THE CYTOLOGICAL BACKGROUND OF CYCLAMEN BREEDING

R. A. H. LEGRO

NN08201 . 255

THE CYTOLOGICAL BACKGROUND OF*

CYCLAMEN BREEDING

PROEFSCHRIFT
TER VERKRIUGING VAN DE GRAAD
VAN DOCTOR IN DE LANDBOUWKUNDE OP GEZAG VAN DE RECTOR MAGNIFICUS IR. W. DE JONG, HOOGLERAAR IN DE VEETEELTWETENSCHAP,
TE VERDEDIGEN TEGEN DE BEDENKINGEN
VAN EEN COMMISSIE UIT DE SENAAT DER LANDBOUWHOGESCHOOL TE WAGENINGEN
OP DONDERDAG 4 JUNI 1959 TE 16 UUR
DOOR
R. A. H. LEGRO

H. VEENMAN \& ZONEN N.V.-WAGENINGEN-1959

WOORD VOORAF

Zowel U, geachte lezer, als ik, zijn bekend met de formele stijl waarin men een voorwoord van een proefschrift pleegt te schrijven. Echter, indien U mij van nabij kent, zult U weten, dat zulks mij heel slecht ligt. Vergun mij derhalve, om juist nu, nu ik zovelen mijn grote erkentelijkheid en dank wil betuigen, toch maar mijzelve te zijn.

Lieve Moeder, wanneer ik iemand ter wereld dank verschuldigd ben, dan is het jou, want jij gaf me dit leven, waarin ik dagelijks zo ongelofelijk veel ervaar. Hoe zou ik dit alles zonder jou en Vader hebben kunnen bereiken? Als we alleen maar eens terugdenken aan dat akelig vroege trammetje naar de Ter Apeler R.H.B.S., dat je, gezien mijn slaapvastheid, vijf lange jaren zorgen heeft gegeven?

Daar, waar mijn ouders mijn opvoeding moesten afbreken, werd zij voortgezet door U, Hooggeleerde Wellensiek: ik heb U tenminste altijd als mijn geestelijke vader beschouwd. Voor al het vele, wat ik van U mocht leren en voor wat U voor mij deed, ook in mijn privé-leven, dank ik U uit de grond van mijn hart. Ik hoop, dat ik Uw verwachtingen, die U nu alweer 11 jaar geleden van mij als jeugdig student had, niet heb beschaamd.

Het is uiteindelijk de bezielende wijze van Uw onderricht geweest, Hooggeleerde Prakken, waardoor ik thans nog steeds plezier in mijn dagelijks werk heb en dat mij nog meer eerbied voor de wonderen der Natuur heeft bijgebracht. Hoe kan ik anders dan U hiervoor heel erg dankbaar te zijn?

Reeds als kind had ik grote belangstelling voor alles wat leefde en vroeg ik mijn Vader honderd uit over de namen van dieren en planten. Het is dan ook niet verwonderlijk, dat ik tijdens mijn studiejaren getracht heb wijzer te worden op dit gebied van U, Hooggeleerde Roepke en Hooggeleerde Venema, hetgeen ik door Uw beider hoogst interessante colleges zeer zeker ben geworden.

Het besef, dat naast het denkvermogen ons scheppend vermogen het hoogste goed is, wat wij bij onze geboorte meekregen en dat ons dagelijks tot in de kleinste dingen schoonheid en geluk kan schenken, is door U, Zeergeleerde Witsen Elias, bij mij ontwikkeld. Uw colleges hebben voor mij dan ook een veel diepere betekenis gehad, dan men zo zonder meer van een „vak" zou verwachten.

Nog steeds, Zeergeleerde Mevrouw Koopmans, raadpleeg ik U bij eventuele werkproblemen, waarin U een bewijs kunt zien dat ik Uw raad, zo vriendschappelijk gegeven, hoog aansla.
Ik hoop, Zeergeleerde De WIT, dat onze prettige samenwerking op het wetenschappelijk terrein van onze gezamenlijke interesse nog lang zal mogen duren.

Mijn collega's dank ik ten zeerste voor hun kameraadschap. Speciaal het „team work" met jullie, Doorenbos en Van Bragt, apprecieer ik bijzonder, zoals ik ook jullie suggesties aangaande en kritiek op mijn gedeelte van ons gezamenlijk onderzoek altijd heb gewaardeerd.

Beste Dick, Hein en Bob, van dichtbij en veraf hebben jullie me steeds aangemoedigd en kon ik telken male op jullie steun rekenen. Jullie hebt je altijd waarachtige vrienden getoond. Hoe kan ik dit alles ooit terugdoen?

Dear Tony, I'll never forget what you have done for me. It is your great merit, that you transformed my poor English into real English, and gave me the kicks I really needed! Many thanks for this and many thanks for the good memory.

De nauwgezetheid en ijver van jullie, Connie, Lidy, Angela en Sonja, waarmee jullie elk een zo belangrijk aandeel in dit werk hebt geleverd, zal ik nimmer vergeten. Ik ben jullie hiervoor zeer dankbaar.

Mijn dank gaat voorts uit naar allen, die mij op het lab verder behulpzaam waren. Daarbij nemen jullie, Cis en Jeanne een vooraanstaande plaats in, naast Grevers, met wie ik zovele uren in de donkere kamer versleet en die het fotomateriaal zo buitengewoon goed heeft verzorgd.

Het zou vele pagina's kosten, om allen te noemen, die ik graag zou willen bedanken, al was het maar om hun persoonlijke vriendschap. Ik zie mij echter beperkt, doch wil tenslotte aan jou, Hen, de laatste regels wijden. Het is dank zij jouw liefde en toewijding, dat ik dit werk (en nog zoveel meer) tot stand kon brengen. Hoe ik jou daarvoor wil danken, is echter een zaak uitsluitend tussen jou en mij.

Mededelingen van de Landbouwhogeschool te Wageningen, Nederland 59 (8) 8 -51 (1959)
 THE CYTOLOGICAL BACKGROUND OF CYCLAMEN BREEDING

Met een samenvatting
DE CYTOLOGISCHE ACHTERGROND VAN DE CYCLAMEN-VEREDELING

by/door

R. A. H. LEGRO
Publikatie No. 195 van het Laboratorium voor Tuinbouwplantenteelt, Landbouwhogeschool, Wageningen

(Received/Ontvangen 26.3.'59)

CONTENTS

Chapter I. General introduction 2

1. Distribution and nomenclature of the genus Cyclamen 2
2. Introduction into Western Europe and its consequences 3
3. Scope of investigations 3
Chapter II. Description of technique 4
4. Cytological methods 4
1.1. Selecting the material 4
1.2. Pretreatment 4
1.3. Fixation 5
1.4. Staining 5
1.5. Making the preparations 5
5. Microscopy and microphotography 6
2.1. Microscopy 6
2.2. Microphotography 6
Chapter III. Cultivars 7
6. Introduction 7
7. Material 7
8. Cytology 7
3.1. The external morphology of the chromosomes 8
3.2. Haploids and hemiploids 8
3.3. Diploids 15
3.4. Triploids 15
3.5. Tetraploids and aneuploids 15
3.6. Hexaploids and higher numbers 16
9. The cytological background of the origin of some cultivars 16
4.1. Ancient cultivars 16
4.1.1. The first tetraploids 17
4.1.2. The first aneuploids 19
4.2. Recent cultivars 20
10. Consequences for breeding 21
Chapter IV. Crosses between diploid and tetraploid cultivars 22
11. Introduction 22
12. Experiments 22
13. Cytology 24
3.1. General 24
3.2. Chromosomes 25
14. Possible explanations of the origin of the tetraploid F_{1}-plants 26
4.1. Cytological 26
4.2. Genetical 26
4.3. Cytogenetical 27
15. Discussion 28
5.1. $2 \mathrm{n} \times 4 \mathrm{n}$ 28
5.2. $4 \mathrm{n} \times 2 \mathrm{n}$ 30
16. Consequences for breeding 33
Chapter V. Species 33
17. Introduction 33
18. Material 34
19. Cytology 34
20. Origin of the chromosome numbers 37
4.1. Polyploidy 37
4.2. Other ways of origin 39
21. Species crosses 40
5.1. Introduction 40
5.2. Experiments 41
5.3. Discussion and conclusions 42
22. Consequences for breeding 44
Chapter VI. False hybrids 45
Summary 46
Samenvatting: De cytologische achtergrond van de Cyclamen-veredeling 47
Literature cited 49

CHAPTER I

GENERAL INTRODUCTION

1. Distribution and nomenclature of the genus CyCLAMEN

The plant explorer, who goes botanizing in the Mediterranean area, will undoubtedly come across a low growing plant with more or less heart-shaped leaves, and lovely nodding pink or white flowers with reflexed petals on elegant thin stalks. There is every chance that determination proves that he found a wild species of Cyclamen, for countries around the Mediterranean form the present distribution area of the genus Cyclamen which belongs to the family of the Primulaceae.

The Cyclamen was already known to the Greeks and Romans: they called it Cyclaminus after its disk-shaped corm. The Greek 'Kyklos' means disk. In 1700 Tournefort introduced the name Cyclamen ($45, \mathrm{p} .6$) for the genus which has been kept ever since.

According to Doorenbos (8) 14 species and a few varieties have to be distinguished. Some have a large distribution area, others have a small one. This indication in combination with others e.g. the high polyploidy and the various 'missing links' in the divergent chromosome numbers, makes one suppose that it is a very old genus, that many forms became extinct and that the nowadays species have to be explained as glacial relicts.
The present known species are;

C. balearicum Willk.	C. pseudibericum'Hildebr.
C. repandum SIBTH. et SM.	C. neapolitanum TĖN.
C. creticum Hildebr.	C. purpurascens MiLl.
C. cilicium Boiss. et Heldr.	C. persicum Mill.
C. coum Mill.	C. africanum Boiss. et Reut.
C. cyprium KY.	C. graecum LK.
C. libanoticum Hildebr.	C. rohlfsianum Asch.

C. balearicum Willk.
C. pseudibericum'Hildebr.
C. neapolitanum Tén.
C. purpurascens Mill.
C. persicum Mill.
C. africanum Boiss. et Reut.
C. rohlfsianum Asch.

Although Doorenbos. (8) mentions the names C. orbiculatum Mill. and C. europaeum L., Schwarz (46) has shown that these two names are incorrect; the correct names should be. C. coum Mill. and C. purpurascens Mill., respectively. Therefore, these names will be used throughout this paper.

2. Introduction into western europe and its consequences

Without entering into details $(9,45)$ it may be said that the first species appeared in Western Europe in the sixteenth century. Fuchs (1551), Dodoens (1554), de l'Obel (1576) and others gave descriptions and pictures.

The most important species, which was introduced, was C. persicum Mill. Although it was a collector's plant for a long time after its first introduction in Europe (about A.D. 1600), as the wild form still is today, it was cultivated in increasing numbers. Its popularity grew more intense and by the undiminished diligence of amateurs, gardeners and breeders, there was a significant assortment soon after 1850. But the development of cultivars went on. It increased to the present assortment of over 200 cultivars with its large variation in colour and other characteristics. Germany alone is growing 119 cultivars ${ }^{1}$)! (33).

Not only are Cyclamen very important pot plants in. Germany, but they are also in great demand in other European countries. In The Netherlands it is the most widely grown pot plant.

In 1957 as a cut flower it had the 22 nd place among 32 others, but the demand for Cyclamen as a cut flower is increasing.

Among the garden plants some hardy species as C. coum, C. cilicium, C. purpurascens and C. neapolitanum are of some interest as alpine garden plants, particularly in England (24). Generally speaking, they are more or less unknown, but perhaps this will change in the future, as some of the wild species, e.g. C. coum, C. neapolitanum and C. graecum (57) are no doubt of direct value as ornamental plants.

3. SCOPE OF INVESTIGATIONS

In 1946 Wellensiek started an extensive study of Cyclamen at the Wageningen Horticultural Laboratory, with the main purpose to investigate breeding in its broadest aspects. Apart from genetical problems, taxonomy (Doorenbos) and cytology (De HaAn) were studied. The present author took de Hann's place in 1951. The cytological problems, which were attacked by him, can be grouped in three parts:

1. the cytology of the cultivars;
2. the cytology of the crosses between diploid and tetraploid cultivars of C. persicum (and reciprocal);
${ }^{1}$) According to a resolution of the 14th International Horticultural Congress in 1955, the name cultivar is used to indicate a cultivated variety.
3. the cytology of species and species crosses.

The results of these investigations will be described in the following chapters. In each part the proper cytological problems will be presented first, followed by a discussion of their consequences for breeding.

CHAPTER II

DESCRIPTION OF TECHNIQUE

1. Cytological methods

1.1. Selecting the material

For the study of the meiosis in young pollen mother cells, anthers were used, while egg mother cells were examined in connection with the results of crosses between diploid and tetraploid cultivars.

The anthers were taken from young flower buds ranging in size from $2 \frac{1}{2} \times$ 4 mm in C. balearicum, to $3 \frac{1}{2} \times 6 \frac{1}{2} \mathrm{~mm}$ in C. persicum. It is difficult to give the exact size of the bud which gives the greatest chance of finding dividing pollen mother cells. Another, more useful indication for the correct dividing stage is the length of the protuding petals outside the calyx. If the visible tips of the petals are about 1 mm , the pollen mother cells are usually in the process of dividing. The five anthers in this stage are slightly yellow coloured, and somewhat glassy. The anthers of any one bud vary only slightly or not at all in any one stage of development.

With pot culture of some species, as C. repandum, C. balearicum and C. libanoticum, the flower stalks start growing underground and they emerge just shortly before the opening of the flowers. So, one must carefully remove the soil near the surface in order to locate the correct buds.

Of the cultivar 'Wit met oog' flower buds of different sizes were selected for the examination of the reduction division in egg mother cells. Photo $1^{\mathbf{1}}$) shows the correlation between bud sizes and various division stages.

For chromosome counts in somatic tissue the tips of the lateral roots ($\pm \mathbf{1 m m}$ thick), and the tips of very thin secondary lateral roots ($\pm 0.5 \mathrm{~mm}$ thick) are useful. The very thick adventitious roots usually have no divisions. Brown root tips have no divisions either. White root tips are an indication of good growth and corresponding cell divisions. In plants kept very wet, these white tips are mostly absent, but one can obtain them by knocking the plants out of the pots and replacing them. Thereafter the soil must be kept rather dry for one or two weeks. In this way the growth of new rootlets is stimulated.

The time of day of selecting anther material seems to be of minor importance. Although it is generally accepted that meiosis in pollen mother cells takes place mostly in the morning hours, very good division stages have frequently been found in anthers, selected in the afternoon. Selecting the root tips can take place at any time of the day.

[^0]case, the certainty about the exact number is disputable. To avoid these difficulties, one can give a pretreatment to the subject with a substance of which the action is twofold: first, destroying the spindle figure, by which procedure the chromosomes are mostly spread and can be brought in one plane by pressing, and secondly, contraction. Some of these substances which are known, are: colchicine (5), 8-hydroxyquinoline (42, 52), a-bromenaphthalene (32) and paradichlorobenzene (34).

The chromosomes of Cyclamen species with a low number are relatively long and mostly in strong confusion (see photo 2), whereas in species with a large number the chromosomes are relatively short, but lay very closely together (see photo 3). These facts make correct chromosome counting very difficult. Therefore, a pretreatment of the root tips was always applied. Previous experiments (30) showed that a treatment of 4-5 hours with 8 -hydroxyquinoline was the best, and it was therefore used throughout this study. The solution was prepared according to Tro and Levan: a 0.002 Mol solution (that is $0.29 \mathrm{~g} / \mathrm{l}$) in distilled water.

1.3. Fixation

Most of the time fresh material of root tips or anthers was used. Anthers were stained immediately. Root tips were hydrolised after a pretreatment. Particularly with the Feulgen staining, better results were obtained if no fixation was applied. This is in accordance with the observations of Hillary (23) and Gerstel (13). If the material had to be fixed, it was done in Carnoy's fixation fluid (5).

1.4. Staining

Trials were carried out with orcein, aceto-carmine, crystal-violet, lacmoid, 1. basic fuchsin and haematoxyline as staining solution. It proved that staining with aceto-carmine or orcein gave the best results in the case of anthers. With root tips, staining with 1. basic fuchsin after Feulgen, modified after de Tomast (7) gave very nice and well stained preparations. Thus, this method was preferred. The staining solutions were all prepared according to the formulae of Darlington and la Cour (5, 29); the dyes used were from G. T. Gurr, London.

1.5. Making the preparations

Anthers. - As mentioned in 1.3, no fixation was applied. After removing the sepals and petals with a needle, the anthers were carried to a clean slide. After adding a drop of aceto-carmine, the material was squashed and, after removing thick tissue, supplied with a cover slip. The preparation was then gently heated, pressed and the superfluous solution was blotted away. Thereafter it was ready for examination.

Root tips. - After selection, the root tips were put into an 8-hydroxyquinoline solution during 4-5 hours. Hydrolysis followed in 1 N HCl at $60^{\circ} \mathrm{C}$ for $10-12$ minutes. Then the tips were dried with blotting-paper and brought into small porcelain cups with a fuchsin solution, where the root tips remained over night. The next morning they were rinsed in tap water. The extreme tips were cut off with a razor blade and transferred to a slide in a drop of 45% acetic acid. After placing a cover slip, the tips were squashed by pressing and tapping softly with a wooden match stick. After blotting away the superfluous solution, the preparation was then ready for examination.

For a short preservation the cover slip was mounted at the edges with paraffin. In this way the preparation can be used for several weeks. If it was desired to make a permanent preparation, it was prepared by mounting in euparal according to Darlington and la Cour (5).

The usual period of hydrolysis of 4-6 minutes proved to be too short for a good Feulgen staining of Cyclamen root tips. This period should be 10-12 minutes for an intensive staining of the chromosomes. Besides, the customary time of staining in the fuchsin solution of 1 to 2 hours proved to be too short as well. A better effect was obtained with 4-16 hours.

Originally root tip preparations were made by the paraffin section method and the crystal-violet staining. This method however was soon abandoned, since the author found that for counting chromosomes the squash method was more preferable than the paraffin method. Not only is the squash method much faster, but the results are even better most of the time. This is in full agreement with Kappert (26, p. 108).

2. Microscopy and microphotography

2.1. Microscopy

For studying and counting chromosome numbers microscopes of Carl Zeiss, Jena and of Zeiss Opton, Oberkochen, were used. Both had phase contrast light. Both microscopes had $10 \times$ oculars, but the former had objectives of $10 \times$, $40 \times$ and $90 \times$, while the latter had objectives of $16 \times, 40 \times$ and $100 \times$.
If the chromosomes in the preparation were not laying in one plane or if they were covering each other, an attempt was made to spread them for the purpose of microphotography. This was performed by gently pressing the material with a sharp steel needle under the objectives $10 \times$ or $16 \times$. It demands a certain routine, but very excellent results can be obtained as shown in photos 4, 12, 14 and 27.

Although staining is not necessary for chromosome counting under phase contrast light, the author finds that staining benefits the observations. In some cases, for instance when the chromosomes overlap each other, it is easier to study under normal light conditions, because they are more easily distinguished from one another.

2.2. Microphotography

The microphotographs were made with a CARL Zeiss "Vertikal Kamera" in combination with a 100 Watt lamp and the microscope. "Replica" plates of the size 9×12 were used, and the negatives were developed with a normal hydrochinone developer.

The photographs were always made with phase contrast light and green filter, as these gave a sharp contrast. When an objective of $40 \times$ was used, the exposure time was 45 seconds and in the case of a $90 \times$ or $100 \times$ objective, the exposure time was 90 seconds.

CULTIVARS

1. Introduction

It was Heitz (21) who published for the first time, in 1926, some chromosome numbers of Cyclamen. He recorded for the C. persicum cult. hor. the haploid number of 42-44 and the diploid number of 88 . This cultivar belonged to the 'Splendens-Giganteum' type. In 1939 Glasau (14, p. 543) published the number $2 \mathrm{n}=98$ for a plant of the cultivar 'Salmoneum'. As the wild species had $2 \mathrm{n}=$ 48 , he supposed that the number would probably be $2 \mathrm{n}=96$. This last-mentioned number was proved to be correct by Kappert (26) in 1941 for 'Käthchen Stoldt', 'Leuchtfeuer' (from Schneider), 'Pregetter lachsdunkel' and 'Rokoko rot', and in 1951 by de HaAN (20). The latter counted the number 96 in cultivars with a red shade in their flowers, namely: 'Perle von Zehlendorf', 'Rood', 'Rood rococo', 'Rose van Aalsmeer' and 'Vuurbaak'. In the fringed and strongly fringed white ones, 'Wit fimbriata', 'Wit rococo' and 'Wit met oog fimbriata', the chromosome number was also $2 \mathrm{n}=96$ which must be considered as tetraploid.

The diploid number $2 \mathrm{n}=48$ was counted by Kappert (26) in 'Weisze Dame', 'Reinweisz' and 'Fenstercyclamen', by de Haan (20) in 'Sylphide', 'Sylphide cristata', 'Wit', 'Wit cristata' and 'Wit met oog' (purple and white, their crested forms and white with a crimson base). The cultivars investigated by de HaAN were all raised at the Horticultural Laboratory at Wageningen and were grown from commercial seeds.

The author counted chromosomes of the same cultivars as de HaAN (20) did and confirmed his results (photos 4 and 5).

2. Material

In the frame work of the International Registration of Cyclamen Cultivars by the Horticultural Laboratory at Wageningen, a large number of WestEuropean cultivars was brought together, in all 242 groups. This extensive collection was studied cytologically by the present author. Not all groups are different cultivars, however: several are identical, but raised by different growers. But, on the other hand, similar cultivar names do not always imply identical material. For instance, there are six German 'Leuchtfeuers' that look alike from all outward appearance, but one of them has an aberrant number of chromosomes. Another example is 'Mauve Queen': Blackmore \& Langdon's has $2 \mathrm{n}=48$, whereas Sutton's 'Mauve Queen' is tetraploid with $2 \mathrm{n}=96$. In this case the cultivars are morphologically different also: the first looks just the same as the Dutch 'Sylphide' ($2 \mathrm{n}=48$), the second is more like 'Cattleya' with $2 \mathrm{n}=96$. And speaking about 'Cattleya', the Danish one differs morphologically from other 'Cattleyas'. As it looks identical with the above mentioned 'Sylphide' and also has $2 \mathrm{n}=48$, this material apparently bears the incorrect name.

3. Cytology

All of the above 242 groups were investigated in 1956-1958 in addition to another 33 cultivars of Dutch origin and 3 French ones, which were investigated
in former years. Counts were all made of root tip material according to the technique described in Chapter II. In a majority of the cases from four to ten plants of each group were used for examination. In a few cases fewer plants were examined, but only when the group consisted of two or three plants. The chromosome numbers are based on various counts ranging between three and six complete metaphase plates for each plant. In the following sections these numbers will be described in detail. Table 1 gives a classification of these cultivars based on their somatic chromosome numbers. Below is a list of growers who contributed seeds or plants for the collection. The names of the growers are indicated in the tables 1 and 2 (see pages 10-14) with an abbreviated code for each according to country.

3.1. The external morphology of the chromosomes

The chromosomes in somatic metaphase appear as very small rods, about $1-2 \mu$ long. In shape and in size they are slightly different from one another, while centromeres are difficult to distinguish. Most Cyclamen chromosomes have a median or submedian, or an almost terminal or subterminal centromere. In the diploids two of the chromosomes have a secondary constriction, in this way forming two satellites [not mentioned by Glasau (14) and de Haan (20)], which are a little smaller than the chromosomes themselves and are egg-shaped. As this secondary constriction is a very deep one, the satellites mostly appear in squash preparations as if connected to the chromosome by a very thin chromatin thread, or as "fragments" (see photo 4). Very often, in the middle stage of the somatic metaphase, two of them are divided into two parts, although the other chromosomes and satellites are not yet in longitudinal division (see photo 6). Another remarkable fact is, that one can see very often that a satellite seems to be attached to the middle of the side of a chromosome, as shown in photo 7.

There is no difference between the chromosomes of the diploids and those of the tetraploids. However, the satellite chromosomes are four in number in the tetraploids (see photo 5). In the diakinesis, the stage in which the chromosomes are laying in pairs, called bivalents, there are 24 and 48 bivalents, respectively. Univalents or multivalents have never been observed, except in artificial triploids. An attempt was made to study the chromosome pairing, which however, was rather difficult as the chromosomes in meiosis are even smaller than those in mitosis and have the tendency to accumulate.

3.2. Haploids and hemiploids

It is a well known fact that on rare occasions some plants may originate with a haploid number of chromosomes in their somatic tissue. Often this accompanies polyembryony. Kappert (26) for instance found haploids in twin seedlings of flax and refers to other examples in rye, rice, grasses and potato. However, to the author's knowledge there is no report in the literature of the discovery of haploid Cyclamen with 24 chromosomes in the somatic tissue. Kappert (26) examined several twin seedlings of Cyclamen but did not find any haploid. After many years of investigation the author has never found a haploid Cyclamen either and therefore is of the opinion that haploids probably do not exist in diploid Cyclamen.

On the other hand, hemiploids, tetraploids with half the complement of chromosomes, have been reported. Kappert (26) mentions that the salmon
pink C. persicum parviforum (also called 'Neurosa', 'Neurosa von Reichart') has 48 chromosomes in its somatic tissue and was originally discovered in a group of 'Neurosas' with $2 n=96$! Another real hemiploid with 48 chromosomes in the somatic tissue was found among tetraploid plants named 'Kiel'. In both cases the plants were fertile.

In 1956 the author discovered within a group of 'Rosa von Marienthal' a plant with smaller flowers and thinner flower stalks than are normally found in this cultivar. Examination of the root tips revealed a chromosome number of 48, whereas the other plants had 96 chromosomes. Artificial pollination did not result in fruits and unfortunately the plant was lost.

In 1957 a Dutch grower presented to the Wageningen Laboratory of Horticulture a salmon scarlet plant which had a typical dwarf growth, very small leaves, flowers only slightly larger than the wild type and very short and thin flower stalks. The anthers contained hardly any pollen and all attempts of pollination failed. This plant had 24 chromosomes in pollen mother cells and 48 in root tip cells, whereas comparable scarlet flowering cultivars had 48 and 96 chromosomes, respectively.

Since several million Cyclamen are raised every year, undoubtedly there are many more hemiploids in existence, but in practice they are nearly always discarded, because they are plants with little or no commercial value to the grower. The only known positive case in which a breeder recognized something of value is the discovery by Reichart of the hemiploid 'Neurosa'.

List of growers who supplied the examined cultivars (see tables 1 and 2)

Table 1. Chromosome numbers of West-European Cyclamen cultivars

Table 1. Chromosome numbers of West-European Cyclamen cultivars

France	Germany	The Netherlands	Switzerland
Blanc H	Butterfly F Erika B Goldlachs N Kirschlachs B Lachs mit weiszem Rand B Pfirsichblüte T Reinweisz B,M Reinweisz lang Su Silberlachs \mathbf{N}	Anneke T Barbarossa T Lodder strains 18 numbers L Ridson lila R Ridson rose R Ridson wit R Sonja T Sylphide T Willie T Wit T Wit cristata T Wit met oog T Wit met oog cristata T	Reinweisz
	Lachsscharlach B		
$\begin{array}{lr}\text { Carmin } & \mathrm{E} \\ \text { Rose fonce } & \mathrm{H} \\ \text { Vermillon } & \mathrm{E}, \mathrm{H}\end{array}$			Helvetikum lachs M Helvetikum rosa \mathbf{M}
	Andenken an Gottlieb Bubeck Bu Rot mit Lachsschein S Dunkelrot mit Silbersaum N		
	Lachshell \quad B		Gefranste M, S

Table 1. (Continued).

Table 1. (Continued).

Table 2. Diploid and tetraploid chromosome numbers in equivalent Cyclamen cultivars

	Austria	Belgium	Denmark	England	France	Germany	The Netherlands	Switzerland
White $2 \mathrm{n}=48$	Reinweisz S	Zilverwit T	$\begin{array}{ll} \text { Reinweisz } & 0 \\ \text { Weisz no. } 5 & \mathrm{R} \end{array}$	White $\underset{\text { Giant White B }}{S}$	Blanc \mathbf{H}	Reinweisz Reinweisz lang Su	Wit Wit cristata $\frac{T}{T}$	Reinweisz
2n=96	Reinweisz H			White M		Käthchen Stoldt reinweisz $\quad \mathrm{S}, \mathrm{Su}$	Wit T	
White with crimson base $2 \mathrm{n}=48$		Wit oculatum \mathbf{T}					Wit met oog T	
$2 \mathrm{n}=96$	Weisz mit rotem Auge H		Aase, rosa mit Øje R Weisz mit Auge $(2 n=92)$ 0	White with crimson base S		$\begin{aligned} & \text { Weisz mit } \\ & \text { Auge B, M, N, S } \end{aligned}$		Weisz mit Auge

3.3. Diploids

As already mentioned in section 1 (p. 7), de HaAN (20) investigated 13 Dutch cultivars and found 'Wit', 'Wit met oog', 'Sylphide', and their eventual crested forms to be diploid. The others were tetraploid. Today 62 cultivars, grown in The Netherlands have been studied and their results are the same with one exception, namely, a tetraploid white cultivar.

This latter exception also holds true for the Austrian 'Reinweisz' and for the German 'Käthchen Stoldt', as shown in table 2, while all white with crimson base cultivars ('Wit met oog'), except the Dutch and the Belgian one, are tetraploids.

For the moment, it is impossible to make certain which percentage of the total number of cultivars is diploid, as we do not know yet which cultivars are identical (see section 2, p. 7). However, about 20% of the cultivars grown in The Netherlands may be estimated to be diploid.

3.4. Triploids

Spontaneous triploidy in Cyclamen has not been described in literature, nor has any been observed in the investigated cultivars and in several large offsprings raised at the Horticultural Laboratory.

3.5. Tetraploids and aneuploids

As mentioned in section 1 all Dutch cultivars other than 'Wit', 'Wit met oog', 'Sylphide' were classified by de HaAn as tetraploid. This classification is principally correct. As one can see from table 1, however, the author found some exceptions. De RIDDER's 'Ridson Rose', a rosy-pink flowering cultivar, for instance, is diploid, while at LoDDER's nursery scarlet flowering 'Rex' Cyclamen as well as salmon and pink-rococo types are present with $2 \mathrm{n}=48$.

Exceptions on this classification were found also in the other, West-European cultivars. The remarkable English cultivars 'Firefly', intense salmon-scarlet, and 'Burgundy', violet, are diploid as well as the German salmon coloured 'Goldlachs', 'Silberlachs', 'Lachs mit weiszem Rand' and 'Kirschlachs'. The salmon coloured cultivars of the Belgian grower de Troyer are also diploid.

In 1957 root tips of some recently imported French cultivars were gathered at the nursery of the firm Eveleens. The first view in the microscope gave the impression that there were less chromosomes than normally present in tetraploids. Exact counts proved this opinion to be right; instead of 96 there were only 92 chromosomes in the somatic tissue of two of them (see photo 8). This number $2 \mathrm{n}=92$ corresponds with $\mathrm{n}=46$, counted during meiosis in anthers. Later, this aneuploid chromosome number was also found in 1 other French, 2 Swiss, 11 Danish and 27 German cultivars.

It is not likely that all these different cultivars originated from only one and the same aneuploid (see also section 4.1.2, p. 19). It is more acceptable to postulate that this chromosome mutation occurred at different nurseries.
In some cases both numbers $2 \mathrm{n}=96$ and $2 \mathrm{n}=92$ were found in groups, bearing the same name, but grown at different nurseries. These cases are mentioned in table 3. A good example is 'Leuchtfeuer': five German growers are raising an aneuploid form, but only one has this cultivar with $2 n=96$. No doubt that the latter is not identical to the first ones.

Table 3. Sources of German cultivars each of which have the number $2 \mathrm{n}=96$ and $2 \mathrm{n}=92$

Cultivar	$2 \mathrm{n}=96$	$2 \mathrm{n}=92$
'Lachsdunkel'	Mayer	Binnewies, Neske-Schenk, Strüve
'Lachshell' .	Binnewies	Mayer, Neske-Schenk, Strüve
'Leuchtendrot'	Binnewies, Stoldt	Mayer, Neske-Schenk
'Leuchtfeuer'.	SÜPTITZ	Binnewies, Mayer, Neske-Schenk, Stoldt, Strüve
'Neulachsrosa'	Stoldt	Strüve
'Reinrosa'	Binnewies	Neske-Schenk
'Viktoria'	Neske-Schenk	Binnewies

The fact is remarkable that all the Danish cultivars from Ohlsen are aneuploids with $2 \mathrm{n}=92$, while the other Danish cultivars are not. It can be hypothesized that the aneuploid ones have been raised from some plants imported from Germany.

Besides these aneuploids with a chromosome number of $2 \mathrm{n}=92$, others have been found. One plant of 'Lachsscharlach' (normally $2 \mathrm{n}=92$) showed the number $2 \mathrm{n}=90$. The number $2 \mathrm{n}=94$ was established in one plant of 'Dunkelrot mit Silbersaum' (normally $2 \mathrm{n}=96$), while this number was common for 'Andenken an Gottlieb Bubeck' and 'Rot mit Lachsschein'. One plant of 'Lachshell' (normally $2 \mathrm{n}=96$) showed $2 \mathrm{n}=95$ (see photo 9), whereas the same number was found in 'Gefranste' from both Moll (one plant) and Schwarz (several plants).

It is remarkable that no aneuploids were found in the large number of English, Dutch and Austrian cultivars nor have there been found any aneuploids between diploid cultivars.

3.6. Hexaploids and higher numbers

Glasau (14) recorded that 'Käthchen Stoldt' had about 130 chromosomes in somatic tissue; he supposed it to be some aneuploid form of a hexaploid. KAPPERT (26, p. 111) could not confirm this, as he counted only 96 chromosomes in this cultivar. The author's own examination confirmed that ' $K a ̈ t h c h e n$ Stoldt' has exactly 96 chromosomes in somatic tissue. Higher numbers than 96 have never been found in the cultivars, nor mentioned in literature, except by Glasau.

4. The Cytological background of the origin of some cultivars

4.1. Ancient cultivars

In the beginning of the last century C. persicum was only a collector's plant. Improvements in its culture (shortening of the growing period), better economical circumstances after 1850 and the development of new forms by breeding led to the success of the present-day Cyclamen (9). These new forms were brought about by colour variations (especially in the beginning) and mutations (salmon colour!), tetraploidy and gene recombinations.

The main period of colour variations, which started about 1739 and lasted until 1870, was a time of slow advance. According to Doorenbos (9), the catalogue of N. van KAMPEN, Haarlem, of 1739 mentioned three forms, which were white (with crimson base), rubicund and rosy, respectively. Other rosy
shades followed, but they did not bring real changes in colour. Thereafter during the years 1867-70 great progress was made. In England it was Wiggins, Isleworth, who especially introduced red forms as 'Rubrum', 'Oriflamme' and 'Firefly', the lilac 'Mauve Queen', the pure white 'Purity' and the first marginated Cyclamen, C. pers. 'Marginatum' $(9,45)$. H. Little, an amateur from Twickenham, exhibited in 1870 his 'Queen of the Crimsons' and 'Purpureum', while J. Welch brought 'Kermesinum', carmine-rose.

At the same time in Germany almost the same variations originated at the nursery of HaAge and Schmidt, Erfurt. They offered 16 different forms, among them: 'Flore Rubro', 'Lilacinum Grandiflorum', 'Marginatum' (!), 'Carmineum Superbum' and 'Kermesinum' (!).

It was about 30 years later that a real aberrant colour appeared: the salmon colour. It is remarkable that this new shade originated in 4 different places within 6 years: 'Salmon Queen' in 1894 with Sutton \& Sons, Reading, England; 'Ruhm von Wandsbek' in 1898 at Stoldt's, Wandsbek, Germany; 'Salmoneum' in 1900 at Fröbel's, Zürich, Switzerland and 'Giganteum Salmoneum' at Vacherot-Lecloufle's, Boissy-Saint Léger, France (45).

In the period before 1870 little or nothing is known about flower enlargement. But from 1870 until 1900 it is known that in England and Germany, Cyclamen with large flowers were sold at the market. From the first decade 'Giganteum' from Edmonds, 'Unicum' from Haage \& Schmidt, 'Universum' from Graff, and Müller's 'Splendens' are well known as giant forms (9, 45). From 1880 until 1900 a great number of cultivars with large flowers came into existence. Important cultivars of that period, which are still cultivated today, are Stoldt's 'Rosa von Marienthal', 'Leuchtend Dunkelrot', 'Käthchen Stoldt' and 'Ruhm von Wandsbek'.

4.1.1. The first tetraploids

Polyploidy has played an important role in the evolution of the genus Cyclamen. Thus one can expect that polyploidy has participated in the development of the cultivars too. It appears that even most of our present cultivars are tetraploid. It is difficult to say when or where the first tetraploid originated. As chromosome counts were not made in earlier centuries, of course, one never has full certainty about the chromosome numbers of these old cultivars. Yet it is possible to ascertain with fairly great accuracy in which period the first tetraploids came into existence. Going back into history, the following indications for the appearance of tetraploidy are at our disposal. The breeding data mentioned hereafter are according to Schneider and MaATSCH (45).
In 1907 KiAUSCH introduced the present-day cultivated 'Perle von Zehlendorf' and 'Rosa von Zehlendorf', which both are tetraploid. These were descendants from C. pers. f. splendens 'Salmoneum', raised by Fröbel, Zürich. From this cultivar, Glasau (14) in 1939 counted the chromosomes of a 40 -years-old plant and found the number of about 98 in somatic tissue. Where the wild C. persicum, the ancestor, has 48 chromosomes diploid (see Chapter V), this 'Salmoneum' of 1899 approached a tetraploid.

From 1881 until 1889 Stoldt, Wandsbek-Marienthal, raised the cultivars 'Rosa von Marienthal' (1881), 'Leuchtend Dunkelrot' (1882) and 'Käthchen Stoldt' (1889), which are still in existence today (although their habits have certainly been improved). In these cultivars the author established the number $2 \mathrm{n}=96$ in root tips.

As these still raised old cultivars are tetraploids, derived from narrowly related crosses (except 'Käthchen Stoldt'), one may almost be sure that the parents were also tetraploid, or at least one of them. As parents for 'Rosa von Marienthal' and 'Leuchtend Dunkelrot', Stoldt used some old forms of C. persicum and 'Splendens', a white with crimson base, raised by Müller, Dresden-Striessen, and put on the market in 1873. From this, one can assume that 'Splendens' must have been tetraploid.

The author found another argument for this supposition in MüLler's (36) report of his crossing work concerning his 'Splendens'. Speaking about one of the used cross parents of 'Splendens', namely 'Robustum' (synonym C.aleppicum and 'Unicum'), he reported as follows:
"Diese Sorte nahm die Befruchtungen anderer, schlankerer Varietäten des C. persicum niemals an, doch wirkte umgekehrt der Pollen derselben sehr kräftig auf andere Cyclamen persicum ein. Aus diesen Kreuzungen erzog ich meine ersten splendens, welche ich 1873 in den Handel brachte.

Dieses Befruchtungsverhältnis dem C. persicum gegenüber hat sich auch auf mein C. persicum splendens vererbt und scheint auch den verwandten C. persicum giganteum und Universum eigen zu sein, welche jedenfalls ähnlichen Ursprungs sind":

Thus it was not possible to fertilize 'Robustum' with pollen of other, slender(!) forms of C. persicum. But on the other hand, pollen of 'Robustum' "acted very strongly" upon those other C. persicum forms.

Müller now examined the same fertilisation relation with respect to C. persicum of his own 'Splendens' and suggests this to be characteristic too for 'Giganteum' and 'Universum'1).

In a crossing experiment made by the author with diploid and tetraploid Cyclamen cultivars (which will be discussed extensively in Chapter IV), the following was observed:

After pollinating diploid plants with pollen of a tetraploid, all plants, except a poorly growing one, produced fruits, whereas 55% of the pollinations succeeded in fruits. Selfings gave 33% fruit set. Thus pollen of a tetraploid "acts very strongly" upon a diploid.

After pollinating tetraploid plants with pollen of a diploid, only 14 of 24 plants produced fruits, whereas 5% of the pollinations succeeded in fruits. Selfings gave 56% fruit set. Thus in certain cases pollen of a diploid never acts upon a tetraploid, in other cases the results are poor at best.

Comparing Müller's experiences with the above mentioned findings of the author gives:

$\left.\begin{array}{ll}\text { C. 'Robustum' } \\ \text { C. 'Splendens' }\end{array}\right\} \times$ C. persicum	\rightarrow no results (MüLLER)	
tetraploid	\times diploid	\rightarrow no results, or very poor results (LeGRO)
C. persicum		

C. 'Splendens' \& \rightarrow very strong action (MÜLLER)\end{cases}\)

[^1]In view of:

1. this agreement;
2. the fact that 'Splendens' as a cross parent gave tetraploid descendants;
3. the gigas-character;
4. the fact that fertilization incompatibility in cultivated C. persicum has never been pointed out (38, p. 20), one must conclude that 'Splendens' (1873) and also that 'Robustum' (1863) were tetraploid Cyclamen. Very probably 'Giganteum' (1870) and 'Universum' (1871) were also tetraploids, but as Müller is not quite sure about their behaviour (and no other useful arguments are available), one must leave this question as it is.
There is just one point worthwhile mentioning. It is striking that all fringed cultivars, the so-called fimbriata-types, are tetraploid without any exception (see table 1). In 1827 fringed Cyclamen have already been described and it is not impossible at all that these old cultivars might have been tetraploid also. It is too speculative, however, to go farther into this point.
Summarizing, one may say that in the period from about 1863 until 1900 the chief source of the tetraploid parents of our present-day tetraploid assortment has originated. One of these parents was 'Splendens' and since it was used in crosses by several growers, it played a very important role in the development of this tetraploid assortment.

4.1.2. The first aneuploids

Stoldt selected in 1898 his 'Ruhm von Wandsbek' as a salmon pink mutation from 'Rosa von Marienthal', light rose. It was established in the research herein that the colour mutation was coupled with a chromosome mutation.
'Rosa von Marienthal' \rightarrow 'Ruhm von Wandsbek' (Stoldt, 1898)

$$
2 \mathrm{n}=96 \quad \rightarrow \quad . \quad 2 \mathrm{n}=92
$$

And later on:
'Ruhm von Wandsbek' \rightarrow 'Rosa von Wandsbek' (Stoldt, 1910) $2 \mathrm{n}=92 \quad \rightarrow \quad 2 \mathrm{n}=92$

This 'Ruhm von Wandsbek' of 1898 is very probably the first aneuploid in Cyclamen. The most evident possibility is that 4 homologous chromosomes were lost, thus 'Ruhm von Wandsbek' should be a nullisome. Another possibility is the loss of two pairs of homologous chromosomes, in which case it would be a double monosome. To suppose that 4 non-homologous chromosomes disappeared, is the least acceptable possibility.

Another old aneuploid cultivar is 'Leuchtfeuer'. It is not certain how 'Leuchtfeuer' came into existence. According to Schneider and MaAtsch (45, p. 19) it originated at Dlabka's, Berlin-Zehlendorf in 1915, probably from the cross 'Perle von Zehlendorf' $(2 n=96) \times$ 'Dunkelrot' $(2 n=92)$. If this is correct, it is believable that the hybrid $(2 \mathrm{n}=94)$ has extruded the 2 chromosomes of 'Perle von Zehlendorf', which were without partner. Anyway, selection in 'Leuchtfeuer' led to another aneuploid cultivar:
$\begin{aligned} \text { 'Leuchtfeuer' } & \rightarrow \text { 'Lachsscharlach' (BinNewIEs, 1922). } \\ 2 \mathrm{n}=92 & \rightarrow 2 \mathrm{n}=92\end{aligned}$

4.2. Recent cultivars

From the beginning of this century until now a very large number of cultivars has been produced by several breeders. In 1950 Doorenbos (9) gave a list, in which among others, 160 fancy names, given since 1900, are mentioned. But the number should be much larger, because for example not all the fringed Dutch cultivars are recorded and, of course, neither are those which originated after 1950. It is beyond the scope of the present paper to discuss the origin of all the cultivars. Only the origin of a few well-known cultivars will be retraced with respect to their chromosome numbers.

Schneider and Maatsch (45) mention the way of origin of several cultivars. Some of them originated from crosses, others from selections. A cytological examination of the parents and their descendants now gives the possibility to control the exactness of the described way of origin. Some interesting examples of agreement of data found in the literature and chromosome counts made by the author are as follows:
'Rosa von Wandsbek' \times 'Ruhm von Wandsbek' \rightarrow 'Neulachsrosa' (Stoldt, 1933)

$$
2 \mathrm{n}=92 \quad \times \quad 2 \mathrm{n}=92 \quad \rightarrow \quad \rightarrow \quad 2 \mathrm{n}=92
$$

It is noticed that the material obtained from StoLnt under the name 'Neulachsrosa' in table 1 was not the original cultivar. Within parentheses he mentioned the name 'Hellachs'. The 'Neulachsrosa' obtained from Strüve is the correct one, ($2 \mathrm{n}=92$).
'Lachsscharlach' \times 'Leuchtfeuer' \rightarrow 'Orange' (Binnewies, 1934)

$$
2 \mathrm{n}=92 \quad \times \quad 2 \mathrm{n}=92 \quad \rightarrow 2 \mathrm{n}=92
$$

'Reinweisz' \times 'Lachs mit weiszem Rand' \rightarrow 'Kirschlachs' (Binnewies, ?)
$2 \mathrm{n}=48 \times 2 \mathrm{n}=48 \quad \rightarrow \quad 2 \mathrm{n}=48$
'Lachshell' \times 'Neurosa' \rightarrow 'Apfelblüte' (Binnewies, 1948)
$2 \mathrm{n}=96 \times 2 \mathrm{n}=96 \rightarrow 2 \mathrm{n}=96$
The origin of Braukmann's 'Flamingo' as recorded by Schneider and Maftsch poses a remarkable problem for a cytologist. According to them, its origin is as follows:

$$
\begin{array}{cl}
\text { 'Flamme' } \times \text { 'Leuchtfeuer' } \rightarrow \text { 'Flamingo' (BrauKmanN, 1929) } \\
2 \mathrm{n}=? \times 2 \mathrm{n}=92 \quad \rightarrow 2 \mathrm{n}=92
\end{array}
$$

It was impossible to count the chromosomes of 'Flamme' because it is no longer available, but since all its descendants are diploid (see the last paragraph of this section), one must conclude that 'Flamme' was also diploid. This means that the number of chromosomes of 'Flamme', which had been brought into the zygote, must have been doubled, followed by a chromosome loss. It is quite obvious to suppose that the two lost chromosomes are those of the doubled set of 'Flamme'.

This then would be the first known case in Cyclamen of a diploid \times "aneuploid tetraploid" cross, which resulted in an "aneuploid tetraploid" descendant.

About the origin of the diploid salmon shades, the following can be said: LODDER informed the author personally that his so-called LODDER-strains (18 more or less different types) originated from some plants imported from Germany as 'Liebhaberssorte". As Braukmann's 'Goldlachs' and 'Silberlachs' (originating from 'Flamme') have the same chromosome number $(2 n=48)$ and are
morphologically similar with LodDER's strains, there is no doubt about the origin. All these diploid cultivars, including 'Kirschlachs' (Braukmann, 1936), 'Barbarossa' (Braukmann, 1939) and the cultivars of de Troyer, which are quite the same as the Lodder-strains (although de Troyer claimed they were bred by himself in 1938), must have the same ancestor, i.e., Braukmann's 'Flamme', raised in 1922. It is supposed that the diploid 'Lachs mit weiszem Rand' from Binnewies, which is almost identical with some of the above mentioned cultivars, also belongs to this group.

5. Consequences for breeding

Table 1 shows that most of the Cyclamen cultivars are tetraploid, while Wellensiek (55) proved their autotetraploid behaviour by a genetical analysis. It is this that makes breeding so very troublesome. Kappert (26) has made interesting calculations which illustrate these difficulties. Wellensiek (54, p. 775) says: "There is one result of general interest in our Cyclamen work to which I liketodraw special attention and this is the difficulty of breeding autotetraploids". And farther on: "It would undoubtedly be of enormous importance if our tetraploid varieties could be transferred into diploid condition and could be bred according to diploid methods, but for the moment"- 1952 - "it is uncertain whether this will be possible on a sufficiently large scale".

At this moment, seven years later, however, the opportunity has presented itself to obtain an assortment of diploids with the same colour variation as in our present tetraploid assortment. There are several possibilities which in combination will certainly lead to this purpose. These possibilities are:

1. Recognizing the diploid assortment by cytological examination of all known cultivars. So far, besides white, white with crimson base and purple there were found more than 10 other shades in salmon, rose, scarlet crimson, dark crimson, cherry-red and dark purple colours and moreover the nice diploid rose 'Rococo' (obtained from LoDDER), the latter giving the possibility of breeding other diploid rococo-types.
2. Selecting hemiploids by means of cytological examination of tetraploid offsprings (26).
3. Reducing the chromosome number by crossing diploids with tetraploids and crossing the obtained triploids with diploids, according to Kappert's method (26). Since in this way he obtained new colour shades in diploid Cyclamen, we may be hopeful about our 33 triploids (see next chapter).
4. Profiting from the greater knowledge of the genes concerning the flower colour, as in the results of earlier paperchromatographical investigations of Seyffert $(47,48)$ and the recent studies of van Bragt (1).
5. Crossing the available diploids and the newly obtained diploids with each other.

No practical obstructions arise when selecting large flowering types since large flowers are present in diploid as well as in tetraploid cultivars (10).

Summarizing it can be concluded that it is possible to carry out a well defined breeding project with the purpose to enlarge the diploid assortment, if the above mentioned possibilities are exploited in combination with each other.

CROSSES BETWEEN DIPLOID AND TETRAPLOID CULTIVARS

1. Introduction

In 1948 Wellensiek (58) started a series of crosses between diploid (2 n) and tetraploid (4 n) cultivars to study genetics and cytology of potential hybrids. The following crosses succeeded:
$2 n \times 4 n$
'Wit' \times 'Wit fimbriata' \rightarrow one F_{1} of 6 seeds
'Sylphide' \times 'Wit fimbriata' \rightarrow four F_{1} 's of $1,2,4$ and 45 seeds, respectively
'Wit cristata' \times 'Wit fimbriata' \rightarrow one F_{1} of 1 seed
$4 n \times 2 n$
'Perle von Zehlendorf' \times C. persicum \rightarrow one F_{1} of 1 seed.
In all these crosses cytological investigations were made by the present author. The data are recorded in table 4. Except in one case of probable hemiploidy all the F_{2} and F_{3} generations, raised from tetraploid F_{1} 's, were tetraploid too. In one diploid F_{2}, one case of spontaneous tetraploidy occurred.

The data in this table refer to six crosses $2 \mathrm{n} \times 4 \mathrm{n}$ giving 1 triploid F_{1} (2 plants) +3 tetraploid F_{1} 's (5 plants) +2 mixed diploid and tetraploid F_{1} 's (14 plants); one cross $4 n \times 2 n$ giving 1 tetraploid F_{1} (1 plant).

Genetical analysis of the consecutive generations by Wellensiek $(55,56)$ led to the conclusion, that some of the examined gene segregations were a direct evidence for an autotetraploid character in F_{1} and further generations; in the cross $2 n \times 4 n$ the egg cell, and in the reciprocal cross the sperm cell must have been unreduced or doubled after reduction.

2. EXPERIMENTS

For a cytological explanation of the obtained results, the above discussed material was too small. Therefore new experiments were conducted by the author.

It appeared at first that the castration method was not entirely successful, since some diploid F_{1}-plants came into existence, which were identical to the female parent. Furthermore, this method - that is removing the anthers with a pair of forceps just before the flowers open - took much time and was tedious. An indication for a simpler method was the fact that the anthers are connected with the base of the corolla. Therefore, when one removes the corolla, all the anthers are removed in one operation without the chance of tearing the anther tissue, as often occurred by castration with a pair of forceps. A castration experiment was conducted in 1953/54 in this way: 2,300 flower buds of the cultivar 'Donkerrood' were castrated by removing the corollas shortly before the flowers opened. The plants were placed in a greenhouse, isolated from other Cyclamen. Neither fruits (except two parthenocarpic ones) nor seeds were obtained. This method, therefore, proved to be fully reliable.

The crosses between 2 n and 4 n Cyclamen cultivars were started in the flowering season 1954/55. For the experiments, 24 (+ one control) plants 'Wit met oog', $2 \mathrm{n}=48$, and 24 (+ one control) plants 'Donkerrood', $2 \mathrm{n}=96$, were used. The female plants were placed in a greenhouse isolated from other

Table 4. Somatic chromosome numbers in consecutive generations from the crosses between diploid and tetraploid C.persicum cultivars made by Wellensiek. All plants not investigated died before they could be examined

Cross	F_{1}-plants			F_{3}-plants			F_{3}-plants		
2n $\times 4 n$	number	investigated	2 n	number	investigated	2n	pumber	investigated	2n
'Wit' \times 'Wit fimbriata'	4	$\left\{\begin{array}{l}1 \\ 3\end{array}\right.$	$\begin{aligned} & 48 \\ & 96 \end{aligned}$	$\begin{aligned} & 69 \\ & 14 \\ & 37 \\ & 43 \end{aligned}$	$\begin{aligned} & 10 \\ & 13 \\ & 35 \\ & 38 \end{aligned}$	48 96 96 96		,	
'Sylphide' \times 'Wit fimbriata'	2 1 3 10	2 1 3 $\left\{\begin{array}{l} 6 \\ \\ 4 \end{array}\right.$	72 96 96 48 96	$\begin{array}{r} 1 \\ 1 \\ 111 \\ 7 \\ 61 \\ 81 \\ 7 \\ 10 \\ 11 \\ 14 \\ 21 \\ 38 \\ 2 \\ 6 \\ 24 \\ 45 \end{array}$	$\begin{array}{r} 1 \\ 1 \\ 95 \\ 4 \\ 31 \\ 53 \\ 7 \\ 7 \\ 4 \\ 11 \\ 1 \begin{array}{r} 18 \\ 1 \\ 37 \\ 2 \\ 6 \\ 19 \\ 35 \end{array} \end{array}$	± 82 86 96 96 96 96 48 48 48 48 48 96 48 96 96 96 96	338 ${ }^{1}$)	279	96
'Wit cristata' \times 'Wit fimbriata'	1	1	96	112	67	96			
$4 \mathrm{n} \times 2 \mathrm{n}$									
'Perle von Zehlendorf' \times C. persicum	1	1	96	90	$\left\{\begin{array}{l}1 \\ 88\end{array}\right.$	48 96			

${ }^{1}$) Totaled number.
Cyclamen, whereas some male plants remained in an adjoining greenhouse, separated from the former. The castrations were carried out as described above. Throughout the experiments no open flowers appeared on the female plants. Since the experiments took place in winter time, there were no pollinating insects present. The flowers on the female plants were therefore left uncovered. Artificial pollinations were made 1-2 days after castration and repeated every 4-6 days. Most of the flowers received in this way 3 pollinations. A total number of 1,600 crosses was made and the results are recorded in table 5 .

The percentage of parthenocarpic fruits, obtained from the cross $2 n \times 4 n$ was very high. It is striking, however, that the reciprocal cross did not produce any parthenocarpic fruits at all! Besides, it was interesting to note that fruits

TABLE 5. Results from the cultivar crosses $2 \mathrm{n} \times 4 \mathrm{n}$ and reciprocal

Selfings and Crosses	Number of treatments	Parthenocarpic fruits		Fruits with seed		Seeds	
				total number	average number per fruit		
		number	\%			number	\%
'Wit met oog' (2n) selfed	55	0	0	18	32.7	982	54.5
'Donkerrood' (4n) selfed	25	0	0	14	56.0	137	9.8
'Wit met $\operatorname{oog}(2 \mathrm{n})$ ' 'Donkerrood' (4n)	900	424	47	68	7.6	138	2.0
'Donkerrood' (4n) \times 'Wit met oog' (2n)	700	0	0	34	4.9	121	3.5

of the $2 n \times 4 n$ cross, containing only one seed, were of normal size, while fruits of the reciprocal cross, containing one seed, were much smaller (see photo 10). It is noticed that, if no fertilization took place, the ovules would remain alive 2-4 months or even longer without dying, and that they very often formed pseudo-seeds. It is very likely that this great longevity of the ovules increases the parthenocarpic fruit set, as GORTER and VISSER (16) suggest for parthenocarpy in pears and apples.

3. Cytology

3.1. General

In the cross $4 n \times 2 n$ only triploids and tetraploids came into existence, however in the reciprocal cross triploids, tetraploids and also diploids arose, as shown in table 6. Since these diploids and also some of the tetraploids did not show a hybrid-character, they were not tallied in the total number of F_{1}-plants to obtain the number of true hybrids, as given in table 7. Although the percentage of successful crosses was higher for $2 \mathrm{n} \times 4 \mathrm{n}$ than in the reciprocal cross, the number of these true hybrids was equal for both cases, i.e., 7 hybrids $/ 100$ crosses.

Table 6. Total numbers of diploids, triploids and tetraploids in the F_{1}

Cross	$\begin{aligned} & \text { Number } \\ & \text { of } \\ & \text { seeds } \end{aligned}$	$\underset{\text { seeds }}{\text { Germinated }}$		$\begin{gathered} \text { Raised } \\ \begin{array}{c} \text { Fant } \\ \text { plants } \end{array} \end{gathered}$	$\underset{\mathbf{F}_{1}}{\substack{\text { Examined } \\ \text { plants }}}$	Diploid		Triploid		Tetraploid		
									number			
		number	\%			plants	\%	of plants	\%	$\begin{gathered} \text { of } \\ \text { plants } \end{gathered}$	\%	
$2 \mathrm{n} \times 4 \mathrm{n}$	138	80	57.6		73	73	10	13.7	8	11	55	75.3
$4 \mathrm{n} \times 2 \mathrm{n}$	121	77	63.6	70	69	0	0	26	37.7	43	62.3	

Table 7. Number of true hybrids (differing in flower colour from the female plant)

Cross	Number of crosses	Number of \mathbf{F}_{1}-plants	Triploid		Tetraploid		True hybrids per 100 crosses	
$2 \mathrm{n} \times 4 \mathrm{n}$	900	63	8	12.7	55	87.3	7	
$4 \mathrm{n} \times 2 \mathrm{n}$	700	48	26	54.2	22	45.8	7	

The relation of the fruits to the diploid, triploid and tetraploid F_{1}-plants was as follows:

```
'Wit met oog' \((2 \mathrm{n} \times 48) \times\) 'Donkerrood' \((2 \mathrm{n}=96)\) :
    1 fruit \(\rightarrow 5\) tetraploids
    4 fruits \(\rightarrow 4\) tetraploids each
    3 fruits \(\rightarrow 3\) tetraploids each
    4 fruits \(\rightarrow 2\) tetraploids each
16 fruits \(\rightarrow 1\) tetraploid each
    1 fruit \(\rightarrow 1\) tetraploid +1 diploid
    8 fruits \(\rightarrow 1\) triploid each
    1 fruit \(\rightarrow 3\) diploids
    2 fruits \(\rightarrow 2\) diploids each
    2 fruits \(\rightarrow 1\) diploid
'Donkerrood' \((2 n=96) \times\) 'Wit met oog' \((2 n=48)\) :
    1 fruit \(\rightarrow 5\) tetraploids
    3 fruits \(\rightarrow 4\) tetraploids each
    1 fruit \(\rightarrow 3\) tetraploids
    2 fruits \(\rightarrow 2\) tetraploids each
    2 fruits \(\rightarrow 5\) tetraploids +1 triploid
    1 fruit \(\rightarrow 2\) tetraploids +3 triploids
    6 fruits \(\rightarrow 1\) tetraploid +1 triploid each
    1 fruit \(\rightarrow 1\) tetraploid +2 triploids
    1 fruit \(\rightarrow 3\) triploids
    3 fruits \(\rightarrow 2\) triploids each
    4 fruits \(\rightarrow 1\) triploid each
```

The 10 diploids, mentioned in table 6 , were obtained from 5 fruits. The plants were identical to the female parents, except two. The latter showed a colour segregation as commonly occurs in heterozygous 'Wit met oog' plants. From the 69 tetraploid descendants from the $4 \mathrm{n} \times 2 \mathrm{n}$ crosses, 21 were identical to the female parents. They originated from 7 fruits. In both cases some of these mother-like F_{1}-plants originated together with true hybrids from one and the same fruit!

On the basis of these results one would assume that in some cases selfpollination must have occurred. Although the author is fully aware that errors are always possible, he will not accept this supposition. On the one hand, the castration method (removing the corolla) proved to be fully reliable, as has been pointed out above. On the other hand, there were never any open flowers with anthers on the female plants, whereas an accidental wrong pollination would have resulted in a number of fruits with a large amount of seeds. Therefore, the above mentioned descendants must have originated in another way than by a normal fertilization. This point will be discussed further in Chapter VI.

3.2. Chromosomes

The diploid and tetraploid F_{1}-plants did not show any cytological differences in comparison with the diploid and tetraploid cultivars. Aneuploids were not present. All the triploid F_{1}-plants had a chromosome number of $2 \mathrm{n}=72$. The meiosis in their pollen mother cells was very irregular. In early metaphase I some multivalents and univalents were often observed, sometimes associated with chromosome bridges, and in metaphase II chromosome numbers were found ranging from 30 to 42 (see photo 11).

Although the first two triploids, obtained by Wellensiek (54) in 1952, were completely sterile, in 1956/57 one partially fertile plant was found among 33 triploids. After artificial self-pollination this plant gave 6 seeds, from which

3 seedlings were raised. One showed the number $2 n=72$, one had $2 n=84$, without doubt; this is 6 times 12 and 7 times 12, respectively. The third plant showed the quite irregular number of $2 n=55$ (see photo 12). In all these cases 3 satellites were present, however most of the time they were visible as "fragments".

Selfing the above mentioned 33 plants for the second time in 1957/58, four of them produced $3,4,13$ and 20 seeds, respectively. From these seeds only 4 plants could be raised. Three of them had 72 chromosomes in somatic tissue, and one was too immature yet to be examined.

4. Possible explanations of the origin of the tetraploid F_{1}-PLANTS

4.1. Cytological

Since in the above mentioned crosses tetraploid descendants arose, the diploid partner must have contributed twice the haploid number of chromosomes to the zygote. To determine if meiosis irregularities may have been the cause of the origin of the tetraploids, cytological investigations were made. However, during several years of these investigations in diploid Cyclamen anthers, only on one occasion a tetraploid pollen mother cell was observed. The chance of this occurrence can therefore be estimated to be extremely small, perhaps 1 to 100,000 or even smaller.

In megaspore mother cells the first or second reduction division could be observed (see photo 13). The view was always quite regular. The number of about 35 megaspore mother cells in which the divisions could be determined, is however far too little for any conclusion.

Cytological examinations did not lead to an explanation of the origin of the tetraploid descendants.

4.2. Genetical

Cytological processes as reduction division and chromosome doubling have always genetical consequences. As the cytological investigations did not lead to an explanation, a determination of the genetical results of the crosses may give a solution of the problem. Before going into the subject, something about the genes of the cross parents should be mentioned.

The two most important genes, which affect the flower colour in Cyclamen, according to Wellensiek $(54,55,56)$ and Seyffert $(47,48)$, are:
W, responsible for general anthocyanin formation; $w w$ means no colour at all. S, in presence of W, responsible for the limitation of the crimson or purple colour to the base of the petals; ss gives completely coloured petals.

The female plants 'Wit met oog' were genetically different, i.e., some were WWSS, others WWSs. After self-pollination of the single male plant 'Wit met oog', used in the crosses $4 \mathrm{n} \times 2 \mathrm{n}$, the offspring segregated into 26^{\prime} 'Wit met oog' and 8 'Sylphide' (purple), thus closely approaching a $3: 1$ ratio. So the 'Wit met oog' male plant can be represented by WWSs.

The female and male plants 'Donkerrood' were homozygous WWWWssss. If the dominant gene S would have been present, this would have been observed directly as a different colour from the normal dark crimson.

For a genetical interpretation of the cross results, W has no value, because all hybrids will have W dominant. The observed segregations of the F_{1} 's of the crosses in reddish.white with crimson base and purple flowering plants, are the
result of the presence or absence of S. Henceforth the term "reddish" will be used for reddish white with crimson base.

The author's above mentioned crosses are therefore symbolized as:
(1) 'Wit met oog' \times 'Donkerrood' $=2 \mathrm{n} \times 4 \mathrm{n}=S S$ or $S s \times$ ssss;
(2) 'Donkerrood' \times 'Wit met oog' $=4 \mathrm{n} \times 2 \mathrm{n}=$ ssss $\times S s$.

The correctness of these symbolizations was established by the obtained triploids. In case (1) the triploid F_{1}-plants must be Sss, or Sss and sss (reddish and purple). Both types were observed, however not in any certain ratio since the mother plant material was heterogeneous. In case (2) the triploid F_{1}-plants must be Sss or sss and the segregation must approach 1:1 for the separate F_{1} 's as well as for the totaled progenies. This has been observed, namely:

14 reddish: 12 purple
(13)
:(13)
$c=0.4$

Since the $S S$ female plants will contribute in any case $S S$ into the zygote and the offspring will always be reddish, this type of plants will be left out of consideration in the following discussion.

4.3. Cytogenetical

Since crosses between diploid and tetraploid partners normally give only triploids, the occurrence of tetraploids must be the consequence of an abnormal course of events. The diploid partner undoubtedly contributes twice the haploid number of chromosomes in one way or another to the zygote. In general this is possible when either of the following occur:
A. Meiosis-abnormalities
B. Fertilization-abnormalities.

The different types of meiosis-abnormalities will be mentioned after Prakken and Swaminatan (43); the fertilization-abnormalities as being dispermy, endogamy or endospermal embryo development, according to NemEC (39), Tischler and Pascher (51) and Gustafsson (19), respectively.
A. Meiosis-abnormalities can be classified as:

1. Pre-meiotic disturbances by which the megaspore or microspore mother cells obtain the doubled chromosome number. A normal reduction division afterwards leads to diploid gametes.

The 9 or ${ }^{A}$ plants $S s$ give $S S s s$ megaspores or microspores, which give $S S, S s$ and $s s$ gametes in the ratio 1:4:1. Combination of these gametes with $s s$ gametes of the tetraploid partner gives an F_{1} of the type:

$$
1 \text { SSss: } 4 \text { Ssss: } 1 \text { ssss }=5 \text { reddish }: 1 \text { purple. }
$$

2. Meiotic disturbances in the first division by which the uninucleate embryo sacs or pollen grains obtain the unreduced number and by which the homologous chromosomes remain together, e.g. after fusion of two M II plates. The ρ and δ plants Ss give only Ss gametes, which give in combination with ss gametes of the tetraploid partner an F_{1} of the type:

$$
\text { Ssss }=\text { reddish. }
$$

3. Meiotic disturbances in the second division by which the uninucleate embryo sacs or pollen grains obtain the doubled number. The homologous chromosomes are separated and each chromosome is present twice in germ cells.

The q and of plants $S s$ give then $S S$ and $s s$ gametes, which give in combination with ss gametes of the tetraploid partner an F_{1} of the type:

1 SSss: 1 ssss $=1$ reddish: 1 purple.
4. Post-meiotic disturbances by which the reduced nuclei in the male or female gametes re-develop the diploid number of chromosomes. In this case the doubling of the chromosome set of the haploid gamete happens before, at or after the moment of fertilization, while the presence of the double chromosome set of the tetraploid partner may or may not be a stimulus for this chromosome doubling.

The $q_{\text {q or }}{ }^{\delta}$ plants $S s$ give then $S S$ and $s s$ gametes also, which give in combination with ss gametes of the tetraploid partner an F_{1} of the type:

$$
1 \text { SSss: } 1 \text { ssss = } 1 \text { reddish }: 1 \text { purple. }
$$

B. Fertilization-abnormalities.

The different cases by which the diploid partner can contribute twice the haploid number of chromosomes into the zygote, are:

1. Endogamy. - In the $2 \mathrm{n} \times 4 \mathrm{n}$ cross, endogamy - a fusion of 2 haploid embryo sac nuclei - before or at the fusion with the diploid gamete of the tetraploid partner, would give a 4 n zygote.

In O plants $S s$ the embryosac nuclei are either S or s. Fusion gives either $S S$ or $s s$ fusion products, which give in combination with $s s$ gametes of the tetraploid partner an F_{1} of the type:

1 SSss: 1 ssss $=1$ reddish: 1 purple.

2. Dispermy. - In the cross $4 \mathrm{n} \times 2 \mathrm{n}$, dispermy - fertilization of the female gamete by two male gametes - would give a 4 n zygote.

In ở plants $S s$, gametes are normally S or s. If fertilization would take place by two male gametes, there is no reason why an independant combination would not take place. This gives in combination with ss gametes of the tetraploid partner an F_{1} of the type:

$$
1 \text { SSss }+2 \text { Ssss }+1 \text { ssss }=3 \text { reddish }: 1 \text { purple. }
$$

3. Endospermal embryo development. - In the cross $2 n \times 4 n$ an embryo development from an endosperm cell would give tetraploid descendants, since the endosperm is $(\mathrm{n}+\mathrm{n})+2 \mathrm{n}=$ tetraploid.

In 9 plants $S s$ the embryo sac nuclei are either S or s. Fusion gives either $S S$ or $s s$ polar nuclei, which give after fertilization with ss second male nuclei endosperm and embryos of the type:

$$
1 \text { SSss }: 1 \text { ssss }=1 \text { reddish }: 1 \text { purple. }
$$

5. Discussion

Tetraploid progenies from crosses between diploids and tetraploids have been observed in different plant genera as Brassica (41), Campanula (17, 18), Petunia (28), Primula (4), Saccharum (3), and Solanum (27, 43, 53). Of these cases, only the crosses between diploids and autotetraploids in Brassica chinensis and in Campanula persicifolia are equivalent with those in Cyclamen persicum. In Petunia and Primula only the $4 \mathrm{n} \times 2 \mathrm{n}$ cross succeeded, whereas the other mentioned cases concern crosses between species. Some of the cases will be discussed together with the author's results in the following sections.

5.1. $2 n \times 4 n$

The genetical results of the $2 \mathrm{n} \times 4 \mathrm{n}$ crosses are given in table 8. The separate
F_{1} 's cannot be summarized since the female plants were either heterozygous or homozygous for S.

Table 8. Diploid \times tetraploid \rightarrow tetraploid F_{1}. Segregation of the F_{1} 's in reddish white with crimson base (reddish) and purple. The female plants (mp.) were not identical

| | 677 | 682 | 683 | 684 | 686 | 689 | 707 | 709 | 723 | 724 | 726 | 732 | 753 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Feddish | 2 | 3 | 15 | 3 | 1 | 3 | 1 | 1 | 2 | 5 | 2 | 4 | 1 |
| Purple | 0 | 0 | 2 | 0 | 1 | 2 | 0 | 0 | 2 | 0 | 0 | 1 | 0 |

It is probable that the F_{1} from mp. 683 - and perhaps the F_{1} 's from mp. 724 and 732 also - originated as a consequence of tetraploid megaspore mother cells (possibility A.1). Furthermore, there were segregating and non-segregating F_{1} 's. In the former one may conclude that the first reduction division occurred, thus possibility A. 2 had not taken place. In the case of non-segregating F_{1} 's very probably this happened also, but the small number of F_{1}-plants, or the homozygosity of the female parents may have prevented the outer perceptibility of the reduction.

Possibilities A.3, A.4, B. 1 and B. 3 may have occurred, since their effects are the same and since $1: 1$ segregations were observed. As it is impossible to decide the occurrence of these possibilities by genetical analysis, one cannot draw any conclusion, however.

Concerning the appearance of the first reduction division in general, the following can be said. BREMER (3) observed in Saccharum that the first reduction division always took place. The chromosome doubling occurred by endoduplication in either the chalazal tetrad nucleus (A.4) or in the chalazal dyad nucleus (A.3). Bergman (2) has examined in Hieracium also, that the first meiotic division took place in the usual way, while the second one failed to appear (A.3). Nishiyama et al. (41) also suggest that the first reduction division took place in Brassica and that doubling of the haploid set might occur in the early development of the 3 n embryos. Koopmans et al. (27, p. 115) do not believe that in Solanum unreduced egg cells are responsible for the tetraploid offsprings. "Normally reduced gametes are doubled afterwards, by some cause which is not clear", and: "The only explanation possible seems to us, that doubling of a reduced gamete occurs after pollen has entered the eggcell". The author cannot fully support this theory. In regard to Bremer's observations and the fertilization-abnormalities mentioned above, this is surely not the "only explanation possible". However in the author's opinion, Koopmans et al. are correct when they doubt the explanation of Propach, Ivanov, Ivanovskaja and Stelzner. They are speaking of unreduced egg cells, while, as Koopmans et al. mention (27, p. 114), the meiosis of the megaspore mother cells has not, or in any case, has been insufficiently examined and the explanations are based on data of pollen meiosis alone! Prakken et al. (43, p. 80 and p. 88) are also speaking about unreduced egg cells as origin of the tetraploid F_{1} 's in Solanum, although further on (43, p. 89) they suggest that the increased gametic chromosome number mainly depends on post-meiotic disturbances.

It is clear from the above that in general crossing a diploid $A a$ with a tetraploid aaaa, followed by genetical analysis of the offspring can decide, if the first reduction division whether or not occurred.

Concerning endogamy, the two synergids have to be considered as possible fusion partners with the egg cell. They are lying close together with the latter and have also the capacity of being fertilized. The latter fact is shown in a long list of observed synergid-fertilizations by Tischler and PasCher (51, p. 700701). With regard to the fusion possibility, Thomas (50) observed in embryo sacs of Rubus nitidoides nuclei-fusion in the egg cell region, whereby the "egg cell" got the double haploid number. Although further development of the "diploid" nuclei, thus originated, has not been traced yet, it is quite possible that they can be fertilized by pollen of a tetraploid partner. Such an origin of tetraploid descendants does not seem very likely, since such nuclei-fusions have been observed only once. One must not forget, however, that investigations about this subject are very scarce. Besides, the chance that tetraploid descendants are obtained from $2 \mathrm{n} \times 4 \mathrm{n}$ crosses in Cyclamen, is extraordinarily small. Since an ovary of a diploid Cyclamen cultivar contains approximately 160 ovules and since from 900 crosses only 55 tetraploid hybrids were obtained, this chance is $\pm 0.04 \%$.

It is not unlikely that the supposed fusion between egg cell and one synergid (or perhaps among the two synergids) is influenced by the gamete of the tetraploid partner, or by the normal fertilization of the secondary embryo sac nucleus; or that when passing through one of the synergids, the male nucleus may draw the nucleus of the synergid with it into the egg. Anyhow, in connection with the later discussed dispermic origin of embryos in the $4 \mathrm{n} \times 2 \mathrm{n}$ cross, as conformable "doubling mechanism", attention must be paid to the possible occurrence of endogamy.

Although endospermal embryo development occurs in nature, as Gustafsson (19, p. 33) reported, its is doubtful to suppose an origin of the tetraploid F_{1} 's of the $2 \mathrm{n} \times 4 \mathrm{n}$ crosses in this way, because one can expect such a development in the reciprocal crosses as well. But then the endosperm will be pentaploid and the endospermal embryo also. However pentaploid F_{1}-plants have never been observed.

In summarizing:
(1) one or some F_{1} 's may have originated as a consequence of tetraploid megaspore mother cells;
(2) in some cases, quite probably in all cases, the first reduction in the concerned megaspore mother cells took place, as was established by the segregating F_{1} 's from $\mathrm{Ss} \times$ ssss crosses;
(3) the process occurring after the first reduction division, by which the diploid $i+$ parent brought twice the haploid number of chromosomes into the zygote, could not be determined by genetical analysis of the F_{1} 's.

5.1. $4 n \times 2 n$

The genetical results of the $4 \mathrm{n} \times 2 \mathrm{n}$ crosses are given in table 9 . The separate F_{1} 's are too small as base for conclusions. It is allowed however to total them, since the female plants were identical ($s s s s$) and were crossed with one male ($S s$), although with the proviso that the F_{1} 's as a whole do not form a heterogeneous progression. This can only be decided in connection with a comparison of the observed and the expected segregations. The ratios which approach the observed segregations may be $1: 1,3: 1$, or $5: 1$. In all these cases the several F_{1} 's can be considered as forming a homogeneous progression at a 5%-chance level, although in the question of a $1: 1$ and $5: 1$ ratio it becomes doubtful.

A segregation approaching a $5: 1$ ratio can be expected when pre-meiotic disturbances (A.1) took place and led to tetraploid pollen mother cells. There is however a serious objection to accept such a course of events. A prone pollen grain of 'Wit met oog' occupies approximately $250 \mu^{2}$, an upright one $100 \mu^{2}$. As the surface of the stigma is about $17,700 \mu^{2}$, the approximate number of pollen grains lying in one layer on the stigma ranges between 75 and 175 , with an average of 125 . It is not likely that pollen grains from the 9th layer have a chance to participate in the fertilization. Then, in the case of the $4 \mathrm{~F}_{1}$-plants of mp. I261 and 1273 (only 3 are recored in table 9, since one did not flower), which originated from one fruit each, at least 4 diploid pollen grains in 1,000 haploid ones (8 times 125), or one in 250 must have been present. Moreover, these diploid pollen grains must then also have participated of the fertilization, which is certainly not usual. This consequence is however in contradiction with the cytological observations as mentioned in section 4.1, p. 26. An explanation of the origin of the tetraploid descendants by pre-meiotic disturbances (A.1) is therefore not acceptable.

The chance that the non-segregating F_{1} 's would have segregated if they were in larger numbers, is very great. Consequently the chance that the first reduction division failed in these cases is very small. Considering this supposition and the segregating F_{1} 's, the possibility A. 2 may be excluded as a general explanation.
Totaling the F_{1} 's on $1: 1$ base gives a segregation which deviates significantly. Possibilities A.3, A.4, and B.3, causing 1:1 segregating offsprings must therefore be rejected. This is in agreement with the author's cytological examinations. In the preparations of Cyclamen disturbances in the second reduction division were never observed. Endospermal embryo development did not occur because this would have given pentaploid F_{1}-plants, which were not observed. It is noticeable that Koopmans et al. (27, p. 114) also observed the same with respect to their diploid cross partners: "Neither in Solanum chacoense nor in S. phureja we ever found a dyad." Prakken et al. (43, p. 89) mention on this point: "The percentage of F_{1} plants with an increased number of chromosomes usually seems to be much higher than the percentage of dyads or larger pollen grains." Moreover GuStafsson (19, p. 18) declares that on account of meiotic disturbances this type of division leads probably to viable spores only on occasion.

Table 9. Tetraploid \times diploid \rightarrow tetraploid F_{1}. Segregation of the F_{1} 's in reddish white with crimson base (reddish) and purple. The female plants (mp.) were identical. $c_{x: y}$ means mean deviation/observed deviation in connection with an $x: y$ ratio. The recorded values have only a relative sense, except for the total. $\mathrm{P}_{\mathrm{x} \text { : }}$ means the chance that the observed ratio corresponds with an expected $x: y$ ratio

F_{1}	1255	1261	1272	1273	1275	1276	Total	Expected segregation
Reddish	1	4	1	3	4	3	16	154
Purple	1	0	1	0	3	0	5	54

The only possibility which then would remain to explain the tetraploid descendants is that of dispermy (B.2). The 3:1 segregation, which one can expect when dispermy occurs, is remarkably in agreement with the observed segregation, as table 9 shows.

Although dispermy is especially known in animals, dispermy in plants was already mentioned in 1910 by NEmEC (39, p. 437). Afterwards (40) he described this phenomenon for Gagea lutea in particular, whereby he often observed a triple fusion in the egg nucleus. Ishikawa (25, p. 295-297) also observed in the embryo sac of Oenothera a fusion of the egg nucleus with two male nuclei. He proposed "that the presence of excess nuclei is brought about by intrusion of two sets of sperm nuclei due to the attack of two pollen-tubes on a single embryo sac". He mentioned further that in angiosperms the entering of two or more pollen tubes into a single embryo sac happens sometimes and he enumerates 9 such cases. Gerassimova (12, p. 127) reports that dispermy can also be expected in Crepis capillaris. According to Michaelis (35, p. 444) the best way to explain an obtained triploid hybrid of the cross Epilobium hirsutum \times E. luteum is that another male nucleus of E. luteum has been supplied to the already fertilized hirsutum egg. Sharp (49, p. 347) mentions that "the fusion of two male gametes with the egg (dispermy) may possibly lead to triploidy in some cases". Glushchenko (15) proposes a polyfertilization to explain crosses made by him and other investigators in tomatoes, maize, wheat and Mirabilis jalapa. His observation of F_{1} 's, which showed characteristics of two male parents, supports the conception of the occurrence of dispermy in plants.

The appearance of dispermy in some plant genera and the suggestion that it also occurs in the $4 \mathrm{n} \times 2 \mathrm{n}$ crosses in Cyclamen, are not in contradiction with the fact that spontaneous triploidy (probably caused by dispermy) has never been observed so far. The reason may be that a fusion, giving a triploid zygote, seems to be extremely difficult since only 8 triploids originated from 900 crosses $2 n \times 4 n$. As an ovary contains approximately 160 ovules, the chances of such a fusion are 8 on $\pm 144,000$, i.e., 0.0056%. Besides, when a diploid plant is pollinated with haploid pollen, the concerned fusion depends on the occurrence of two pollen tubes in the embryo sac as well, which reduces these chances even more.

Moreover, it is quite probable that a certain influence of the plasma or egg nucleus is preventing in normal circumstances, i.e., after fusion of two equivalent haploid gametes, a fertilization by another gamete. In this connection, the formation of a cellulose membrane at the surface of the egg, the so-called fertilization membrane, is known. In order to bring about this membrane formation there must be a positively stimulating influence which is the reaction of a complete fertilization, i.e., a complete fusion of equivalent genomes. In the $4 \mathrm{n} \times 2 \mathrm{n}$ crosses, this preventing influence may be fully or partly disturbed by an incomplete fertilization of a $2 n$-egg nucleus by an n-male nucleus alone, by which the chance to fertilize is created for another male nucleus.

From the above it is clear that the hypothesis of Nemec - suggesting the origin of triploids from eggs, fertilized by two male nuclei - is certainly useful to explain the origin of the tetraploid descendants. The principle of fertilization by two male nuclei is the main point in this hypothesis. The author agrees with Ishikawa's view (25, p. 296): "In this respect, Nemec's view seems to be very ingenious, who substituted two male nuclei for the diploid germ nucleus" and
further on "Nemec's view seems to be the most natural one among several hypotheses"'!

In brief, the author supposes that the most probable course of events in the crosses $4 \mathrm{n} \times 2 \mathrm{n}$ was that:
(1) a preventing influence of the plasma or egg nucleus did not function by the incomplete fertilization of a 2 n -egg nucleus with an n -male nucleus;
(2) if occasionally another pollen tube entered the embryo sac, its first generative nucleus fused also with the egg nucleus as consequence of the above mentioned circumstance (dispermy);
(3) the combination possibilities of the different gamete types (S and s) were based on independent distribution, which leads to a $3: 1$ segregation of the zygote types.
It must therefore be considered as being the most probable that in the $4 n \times 2 n$ Cyclamen crosses, dispermy is the mechanism causing tetraploid descendants.

6. Consequences for breeding

The crosses between diploid and tetraploid cultivars gave for the greatest part tetraploid descendants and these have no value with regard to the desired enlargement of the diploid assortment. The obtained triploids may have value in this connection. However, this point has been discussed already in Chapter III, p. 21 .

CHAPTER V

SPECIES

1. Introduction

Since 1926 the Cyclamen species have been the subject of cytological investigations. It was $\operatorname{HeItz}(21,1926)$, who made the first chromosome counts, while later on $\operatorname{Glasau}(14,1939)$ and de Haan $(20,1951)$ examined the chromosomes
T'able. 10. Survey of chromosome counts in Cyclamen species in comparison with counts by De Haan (20)

Species	De Haxa		Legro	
	n	2 n	n	2n
C. balearicum	10	20	10	20
C. repandum	10	20	10	20
C. creticum .	11	22	11	22
C. cilicium .	15	30	15	30
C. coum .	15	30	15	30
C. cyprium	-	30		30
C. libanoticum ${ }^{\circ}$	15	30	15	30 30
C. pseudibericum.	-	30	15	30
C. neapolitanum .	17	34	17	34
C. purpurascens	17	34	17	34
C. persicum . .	24	48	24	48
C. africanum .	-	${ }_{88}^{68}$	34 $42-43$	84, 85, 86
C. graecum .	-	84-85	42-43	$84,85,86$ 96
C. rohlfsianum .	-	-	68	136

The most occurring synonyms are: for C. repandum, C. vernale; for C. coum, C. orbiculatum and C. yernum; for C. neapolitanum, C. hederaefolium; for C. purpurascen s, C. europaeum.
of most of the species. Kappert $(26,1941)$ investigated only C.persicum. During 1951-1959 the author verified and continued the counts of DE HAAN. The results of these investigations are given in table 10 , together with the numbers found by de Haan. The counts of Heitz and Glasau will be left out of discussion, since de Haan proved most of their counts to be incorrect.

De HaAN (20) published extensively about his cytological investigations, so only a summary will be given in this chapter, completed as far as possible with some new details.

2. Material

The origin of the investigated material, consisting of 14 species and some varieties, present at the Horticultural Laboratory at Wageningen and collected by Wellensiek with the aid of the Ministry of Agriculture, Foreign Service, is given in table 11.

Table 11. Origin of the investigated Cyclamen species

Species	Source	Donated by
C. africanum	Algeria	Dr. A. Dubois, Algiers (Algeria)
C. balearicum	Balearics	Bot. Inst. at Barcelona (Spain)
C. cilicium	Turkey	Firm Van Tubergen, Haarlem (The Netherlands)
	Turkey	Mrs. D. E. Saunders, Farnsborough, Kent (Eng.)
C. coum	Turkey	Agr. Inst. at Ankara (Turkey)
C. coum varjeties .	cultivated	Firm van Tubergen, Haarlem (The Netherlands)
C. creticum	Crete	Dr. Th. Raptopoulos, Tessaloniki (Greece)
C. cyprium	Cyprus	Mr. C. C. Mountfort, Wimborne (England)
C. graecum	Greece	Dr. Th. Raptopoulos, Tessaloniki (Greece)
C. libanoticum .	?	Firm Van Tubergen, Haarlem (The Netherlands)
C. neapolitanum . .	Greece	Dr. Th. Raptopoulos, Tessaloniki (Greece)
C. neapolitanum var. album.	cultivated	Several collections and nurseries
	Israel	Mr. E. Vega, Tel Ganim (Israel)
	Tunisia	Serv. de l'Horticulture, Rabat (Tunisia)
	Cyprus	Dutch Ambassy, Cyprus
C. pseudibericum. .	?	Firm Van Tubergen, Haarlem (The Netherlands)
	Turkey	Dr. H. Demiriz, Istanbul (Turkey)
C. purpurascens	Switzerland	Own collection
	Yugo-Slavia	Fac. of Agr. \& Forestry, Zagreb, (Yugo-Slavia)
C. repandum	Italy	Italian Trade (Italy)
	Rhodos	Mr. V. Cohen, London (England)
C. repandum var. album	cultivated	Firm Van Tubergen, Haarlem (The Netherlands)
C. rohlfsianum . . .	Cyrenaica	Mr. C. C. Mountfort, Wimborne (England) Dr. Fletcher, Woking (England)

3. Cytology

$2 \mathrm{n}=20$ (photo 14), $\mathrm{n}=10$.
C. balearicum; C. repandum, C. repandum var. album.

These species have $4 \frac{1}{2}-6 \mu$ long chromosomes, which can be grouped into 4 chromosomes with median centromeres, 4 with submedian, 8 with subterminal and 4 of which the position of the centromeres - subterminal or terminal - is not clear. Satellite chromosomes, as found in some other species, have never been observed.

A drawing of the metaphase chromosomes of C. repandum is given in fig. 1. The chromosomes were examined in a very clear mitotic division, which showed 5 groups of 4 closely similar chromosomes.

Fig. 1. Mitotic metaphase chromosomes in C. repandum $(2 n=20)$ grouped according to the position of the centromeres, with the average measurements of the chromosome arms in each group. The average length of the chromosome arms of the first group has been fixed on the base of 100 units
$2 \mathrm{n}=22$ (photo 15), $\mathrm{n}=11$.
C. creticum.

The chromosomes are like those of the above mentioned species. Instead of 8 chromosomes with a subterminal centromere there are 10 in C. creticum.
$2 \mathrm{n}=30$ (photo 16), $\mathrm{n}=15$.
C. cilicium; C. coum, C. coum var. coum, C. coum var. orbiculatum (and their white and pink flowering forms); C. cyprium; C. libanoticum; C. pseudibericum.
The author was able to examine both meiosis and mitosis of all these species, except the meiosis of C. cyprium, since the flower bud material was very scarce. Also a white flowering form of C. cilicium obtained from Mrs. D. E. Saunders and found by Mr. E. K. Balls in Turkey, has been investigated.

The species have $3 \frac{1}{2}-5 \mu$ long chromosomes, and possess the same type of centromeres as C. repandum. It is remarkable that from this group only C. cyprium has 2 satellite chromosomes. The fairly large satellites themselves are most of the time present as "fragments", as one can see on photo 17.

$$
2 \mathrm{n}=34 \text { (photo } 18 \text {), } \mathrm{n}=17
$$

C. neapolitanum, C. neapolitanum var. album; C. purpurascens.

Especially long chromosomes are not present, their size ranges between 2 and 3μ. However, 4 chromosomes are a little longer than the other ones. They show the same types of centromeres as mentioned above for C. repandum. In root tips of C. neapolitanum, once a cell with 35 chromosomes was found. Although many root tips were examined in this group with 34 chromosomes, satellite chromosomes were not found in C. neapolitanum; however, they were always present in C. purpurascens (see photo 18).

During metaphase II of the meiosis in both species, a noteworthy grouping Meded. Landbouwhogeschool, Wageningen 59 (8), 1-51 (1959)
of the chromosomes was often observed, in which the chromosomes sometimes formed chainlike figures (see photos 19 and 20). The connections between the chromosomes appeared more often as a pair of threads, but occasionally as a single thread. This "secondary association" in metaphase II has been observed by de Haan (20) in C. repandum and C. coum (syn. C. orbiculatum), as well as by the author in other species, described below.

$$
\begin{aligned}
& 2 \mathrm{n}=48 \text { (photo } 4 \text {), } \mathrm{n}=24 . \\
& \text { C. persicum. }
\end{aligned}
$$

There is no difference between the chromosomes of the wild C. persicum and those of the cultivated diploid C. persicum. As the chromosomes of the latter have been discussed in Chapter III, section 3.1., no further description will be given here.

$$
2 \mathrm{n}=68 \text { (photo } 21 \text {), } \mathrm{n}=34 .
$$

C. africanum.

The chromosomes of C. africanum are very similar in shape to those of C. neapolitanum, however C. africanum has 4 satellite chromosomes and C. neapolitanum has none. The meiosis view is quite the same as that of \boldsymbol{C}. neapolitanum, as one can see from photos 22 and 23.
$2 \mathrm{n}=84-86$ (photo 24), $\mathrm{n}=42,43$.
C. graecum.

De Haan (20) could not ascertain the definite chromosome number in C. graecum, but supposed the somatic number to be 84 or 85 as the most probable. Exact counts of the present author proved that instead of one chromosome number, 84 or 85 , there are three numbers, namely, 84,85 or 86 . Since also the number $2 \mathrm{n}=136$ occurs (see last paragraph of this section), which is 8×17, it is supposed that the proper number is $2 \mathrm{n}=85$, that is 5×17. Plants with $2 \mathrm{n}=84$ and 86 may have originated from plants with $2 \mathrm{n}=85$, which formed germ cells having either $n=42$ or 43 . During meiosis these haploid numbers were found in metaphase II of plants with $2 \mathrm{n}=85$, whereas one or more univalents could be observed in metaphase I.

The chromosomes of this species only measured $1-1 \frac{1}{2} \mu$ and it was extremely difficult to determine the exact number of satellite chromosomes. Occasionally 5 satellites were found, but on the other hand less than 5 were also observed.

Glasau (14) described a species C. gaidurowryssii (?) - one plant - which was very similar to C. graecum. He counted the number $2 \mathrm{n}= \pm 162$ in the root tips. From the botanical garden at Kiel, Germany, seeds of this Cyclamen were obtained, from which three seedlings were raised. The author established the number $2 \mathrm{n}=84$ in root tips of all three plants. Since anaphase chromosomes in Cyclamen sometimes have the tendency to remain together for a short period before they separate to the poles, as photo 25 shows, very probably Glasau counted such a group of anaphase chromosomes and in this way obtained almost twice the true diploid number.
$2 n=96$ (photo 26).
C. rohlfsianum.

De HaAN (20) was not able to study C. rohlfsianum. Glasau (14) mentioned $2 \mathrm{n}=72$ for this species. This number is not in agreement with the author's counts. The author consistently counted $2 \mathrm{n}=96$ from many root tips of corms from two different sources.
The chromosomes are $1-2 \mu$ long and are rather similar to those of C. persicum. Unfortunately the plants did not flower, so that the meiosis could not be studied.

$$
2 \mathrm{n}=136 \text { (photo } 27), \mathrm{n}=68 .
$$

C. graecum.

In 1952, when meiosis studies were carried out in a group of C. graecum, the haploid chromosome number of 68 was determined in anther material of a certain imported collection, consisting of 9 corms. This surprising chromosome number tallied with the diploid number of $2 \mathrm{n}=136$ in root tips. The chromosomes in the metaphase stage of both meiosis and mitosis are very similar to those of C. graecum with $2 \mathrm{n}=84-86$.

4. Origin of the chromosome numbers

During evolution many basic chromosome numbers in plant genera have been altered. This also may have been the case in Cyclamen as one can see from the 9 different chromosome numbers in this genus. Such modifications can be brought about by chromosome fragmentation, addition or loss, and also by polyploidy and hybridization. Usually polyploidy can be recognized the most easily as cause of the modifications. This is also the case in the genus Cyclamen. As polyploidy is also the most important cause of the varying chromosome numbers in this genus, it will be discussed first.

4.1. Polyploidy

Considering the species from a cytological point of view, it is not difficult to establish polyploidy. The 9 different chromosome numbers can be grouped into 3 polyploid series:

1. the numbers 20 (inclusive of 22) and 30 with the basic number of 10 ;
2. the numbers $34,68,85$ (including 84 and 86) and 136 with the basic number of 17 ;
3. the numbers 48 and 96 with the basic number of 24 .

The species which belong to the first and third series show no outer conformity as is commonly the case with diploids and their polyploid forms. In the second series one can observe not only a cytological relationship, but also a more or less close morphological relationship.

The first polyploid series. - At first sight one would conclude that the two species with $2 \mathrm{n}=20$ are diploids and the 5 species with $2 \mathrm{n}=30$ are triploids. This is however not very likely. De HaAN (20, p. 159) supposed that the species with 20 chromosomes were ancient tetraploids and those with $2 \mathrm{n}=30$ were ancient hexaploids, developed from an original type with 10 chromosomes. Thus it was postulated that the original basic number in Cyclamen was 5 . He based
Meded. Landbouwhogeschool, Wageningen 59 (8), 1-51 (1959)
this hypothesis on the observation of "secondary association" in C. repandum and C. coum (syn. C. orbiculatum). Indeed, the present author also observed on occasion a certain affinity between chromosomes in metaphase II. De Haan (20) also suggested that because of good self-fertility in the species with $2 \mathrm{n}=30$, they were hexaploids instead of triploids. This observation is in full agreement with the author's.

A third indication - and to the author's opinion the most important one that the basic number may be 5 , is the appearance of 5 groups of 4 almost similar chromosomes in the species with $2 \mathrm{n}=20$, as shown in fig. 1. In the same way, although with some difficulty, the author was able to examine in C. pseudibericum groups of 6 rather similar chromosomes. The similarity of the chromosomes within each group of the latter species, however, is not as eloquent as in the species with $2 \mathrm{n}=20$. The differences within the groups themselves are also much more variable than in C. balearicum and C. repandum.

The second polyploid series. - Considering 17 as basic number for this series, the species with $2 \mathrm{n}=34,68,85$ and 136 are diploid, tetraploid, pentaploid and octoploid, respectively. The meiosis views of these species are uniform, although when the chromosome numbers increase, the size of the chromosomes decreases. The chromosomes, both in metaphase I and II, are most of the time situated radially in concentric circles. Except for this cytological relationship, and excluding C. purpurascens, there is also a morphological one sometimes, which is not true for the other two series. C. africanum $(2 n=68)$ especially looks like a real tetraploid in comparison to C. neapolitanum $(2 n=34)$. The former has very leather-like leaves and its flowers, flower stems, fruits and seeds are much larger than those of C. neapolitanum. C. graecum $(2 \mathrm{n}=85)$ is only slightly larger in size than C. neapolitanum; C. graecum with $2 \mathrm{n}=136$ however has much broader flowers than the latter species.

At first glance one might suppose that all the polyploids with basic number of 17 arose in the past from C. neapolitanum, however there are arguments to the contrary. First, the species in the case in question are completely intersterile. Second, all attemps failed to reconstruct the pentaploid C. graecum by crossing the diploid C. neapolitanum and the octoploid C. graecum. Third, C. neapolitanum has no satellites, whereas all the other species in this series have.

From the above evidence it is more acceptable to postulate that the presentday polyploid forms originated from one or more species, which are probably now extinct.

The third polyploid series. - With respect to its chromosome number, 2 n $=96$, one might consider C. rohlfsianum as a tetraploid from C. persicum with $2 \mathrm{n}=48$. The relationship of the former with C. persicum is, however, doubtful and consists only of a cytological one. With respect to its morphology it is much more related to C. africanum and C. neapolitanum. Therefore Schwarz (46, p. 278) presumed that C. rohlfsianum would have a chromosome number of $2 \mathrm{n}=68$! Indeed, after the first count the author thought that the chromosome number was 102 , which might have been a hexaploid form of $2 \mathrm{n}=34$, and thereby would classify it in the second polyploid series too. Further counts however proved that the number was consistently 96.

Thus, on the one hand there is a cytological relationship with C. persicum, on the other hand a morphological relationship with C. africanum. Besides, it is the only species of Cyclamen with long, projecting anthers, the origin of which cannot be traced and further is only present in the closely related North-

American genus Dodecatheon $(2 \mathrm{n}=44)$! C. rohlfsianum therefore occupies a particular place among the Cyclamen species. So far its origin cannot be determined. The probable conclusion, one can draw, is that it came into existence as a tetraploid from a species with 48 chromosomes, or that it is an aneuploid form from an extinct species with $2 \mathrm{n}=102$.
Speaking of C. persicum, DE HAAN (20, p. 162) said: "About the origin of C. persicum with 48 small chromosomes we are completely in the dark. The species is not only apparently unrelated to any species with a lower chromosome number, but it shows some characteristics (i.e.: fruit stems not coiled; anthers violet), which do not occur in these species. Its area of distribution consists of isolated parts, which points to high antiquity".
Undoubtedly C. persicum is descended from a species or form, whether extinct or not, with a lower chromosome number. It is obvious to assume that it originated as a tetraploid from a species or form with $2 n=24$, since the occurrence of polyploidy in the genus is quite normal. An origin of the number 48 by way of chromosome fragmentation, addition or loss from the other present-day species is certainly not acceptable, as also hybridization cannot give a clue to the origin of this number.
In considering the number 48 as a tetraploid from 24 , it is, of course, possible that it is an octoploid from $2 \mathrm{n}=12$. Since there is, however, a group of 4 instead of 8 chromosomes in C. persicum, which are clearly longer than the other ones, it is more acceptable to consider C. persicum as an auto-or allotetraploid. The fact that C. persicum normally functions as a diploid makes the latter suggestion the most likely.

4.2. Other ways of origin

In the previous section the hypothesis concerning the origin of the Cyclamen species from a primitive type with $2 \mathrm{n}=10$ was discussed and the origin of several chromosome numbers was explained by polyploidy.

Polyploidy however is not the entire explanation for the origin of the numbers 22,34 and the hypothetic number 24 , from which the number 48 must have been derived. De Haan (20, p. 161) assumed that fragmentation (6) of the large chromosomes led to other chromosome numbers. Indeed, in this way the numbers 22,24 and 34 could have been originated from the numbers 20 and 30, respectively. But the same result could have been obtained by chromosome addition as a subsequence of non-disjunction, thus by failure of separation of either paired chromosomes at meiosis or sister chromatids at mitosis, and their passage to the same pole. Such a case was reported once in C. neapolitanum where 35 chromosomes appeared instead of 34 in a mitotic metaphase. Nondisjunction was also observed several times during meiosis in C. purpurascens.

Moreover chromosome loss can give the numbers 22 from 24 and 34 from 36. During ancient times the chromosome numbers of 24 and 36 may have been the diploid and triploid predecessors of today's C. persicum $(2 \mathrm{n}=48)$. The evidence that chromosome loss occurs in Cyclamen without any disadvantageous consequences, is the appearance of aneuploids ($2 \mathrm{n}=90,92,94,95$) in tetraploid Cyclamen cultivars. It is however impossible to decide on the base of the present-day species, what process has taken place. First, because many forms are now extinct, which could only bridge the gaps among the species, even with the same chromosome number (20). Second, because the chromosome shape of the species may have been changed so many times during evolution, which is
more clearly understood after comparing chromosome photographs of C. repandum and C.persicum, for instance. Third, because the chromosomes of the species with $2 \mathrm{n}=34$ and higher are so small that it is very difficult and often impossible to recognize details, which could give some indication. One can therefore only vaguely suppose that the above mentioned numbers have originated by either fragmentation, addition, loss, or combinations.

Another process which can modify the chromosome number is hybridization. Crossing species with different chromosome number can give forms with another, new basic chromosome number. The more closely the parents are related to each other, as for instance in polyploids, the greater the chance is that the hybrids will be viable. Conversely the behaviour of hybrids, with respect to chromosome pairing for instance, can give an insight into the relationship of the parents. Therefore, if it were possible to hybridize the available present-day Cyclamen species, it might give some useful clues about the origin of species in former times. This possibility has been, among others, the reason for making species crosses which will be discussed in the next section.

5. Species crosses

5.1. Introduction

For over a century many workers have occupied themselves with trials to hybridize the Cyclamen species. In the literature, data about species crosses, however, are very scarce. One of the first recordings of a species hybrid refers to the so-called C. atkinsii Moore in the Gard. Comp. I of 1852, as cited by Doorenbos (8). This article reported that the parents of this hybrid were C. coum $(2 \mathrm{n}=30)$ and C. persicum $(2 \mathrm{n}=48)$. Plants under the name C. atkinsii have been investigated by de Haxi (20) and the present author, and the chromosome number was established to be $2 \mathrm{n}=30$. With regard to this number, being the same as that of C. coum, as well as to its morphological conformity with the latter, the author fully agrees with Doorenbos (8, p. 25), who saw also the original herbarium material at Kew and reports: "Considering that C. coum and C. Atkinsii both have 30 chromosomes, C. persicum on the other hand 48, we may assume that the cross never took place and the original plant was a mutation of C. orbiculatum var. coum". The form is now called C. coum var. orbiculatum f. album Doorenb.

Müller (36), who started Cyclamen breeding in 1867, also tried several species crosses and reported in 1885 the following:
"Mit Kreuzungen zwischen verschiedene Arten, wie Cyclamen persicum, C. coum, C. europaeum" - synonym for C. purpurascens - "C. hederaefolium" synonym for C. neapolitanum? - "und C. africanum habe ich mir früher, aber ohne allen Erfolg, viel Mühe gegeben, ich habe nicht eine hybride Pflanze erhalten. Vor Jahrzehnten wurden bereits Hybriden angeboten, so u.a. Cyclamen Roebellianum als Bastard von C. persicum und C. africanum (macrophyllum), was ich aber von verschiedenen Seiten unter diesem Namen erhielt, waren stets nur minderwertige Varietäten von Cyclamen persicum und ich glaube nicht, dasz überhaupt Bastarde existieren".

Thus Müller was not able to obtain hybrids after many trials from the first mentioned species, whereas so-called hybrids which were offered to himearlier, always turned out to be inferior varieties of C. persicum.

Hildebrand $(22,1898)$ described two hybrids, obtained from the cross C. neapolitanum \times C. africanum, later on called C. hildebrandii Schwz. by Schwarz (46). These hybrids differed only slightly from one another and looked very like the female parent, C. neapolitanum. The described characteristics in which these hybrids differed from C. neapolitanum, can be found, however, in the very heterozygous plant material of the latter as well! This fact, combined with the negative results of the author's own cross experiments, makes this case of hybridization very doubtful. It is also curious that Hildebrand never reported subsequently about any F_{2}-generation, although the crosses were made already in 1890 and the plants were both fertile. Further crosses made by Hildebrand, namely C. coum \times C. persicum, C. neapolitanum \times C. graecum and C. africanum \times C. graecum all failed.

Under the guidance of Wellensiek (58) from 1947 until 1950, crosses were made between C. persicum and C. neapolitanum with the purpose to introduce the characteristic of the "eared" corolla-lobes of the latter into C. persicum and its cultivars. In total 88 crosses were made, resulting in 8 fruits with totally 47 seeds. Most of the seeds did not germinate and only 3 groups of F_{1} 's were raised, consisting of 1,3 and 15 plants, respectively. In all three cases, however, the plants were identical with the female parent, C. persicum and also had the chromosome number $2 \mathrm{n}=48$.
In the reciprocal cross, C. neapolitanum \times C. persicum, about 200 attemps were made to hybridize, but without any success.
Schwarz (46, 1955, p. 279) recorded that he obtained seeds and seedlings of the cross C. coum \times C. persicum, but said that he first had to wait and see the flowering results to be sure that no errors with the pollination were made. Results from the crosses C. coum \times C. repandum (syn. C. vernale), C. persicum \times C. repandum and C. neapolitanum \times C. purpurascens, which apparently succeeded also, will be recorded later, when first an F_{2}-generation is available.

From 1951 through 1957 the author started a series of crosses in Cyclamen species for the purpose of enlarging the knowledge about the pedigree of the species. Special attention was paid to:

1. the possible reconstruction of the existing chromosome numbers 34 and 85 ; 2. the realization of the missing links $2 \mathrm{n}=51$ and $2 \mathrm{n}=102$ (being the triploid and hexaploid, respectively, in the polyploid series with $n=17$ as basic number), and $2 \mathrm{n}=24$;
2. the degree of cytological relationship between the species with $2 \mathrm{n}=20$, and $2 \mathrm{n}=34$;
3. the possible resynthesis of C. pseudibericum by crossing C. coum and C. libanoticum to establish the supposition that the former species originated as a natural hybrid from the latter two.

5.2. Experiments

Preliminary results have been published before (31). Details will follow below. For the cross experiments, carried out in Cyclamen species, plants were used of the extensive collection at the Wageningen Horticultural Laboratory. The applied cross technique was similar to that described for cultivar crosses in Chapter IV, p. 22-23.

For the reconstruction of the chromosome number 34, crosses were made between C. balearicum $(2 n=20)$, C. repandum $(2 n=20)$ and C. creticum $(2 n$ $=22$) on the one hand and C. persicum $(2 n=48)$ on the other hand.
Meded. Landbouwhogeschool, Wageningen 59 (8), 1-51 (1959)

To reconstruct the number 85 and to realize the chromosome numbers 51 and 102, crosses were made between C. neapolitanum ($2 \mathrm{n}=34$) and C. graecum ($2 \mathrm{n}=136$), C. neapolitanum $(2 \mathrm{n}=34)$ and C. africanum $(2 \mathrm{n}=68)$, C. africanum $(2 \mathrm{n}=68)$ and C. graecum ($2 \mathrm{n}=136$), respectively.
The realization of the number 24 was tried by crossing C. repandum $(2 \mathrm{n}=20)$ and C. libanoticum ($2 \mathrm{n}=30$).

To determine the degree of cytological relationship between C. balearicum and C. repandum, both with $2 \mathrm{n}=20$, as well as between C. neapolitanum and C. purpurascens, both with $2 \mathrm{n}=34$, they were crossed together.
C. coum $(2 \mathrm{n}=30)$ and C. libanoticum $(2 \mathrm{n}=30)$ were crossed together to try to resynthesize C. pseudibericum $(2 n=30)$ in the same way as this has been done for Nicotiana, Brassica and other species (37).

As a curiosity, the crosses C. graecum $(2 \mathrm{n}=85) \times$ C. neapolitanum $(2 \mathrm{n}=$ $34)$ and C. graecum $(2 n=136) \times$ C. graecum $(2 n=85)$ were also made.

The above mentioned crosses and their results are recorded in table 12.

Table 12. Summarized results from crosses between Cyclamen species for the years 1951 through 1957

Cross parents	Number of				2n-numbers	
	crosses	fruits	seeds	$\underset{\mathbf{F}_{1-}^{-}}{\boldsymbol{p l a n t s}^{2}}$	cross parents	F_{1}
C. balearicum \times C. repandum	8	2	13	3	20×20	-
C. balearicum \times C. persicum.	130	10	73	30	20×48	20
reciprocally .	43	0	0	0	48×20	-
C. repandum \times C. persicum .	59	5	38	0	20×48	-
. reciprocally	244	2	2	1	48×20	48
C. creticum \times C. persicum .	20	0	0	0	22×48	-
reciprocally	30	0	0	0	48×22	-
C. repandum \times C. libanoticum	37	0	0	0	20×30	-
reciprocally .	28	3	4	2	30×20	30
C. coum \times C. libanoticum .	233	37	208	23	30×30	30
reciprocally	50	2	13	0	30×30	-
C. neapolitanum \times C. purpurascens	900	0	0	0	34×34	-
reciprocally	107	0	0	0	34×34	-
C. neapolitanum \times C. africanum	420	1	1	0	34×68	_
reciprocally . .	90	0	0	0	68×34	-
C. neapolitanum \times C. graecum .	688	0	0	0	34×136	-
reciprocally . .	90	0	0	0	136×34	-
C. purpurascens \times C. graecum	4	0	0	0	34×136	-
C. africamum \times C. graecum .	74	0	0	0	68×136	-
reciprocally	72	0	0	0	136×68	-
C. graecum \times C. neapolitanum .	132	0	0	0	+ 85×34	-
C. graecum \times C. graecum . . .	86	0	0	0	[136×85	-

5.3. Discussion and conclusions

From the total of 3,545 crosses, recorded in table 12, only 62 fruits were obtained. These fruits were quite normal or sometimes only slightly smaller than fruits from self-pollinations. They always had a normally enlarged receptacle even when there was only one seed per fruit. Only in the cross C. coum $\times C$. libanoticum, and especially in the reciprocal cross, the fruit stems did not coil like a corkscrew as normally occurs after selfing. This is a curious fact and at the same time an indication that no accidental self-pollination took place! In all
crosses parthenocarpic fruits were observed, especially in crosses with C. neapolitanum as female parent. Sometimes over 90% of the crosses resulted in such seedless fruits which remained very often more than 3 months on the plants.

From the total of 352 seeds, which were well developed, only 59 germinated. The causes of this poor germination are unknown. Perhaps the time of sowing had influenced this result. Together with the other Cyclamen seeds, they were normally sown 2-3 months after ripening. Schwarz (46, p. 246) however points to the fact that seeds of some species, e.g. C. repandum, must be sown immediately after ripening: even some days of desiccation results in poor germination. A small germination experiment, carried out later on, confirmed this; the results appear in table 13.

Table 13. Percentages of seed germination of two Cyclamen species with reference to time of sowing after harvesting the seed

Species	Time between harvesting and sowing	Number of seeds	Germinated seeds	$\%$
C. cyprium	2 months	25	4	16
C. repandum	2 days	22	17	77,3
	2 months	144	3	2,1
	2 days	34	27	79,4
	0 days	70	69	98,6

The F_{1}-plants, which could be raised, had all the same chromosome number as their female parent and were, except two, all morphologically identical to the mother plants. The two exceptions obtained from the cross C. balearicum \times C. persicum, made in 1951, could be determined as true hybrids, although the author is almost certain that C. persicum was not the male parent. Both meiosis and mitosis in these hybrids were similar to those in C. balearicum or C. repandum. The purplish-pink flowers appeared in shape and in colour very much like C. repandum flowers (C. balearicum flowers are white). The leaves exhibited a close similarity to both C. balearicum and C. repandum. The four raised $\mathrm{F}_{2}-$ generations all segregated into types like both of these species, with a $3: 1$ segregation into purplish-pink and white flowers. Since the cross C. balearicum \times C. persicum was made at the same time as crosses with C. repandum were made, it is very likely that a wrong pollination was applied. Considering these facts, the author is almost sure that the hybrids were derived from C. balearicum and C. repandum. To determine if this was well grounded, the author purposely made the cross C. balearicum \times C. repandum to obtain seedlings for direct comparison with the above mentioned true hybrids. Unfortunately the 3 obtained F_{1}-plants from the cross C. balearicum \times C. repandum, which could have been evidence for such a comparison, died in the seedling stage.

On the other hand the cross C.balearicum \times C. persicum was remade in 1956 from which 67 seeds were obtained and 26 seedlings were grown. All of the plants obtained looked identical to C. balearicum in shape, flowering habit and chromosome number.

The F_{1}-plants from C. persicum \times C. repandum, C. libanoticum \times C. repandum and C. coum \times C. libanoticum were, as has been said before, all identical to the female plants. Several F_{2}-generations, raised from the latter cross, did not alter things. On the basis of the large number of seeds and F_{1}-plants, one would
assume there was self-pollination. Although the author is fully aware that errors are always possible, he will not accept this supposition in this case. There were never open flowers with anthers on the female plants. The castration method was controlled on C. coum and proved to be fully reliable: 100 buds were castrated, which did not give any fruit when left unpollinated. The fact that the fruit stems in C. coum \times C. libanoticum (and reciprocally) did not coil, as mentioned before, proved also that a normal fruit set, as takes place after selfing, did not occur. An answer to the question how these descendants may then have originated will be given in the next chapter.

The conclusions one can make from the cross results are the following:
The reconstruction or realization of Cyclamen with numbers of 34,85 and 24 , 51,102 chromosomes, respectively, is not possible with the present-day species available, which are the most suitable for this purpose.

From the negative results from the crosses with the octoploid C. graecum $(2 n=136)$, one must conclude that there is not any cytological relationship other than the basic number 17 and the similar meiosis view, with regard to the species with $2 \mathrm{n}=34,68$ and 85 , and the octoploid C. graecum.

From the negative results of the crosses between C. neapolitanum and C. purpurascens, one must conclude that since these species are incompatible, they probably have not evolved from one original type.

It is almost sure that between the species with $2 \mathrm{n}=20$, besides having a close morphological relationship (20), there is also a close cytological one with respect to their mutual compatibility. The two obtained true hybrids point to this direction.

No cytological evidence could be obtained for the supposition that C. pseudibericum may be a natural hybrid of C. coum and C. libanoticum, since all attempts to resynthesize failed.

On the basis of his investigations, the author seriously doubts that the offsprings obtained by Hildebrand (22) and Schwarz (46) possessed a hybridcharacter, as well as that hybrid-populations between C. repandum and C. libanoticum are present in nature, as Schwarz (46, p. 257) suggests. His next suggestion that C. libanoticum $(2 \mathrm{n}=30$) would be a natural hybrid of C. repan$\operatorname{dum}(2 \mathrm{n}=20)$ and C. coum $(2 \mathrm{n}=30)$ is not only unacceptable, but is also incomprehensible since Schwarz knew their different chromosome numbers.

Generally speaking, hybridization possibilities in Cyclamen are very limited through interspecific incompatibility. The species crosses did not give any clue as to the possible origin of the different chromosome numbers by hybridization.

6. Consequences for breeding

Crosses between wild species and cultivated ones can introduce sometimes one or another desired characteristic into the latter, e.g., resistance against diseases or a new fiower colour. In Cyclamen species desirable characteristics are present, as for instance the fine odour in C. purpurascens, the attractive leaf colour and pattern of C. graecum, and the "eared" corolla-lobes of several species. Introduction of these characteristics into C. persicum cultivars has not been accomplished to date. Although not all cross combinations have been tried, one can almost be sure that hybridizing of C. persicum with the other species in a normal, direct way is not possible.

CHAPTER VI

FALSE HYBRIDS

Sometimes in crossing-experiments offsprings arise which show only the characteristics of the female parent, although they could not have been originated from self-pollinations. $\operatorname{Sharp}(49$, p. 405) called these metromorphic (like the mother) descendants "false hybrids".

Also in Cyclamen crosses between diploid and tetraploid cultivars (see Chapter IV) and in species crosses (see Chapter V), besides true hybrids such metromorphic F_{1}-plants were produced. Since an origin by self-pollinating can be excluded, as has been pointed out in the previous chapters, the author will use the term "false hybrids" for these metromorphic descendants, after Sharp.
Wellensiek et al. (59) reported failure of seed formation after pollinating Cyclamen with various substances other than Cyclamen pollen. The author fully agrees that living Cyclamen pollen is necessary for seed formation. Furthermore, in the previous mentioned castration experiments for both cultivars and species, the female plants never produced seeds without pollination. Thus one may conclude that for the production of false hybrids living pollen is required.

Just as in other species as Hypericum, Poa, Potentilla, as Prakken (44, p. 586) mentions, the pollination stimulus might consist of a fertilization of the fused polar nuclei by the second male nucleus.
"The development of metromorphic offspring induced by pollination, but without complete syngamy", is called, according to Sharp (49, p. 405), "pseudogamy". Therefore on the basis of the evidence above and the definition given by SHARP, it is appropriate to use the term "pseudogamic" for the origin of the false hybrids in Cyclamen.

Sharp (49) gives several possibilities for the development of pseudogamic seeds. The latter may arise for instance by reduced or unreduced parthenogenesis, whether or not followed by chromosome doubling, or by reduced or unreduced apogamy. It is unknown however what occurred in the embryo sacs of the Cyclamen. The only positive fact is that in two F_{1}-generations of the above mentioned cultivar crosses and also in two F_{1} 's of C. coum \times C. libanoticum, in which cases the female parent was heterozygous, segregation for a certain characteristic appeared. This indicates that the false hybrids arose from cells with the reduced chromosome number, although the plants had the somatic chromosome number of the female parent. Then only two possibilities remain, by which the false hybrids may have arisen:
by reduced (or haploid) parthenogenesis followed by chromosome doubling, or by endogamy, thus by fusion of two (haploid) embryo sac nuclei (as explained in Chapter IV).

In the non-segregating offsprings of false hybrids it is difficult to draw a conclusion whether reduced or unreduced parthenogenesis occurred. But it is the author's opinion that the same process took place in these cases as in the segregating offsprings.

SUMMARY

I. General introduction

1. C. persicum has been cultivated in Western Europe since its introduction about 350 years ago.
2. Although it was initially only a collector's plant, soon after 1850 it became a very important pot plant. Today over 200 cultivars are known and the Cyclamen is the most widely grown pot plant in The Netherlands.

II. Cytological technique

Chromosome counts were made in root tips and anthers of both Cyclamen cultivars and species. The applied staining technique consisted of the Feulgen staining and the aceto-carmine method. Root tips were always pretreated with an 8 -hydroxyquinoline solution.

III. Cultivars

1. In Cyclamen cultivars the diploid and tetraploid chromosome numbers $2 \mathrm{n}=48$ and $2 \mathrm{n}=96$ are present.
2. By far the majority of the large number of investigated West-European cultivars, including the Dutch' ones, was established to be tetraploid.
3. In 2 Swiss, 3 French, 11 Danish and 27 German cultivars the aneuploid chromosome number $2 \mathrm{n}=92$ was determined. Also the aneuploid numbers $2 \mathrm{n}=90,2 \mathrm{n}=94$ and $2 \mathrm{n}=95$ were found in Swiss and German Cyclamen. However, no aneuploids were found in Dutch, English or Belgian cultivars.
4. The first tetraploid cultivars appeared in the second half of the nineteenth century. It was concluded that 'Robustum' (1863) and 'Splendens' (1873) were already tetraploid.
5. Probably the first aneuploid with $2 \mathrm{n}=92$ was 'Ruhm von Wandsbek' (1898).
6. Cytological data were compared with breeding data and found to be in accordance.

IV. Crosses between diploid and tetraploid cultivars

1. In $2 \mathrm{n} \times 4 \mathrm{n}$ and reciprocal crosses between Cyclamen persicum cultivars, true hybrids as well as false hybrids were obtained. The true hybrids consisted of triploids and tetraploids: 12.7% and 87.3%, respectively, in the cross $2 \mathrm{n} \times 4 \mathrm{n} ; 54.2 \%$ and 45.8% in the cross $4 \mathrm{n} \times 2 \mathrm{n}$.
2. Cytological evidence for the origin of the tetraploid descendants could not be obtained. Several hypotheses concerning the way of origin of these tetraploid descendants were discussed.
3. In the cross $4 \mathrm{n} \times 2 \mathrm{n}$ genetical evidence was obtained for the supposition that dispermy is the cause of the origin of the tetraploid descendants. Per analogy, endogamy in the cross $2 n \times 4 n$ is the most acceptable cause of origin of the tetraploid descendants, thus forming together with dispermy one kind of "doubling mechanism".

V. Species

1. The chromosome range of 14 Cyclamen species was determined as follows: $20,22,30,34,48,68,84-86,96$ and 136. These numbers are in agreement with and extend the counts of De Haan.
2. The different chromosome numbers may be grouped into 3 polyploid series with the basic numbers $\mathrm{n}=10,17$ and 24 .
3. A new argument was brought forth concerning the hypothesis about the pedigree of Cyclamen species from a primitive type with $2 \mathrm{n}=10$.
4. Reconstruction of some chromosome numbers, as well as realization of missing links by crossing of the present-day species, was not possible. Therefore, evidence for a way of origin other than polyploidy of the today's different chromosome numbers in Cyclamen could not be proposed.
5. Two true hybrids were obtained from C. balearicum as the female parent and very probably C. repandum as the male parent, as well as a number of false hybrids. Any attempt to produce interspecific hybrids of other species failed, because of intersterility.

VI. False hybrids

1. In crosses between diploid and tetraploid cultivars and in species crosses, offsprings came into existence consistently, which were cytologically and morphologically similar to the female parents.
2. Since self-pollination must be excluded, the only way of origin is an apomictic one. The appearance of segregation of certain genes in some of the offsprings suggests a reduced parthenogenesis followed by chromosome doubling, or endogamy.

ACKNOWLEDGEMENTS

The author is much indebted to Prof. Dr. Ir. S. J. Wellensiek for his stimulating guidance and encouragement during the course of this research.

The author is very grateful to Prof. Dr. A. M. Kofranek for his aid in preparing the English text and for his helpful criticism.

SAMENVATTING

DE CYTOLOGISCHE ACHTERGROND VAN DE CYCLAMEN-VEREDELING

I. Algemene inleiding

1. Ongeveer 350 jaar geleden werd C. persicum in Westelijk Europa ingevoerd en is sedertdien in cultuur.
2. Ofschoon aanvankelijk een plant voor verzamelaars, werd zij spoedig na 1850 een zeer belangrijke potplant. Op de dag van vandaag zijn meer dan 200 cultivars bekend en is de Cyclamen in Nederland de meest geteelde potplant.

II. Cytologische techniek

In worteltopjes en antheren van zowel Cyclamen-cultivars als soorten werden chromosoomtellingen uitgevoerd. Als kleurmethoden werden de Feulgen-kleuring en de aceto-karmijn methode toegepast. Worteltopjes werden steeds voorbehandeld met een oplossing van 8 -hydroxyquinoline.

III. Cultivars

1. In Cyclamen-cultivars zijn het diploïde chromosomenaantal $2 \mathrm{n}=48$ en het tetraploide aantal $2 \mathrm{n}=96$ aanwezig.
2. Van het grote aantal onderzochte West-Europese cultivars, met inbegrip van de Nederlandse, is verreweg het grootste gedeelte tetraploïd gebleken.
3. In 2 Zwitserse, 3 Franse, 11 Deense en 27 Duitse cultivars werd het aneuploïde chromosomenaantal $2 \mathrm{n}=92$ vastgesteld. Eveneens werden de aneuploíde aantallen $2 \mathrm{n}=90,2 \mathrm{n}=94$ en $2 \mathrm{n}=95$ in Zwitserse en Duitse $C y$ clamen aangetroffen. Er bleken geen aneuploïde chromosomenaantallen onder de Nederlandse, Engelse en Belgische cultivars voor te komen.
4. De eerste tetraploïde cultivars verschenen in de tweede helft van de negentiende eeuw. Geconcludeerd werd dat 'Robustum' (1863) en 'Splendens' (1873) reeds tetraploîd waren.
5. Vermoedelijk was 'Ruhm von Wandsbek' (1898) de eerste aneuploïde met $2 \mathrm{n}=92$.
6. Cytologische gegevens werden vergeleken met gegevens omtrent de veredeling uit de literatuur en in overeenstemming met elkaar bevonden.

IV. Kruisingen tussen diploide en tetraploide cultivars

1. In $2 \mathrm{n} \times 4 \mathrm{n}$ en reciproke kruisingen tussen Cyclamen persicum-cultivars werden nakomelingen mèt en zònder een bastaardkarakter verkregen. De echte bastaarden bestonden uit triploïden en tetraploïden: resp. $12,7 \%$ en $87,3 \%$ in de kruising $2 \mathrm{n} \times 4 \mathrm{n}$ en $54,2 \%$ en $45,8 \%$ in de kruising $4 \mathrm{n} \times 2 \mathrm{n}$.
2. Cytologisch bewijsmateriaal voor het ontstaan van de tetraploïde nakomelingen kon niet worden verkregen. Betreffende de ontstaanswijze van deze tetraploïde nakomelingen werden verscheidene hypothesen naar voren gebracht.
3. In de kruising $4 \mathrm{n} \times 2 \mathrm{n}$ werd genetisch bewijsmateriaal verkregen voor de veronderstelling, dat dispermie de oorzaak is van het ontstaan van de tetraploide nakomelingen. Per analogie is endogamie de meest aannemelijke oorzaak van het ontstaan der tetraploïden in de kruising $2 \mathrm{n} \times 4 \mathrm{n}$, op deze wijze met dispermie één type van „verdubbelingsmechanisme" vormend.

V. Soorten

1. De chromosomenaantallen van 14 Cyclamen-soorten werden als volgt vastgesteld: $20,22,30,34,48,68,84-86,96$ en 136. Deze aantallen stemmen overeen met de tellingen van De Hadn.
2. De verschillende chromosomenaantallen kunnen worden gegroepeerd in 3 polyploide reeksen met de grondtallen $n=10,17$ en 24 .
3. Een nieuw argument ter staving van de hypothese omtrent de afstamming van Cyclamen-soorten van een oertype met $2 \mathrm{n}=10$, werd naar voren gebracht.
4. Reconstructie van enige chromosomenaantallen alsmede de verwezenlijking van "missing links" door kruising van de tegenwoordige soorten, bleek niet mogelijk. Bewijs voor een andere ontstaanswijze van de huidige chromosomenaantallen in Cyclamen dan door polyploidie, kon niet worden overgelegd.
5. Twee echte bastaarden werden verkregen van C. balearicum als moederplant en zeer waarschijnlijk C. repandum als vaderplant, alsmede een aantal nakomelingen zonder bastaardkarakter. Elke poging om interspecifieke bas-
taarden van andere soorten te verkrijgen, mislukte tengevolge van intersteriliteit.

VI. De Z.g. onechte hybriden

1. In kruisingen tussen diploïde en tetraploïde cultivars en in soortskruisingen ontstonden overeenstemmende nakomelingschappen, die cytologisch en morfologisch gelijk waren aan de moederplanten.
2. Aangezien zelf bestuiving moet worden uitgesloten, is een apomictische ontstaanswijze de enig mogelijke. Het optreden van splitsingen voor bepaalde genen in sommige van de nakomelingschappen suggereert het optreden van haploïde parthenogenesis gevolgd door chromosoomverdubbeling, of endogamie.

LITERATURE CITED

1. Bragt, J. van: Flower colour pigments in Cyclamen. Proc. K. N. A. v. W.-A'dam, Ser. 61, 1958: 448-453.
2. Bergman, B.: Studies on the embryosac mother cell and its development in Hieracium subg. Archieracium. Svensk bot. Tidskr. 35, 1941: 1-42.
3. Bremer, G.: Increase of chromosome number in species-hybrids of Saccharum in relation to the embryo-sac development. Bibl. Gen. 18, 1959: 1-99.
4. Darlington, C. D.: Meiosis in diploid and tetraploid Primula sinensis. Journ. Gen. 24, 1931: 65-97.
5. Darlington, C. D. and La Cour, L. F.: The handlings of chromosomes. George Allan, London, 1947: 166 pp.
6. Darlington, C. D. and Mather, K.: The elements of Genetics. George Allan \& Unwin Ltd, 1950: 446 pp.
7. De Tomasi, J. A.: Improving the technic of the Feulgen stain. Stain Techn. 11, 1936: 137144.
8. Doorenbos, J.: Taxonomy and nomenciature of Cyclamen. Meded. Landb.hogesch., Wageningen 50, 1950: 19-29.
9. Doorenbos, J.: The history of the 'persian' Cyclamen. Meded. Landb.hogesch., Wageningen 50, 1950: 33-59.
10. Doorenbos, J.: Bloemgrootte bij Cyclamen. Meded. Dir. Tuinbouw 22, 1959: 199-206.
11. Doorenbos, J., Legro, R. A. H. and Bragt, J. van: Description of Cyclamen cultivars and its importance for breeding. Rep. XV Int. Hort. Congr. Nice 1958, in press.
12. Gerassimova, H.: Fertilization in Crepis capillaris. Cellule 42, 1933: 101-148.
13. Gerstel, D. U.: Hydrochloric acid as a fixative for root tip chromosomes. Stain Techn. 24, 1949: 95-98.
14. Glasau, F.: Monographie der Gattung Zyklamen auf morphologisch-cytologischer Grundlage. Planta 30, 1939: 507-550.
15. GLUSHCHENKO, I. E.: The phenomenon of polyfertilization in plants. Proc. Int. Genetics Symp. 1956, Tôkyô \& Kyôtô, 1957: 32-34.
16. Gorter, Christine J. and Visser, T.: Parthenocarpy of Pears and Apples. Journ. Hort. Sc. 33, 1958: 217-227.
17. GaIRDNER, A. E.: Campanula persicifolia and its tetraploid form 'Telham Beauty'. Journ. Gen. 16, 1926: 341-352.
18. Gairdner, A.E. and Darlington, C.D.: Ringformation in diploid and tetraploid Campanula persicifolia. Genetica 13, 1931: 113-151.
19. Gustafsson, A.: Apomixis in higher plants I. The mechanism of apomixis. Lunds Univ. Årsskrift 42, 1946: 1-67.
20. Hafn, I. de, and Doorenbos, J.: The cytology of the genus Cyclamen. Meded. Landb. hogesch., Wageningen 51, 1951: 151-166.
21. Hertz, E.: Der Nachweis der Chromosomen. Zeitschr. f. Bot. 18, 1926: 625-680.
22. Hildebrand, F.: Die Gattung Cyclamen L. Gustav Fischer, Jena, 1898: 190 pp.
23. Hillary, B. B.: Use of the Feulgen reaction in cytology I. Effects of fixatives on the reaction. Bot. Gazette 101, 1939; 276-300.
24. Ingwersen, W.: Hardy Cyclamen. Gard. Chron. 140, 1956: 162-163.
25. Ishikawa, R. M.: Studies on the embryosac and fertilization in Oenothera. Ann. of Bot. 32, 1918: 279-317.
26. Kappert, H.: Die Bedeutung der Polyploidie in der Cyclamenzüchtung. Der Züchter 13, 1941: 106-114.
27. Koopmans, A. and Burg, A. H. van der: Chromosome number and chromosome behaviour of F_{1} and F_{2} plants of the cross Solanum phureja \times Solanum tuberosum. Genetica 26, 1952: 102-116.
28. Kostoff, D. and Kendall, J.: Studies on certain Petunia aberrants. Journ. Gen. 24, 1931 : 165-179.
29. La Cour, L. F.: Acetic-orcein: A new stain-fixative for chromosomes. Stain Techn. 16, 1941: 169-174.
30. Legro, R. A. H. : Aantekeningen over te Haren (Gr.) gebruikelijke cytologische techniek. Gestenc. verslag 14 v. h. Lab.v. Tuinb.plantenteelt, Landb.hogesch., Wageningen, 1952: 7 pp .
31. Legro, R. A. H.: Kruisingsmogelijkheden in Cyclamen. Genen en Phaenen 2, 1957: 16-18.
32. Levan, A. and ÓStergren, G.: The mechanism of c-mitotic action. Observations on the naphthalene series. Hereditas 29, 1943: 281-443.
33. [MAATSCH, R.]: Das deutsche Cyclamen-sortiment. Zusammengestellt von Inst. für Zierpflanzenbau der Technischen Hochschule Hannover, 1957: 15 pp .
34. Meyer, J. R.: Prefixing with paradichlorobenzene to facilitate chromosome study. Stain Techn. 20, 1945: 121-125.
35. Michaelis, P.: Uber reziprok verschiedene Sippenbastarde bei Epilobium hirsutum. V. Uber die Bedeutung der Genquantität für die Manifestation reziproker Unterschiede. Zeitschr. f. indukt. Abstamm.- u. Vererbgsl. 80, 1942: 429-453.
36. Müller, R. H.: Geđanken über Cyclamenzucht. Möll. D. Gärtn. Zeit. 9, 1885: 197-198.
37. Müntzing, A.: Chromosomes in relation to species differentiation and plant breeding. Chromosomes (Lectures held at the Conference on Chromosomes, Wageningen). Tjeenk Willink, Zwolle, 1956: 161-199.
38. MurabaA, A. I. M. El: Factors affecting seed set in Brussels Sprouts, Radish and Cyclamen. Meded. Landb.hogesch., Wageningen 57, 1957: 1-33.
39. Nemec, B.: Das Problem der Befruchtungsvorgänge und andere zytologische Fragen. Gebr. Borntraeger, Berlin, 1910: 532 pp.
40. Nemec, B.: Ueber die Befruchtung bei Gagea. Bull. Intern. Acad. Sci. Bohème 17, 1912: 1-17.
41. Nishiyama, I. and Inamori, Y.: Polyploid studies in the Brassiceae, III. Hybridization between diploid Brassica species $(2 n=20)$ and their autotetraploids. Mem. Research Inst. f. Food Sc., Kyoto Univ. 5, 1953: 1-14.
42. Prakken, R. and Swaminatan, M. S.: Experience with the 8 -hydroxy-quinoline smear technique. Meded. Landb.hogesch., Wageningen 50, 1951: 137-140.
43. Prakken, R. and Swaminatan, M. S.: Cytological behaviour of some interspecific hybrids in the genus Solanum, sect. Tuberarium. Genetica 26, 1952: 77-101.
44. Reinders, E.: Leerboek der algemene plantkunde I. Scheltema \& Holkema's Boekh. en Uitg.Mij, Amsterdam, 1952: $16+624$ pp.
45. Schneider, F. und Matsch, R.: Cyclamen. Paul Parey, Berlin, 1950: 77 pp .
46. Schwarz, O.: Systematische Monographie der Gattung Cyclamen L. Feddes Repertorium 58, 1955: 234-283.
47. Seyffert, W.: Die Vererbung der Blütenfarben bei hemiploiden Cyclamen. Der Züchter 25, 1955: 275-287.
48. Seyffert, W.: Uber die Wirkung von Blütenfarbgenen bei Cyclamen. Zeitschr. f. indukt. Abstamm.-u. Vererbgsl. 87, 1955: 311-334.
49. Sharp, L. W.: Introduction to cytology. McGraw-Hill Book Company, Inc., New York and London, 1934: $14+567 \mathrm{pp}$.
50. Thomas, P. T.: Reproductive versatility in Rubus II. The chromosomes and development. Journ. of Gen. 40, 1940: 119-128.
51. Tischler, G. and Pascher, A.: Allgemeine Pflanzenkaryologie, 2. Hälfte: Kernteilung und Kernverschmelzung. Gebr. Borntraeger, Berlin-Nikolassee, 1951:7+1040 pp.
52. Tio, J. H. and Levan, A.: The use of oxyquinoline in chromosome analysis. An. de Estac. Exper. de Aula Dei 2, 1950: 21-64.
53. Toxopeus, H. J.: Chromosoom-verdubbeling bij diploïde cultuuraardappelen. Genen en Phaenen 3, 1958: 10-13.
54. Wellensiek, S. J.: The breeding of Cyclamens. Report XIIIth International Horticultural Congress, 1952: 771-776.
55. Wellensiek, S. J.: The genetics of diploid \times tetraploid and reciprocal Cyclamen crosses. Der Züchter 25, 1955: 229-230.
56. Wellensiek, S. J.: Cytogenetische problemen bij Cyclamen. Proc. K. N. A. v. W. -A'dam 66, 1957: 50-53.
57. Wellensiek, S. J.: Nieuwe rassen van Cyclamen. Vakbl. Bloemisterij 12, 1957: 493.
58. Wellensiek, S. J., Doorenbos, J. en Haan, I. de: Systematiek, cytologie en genetica van Cyclamen. Meded. Dir. Tuinbouw 13, 1950: 608-619.
59. Wellensiek, S. J., Gorter, Chre. J., Verkerk, K. and Waterschoot, H. F.: Vegetative seed formation? Euphytica 1, 1952: 123-129.

Photo 1. (p. 4). Outer size of flower buds of the cy. 'Wit met oog' in relation to stages of reduction division: a. P.M.C. resting; b. P.M.C. in reduction division; c. transition stage from tetrads into pollen grains, E.M.C. still resting; d. E.M.C. in reduction division; e. formation of embryo sac nuclei; f. whole process finished.

Рното 2 and 3. (p.5). Chromosomes of Cyclamen species with a low number are relatively long and mostly strong confused (photo 2, C. cyprium, $2 n=30$), whereas in species with a large number, chromosomes are relatively short, but lay very closely together (photo 3 , C. persicum cv., $2 \mathrm{n}=96$). From crystal violet stained paraffin sections, after De HaAN (20).
Рното 4. (p. 7). C. persicum 'Wit met oog', $2 \mathrm{n}=48$. Mitotic metaphase. Two satellites present (arrows). From pretreated Feul.gen stained squash. $\times 3500$.

Рното 5. (p. 7). C. persicum 'Rosa von Marienthal', $2 \mathrm{n}=96$. Mitotic metaphase. Four satellites present (arrows). From pretreated Feulgen stained squash. $\times 2400$.

Рното 6 and 7. (p. 8). C. persicum 'Wit met oog'. Part of mitotic metaphase showing a commonly already divided satellite, whereas the chromosomes are not yet divided (photo 6), and a satellite which seems to be connected at the side of the chromosome (photo 7). $\times 2400$.
Рното 8. (р. 15). C. persicum 'Vermillon', $2 \mathrm{n}=92$. Mitotic metaphase. $\times 2400$.
Рното 9. (p. 16). C. persicum 'Lachshell', $2 \mathrm{n}=96$. Mitotic metaphase from plant with only $2 \mathrm{n}=95$. Four satellites (one divided) present (arrows). $\times 2400$.
Рното 10. (p. 24). Opened Cyclamen fruits showing left the enlarged receptacle with one seed (lower left) from 'Wit met $\mathrm{oog}^{\prime} \times$ 'Donkerrood' ($2 \mathrm{n} \times 4 \mathrm{n}$), and right the contracted receptacle with one seed from the reciprocal cross.
Pното 11. (p. 25). Metaphase II plate with $\mathrm{n}=37$ in P.M.C. of a triploid Cyclamen. $\times 2400$. Photos 6, 7, 8 and 9 from pretreated Feutgen stained squashes; photo 11 from aceto-carmine squash.

Рното 12. (p. 26). C. persicum F_{2}-plant from 'Donkerrood' \times 'Wit met oog', $2 \mathrm{n}=55$. Mitotic metaphase. Three satellites present (arrows). The selfed F_{1} had $2 \mathrm{n}=72 . \times 2400$
Рното 13. (p. 26). C. persicum 'Wit met oog', $2 \mathrm{n}=48$. Anaphase I in E.M.C. $\times 960$.
Photo 14. (p. 34). C. repandum, $2 \mathrm{n}=20$. Mitotic metaphase. $\times 2000$.
Рното 15. (p. 35). C. creticum, $2 \mathrm{n}=22$. Mitotic metaphase. $\times 2000$. All photos from pretreated Feulgen stained squashes.

Photo 16. (p. 35). C. pseudibericum, $2 \mathrm{n}=30$. Mitotic metaphase. $\times 2000$.
Рното 17. (p. 35). C. cyprium, $2 \mathrm{n}=30$. Mitotic metaphase. Two satellites present (arrows). $\times 2000$.
Рното 18. (p. 35). C. purpurascens, $2 \mathrm{n}=34$. Mitotic metaphase. Two satellites present (arrows). $\times 2400$.
Рното 19 and 20. (p. 36). Metaphase II plates, showing typical chain figures in P.M.C.'s from C. purpurascens, $\mathrm{n}=17$ (photo 19) and C. neapolitanum, $\mathrm{n}=17$ (photo 20). $\times 2400$.
Photos 16,17 and 18 from pretreated Feulgen stained squashes; photos 19 and 20 from acetocarmine squashes.

21

22 and 23

24

Рното 21. (р. 36). C. africanum, $2 \mathrm{n}=68$. Mitotic metaphase. Four satellites (one divided) present (arrows). $\times 2400$.

Рното 22 and 23. (p. 36). Similarity of metaphase II plates in P.M.C.'s from C. neapolitanum, $\mathrm{n}=17$ (photo 22) and C. africanum, $\mathrm{n}=34$ (photo 23). $\times 2400$.
Pното 24. (p. 36). C. graecum, $2 \mathrm{n}=$ 84-86. Mitotic metaphase. Five satellites present (arrows). $\times 2400$.

Photos 21 and 24 from pretreated Feulgen stained squashes; photos 22 and 23 from aceto-carmine squashes.

25

26
Pното 25. (p. 36). Mitotic anaphase chromosomes of C. rohlfsianum, $2 \mathrm{n}=96$, remaining together for a short period before they separate to the poles. $\times 2400$.
Рното 26. (p. 37). C. rohlfsianum, $2 \mathrm{n}=96$. Mitotic metaphase. Four satellites (one divided) present (arrows). $\times 2400$.
dividedos from pretreated Feulgen stained squashes.

Photo 27. (p. 27). C. graecum, $2 \mathrm{n}=136$. Mitotic metaphase. $\times 3375$. From pretreated
Feulgen stained squash.

STELLINGEN

I
De veronderstelling van Doorenbos, dat het succes van kruisingen tussen kleinbloemige en de eerste grootbloemige Cyclamen zou aantonen, dat de laatste niet polyploid waren, is onvoldoende gefundeerd.

Doorenbos, J.: Meded. Landbouwhogeschool Wag. 50, 1950:1-59.

II

Bij een eventuele integratie van Europa heeft de Nederlandse potplantencultuur in tegenstelling met de snijbloemencultuur geen ernstige concurrentie te verwachten.

III

Voor het genus Cryptocoryne kan, min of meer analoog met Cyclamen, een polyploïde reeks met het grondtal 7 worden vastgesteld.

IV
Het is niet verantwoord de term ,ongereduceerd" te gebruiken in direct verband met eicellen en pollenkorrels, indien het al of niet plaats gehad hebben der eigenlijke reductiedeling niet door een genetische analyse bij de nakomelingschap is of kan worden uitgemaakt.

V

Het zou wenselijk zijn het ontstaan van haploiden in soortskruisingen grondig te bestuderen, in het bijzonder ten aanzien van de chemische achtergrond, zulks in verband met de mogelijkheid doelbewust het chromosomenaantal te kunnen reduceren.

VI

De suggestie van Schwarz, dat Cyclamen libanoticum Hildebrand het kruisingsprodukt zou zijn tussen Cyclamen coum Miller en Cyclamen repandum Sibthorp \& Smith, is onhoudbaar.

Schwarz, O.: Feddes Repertorium 58, 1955:233-283
VII
Cyclamen graecum LiNk, zoals deze thans algemeen wordt opgevat, bestaat tenminste uit twee taxa, die de rang van soort toekomen. Deze onderscheiden zich door pentaploidie en octoploïdie, waarbij dit verschil in chromosomengarnituur vergezeld gaat van onderlinge sexuele incompatibiliteit, van verschillen in uiterlijk en vorm van de bloem, en van een verschillende habitus.

VIII

Kritische systematische studiën dienen enerzijds op zo uitvoerig mogelijk herbarium- en literatuuronderzoek te berusten, anderzijds steeds, indien dit uitvoerbaar is, te steunen op de cultuur en het onderzoek der levende planten onder verschillende levensomstandigheden. Soms is dit laatste onontbeerlijk om tot gefundeerde, systematische resultaten te komen.

IX

De wettelijke bescherming van de kwekerseigendom zal alleen goed tot zijn recht kunnen komen, indien een, bij voorkeur internationale, standaardcollectie van levend en gefixeerd materiaal aanwezig is.

X

Wanneer men in de orgelbouw meer stelselmatig gebruik zou maken van diverse houtsoorten voor lepels van tongwerken, als bijvoorbeeld teakhout, makoré, notehout en perehout, dan zou men een aantal muzikaal-bruikbare (of -waardevolle) klankkleuren verkrijgen.

[^0]: 1.2. Pretreatment

 It happens very often that chromosomes lie very strongly in confusion, or that they are not orientated in one plane in metaphase. This is particularly the case when there is a great number of relatively long chromosomes. Counting is then very difficult, often even impossible. In any
 ${ }^{1}$) All photographs are placed at the end.

[^1]: ${ }^{1}$) According to Schneider and MaAtsch (45) the forms 'Giganteum', 'Universum' and 'Splendens' were qualified in 1896 as synonyms of each other and were described as very large flowering white with crimson base.

