Figure 8. A typical damage function 

The operational control problem in this context is solved by determining the best control 
actions for the moment and for some time ahead, on the basis of given historical, present and 
predicted system load. In this way, dynamic control allows an optimal use of the available 
system capacity both under normal and exceptional conditions. Using dynamic control during 
extreme hydrological conditions helps avoid failure in each subsystem as much as possible by 
optimal use of the available water-system capacity. The weighing mechanism used ensures 
that if failure cannot be prevented, the least important interests fail first and the most 
important once last. The dynamic-control method is incorporated in the software package 
AQUARIUS, which has been developed at TU Delft and used in this study. 



 

IHE-Delft 143 Part 3. Application in Overwaard 

3 Data Analysis 

The first task of any modelling activity for the management of water resources is to collect as 
many historical (measured) data regarding the study area as possible. This may include 
meteorological data such as rainfall and evaporation; data regarding the drainage basins such 
as soil types, surface area of land and water bodies, ground water levels; boundary data such 
as upstream and downstream water levels of adjoining water systems; the various operational 
data for such control structures as pumping stations, sluice gates and inlet structures, etc. This 
types of data are necessary to build and calibrate the model in such a way that it would 
represent the study area as much as possible. Table 1 shows the various data collected and 
used to build and calibrate the water resources system of Overwaard. Other sources such as 
land use maps, soil maps, map of the main waterways, maps of hydraulic and other structures 
and maps of external flows were also used to obtain more quantitative and qualitative 
information. 

Table 1 Summary of the available historical data for the study area. 
Data type Interval Duration Location 

Rainfall 15 minutes 1/1/1995 till 7/6/2001 Land v.d. Zes Molens 
Rainfall 1 day 1/1/1995 till 12/31/2000 Average of the three 

nearby  stations  
Reference Evapo-
transpiration 

1 day 1/1/1995 till 5/31/2001 Her wijnen 

Water level of River Lek 15 minutes 3/1/1996 till  7/6/2001 River Lek d/s of 
sluice gate 

Surface water level of 
the upper  basins  

15 minutes 1/1/1996 till 12/31/1998 Upper basin near the 
main pumping station 

Surface water level of 
the  lower basins 

15 minutes 1/1/1996 till 12/31/1998 u/s of each polder 
pumping station 

pump status at the main 
pumping station 

15 minutes 1/1/1996 till 12/31/1998 at the main pumping 
station 

Surface water levels and 
pumping status at each 
of the drainage areas 

15 minutes 1/1/1995 till 12/31/1998 at each of the 
drainage areas 
 

Groundwater levels at 
two places 

Monthly May 1995 till October 
2000 

in Land v. d. Zes 
Molens and Nieuw 
Goudriaans 

Water supply through 
the main inlet 

Daily May 1995 till 
December 2000 

Near the main 
pumping station 

3.1 Hydrological Data 

Precipitation and evaporation are the main hydrological loads that would act upon a water 
system and are the main driving forces in the simulation of most water systems. For the 
simulation study at Overwaard, precipitation data from the stations at Land v.d. Zes Molens, 
Groot Ammers, Oud Alblas and  Gorinchem and daily reference evaporation data from the 
station at Her wijnen covering the period from 1995 till 2000 were available. The time series 
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of precipitation data from the station at Land v.d. Zes Molens are at 15 minutes interval while 
the precipitation data from the other three stations are of daily interval. During this period, 
the annual rainfall generally varies between 724 mm and 1125 mm with yearly average of 
around 844 mm while the annual reference evaporation varies between 526 mm and 613 mm 
with yearly average of around 574 mm (see Fig. 9). 
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Figure 9. Annual precipitation at Land v/d Zes Molens and the other three nearby stations 

In general, the 15-minute precipitation data at Land v.d. Zes Molens seems to be more 
appropriate for model simulation. However, the plot on Figure 9 reveals that, when compared 
to the average of the precipitation data from the other three nearby stations, the data from 
Land v.d. Zes Molens underestimate the total precipitation especially for the years 1998 and 
1999. A closer look on Figure 10a and 10b also shows that the discrepancy occurs mainly 
during the period between September 1998 and April 1999, a period during which relatively 
heavier intensity of precipitation occurred.  To correct for this discrepancy, the 15-minute 
precipitation data at Land v.d. Zes Molens was first reconstructed by proportionally scaling 
its values based on the daily average of the precipitation data from the three other nearby 
stations. Even though it may not be perfect, this approach will ensure the total volume of flow 
to be more consistent while allowing us to use the time serious data with 15-minutes interval 
for simulation experiments. The daily reference evaporation data at Herwijnen was more or 
less consistent except the few segments of missing data which were filled by linear 
interpolation.  
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Figure 10 (a,b). Comparison of daily precipitation records at (a) Land v.d Zes Molens  and 
(b) the average of the three nearby stations. 

The daily precipitation and reference evaporation data are shown on Figure 11 and 12 while 
the average monthly data are plotted in Figure 13. The plots show that maximum and 
minimum average monthly precipitation occurred in June and April respectively while the 
maximum and minimum average monthly evaporation occurred in June and December 
respectively.  
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Figure 11. Daily precipitation data  
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Figure 12. Daily reference evapotranspiration data  



Data Analysis  Section 3 

Part 3. Application in Overwaard 146 IHE-Delft 

0

20

40

60

80

100

Ja
nu

ary

Fe
bru

ary
 

Marc
h 

Apri
l

May
Ju

ne Ju
ly

Aug
us

t

Sep
tem

be
r

Octo
be

r

Nov
em

be
r

Dec
em

be
r

Month

A
ve

ra
ge

 M
on

th
ly

 E
va

po
ra

tio
n 

or
 

P
re

ci
p

it
a

ti
o

n
 (

m
m

)

Evaporation Precipitation
  

Figure 13. Average monthly evaporation and precipitation data 

3.2 Boundary Data 

It has been mentioned earlier that the hydrology of a particular water system cannot be 
separated completely from the surrounding water system and such interactions are included in 
the water system description itself, by formulating the boundary conditions that influence the 
water system at the water system boundary. The main external influence on the water system 
of Overwaard and hence the main boundary condition is the water level in the River Lek 
which is, in its turn, influenced strongly by the tidal cycle in the North Sea. The range of 
water level in the river near the sluice gate is between N.A.P. –1m and N.A.P. +2.5m with 
mean water level of around N.A.P +0.5m and it has an average tidal period of around 12.5 
hours. A segment of this boundary data during relatively high storm season is shown in 
Figure 14.  
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Figure 14. Water level of the River Lek near the sluice gate of Overwaard 

Excess water from the upper basin is discharged to the river Lek through the sluice gates only 
during low tide periods when the water level in the river is lower than that of the basin. 
During winter, the sluice gets remain closed whenever the water level in the river is higher 
than that of the upper basin so as to prevent water from flowing into the drainage basin while 
during summer time water is supplied from the river into the basin through the inlet structure. 
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3.3 Data on state and control variables 

In addition to the precipitation, evapotranspiration and boundary data, observed data on state 
and control variables were also collected. These are time series data of surface water level (in 
both the upper and lower basins) and pumping status (hence discharge) of the main pumping 
station between the two basins, all of which observed at 15 minutes interval. Similarly, there 
are observed time series data on status of pumps (and hence discharges) and upstream and 
downstream water levels at each of the 22 drainage basins (polders). There are also monthly 
ground water observations at two places, one in Land v. d. Zes Molens and the other in 
Nieuw Gourdiaans. More over, there are monthly water supply data indicating the average 
water supplied into the system during relatively dry periods. All the above historical data on 
state and control variables are used to calibrate the AQUARIUS model of Overwaard.  
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4 AQUARIUS Model for Overwaard 

4.1 AQUARIUS modelling system for simulation and control 

AQUARIUS is a modelling system that can be used to build computational models of 
combined rural and urban water system, describing the different processes involved in such a 
way that water-system behaviour can be analysed and various types of control structures and 
different ways of their operations can be examined (Lobrecht, 1997).  Such a model can be 
used to calculate the behaviour of all element of a water system, the water system load and 
the required operations of the regulating structures dynamically. The computational elements 
of AQUARIUS model are based on the theory on simulation of water systems outlined in the 
previous sections and it enables deterministic water system modelling and time series 
simulation. 
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Figure 15. The different modules implemented in AQUARIUS 

In principle, AQUARIUS can be used for three type of applications (see Fig. 15): 
1. time-series calculation of water-system behaviour and control; 
2. determination of control strategies for operational water management; 
3. real-time control of water systems. 

AQUARIUS uses a method of combined simulation and mathematical optimisation to solve 
the operational control problem and determine a control strategy.  Optimisation is applied to 
determine control actions sometime ahead, while simulation keeps the optimisation process 
accurate by updating the values of the state variables. The simulation module incorporates a 
description of the non-linear relationships of processes in the water system in such a way that 
the response of the water system is calculated on the basis of hydrological data. The 
optimisation module contains a simplified and linearized description of processes and 
determines the optimal control strategy for the water system, taking into account the 
objectives set for interests during the Control Horizon. The control horizon contains a 
discrete number of T time steps of size )t and its length may range from a few hours to 
several days or weeks. 
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Figure 16. Schematic view of the interaction between simulation, prediction and optimisation 

The input to the optimisation module consists of data on the system state at simulation time 
and a prediction of the system load during the control horizon which is determined by the 
prediction module (see Fig 16).  Then simulation is done on the basis of control actions 
associated with optimisation results and the system state used by the optimisation module is 
updated to correct for the inaccuracies that are the result of its simplified form. The 
optimisation module uses data on defined interests, damage functions and interest weighing, 
as explained in the previous sections. 

The prediction of the system load during the control horizon is based on weather forecasts, 
recent system loads and/or a global prediction.  In AQUARIUS, hydrological variables are 
predicted by the prediction module on the basis of hydrological data from a database. 
Different methods, such as ‘perfect prediction’, ‘moving average prediction’ and ‘scenario 
prediction’ are implemented to process the simulated forecasts to hydrological-load 
predictions for the control horizon. Since the prediction is an estimate within which several 
uncertainties are incorporated, it has to be updated each time additional information about the 
real system load becomes available. 
One important functionality of AQUARIUS, which is very important for the present study, is 
that its optimisation module can be completely replaced by an external module, in which the 
user can specify his own control actions for each control structures. All data available to the 
optimisation module can also be made available for the external controller, so that very 
detailed user defined control strategies can be implemented. The external controller may 
consist of among the various possibilities such as If-then rules obtained from an expert or 
Fuzzy logic or ANN models built from observed (generated) input-output data. The use of 
ANN and Fuzzy adaptive systems as external control will be the subject of further discussion 
in section 6.0. 

4.2 Setting up of AQUARIUS model of Overwaard 

In general, the water system of Overwaard consists of a large number of polders and two 
storage basins. It is a typical polder area where a large number of independent water level 
areas exist. Of special interest is the combined functioning of the polders and the storage 
basins to satisfy the main interest in the area, which was found to be flood prevention and 
agriculture. The two storage basins serve to temporarily store excess water during excessive 
precipitation events in order to avoid flooding of the polder areas. The excess water will 
eventually be released through the sluice gate to the River Lek during low tides.  
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The water system at Overwaard comprises of 22 drainage areas covering a total surface area 
of approximately 15,000 ha out of which urban areas occupy around 10%, another 7 - 8% is 
covered by water and the rest is mostly agricultural land. The surface water system of 
Overwaard consists of an upper storage basin, a lower storage basin consisting of a system of 
interconnected water courses of 58 km long and additional surface water subsystem of 
approximately 280 km long in the drainage areas (see Figure 17). The upper storage basin 
covers an area of approximately 98 ha with target water level of NAP 0.0 m; the lower 
storage basin has an area of approximately 170 ha and target water level of N.A.P –0.75 m.  

 
Figure 17.  The water system of Overwaard 

The surface water sub systems in each polder store water that infiltrates from the surrounding 
soil during rain. Once the surface water level in each polder reached a certain (pre-defined) 
level, the excess water is pumped to the lower basin by 21 ‘polder pumping stations’, with a 
total capacity of 24 m3/sec. All polder-pumping stations in Overwaard are automated and 
operate on the basis of water level set points for each polder (see the Appendix).  Pumping is 
usually done during night time when electricity tariff is relatively less than that of the day 
time. However, in times of high intensity rainfall (of about 14 mm per day), pumps are 
switched on manually even during the day. At the same time, the water level in the lower 
basin should be kept below N.A.P. – 0.5 m.  This is achieved by pumping water from the 
lower basin to the upper basin via the main pumping station. This pumping station is 
comprised of three pumps with a combined capacity of 25 m3/sec. Similarly, the water level 
in the upper basin should be kept below N.A.P. +0.9. This is done by discharging the excess 
water from the upper basin to the River Lek through three sluice gates each 5 m wide and 
4.25 m high. However, the water level of the River Lek at the sluice is highly influenced by 
the back water effect of the North see tide and it can rise to very high level because of storm. 
Therefore, water is discharge through the sluice gates only during low tide period when the 
river water level is below that of the upper basin. The conceptual model of the water system 
of Overwaard is schematised in Figure 18. 
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During excessive precipitation, the discharge from the polders and storage basin land into the 
lower basin may be higher than the capacity of the main pumping station and, as a result, the 
surface water level may rise above the maximum allowable limit at some locations in the 
lower storage basin. In such cases, the water manager imposes a milling stop and some polder 
pumping stations have to stop pumping, even when this may cause flooding of agricultural 
land. Milling stop is also imposed on the main pumping station when the water level in the 
upper basin reaches its upper limit especially when the water level in the river is very high 
and water cannot be discharged through the sluice gates.  
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Polder
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Figure 18.  Schematic representation of AQUARIUS model of Overwaard 

In urban areas, excess water is usually drained through combined sewer systems. During 
extreme precipitation the combined sewer systems may overflow to the storage basin and 
polder surface water. This water is also discharged from these areas by polder pumping 
stations into the storage basins and from there by the main pumping station and through the 
sluice gate to the river. 

On the other hand, during summer time, the water levels in the polder water system may 
reach its lower limit because of less precipitation and high rate of evapotranspiration, and this 
may in its turn lead to lowering of ground water level. To maintain a certain minimum water 
level and soil moisture content in the polders, the direction of flow is reversed and water is 
supplied from the River Lek to each polder area through series of inlets. A minimum water 
level of N.A.P. -0.4 m and N.A.P. -0.9 m should also be maintained in the upper and lower 
basin respectively. 

Important data on Overwaard water system, relevant for this case study, are listed in Table 1. 
For time series calculations, 15 minutes precipitation and evaporation data measured at Land 
v.d. Zes Molens  and Her wijnen meteorological stations of 1997 and 1998 have been used. 
Fore better reliability, the original 15 minutes precipitation data of Land v.d. Zes Molens was 
reconstructed by proportionally scaling the time series on the bases of the average of the daily 
precipitation data of the three nearby stations, namely that of Groot Ammers, Oud Alblas and  
Gorinchem. Moreover, time series of water level in the River Lek, time series of surface 
water level (in the upper basin, lower basins and polder) and pumping status (hence 
discharge) of the main and polder pumping stations, all of which observed at 15 minutes 
interval have been made available by the Water Board. There are also monthly ground water 
observations at two places, one in Land v. d. Zes Molens and the other in Nieuw Gourdiaans; 
and monthly water supply data indicating the average water supplied into the system during 
relatively dry periods. 
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On the basis of the available information on the water system explained so far, a conceptual 
model of Overwaard has been built with AQUARIUS to be used as a tool for simulation and 
control of the water system for optimal management of available resources. 

4.3 Calibration of AQUARIUS Model of Overwaard 

Initial values for the different model parameters that influence the runoff characteristics, such 
as infiltration coefficients, storage coefficients, the rate of external flow, etc. were specified 
on the basis of available information, from literature and previous modelling experience. 
However, the final values of these parameters have to be set only after proper calibration. The 
model is calibrated by comparing the simulation results of some of its state and control 
variables with the corresponding observed time serious data. Observed data on different 
variables from different locations of the water system were used for calibration. For all 
calibration cases model simulation is done with all control structures set on local control 
mode. Visual comparison of simulated and observed values of variables such as water level 
in the upper basin, water level in the lower basin, surface water levels in each polder and 
groundwater levels are some of the criteria considered during calibration of the model. Figure 
19-23 shows some of the calibration results for the year 1998. Figure 19 shows a good match 
between the simulated and observed time series of surface water level in the upper basin. The 
model output has a similar trend with that of the observed values and moreover it has 
simulated the water levels corresponding to most extreme events very well.  

One of the water level measurements in the lower basin is taken near the location of the main 
pumping station. However, other measurements of the lower basin’s surface water levels are 
also taken upstream of each polder pumping station. Since the basin extends for a few 
hundreds of kilometres and the surface water level is not exactly the same everywhere, the 
average of these measurements taken in the vicinity of each polder is used for calibration 
purpose. Figure 20 shows that the model simulates the average condition of the lower basin 
water level reasonably well. Even though some of measured high water levels in the lower 
basin were not reproduced very well by the model, the overall result was found to be 
acceptable in light of the fact that some of the operation policies of the main pumping station 
taken during some of the extreme events may not be exactly the same as the ones specified in 
the model.  
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Figure 19 Comparison between observed values and outputs of the calibrated model for the 
water level in the upper basin. 
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Figure 20 Comparison between the average of the observed values and outputs of the 
calibrated model for the water level in the lower basin. 
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Figure 21 Comparison between the observed values and outputs of the calibrated model for 
the operation of the main pumping station. 
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Figure 22 Comparison between the observed values and outputs of the calibrated model for 
the cumulative discharge of the main pumping station. 
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Figure 23 Comparison between the observed values and outputs of the calibrated model for 
groundwater level at Nieuw Goudriaan. 

Figures 21 and 22 on the other hand shows comparisons of the observed and simulated 
pumping patterns and cumulative discharges of the main pumping station. In both cases the 
outputs of the calibrated model shows a reasonably good similarity with that of the observed 
time series. Moreover, Figure 23 shows that the over all long time trend of the ground water 
level at Nieuw Goudriaan is also simulated by the model reasonably well.   Comparison of 
simulated and measured water levels in each of the polder surface waters were made and they 
were also found to be satisfactory. 

4.4 Central dynamic control with AQUARIUS  

Central dynamic control helps to control water systems in a more integrated manner and 
utilize the available system’s capacity in most efficient ways. It also helps to automate 
operation of water systems and reduce involvement of human operator (see section 2.2 for 
more explanation on dynamic control). It has also been explained in section 4.1 that in order 
to determine the control strategy it is necessary to predict the system loads (eg. precipitation, 
evaporation etc) for the specified control horizon based on weather forecasts or recent system 
loads.  

The main objective of dynamic control in this specific application is to minimise the total 
flood damage in the water system of Overwaard during periods of extreme precipitation. 
Therefore, experiments were mainly focused on periods of extreme flood from September to 
November of 1998. This objective has been achieved by specifying damage function 
corresponding to the surface water level in each area specified in the model. Generally 
damage function for each drainage area has zero value for surface water levels below the 
maximum allowable limit and increases to a value of unity with the increase in water level 
above this allowable limit. Moreover, higher values of weights have been assigned for the 
water levels in the upper and lower storage basins compared to that of the polder water levels 
based on the assumption that flooding of the storage basins could cause more actual damage 
than the flooding of individual polders. Some of the prediction techniques, namely ‘perfect 
prediction’ and ‘moving average prediction’ were used to predict precipitation. Once all the 
parameters are specified then the model can be run in dynamic control mode and the 
simulation outputs can be analysed by comparing the time series of water levels and damage 
function with that obtained by running the model in local control mode. The performance of 
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the model can then be visualised by plotting the time series of surface water levels in each 
area and the corresponding cumulative flood damage in the system both under dynamic and 
local control mode as shown in Figures 24-27. 

Analysis of the simulation results shows that dynamic control, while maintaining similar 
picks in surface water levels in the upper and lower basins to that of local control, it has 
resulted in reduced surface water level picks in almost all of the polders (see for example Figs 
24 and 25). This means that during periods of extreme precipitation, controlling the water 
system in dynamic mode has reduced the extent of flooding in each polders. This can also be 
seen clearly on Fig. 26 where the time series of flood damage and cumulative flood damage 
in the water system is reduced considerably by employing dynamic control. This reduction in 
flood damage seems to be the result of efficient use of the discharge capacities at the main 
pumping station and sluice gates. Even though the long term cumulative discharge out of the 
water system remains the same either with dynamic or local control (see Fig. 27), the 
dynamic control resulted in a relatively higher rate of discharge out of the system at the time 
of extreme precipitation which, in its tern, resulted in relatively smaller flood damage in the 
system. 
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Figure 24. Comparison of simulated water levels in (a) the upper basin and (b) the lower 
basin when the model is run in local and dynamic control mode. 
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Figure 25. Comparison of simulated surface water levels at (a) Land v.d. Zes Molens and (b) 
Giessen Nieuw kerk when the model is run in local and dynamic control mode. 
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Figure 26. Comparison of (a) time series of total flood damage (b) cumulative total flood 
damage, when the model is run in local and dynamic control mode. 
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Figure 27. Comparison of cumulative discharge through the main pumping station, when the 
model is run in local and dynamic control mode. 
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5 Artificial Neural Networks and Fuzzy Adaptive Systems  

Traditional modelling of physical processes is often referred to as physically-based modelling 
(or knowledge-driven modelling) because it tries to explain the underlying processes based 
on the fundamental principles of physics. An example of such a model is a hydrodynamic 
model based on Navier-Stockes partial differential equations numerically solved using finite-
difference scheme.  On the other hand, the so-called data-driven models, borrowing heavily 
from artificial intelligence (AI) techniques, are based on a limited knowledge of the 
modelling process and rely on the data describing input and output characteristics. These 
methods, however, are able to make abstractions and generalisations of the process and play 
often a complementary role to physically-based models. Data-driven modelling uses different 
techniques from such overlapping fields as data mining, artificial neural networks (ANN), 
expert systems, fuzzy logic concepts, rule-induction and machine learning systems. 
Sometimes hybrid models are built combining different types of models. In this report, 
however, only the two widely used types of data-driven modelling techniques, namely 
artificial neural networks (ANN) and fuzzy logic-based models, will be briefly introduced. 
The applicability of these two techniques for water system control is also the main subject of 
investigation in this study. 

5.1 Artificial neural networks 

Artificial Neural Network (ANN) is one of the most popular data-driven techniques attributed 
by various authors to machine learning, data mining, soft computing etc. It is an information 
processing system that roughly replicates the behaviour of a human brain by emulating the 
operations and connectivity of biological neurons (Tsoukalas and Uhrig, 1997). However, for 
the purpose of this study artificial neural networks can be defined generally as flexible 
mathematical structures that are capable of identifying complex and commonly non-linear 
relationships between input and output data sets. A neural network consists of a large number 
of simple processing elements that are called either neurons, units, or nodes (hereafter, these 
basic building blocks will be described as neurons). Each neuron is then connected to other 
neurons by means of direct communication links, each being associated with a weight that 
represents information being used by the net in its effort to solve a problem. The processing 
of each neuron is broken into two steps (see Fig. 28), that is, the weighted sum of the inputs is 
taken, and is followed by the application of the activation function. For example, consider a 
neuron that receives inputs from the input layer. The net input, o_in, to this neuron is the sum 
of the weighted signals from the input neurons (that is : o_in = w1i1 + w2i2 + w3i3 ... wnin ). 
The activation y of this neuron is then given by some function of its net input, o = f (o_in).  

Inputs

w1j

w2j

w3j

wnj

f(.)Σ
o_in

oj

i1

i2

i3

in

Output  
Figure 28 A schematisation of an artificial neuron at node j 
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Essentially, the activation function f can take many forms, but most often it is monotonic. 
One of the popular activation functions, and the one mostly used in this study, is the sigmoid 
activation functions as shown in Eqn. 3. 

xe
xf

+
=

1
1

)(              (3) 

A neural network can be in general characterised by its architecture, which is represented by 
the pattern of connections between the nodes, its method of determining the connection 
weights, and the activation functions that it employs. One way of classifying neural networks 
is by the number of layers: single layer (Hopfield net), multilayer (most backpropagation 
networks), etc. ANNs can also be categorised based on the direction of information flow. In a 
feed forward network, the nodes are generally arranged in layers and information passes from 
the input to the output layer. On the other hand, in a recurrent network, information flows 
through the nodes in both directions, from the input to the output layer and vice versa. This is 
generally achieved by recycling previous network outputs as current inputs, thus allowing 
some degree of feedback. Still another way of classifying ANNs is by distinguishing between 
networks with supervised learning, where the networks are provided with training patterns of 
input-output pairs from which they try to set optimum sets of parameters (weights), and 
unsupervised (or competitive) learning where the networks extract information from input 
patterns alone, without the need for a desired response or output. However, there it is not the 
intention to discuss about the various possible categories further in this work. Instead, only 
one typical and more widely used type of network architecture, which is also applied in this 
study, will be reviewed in the following sections. 

Multi-layer Perceptron Network (MLP) 

Multi-layer perceptrons, which constitute probably the most widely used network 
architecture, are composed of a hierarchy of processing units organised in a series of two or 
more mutually exclusive sets of neurones or layers. The first, or input, layer serves as a 
holding site for the input applied to the network. This consists of all quantities that can 
influence the output. The input layer is thus transparent and is a means of providing 
information to the network. The last, or output, layer is the place at which the overall 
mapping of the network input is made available, and thus represent model output. Between 
these two layers lie one or more layers of hidden units. The information flow in the network 
is restricted to a flow, layer by layer, from the input to the output (see Fig 29). In this figure, i 
= [i1, i2, . . . ,in]t is a system input vector composed of a number of causal variables that 
influence system behaviour, and o = [o1, o2, . . . ,om]t is the system output vector composed of 
a number of resulting variables that represent the system behaviour. The unidirectional nature 
of the information flow places MLPs amongst what are usually called feed-forward networks. 
Each layer, based on its input and connection weights, computes an output vector and 
propagates this information to the succeeding layer.  

In general, an MLP network with one hidden layer has been shown to provide a universal 
function approximator ( Hornik et al, 1989).  However, the design of an MLP network for a 
specific application may involve many other issues, most of which require problem-
dependent solutions.  
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Figure 29 Schematisation of a multi-layered, feed forward neural network (MLP) 

Learning in MLP networks (training) 

One of the main characteristics of any neural network is its ability to learn in a networked 
fashion. Let us consider learning (or training) in ANNs, mathematically, as an approximation 
of the actual multi-variable function g(i) = t by another function g’(i, w), where i = [i1, i2, . . . 
,in]t is the input vector, t = [t1, t2, . . . ,tm]t is the corresponding output (target) vector and w = 
[w1, w2 ,. . . ,wmn]t is a parameter (weight) vector. The learning task is then to find the weight 
w that provides the best possible approximation of g(i) in some predefined sense based on the 
set of training examples i and t. Given this training set of input-output data, the most common 
learning rule for multi-layer perceptrons is that of back-propagation based upon what is 
usually called a generalised delta rule that uses a method of gradient descent to achieve 
training or learning by error correction. A neural network with this type of learning algorithm 
is usually referred to as a back propagation network. In back propagation networks, each 
input pattern of the training data set is passed through the network from the input layer to the 
output layer. The network output is compared with the desired target output and an error is 
computed. This error is then propagated backward through the network to each node, and 
correspondingly the connection weights are adjusted based on an equation of the general 
form: 

( ) ( ) ( )www ∆+=+ nn 1            (4) 

where w(n) specifies the connection weights obtained during the current iteration (n) and 
(∆w) the required change in weight necessary to calculate the weights for the next, (n+1)th  
iteration. (a more detailed explanation of error back-propagation algorithm can be found in 
the first project report (also see McClelland and Rumelhart, 1988)). 

Despite its popularity, the use of backpropagation learning also introduces some difficulties. 
The first difficulty is the necessity of providing a prior specification of the network structure. 
If the size of a network (number of hidden layers and the number of neurons on each hidden 
layer) is too large, the network can be expected to generalise quite poorly. On the other hand, 
if it is too small, learning from training samples becomes insufficient to provide an adequate 
generalisation. Since prior structural information is usually not available, identifying the 
optimum network structure then usually becomes a matter of trial and error, which can 
sometimes be a time consuming process. The second difficulty is a so-called local minima 
problem in which the network identifies only one local minimum in its objective function 
while ignoring other and more significant minima. This can become more and more serious 
as the network size increases. One of the methods that have been proposed to address the first 
problem is called structural learning. This method introduces various 'pruning algorithms', 
which remove hidden units and connections which demonstrate only minor contributions to 
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the error function, and the introduction of a form of weight decay by placing a penalty on the 
associated error criteria. An alternative solution, which helps to avoid spurious local minima, 
is to take account of second order effects in the gradient. For example, the performance of the 
back propagation procedure can also be improved by using an approximation of Newton’s 
method, called in this case the Levenburg-Marquardt method. It is claimed that this 
approximation technique is more powerful than is that of direct gradient descent, but it 
clearly requires more memory during computation (Demut and Beale,1994). 

5.2 Fuzzy logic and fuzzy adaptive systems 

Fuzzy logic is a superset of conventional (Boolean) logic that has been extended to handle the 
concept of partial truth -- truth values between "completely true" and "completely false" and 
it was introduced as a means to model the uncertainty of natural language (Zadeh, 1973). To 
accomplish this idea the notion of the fuzzy sets has been introduced, which is the collection 
of the objects that might belong to the set to a degree, taking any values between 0 (full non-
belongingness) and 1 (full belongingness), instead of taking a crisp value (0 or 1). 

In most fuzzy systems, the relationships between variables are represented by a means of 
fuzzy if-then rules and an associated fuzzy inference mechanism of the form: 

If antecedent proposition then consequent proposition 

The degree of belongingness to the antecedent proposition is expressed by the membership 
function, assigning each element a number from the unit interval [0, 1]. Let X be a universal 
set then A is called the subset of X if A is a set of ordered pairs 

{ }A x x x X xA A= ∈ ∈( , ( ); , ( ) [ , ]µ µ 0 1         (5) 

Where the function µA is the membership function of A. In other words, µA(x) is the grade of 
the membership of x in A. For example, if the set of young persons is fuzzy then a person 
with 25 years of age can be young with a truth value of µA(x)=0.9 etc. In this way the crisp 
numbers are fuzzified. The shape of membership functions can be of different types, such as 
triangular, trapezoidal, bell-shaped etc. The truth value corresponding to the fulfilment rule 
conditions for a given premise is called the degree of fulfilment (DOF). The most commonly 
used methods to determine the DOF are product  and min-max inferences. Then the rules will 
be responded in different combinations. These combinations are minimum, maximum and 
additive combinations. 

Fig. 30 shows an example of fuzzy rules and membership functions for air conditioner motor 
speed controller where temperature (input) and speed (output) are fuzzy variables used in the 
set of rules. Temperature of 22 degree. "fires" two fuzzy rules. The resulting fuzzy value for 
air motor speed is “defuzzified” and the abscissa of the centroid of area gives the “crisp” 
value 
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Figure 30. Examples of fuzzy rules, membership functions and defuzzification procedures 
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Figure 31.  A generic fuzzy system 
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Building fuzzy models from data involves methods based on fuzzy logic and approximate 
reasoning, but also ideas originating from the area on neural networks, data analysis and 
conventional system identification (Babuska, 1996). Two main approaches can be used to 
integrate knowledge and data in a fuzzy model. In the first case, the expert knowlde 
expressed in a verbal form is translated into a collection of if-then rules. Thus the structure of 
the model is fixed and the parameters within this structure can be fine-tuned using data. In the 
second case, no prior knowledge about the system under study is initially used and a fuzzy 
model is constructed from numerical data only. The extracted rules and membership 
functions could provide a posteriori interpretation of the systems behaviour.  

Getting several fuzzy rules from an expert’s knowledge may not be too complicated for a 
simple case. However, in a complex system, which is usually the case, the scope of 
construction of the rule-based system is limited. Therefore, the possibility of inducing and 
learning the rules from data has been investigated and implemented successfully (see Abebe, 
1999) and these systems are called Fuzzy Adaptive Systems (FAS). On the basis of the user 
defined input membership functions and input-output sets, FAS can determine the output 
membership functions and defuzzified outputs. 

There are different methods to derive the rules directly from a data set such as counting 
algorithm, weighted counting algorithm and least squares algorithm. The principle of 
counting and weighted counting algorithm is nearly the same, only in the case of weighted 
counting algorithm DOF is used for determining the rule response (A brief description for the 
counting and least squares algorithms can be found in the first project report; for details see 
Bardossy & Duckstein, 1995). 
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6 Application of ANN and FAS for Optimal Control 

It has been explained in section 4.1 that AQUARIUS uses a combination of simulation and 
mathematical optimisation to determine the operational control actions and control strategy of 
a water system. To solve the non-linear optimisation problem (see Eqn. 1), the Successive 
Linear Programming method using Taylor approximations of non-linear relationships is 
implemented. For the time series calculation, the matrix where the rows represent the 
constraints and the columns represent the physical variables defines the optimisation 
problem. In case of complex water resources systems, the large number of elements 
considered causes an increase in the number of non-zero elements in the constraint matrix. As 
a result, the size of optimisation problem, and subsequently the computational power required 
could be very big. A previous study (Lobrecht and Solomatine, 1999) sowed that the total 
time needed fore one time step simulation for a problem with 95000 variables and 92400 
constraint on a standard PC could be up to 1550 sec. In the case of Overwaard, two weeks 
simulation of the water system in central dynamic control mode on a standard PC required 
around 30 minutes. In many real-time control situation such high computational times are 
undesirable. However, previous studies (Dibike et al, 1999) showed that the site-specific 
knowledge and data that is encapsulated in any such numerical model can be encapsulated in 
its turn in an ANN or FAS, and this can provide much faster simulations. 

One of the objectives of this research is, therefore, to investigate the possibility of using 
intelligent controllers based on ANN and FAS in order to get the optimal control strategy 
much faster. This can be done by training the intelligent controllers off-line to reproduce the 
optimal control strategies and substitute AQUARIUS’ optimal dynamic controller module 
with this external intelligent controller (Lobbrecht et al, 2000). Since solving of the 
optimisation problem in real time is avoided by the use of intelligent controllers, the overall 
simulation time of the model will be reduced considerably.  This approach is usually refereed 
to us ‘model-based control’. 

6.1 Model-based control 

Model-based control involves three main components, namely a reference model, a trainable 
intelligent controller and the process or system under control. In this scheme the deterministic 
models are used as a reference and conduct the learning procedure for intelligent controllers. 
The intelligent controllers are the AI techniques such as ANN and FAS. The simulation of a 
reference model is used for offline adaptive learning of an intelligent controller. At each time 
step the process or system state target value y(t)d passes through the intelligent controller and 
gets the control signal u(t). When the process or system results the output y(t), the measured 
value is passed to  the intelligent controller and compared with the target value. As a respond 
of the intelligent controller the control signal for the next time step should be obtained. 
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Figure 32. Model based control 

The applicability of ANN and FAS as external controllers for the water system of Overwaard 
is investigated in this study. The model-based scheme for controlling the water level uses 
AQUARIUS model as a reference model for the intelligent controller. The desired value is a 
target water level in the water system. The pumping rate at the pumping station is a control 
action and the system output is the surface water level in the drainage area. Fore better 
comparison and analysis of results, only the main pumping station of the water system is 
considered for intelligent control. The main pumping station at Overwaard accommodates 
three pumps with a total capacity of 25 m3/sec. The control variable in this case is therefore 
the number of pumps (0, 1, 2, or 3) to be switched on at each simulation time step in order to 
keep the water levels in the upper and lower basins within the allowable ranges for each 
basin.  

6.2 Training of ANN and FAS  

Before using ANN or FAS as intelligent controllers, they have to be trained offline. Since the 
intelligent controller is required to replicate the optimal control strategy of the AQUARIUS 
model of Overwaard, then it has to be trained with the data generated with the same model 
simulated in dynamic control mode.  Since the model is required to run in dynamic control 
mode mainly during periods of extreme events (in this case extreme precipitation), a three-
month simulation period of relatively high precipitation between September and November 
of 1998 was selected for this study. The intelligent controller to be built has to reproduce the 
number of pumps to be operational at each simulation time step. To identify the most relevant 
variables that could constitute the inputs to ANN or FAS, correlation analysis of input/output 
relationships has been carried out. In principle, the most correlated physical variables to the 
output (number of pumps to be switched on) should be considered as inputs for better model 
performance. After investigating a number of alternatives, the values of water levels in the 
upper and lower basin at previous time step and eight hours moving average values of 
precipitation were found to be most appropriate. Therefore the input-output mapping required 
to be reproduced by the ANN or FAS are as follows: 
 
Inputs:  UB water level at time t-1 

LB water level at time t-1 
Eight hours moving average precipitation (t-1 … t-32) 
 

Output: Number of pumps to be switched on at time t 
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The neural networks simulation environment NeuroSolutions (from ND Inc) and the fuzzy 
model builder AFUZ (from IHE) were used for this study. A time series data with time step 
of 15 minutes corresponding to one of the extreme precipitation periods was divided in to 
two, with 60% of the data for training and the remaining 40% for testing of the adaptive 
models. For ANN simulation the multi-layer preceptron architecture with one hidden layer 
was used. The number of neurones in the hidden layer is varied till the optimal value 
corresponding to the best performance on the test data is obtained. For the case of FAS 
models, the triangular membership function, the product inference and centroid 
defuzzification methods were applied.  Performance indices such as percentage of examples 
where the pumping rates are accurately determined, and the total flow rate difference for the 
whole range of data set were used in identifying the best models. The performance of the best 
models on both the training and test data are presented in Table 2. The corresponding desired 
and model outputs on the test data are shown in Figures 33 and 34.  

Table 2. Summary of ANN and FAS performance during off-line training 
ANN FAS AI method 

Training Testing Training Testing 
MAE 0.508 0.475 0.563 0.619 
Diff. in cum. discharge (%) 3.5 5.6 -4.8 2.4 
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Figure 33. ANN test results in replicating dynamic control actions  (after off-line training) 
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Figure 34. FAS test results in replicating dynamic control actions  (after off-line training 
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The off-line training results in Table 2 and especially the relatively smaller value of the 
percentage error in the cumulative discharge through the main pumping station seems to be 
very good. However, the ultimate test of performance of the trained ANN or FAS is the 
extent to which it reproduces the time series of surface water levels in the upper and lower 
basins and the total discharge through the main pumping station when they are used as 
external controllers. In other words, to verify the applicability of the intelligent controllers, 
comparison has to be made between the simulation outputs of AQUARIUS when it runs in 
central control mode once with dynamic control (with optimisation) and the other with 
external controller. 

6.3 Developing external controller 

The internal control variables of AQUARIUS can be accessed from outside the program, e.g. 
from an MS Excel application, using VBA macros. During each calculation time step of the 
model, some internal state variables are made available through an instance of an 
ActiveXDLL called AqrExtComm.dll. Referring to the same DLL from the Excel application 
permits change of control variables inside AQUARIUS, such as the status of pumps in a 
pumping station, the status of an inlet or the height of a weir. The control variables are read 
from the DLL by AQUARIUS which will internally compute the System State of the next 
time step (see Fig. 35).  
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Figure 35. Implementation of intelligent external controller with AQUARIUS 

Therefore the task of our intelligent (ANN and FAS) controllers is to determine the status of 
the control variables (in our case the pumping status of each pump in the main pumping 
station) at each simulation time step. In order to do this, DLLs (Dynamic-link library) of the 
trained ANN and FAS are generated first. Each DLL is a collection of routines that contain 
the architectures of the trained intelligent controller and the internal parameter vector 
representing the connection weights (in case of ANN) or the rule base (in case of FAS. 
Programs are then developed in visual basic, which call these DLLs and functions as an 
external controller to AQUARIUS.  

When running AQUARIUS in external control mode, the simulation and prediction modules 
are run at every time step to determine the system state variable as well as the hydrological 
load for the control horizon. The external controller receives the required inputs  (moving 
average precipitation and water levels in the upper and lower basin) from AQUARIUS, pass 
this to the DLL of the intelligent controls and rerun the output of the intelligent control 
(pumping status) back to AQUARIUS. AQUARIUS will then impose real time control 
through switching pumps on or off and continue to the next simulation step. 
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6.4 Results and Discussion 

Once the external controllers have been prepared in the ways described in the previous 
section, the algorithm presented in Figure 35 is implemented to run AQUARIUS in central-
dynamic control mode. It should be noted hear that for this particular experiment, it is only 
the main pumping station which is controlled by the external controller, while the remaining 
polder pumping stations are controlled locally. Since the main objective of dynamic control 
in this study is to reduce possible flood damage, the simulations with external controllers 
were performed for the period of extreme precipitation between 29.10.98 and 11.11.98. The 
performance of the intelligent controllers (with ANN and FAS) is summarised in Table 3. 
The simulated water level for the upper and lower basins and the cumulative discharge 
through the main pumping station corresponding to external control (with ANN and FAS) are 
also plotted against the once obtained with central dynamic control in Figures 36-37. These 
results show that the intelligent controllers have in deed replicated the optimal control 
strategies of the central dynamic control. Both the ANN and FAS controllers have managed 
to control the operation of the main pumping station in such a way as to reproduce the water 
levels in the upper and lower basins and the corresponding discharge through the main 
pumping station very well. Moreover, the computational time required for the simulation with 
the intelligent controllers is about nine times less than that of the central dynamic control. 
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Figure 36. Comparison of simulated upper basin water levels resulting from central dynamic 
control with that of (a) ANN and (b) FAS external controller 
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Figure 37. Comparison of simulated cumulative discharge through the main pumping station 
resulting from central dynamic control with that of (a) ANN and (b) FAS external controller 

Although both ANN and FAS controllers resulted to almost the same cumulative discharge 
with that of the central dynamic control and both reduced the computation time by more than 
one third, however, ANN controllers resulted in better approximation of the water levels in 
the upper and lower basin.  This could be attributed to the fact that FAS has a problem of 
approximating the output in a situation where it can not infer a rule in its rule base to a 
particular situation which it has not seen during the training process. In such cases ANN can 
interpolate between values in the training data and still give a better approximation.  

Table 3. Summary of ANN and FAS performance as external controllers 
ANN FAS AI method 

UB LB UB LB 
MAE (of water level in cm) 4.8 3.1 4.7 5.0 
Diff. in cum. discharge (%) -0.55 -0.55 

Reduction in computational time (%) 87 88 
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7 Conclusions and Recommendations  

The main objective of this study was to investigate the possibilities of using artificial 
intelligent techniques such as ANN and Fuzzy logic systems on a practical example of model 
based control of water systems. A drainage area of Overwaard was chosen as a case study 
and an AQUARIUS model of the water system was built. The model was then calibrated with 
measured water levels and discharge data and the performance of the model in central 
dynamic control mode was compared with that of local control. ANN and FAS were trained 
with the data generated by AQUARIUS model to replicate the best control strategy for the 
main pumping station. External controllers were then designed using the trained ANN and 
FAS and the performance of AQUARIUS with these external controllers was investigated. 

The AQUARIUS model built within the scope of this research project was found to be very 
effective in simulating the water system of Overwaard. Calibration results were acceptable 
since the simulated water level and discharge values were very much comparable to the 
observed ones. It has also been demonstrated with this model that central dynamic control 
can perform better than local control in cases of extreme precipitation events. 

Further, ANN and FAS were used to replicate the central dynamic control’s optimal pumping 
strategy. Online implementation of the trained ANN and FAS as external controllers was also 
successful and these intelligent controllers were able to reproduce the centralised behaviour 
(in terms of water levels and corresponding discharges) of optimal control action by using 
easily measurable local information. The main advantage of the external intelligent 
controllers is that it needed only one tenth of the simulation time of the one required by the 
central optimal controller of AQUARIUS. Replacing the slow computational component by 
the fast-running intelligent controllers in the way described in this study is believed to 
enhance the use of AQUARIUS in real time control tasks.  

It should be mentioned that although the data for this application was generated from the 
AQUARIUS model of Overwaard running under central optimal control mode, it is only the 
local system state and control actions that are used to train the intelligent controllers. As a 
result, such intelligent controllers can only be quasi-optimal since it is difficult to exactly 
reproduce the behaviour of real centralised dynamic control on the basis of local data alone. 
This situation may be improved by incorporating as many system states as inputs to the 
intelligent controller as possible, not only from areas close to the structure to be controlled, 
but also from other selected locations throughout the water system. In this way it could be 
possible to replicate even better the centralised behaviour of the optimal control strategy with 
the intelligent controller. One thing that has to be emphasised here is that the intelligent 
controllers are trained with the data corresponding to the existing system; if the property of 
the water system changes, then the intelligent controllers have to be retrained once again. 

In general, the study clearly demonstrated the applicability of artificial neural network and 
fuzzy logic technologies for water management and control by considering the water system 
of Overwaard as an example. Recommendations are also given on the practical use and 
implementation of such techniques.  
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