Data availability for the evaluation of stock status of species without catch advice

Case study: Turbot (Psetta maxima) and Brill

(Scophthalmus rhombus)

Tessa van der Hammen, J an Jaap Poos and Floor Quirijns

Report number C109/11

I MARES Wageningen UR

(IMARES - Institute for Marine Resources \& Ecosystem Studies)

Client:

Ministry of EL\&I, AKV
Attn. Henk Offringa
PO box 20401
2500 EK Den Haag

Bas code: BO-12.01-001-003-IMARES-7

Publicatiedatum:
The $26^{\text {th }}$ of September 2011

I MARES is:

- an independent, objective and authoritative institute that provides knowledge necessary for an integrated sustainable protection, exploitation and spatial use of the sea and coastal zones;
- an institute that provides knowledge necessary for an integrated sustainable protection, exploitation and spatial use of the sea and coastal zones;
- a key, proactive player in national and international marine networks (including ICES and EFARO).

P.O. Box 68	P.O. Box 77	P.O. Box 57	P.O. Box 167
1970 AB IJmuiden	4400 AB Yerseke	1780 AB Den Helder	1790 AD Den Burg Texel
Phone: $+31(0) 317480900$	Phone: $+31(0) 317480900$	Phone: $+31(0) 317480900$	Phone: $+31(0) 317480900$
Fax: $+31(0) 317487326$	Fax: $+31(0) 317487359$	Fax: $+31(0) 223630687$	Fax: $+31(0) 317487362$
E-Mail: imares@wur.nl	E-Mail: imares@wur.nl	E-Mail: imares@wur.nl	E-Mail: imares@wur.nl
www.imares.wur.nl	www.imares.wur.nl	www.imares.wur.nl	www.imares.wur.nl

© 2011 IMARES Wageningen UR

IMARES, institute of Stichting DLO The Management of IMARES is not responsible for resulting is registered in the Dutch trade record nr. 09098104, BTW nr. NL 806511618 damage, as well as for damage resulting from the application of results or research obtained by IMARES, its clients or any claims related to the application of information found within its research. This report has been made on the request of the client and is wholly the client's property. This report may not be reproduced and/or published partially or in its entirety without the express written consent of the client.

[^0]
Contents

Contents 3
Summary 4
1 Introduction 5
2 Assignment 5
2.1 Outline 5
3 Analysis of existing LPUE data 6
3.1 Data sources 6
3.2 Methods 7
4 Results 9
4.1 Turbot 9
4.2 Brill 15
5 New data 19
5.1 Industry survey 19
5.2 Egg survey 19
5.3 Expansion of BTS survey. 20
5.4 Expansion of the market (auction) sampling 20
5.5 Expansion of discard sampling 21
6 Conclusions 21
7 Quality Assurance 22
References 23
Appendix A. Turbot 25
Appendix B. Brill 31

Summary

Several commercially important demersal fish stocks for the North Sea fisheries are classified as "category 11" in the light of the EU policy paper on fisheries management (17 May 2010, COM(2010) 241). For stocks in this category, there is no STECF (Scientific, technical and economic committee for fisheries) management advice, due to the unknown status of the stocks. The reason for this is that the data and information available to perform analytical stock assessments are highly uncertain or lacking.

This document describes existing data and options for collecting new data for the evaluation of the state of category 11 stocks. We focus on turbot and brill in the North Sea. Existing data from logbooks and the market sampling program can be used to estimate LPUE series used in age-based stock assessment methods, similar to other commercially important flatfish species such as plaice and sole.

Landings Per Unit of Effort (LPUE) data of the Dutch beam trawl fleet > 221 kW were standardised for engine power and corrected for targeting behaviour as described below and graphically shown in Figure 3.2.1. The methods are similar to those used to analyse commercial LPUE data for North Sea plaice, described in Quirijns and Poos (2010). Landing rates (LPUE) by market category were calculated for the period 2002-2010.

The corrected LPUE series indicate an increase in commercial LPUE for both species during the period 2002-2006. For turbot, the LPUE stays stable in the first five years, increases between 2006 and 2008, and decreases afterwards. The increase in brill LPUE is larger, and occurs throughout the study period.

Compared to other commercially important flatfish species relatively few brill and turbot market samples are taken. This reduces the ability to track the cohorts in the LPUE series of the older ages which is a prerequisite for reliable stock assessment estimates. Also, the time series currently spans only 9 years.

Collection of additional data may therefore be desirable. Expanding the BTS survey will provide industry independent data and would therefore give easily interpretable results. The option of an industry survey is also a good option if the survey is already being executed for sole and plaice. However, both options are costly. Therefore, the option of increasing the samples of turbot and brill at the auction is relatively easy and relatively inexpensive and therefore at present the most promising.

The methods used for this document will not per definition be applicable for all category 11 species. For dab, flounder, lemon sole and tub gurnard, samples at the auctions are taken to collect biological data. For these species it may be possible to raise the data in a similar way as was done in this report to estimate the age composition of the stock. For other species (witch flounder, horse mackerel, silver smelt, red mullet and squid) there is no market sampling. For these species, other methods will have to be developed.

1 Introduction

Several commercially important demersal fish stocks for the North Sea fisheries are classified as "category 11 " in the light of the EU policy paper on fisheries management (17 May 2010, $\operatorname{COM}(2010$) 241). For stocks in this category, there is no STECF (Scientific, technical and economic committee for fisheries) management advice, due to the unknown status of the stocks. The reason for this is that the data and information available to perform analytical stock assessments are highly uncertain or lacking. For species of these stocks, the European Commission adjusts the TAC (Total Allowable Catch) towards recent catch levels but the TAC should not be changed by more than 15% per year. Alternatively, if Member States can develop an implementation plan to provide advice within a short time, the European Committee can set the TAC on the basis of that plan. Finally, where relevant, there should be no increase in fishing effort on these stocks.

2 Assignment

The Ministry of Economic affairs, Agriculture and Innovation (EL\&l) in the Netherlands is in favour of setting TACs on the basis of actual stock status instead of basing it on catch levels. Therefore, the Ministry of EL\&l requested IMARES to consider possibilities for using existing data or collecting new data to get more information on stock status and development of category 11 stocks. Category 11 stocks that are relevant to the Netherlands are listed in table 2.1.1.

Table 2.1.1 Category 11 species of specific interest to the Netherlands

Area	Species
North Sea	Turbot
	Brill
	Dab
	Flounder
	Lemon Sole
	Witch Flounder
	Horse Mackerel
Western waters	Silver Smelt
English Channel	Red Mullet
	Squid
	Tub Gurnard

2.1 Outline

This document describes existing data and options for collecting new data for the evaluation of the state of category 11 stocks. We focus on turbot and brill in the North Sea.
Existing data from logbooks and the market sampling program could be used to evaluate the status of turbot and brill in the North Sea. The status of these stocks could be evaluated using age-based stock assessment methods, similar to other commercially important flatfish species such as plaice and sole. Such age-based stock assessments generally use the age structured landings from a population in conjunction with SSB indices such as egg surveys and "tuning indices". Such tuning indices provide proxies for the abundance per age.
Age-structured commercial LPUE (Landing Per Unit Effort) data and survey CPUE (Catch Per Unit Effort) data can be used in stock assessments as a tuning index if (i) they are not affected by changes in targeting behaviour of fisheries and (ii) they accurately show cohort signals. The changes in targeting behaviour result from fishers adapting to changing management or economic circumstances and are largely achieved by shifting fishing grounds.

Methods for reducing the effects of targeting behaviour in the Dutch beam trawl fleet are available from earlier analyses carried out for North Sea plaice and sole (Quirijns, 2010). In short, these methods rely on reducing the effects of spatial shifts in fishing effort by calculating the fishing effort by ICES rectangle and subsequently averaging these over the entire fishing areas. In this report, these methods are applied to data on turbot and brill. The strengths of cohort signals in the resulting corrected LPUE estimates is indicated by the correlation strength of subsequent ages within the LPUE within year-classes.
The LPUE data are retrieved by combining EU logbooks, auction data, and market sampling data. In addition to the use of existing data, new data to evaluate the state of the stocks can be collected. Examples of the options are more extensive research surveys, data collection by commercial vessels and collection of more samples in the existing market sampling programme. We provide suggestions on what type of data could be collected, discussing the advantages and disadvantages of the different options.

3 Analysis of existing LPUE data

Existing fishery dependent data on turbot and brill in the North Sea may give insight in the stock status of these two species. Processing methods applied to the data are derived from methods developed for North Sea plaice and sole (Quirijns 2010).

3.1 Data sources

Several data sources were used in the analyses described below: landings and effort data were obtained from the EU logbooks; market category composition of landings was obtained from the auction data (sale slips); and age-length sampling data was used to characterize the relation between size and age. Only landings and effort data from Dutch beam trawl vessels were used in the analyses.

3.1.1 EU logbook data

Official EU logbook data of the entire Dutch fleet are owned by the General Inspection Service (AID), part of the Dutch Ministry of Economic Affairs, Agriculture and Innovation (EL\&I). IMARES has access to these logbooks and stores the data in a database called VISSTAT. EU logbook data contain information on:

- landings (kg): by vessel, trip, ICES statistical rectangle and species;
- effort (days absent from port): by vessel, trip and ICES statistical rectangle, calculated from trip departure and arrival; and
- vessel information: length, engine power and gear used.

Logbook data are available of the entire Dutch fishing fleet and of foreign vessels landing their catches in the Netherlands. For the analyses, only information from the Dutch fishing fleet is used. Logbook data on turbot and brill are available from 1997 onwards.

3.1.2 Auction data: landings by market category

Auction data on turbot and brill are available from 1997 onwards. The data cover both the total Dutch fishing fleet and foreign vessels landing their catches on Dutch auctions. These data are also stored in VISSTAT and contain information on:

- landings by market category (kg): by vessel, trip (landing date) and species

3.1.3 Market sampling data

In the IMARES market sampling, data on length, age, sex and weight are collected for several commercially important species. Market sampling on turbot and brill has been carried out since 1981. However, this was done on an irregular basis and many years are missing (see appendices; Table A.4). Since 2002, sampling was executed annually. As the analyses require data on a yearly basis, only the
data from 2002 onwards is used. The market sampling data served to calculate numbers per age per market category per year.

3.2 Methods

Landings Per Unit of Effort (LPUE) data of the beam trawl fleet were standardised for engine power and corrected for targeting behaviour as described below and graphically shown in Figure 3.2.1. The methods are similar to those used to analyse commercial LPUE data for North Sea plaice, described in Quirijns and Poos (2010). Landing rates (LPUE) by market category were calculated for the period 2002-2010.

3.2.1 Standardisation of engine power

Engine power has an effect on LPUE. With higher engine power, a vessel can trawl heavier gear or fish at higher speed, which likely results in higher landing rates. The majority of the Dutch beam trawl fleet consists of vessels with engine powers around 1471 kW ($=2000 \mathrm{hp}$). The analyses have been restricted to the large cutters with engine power above 221 kW . LPUE data were standardized to a vessel with an 1471 kW engine by applying the estimated relationship for this fleet (Rijnsdorp et al. 2006):
$L P U E=\frac{L}{\left(E * k W^{\beta} / 1471^{\beta}\right)}$
where L are landings in kilograms; E is effort in days at sea; $k W$ is engine power in $k W$; and β is a constant that varies between species. As the values of β for turbot and brill are unknown, β is set at 1 for both species. More analyses should be carried out to estimate the β values.

3.2.2 Correction for targeting behaviour

Fishers target fishing areas with high concentrations of fish. Dividing total landings by total effort without taking in account targeting behaviour will result in bias of commercial LPUE because of possible changes in the spatial distribution of fishing effort. Therefore, a correction was carried out using EU logbook data. The first step was to calculate landings by market category per unit of effort. For this step, logbook data and auction data were merged based on vessel name, end-of-trip date and date of unloading the catch (Figure 3.2.1). The different market categories of turbot and brill were taken into account (Table 3.2.1). LPUE was calculated per ICES rectangle, per year. Next, a selection was made in which only those rectangles visited by at least one vessel in each of the 9 years were selected. This ensures that the LPUEs are valid for the core area of the fleet, and not influenced by missing values in some years. Subsequently, the LPUE's by ICES rectangles were averaged to calculate the LPUE by year for the core fishing area of the Dutch beam trawlers in the North Sea (those ICES rectangles highlighted in grey in tables A. 3 and B.3). This removes the major effects of changes in spatial effort allocation due to - for instance - changing targeting behaviour.

3.2.3 Landings by age

Because stock assessments are usually based on information by age class, LPUE data needs to be converted to landings by age, per unit of effort. Therefore, landings by market category were converted into landings by age using the numbers per age per market category estimated from the market sampling data.

Table 3.2.1 Official turbot and brill market categories

Market Category	Turbot	Brill
$1+$	$>6 \mathrm{~kg}$	$>2 \mathrm{~kg}$
1	$4-6 \mathrm{~kg}$	$1-2 \mathrm{~kg}$
2	$3-4 \mathrm{~kg}$	$0.4-1 \mathrm{~kg}$
3	$2-3 \mathrm{~kg}$	$25 \mathrm{~cm}-0.4 \mathrm{~kg}$
4	$1-2 \mathrm{~kg}$	
5	$0.5-1 \mathrm{~kg}$	
6	$25 \mathrm{~cm}-0.5 \mathrm{~kg}$	

Weights landed per market category data were obtained from auction data, which were merged to EU logbook data in order to get an estimate of the LPUE for every trip per ICES rectangle and market category. The merging was based on vessel name, end-of-trip date and date of unloading the catch (Figure 3.2.1).

Figure 3.2.1. Flow diagram of LPUE correction based on landings and effort registered in logbooks, market category data from the auction, and age data per market category from the market sampling; Roman numerals indicate the different steps. Intermediate results are printed in Appendix A and B.

For every trip and ICES rectangle, LPUE - standardised to a 1471 kW vessel - was calculated by market category. The age composition for each market category was calculated, for every year using the market sampling data. This age composition was used to convert LPUE by market category to LPUE by age.

4 Results

4.1 Turbot

4.1.1 Step I: Proportions of landings per trip and market category

In the period used for this study, the official market categories span categories 1-6 (Table 3.2.1). The auctions also have a category with animals larger than 6 kilograms, but those individuals are very rare. Only data for categories 1-6 are used. Other categories have only been sparsely sampled at the auctions (Table A.4). Therefore, there is no information of their age distribution, which we need in step VII. This does not result in loss in the total weight, which is calculated using the weights registered in the logbooks (step II).

4.1.2 Step II: Effort and landings per ICES rectangle

Effort

The total effort of Dutch TBB vessels $>221 \mathrm{~kW}$ has decreased since 2002 (Table 4.1.1 and Figure 4.1.1). The difference between the uncorrected and corrected effort becomes smaller over time as a result of a strong decline in vessels $>1471 \mathrm{~kW}$ active in the fleet. This decrease is the result of fisheries management measures prohibiting the entry of larger vessels. The effort of the vessels that caught turbot is slightly smaller compared to the effort by the whole Dutch beam trawl fleet (Figure 4.1.1, red dashed line). In approximately 1.4% of the trips, vessel power was missing from the logbook data. In these instances, vessel power was given the mean vessel power of the other vessels.

Table 4.1.1 Effort for the Dutch beam trawl fleet >221 kW (days at sea) in ICES area IV. Uncorrected effort: total days at sea. Corrected effort: days at sea standardized a 1471 kW vessel

	year								
	2002	2003	2004	2005	2006	2007	2008	2009	2010
Uncorrected	25705	23949	22754	22973	20974	20398	15654	16375	16121
Corrected	28902	26828	25129	25321	22745	22053	16342	16896	16585

Figure 4.1.1 Time series of effort (days at sea per 1471 kW vessel) by the total Dutch beam trawl fleet (blue solid line) or the Dutch Beam trawl fleet that landed turbot (red dashed line).

Landings

The turbot landings (kg) per ICES rectangle and year for the Dutch beam trawl fleet are listed in appendix A (Table A.1). The total landings per year (Table 4.1.2 and Figure 4.1.2) show that the total amount of landings has remained relatively stable since 2002, with higher landings in 2007.

Table 4.1.2 Turbot landings (kg) per year in ICES area IV for the Dutch beam trawl fleet

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010
Landing	158823	153489	146084	152707	145222	192446	144723	143435	126469

Figure 4.1.2 Time series of total Dutch turbot landings per year

Based on the proportions of landings per market category (step I) and the total amount of landings (Table 4.1.2), total landings per market category were calculated (Table 4.1.3). In some of the trips the proportional landings by market category are unknown (on average $\sim 3 \%$), and hence could not be included in this table.

Table 4.1.3 Turbot landings (kg) per year and market category

	Year								
Category	2002	2003	2004	2005	2006	2007	2008	2009	2010
1	147112	116031	96515	81018	64098	76595	79745	102019	101233
2	108812	110416	71528	65192	66989	88739	96485	130847	113075
3	221685	162585	118106	163357	144933	193403	240323	236005	170184
4	485293	345299	413899	408166	394685	542784	399635	346249	259576
5	381642	459872	454289	475837	409005	602361	405519	343637	305981
6	194889	312771	266402	318954	332604	351658	195757	170913	165997

Figure 4.1.3 Corrected time series of turbot LPUE of the Dutch beam trawl fleet in ICES area IV.

4.1.3 STEP III-VI: LPUE per market category

To measure LPUE per market category, we first estimated the LPUE per ICES rectangle, year and market category. Subsequently, we have summed the LPUE's over the ICES rectangles per year and market category (Table 4.1.4). The proportionality of ages per market category (in step VI) is given in Table A. 2 (Appendix A).

Table 4.1.4 LPUE per market category and year (kg turbot per day at sea)

	year								
Category	2002	2003	2004	2005	2006	2007	2008	2009	2010
1	5.1	4.5	3.9	3.4	2.9	3.5	4.5	6.1	6.1
2	4.2	4.9	3.4	3.0	3.2	4.3	5.8	7.8	7.5
3	9.6	8.3	5.6	7.3	6.9	9.2	14.9	16.3	12.6
4	21.0	15.1	19.6	17.9	18.2	26.4	29.2	25.4	18.5
5	14.2	18.7	19.6	18.6	17.8	26.6	25.6	22.2	21.0
6	5.3	10.9	9.4	10.1	12.3	13.1	9.1	9.2	9.1
total	59.5	62.4	61.5	60.3	61.1	83.1	89.2	87.1	74.9

4.1.4 Step VII-VIII LPUE per age

The LPUE's per ICES rectangle and year are listed in the appendix (Table A.3). Table 4.1. lists the LPUE's per age and year and Figure 4.1. shows the LPUE per age and the distribution of LPUE's over the ages. The LPUE is mainly made up of ages 2-5 which contribute more than 85% of the total. The LPUE of older ages are very low or absent (Table 4.1.5). The corrected LPUE of the large Dutch beam trawl appears relatively stable in the period 2002-2006. Since 2006, there appears to have been an increase in LPUE, followed by a decline in 2008.
There is some cohort effect in the LPUE-at-age matrix, with the LPUE of younger ages (ages 3-7) being correlated along cohorts (Table 4.1.6 and Figure 4.1.5). For older ages, this correlation disappears, caused by the scarcity of data on older individuals. However, there seems to be a single cohort of older (> 10 yr old) fish that was caught between 2002 and 2006 (age 11 in 2002).

Table 4.1.5 LPUE per age and year between 2002 and 2010 ($k g$ turbot per day at sea).

	Year								
age	2002	2003	2004	2005	2006	2007	2008	2009	2010
1	1.65	2.06	2.66	1.26	3.82	0.88	2.41	0.78	2.66
2	12.78	23.32	24.61	21.05	18.61	40.96	27.91	14.90	22.11
3	27.78	13.88	21.84	23.13	24.82	20.18	31.36	32.08	14.40
4	7.95	13.94	4.74	9.78	7.32	13.4	10.31	24.51	14.69
5	5.45	3.90	5.30	1.56	3.46	3.60	10.93	7.31	10.91
6	1.86	2.43	1.09	2.45	1.01	2.53	3.18	3.58	5.14
7	0.66	1.44	0.83	0.13	1.28	0.43	2.14	1.67	2.40
8	0.84	0.48	0.28	0.41	0.31	0.61	0.22	1.11	1.01
9	0.13	0.66	0.11	0.15	0.03	0.00	0.63	0.12	0.80
10	0.05	0.14	0.00	0.14	0.27	0.22	0.00	0.95	0.27
11	0.21	0.00	0.00	0.05	0.04	0.14	0.06	0.00	0.48
12	0.05	0.08	0.00	0.09	0.09	0.05	0.06	0.10	0.00
13	0.03	0.00	0.06	0.00	0.00	0.04	0.00	0.00	0.00
14	0.00	0.03	0.00	0.10	0.00	0.00	0.00	0.00	0.00
15	0.00	0.00	0.00	0.00	0.04	0.00	0.00	0.00	0.00
16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
18	0.00	0.00	0.00	0.00	0.00	0.10	0.00	0.00	0.00

Figure 4.1.4 Time series of percentage of LPUE per age (left) and total LPUE per age (right) for turbot.

Figure 4.1.5 Correlation between turbot log LPUE for successive ages within a year class.

Table 4.1.6 Correlation statistics and p-value for turbot LPUE for successive ages within a year class. Number within brackets indicates degrees of freedom. Grey rows indicate significant correlations.

Age	$1-2$	$2-3$	$3-4$	$4-5$	$5-6$	$6-7$	$7-8$	$8-9$	$9-10$	$10-11$	$11-12$
R	0.22	0.92	0.90	0.88	0.74	0.86	0.66	0.69	0.69	0.98	0.2
p	$0.59(6)$	$<0.01(6)$	$<0.01(6)$	$<0.01(6)$	$0.03(6)$	$<0.01(6)$	$0.08(6)$	$0.08(5)$	$0.14(4)$	$0.02(2)$	$0.76(3)$

4.2 Brill

For brill we follow the same procedure as for turbot.

4.2.1 Step I: Proportions of landings per trip and market category

The landings per market category, trip and year are used to estimate the proportions per category. For brill, there are 3 market categories, ranging from 1 to 3 (Table 3.2.1). The auctions use an additional category for larger animals, but these are very rare. As for turbot, we exclude this market category from the following analyses, because this market category has not sufficiently been sampled at the auctions, resulting in lack of information on the ages within this market category (Table B.4). The catches of the market category 0 are therefore proportionally divided over the other 3 categories.

4.2.2 Step II: Effort and landings per ICES rectangle

Effort

Trends in effort for the Dutch beam trawl fleet fishing in area IV are the same for brill as for turbot (Figure 4.2.1). Trends in effort of the vessels that caught brill show that in some trips brill was not caught (Figure 4.2.1). The number of trips in which no brill was caught is larger than the number of trips in which no turbot was caught. This results in the red line in Figure 4.2.1 being lower than the red line in Figure 4.1.1. For 1.9% of the trips, no power could be allocated to the vessel. These were given the average power of the other vessels.

Figure 4.2.1 Time series of effort (days at sea per 1471 kW vessel) by the total Dutch beam trawl fleet (blue solid line) or the Dutch Beam trawl fleet that landed brill (red dashed line).

Landings

Brill landings per ICES rectangle and year for the Dutch beamtrawl fleet are listed in Table B. 1 (Appendix B). The total landings per year are listed in and shown in (Table 4.2.1 and Figure 4.2.2). The landings per trip, ICES rectangle and year are divided over the market categories by multiplying the landings with the proportions in the proportions table (not shown). In Table 4.2.2 we show the total landings per year
and market category. Because for some trips information on the distribution over the market categories was lacking, there is a small loss of recorded landings and effort in this table (average $\sim 4 \%$).

Table 4.2.1 Brill landings (kg) per year in the North Sea for the Dutch beam trawl fleet > 221 kW

Year	2002	2003	2004	2005	2006	2007	2008	2009	2010
Landings	817423	831961	699578	645762	666506	775154	593458	717255	952534

Figure 4.2.2 Time series of brill landings by beam trawl vessels $>221 \mathrm{~kW}$ in the North Sea

Table 4.2.2 Brill landings per market category

	Year								
Category	2002	2003	2004	2005	2006	2007	2008	2009	2010
1	275942	238896	264315	285915	254500	323290	324218	326859	519828
2	411618	469038	324899	274813	272266	359102	212189	263181	236084
3	86939	105960	87553	79082	120735	66679	45004	90754	89923

4.2.3 STEP III-VI: LPUE per market category

The LPUE per ICES rectangle, year and market category are listed in Table B. 3 (Appendix B). The LPUE's per market category and year are listed in Table 4.2.3. The proportionality of ages per market category (in step VI) is given in Table B. 2 (Appendix B).

Table 4.2.3 Brill LPUE's per market category and year (kg per day at sea).

	Year								
Category	2002	2003	2004	2005	2006	2007	2008	2009	2010
1	8.9	8.1	9.8	11.6	10.5	13.6	18.2	18.1	26.1
2	12.0	16.7	15.1	11.7	11.5	15.5	12.6	14.8	15.1
3	2.5	3.9	3.4	2.9	4.4	3.1	2.6	4.7	5.5
total	23.36	28.75	28.33	26.28	26.44	32.20	33.42	37.70	46.79

Figure 4.2.3 Corrected time series of brill LPUE of the Dutch beam trawl fleet in ICES area IV.

4.2.4 STEP VII-VIII: LPUE per age

The LPUE per ICES rectangle are listed in the appendix (Table B.3). In Table 4.2.4 the LPUE's per age and year and in Figure 4.1.4, the LPUE per age and the distribution of LPUE's over the ages are shown. The LPUE is mainly made up of ages $1-3$ which contribute more than 85% of the total. As for turbot, the LPUE's of older ages are very low or absent. The corrected age-structured LPUE data shows an increase in the period 2002-2010. This increase is mainly caused by an increase in the younger ages (ages 2-4). Correlations between the log of LPUE for successive years within age classes are shown in Figure 4.2.5 and Table 4.2.5. These correlations are all positive, but only significant for the ages $2-6$ (Table 4.2.5). For the other ages, there was not enough data available. In addition, ages older than 8 are scarce.

Table 4.2.4 Brill LPUE per age (kg per day at sea)

age	2002	2003	2004	2005	2006	2007	2008	2009	2010
0	0.00	0.00	0.07	0.00	0.00	0.00	0.01	0.03	0.00
1	3.31	6.02	5.86	2.82	5.08	4.17	3.64	6.68	9.06
2	10.3	15.88	13.72	13.89	10.91	20.77	14.07	14.02	22.01
3	7.77	3.88	6.66	7.39	7.84	5.12	13.82	11.89	7.37
4	0.99	2.07	1.12	1.55	2.22	1.48	1.38	4.37	6.45
5	0.62	0.36	0.66	0.32	0.32	0.54	0.4	0.5	1.74
6	0.33	0.21	0.17	0.25	0.06	0.06	0.1	0.11	0.00
7	0.00	0.24	0.04	0.00	0.00	0.06	0.00	0.11	0.15
8	0.03	0.00	0.04	0.00	0.00	0.00	0.00	0.00	0.00
9	0.00	0.02	0.00	0.06	0.00	0.00	0.00	0.00	0.00
10	0.00	0.05	0.00	0.00	0.00	0.00	0.00	0.00	0.00
11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
14	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
15	0.00	0.02	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Figure 4.2.4 Time series of percentage of LPUE per age (left) and total LPUE per age (right).
age 0-1
In(LPUE) age
age 4-5

age 1-2

age 5-6

age 2-3

age 6-7

Figure 4.2.5 Correlation between log of brill LPUE for successive years within an age class.

Table 4.2.5 Correlation statistics and p-value for turbot LPUE for successive ages within a year class. Number within brackets indicates degrees of freedom.

Age	$0-1$	$1-2$	$2-3$	$3-4$	$4-5$	$5-6$	$6-7$
r	0.62	0.57	0.84	0.89	0.92	0.78	0.37
p	$0.58(1)$	$0.13(6)$	$<0.01(6)$	$<0.01(6)$	$<0.01(6)$	$0.04(5)$	$0.53(3)$

5 New data

Alternative data sources could be used if more information is needed on the age structure of the population to be used in age structured stock assessments such as being used for other commercially important flatfish species. To obtain additional information to estimate the age composition of the population and or to estimate a reliable CPUE, we will discuss a number of options:

1. Industry survey
2. Egg survey
3. Expansion of the market (auction) sampling
4. Expansion of BTS survey
5. Expansion of discard sampling

5.1 I ndustry survey

An industry survey is a survey with a scientific set-up, but carried out with commercial vessels in close cooperation with the fishing industry. Such a survey can provide large amounts of data in a relatively short time. In addition, at present, the Dutch fishing industry, the Ministry of EL\&I and IMARES are setting up an industry survey for sole and plaice. If they succeed, it will be relatively easy to include other flatfish species such as turbot and brill in this survey. However, it is unclear if the data resulting from this sampling will be sufficient to trace the changes in the age composition, because the number of catches are low for turbot and brill..

```
Advantages
- If an industry survey for plaice and sole is set up, then the effort and costs to include sampling of other species like turbot and brill are relatively low.
```


Disadvantages

- If an industry survey for plaice and sole is not set up, then the costs are high.
- Observers are desired on board to obtain independent data, which is costly.
- Catchability of the commercial fishery increase over the years (Technology Creep) and differs per vessel making standardizations of LPUE more difficult.
- The numbers of turbot and brill caught per vessel are low, because turbot and brill are usually not targeted specifically.

5.2 Egg survey

An egg survey provides an estimate of the number of eggs produced by the spawning stock, which is an indicator of the state of the stock. There are two options to use an egg survey for turbot and brill data collection. The first is to design a new survey. As a first step in designing this survey, the survey 'sound in the sea' (Dutch: 'geluid in zee'), can be used to find the best time to collect egg samples for turbot and brill. This survey is a year round egg survey, but has been executed only once (in 2010). However, it will be costly to set up a new survey targeting turbot or brill eggs while determining the difference between eggs of turbot and brill is difficult because the size ranges of the eggs of the two species overlap.
The second option is to use the egg survey that is already going on for mackerel eggs. However, there are not many turbot and brill eggs caught in this survey, because the area covered and the sampling time of the survey are not optimal.

Advantages

- If the mackerel eggs survey is used the effort and costs to include eggs of other species like turbot and brill are relatively low.
- Provides independent data
- Time series of egg production can be used directly as a proxy for spawning stock biomass without the use of a stock assessment stock status

Disadvantages

- Costly to set up a new survey, and survey needs to run for a considerably amount of time to be used in an assessment model
- The mackerel egg survey does not catch many turbot and brill eggs
- Turbot and brill eggs are hard to distinguish from each other owing to an overlap in their size range.

5.3 Expansion of BTS survey

The surveys carried out by IMARES targeting flatfish (BTS, SNS, DFS) do not catch many turbot and brill (BTS:200 turbot and 200 brill per year (Isis + Tridens), resulting in approximately 3 individuals per hour). Additional BTS hauls could be done to estimate a reliable survey CPUE. The catchability of large fishes in the BTS is very low. Thus, to get a better fisheries-independent age structure for the older animals from the BTS survey is costly because survey effort would have to be increased substantially.

Advantages	Disadvantages
• Provides independent data	• Costly
• Easy to set-up	• Many additional hauls are needed to collect enough data (especially older individuals).

5.4 Expansion of the market (auction) sampling

To get a better estimate of the age distribution the market sampling program could be extended. The analyse described in this study primarily used this type of data. At present, the aim of the market sampling program is to sample a minimum of 720 turbots and brill per year for age determination. To compare, for plaice and sole the aim is to sample 3600 and 3000 individuals respectively. The extension of the market sampling program should be aimed especially at sampling the older animals, because this is where the age structure of the data deteriorates because of low sample size. If 500 additional individuals are sampled, the age structure in the older ages would increase substantially. The costs for sampling an additional 500 turbot individuals is approximately 29080,- euro, resulting from:

500 turbots with average weight 4 kg , loss in sales price after sampling
Auction costs
Hours IMARES visiting auction
Hours IMARES processing sample
Hours IMARES age-reading \& preparation
Hours IMARES database check \& import

12000,-

500,-
10 visits * 4 hours $* 2$ persons= $16 * 73$,- 5840,-
1 session $* 20$ hours $* 2$ persons $=8 * 73$,- 2920,-
1 session * 80 hours $* 1$ person $=16 * 73,-\quad 5840,-$
1 session * 10 hours * 1 person $=2 * 73,-\quad 730,-$
29080,-

```
Advantages
- Improves the estimate of the age distribution
    (length/weight/ sex), especially if older fish
    are sampled (> 5 year)
- Relatively inexpensive, especially if
    measurements and otholith removals are
    executed on the auction
```


5.5 Expansion of discard sampling

IMARES executes a discard sampling program. The data collected by this program on turbot and brill can be used. However, in the discard sampling turbot and brill are not always measured and the numbers of turbot and brill in the discards is probably too low to significantly contribute to more reliable estimates of CPUE's or age distributions.

Advantages	Disadvantages
• Relatively easy to join in the existing discard	• At present, turbot and brill are not measured
sampling program	•Dumbers of discards of turbot and brill are low absent

6 Conclusions

LPUE of turbot and brill per age class can be estimated with present data for the period 2002-2010. The sampling programs that allow estimating the age-structured LPUE are still running. The LPUE series for turbot and brill are covered by the Dutch beam trawl fleet > 221 kW for the whole North Sea, being an important fishing fleet for these species. By applying the methods of Quirijns (2010) the LPUE is partly corrected for targeting behaviour by accounting for spatial redistribution of fishing effort on the level of the ICES statistical rectangle. Finally, the age-segregation of the LPUE allows incorporating it in agestructured stock assessments.
The corrected LPUE series indicate an increase in commercial LPUE for both species during the period 2002-2006. For turbot, the LPUE stays stable in the first five years, increases between 2006 and 2008, and decreases afterwards. The increase in brill LPUE is larger, and occurs throughout the study period. Compared to other commercially important flatfish species relatively few brill and turbot market samples are taken. This reduces the ability to track the cohorts in the LPUE series of the older ages which is a prerequisite for reliable stock assessment estimates. Also, the time series currently spans only 9 years. Collection of additional data may therefore be desirable. Expanding the BTS survey will provide industry independent data and would therefore give easily interpretable results. The option of an industry survey is also a good option if the survey is already being executed for sole and plaice. However, both options are costly. Therefore, the option of increasing the samples of turbot and brill at the auction is relatively easy and relatively inexpensive and therefore at present the most promising.
In Table the category 11 stocks are listed. The methods used for this document will not per definition be applicable for all category 11 species. For dab, flounder, lemon sole and tub gurnard, samples at the auctions are taken to collect biological data. . For these species it may be possible to raise the data in a similar way as was done in this report to estimate the age composition of the stock. For other species (witch flounder, horse mackerel, silver smelt, red mullet and squid) there is no market sampling. For these species, other methods will have to be developed.

7 Quality Assurance

IMARES utilises an ISO 9001:2008 certified quality management system (certificate number: 57846-2009-AQ-NLD-RvA). This certificate is valid until 15 December 2012. The organisation has been certified since 27 February 2001. The certification was issued by DNV Certification B.V. Furthermore, the chemical laboratory of the Environmental Division has NEN-AND-ISO/IEC 17025:2005 accreditation for test laboratories with number L097. This accreditation is valid until 27 March 2013 and was first issued on 27 March 1997. Accreditation was granted by the Council for Accreditation.

References

Rijnsdorp, A. D., W. Dekker, and N. Daan. 2006. Partial fishing mortality per fishing trip: a useful indicator for effective fishing effort in management of mixed demersal fisheries. ICES Journal of Marine Science 63:556-566

Quirijns, F. J. 2010. Landings and Effort data of sole and plaice in the North Sea Sea (WD WGNSSK 2007). Wageningen IMARES.

Quirijns F.J., Poos J.J., Rijnsdorp AD (2008) Standardizing commercial CPUE data in monitoring stock dynamics: Accounting for targeting behaviour in mixed fisheries. Fisheries Research89:1-8

Justification

Report number:
C109/11
Project Number:
4308101020

The scientific quality of this report has been peer reviewed by the a colleague scientist and the head of the department of IMARES.

Approved:

Niels Hintzen MSc
Junior researcher

Signature:

Date:

the $26^{\text {th }}$ of September 2011

Approved:
dr. ir. T.P. Bult Head Fisheries Department
Signature:

Date:
the $26^{\text {th }}$ of September 2011

Appendix A. Turbot

Table A. 1 Turbot landings per rectangle. Rectangles with less than 10000 kg over all years are summed in the row labelled "other".

Table A. 2 Proportionality of ages per market category. Note that the ages $16-17$ are absent, because no fishes of these ages were sampled.

Category 1																
	Age															
Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	18
2002	0	0	0.005	0.153	0.365	0.217	0.069	0.116	0.016	0.011	0.042	0	0.005	0	0	0
2003	0	0	0	0.215	0.221	0.195	0.200	0.062	0.082	0.015	0	0.010	0	0	0	0
2004	0	0	0	0.159	0.420	0.159	0.145	0.072	0.029	0	0	0	0.014	0	0	0
2005	0	0	0	0.197	0.242	0.364	0.030	0.061	0.045	0.015	0.015	0	0	0.030	0	0
2006	0	0	0	0.116	0.261	0.246	0.275	0.058	0	0	0.014	0.014	0	0	0.014	0
2007	0	0	0	0.179	0.218	0.333	0.051	0.128	0	0.038	0.038	0	0	0	0	0.013
2008	0	0	0.028	0.113	0.282	0.169	0.296	0.028	0.056	0	0.014	0.014	0	0	0	0
2009	0	0	0	0.173	0.154	0.231	0.212	0.135	0.019	0.077	0	0	0	0	0	0
2010	0	0	0	0.059	0.250	0.250	0.147	0.103	0.118	0.044	0.029	0	0	0	0	0
Category 2																
	Age															
Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	18
2002	0	0	0.129	0.353	0.368	0.095	0.030	0.025	0	0	NA	NA	NA	NA	NA	NA
2003	0	0	0.049	0.545	0.175	0.138	0.053	0.012	0.028	0	0	0	0	0	0	0
2004	0	0	0.068	0.392	0.473	0.014	0.054	0	0	0	0	0	0	0	0	0
2005	0	0	0.051	0.592	0.112	0.224	0.010	0.010	0	0	0	0	0	0	0	0
2006	0	0	0.078	0.400	0.374	0.052	0.070	0.017	0.009	0	0	0	0	0	0	0
2007	0	0	0.017	0.537	0.281	0.124	0.017	0.008	0	0.008	0	0	0.008	0	0	0
2008	0	0	0.123	0.189	0.410	0.139	0.107	0.016	0.016	0	0	0	0	0	0	0
2009	0	0	0.038	0.487	0.231	0.205	0.026	0	0	0	0	0.013	0	0	0	0
2010	0	0	0	0.220	0.370	0.230	0.080	0.05	0.010	0	0.040	0	0	0	0	0

Category 3																
Age																
Year	1	2		4	5		7	8	9	10	11	12	13	14	15	18
2002	0	0.010	0.593	0.255	0.109	0.020	0.007	0.007	0	0	0	0	0	0	0	0
2003	0	0.006	0.329	0.541	0.070	0.041	0.006	0	0	0.003	0	0	0	0.003	0	0
2004	0	0.043	0.647	0.158	0.129	0.007	0.014	0	0	0	0	0	0	0	0	0
2005	0	0.038	0.532	0.405	0.006	0.019	0	0	0	0	0	0	0	0	0	0
2006	0	0	0.416	0.409	0.148	0.007	0	0	0	0.013	0	0.007	0	0	0	0
2007	0	0.028	0.348	0.481	0.072	0.050	0.006	0	0	0.006	0	0.006	0	0	0	0.006
2008	0	0.034	0.358	0.338	0.230	0.034	0	0	0.007	0	0	0	0	0	0	0
2009	0	0	0.302	0.488	0.151	0.035	0.012	0	0	0.012	0	0	0	0	0	0
2010	0	0.010	0.162	0.429	0.305	0.067	0.029	0	0	0	0	0	0	0	0	0

Category 4

	Age	1														
Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	18
2002	0	0.148	0.692	0.115	0.028	0.005	0.005	0.002	0.002	0	0	0.002	0	0	0	0
2003	0	0.172	0.444	0.259	0.079	0.023	0.010	0	0.010	0	0	0.003	0	0	0	0
2004	0	0.268	0.595	0.059	0.059	0.020	0	0	0	0	0	0	0	0	0	0
2005	0	0.140	0.675	0.140	0.010	0.020	0	0.010	0	0	0	0.005	0	0	0	0
2006	0.005	0.181	0.693	0.085	0.015	0	0.010	0.005	0	0.005	0	0	0	0	0	0
2007	0	0.364	0.442	0.147	0.037	0.009	0	0	0	0	0	0	0	0	0	0
2008	0	0.256	0.569	0.069	0.075	0.019	0.006	0	0.006	0	0	0	0	0	0	0
2009	0	0.068	0.545	0.330	0.034	0	0	0.011	0	0.011	0	0	0	0	0	0
2010	0	0.259	0.370	0.259	0.093	0	0.019	0	0	0	0	0	0	0	0	0

Category 5

	Age															
Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	18
2002	0.047	0.419	0.438	0.057	0.031	0.005	0	0.002	0	0	0	0	0	0	0	0
2003	0.034	0.642	0.192	0.096	0.013	0.010	0.003	0.008	0	0.003	0	0	0	0	0	0
2004	0.044	0.624	0.288	0.035	0.009	0	0	0	0	0	0	0	0	0	0	0
2005	0.020	0.535	0.335	0.095	0.010	0	0	0	0	0.005	0	0	0	0	0	0
2006	0.041	0.423	0.434	0.077	0.010	0.005	0.005	0	0	0.005	0	0	0	0	0	0
2007	0.005	0.728	0.180	0.074	0	0.005	0.005	0.005	0	0	0	0	0	0	0	0
2008	0.019	0.561	0.293	0.051	0.057	0.019	0	0	0	0	0	0	0	0	0	0
2009	0	0.322	0.489	0.133	0.056	0	0	0	0	0	0	0	0	0	0	0
2010	0.064	0.486	0.239	0.110	0.046	0.046	0.009	0	0	0	0	0	0	0	0	0

Table A. 2 continued. Proportionality of ages per market category

Category 6

	Age															
Year	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	18
2002	0.184	0.679	0.132	0.003	0	0	0.003	0	0	0	0	0	0	0	0	0
2003	0.131	0.799	0.056	0.008	0.003	0	0.003	0	0	0	0	0	0	0	0	0
2004	0.190	0.730	0.074	0.005	0	0	0	0	0	0	0	0	0	0	0	0
2005	0.087	0.821	0.077	0.010	0	0.005	0	0	0	0	0	0	0	0	0	0
2006	0.245	0.635	0.115	0	0.005	0	0	0	0	0	0	0	0	0	0	0
2007	0.058	0.894	0.034	0.014	0	0	0	0	0	0	0	0	0	0	0	0
2008	0.210	0.611	0.115	0.038	0.019	0.006	0	0	0	0	0	0	0	0	0	0
2009	0.084	0.651	0.229	0.036	0	0	0	0	0	0	0	0	0	0	0	0
2010	0.144	0.766	0.054	0.018	0.009	0.009	0	0	0	0	0	0	0	0	0	0

Table A. 3 Turbot LPUEs per ICES rectangle and year. Shaded rows contain no missing values and are used in age structured LPUE calculations.

Table A. 3 continued. Turbot LPUEs per ICES rectangle and year. Shaded rows contain no missing values and are used in age structured LPUE calculations.

Table A. 4 Turbot market sampling. Numbers per market category per year. Notice that several years are missing because no market sampling was done in those years.

	Market category								
Year	+	0	1	2	3	4	5	6	Total
1981		135	30	36	36	40			277
1982			280	288	313	300			1181
1983		10	363	332	415	415			1535
1984			309	354	419	427			1509
1985			290	362	418	429			1499
1986			231	301	350	358			1240
1987			72	104	121	126			423
1988			87	93	107	111			398
1989			72	73	94	119	119		477
1990			102	98	131	135	133		599
1998			38	69	94	131	122		454
2002			189	201	302	400	422	365	1879
2003		15	195	246	316	390	386	373	1921
2004	11		69	74	139	205	226	189	913
2005	7	1	66	98	158	200	200	195	925
2006	8		69	114	149	199	196	192	927
2007	12		78	121	181	217	217	207	1033
2008	9		71	122	148	160	157	157	824
2009	9		52	78	86	88	90	83	486
2010	10		68	100	105	107	109	111	610

Appendix B. Brill

Table B. 1 Brill landings per rectangle. Rectangles with less than 10000 kg over all years are summed in the row labelled "other".

Table B. 2 Proportionality of ages per market category. Note that the ages 11-13 are absent, because no fishes of these ages were sampled.

Table B. 3 Brill LPUEs per ICES rectangle and year. Shaded rows contain no missing values and are used in age structured LPUE calculations.

Table B. 3 continued. Brill LPUEs per ICES rectangle and year. Shaded rows contain no missing values and are used in age structured LPUE calculations.

Table B. 4 Brill market sampling. Number of individuals per market category per year. Note that several years are missing because no market sampling was done in those years.

	Market category					
Year	+	0	1	2	3	Total
1981		141	9	10		160
1982		364	95	100		559
1983		810	225	276		1311
1984		119	466	522	433	1540
1985		482	371	331		1184
1986		542	397	432		1371
1987		128	93	159		380
1988		128	80	110		318
1989		82	118	158		358
1990			167	274		441
1998			155	222		377
2002			571	663	402	1636
2003		70	459	561	480	1570
2004	10		235	228	218	691
2005	14	3	183	203	161	564
2006	40		165	186	176	567
2007	46		228	247	204	725
2008	53		261	256	251	821
2009	63		163	162	147	535
2010	56		176	180	172	584

[^0]: A_4_3_2-V12

