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Abstract 

The concern about increasing Arctic vegetation productivity has grown during the past years. 

Such a phenomenon has the capacity to feed back into the global climate, via its effects on 

permafrost thaw, and is therefore essential to be well understood. The present study analyzes, 

for two transects of Eastern Siberia, spatial variations in greening trend. The influence of 

proximity to the sea is investigated in priority, but vegetation trends are also put in relation with 

temperature trends. The Time Integrated Normalized Difference Vegetation Index (TI-NDVI) is 

used as a greenness indicator, while the Summer Warmth Index (SWI) is considered as the 

indicator for temperature. Both indices are derived from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) terra sensor’s NDVI and land surface temperature data, and were 

calculated using the TIMESAT package. Results show, for both transects, a decrease in TI-NDVI 

trend magnitude as distance with the sea increases, up to a distance of 50 km in one case and 

120/130 km for the other. Despite this common pattern, we could not conclude on a certain 

effect of the proximity to the sea on the speed of the greening trend. The theory behind the 

sea-vegetation relations involves temperature as  a driving  factor of vegetation change; yet this 

study did not reveal any apparent relationship between SWI trend and TI-NDVI trend. A local 

browning trend area could also be detected for one transect while the latter is located in a 

generally greening area of the Arctic. This study demonstrates the capacity of relatively short 

time series to detect trends in TI-NDVI, and also reveals that Arctic greening is not as 

homogeneous as was thought. Those insights are crucial for a better understanding of 

vegetation dynamics in the Arctic and should be further investigated in future studies. Arctic 

vegetation predictions would gain in accuracy and later be used in permafrost thaw modeling 

studies.  
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1 Introduction 

Recent warming trends have been greater over the Arctic than in average on the planet 

(Hansen et al., 2010; Kaufman et al., 2009; Serreze and Francis, 2006). These studies report an 

average warming 3 to 4 times higher for the Arctic than globally over the past decade. Similarly, 

vegetation changes have recently been observed over the Arctic. Hudson and Henry (2009), and 

Zhou et al. (2001) found that Arctic vegetation biomass tends to increase, resulting in a higher 

photosynthetic absorption. Many authors have demonstrated the link between the warming 

and the changes in vegetation recently observed (Epstein et al., 2008; Hill and Henry, 2011; 

Olthof and Latifovic, 2007; Raynolds et al., 2008; Walker et al., 2006). Specifically, those changes 

concern an increase in plant height as well as plant biomass and modifications in plant 

communities composition (Chapin et al., 1995; Hudson and Henry, 2009; Walker et al., 2006) 

and are associated to an increase in photosynthetic absorption, expressed as the Normalized 

Difference Vegetation Index (NDVI) (Jia et al., 2009; Walker et al., 2009). 

Such changes in Arctic vegetation characteristics may result in significant effects on both 

local and global climates due to complex feedback mechanisms (Chapin et al., 2000; Schuur et 

al., 2008). Arctic soils have a large carbon emission potential, which is linked to their activity 

(Dutta et al., 2006; Von Deimling et al., 2011). An increase in permafrost thaw depth will affect 

Arctic soils activity, and would therefore result in large carbon atmospheric emissions (Schuur et 

al., 2008). Many authors have tried to relate vegetation change to permafrost thaw, but the 

answer still remains uncertain. The surface energy balance approach is often used to describe 

those processes. Eugster et al. (2000) state that due to an increase in the proportion of shrubs, 

regional temperature will rise due to the albedo of their canopy, lower than in the case of 

tundra. However, an increase in air temperature does not necessarily relate to an increase in 

soil temperature. Blok et al. (2010) showed that, due to the shading effect of their canopy, an 

increase in shrub cover (B. nana) would lead to a different partitioning of net radiations, 

resulting in a reduction of the ground heat flux. Summer permafrost thaw would be reduced in 

that case. However, B. nana expansion could as well have the opposite impact during winter; 

their snow trapping capacity providing insulation for the soils to winter temperatures (Sturm et 

al., 2001). It is therefore essential, for climate predictions, to further understand the evolutions, 

under temperature changes, of vegetation in the Arctic. 

Many studies have used the satellite measured NDVI as the greenness indicator for the 

Arctic. The index relates to photosynthetic absorption of the vegetation, and when integrated 

over time, provides a fair approximation of the biomass production (Reed et al., 1994). Both 

Time Integrated NDVI (TI-NDVI) and maximum NDVI (MaxNDVI) have been widely used in Arctic 

vegetation studies (Stow et al., 2004). TI-NDVI reflects biomass production while MaxNDVI 

provides information about the seasonal peak of photosynthetic absorption. Values over the 

Arctic range from 20 to 85 and from 0.03 to 0.70, for TI-NDVI and MaxNDVI respectively (Bhatt 
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et al., 2010; Walker et al., 2005). Those indices can be investigated over several years, hence 

creating time series, from which trends can be derived and investigated. Various spaceborne 

sensors have systematically acquired spectral data of the earth surface, including the Arctic 

regions, hence providing time series up to 29 years in the case of the AVHRR sensors. The 

products, as delivered to the end users, contain already processed NDVI data, for various spatial 

resolutions. A very commonly used dataset in NDVI trend analysis is the Global Inventory 

Modeling and Mapping Studies (GIMMS) dataset (Tucker et al., 2005). Derived from AVHRR 

sensors data acquisition, the dataset proposes a continuous time series starting in 1981, at a 

spatial resolution of 8 km. GIMMS data are synchronized to cope with inconsistency issues due 

to sensor successions. In 2000 the first of the Moderate Resolution Imaging Spectroradiometer 

(MODIS) sensors was launched. Although providing shorter time series, MODIS sensors have a 

finer spatial resolution, and are usually considered more accurate due to a narrower band 

sampling (Huete et al., 2002). They can therefore potentially  complement the long time series 

analysis performed at lower spatial resolution. 

Using GIMMS long time series, Bhatt et al. (2010) have shown that proximity to the sea 

impacts vegetation dynamics in the Arctic regions. The mechanism can be explained by the 

impact summer sea ice has on near shore land temperature and hence on vegetation. Although 

Bhatt et al. (2010) noticed differences regarding the effect of sea ice on TI-NDVI between near 

shore areas and the full tundra domain, the relation between sea distance and Arctic vegetation 

productivity has not been established yet. 

Based on the assumption that the greening rate, defined as the TI-NDVI temporal trend, is 

influenced by the proximity of the sea, this research investigates TI-NDVI trends as well as TI-

NDVI/SWI trends relations along two transects in east Siberia (north-east of the Sakha Republic). 

The analysis is done over a time period of 11 years (2000-2010) using satellite data alone, 

derived from MODIS. The two main objectives of the research are: [1] Investigate the variations 

in greening trend, expressed as the trend in TI-NDVI, along two Arctic transects located in 

northern Russia. [2] Investigate the relations between SWI trend and NDVI trend along the same 

transects. 

2 Material and Methods 

2.1 Study area 

We selected two transects going across the Arctic from north to south. Both transects begin 

near the sea shore and end at the southern limit of the circumpolar Arctic region, as defined by 

the Circumpolar Arctic Vegetation Map (CAVM) team (Walker et al., 2005). When using the 

same naming convention as Bhatt et al. (2010), for which Arctic regions are associated with the 

sea they are facing, transect one belongs to the “East Siberian sea” region, while transect two is 

between “Laptev sea” and “East Siberian sea” regions. The coordinates of the transects are; 
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Upper Left corners: 71.16°, 155.69° and 72.76°, 143.19° for transects one and two respectively. 

Lower Right corners: 68.98°, 155.97° and 70.05°, 143.56° for transects one and two respectively. 

The transects strips are 25 km wide, and 243 and 302 km long for the transects one and two 

respectively (Figure 1). 

As there was an assumption that distance from the sea, due to the impact of summer sea ice 

decline on local climate, would have an important effect on the vegetation trend, the transects 

locations were selected going directly inland, rather than going over a peninsula for instance. 

That way, distance from the north side of the transect directly relates to the shore distance. 

Similarly the transects were selected on homogeneous landscape area. In both cases, the entire 

transect belongs to the plain category (Walker et al., 2005) and its elevation does not exceed 50 

m above sea level, except for the extreme south of transect 2. Three different vegetation 

classes, as defined by the CAVM map, are present in transect 1 and four in transect 2, two of 

them (the most represented) being common to both transects (Table 1). These two categories 

are non-tussock sedge, dwarf-shrub, moss tundra and tussock sedge, dwarf-shrub, moss tundra. 

 
Table 1: Vegetation classes present in the transect and their respective area. 

CAVM code Vegetation type Area (km2) Relative area (%) 

  Transect 1 Transect 2 Transect 1 Transect 2 

G2 
Graminoid, prostrate dwarf-

shrub, forb tundra 
589 - 9.7 - 

G3 
Nontussock sedge, dwarf-

shrub, moss tundra 
1268 1984 20.9 49.6 

G4 
Tussock-sedge, dwarf-shrub, 

moss tundra 
3707 3744 61 49.6 

W1 Sedge/grass, moss wetland - 701 - 9.3 

W2 
Sedge, moss, dwarf-shrub 

wetland 
- 191 - 2.5 

- Water 496 930 8.2 12.4 
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Figure 1: Location of the studied transects. The color gradient of the transects display the relative distance 

from their north side. 

 

2.2 Data description 

MODIS 

MODIS data have been acquired since 2000, with the launch of the first MODIS sensor, on 

board of the Terra satellite. The sensor acquires data on a daily basis. Raw data and composite 

products are available at different resolutions. Data, from February 2000 until near real time 

acquisition can be downloaded at no costs through the United States Geological Survey 

Distributed Active Archive Center (USGS-DAAC)1. NDVI is available, already processed, in the 

form of 16 day data composites and Land Surface Temperature in the form of 8 day data 

composites. Both products were downloaded for the 1 km spatial resolution. All MODIS data 

used for this study are listed in Table 2. 

                                                      
1
 https://lpdaac.usgs.gov/ 
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Data composites combine in one tile the pixels with the highest value over the considered 

period. This way, clouded pixels are, in most cases, filtered out, and cloud free composites can 

be delivered. 

A second MODIS sensor, on board of the Aqua satellite, was launched in 2002 and started 

acquiring data in July of the same year. For this study, data from the Terra sensor alone were 

used, since they provide longer time series. 

 
Table 2: Inventory of remote sensing data used for the study. 

Product name Product description Sensor Period 

considered 

Spatial 

resolution 

MOD13A2 Vegetation Indices Terra 2000-2010 1000 m 

MOD11A2 Land Surface 

Temperature & Emissivity 

Terra 2000-2010 1000 m 

MOD12Q1 Land Cover Type Terra 2004 1000 m 

 

MODIS land cover type is an annual product providing a worldwide vegetation classification 

at a resolution of 1 km. The product from the year 2004 was used as a water mask, to 

automatically exclude water pixels from the processing and analysis. The land classes other than 

water were not considered, as a more specific map is available for the Arctic. This circumpolar 

Arctic vegetation map, produced by the CAVM team (Walker et al., 2005) and that distinguishes 

15 floristic provinces for the whole Arctic, was used for vegetation specific analyses in this 

study.  

 

TI-NDVI and SWI 

NDVI is a vegetation index providing a relative estimate of the vegetation photosynthetic 

absorption. It is calculated as NDVI = (NIR - RED)/(NIR + RED), where NIR and RED are the 

surface reflectance (W.m-2) for the Near Infrared and Red spectra respectively. NIR corresponds 

to wave lengths from 0.841 to 0.876 µm and RED from 0.620 to 0.670 µm. By construction NDVI 

varies between -1 and 1. Green vegetation tends to have a high absorption in the red and a high 

reflectance in the near infra-red, hence the greener the vegetation, the higher the NDVI. 

However, the background also influences the index, wet soils and plants growing in water for 

instance usually present lower NDVI values for the same photosynthetic absorption , due to the 

high absorption properties of water (Qi et al., 1994). Such a consideration is particularly 

important in the case of the Arctic, where a diversity exists in the soil-plant configurations, 

including wetlands. 

TI-NDVI is an integrated product of the NDVI. It reflects the total cumulated photosynthetic 

energy absorbed over a year (Reed et al., 1994). It takes into consideration both length of the 

growing season and peak NDVI value. A base level of NDVI = 0.05 is used in the integration, to 
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obtain TI-NDVI. Similarly, SWI, defined as the total beneficial heat energy accumulated by the 

plants to achieve their growing cycle, was used. Both indices have been jointly used extensively 

in Arctic vegetation studies, and their relation many times emphasized. Bhatt et al. (2010) 

report a strong correlation (r2 = 0.57) between SWI and TI-NDVI overall for the Arctic. SWI is 

calculated as the time integral of the land surface temperature above freezing, and it is 

therefore expressed in Growing Degree Days (GDD). 

2.3 Pre-processing 

After downloading the images (MODIS tiles h22v01, h23v01, and h23v02) the tiles were 

mosaicked, re-projected and subsetted using the MODIS Reprojection Tool (MRT). The two 

subsets created correspond to the transects, so further processing could be restricted to these 

areas. MRT is provided by the National Aeronautic and Space Administration (NASA), and can be 

downloaded at no costs through the USGS-DAAC. The software allows MODIS images to be pre-

processed in batch process and the output options include several formats and projections. 

The TIMESAT package (version 3.0) was used to generate TI-NDVI and SWI data from NDVI 

and land surface temperature time series (Jönsson and Eklundh, 2004). Freely available for non-

commercial academic research, the TIMESAT package was designed for analyzing time series in 

remote sensing data. Series with periodicity such as temperature and NDVI can be fitted using 

different fitting functions and several outputs can be derived from the fitting (Jönsson and 

Eklundh, 2002). Such method, using fitting, allows the noise captured by the sensors to be 

corrected. Given the short duration of the growing season in the Arctic, with sudden increase in 

photosynthetic activity as soon as the snow melts, the noise captured by the sensors when 

measuring NDVI can easily become a large part of the overall season TI-NDVI. The fitting options 

available in the version 3.0 of TIMESAT include Savitzky-Golay filter, least-squares fitted 

asymmetric Gaussian or double logistic smooth functions. Outputs are presented in the form of 

seasonality parameters, hence providing, on a pixel basis, one value per season and per 

parameter. Both TI-NDVI and SWI are represented by the small integral, which is, for a given 

year, the integral between base levels, mentioned earlier, and the fitted curve. The TIMESAT 

outputs were imported and analyzed into the R statistical software (R Development Core Team, 

2011). 

2.4 Analysis 

Relative trends were calculated on a pixel basis from the TIMESAT output, this latter 

providing one value for TI-NDVI as well as one for SWI per pixel and per year. The relative trends 

are defined by the slope of the linear regression of the time series, divided by the mean of the 

variable, calculated over the 11 years of MODIS observation. Using relative instead of absolute 

trends allows comparison between variables having different dimensions; TI-NDVI and SWI in 
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this case. In addition to the calculations on a pixel basis, the values were averaged by five km 

distance classes so that profiles along the transects could be represented. 

In order to explain variations in TI-NDVI relative trends, linear regressions were performed, 

with SWI trends. The SWI trend/TI-NDVI trend relation emphasizes the importance of the 

magnitude in SWI change on the magnitude of TI-NDVI change. For all regressions, a Pearson 

coefficient of determination was calculated. 

3 Results 

3.1 Pre-processing 

The TIMESAT package was used for fitting both NDVI and land surface temperature time 

series, and, from these fitting, to calculate TI-NDVI and SWI for each year, on a pixel basis. 

Figure 2 depicts the three fitting options available in the software applied to a random NDVI 

pixel of transect 1. 

 

 
Figure 2: Preview of the 3 fitting functions available in TIMESAT, applied to two seasons, for a random NDVI 

pixel of transect 1. The dots at y = 500 represent season starting and stopping points, used as base level in the 

integration. 
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As snow is covering the Arctic during the major part of the year, vegetation cycles are 

characterized by short duration growing seasons and sudden increases in photosynthetic 

activity as soon as the snow melts. The best method to model the season given the non-

continuity of the photosynthetic absorption signal was found to be using the Savitzky-Golay 

function. Similar observation can be made regarding temperature, and both TI-NDVI and SWI 

could thus be calculated following this method. 

3.2 TI-NDVI and SWI, overall ranges 

The TI-NDVI and SWI were averaged over the 11 years of MODIS observation, per pixel and 

for 5 km distance classes. The results are presented in Figure 3. Values measured over the 

transects range from (defined as the 5 and 95 percentiles of the entire range) 42.4 to 74.3 and 

from 1100 GDD to 1950 GDD for TI-NDVI and SWI respectively. Those ranges do not strongly 

vary between the two transects, which partly confirms the environmental similarity between 

them. The values corroborate well with values measured by Walker et al. (2009), and Bhatt et 

al. (2010). Ranges of 300 GDD to 1500 GDD (10 °C mo – 50 °C mo) for SWI, were presented in a 

study over the Yamal peninsula (West Kara sea), while mean TI-NDVI values reported for the 

different Arctic regions range between 30 and 90.  

After a first observation of the spatial distribution of both variables, one can say that in all 

four cases (average TI-NDVI and average SWI for transects 1 and 2) the variables are spatially 

structured. Both variables tend to increase when going toward the south. This observation is 

confirmed by the linear regressions performed on the profiles (dashed line in Figure 3). In both 

transects and for both average TI-NDVI and average SWI, the linear regression presents an 

increase in the southward direction. 

The fitting of the linear model to the distance profiles is good in all four cases. Thus, beside 

local variability, average TI-NDVI and SWI can be described as a linear function of the latitude. 

The highest local variability seems to appear for the first transect, between 180 and 200 km. At 

this location, the profiles are 200 GDD and 8 TI-NDVI units lower than their respective linear 

models. From the juxtaposed map, this area appears as well to have the highest inland water 

density of all the transect. A similar phenomenon does not seem to appear in the case of the 

transect 2, for which inland water density also appears to be high in some locations. Therefore, 

it is not possible to conclude on a direct effect of inland water on TI-NDVI and SWI for the Arctic. 

Furthermore, a mixed pixel effect, due to this dense lake network, is not to exclude, for 

explaining such local variations in TI-NDVI and SWI. Pixels with mixed signal including water 

would present lower values for both variables. 
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Figure 3: Map depicting TI-NDVI (right) and SWI (left), both averaged over the 11 years of observation of 

MODIS Terra between 2000 and 2010 for transect 1 (a) and transect 2 (b). The profiles show the average pixel 

values per 5 km distance classes. 
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The relation between average SWI and average TI-NDVI is confirmed by strong correlation 

between those two variables (appendix 1) with r2 = 0.53 and r2 = 0.6 for transect 1 and transect 

2 respectively and both correlations significant (p < 0.001). The strength of this relation appears 

to have constancy over the Arctic; Bhatt et al. (2010) reported values of r2 = 0.57 for the same 

regression. Such high correlations indicate that SWI is an important driver for the establishment 

of vegetation in the Arctic. 

3.3 TI-NDVI and SWI trend patterns and relations 

Relative trends were computed for both TI-NDVI and SWI, considering the 11 years of MODIS 

observation, on a pixel level and per 5 km distance classes. The trend maps, significance of the 

trend and trend profiles along the transects are presented, for both transects, in Figure 4. 

Regarding TI-NDVI relative trend profile for transect 1, a negative pattern can be observed in 

the higher part of the transect, with TI-NDVI relative trend decreasing when going farther from 

the north side of the transect. The trend, starting positive near the sea shore, turns negative 

from a distance of 50 km. In this section, we therefore do not observe a greening trend 

anymore, but a decrease in vegetation instead. A minimum is reached at a distance of about 

120 km, then the trend starts increasing again, although it remains negative up to a distance of 

160 km. Transect 1 profile is therefore characterized by a section of about 100 km presenting a 

negative trend. As opposed to transect 1, transect 2 depicts a constantly positive TI-NDVI 

relative trend. TI-NDVI relative trend values range (5 and 95 percentiles of the entire range) 

from -0.01 yr-1 to 0.013 yr-1 and from -0.002 yr-1 to 0.019 yr-1 for transects 1 and 2 respectively. 

In both cases, the type of vegetation (depicted by the colored bars on the left side of the 

profiles) does not seem to strongly influence the greening trend as we do not observe sharp 

patterns in the trends near vegetation classes boundaries. Only few pixels present significant 

relative TI-NDVI trends; 0.7 % and 5.2 % of the land surface for transects 1 and 2 respectively 

are significant at the 95% confidence interval. However, the existence of visual spatial patterns 

for TI-NDVI trends makes us believe that, even though trends are not statistically significant, 

they are not random either. This lack of validation via statistics may be a consequence of the 

length of the time series, including only 11 years. 
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Figure 4: SWI relative trend and significance levels maps (left), TI-NDVI trends and their significance levels 

maps (right), and distance profiles of both SWI and TI-NDVI trends (center); for transect 1 (a) and transect 2 (b). 

The profiles show the average pixel values per 5 km distance classes. 
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Figure 5: TI-NDVI trend profiles of transects 1 and transect 2. The profiles were made by averaging all pixels 

trend values per five km distance classes. 

 

TI-NDVI in relation with distance from the north side of the transect was compared for the 

two transects (Figure 5). Despite local fluctuations, a downward trend can be observed in both 

cases for the first part of the profile. Then both profiles tend to either stabilize, in the case of 

transect two, or start increasing, for transect one, from a distance of 120/130 km from the sea 

shore. After this turning point, no common pattern can be distinguished between the two 

transects. Whether this common pattern, in the first 120/130 km, can be attributed to the 

effect of proximity to the sea is not known. The indirect effect of sea ice concentration on 

vegetation concerns a cooling effect of ice on land temperature. Yet the land temperature 

trend, as shown in Figure 4, appears to diverge from the TI-NDVI trend; at least in this first 

section of the transects. 

Although the TI-NDVI relative trends present similar patterns between 0 and 120/130 km for 

the two transects, when considered, the values are different. In the case of transect 2, the trend 

remains always positive, with a minimum of about 0.002 yr-1, while the trend is negative for 

transect 1 between 50 and 170 km, with a minimum of about -0.008 yr-1. 

 

A first observation about the SWI relative trends concerns the lack of spatial structure. While 

patterns can be observed on the transect maps for TI-NDVI relative trends, the SWI relative 
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trend maps appear to be noisy. Such high local variability for a variable like temperature is 

surprising and therefore raises the question of the relevance of studying temperature at a 

relatively fine (1 km) spatial resolution. Despite this higher noise level, more pixels present a 

significant trend than in the case of TI-NDVI relative trend. 17.1 % and 27.2 % of land pixels 

present a significant trend at the 95% confidence interval for transect 1 and transect 2 

respectively. When considering the profiles, for both transects SWI is rather stable, with values 

ranging around 0.02 yr-1, and local extremums to 0.03 yr-1 and 0.01 yr-1. Only in the first 50 km 

of transect 1, SWI relative trend appears to be increasing. This could be due to a buffer effect of 

remaining summer sea ice near this location, even though recent mappings suggest that this 

region of the Arctic was particularly concerned with sea ice retreat during the past few years 

(Comiso et al., 2008). Although the correlation is well established between summer sea ice 

concentration and temperature (Bhatt et al., 2008), we cannot be certain that the SWI trend 

pattern observed in the north of transect one is linked to summer sea ice. Furthermore, the 

same pattern can hardly be seen in the case of transect 2, whereas distance between the two 

transects does not exceed 450 km. 

 
Figure 6: Relationship between SWI and TI-NDVI relative trends for transects 1 (left) and 2 (right). Each value 

represents the average trend per 5 km distance classes. 

 

Visually, the relationship between SWI and TI-NDVI relative trends appears to be stronger in 

the case of transect 2 than for transect 1 (Figure 4). Both curves present similar patterns for 

transect 2, while they diverge for transect 1. This observation is confirmed by the simple linear 

regression analysis performed between TI-NDVI and SWI relative trends. Figure 6 presents for 

each transect separately the regressions performed at the 5 km distance classes scale, while 

Figure 7 and Figure 8 present the results at the pixel level, for each vegetation class. Confirming 

the visual interpretation from the profiles, the relations are generally stronger, with slightly 



- 14 - 

 

higher coefficients of determination, for transect 2 than for transect 1. At the pixel level, 

coefficients of determinations do not exceed 6x10-4 for transect 1, whereas in the case of 

transect 2, and for all four vegetation classes, r2 is always higher than 0.01. The highest 

coefficients of determination found concern the vegetation class Sedge, moss, dwarf-shrub 

wetland, in transect 2, with a value 0.04 and a positive correlation. Correlations for transect 2, 

at the pixel level, are constantly significant for p < 0.01, and even p < 0.001 in the case of two 

vegetation classes. Even though the results of the correlation tests show that the relationships 

appear to be stronger in one case, and present constant significance for transect 2, the 

relationships between trends remain weak in general, and SWI trends seem to have little to no 

influence on TI-NDVI trends. The high significance observed can only be attributed to the large 

number of observations. Such relationships, highly significant, but with little strength, even 

though validated by statistics, reveal a dependance between the variables, but of such 

weakness that it hardly has any practical implications. 
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Figure 7: Relationships per vegetation classes for transect 1 between SWI trend and TI-NDVI trend, on a pixel 

basis. 
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Figure 8: Relationships per vegetation classes for transect 2 between SWI trend and TI-NDVI trend, on a pixel 

basis. 
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4 Discussion 

In this study, vegetation trends along two transects of east Siberia were investigated. Both 

transects were departing from the coast and going inland in a southward direction. Spatial 

variations in greening trends of Arctic vegetation could be investigated, and particularly the 

effect of proximity to the sea. According to authors’ knowledge, only one study considered 

distance to the sea in a vegetation trend analysis (Bhatt et al., 2010). The study came to the 

conclusion that vegetation change, expressed as change in TI-NDVI, is linked to sea ice decline, 

via a faster warming for near ice retreat area than for other areas. However, the relation 

between distance to the sea and change in TI-NDVI was not characterized. The present study 

was then conducted to gain further insight into this, still uncertain, interaction between summer 

sea ice decline and vegetation dynamics. TI-NDVI was used as the vegetation production 

indicator and SWI as the heat parameter. TI-NDVI trends, as well as their relation with SWI 

trends, were analyzed and compared for the two transects. 

NDVI and land surface temperature time series from MODIS terra sensor were used to derive 

TI-NDVI and SWI, hence working with 11 years’ time series (2000-2010). Because Arctic 

vegetation seasons are singular, characterized by short growing periods between the time snow 

melts in spring and new snow falls in fall, we decided to calculate both TI-NDVI and SWI via 

curve modeling. The TIMESAT package was used for this purpose (Jönsson and Eklundh, 2004). 

We believed that sensor’s noise could have a large influence when integrating both NDVI and 

land surface temperature; curve modeling was then a way to reduce this noise. Comparisons 

between ranges found in this study using modeled curve integral method and simple summing 

of bi-weekly data as performed in most studies do not reveal large differences (Bhatt et al., 

2010; Walker et al., 2009). The relevance of using such a method, more complicated, and 

involving more variables is therefore questioned. 

On average, for both transects, there is a greening happening over the 11 years of MODIS 

observation. These values tend to be higher than what has been observed previously for this 

region of the Arctic. Relative trends of 0.0011 yr-1 and 0.008 yr-1 were found for transect 1 and 2 

respectively. Bhatt et al. (2010) reported values of 0.001 yr-1 and 0.002 yr-1 for the East Siberian 

and Laptev regions respectively, which are the regions in which the transects are located. The 

trends observed using the longer GIMMS time series could thus also be detected using MODIS 

11 years’ time series. This proves that, overall, no trend inversion took place for the transects 

locations between 2000 and 2010, compared to the 1982-2008 period. Trends derived from 

MODIS even appear to be slightly higher than those derived from the GIMMS dataset. Several 

hypotheses could potentially explain these differences. The sensitivity of the shorter time series 

used to an outlying year is supposedly higher than for a nearly 30 years’ time series. A single 

exceptional year could then have created these differences. A second hypothesis is simply that 

the transects are located in areas where the greening is locally faster than for the considered 
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Arctic regions as a whole. A last possibility involves an amplification of the greening 

phenomenon over the last decade, thus resulting in higher trends.  

Linear regressions were performed between TI-NDVI trends and SWI trends, and only 

revealed little to no relation between the two variables. This absence of relationship was 

unexpected as SWI seems to be an important driver for the establishment of vegetation (cf. 

relation between average SWI and average TI-NDVI). The fact that the two trends are not 

correlated does not mean that Arctic greening is not related to climate warming. However, the 

intensity of the warming does not seem to be determinant in the intensity of the greening. Jia et 

al. (2009) found that there is a nonlinear response  of vegetation to climate change and Walker 

et al. (2009) state that many factors, other than temperature change, are likely to affect 

vegetation greenness. However, whether this lack of relation in the present case is to be 

attributed to the inertia of plant response to temperature change, to some underlying feedback 

mechanisms (change in soil activity), or a combination of the two remains uncertain. 

As TI-NDVI trend profiles along the two transects were analyzed, we could notice, as 

expected, a decrease in the intensity of the trend, the farther from the sea, the weaker the 

trend. This effect seems to happen up to a distance of 120/130 km for transect 2, and 50 km for 

transect 1. For transect 1, the profile keeps decreasing after the distance of 50 km, but the 

trend turns negative. The two patterns suggest an effect of the proximity to the sea on the 

greening trend. However, whether sea ice decline really has an effect on TI-NDVI trends cannot 

be confirmed from the present study. As presented by Bhatt et al. (2010), the effect of sea ice 

decline on greening is indirect as it enhances the warming first, the latter supposedly affecting 

vegetation. The theory behind the sea-vegetation relation therefore involves temperature 

change as a driving factor of vegetation change. Yet from the SWI trend profiles, proximity to 

the sea does not seem to influence temperature. Furthermore, the results of the regression 

analyses performed between SWI trends and TI-NDVI trends did not reveal any clear relation 

between the two variables. As a consequence, even though a potential effect of proximity to 

the sea on the greening trends could be noticed for both transects, the causality could not be 

confirmed as it did not happen according to the theory previously proposed to explain the 

phenomenon. 

As mentioned earlier, a local negative vegetation trend could be observed in the case of 

transect 1. The greening trend turns negative from a distance of 50 km from the north of the 

transect making it a browning trend for about 100 km. In this section the trend reaches values 

as low in the negative as the positive local extrema. Detecting such a negative trend at this 

location was unexpected, and is certainly something to attribute to the use of MODIS relatively 

fine resolution data, over the coarser GIMMS dataset. Studies like this one, using finer spatial 

resolutions would not be practical for working on the whole Arctic area. However, they 

complement the coarser but broader studies well. This transect, in which a local negative trend 

was detected, is located in the East Siberian Arctic region. An overall positive greening trend 
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was reported for this region by Bhatt et al. (2010). Although the reasons for the existence of this 

negative trend, surrounded by generally greening areas, remain unclear, the phenomenon could 

have important implications. A region presenting local inversions, as is the case for the area 

studied, is likely to result in different feedbacks than an area characterized by a homogeneous 

greening; even if they present the same mean value. Depending on how often the phenomenon 

occurs, large scale feedbacks of the Arctic may diverge greatly. It is therefore essential for any 

Arctic study to carefully consider the distribution of the values in addition to the averages. As 

this phenomenon was detected only for one transect, it is impossible to tell how widespread the 

phenomenon could be. 

Given the importance of Arctic vegetation dynamics for the global climate, further 

understanding is needed, so that precision can be increased in future climate scenarios. Such 

fine resolution study should be conducted all over the Arctic and complement the broader and 

coarser studies conducted. The actual effect of Arctic vegetation change on climate and carbon 

emissions remains uncertain, but as our understanding of these processes grows, Arctic 

vegetation evolution should, in the future, be included in permafrost thaw modeling studies, for 

later predicting Arctic carbon emissions (Blok et al., 2010). 

5 Conclusion 

This study confirms results found by many studies on the topic of evolution of Arctic 

vegetation, concluding of a greening trend over the Arctic. A majority of the pixels considered 

presented positive TI-NDVI trends, hence the greening. Greening detected by nearly 30 years’ 

time series could thus be also detected using shorter, MODIS time series. However, this study 

brings new insights in the sense that negative TI-NDVI trends could be observed as well, thus 

bringing browning patches into greening areas. It is not clear what could cause such local 

decreases, but, depending on how widespread they are, they could have important implications 

for Arctic feedbacks to the regional and global climates. There is no relation between SWI trends 

and TI-NDVI trends. It therefore seems that the intensity of the warming does not determine 

the speed of the greening process. Even though slight patterns could be observed in greening 

trends, especially in the near shore section of both transects, the theory that proximity to the 

sea influences the greening process could not be confirmed. The lack of relation between SWI 

and TI-NDVI trends as well as the fact that no patterns could be observed in the SWI trend 

profiles rejected the hypothesis. By providing new information on the spatial variations of 

vegetation through the Arctic, this research should bring new insights to further Arctic 

vegetation prediction studies, the latter contributing to permafrost thaw modeling studies, and 

carbon emission predictions associated. 
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Appendix 1: SWI / TI-NDVI relation for transect 1 (top) and 

transect 2 (bottom) 

 

 

 


