
From field to globe:
Upscaling of crop growth modelling

Lenny G.J. van Bussel



 

 

 

 

 

 

 

From field to globe: 

Upscaling of crop growth modelling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Lenny Gertruda Johanna van Bussel 

  



 

 

 

 

 

 

 

 

 

Thesis committee 

 

Thesis supervisors 

Prof. dr. ir. H. van Keulen 

Professor at the Plant Production Systems Group 

Wageningen University 

 

Prof. dr. ir. M.K. van Ittersum 

Personal chair at the Plant Production Systems Group 

Wageningen University 

 

Thesis co-supervisors 

Prof. dr. F.A. Ewert 

Professor of Crop Science 

Institute of Crop Science and Resource Conservation (INRES) 

University of Bonn 

 

Dr. ir. P.A. Leffelaar 

Associate professor, Plant Production Systems Group 

Wageningen University 

 

Other members 

Prof. dr. C. Kroeze, Wageningen University 

Prof. dr. A.J. Challinor, University of Leeds, UK 

Dr. J.B. Evers, Wageningen University 

Prof. dr. W. Cramer, Potsdam Institute for Climate Impact Research (PIK), 

Germany 

 

 

This research was conducted under the auspices of the C.T. de Wit Graduate 

School for Production Ecology and resource Conservation (PE&RC). 



 

 

 

 

 

 

 

From field to globe: 

Upscaling of crop growth modelling 

 

 

 

 

 

 

Lenny Gertruda Johanna van Bussel 
 

 

 

 

 

 

 

 

 

 

Thesis 

submitted in fulfilment of the requirements 

for the degree of doctor 

at Wageningen University 

by the authority of the Rector Magnificus 

Prof. dr. M.J. Kropff, 

in the presence of the 

Thesis Committee appointed by the Academic Board 

to be defended in public 

on Wednesday 19 October 2011 

at 4 p.m. in the Aula. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lenny Gertruda Johanna van Bussel 

From field to globe: Upscaling of crop growth modelling 

212 pages 

 

Thesis, Wageningen University, Wageningen, The Netherlands (2011) 

With references, with summaries in English and Dutch 

 

ISBN 978-94-6173-015-2 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aan Nellie en Frank,  

voor alle kansen en liefde die jullie mij gegeven hebben 

  



 

 

  



 

 

Abstract 

 

Recently, the scale of interest for application of crop growth models has extended 

to the region or even globe with time frames of 50-100 years. The application at 

larger scales of a crop growth model originally developed for a small scale 

without any adaptation might lead to errors and inaccuracies. Moreover, 

application of crop growth models at large scales usually gives problems with 

respect to missing data. 

Knowledge about the required level of modelling detail to accurately 

represent crop growth processes in crop growth models to be applied at large 

scales is scarce. In this thesis we analysed simulated potential yields, which 

resulted from models which apply different levels of detail to represent 

important crop growth processes. Our results indicated that, after location-

specific calibration, models in which the same processes were represented with 

different levels of detail may perform similarly. Model performance was in 

general best for models which represented leaf area dynamics with the lowest 

level of detail. Additionally, the results indicated that the use of a different 

description of light interception significantly changes model outcomes. Especially 

the representation of leaf senescence was found to be critical for model 

performance.  

Global crop growth models are often used with monthly weather data, while 

crop growth models were originally developed for daily weather data. We 

examined the effects of replacing daily weather data with monthly data. Results 

showed that using monthly weather data may result in higher simulated amounts 

of biomass. In addition, we found increasing detail in a modelling approach to 

give higher sensitivity to aggregation of input data.  

Next, we investigated the impact of the use of spatially aggregated sowing 

dates and temperatures on the simulated phenology of winter wheat in Germany. 

We found simulated winter wheat phenology in Germany to be rather similar 

using either non-aggregated input data or aggregated input data with a 100 km × 

100 km resolution. 

Generation or simulation of input data for crop growth models is often neces-

sary if the model is applied at large scales. We simulated sowing dates of several 

rainfed crops by assuming farmers to sow either when temperature exceeds a 

crop-specific threshold or at the onset of the wet season. For a large part of the 

globe our methodology is capable of simulating reasonable sowing dates. To 

simulate the end of the cropping period (i.e. harvesting dates) we developed 



 

 

simple algorithms to generate unknown crop- and location-specific phenological 

parameters. In the main cropping regions of wheat the simulated lengths 

corresponded well with the observations; our methodology worked less well for 

maize (over- and underestimations of 0.5 to 1.5 month). Importantly, our 

evaluation of possible consequences for simulated yields related to uncertainties 

in simulated sowing and harvesting dates showed that simulated yields are 

rather similar using either simulated or observed sowing and harvesting dates (a 

maximum difference of 20%), indicating the applicability of our methodology in 

crop productivity assessments. 

The thesis concludes with a discussion on a proposed structure of a global 

crop growth model which is expected to simulate reasonable potential yields at 

the global scale if only monthly aggregates of climate data at a 0.5° × 0.5° grid are 

available. The proposed model consists of a forcing function, defined in terms of 

sigmoidal and quadratic functions to represent light interception, combined with 

the radiation use efficiency approach, and phenology determining the allocation 

of biomass to the organs of the crop. Within the model sowing dates and pheno-

logical cultivar characteristics are simulated. Based on the proposed model the 

thesis finally derives directions for future research to further enhance global 

crop growth modelling. 
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1. Global food production 

The global demand for food has been projected to increase drastically (FAO, 

2009; Government Office for Science, 2011). This increase is mainly the result of 

growth in population and a shift in consumption pattern, especially to animal 

products. In addition, increasing competition for land, water, and other resources 

between biomass production for food on the one side and biofuel on the other 

side, and the threat of global change will result in extra pressure on the global 

agricultural system (Koning and Van Ittersum, 2009; Godfray et al., 2010). 

An increase in global food production can be achieved by expansion of 

agricultural land (Keys and McConnell, 2005). However, the remaining potential 

for land conversion to agricultural use is small in large parts of the globe (e.g. in 

Japan, South Asia, and the Near East/North Africa). In other parts of the globe 

(e.g. in sub-Saharan Africa and Latin America) more land is available but it 

suffers from soil and terrain constraints, such as low fertility, steepness, or lack 

of infrastructure (FAO, 2003). Other options to increase global food production 

are improved varieties and intensification of agriculture on the current agricul-

tural area, e.g. a higher or better balanced application of fertilizers and/or irriga-

tion (Keys and McConnell, 2005), a better control of pests and diseases and in 

general an improved management, thus diminishing or even closing the gap 

between actual and potential yields.  

Potential yield is defined in this thesis as the production determined by 

cultivar characteristics (related to physiology and phenology), weather 

conditions (especially temperature and solar radiation during the period of 

growth) and atmospheric CO2 concentration, assuming ample water and 

nutrients available and full protection against weeds, pests, diseases, and abiotic 

stresses such as pollutants. If the supply of water or nutrients is suboptimal, 

potential yield levels are reduced and yields are defined as water-limited and 

nutrient-limited yields, respectively. Finally, actual yields are yield levels 

achieved by farmers with actual supplies of water and nutrients, and the effects 

of existing weeds, pests, diseases, and abiotic stresses on crop growth (based on 

Van Ittersum and Rabbinge, 1997). 

Knowledge about the yield potential of the globe and other yield levels is 

important if one addresses questions such as “will the growing world population 

have enough to eat in the coming decades?”, “which regions will be most vulner-

able to climate change?”, or “what will be possible increases in future irrigation 

water requirements?”. One possibility to obtain this knowledge is through a crop 

growth model that is able to simulate potential, water-limited, and nutrient-
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limited production levels of important food crops at the global scale, i.e. under a 

wide range of climatic, soil, and socio-economic conditions. 

Especially during the last decade several crop growth models have been 

applied at the global scale (hereafter also referred to as global crop growth 

models). Table 1.1 gives an overview and indicates some important 

characteristics for each model; statistical models are left out (e.g. Lobell et al., 

2011), because it is uncertain if present-day statistical relationships hold true 

under future climatic conditions (Challinor et al., 2004; Challinor et al., 2009). 

The availability of different global crop growth models provides the opportunity 

to compare their outcomes, a technique also applied with e.g. dynamic global 

vegetation models (Cramer et al., 2001), regional climate models (Jacob et al., 

2007), and field scale crop growth models (Wolf et al., 1996; Palosuo et al., in 

press). If carried out in a well-designed experimental setup, the differences 

between model outcomes can be used to explore model uncertainties (Palosuo et 

al., in press). It might then be clarified which parts of the models should be 

improved and which experimental work or data collection still needs to be done, 

with the consideration that a deviating model, as compared to other models that 

gave more similar results, is not necessarily wrong. 



 

 

Table 1.1 

Characteristics of several global crop growth models. 

Model 

Crop, 

location, 

spatial 

resolution 

Objective Cropping period Weather data 
Approach to simulate biomass 

production 

GAEZ
*
 

(Fischer et 

al., 2002) 

Various 

crops, global, 

0.5° x 0.5° 

Computation of potential 

and water-limited crop 

yields and effects of 

specified levels of input and 

management conditions on 

production potentials 

Selection of cropping period 

by optimization 

Monthly means, 

quadratic spline 

functions give 

daily values 

Potential crop yields are simulated based 

on an empirical approach which combines 

prevailing temperature and radiation 

regimes; water-limited crop yields are 

simulated based on potential and actual 

evapotranspiration combined with 

potential crop yields 

SIMFOOD
¥
 

(Luyten, 

1995; 

Penning de 

Vries et al., 

1997) 

Various 

crops, global, 

region based 

Quantification of future 

food security  

Identification of potential 

cropping period based on 

minimum and maximum 

temperatures combined 

with minimum and 

maximum growing degree 

days 

Monthly means, 

linear 

interpolation gives 

daily values  

Potential productivity follows from 

intercepted radiation multiplied with a 

light use efficiency value; water-limited 

productivity follows from potential 

productivity multiplied with a water stress 

factor 

GEPIC
¥ 

(Liu et al., 

2007) 

Wheat, 

global, 

0.5° x 0.5°  

Simulation of crop yields 

and crop water productivity 

Observed crop calendars 

are used 

Daily data, 

observed and 

generated by a 

stochastic 

weather 

generator 

Potential productivity is estimated based 

on the radiation use efficiency approach, 

combined with five stress factors (water, 

temperature, nitrogen, phosphorus and 

aeration) 

  



 

 

 

 

 

 

 

Model 

Crop, 

location, 

spatial 

resolution 

Objective Cropping period Weather data 
Approach to simulate biomass 

production 

GLAM-

MOSE2
¥ 

(Challinor et 

al., 2004; 

Osborne et 

al., 2007)
 ∞

 

Groundnut, 

global 

(mainly 

tropics), 

2.5° latitude 

x 3.75° 

longitude 

Estimation of crop 

productivity over a range of 

tropical environments, 

coupled with the climate 

system to investigate the 

two-way interactions 

between crops and climate 

Sowing date is simulated 

within a prescribed sowing 

window, when surface soil 

moisture exceeds a 

threshold; end of cropping 

period when a specified 

amount of growing degree 

days has been accumulated 

Crop growth 

model has been 

coupled with a 

climate model, 

with equations 

solved for every 

30 minutes 

Leaf area index increases with a 

prescribed maximum rate, which is 

reduced when the crop experiences water 

stress; daily biomass accumulation is 

simulated with help of a daily 

transpiration rate and a transpiration 

efficiency; a regional calibrated yield gap 

parameter is used to account for other 

stresses 

LPJmL
¥ 

(Bondeau et 

al., 2007) 

Various 

crops, global, 

0.5° x 0.5° 

Quantification of multiple 

drivers (climate, CO2, land 

management, land use 

change) on the provision of 

future ecosystem services, 

investigation of the impact 

of agriculture on global 

carbon and water cycles 

Deterministic simulation of 

sowing dates, based on 

temperature and 

precipitation thresholds; 

end of cropping period 

based on location specific 

growing degree days (as a 

function of sowing dates) 

Monthly means, 

linear 

interpolation gives 

daily values 

Development of leaf area index is forced 

with help of sigmoid and quadratic 

functions; growth is simulated using a 

combination of processes 

(photosynthesis, respiration, 

evapotranspiration); water stress reduces 

leaf area index growth and crop growth 

through a reduced photosynthetic rate  

  



 

 

 

 

 

 

Model 

Crop, 

location, 

spatial 

resolution 

Objective Cropping period Weather data 
Approach to simulate biomass 

production 

DayCent
¥  

(Stehfest et 

al., 2007) 

Various 

crops, global, 

0.5° x 0.5° 

Computation of global crop 

production, including the 

effects of irrigation and 

fertilizer application 

Sowing months are 

simulated based on an 

optimization methodology; 

end of cropping period 

based on climate specific 

growing degree days 

Monthly means, 

assuming identical 

values for all days 

within one month  

Potential productivity is simulated based 

on solar insolation, biomass, temperature 

and a constant crop-specific energy-

biomass conversion factor, which also 

includes management conditions and 

cultivar characteristics; limiting factors to 

account for water and nitrogen 

availability 

PEGASUS
¥ 

(Deryng et 

al., 2011) 

Various 

crops, global, 

10' x 10' 

Explicit simulation of crop 

phenology and the influence 

of irrigation and fertilizer 

use on crop production 

Sowing dates are simulated 

based on temperature 

thresholds and precipitation 

to potential 

evapotranspiration ratios, 

combined with location 

specific growing degree 

days; both derived from 

observations 

Monthly means, 

linear 

interpolation gives 

daily values 

Combination of light use efficiency 

approach with a surface energy and soil 

water budget model; dynamic allocation 

scheme of biomass to different organs, 

which determines leaf area index 

development; three limiting factors to 

account for temperature stress, and 

water and nutrient availability 

*Mainly empirical model 
¥Mainly mechanistic model 
∞Characteristics described mainly concern application of GLAM as described in Osborne et al. (2007)
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2. Upscaling in crop growth modelling 

2.1 System analysis and crop growth modelling 

Crop growth modelling has its origin in systems thinking. A system is a limited 

part of reality that contains interrelated elements. Boundaries of this system 

should be chosen such that the desired part of reality can be explored, including 

all the interacting elements and that the effects of the environment on the system 

can be measured or sufficiently estimated, but the system itself should not influ-

ence the environment. A possible way to explore this system is to model it. A 

model is a simplified representation of a system (Penning de Vries, 1982). A 

simplification of a system is only possible by making assumptions, e.g. in the 

choice of processes included, the mathematical equations describing these 

processes and the interactions between elements and/or the environment (e.g. 

linear vs. non-linear), on the level of detail in these equations, on parameter 

values, and on initial conditions. It is important to link the extent of simplification 

to the objective of the model. Given the objective, the model should be kept as 

simple as possible, but enough detail should be incorporated to capture the 

effects of the major processes that determine the system’s behaviour (De Wit, 

1968). 

Interactions between elements and/or the environment can be modelled 

mechanistically or empirically. A mechanistic approach (also called explanatory 

or process-based) considers causal relationships based on scientific understand-

ing of the system to represent the mechanisms that characterise the system, 

translated in detailed mathematical equations. In contrast, an empirical approach 

contains no scientific understanding in terms of the causal relationships 

explaining the phenomena being modelled, thus reflecting little of the 

mechanisms that characterise the system (Thornley and France, 2007). The 

advantage of mechanistic approaches is their high explanatory power, but as a 

consequence, input data requirements (e.g. parameter values) are high as well. 

Input requirements of empirical approaches are often lower and the approaches 

are simpler to interpret by potential users (Whisler et al., 1986; Brooks and 

Tobias, 1996). 

Crop growth models consist of a combination of empirical and mechanistic 

approaches (Whisler et al., 1986; Boote et al., 1996). During the last decades 

numerous crop growth models have been developed, mainly for the 

(homogeneous) plot and field scale (Van Ittersum et al., 2003; Hansen et al., 

2006). The diversity in the modelling detail among those crop growth models is 

large, ranging from more empirical to more mechanistic models. Most crop 

growth models have in common the simulation of leaf area and some description 
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of photosynthesis (Ewert, 2004a). Both processes can be modelled with a varying 

degree of detail, normally dependent on the specific objective of the model. The 

level of detail of different processes should, however, be consistent within the 

model (Leffelaar, 1990). Concerning the relative importance of processes 

explaining yield variability, the accurate simulation of crop phenology has 

frequently been stressed as an essential requirement for satisfactory model 

performance (Jamieson et al., 2007; Craufurd and Wheeler, 2009). 

The input data of crop growth models typically include daily weather, soil 

characteristics, and management (e.g. cultivar characteristics, sowing date, and 

irrigation/fertilizer management). Figure 1.1 gives a schematic overview of 

important processes per production level, as well as their possible interactions. 

 
 

Fig. 1.1 Schematic overview with possible important processes per production level; 

boxes in light grey indicate processes, boxes in dark grey indicate possible input data.

Water-limited 
production 

Soil nutrient balance 

Soil characteristics 

Soil water balance 

Phenological 
development 

Biomass allocation to 
organs 

Leaf area development Radiation interception 

Biomass productivity 
(growth/photosynthesis) 

Sowing date 

Temperature 

Radiation 

CO2 concentration 

Precipitation 

Fertilizer 
management 

Crop protection 
management 

Cultivar 
characteristics 

Irrigation 
management 

Effects of other (a)biotic 
stresses 

Potential production 

Nutrient-limited 

production 

Actual 
production 
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2.2 Upscaling issues 

Recently the scale of interest for application of crop growth models has extended 

from the plot and field scale to the regional or even global scale. In addition, the 

time frame of the assessments has increased from a season or a year to much 

longer time frames, e.g. 50-100 years as considered in climate change impact 

studies (see e.g. Alcamo et al., 2007; Franck et al., 2011; Gerten et al., 2011; Tao 

and Zhang, 2011). Crop growth models are also applied in large scale integrated 

assessment models such as IMAGE 2.4 (MNP, 2006) or SEAMLESS (Van Ittersum 

et al., 2008). However, the application of a crop growth model originally 

developed for the plot or field scale at larger scales without any adaptation might 

lead to inaccuracies in model outcomes (Ewert et al., 2005; Irmak et al., 2005). 

These inaccuracies may result from a misinterpretation of the system at the 

larger scale or by feeding the model with incorrect input data (unsuitable spatial 

or temporal resolution, or inaccurate measurements), including parameter 

values (Scholten, 2008). 

 

2.2.1 Systems analysis at larger scales 

Misinterpretation of a system might arise because the importance of effects 

relevant at the original scale of a model might decrease at larger scales, while 

other factors, often not considered in the original model, may become more 

important at the large scale (Hansen and Jones, 2000; Ewert, 2004b). For 

example, at the European scale advances of technology over time, i.e. better 

management, better machinery, or improved varieties via progress in breeding, 

is expected to contribute more to changes in future crop productivity than 

changes in climate or CO2 concentration (Ewert et al., 2007). Nevertheless, 

technological development is often not accounted for in existing crop growth 

models (Ewert et al., 2005). Values of model parameters related to cultivar 

characteristics can be used to represent effects of progress in breeding as an 

example of technological development. If a crop growth model is applied to 

simulate current crop productivity, parameter values to represent current 

cultivar characteristics are usually known and implemented in the model. If 

however, the model is used to simulate future crop productivity and if technology 

is expected to change in future, a methodology that adjusts parameter values 

should be included in the model. Including technological development in crop 

growth models implies therefore a change in boundaries of the system, i.e. in 

addition to biophysical processes and inputs, also processes and inputs 

translating technological development into parameter values should be incorpo-

rated in the crop growth model. 
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The shift in system boundaries when scaling up might change the required 

complexity of the model. One could argue that due to the additional processes 

that become important at the larger scale model complexity should increase 

(Hansen and Jones, 2000). Moreover, the variability in e.g. climatic conditions or 

socio-economic conditions typically increases with larger areas and time periods. 

To capture the effects of the different conditions and their interactions a 

mechanistic model will be helpful, particularly when estimations are made for 

future conditions. However, the high input data requirements that come with 

complex mechanistic models, can often not be fulfilled at larger scales. One could 

therefore also argue that simpler empirical models with lower input data 

requirements are more appropriate at larger scales (see e.g. Beven, 1989; De 

Vries et al., 1998). Due to the lower data requirements, errors associated with 

uncertainties in input data are smaller. In addition, empirical models apply fewer 

non-linear relationships which is important to reduce uncertainties due to input 

data aggregation (Hansen and Jones, 2000). Nevertheless, application of an 

empirical model outside its original scope might lead to incorrect model 

outcomes (Challinor et al., 2004; Challinor et al., 2009). Finding the appropriate 

level of complexity is indeed considered as one of the most difficult steps in 

model development (Brooks and Tobias, 1996), also for large scale crop growth 

modelling. 

 

2.2.2 Data availability and limitations 

The availability of input data at larger scales typically decreases compared with 

the plot or field scale. As a solution often aggregated data are used as input. 

Aggregation is usually an average or sum of the underlying detail. Both spatial 

and temporal aggregations are applied. The extent of aggregation will determine 

the degree to which local extreme values can still be distinguished in the 

aggregated data; this will have implications for model outcomes, especially in the 

case of complex models which apply non-linear relationships (Ewert, 2004b). 

Sensitivity analysis is a suitable methodology to identify which input variables 

result in the highest aggregation errors and could therefore be used to study if 

aggregation of specific input data is appropriate (Hansen and Jones, 2000). 

Finally, exploring the application of a crop growth model at larger scales can also 

indicate which required input data are missing and thus could give directions to 

future research. For example, the start and end of the cropping period and the 

corresponding phenological development are main determinants of crop yields 

and therefore necessary inputs to crop growth models. Only recently two global 

comprehensive data sets with global coverage of cropping calendars have been 
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developed (Portmann et al., 2010; Sacks et al., 2010). Thus, before the availability 

of these data sets global simulations of the start and end of the cropping period 

could only be evaluated to a limited extent. 

 

3. Scope and Objectives 

In order to adequately capture spatial and temporal heterogeneity in agricultural 

management and weather conditions by crop growth models at larger scales, a 

certain level of detail is required in the input data and in the model’s complexity. 

Few studies have explored this required detail for weather and soil 

characteristics (see e.g. Easterling et al., 1998; Olesen et al., 2000). Knowledge 

with regard to the required spatial detail for other essential input data (e.g. 

sowing date and cultivar characteristics), the relation between temporal 

resolution of weather data and model complexity, and the appropriate level of 

model complexity at the global scale, is, however, scarce. As accurate simulation 

of phenology is important for crop growth models (Jamieson et al., 2007; 

Craufurd and Wheeler, 2009), the correct consideration of the start and the 

physiological length of the cropping period is of particular importance. However, 

approaches to simulate the start of the cropping period and to consider differ-

ences in cropping period lengths between cultivars at the global scale are hardly 

available.  

To support the upscaling of existing crop growth models for application at larger 

scales, this thesis aims therefore to give insight in four upscaling issues: 

1. the possibilities to apply less complex modelling approaches, focussing on 

the processes of light interception and biomass productivity; 

2. the effects of input data aggregation on model outcomes, in particular: 

a. the effects of spatial aggregation of sowing dates and weather data 

on the simulation of phenology; 

b. the effects of temporal aggregation of weather data on yield 

simulation, in relation with the level of detail applied in the model; 

3. the possibility to generate missing input data, with a focus on the 

generation of sowing dates of various crops; 

4. the possibility to generate parameter values, in particular parameters 

which represent phenological cultivar characteristics of wheat and maize, 

to adequately simulate the length of the cropping period, with special 

attention to the inter-annual variability in harvest dates. 

The research was concentrated on the European and global scale and mainly 

concerned with potential production levels. 
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4. Outline 

This thesis is composed of seven chapters, including the introduction. Chapters 2 

to 6 present the main results of the study, with Chapter 2, 3 & 4 dealing with 

aggregation issues and Chapters 5 & 6 with the possibilities to generate required 

input data for application of crop growth models at the global scale. Chapter 2 

concentrates on the appropriate level of modelling detail for important processes 

to simulate potential yields at a large scale, i.e. under a wide range of climatic 

conditions. Several modelling approaches with varying degree of detail are com-

pared. We concentrate on the light interception and biomass production 

processes and identify the importance of those two processes to adequately 

simulate potential yields. In addition, we show the importance of explaining 

underlying theoretical knowledge related to important parameter values. In 

Chapter 3 we investigate the effects of temporal aggregation of weather input 

data on the outcomes of crop growth models. We study the relationship between 

the degree of complexity in a modelling approach and its sensitivity to temporal 

aggregation of input data. Chapter 4 focuses on spatial aggregation of input data. 

First, we investigate the spatial heterogeneity in observed phenological data of 

winter wheat (emergence, ear-emergence, and harvesting dates). Next, we 

investigate whether aggregation of the spatial heterogeneity found leads to bias 

in model outcomes.  

Chapter 5 concentrates on the computation of sowing dates. We investigate if 

sowing dates under rainfed conditions can be satisfactorily generated from 

climatic conditions at the global scale. Chapter 6 focuses on the simulation of the 

length on the cropping period. We describe methodologies to generate 

parameters to simulate phenological development of wheat and maize, which 

characterise the wide range of cultivars found across the globe.  

Finally, Chapter 7 discusses the main findings of this thesis. It explores 

methodological issues of large scale crop growth modelling. It concludes with 

directions for future research to improve global crop growth models.  

 

5. Definitions used throughout this thesis 

Definitions of terms such as scale, resolution, and detail are often not clear. To 

avoid confusion, I therefore first give a definition of each term, following Ewert 

(2004b) and Van Delden et al. (in press). Scale is defined as the characteristic 

dimension in time and space of a phenomenon or observation, and thus 

dimensions and units of measurement can be assigned. Detail relates to the 

spatial and temporal resolution and the complexity of the representation of 

processes. The spatial resolution is the grid size, the temporal resolution the 
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frequency of the observations or simulations. A higher resolution indicates more 

observations per time or spatial unit or a smaller grid size. Complexity is defined 

as the number of included relations and variables in a model. A global crop 

growth model is a crop growth model which is applied at the global scale. 



 

 

 



 

 

 

 

 

 

 

Based on:

Adam, M., Van Bussel, L.G.J., Leffelaar, P.A., Van Keulen, H., Ewert, F.:

Effects of modelling detail on simulated potential crop yields

under a wide range of climatic conditions.

Ecological Modelling, vol. 222 (2011), 131-143

Effects of modelling detail on simulated 

potential crop yields under a wide range

of climatic conditions

Chapter 2 
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Abstract 

Crop simulation models are widely applied at large scale for climate change 

impact assessment or integrated assessment studies. However, often a mismatch 

exists between data availability and the level of detail in the model used. Good 

modelling practice dictates to keep models as simple as possible, but enough 

detail should be incorporated to capture the major processes that determine the 

system’s behaviour. The objective of this study was to investigate the effect of the 

level of detail incorporated in process-based crop growth models on simulated 

potential yields under a wide range of climatic conditions. We conducted a multi-

site analysis and identified that by using a constant radiation use efficiency 

(RUERUE) value under a wide range of climatic conditions, the description of the 

process of biomass production may be over-simplified, as the effects of high 

temperatures and high radiation intensities on this parameter are ignored. 

Further, we found that particular attention should be given to the choice of the 

light interception approach in a crop model as determined by leaf area index 

(LAILAI ) dynamics. The two LAILAI  dynamics approaches considered in this study 

gave different simulated yields irrespective of the characteristics of the location 

and the light interception approaches better explained the differences in yield 

sensitivity to climatic variability than the biomass production approaches. 

Further analysis showed that differences between the two LAILAI  dynamics 

approaches for simulated yields were mainly due to different representations of 

leaf senescence in both approaches. We concluded that a better understanding 

and modelling of leaf senescence, particularly its onset, is needed to reduce 

model uncertainty in yield simulations.  
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1. Introduction 

A key rule in good modelling practice is that the choice of a model depends on the 

question asked (Van Waveren et al., 1999). In crop modelling, a large variety of 

models has been developed since the 1960s, with each new model addressing a 

specific objective. Crop models have initially been developed for application at 

the field scale. Application of these models at larger scales such as for climate 

change impact assessments (Leemans, 1997, Ewert, 2004b, Challinor et al., 2004 

and Challinor et al., 2009) or integrated assessment studies (Van Ittersum et al., 

2008) has become a common practice. However, for these applications, the 

required scale and objective of a crop growth model may go beyond the scope of 

the original model. Hence, the reuse of a model without any adaptation might 

lead to inaccuracies in model outputs, caused by (1) a misrepresentation of 

processes in the model, (2) incorrect input data (unsuitable temporal or spatial 

resolution, or inaccurate measurements), including parameter values (Scholten, 

2008), or (3) a misinterpretation of the system, as the importance of effects 

relevant at lower levels may decrease at higher levels, while other factors, often 

not considered in the original crop model, may become more important (Ewert, 

2004b). 

Challinor et al. (2004) identified the need for process−based crop growth 

models to capture the impact of climatic variability on crop yields over large 

areas. One of the challenges to apply a model for simulating crop growth and 

development at higher aggregation levels (e.g. Europe, Therond et al., in press) is 

to ensure that the model appropriately addresses the response of crops to the 

temperature and radiation gradients found in such a heterogeneous environ-

ment. The model must reproduce the behaviour of the system under a wide 

range of conditions, representing the spatial variability. Bondeau et al. (2007) 

also mention the use of process−based crop models at the global scale to improve 

the representation of feedbacks between crop physiology and climate. A 

process−based model integrates descriptions of the underlying processes of the 

cropping system to explain its behaviour at the higher system level (Hammer et 

al., 2002), and usually includes at least two essential processes for crop growth, 

namely light interception by the leaf area and light utilization to produce biomass 

(Ewert, 2004a). In various crop growth models (Ritchie and Otter, 1985, Spitters 

and Schapendonk, 1990, Spitters, 1990, Jamieson et al., 1998a, Stöckle et al., 2003 

and Bondeau et al., 2007) we found that (1) leaf area index (LAILAI , m2 leaf area m−2 

ground area) dynamics and (2) biomass production are modelled with different 

mechanistic detail, usually depending on the main objective of the model. For the 

application of process−based crop growth models to larger scales, it is therefore 
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pertinent to consider which level of detail in these two processes is needed to 

adequately capture potential yield responses to different temperature and 

radiation regimes. 

A distinction can be made between explanatory, i.e. detailed mechanistic 

approaches with a high level of modelling detail, and descriptive, i.e. summarized 

approaches with a lower level of modelling detail (Penning de Vries, 1982). 

Detailed models have a high explanatory power, containing most of the elements 

and interactions that characterize a system, but they are resource−intensive (e.g. 

in terms of input data and simulation time). Summarized (also called summary) 

models are easier to handle (e.g. less parameters are needed and the models are 

simpler to interpret), but are generally more descriptive, reflecting little of the 

mechanisms explaining the behaviour of the system, often containing simplified 

representations of complex processes. Selection of the appropriate level of detail 

for each process to include in a crop growth model is often seen as a critical step 

in model development (Brooks and Tobias, 1996). It is a common rule to keep the 

model as simple as possible given the objective, but enough detail should be 

incorporated to capture the major processes that determine the system's 

behaviour (De Wit, 1968). It is also acknowledged that an optimum situation 

exists in terms of explanatory capacity of a model and the number of processes 

considered (Leffelaar, 1990, Passioura, 1996 and Tittonell, 2008). 

The objective of this study is to investigate the effect of the level of detail 

incorporated in a process−based crop growth model to simulate potential yields 

[i.e. growth is not limited by water− and nutrient shortages or the occurrence of 

pest and diseases (Goudriaan and Van Laar, 1994 and Van Ittersum and 

Rabbinge, 1997)] under a wide range of climatic conditions as typical for large 

scale applications. Particular focus is on the processes of light interception, 

determined by LAILAI  dynamics, and light utilization for biomass production. We do 

not aim at developing the “best” large scale crop growth model, but the results of 

this study should improve the understanding of the relative importance of the 

different approaches to simulate potential crop yields at large scales, especially 

in response to spatial differences in radiation and temperature. 
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2. Materials and methods 

We compared models with different modelling detail in the key growth processes 

light interception and light utilization, to simulate crop yields in response to 

temperature and radiation. The analysis follows two main steps: 

1. Test of the models (i.e. the combinations of approaches) against measured 

data to ensure that all models are able to reproduce observed growth 

under field conditions for a range of climatic conditions. We selected 

experiments from different locations across the world that provided 

measurements of biomass and LAILAI  and the associated weather data; 

2. Systematic comparison of the behaviour of the models under a wide range 

of climatic conditions (following a climate gradient across Europe) to 

investigate the sensitivity of yield simulations to the use of the different 

approaches (i.e. different levels of detail) for the two growth processes 

examined. 

 

2.1 Descriptions of the modelling approaches 

We defined a detailed approach (also referred to as a more mechanistic 

approach) as one that describes a feature (e.g. crop growth) in terms of the 

processes at the underlying hierarchical level (Van Ittersum et al., 2003). The 

description of the photosynthesis and respiration processes according to 

Farquhar et al. (1980) can be considered as a detailed approach for biomass 

production. In contrast, a summarized approach (also referred to as a descriptive 

approach) uses a simple relationship that describes the main responses of a 

feature (e.g. crop growth) to biotic and abiotic factors. Sinclair and Muchow 

(1999) identified the application of the radiation use efficiency concept to 

simulate biomass production from intercepted radiation as an example of such a 

summarized approach. 

In this study, both light interception determined by the leaf area and light 

utilization to produce biomass were studied in a summarized and a detailed 

approach. Table 2.1 includes the key equations of the approaches studied. The 

associated parameter values can be found in Table 2.2. 
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Table 2.1 

Key equations of the studied approaches applied for a) LAILAI  dynamics and b) biomass 

production. 

a)  

Equations for the detailed LAILAI  dynamics approach Eq. 

Juvenile phase (LAILAI < 0.75 and development stage < 0.16):  
dLAIgrowth

dt
= LAI£Rg £ Te®

dLAIgrowth

dt
= LAI£Rg £ Te®  (2.1) 

with: Te® = max(0; [Taverage ¡ Tbase])Te® = max(0; [Taverage ¡ Tbase])  

with: Te®Te®  effective physiological temperature (°C), TaverageTaverage average daily temperature (°C),  

and TbaseTbase the base temperature (°C) 
 

  

Following the juvenile phase:  
dLAIgrowth

dt
= dWleaf

dt
£ SLA

dLAIgrowth

dt
= dWleaf

dt
£ SLA (2.2) 

  

After anthesis (fTsum senfTsum sen) or in case of self−shading (LAI > LAIcriticalLAI > LAIcritical):  
dLAIsen
dt

= ¡Rd £ LAIdLAIsen
dt

= ¡Rd £ LAI  (2.3) 

with: Rd = max(Rd-ag; Rd-sh)Rd = max(Rd-ag; Rd-sh)  

Equations for the summarized LAILAI  dynamics approach  

Before anthesis:  

fLAImax = fTsum

fTsum+e(l1¡l2£fTsum)fLAImax = fTsum

fTsum+e(l1¡l2£fTsum)  (2.4) 

with: 

fTsum = Tsum
fTsum totaal

fTsum = Tsum
fTsum totaal

  

with: TsumTsum
 
temperature sum in °C days, representative of the development stage of the crop 

 

l1 = ln
¡

fTsum1
fLAI1 ¡ fTsum1

¢

+l2 £ fTsum1l1 = ln
¡

fTsum1
fLAI1 ¡ fTsum1

¢

+l2 £ fTsum1 

l2 =

¡

ln
£

fTsum1
fLAI1

¡fTsum1

¤

¡ ln
£

fTsum2
fLAI2

¡fTsum2

¤¢

fTsum2¡fTsum1
l2 =

¡

ln
£

fTsum1
fLAI1

¡fTsum1

¤

¡ ln
£

fTsum2
fLAI2

¡fTsum2

¤¢

fTsum2¡fTsum1  

 

After anthesis: 

fLAImax = (1¡fTsum)
2

(1¡fTsum sen)2
fLAImax = (1¡fTsum)

2

(1¡fTsum sen)2
 

 

To guarantee sufficient biomass: 
 

LAI = min
¡

fLAImax £ LAImax;
£

Btotal ¡ Broot
¤

£SLA
¢

LAI = min
¡

fLAImax £ LAImax;
£

Btotal ¡ Broot
¤

£SLA
¢

 (2.5) 

with: BtotalBtotal and BrootBroot standing total and standing root biomass, 

respectively (gC m
–2

) 
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b) 

Equations for the detailed biomass production approach  

Agd =

µ

Je+Jc¡
p
(Je+Jc)2¡4£µ£Je£Jc

2£µ

¶

£dlengthAgd =

µ

Je+Jc¡
p
(Je+Jc)2¡4£µ£Je£Jc

2£µ

¶

£dlength (2.6) 

with: Je =
C1£Cq£Rdr£0:415£(1¡e¡k£LAI)

dlength
Je =

C1£Cq£Rdr£0:415£(1¡e¡k£LAI)

dlength
 (2.7) 

          Jc = C2£Vm
24

Jc = C2£Vm
24

 (2.8) 

with: Vm =
¡

1
b

¢

£
¡

C1
C2

¢

£
£¡

2£ µ¡ 1
¢

£s ¡
¡

2£ µ£ s¡C2
¢

£¾
¤

£Rdr £ 0:415£ (1¡ e¡k£LAI)£CqVm =
¡

1
b

¢

£
¡

C1
C2

¢

£
£¡

2£ µ¡ 1
¢

£s ¡
¡

2£ µ£ s¡C2
¢

£¾
¤

£Rdr £ 0:415£ (1¡ e¡k£LAI)£Cq 

with: RdrRdr daily incoming radiation (MJ m
–2

 d
–1

), dlengthdlength length of day (h d
-1

), 

VmVm Rubisco capacity (gC d
–1

 m
–2

) 
 

C1 = ÁTC3 £Cmass £ ®C3 £ ( (pi¡¡¤)
(pi+2£¡¤)

C1 = ÁTC3 £Cmass £ ®C3 £ ( (pi¡¡¤)
(pi+2£¡¤)

 (2.9) 

with: pi = ¸max £ ca £ Ppi = ¸max £ ca £ P   

C2 = pi¡¡¤

pi+KC£(1+
O2
KO

)
C2 = pi¡¡¤

pi+KC£(1+
O2
KO

)
 (2.10a) 

with: Ki = K25 £Q
(T¡25)=10
10Ki = K25 £Q
(T¡25)=10
10  with ii either CC or OO (2.10b) 

¡¤ = [O2]
2£¿

¡¤ = [O2]
2£¿

 (2.11) 

with: ÁTC3ÁTC3 a temperature stress factor (–), CmassCmass atomic mass of carbon 

(g mol
–1

), pipi internal partial pressure of CO2 (Pa), ¡¤¡¤ CO2 compensation point 

(μmol mol
–1

), and [O2][O2] partial pressure of oxygen (Pa) 

 

And = Agd ¡RdAnd = Agd ¡Rd (2.12) 

with: Rd = b £ VmRd = b £ Vm (2.13) 

          ¾ =

·

1¡ (C2¡s)
(C2¡µ£s)

¸1=2

¾ =

·

1¡ (C2¡s)
(C2¡µ£s)

¸1=2

 

          s = 24
dlength

£ bs = 24
dlength

£ b 

NPP = And ¡Rroot ¡Rso ¡Rpool ¡RgNPP = And ¡Rroot ¡Rso ¡Rpool ¡Rg (2.14) 

with: RR the maintenance respiration of roots, storage organs and a reserve pool, 

respectively (gC d
−1

 m
−2

), and RgRg the growth respiration 
 

with: Rg = max[0; 0:25 £ (And ¡ Rroot ¡Rso ¡ Rpool)]Rg = max[0; 0:25 £ (And ¡ Rroot ¡Rso ¡ Rpool)] (2.15) 

Equations for the summarized biomass production approach  

NPP = RUE £ PARINTNPP = RUE £ PARINT  (2.16) 

with: PARINT = Rdr £ 0:5£ (1¡ e¡k£LAI)PARINT = Rdr £ 0:5£ (1¡ e¡k£LAI)  
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Table 2.2 

Key parameters of the studied approaches applied and their default values. a) Common 

and LAILAI  dynamics and b) biomass production. 

a)  

Symbol Description 
Default value 

and unit 
Reference 

Common parameters  

CfCf  Conversion from carbon to dry matter 0.46 gC (gDM)
–1

  (a) 

kk Light extinction factor 0.5 (–) (b) 

SLASLA Specific leaf area 0.048 m
2
 (gC)

−1
  (d) 

fTsum senfTsum sen 
Fraction of the total temperature sum when 

senescence starts (at anthesis) 
0.60 (−)  (c) 

TbaseTbase Physiological base temperature 0 °C (d) 

LAILAI  dynamics approaches  

Parameters for the detailed LAILAI  dynamics approach  

RgRg 
Maximum relative growth rate of leaf area index 

during the juvenile stage 
0.009 (°Cd)

−1 
 (d) 

LAIinitialLAIinitial Initial leaf area index 0.012 m
2
 m

−2
 (d) 

LAIjuvenile stageLAIjuvenile stage 
Threshold of leaf area index when juvenile stage 

ends 
0.75 m

2
 m

−2
 (d) 

Rd-shRd-sh 
Relative death rate due to shading 

(LAILAI  dependent) 
0 − 0.03 d

−1 
 (d) 

Rd-agRd-ag 
Relative death rate due to ageing 

(temperature dependent) 
0.03 − 0.09 d

−1
  (d) 

LAIcriticalLAIcritical 
Critical leaf area index above which self−shading 

is considered 
4.0 m

2
 m

−2
 (d) 

Parameters for the summarized LAILAI  dynamics approach  

fLAI1fLAI1 and 

fLAI2fLAI2 

Fraction of leaf area index at specific points on 

the leaf area development curve corresponding 

to specific development stages 

0.05 and 0.95 (−) (c) 

fTsum1fTsum1 and 

fTsum2fTsum2 

Fraction of temperature sum at specific points on 

the leaf area development curve corresponding 

to specific development stages 

0.15 and 0.50 (−) (c) 

LAImaxLAImax Maximum leaf area index 5.0 m
2
 m

−2
 (c) 

  



Upscaling of processes     Chapter 2 

 

23 

 

 

 

b) 

Biomass production approaches  

Parameters for Farquhar photosynthesis approach (C3 plants)  

K25K25 

and 

Q10Q10 

The value of the parameter at 25 °C and the relative change in the parameter for a 

10 °C change in temperature, respectively 
 

KCKC 

KOKO 

¿¿  

Michaelis constant for CO2 

Michaelis constant for O2   

CO2/O2 specific ratio 

30 Pa (Q10Q10= 2.1) 

30 kPa (Q10Q10= 1.2) 

2600 μmol μmol
–1

 

(Q10Q10= 0.57)  

(b)
 

(b)
 

(b) 

®C3®C3 C3 quantum efficiency  0.08 μmol μmol
−1

  (b)
 

bb Rd=VmRd=Vm ratio for C3 plants 0.015 (b)
 

CqCq 
Conversion factor for solar radiation at 550 nm from MJ 

m
−2 

d
−1

 to mol m
−2 

d
−1

 
4.6 × 10

−3 
 

µµ  Co−limitation parameter 0.7 (−) (b)
 

¸max¸max Optimal ratio of intercellular to ambient CO2 concentration 0.8 (–)   (e) 

caca* Ambient CO2 concentration for the year 1982 340 μmol mol
−1

 (f) 

O2O2* Partial pressure of O2 20.9 kPa (b)
 

PP * Atmospheric pressure 100 kPa (b) 

Parameter for the radiation use efficiency approach  

RUERUE  Radiation use efficiency based on PARPAR and total biomass 1.38 gC MJ
−1

  

(a) Goudriaan and Van Laar (1994) 

(b) Haxeltine and Prentice (1996a,b) 

(c) derived from Neitsch et al. (2002) 

(d) Van Keulen and Seligman (1987) 

(e) Sitch et al. (2003) 

(f) Carbon Cycle Model Linkage Project (McGuire et al., 2001) 

*These values represent assumptions about environmental conditions, not physiological 

parameters. 

 

2.1.1 Leaf area index dynamics 

The detailed LAILAI  dynamics approach is based on temperature and leaf dry 

matter supply driven by the development stage of the crop (i.e. phenology). 

During the juvenile phase, LAILAI  development is governed by temperature and its 

effect on cell division and extension, following an exponential growth pattern 

(RgRg, Table 2.1, Eq. 2.1). After this exponential phase, leaf area expansion is 

governed by the supply of dry matter (Table 2.1, Eq. 2.2) and is calculated by 

multiplying the simulated rate of increase in leaf weight (dWleaf=dtdWleaf=dt, gC m−2 d−1), 

based on the total amount of biomass produced multiplied by a leaf biomass 
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allocation factor, with the specific leaf area (SLASLA, Table 2.2). Finally, leaves 

senesce (Table 2.1, Eq. 2.3) due to (1) self−shading (rd-shrd-sh, Table 2.2) when LAILAI  

reaches a critical value (LAIcriticalLAIcritical, Table 2.2) and (2) ageing after anthesis (with 

time of anthesis defined by fTsum senfTsum sen, Table 2.2). The relative rate at which leaves 

age (rd-agrd-ag, Table 2.2) depends on temperature: rd-agrd-ag increases if temperature 

increases. This approach is used in the LINTUL model (Light, INTerception and 

UtiLization, Spitters and Schapendonk, 1990; Spitters, 1990). 

The summarized LAILAI  dynamics approach is governed by the development 

stage of the crop. Leaf area development is calculated on the basis of a forcing 

function, comprising a sigmoid and a quadratic component (Table 2.1, Eq. 2.4). 

LAILAI  at any point in time is calculated as a fraction of an exogenously defined 

LAImaxLAImax (Table 2.2) and two shape coefficients l1l1 and l2l2 (−) (Eq. 2.4). These coeffi-

cients are defined by the fractions fLAI1fLAI1 and fLAI2fLAI2 of the maximum LAILAI  (Table 

2.2), and the associated fractions of the temperature sum fTsum1fTsum1 and fTsum2fTsum2 (Table 

2.2), representing points on the LAILAI  versus development stage curve (Neitsch et 

al., 2005) at specific development stages (e.g. end of juvenile stage, anthesis). The 

start of LAILAI  senescence is defined by fTsum senfTsum sen, which is the fraction of the total 

growth cycle temperature sum at which senescence starts to exceed the for-

mation of new leaf tissue. In agreement with what is applied in the more detailed 

approach, we set this starting point at anthesis. Finally, in this approach, 

potential LAILAI is reduced if the required biomass to support the calculated LAILAI is 

not available (Table 2.1, Eq. 2.5). This approach is applied in the LPJmL model 

(Lund−Potsdam−Jena managed Land, Bondeau et al., 2007) and is derived from 

the SWAT model (Soil and Water Assessment Tool model, Neitsch et al., 2005). 

 

2.1.2 Biomass production 

The detailed approach to describe the production of biomass is based on the 

description of the photosynthesis and respiration processes according to 

Farquhar et al. (1980) with simplifications introduced by Collatz et al. (1991) and 

Collatz et al., (1992). The assimilatory process includes the conversion of CO2 

into carbohydrates. Daily gross photosynthesis (AgdAgd, gC m−2 d−1) is defined as a 

gradual transition between two limiting rates (Table 2.1, Eq. 2.6). Photosynthesis 

is determined either by the amount of intercepted light (depending on the 

light−limited CO2 assimilation rate, JeJe, gC m−2 h−1, Table 2.1, Eq. 2.7) or by the 

available amount of the enzyme Rubisco (depending on the Rubisco−limited 

assimilation rate, JcJc, gC m−2 h−1, Table 2.1, Eq. 2.8). Those rates are both 

influenced by ambient temperature (Table 2.1, Eqs 2.9, 2.10a, 2.10b and 2.11), 

via ¿¿  (Table 2.2) and via KCKC and KOKO, the temperature−dependent Michaelis–



Upscaling of processes     Chapter 2 

 

25 

Menten constants for CO2 and O2 (Table 2.2), respectively. Daily net 

photosynthesis (AndAnd, gC m−2 d−1, Table 2.1, Eq. 2.12) is calculated as daily gross 

photosynthesis minus “dark” respiration (RdRd, gC m−2 d−1). RdRd is scaled to the 

maximum catalytic capacity of Rubisco per unit leaf area (VmVm, gC m−2 d−1, Table 

2.1, Eq. 2.13). To calculate net primary production (NPPNPP , gC m−2 d−1, Table 2.1, 

Eq. 2.14), maintenance respiration for the various organs (RiRi, gC m−2 d−1, for 

roots, storage organs, and carbohydrate pool, respectively) is subtracted from 

daily net photosynthesis and 25% of the remaining assimilates is assumed to be 

expended in growth respiration (Eq. 2.15). This approach is used in various 

models, but the present equations (Haxeltine and Prentice, 1996b) are 

implemented within the LPJmL model (Bondeau et al., 2007). 

Alternatively, the summarized approach is based on a linear relationship 

between accumulated intercepted radiation and accumulated biomass over the 

growing season. The slope of this linear relation is called radiation use efficiency 

(RUERUE , Table 2.2) (Monteith, 1977) and summarizes the combined effect of 

photosynthesis and respiration processes. The product of the daily intercepted 

amount of photosynthetically active radiation (PARINTPARINT ) and RUERUE  gives the net 

increase in biomass over the day (Table 2.1, Eq. 2.16). This approach is used in 

models such as LINTUL (Spitters and Schapendonk, 1990), CropSyst (Stöckle et 

al., 2003) and CERES (Ritchie and Otter, 1985). 

These four approaches (two for LAILAI  dynamics and two for biomass produc-

tion) were combined resulting in four models (Table 2.3). Two of these models 

represent existing crop models, namely (1) LINTUL (Light, INTerception and 

UtiLization, Spitters and Schapendonk, 1990), resulting from the combination of 

RUERUE  with the detailed LAILAI  dynamics and (2) LPJmL (Lund−Potsdam−Jena 

managed Land, Bondeau et al., 2007), resulting from the combination of the 

Farquhar photosynthesis approach with the summarized LAILAI dynamics. For the 

other two combinations we know of no crop models to which these refer to. 

However, some models have been developed combining the Farquhar photosyn-

thesis model with a detailed LAILAI  dynamics approach (e.g. Ewert et al., 1999, 

Ewert and Porter, 2000 and Rodriguez et al., 2001), but with different versions 

and implementations as the ones used here. We refer to the two latter combina-

tions as the “detailed crop model” (Farquhar combined with the detailed LAILAI  

dynamics) and the “summarized crop model” (RUERUE  combined with the 

summarized LAILAI  dynamics). 

  



Chapter 2     Upscaling of processes 

 

26 

Table 2.3 

Overview of combination of processes and their derived models. 

Light utilization approach 

(Biomass production) 

Light interception approach 

(LAILAI  dynamics) 
Model name 

Farquhar photosynthesis 

combined with: 
detailed Detailed crop model* 

 summarized 

LPJmL (Lund-Potsdam-Jena 

managed Land, Bondeau et 

al., 2007) 

RUERUE  combined with: detailed 

LINTUL (Light, INTerception 

and UtiLization, Spitters and 

Schapendonk, 1990) 

 

 summarized Summarized crop model* 

*Models resulting from the combinations of the different modelling approaches. We are not 

aware of crop models that use these particular combinations. 

 

 

 

2.2 Model testing 

To test the four models, measured LAILAI  and biomass data for spring wheat, under 

optimal agronomic conditions for potential growth, from contrasting locations, 

were collected with their associated weather data: Australia (Meinke et al., 

1997), Europe (Van Oijen et al., 1998, Bender et al., 1999, Ewert and Pleijel, 1999 

and Van Oijen and Ewert, 1999), and USA (Kimball et al., 1995, Kimball et al., 

1999 and Ewert et al., 2002) (Table 2.4). The locations vary in temperature 

conditions during the growing season: in the USA temperatures (i.e. number of 

days > 22.5 °C) are higher during the end of the growing season than in the 

Netherlands or Australia. Moreover, radiation levels during the growing season 

are higher in the USA than in the other locations. 

The four models were calibrated with respect to phenology, LAILAI  dynamics, 

and yield for these locations. The parameters fTsum senfTsum sen, SLASLA, LAImaxLAImax, and total 

temperature sum (TsumTsum) of the growth cycle were first estimated from the 

observed data, and subsequently calibrated according to model outputs (i.e. 

simulated LAILAI  and yields). The calibration was done manually by 

trial−and−error, comparing the model outputs with the observations. 

RgRg was calibrated on the basis of model outputs, guided by values found in the 

literature. For the biomass production approaches, RUERUE  was directly estimated 

from the observed data: it was not calibrated, to avoid the compensation effect 

with the calibration on SLASLA. 
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Table 2.4 

Weather characteristics for the various locations of the experimental datasets. 

Australia, 

Queensland 

Europe, 

The Netherlands 
USA, Arizona 

1993 1995 1996 1992 – 1993 1993 – 1994 1995 – 1996 

Average temperature during the growing season (°C) 

15.5 14.8 13.4 15.2 14.7 15.5 

Days < 7.5 °C 

2 7 12 1 9 7 

Days > 22.5 °C 

4 9 3 10 10 16 

Total radiation (MJ m
−2 

growing season
−1

) 

2033 2042 1998 2579 2904 2649 

Intercepted PARPAR (MJ m
−2 

growing season
−1

)  

554 669 616 823 797 724 

 

To evaluate the quality of the model outputs, we used the relative root mean 

square error (rRMSErRMSE) for yield and the relative mean absolute error (rMAErMAE) for 

LAILAI  dynamics (Wallach et al., 2006): 

 

rRMSE =

r

Pn

i=1(Si ¡Oi)2

n
£

1

O
rRMSE =

r

Pn

i=1(Si ¡Oi)2

n
£

1

O
  (Eq. 2.17) 
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1

j

j
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µ
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Oi

¶¶

£
1

n
  (Eq. 2.18)  

 

where nn is the number of locations, jj the number of LAILAI  observations over the 

growing season for each location, SiSi and OiOi simulated and observed values, 

respectively, and OO  the average observed value. 

 

2.3 Systematic comparison of model behaviour to climate variability 

To investigate the relative importance of the two key growth processes on 

simulated crop yield and their ability to capture climatic variability, the models 

were run with weather data representing a wide range of climatic conditions in 

Europe (Fig. 2.1). Assessing model behaviour for a wide range of environmental 

conditions should demonstrate how robust the different approaches are under 

different conditions and therefore how suitable the different approaches are for 

applications at larger scales. Nine locations were selected across Europe: 

Denmark, the United Kingdom, the Netherlands, Germany, France (centre and 

South), Spain (centre and South), and Italy. They represent the European climatic 

gradient according to the classification from Metzger et al., (2005). Daily data for 

minimum and maximum temperature and incoming short−wave radiation for the 



Chapter 2     Upscaling of processes 

 

28 

year 1982 (for this specific year daily weather data were available for the nine 

locations) were extracted from a database described by Van Kraalingen (1990). 

In addition to location−specific weather data, the models were run with 

parameters for LAILAI  dynamics and biomass production approaches as obtained 

from the calibration step for the Netherlands (assuming the values of the 

calibrated parameters fTsum senfTsum sen, SLASLA, LAImaxLAImax, and the estimated value of RUERUE  for 

the Netherlands to be representative for Europe). We adapted the phenology 

parameters for each location. As sowing and harvesting dates for spring wheat 

were not available for all locations, we used data for spring barley as a proxy 

(Table 2.5, Boons−Prins et al., 1993). 
 

 

 

 

 

 

 

 

Fig. 2.1 Location of the nine weather 

stations, representing a climatic gradient 

(from Denmark to southern Spain). The 

45°N line indicates the division of the 

climatic gradient in a northern and 

southern region. 

 

 

 

 

Table 2.5 

Location-specific phenological cultivar parameters used for the systematic comparison 

of models. 

Countries  Latitude (°N) Location* 
Day of emergence 

(Day of year) 

Temperature sum till 

maturity(i.e. harvesting 

date, (°Cd)) 

Denmark  57.1 North    90    1577 

United Kingdom 52.35 North    51    1693 

the Netherlands  52.1 North    85    1924 

Germany 48.12 North    85    1383 

France (centre) 47.97 North    64    1657 

France (South) 43.62 South    36    2149 

Italy  42.42 South    31    2044 

Spain (centre)  40.45 South    31    2022 

Spain (South) 37.42 South    31    2443 

*Regions at latitudes below 45◦N are considered to be southern.  

45°N 
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To evaluate the sensitivity of simulated yields to the modelling approaches, 

we performed an analysis of variance (ANOVA) to identify significant differences 

among simulated yields associated with the different approaches and locations 

(assumptions of ANOVA of normality of the data and homogeneity of variance 

were satisfied). With respect to location, we classified the nine locations into two 

categories (North versus South, using latitude as a criterion, Table 2.5) to be able 

to run the ANOVA and identified whether simulated yields significantly differed 

among the locations, but also between the different approaches (interaction 

effect) in the different locations. 

The outcomes of this analysis indicate, as a first step, whether the simulated 

yields differ significantly among approaches and locations. But, they do not 

identify which process most strongly affects the simulated yield variability across 

locations. Therefore, we used the relative standard deviations (rSDrSD) (1) to 

determine if location−specific weather influenced the outcomes of a certain 

approach and thus if there is any effect of climatic variability on model outcomes 

and (2) understand the relative importance of the different light interception (i.e. 

LAILAI  dynamics) and utilization (i.e. biomass production) approaches to capture 

this climatic variability: 

 

rSD =
¾yield

yield
rSD =

¾yield

yield
  (Eq. 2.19) 

 

 rSDrSD was calculated for (1) RUERUE , representing the light utilization approach, 

(2) intercepted photosynthetically active radiation (PARPAR), representing the light 

interception approach, and (3) yield, which is the variable of interest and the 

integrated result of both processes. 

Finally, a sensitivity analysis was carried out on parameters of the summa-

rized and detailed approaches of LAILAI  dynamics to evaluate the impact of a 

change in a given parameter on simulated yields. Parameter values given in Table 

2.2 were used as default. We applied a range of variation in the parameters based 

on the variation found in the observed data and in the literature. LAILAI  reached up 

to 7 m2 m−2 in the observed data (Meinke et al., 1997). Furthermore, Hay and 

Porter (2006) indicated that 90% of the incoming radiation is usually intercepted 

at a LAILAI  varying from 3 to 5 m2 m−2. Therefore, we tested the sensitivity for this 

parameter from 3 to 7 m2 m−2. SLASLA varies from 0.036 to 0.061 m2 (gC)−1 in the 

observed data, in agreement with Stöckle et al. (2003). The first phase in LAILAI

development, critical for LAILAI  dynamics, is defined by the parameter RgRg in the 

detailed approach. From calibration and values given in Van Delden et al. (2001) 

for spring wheat, we defined a range from 0.005 to 0.013 (°C d)−1 for RgRg. Finally, 
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the timing of the onset of leaf senescence is defined by the parameter fTsum senfTsum sen, 

which varied from 0.5 to 0.7 in the observed data. 

We varied each parameter within the defined range (Table 2.6) by small 

increments of ±1–4%, depending on the parameter. We considered small 

increments to be able to identify the model sensitivity for the yield at harvest to 

each parameter. The sensitivity index (SISI) is based on the local variation in the 

model output value with respect to the variation in the parameter: 

 

SI =
¢yield

¢parameter

SI =
¢yield

¢parameter

  (Eq. 2.20) 

 

 If SISI is small (SISI < 0.5), it is assumed that the simulated yield is not highly 

sensitive to the parameter tested. This analysis gives some indication of the 

relative importance of the parameter for different locations and different 

approaches. 

 

 
Table 2.6 

Statistical setting used in the sensitivity analysis on the key parameter values of the 

light interception approaches. 

Symbol Description Unit Default 
Standard 

deviation* 
Increment Source* 

SLASLA 
Specific leaf 

area 

m
2
 gC

–1 

 

0.048 

 

0.0125 

 

0.001 

 

Own Dataset 

and Stöckle 

et al. (2003) 

RgRg 

Relative 

growth rate 

of leaf area 

index during 

the juvenile 

phase 

°C
–1

d
–1 

 

 

0.009 

 

 

0.004 

 

 

0.0004 

 

 

Van Delden 

et al. (2001) 

 

LAImaxLAImax 

Maximum 

leaf area 

index 

m
2
 m

–2 

 

5 

 

2 

 

0.1 

 

Own dataset 

and Hay and 

Porter (2006) 

fTsum senfTsum sen 

Fraction of 

the total 

temperature 

sum when 

senescence 

starts 

unitless 

 

0.6 

 

0.1 

 

0.01 

 

Own dataset 

and 

Neitsch et al. 

(2002) 
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3. Results 

3.1 Test of the models with experimental data 

After calibration, simulated yields reproduced the observed yield with a 

rRMSErRMSE ranging between 18% and 40% (Fig. 2.2), depending on the model. 

Agreement between simulated and observed yields was closest for models using 

the summarized LAILAI  dynamics approach, especially when parameter values 

estimated from the observed data were used. The simulations of LAILAI  dynamics 

support this observation. The models using the detailed LAILAI  dynamics approach 

performed least satisfactorily with a rMAErMAE of 0.50 versus a rMAErMAE of 0.36 for the 

models using the summarized LAILAI  dynamics approach. Although the rMAErMAE and 

rRMSErRMSE values remain high, the results (Table 2.7) show that all approaches are 

able to reproduce variability in observed yield for a range of climatic conditions, 

especially the increasing yield for locations with higher amounts of radiation 

(USA 1992−93 and USA 1993−94) and the slight decrease for locations with 

recurrent high temperatures (USA 1995−96 and Europe 1995). 

Fig. 2.2 Averages, based on the six study sites, of the relative mean absolute error 

(rMAErMAE) to analyse the performance of the dynamics simulation and of the relative root 

mean square error (rRMSErRMSE) to analyse the performance of simulated yield for the four 

studied models.  

 

  

rR
M

S
E

 o
r 

rM
A

E
 

After calibration After estimation After calibration After estimation 

0
0
.2

0
.4

0
.6

0
.8

LAI (rMAE) 

Farquhar and summarized LAI (LPJmL) 

RUE and summarized LAI (summarized crop model) 

Farquhar and detailed LAI (detailed model) 

RUE and detailed LAI (LINTUL) 

Yield (rRMSE) 



Chapter 2     Upscaling of processes 

 

32 

Table 2.7 

Simulated and observed yields for the different locations after the calibration of the 

models. 

 
Australia, 

Queensland 

Europe, 

The Netherlands 
USA, Arizona 

 1993 1995 1996 1992-1993 1993-1994 1995-1996 

Model name Yield (t ha 
-1

) 

LINTUL 9.8 5.4 5.0 6.1 6.6 5.2 

Detailed crop 

model 
7.6 5.6 5.9 9.0 8.8 8.2 

Summarized 

crop model 
7.8 6.0 6.0 6.6 6.6 6.5 

LPJmL 6.7 6.3 6.5 8.5 8.4 8.3 

Observations 7.2 7.6 9.1 8.0 8.2 6.8 

 

If LAImaxLAImax is estimated from the observed data, LAILAI  is simulated satisfactorily 

in the summarized LAILAI  dynamics approach (rMAErMAE = 0.36), with no improvement 

through calibration (Fig. 2.2). Calibration is important in the detailed LAILAI  

dynamics approach, especially for RgRg. The default value of RgRg (0.009 (
◦
Cd)−1) is 

based on Van Keulen and Seligman (1987) who included a wide range of data 

from different wheat cultivars (i.e. both spring and winter wheat) in their 

analysis. Spring wheat requires a higher value of RgRg, corresponding to the range 

observed by Van Delden et al. (2001). 

Finally, calibration of SLASLA and fTsum senfTsum sen also improved the simulated yields, 

independent of the LAILAI  dynamics approach (Eqs 2.2 & 2.5). With respect to the 

biomass production approaches, a lower value of RUERUE  was estimated from the 

data for locations with higher temperatures and total accumulated radiation over 

the growing cycle (i.e. USA, Table 2.8). However, because of lack of data, it was 

not possible to define a clear relation between RUERUE  on the one hand, and radia-

tion and temperature on the other hand from our dataset. Table 2.8 gives the 

calibrated parameters for each location. 

The models using the summarized LAILAI  dynamics approach could simulate 

crop productivity reasonably well in locations with different radiation and 

temperature regimes (Fig. 2.2). However, this is achieved only when applying 

parameter values estimated from the dataset. When applying the models for a 

wider range of conditions, the issue of data availability needs to be considered. 
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Table 2.8 

Parameter values after calibration, using experimental datasets. 

Parameter  Unit 
Australia,  

Queensland 

Europe, 

The Netherlands 
USA, Arizona 

f Tsum senf Tsum sen Unitless 0.61 0.54 0.55 

TsumTsum (°Cd) 1804 1609 2070 

RgRg °C
-1

 d
-1

 0.013 0.013 0.010 

SLASLA m
2
 gC

-1
 0.06 0.045 0.054 

LAImaxLAImax m
2
 m

-2
 7 6.75 6.35 

RUERUE
*
 gC MJ

-1
 1.52 1.33 1.01 

*
RUERUE  was not calibrated (but estimated) to avoid a compensation error with the SLASLA

parameter. 

 

 

 
Table 2.9 

Relative standard deviation (rSDrSD) to define the ability of each approach to capture 

climatic variability. 

 Summarized LAILAI  dynamics approach  Detailed LAILAI  dynamics approach 

 LPJmL (Farquhar) 
Summarized crop 

model (RUERUE ) 

Detailed crop 

model (Farquhar) 
LINTUL (RUERUE )   

rSDrSD yield 0.12 0.15 0.12 0.20 

rSDrSD intercepted 

PARPAR  
0.16 0.16 0.24 0.26 

rSDrSD for RUERUE  0.04 0.00 0.04 0.00 

 

 

 
Table 2.10 

Analysis of variance to identify whether the different modelling approaches and 

locations (North versus South) result in significant differences in simulated yields. 

Response: yield 
Sum of 

squares 
df F-value Pr (>F) 

Biomass production approach 0.30 1 0.56 0.46 

LAILAI  dynamics approach 4.23 1 7.99 0.009
**

 

Location (North versus South) 12.78 1 24.15 3.50 × 10
–5***

 

Biomass production × LAILAI  dynamics approach 0.47 1 0.89 0.35 

Biomass production approach × location 2.93 1 5.53 0.03
*
 

LAILAI  dynamics approach × location 1.44 1 2.72 0.11 

Biomass production approach × LAILAI  dynamics 

approach × location 
0.91 1 1.73 0.20 

Residuals 14.82 28   

× means that the different factors have been considered in the analysis. 

*** 0.001 

** 0.01 

* 0.05  
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3.2 Model behaviour in response to climatic conditions 

3.2.1 Sensitivity of simulated yield to the different modelling approaches 

To investigate the behaviour of the models in capturing the effects of different 

climatic regimes as relevant for regional applications, we ran the four models 

with weather data from a climatic range across Europe. The parameter values 

(except for phenology) originated from the calibration for the Netherlands using 

our observation dataset and we considered them as representative for Europe. 

Simulated yields vary from a maximum of 8.38 Mg dry matter ha−1 in southern 

Spain to a minimum of 4.44 Mg dry matter ha−1 in Germany (Fig. 2.3). The 

minimum yield was simulated with the combination of the detailed LAILAI  

dynamics and the RUERUE  approach (LINTUL), while the maximum was simulated 

with the combination of the summarized LAILAI  dynamics and the RUERUE  approach 

(summarized crop model). LINTUL shows the strongest response to climatic 

variability (rSDrSD = 0.20, Table 2.9), while the two models using the Farquhar 

approach (LPJmL and detailed crop model) show the weakest response 

(rSDrSD = 0.12, Table 2.9). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.3 Ranges of simulated yields for a wide range of conditions in Europe according 

to: a) location (i.e. North versus South), b) LAILAI  dynamics approaches per location (i.e. 

detailed LAILAI  versus summarized LAILAI ), and c) biomass production approaches 

depending on the locations (i.e. Farquhar North versus RUERUE  North and Farquhar South 

versus RUERUE  South).  
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Further, to better understand which process is more sensitive to climatic 

variability, we used the relative standard deviations (rSDrSD) of RUERUE  and inter-

cepted PARPAR  (Table 2.9). The calculated RUERUE  value, based on outcomes from the 

Farquhar approach, is slightly influenced by climatic variability (rSDrSD = 0.04). 

Intercepted PARPAR  shows the highest rSDrSD values, especially when using the detailed 

LAILAI  dynamics approach, demonstrating that this process is most sensitive to 

climatic variability (rSDrSD = 0.24–0.26). 

From the ANOVA (Table 2.10), we found that the location (i.e. northern versus 

southern regions) has a clear influence on simulated yields, independent of the 

approach chosen (p < 0.001): simulated yields are higher in southern regions 

than in northern regions (Fig. 2.3a). Moreover, the choice of the LAILAI  dynamics 

approach is important which is independent of the location (p < 0.01): simulated 

yields are always higher with the summarized LAILAI  dynamics approach (Fig. 

2.3b). 

Finally, the ANOVA demonstrates a significant difference in simulated yields 

for the two biomass production approaches, depending on location (p < 0.05): 

RUERUE  simulates higher yields in southern regions than the Farquhar approach, 

while the Farquhar approach simulates higher yields in northern regions (Fig. 

2.3c) The latter results suggest that if the RUERUE  approach is used it should be 

adjusted for the effects of temperature and radiation. 

 

3.2.2 Sensitivity to parameter values for the LAILAI  dynamics approaches 

The choice of the light interception approach has a significant influence on 

simulated yields (ANOVA results, Table 2.10) and this process most strongly 

reflects the effect of climatic variability on yields (indicated by a higher rSDrSD, Table 

2.9). Subsequently, we carried out a sensitivity analysis on key parameters of the 

light interception approaches to assess their relative importance for the simu-

lated yields, when combined with the RUERUE  approach. Fig. 2.4 shows the 

sensitivity index (SISI) for the parameters tested in the two LAILAI  dynamics 

approaches. The sensitivity of simulated yield is different for the different 

parameters considered (Fig. 2.4). The sensitivity of simulated yields is irregular 

in the detailed LAILAI  dynamics approach, while it is smooth in the summarized 

LAILAI  dynamics approach. 
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The relative growth rate of LAILAI  in the exponential phase (RgRg), used in the 

detailed LAILAI  dynamics approach, was varied from 0.005 to 0.013 (
◦
Cd)−1. The 

sensitivity of simulated yield to this parameter is variable, depending on location 

and the value of the parameter itself. On the one hand, simulated yields are 

highly sensitive to RgRg in the northern locations (Germany, Denmark, the United 

Kingdom and partly the Netherlands) with a SISI between 1 and 1.5 (i.e. a change in 

RgRg by 1% will result in a change in simulated yield of 1–1.5%). On the other hand, 

in the southern regions, a change in RgRg has a relatively smaller impact on 

simulated yields, especially for values exceeding the default value of 0.009 (
◦
Cd)−1 

(Fig. 2.4a). From the calibration we obtained a value for RgRg of 0.013 (
◦
Cd)−1, 

which implies that only simulated yields in Germany, Denmark and the United 

Kingdom will be highly sensitive to a variation in this value (SISI > 1). 

SLASLA (varying from 0.0036 to 0.06 m2 (gC)−1) behaves similarly, with the excep-

tion of a higher sensitivity (SISI > 1) in southern regions (i.e. Italy and Central 

Spain) with values of SLASLA < 0.042 m2 (gC)−1 (Fig. 2.4b). When using a value of 

0.045 m2 (gC)−1 for SLASLA (derived from the calibration for the Netherlands), the 

northern regions are highly sensitive (SISI > 1) and most of the southern regions 

moderately sensitive (0.5 < SISI < 1), except for southern France and southern 

Spain, where yield sensitivity is relatively small (SISI < 0.5) to a variation in this 

parameter. 

The sensitivity of simulated yield to fTsum senfTsum sen in the detailed LAILAI  dynamics 

approach is high (Fig. 2.4c). For values of fTsum senfTsum sen exceeding 0.66, the sensitivity 

of simulated yield is uniform among locations (SISI > 1). For values of fTsum senfTsum sen 

below 0.6, the yield is highly sensitive in many locations (SI > 2). However, 

interestingly, for a few locations and some specific values of fTsum senfTsum sen, the 

simulated yield is not sensitive to a change in its value (Fig. 2.4c, e.g. the United 

Kingdom for a value of 0.52). 

 

 

 

 

Fig. 2.4. Sensitivity index (SISI) of the yield for the main parameters according to the LAILAI

dynamics approaches. SISI = 1 means that the change of the parameter value will induce 

the same amount of change for the simulated yield. The symbol referring to the 

locations are the same as the one in Table 2.5. The parameters tested are: a) RgRg: relative 

growth rate of leaf area index during the juvenile phase for the detailed LAILAI  dynamics; 

b) SLASLA: specific leaf area for the detailed LAILAI  dynamics; c) fTsum senfTsum sen: fraction of the total 

temperature sum when senescence starts for the detailed LAILAI  dynamics; d) LAImaxLAImax: 

maximum leaf area index for the summarized LAILAI  dynamics; e) fTsum senfTsum sen: fraction of the 

total temperature sum when senescence starts for the summarized LAILAI  dynamics.  
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For the model using the summarized LAILAI  dynamics approach, the results of 

the sensitivity analysis are much more straightforward, with a moderate 

sensitivity (0.4 < SISI < 0.6) of the simulated yield to both parameters LAImaxLAImax 

(Fig. 2.4d) and fTsum senfTsum sen (Fig. 2.4e). For LAImaxLAImax exceeding 5.5 m2 m−2, the 

sensitivity of the simulated yield is even lower (0.2 < SISI < 0.4), independent of the 

location. 

 

4. Discussion 

4.1 General behaviour of the models 

All models simulated higher yields in southern regions than in northern regions 

(Fig. 2.3a), associated with longer growing seasons and higher radiation intensi-

ties during the growing season, due to earlier sowing dates and higher 

temperature sums till physiological maturity (Boons−Prins et al., 1993, Table 

2.5). The consequence is higher accumulated intercepted PARPAR, leading to higher 

biomass accumulation and therefore higher simulated yields. Such model 

outcomes are contrary to what is observed (yields are usually lower in southern 

regions than in northern regions in Europe, Van Oijen and Ewert, 1999). Indeed, 

the input data in terms of phenology were derived from spring barley, because of 

lack of available data for spring wheat (Boons−Prins et al., 1993). This proxy may 

be questionable, as other studies report that spring wheat can be sown between 

November−December in Mediterranean regions (Russell and Wilson, 1994). The 

temperature sum till maturity for the Germany site is also questionable. Hence, 

this result underlines the importance of adequately including farmers’ practices 

(e.g. sowing time and cultivar use) at different locations, as a response to the 

spatial variability in climate (Reidsma et al., 2010). Further, it may not be suffi-

cient to only adapt model parameters for phenology (e.g. Therond et al., in press) 

for larger scale applications, but also to evaluate the use of approaches to 

simulate key growth processes in response to climatic variability. 

 

4.2 Biomass production approaches 

The two biomass production approaches result in significant differences in 

simulated yields, differentiated among locations. The RUERUE  approach simulates 

higher yields in southern regions than the Farquhar approach, while the 

Farquhar approach simulates higher yields in northern regions (Fig. 2.3c). Using 

the RUERUE  approach, with a constant RUERUE  value for large scale applications (Tan 

and Shibasaki, 2003; Liu et al., 2007), we might over−simplify, ignoring effects of 

high temperatures and high radiation intensities on net photosynthesis, which 
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are both considered in the Farquhar approach (Fig. 2.5) or on daily light use 

efficiency as reported in Choudhury (2000, 2001). 

Fig. 2.5 Potential net photosynthesis (AndAnd) as a function of temperature and a number 

of constant total radiation intensities at one CO2 concentration of 340 ppm, which 

represents the CO2 concentration in the year 1982. The two vertical lines indicate the 

temperature limits where AndAnd is 75% of its maximum value (7.5 and 22.5 °C) for the 

Farquhar approach (detailed biomass production approach). 

 

The use of a constant RUERUE  (over the growing cycle as a whole) incorporates a 

lower conversion efficiency during the grain filling period due to, mostly, 

reallocation of assimilates to the grains (Van Keulen and Seligman, 1987). 

Moreover, when LAILAI  reaches values of 3–4 m2 m−2, the effect of radiation 

intensity on RUERUE  reflects the light saturation effect. Higher radiation then leads 

to lower RUERUE , as the leaves at the top of the canopy are light saturated and thus, 

higher light absorption does not lead to higher assimilation (Hay and Porter, 

2006). As a consequence, conversion efficiency calculated on the basis of total 

absorbed radiation is lower. Finally, this aggregated value of RUERUE  also includes 

the temperature effect on respiration processes. So, to keep the model as simple 

as possible, i.e. to appropriately balance between data availability and model 

structure for large scale applications (Addiscott, 1998; Hansen and Jones, 2000; 

Jagtap and Jones, 2002), the RUERUE  approach could be extended by incorporating 

the effects of temperature and radiation (Stöckle and Kemanian, 2009). Our 

observed data were too limited to define a significant relationship between RUERUE  

and radiation and temperature. We therefore propose to examine this relation-

ship with more extensive datasets and consider adapting the seasonal 
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Fig. 2.6 Scaling of RUERUE  for large scale applications, from a) an exponential relation* on a 

daily basis (from Choudhury, 2000) b) a linear relation** on a seasonal basis: graphical 

representation of the relation and observed versus simulated RUERUE  for both cases. 

 

*The daily RUERUE ranges 0.75 to 2.25 gC MJ−1, according to: 

RUERUE = 0.75 + 2.5 × exp(−(0.016 × temp) × PAR) with 10 ≤ temp ≤ 20 and 3 ≤ PARPAR ≤ 14 

temp = daily average temperature (°C) and PARPAR = daily photosynthetically active 

radiation (MJ m−2 d−1). 
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**The seasonal RUE ranges 1.45 to 1.65 gC MJ−1 according to: 

RUERUE = 2.1 – 3.5 × 10−4 × PARINT + 2.5 × 10−2 × temp 

with 11 ≤ temp ≤ 18 and 375 ≤ intercepted PAR ≤ 800 

temp = average temperature during the growing season (°C) and intercepted PAR = 

intercepted photosynthetically active radiation (MJm−2 growing season−1). 
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RUERUE  value (Medlyn, 1998; Sinclair and Muchow, 1999) which can be supported 

by using results of the Farquhar photosynthesis algorithms (Mitchell et al., 2000). 

Fig. 2.6 demonstrates how the effect of temperature and radiation on the value of 

RUERUE  could be expressed on a daily basis (derived from Choudhury, 2001) and on 

a seasonal basis (derived from the present study), which is more appropriate for 

regional applications of crop growth models. 

 

4.3 Leaf area index dynamics approaches 

The two different light interception approaches result in significant differences in 

simulated yields, independent of the location considered, and most clearly 

capture climatic variability. These results confirm earlier work that identified 

light interception as an important factor in determining crop growth (Heath and 

Gregory, 1938; Watson, 1947) and with later ones in the context of climate 

change studies (Jamieson et al., 1998a; Ewert, 2004a). 

Using the same parameter values, the summarized LAILAI  dynamics approach 

simulates higher yields than the detailed LAILAI  dynamics approach (Fig. 2.3b). We 

assumed the fTsum senfTsum sen parameter to have the same value in both approaches, as it 

was difficult to find an unambiguous definition of this parameter (i.e. onset of leaf 

senescence). In some cases, fTsum senfTsum sen is equivalent with the physiological meaning 

of leaf senescence, i.e. when leaves actually start to senesce (Havelka et al., 1984), 

while in some other cases, it is a visual interpretation of the phenomenon (Mi et 

al., 2000; Araus and Tapia, 1987), when the death rate of leaves overrides their 

growth rates. We considered the timing of the onset of senescence to be equal in 

the two approaches, i.e. at anthesis, in line with the detailed approach. However, 

the original description of the summarized approach defined the timing of the 

onset of senescence more on a visual observation: “LAILAI  will remain constant until 

leaf−senescence begins to exceed leaf growth” (Neitsch et al., 2005, p. 294). 

Furthermore, we assumed the timing of the onset of senescence to be identical 

across locations. However, phenological characteristics (e.g. temperature sum 

requirements till anthesis) of wheat vary among cultivars (Slafer and Rawson, 

1994), suggesting the need to also define location−specific values for fTsum senfTsum sen. 

Hence, looking at differences in simulated yield due to the different modelling 

approaches, we attributed the different responses of the models to the use of the 

same parameter values, although the underlying assumptions, lumped in the 

fTsum senfTsum sen parameter value, are essentially different for the two approaches. 
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5. Concluding remarks 

We focused on potential production as a first step to investigate the effect of 

modelling detail under a wide range of climatic conditions. From the two key 

processes determining growth, i.e. light interception and utilization, we found 

that light interception as determined by LAILAI  dynamics is most important in 

explaining yield sensitivity to climatic variability. We also showed that a different 

light interception approach results in significant differences in simulated yields, 

irrespective of the location. We conclude that for large scale applications of crop 

models particular attention should be given to the simulation of light intercep-

tion via the LAILAI  approach used. Most critical in this respect is the representation 

of leaf senescence, particularly the onset, which is modelled differently in crop 

models, but has considerable impact on the model outputs. Accordingly, further 

research should attempt to improve the representation of leaf senescence in crop 

models for large scale applications. 

We also found that an oversimplification of processes can lead to omission of 

important relationships, as for the application of the RUERUE  concept. We propose 

that models using the concept of RUERUE  should adjust seasonal RUERUE  by 

temperature and radiation effects. However, further research is needed to 

quantify these relationships. 

Our results provide first indications about the needed physiological detail in 

process−based models to capture the effect of climate variability on potential 

crop productivity across large areas. We demonstrated that through an inte-

grated analysis of detailed and summarized approaches more insight can be 

gained about the structure of crop models for large scale applications, in order to 

support the selections concerning the trade−off between data availability and 

modelling detail. As our study refers to potential production only, the analysis 

should be extended in a next step to also look at e.g. the effects of the rainfall 

distribution within the season on crop growth and yield (Adam et al., 2008). 

 

Acknowledgements 

This work has been carried out as part of the SEAMLESS integrated project, EU 

6th Framework Programme for Research, Technological Development and 

Demonstration, Priority 1.1.6.3. Global Change and Ecosystems (European 

Commission, DG Research, Contract No. 010036−2). The authors are grateful to C. 

Müller (Potsdam Institute for Climate Impact Research−PIK) for his help to 

incorporate the LPJmL model into our framework, in an early stage of the study.



 

 

 



 

 

 

 

 

 

 

Based on:

Van Bussel, L.G.J., Müller, C., Van Keulen, H., Ewert, F., Leffelaar, P.A.:

The effect of temporal aggregation of weather input data on 

crop growth models’ results.

Agricultural and Forest Meteorology, vol. 151 (2011), 607-619

The effect of temporal aggregation of 

weather input data on crop growth models’ 

results

Chapter 3 



Chapter 3     Temporal aggregation of input data 

 

46 

Abstract 

Weather data are essential inputs for crop growth models, which are primarily 

developed for field level applications using site-specific daily weather data. Daily 

weather data are often not available, especially when models are applied to large 

regions and/or for future projections. It is possible to generate daily weather 

data from aggregated weather data, such as average monthly weather data, e.g. 

through a linear interpolation method. But, due to the nonlinearity of many 

weather–crop relationships, results of simulations using linearly interpolated 

data will deviate from those with actual (daily) data. The objective of this study 

was to analyse the sensitivity of different modelling approaches to the temporal 

resolution of weather input data. We used spring wheat as an example and 

considered three combinations of summarized and detailed approaches to model 

leaf area index development and associated radiation interception and biomass 

productivity, reflecting the typical range of detail in the structure of most models. 

Models were run with actual weather data and with aggregated weather data 

from which day-to-day variation had been removed by linear interpolation 

between monthly averages. 

Results from different climatic regions in Europe show that simulated 

biomass differs between model simulations using actual or aggregated 

temperature and/or radiation data. In addition, we find a relationship between 

the sensitivity of an approach to interpolation of input data and the degree of 

detail in that modelling approach: increasing detail results in higher sensitivity. 

Moreover, the magnitude of the day-to-day variability in weather conditions 

affects the results: increasing variability results in stronger differences between 

model results. Our results have implications for the choice of a specific approach 

to model a certain process depending on the available temporal resolution of 

input data.  
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1. Introduction 

In recent years, crop productivity assessments have extended from the plot and 

field scale to the regional or even global scale including much longer time hori-

zons (100 years or more), e.g. to study the effects of global climate change on 

global crop productivity (Ewert, 2004b; Leemans, 1997). The only suitable tools 

for quantitative assessment of future global crop productivity are crop growth 

models. Early crop growth models mainly concentrated on plot and field scale 

(Hansen et al., 2006; Monteith, 2000; Van Ittersum et al., 2003) for assessments 

covering time-horizons of a season or a year. Due to the change in the scale of 

crop productivity assessments, crop growth models, with varying degree of 

detail, are increasingly applied at the continental or global scale, for example: 

LPJmL (Lund Potsdam Jena managed Land; Bondeau et al., 2007), DAYCENT 

(Stehfest et al., 2007), GEPIC (Liu et al., 2007), GLAM (Challinor et al., 2004), 

GAEZ (Tubiello and Fischer, 2007), and WOFOST (Reidsma et al., 2009). 

If crop growth models are applied at large scales, problems arise with respect 

to missing input data (Nonhebel, 1994) and lack of parameter values for different 

regions with regard to e.g. specific cultivar characteristics. Applying models in 

regions with missing input data or in regions beyond the domain for which they 

were developed and validated, may lead to unreliable results (Ewert et al., 2005; 

Irmak et al., 2005). 

Field-scale crop growth models are typically based and validated on site-

specific daily weather input data. Historical global daily weather data sets are 

available, see e.g. Sheffield et al. (2006) and Hirabayashi et al. (2008), with 

spatial scales of 1° × 1° and 0.5° × 0.5° grid cells, respectively. For climate change 

scenarios, some global circulation models (GCMs) provide daily weather data 

(LLNL, 1989), however, GCM performance at this level of temporal detail has 

hardly been evaluated; posing considerable limitations on the use of daily 

weather data from GCMs in climate change impact studies. Alternatively, monthly 

weather data aggregates for climate change scenarios are available from large-

scale climate data sets. Missing daily weather data, such as radiation and 

temperature, can then be generated on the basis of these average monthly 

weather data (Nonhebel, 1994; Soltani et al., 2004). Conversion from aggregated, 

monthly data to daily data can be achieved by (a) simple linear interpolation 

between monthly averages, as e.g. applied in the LPJmL model (Bondeau et al., 

2007; Sitch et al., 2003) and the GLAM model (Challinor et al., 2004) or 

(b) assuming that weather conditions for all days within one month are identical 

to the monthly averages, as e.g. applied in a global application of DAYCENT 

(Stehfest et al., 2007). In addition, monthly averages can be disaggregated to 
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daily values using weather generators, such as stochastic weather generators 

(e.g. applied by Semenov, 2009), parametric weather generators (e.g. applied by 

Liu et al., 2009), or semi-parametric weather generators (e.g. applied by 

Apipattanavis et al., 2010). 

Crop growth is the result of nonlinear, dynamic relations between weather, 

soil water and nutrients, management, and specific crop characteristics (Hammer 

et al., 2002; Hansen et al., 2006; Semenov and Porter, 1995). Some processes, e.g. 

photosynthesis, show continuous and mainly nonlinear changes in their rates if 

temperature changes. Other processes, such as phenological development, show 

a much more linear change with variation in temperature. Finally, crops also re-

spond to absolute changes in temperature, i.e. if a crop experiences temperatures 

outside the range of those typically experienced, significant yield losses may be 

the result (Porter and Semenov, 2005), e.g. a short period of extremely high tem-

peratures near anthesis in wheat can result in a high number of sterile florets 

(Ferris et al., 1998; Mitchell et al., 1993). These relationships are implemented in 

crop growth models in various ways, with different levels of abstraction being 

used. 

Generated weather data, based on linear interpolation or on the assumption 

of identical weather conditions within one month, lack day-to-day variability in 

weather patterns, e.g. extreme temperatures are eliminated, in contrast to 

weather data generated by a weather generator. However, weather generators 

suffer from various shortcomings, such as lack of available observed site-specific 

daily weather data in order to calibrate the weather generator (stochastic and 

semi-parametric weather generators) or normal distributed data (parametric 

weather generators) (Apipattanavis et al., 2010). Moreover, so far, weather 

generators have only been tested for specific regions or sites, which leaves doubt 

about their applicability at the global scale. 

Although linear interpolation is a pragmatic method to generate daily weather 

data at the global scale, its applicability needs to be carefully examined, because 

of the nonlinear relationships implemented in crop growth models, which can 

bias model results considerably (Hansen et al., 2006; Nonhebel, 1994; Semenov 

and Porter, 1995). Especially in regions with high day-to-day weather variability, 

linearly generated weather data will show substantial deviations from actual 

weather. Consequently, differences in model results are likely to be largest in 

regions with high day-to-day variability. As extreme weather events have been 

projected to occur more frequently in the future (Beniston et al., 2007; Easterling 

et al., 2000; Salinger et al., 2005), the use of interpolated data will exclude this 

aspect of climate change from impact studies. 
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Temporal aggregation of temperature and radiation data will have different 

effects on different processes considered in crop growth models, as these differ 

in their sensitivity to temperature and radiation. Moreover, the degree of detail 

taken into account in modelling specific processes may determine their 

sensitivity to temporally aggregated data. Our hypothesis is that a detailed model 

is more sensitive to the use of aggregated data than a more summarized model. A 

detailed model is defined in this study as a more explanatory model, i.e. a model 

that contains most of the interactions and elements important for the system. In 

contrast, a summarized model is in general more descriptive, it often contains 

simplified representations of the complicated interactions and processes in the 

system. The difference in sensitivity between detailed and summarized models is 

expected due to differences in their characteristic times (or reaction rates) and in 

their number of nonlinear relationships considered. Crop growth models applied 

at the continental or global scale differ in their level of detail to simulate the vari-

ous processes of crop growth. Consequently, the use of temporally aggregated 

weather data may have different effects on simulation results among global crop 

growth models. 

Therefore, the objective of this study is to examine the sensitivity of crop 

models with different modelling detail to the temporal resolution of weather 

input data. This should provide more insight in the upscaling of important crop 

growth processes from field to regional level for global applications. We use 

spring wheat (Triticum aestivum) as an example and analyse two important 

processes, leaf area development, to simulate radiation interception, and 

biomass productivity. For each process a summarized and a more detailed 

modelling approach is used. None of the models used here covers damage due to 

extreme weather events such as heat stress. These impacts on crop yields are of 

increasing concern due to expected future climate changes (Battisti and Naylor, 

2009; Long and Ort, 2010; Soussana et al., 2010) and are likely to be very 

sensitive to the temporal resolution of input data if included in crop growth 

models. To examine the possible impacts, we have tested a simple threshold 

model with daily observed and monthly aggregated data sets, and discuss the 

implications for modelling. Consequently, the effects of temporal resolution of 

input data on results of crop growth models have to be studied, as data aggrega-

tion leads to information losses. 

Results are presented for nine locations across Europe, to analyse the effects 

under different climatic conditions. For each location, both fully irrigated and 

rainfed conditions were considered. 
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2. Material and methods 

In crop growth models, two processes play an important role in determining 

biomass dynamics: radiation interception by leaves and utilization of the inter-

cepted radiation to produce biomass via the photosynthesis process (Gabrielle et 

al., 1998; Monteith, 1977; Van Delden et al., 2001; Yin et al., 2000). In this study 

we applied three combinations of summarized and detailed approaches to model 

radiation interception and biomass productivity, reflecting a range of detail in 

model structure: a summarized biomass productivity approach was combined 

with a summarized and a detailed leaf area index approach (Fig. 3.1a and b, 

respectively) and a detailed biomass productivity approach was combined with a 

summarized leaf area index approach (Fig. 3.1c). For each biomass productivity 

approach, a specific water balance was used to simulate effects of water stress. 

Details of the approaches and water balances used are given below and in 

Appendix A. 

  

 

 

 
 

 

 

Fig. 3.1 Schematic overview of the 

different model combinations: 

a) summarized leaf area index with radiation 

use efficiency, b) detailed leaf area index 

with radiation use efficiency, and c) summa-

rized leaf area index with Farquhar 

photosynthesis. 
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Adam et al. (2011) evaluated the different model combinations against 

observed data for a wide range of climatic conditions under potential growing 

conditions, using observed daily weather data. They concluded that, after calibra-

tion, all three model combinations were able to reproduce observed yields within 

reasonable limits. 

The three model combinations to calculate crop productivity were driven by 

both actual and interpolated weather data. To quantify the sensitivity, the 

average relative differences (BdBd, %) between total standing biomass at the end of 

the growing season with interpolated weather data (BiBi, gC m−2) and with actual 

weather data (BaBa, g Cm−2) over the nine stations were calculated: 
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absolute values were used to avoid cancelling out of results.  

 

2.1 Radiation interception 

2.1.1 Detailed leaf area index approach 

A relatively detailed approach to model leaf area index (LAILAI, m2 m−2) dynamics is 

described by Spitters and Schapendonk (1990) and was applied in the light inter-

ception and utilization model (LINTUL) in several case studies of maize (Farré et 

al., 2000) and potatoes (Spitters and Schapendonk, 1990). Adapted versions of 

LINTUL (with the same LAILAI approach, but different assimilation approaches) 

were used for spring wheat (Ewert et al., 1999; Van Oijen and Ewert, 1999). 

Growth of LAILAI is divided into two phases. During the juvenile stage, or until a 

certain LAILAI threshold is reached (LAIjLAIj, m2 m−2), expansion of LAILAI is exponential. 

It is governed by temperature through its effect on cell division and extension. If 

water stress occurs, increase in LAILAI is reduced by a water stress factor: the ratio 

between actual and potential transpiration. Beyond the juvenile stage, LAILAI 

expansion is restricted by the supply of assimilates and is calculated using the 

simulated rate of increase in leaf weight, which is based on the total biomass 

increment multiplied with a partitioning coefficient, defining the fraction of 

biomass allocated to the leaves, and with a constant specific leaf area of new 

leaves (SLASLA, m2 gC−1). To account for the effect of water stress on LAILAI beyond the 

juvenile stage, the increase in leaf weight is reduced through the water stress 

factor. Leaves die proportionally to their weight with a relative death rate, as a 

result of self-shading (Rd-shRd-sh, d−1) and, in the post-anthesis stage, from aging (Rd-agRd-ag, 

d−1), which is affected by temperature (Fig. 3.2).  
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Fig. 3.2 The relative death rate of leaves 

(d−1) as a function of temperature (°C), as 

used in the detailed leaf area index 

approach. 

 

 

 

 

2.1.2 Summarized leaf area index approach 

A more summarized approach to model LAILAI dynamics is based on the concept of 

the SWAT (Soil and Water Assessment Tool, Neitsch et al., 2005) model and is 

applied in the LPJmL model. LAILAI at any point in time is calculated as a fraction of 

a predefined maximum leaf area index (LAImaxLAImax, m2 m−2). This fraction is calcu-

lated by a forcing function, defined in terms of sigmoidal and quadratic functions. 

Potential LAILAI is reduced if the required biomass to support the calculated LAILAI is 

not available. To account for water stress, in the pre-anthesis phase a water 

stress factor is included in the rate equation for LAILAI growth. The water stress 

factor is either based on the ratio of actual and potential transpiration (in combi-

nation with the radiation use efficiency approach), or based on the maximum 

transpiration rate that can be sustained under optimum soil moisture conditions, 

soil moisture content, potential canopy conductance, potential evapotranspira-

tion, and a scaling factor (in combination with the Farquhar photosynthesis 

approach) as described in Section 2.2.1. 

The main difference between the two LAILAI approaches is the strong feed- 

back between biomass production and LAILAI growth in the detailed LAILAI approach, 

while this feedback is weaker in the summarized LAILAI approach. Growth of LAILAI in 

the detailed approach is dependent on so-called allocation factors, i.e. the daily 

produced biomass is allocated to the different organs in dependence of develop-

ment stage. Biomass allocated to the leaves is used to calculate LAILAI using SLASLA. 

This implies that, in the detailed approach, unfavourable growing conditions in 

the beginning of the growing period may have strong effects on final yield levels. 

A negative feedback may occur: unfavourable growing conditions result in low 

biomass production, therefore little biomass is allocated to the leaves and this 

results in low radiation interception, which implies again low biomass produc-
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tion. The effect of unfavourable growing conditions is less strong in the summa-

rized LAILAI approach, as leaf area is only reduced if water stress occurs or if bio-

mass production is insufficient to sustain the root and leaf biomass (Eq. A.3.12). 

 

 

 

2.2 Biomass productivity 

2.2.1 Detailed biomass productivity approach 

A detailed approach to model biomass productivity is the biochemical photosyn-

thesis model of Farquhar et al. (1980) with simplifications by Collatz et al. 

(1991). In the process of photosynthesis, CO2 is converted into carbohydrates 

through activation of plant enzymes by light. Photosynthesis is either limited by 

intercepted radiation (JeJe, gC m−2 h−1) or by the availability of the enzyme Rubisco 

(JcJc, gC m−2 h−1). Intercepted radiation is computed from current LAILAI and a 

constant light extinction coefficient (kk, −), using Beer’s law. Daily gross photosyn-

thesis is the gradual transition between the two limiting rates and is influenced 

by ambient temperature, CO2 concentration, and radiation intensities. Daily net 

photosynthesis (AndAnd, gC m−2 d−1) is calculated as daily gross photosynthesis 

minus the “dark” respiration (RdRd, gC m−2 d−1); Fig. 3.3 shows the effect of tem-

perature on daily net photosynthesis for a number of (constant) radiation inten-

sities and a (constant) CO2 concentration of 350 ppm by volume. 

To calculate daily net primary productivity (NPPNPP , gC m−2 d−1), maintenance 

respiration is subtracted from daily net photosynthesis, based on tissue-specific 

C:N ratios, temperature, and the amount of biomass per organ. The remainder is 

reduced by 25% to account for growth respiration. 

In case of water stress, the model simulates a limited opening of the stomata, 

causing a change in ratio between intercellular and ambient CO2 concentrations, 

which results in a reduced photosynthetic rate (Gerten et al., 2004; Haxeltine and 

Prentice, 1996b; Sitch et al., 2003). Water available for the crop is calculated 

through a water balance, in which the soil is represented by a simple bucket, 

containing two layers, each with a fixed thickness. Water content of both layers is 

updated daily, taking into account transpiration, evaporation, runoff, and 

percolation through the layers (for more details, see Gerten et al., 2004 and 

Appendix A).  
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Fig. 3.3 Temperature response of the daily net rate of photosynthesis, at an ambient 

CO2 concentration of 350 ppm and various radiation intensities, as simulated with 

Farquhar photosynthesis. 

 

2.2.2 Summarized biomass productivity approach 

A more summarized approach to model biomass productivity is the radiation use 

efficiency (RUERUE , gC MJ−1) approach. For crops, a linear relation exists between 

accumulated intercepted radiation and accumulated biomass, the slope repre-

senting the RUERUE  value (Monteith, 1977), which combines the effects of photosyn-

thesis and respiration (Goudriaan and Monteith, 1990). The daily fraction of 

intercepted radiation by the crop is computed from current LAILAI and a constant 

light extinction coefficient, using Beer’s law. Daily net primary productivity 

(NPPNPP , gC m−2 d−1) is calculated by multiplying the fraction of intercepted radia-

tion with: daily incoming short-wave radiation (RdrRdr, MJ m−2 d−1), 0.5 (to convert 

short-wave radiation into photosynthetically active radiation), and radiation use 

efficiency (Eq. A.3.34). 

In the absence of water stress, radiation use efficiency is constant; with water 

stress, it is reduced by the ratio of actual and potential transpiration. Water 

available for the crop is calculated through a water balance, in which the soil is 

represented by a simple bucket, consisting of single layer that increases in 

thickness in downward direction with the growing roots. Water content of the 

layer is updated daily, taking into account transpiration, evaporation, runoff, and 

percolation through the layer (for more details, see Farré et al. (2000) and 

Appendix A). 

The main difference between the two biomass productivity approaches is the 

dependence of the detailed approach on incoming radiation, CO2 concentration, 

and temperature, while biomass productivity calculated according to the summa-

rized approach is only dependent on incoming radiation. Furthermore, the 
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detailed approach includes a coupled photosynthesis-water balance scheme, 

which allows for accounting for changes in water use efficiency, under changing 

temperatures or at higher CO2 concentrations.  

Table 3.1 shows the location-specific (phenological) crop parameters; other 

crop parameters with regard to radiation interception and biomass productivity 

are kept constant across the locations (Table 3.2).  

 

 

 
Table 3.1 

Location-specific crop phenological parameters. 

Location (country, 

lat. (°),long. (°)) 

Day of emergence 

(day of year) 

Temperature sum 

until anthesis (°Cd) 

Temperature sum 

until maturity (°Cd) 

UK 

(52°21′, −0°07′) 
56 1185 1693 

Denmark 

(57°06′, 9°51′) 
95 1104 1577 

The Netherlands 

(52°06′, 5°10′) 
85 1347 1924 

Germany 

(48°07′, 11°42′) 
91 968 1383 

France (centre) 

(47°58′, 1°45′) 
69 1160 1657 

France (south) 

(43°37′, 1°22′) 
41 1504 2149 

Spain (centre) 

(40°27′,−3°33′) 
36 1470 2022 

Spain (south) 

(37°25′, −5°52′) 
36 1540 2200 

Italy 

(42°25′, 14°12′) 
36 1431 2044 

Source: Boons-Prins et al. (1993), assuming that sowing dates and temperature sums 

until maturity of spring barley are representative for spring wheat.  
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Table 3.2 

Most important parameters for the different model approaches and their values. 

Symbol Parameter Value and unit Source 

Parameters for the summarized leaf area index approach 

fLAI1fLAI1 

 and 

fLAI2fLAI2 

Fraction of leaf area index at the first and second  

inflexion points on the leaf area development curve 
0.05 and 0.95 (−)  

fTsum1
fTsum1 
and  

fTsum2
fTsum2

 

Fraction of temperature sum at the first and 

second inflexion points on the leaf area 

development curve 

0.05 and 0.45 (−)  

fTsum afTsum a 
Fraction of the total temperature sum when 

anthesis is reached and senescence starts 
 0.70 (−)  

SLASLA Specific leaf area of leaves 0.053 m
2
 (g C)

−1
  

LAImaxLAImax Maximum leaf area index 5.0 m
2
 m

−2
  

Parameters for the detailed leaf area index approach 

RgRg Maximum relative growth rate of leaf area index 0.0108 (°Cd)
−1

  

LAIiLAIi Initial leaf area index 0.025 m
2
 m

−2
  

fTjfTj 
Fraction of temperature sum when juvenile stage 

ends 
0.15 (−)  

fTsum afTsum a Fraction of temperature sum when anthesis starts 0.70 (−)  

LAIjLAIj Threshold leaf area index when juvenile stage ends 0.75 m
2
 m

−2
  

TbaseTbase Base temperature 0 °C
 

(a) 

SLASLA Specific leaf area of leaves 0.053 m
2
 (g C)

−1
  

Rd-shmxRd-shmx Maximum death rate due to shading 0.03 d
−1

 (b) 

LAIcLAIc 
Critical leaf area index above which self-shading is 

assumed to start 
4.0 m

2
 m

−2 
(b) 

Parameters for the radiation use efficiency approach 

RUERUE 
Radiation use efficiency based on total daily 

radiation 
1.38 gC MJ

−1
  

kk Light extinction coefficient 0.5 (−) (c) 

Parameters for Farquhar photosynthesis approach (C3 plants) 

K25K25 

and 

 Q10Q10 

The value of the parameter at 25 °C and the relative change in the parameter for a 

10 °C change in temperature, respectively 

KCKC  Michaelis constant for CO2 30 Pa (Q10Q10= 2.1) (c) 

KOKO  Michaelis constant for O2 

30 ££ 10
3
 Pa 

(Q10Q10= 1.2) 
(c) 

¿¿ CO2/O2 specific ratio 

2600 μmol μmol
–1

 

(Q10Q10= 0.57) 
(c) 

®C3®C3 C3 quantum efficiency  0.08 μmol μmol
−1

 (c) 

bC3bC3 Rd=VmRd=Vm ratio for C3 plants 
0.015 (gC m

−2
 d

−1
) /

 

(gC m
−2

 d
−1

)
 
 

(c) 

¸mC3¸mC3 Optimal Ci=CaCi=Ca for C3 plants. 0.8 Pa Pa
−1 

(d) 

PP Atmospheric pressure 100 ££ 10
3
 Pa (c) 

O2O2 Partial pressure of O2 20.9 ££ 10
3
 Pa (c) 
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Symbol Parameter Value and unit Source 

CmassCmass Molar mass of carbon 12 gC mol
−1

  

kk Light extinction coefficient  0.5 (−) (c) 

CqCq  
Conversion factor for solar radiation at 550 nm 

from MJ m
−2

 d
−1

 to mol photons m
−2

 d
−1

 

4.6 ×10
−3

 

mol photons MJ
−1  

caca  Ambient mole fraction CO2 μmol mol
−1

  

µµ  Co-limitation parameter 0.7 (−) (c) 

®max®max  Maximum Priestley-Taylor coefficient 1.391 (−) (e) 

gmgm  Scaling conductance  3.26 mm s
−1

 (e) 

gmingmin  

Minimum canopy conductance, which accounts for 

water stress not directly related with 

photosynthesis 

0.5 mm s
−1

  (e) 

(a) Kiniry et al. (1995). 

(b) Van Keulen and Seligman (1987). 

(c) Haxeltine and Prentice (1996b). 

(d) Sitch et al. (2003). 

(e) Gerten et al. (2004) 

 

2.3 Weather data 

Weather input data for the model runs were extracted from a database described 

by Van Kraalingen et al. (1991), for various locations in Europe (Fig. 3.4), for the 

year 1982. It contains daily data for minimum and maximum temperature (TminTmin,

TmaxTmax, °C), daily incoming short-wave radiation (RdrRdr, MJ m−2 d−1), daily precipita-

tion (PP , mm d−1), vapour pressure (ee , kPa), and wind speed (uu, m s−1). Daily 

average temperature (TaverageTaverage, °C), used in the radiation interception and biomass 

production approaches, is calculated from minimum and maximum tempera-

tures. Data were used from various European weather stations (see Table 3.1). 

 

 

 

 

 

 

 

Fig. 3.4 Locations of the nine weather stations 

used in this study.  
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We concentrated in this study on the effects of linear interpolation of temper-

ature and radiation data only, as effects of disaggregation of precipitation data 

strongly depend on the soil–water model considered. We here focus on crop 

growth processes only and do not compare different levels of detail in soil–water 

models, that would allow addressing the effects of disaggregating precipitation 

data. Besides, monthly precipitation is mostly disaggregated to daily values in 

crop growth models on the basis of precipitation generators rather than through 

linear interpolation (e.g. Bondeau et al., 2007; Liu et al., 2007). Therefore, 

precipitation is given as daily values in all simulations.  

 

2.3.1 Linear interpolation of temperature and radiation data 

Actual daily temperature and radiation values from the nine weather stations 

were used to derive interpolated daily values for temperature and radiation. 

Average monthly values, which were assigned to the middle of each month (e.g. 

MDi=1MDi=1 = 15 and MDi=2MDi=2 = 46), were calculated from the actual weather data. 

Interpolated daily values for weather variable at day k (XkXk, °C or MJ m−2 d−1) 

were calculated as: 

 

Xk = Xi +
DOYk ¡MDi

MDi+1 ¡MDi

£
¡

Xi+1 ¡Xi

¢

Xk = Xi +
DOYk ¡MDi

MDi+1 ¡MDi

£
¡

Xi+1 ¡Xi

¢

   (Eq. 3.2) 

 

where X iX i and Xi+1Xi+1 are monthly averages of weather variable XX  (°C or MJ m−2 d−1) 

at the middle day of month MDiMDi and MDi+1MDi+1, respectively, and DOYkDOYk is the kth day 

of the year (Sitch et al., 2003; Soltani et al., 2004). The same procedure was 

applied to derive interpolated daily TmaxTmax values (°C). 

As a measure for the day-to-day variability in weather conditions, the average 

annual difference (for temperature or radiation) (WdWd, °C or MJ m−2 d−1) between 

linearly interpolated data (WiWi, °C or MJ m−2 d−1) and actual data (WaWa, °C or MJ m−2 

d−1) was computed:  

 

Wd =

365
X

k=1

jWik ¡Wak
j £

1

365
Wd =

365
X

k=1

jWik ¡Wak
j £

1

365
  (Eq. 3.3) 

 

A larger difference indicates larger day-to-day variability. 
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2.3.2 Occurrence of high temperatures 

Extremely high temperatures may strongly influence yields through their effects 

on grain set, since harmful effects occur already after exposure to high 

temperatures for durations as short as one day (Saini and Aspinall, 1982). In line 

with a study by Semenov (2009), we summed the number of days with a daily 

maximum temperature exceeding 27 °C and 31 °C during the ten days after 

anthesis; two threshold temperatures were used, as wheat cultivars differ in 

their tolerance to extreme temperatures (Mitchell et al., 1993; Porter and Gawith, 

1999). Anthesis was defined as a fixed fraction (0.7) of the temperature sum till 

maturity (Table 3.1). Days were summed for the nine locations, based on the 

data-sets with (1) actual daily TmaxTmax, (2) interpolated daily TmaxTmax, (3) actual daily 

TaverageTaverage, and (4) interpolated daily TaverageTaverage. 

 

3. Results 

3.1 Weather data 

Day-to-day variability in weather conditions was calculated in order to examine 

its correlation with possible differences between model results due to the use of 

input data with different temporal resolutions. Among the considered study 

locations, day-to-day variability in weather conditions was highest in Germany 

and lowest in southern Spain (Fig. 3.5 and Table 3.3). Day-to-day variability in 

weather conditions in Denmark, The Netherlands, France, and the United 

Kingdom was comparable to that in Germany, while variability in Italy and in 

central Spain was comparable to that in southern Spain (Table 3.3). 

 
Table 3.3 

Day-to-day variability in the weather conditions. 

Location 
Average annual deviation between 

actual and average temperature (°C) 

Average annual deviation between 

actual and average radiation(MJ m
−2

) 

UK 2.22 3.12 

Denmark 2.19 3.15 

The Netherlands 2.28 3.13 

Germany 2.61 3.42 

France (centre) 2.40 3.16 

France (south) 2.19 3.22 

Spain (centre) 1.80 2.68 

Spain (south) 1.66 2.30 

Italy 1.80 2.71 
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During the ten days following anthesis, actual daily TmaxTmax exceeded at least 

during one day the threshold temperature of 27 °C in all locations, except those 

in the United Kingdom and in central France. In The Netherlands, southern 

France, Spain, and Italy, actual daily TmaxTmax also exceeded at least once the 

threshold temperature of 31 °C in the ten days following anthesis. If interpolated 

daily TmaxTmax data were used, only in southern France, Spain, and Italy TmaxTmax exceeded 

27 °C, TmaxTmax never exceeded 31 °C. However, TmaxTmax exceeded 27 °C on more days if 

interpolated daily TmaxTmaxwas used than with actual daily TmaxTmax. Daily TaverageTaverage (actual 

and interpolated) never exceeded 27 °C during the ten days following anthesis 

(Table 3.4). 

 

 

Fig. 3.5 Actual and interpolated (daily) temperature (°C) and radiation (MJ m−2 d−1) 

from weather stations in Germany (left panel) and southern Spain (right panel) in 1982. 
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Table 3.4 

Number of days when TmaxTmax exceeded a certain threshold temperature for two input data 

sets; TaverageTaverage (actual daily and interpolated daily) never exceeded 27 °C. 

Location 
Days with actual daily TmaxTmax above: 

Days with interpolated daily 

TmaxTmax above: 

27 °C 31 °C 27 °C 31 °C 

United Kingdom 0 0 0 0 

Denmark 2 0 0 0 

The Netherlands 4 1 0 0 

Germany 1 0 0 0 

France (centre) 0 0 0 0 

France (south) 5 1 3 0 

Spain (centre) 9 3 10 0 

Spain (south) 6 3 10 0 

Italy 6 2 10 0 

 

3.2 Total biomass for actual and linearly interpolated weather data 

Sensitivity of the different model combinations to interpolation of input data was 

tested for interpolation of temperature and radiation separately and for the 

combination of both interpolated temperature and radiation. Fig. 3.6 shows the 

average (relative) differences between simulated total standing biomass with 

actual weather data and with interpolated weather data based on the nine 

stations (see Eq. 3.1), for irrigated and rainfed conditions. 

The models respond differently to the interpolation of the different types of 

input data. Differences under rainfed conditions are in general larger than under 

irrigated conditions, especially for the combination of both interpolated radiation 

and temperature. Using the Farquhar photosynthesis model with the summa-

rized LAILAI approach, under rainfed conditions, results in an average difference of 

15% (averaged over the nine stations, Fig. 3.6) in simulated total biomass 

between simulations with actual and simulations with the combination of both 

interpolated temperature and radiation, with a maximum of 38% in Germany 

(Fig. 3.7). Using the RUERUE  approach combined with the detailed LAILAI approach, 

under rainfed conditions, results in an average difference of 9% between 

simulations with actual and simulations with interpolated temperature and 

actual radiation data, with a maximum of 30% in the UK. The most summarized 

combination (RUERUE  and summarized LAILAI approach), under rainfed conditions, 

results in the lowest average difference (4%) between simulations with actual 

and those with actual temperature and interpolated radiation, with a maximum 

of 9% in Denmark.  
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Fig. 3.6 Average differences (%) based on all nine locations in simulated total biomass 

at the end of the growing season, using “actual temperature and actual radiation” 

compared to the use of interpolated data, for irrigated and rainfed conditions. The error 

bars indicate the maximum and minimum differences. 

 

The effects vary among locations as shown for two contrasting locations: 

southern Spain and Germany (Fig. 3.7). Locations with a low day-to-day 

variability in weather conditions, such as southern Spain, show small differences 

as a result of the use of interpolated temperature and/or radiation data, for both 

irrigated and rainfed conditions. In contrast, locations with a high day-to-day 

variability, such as Germany, especially the use of the Farquhar photosynthesis 

approach results in large differences of up to 37%, if interpolated data for both 

temperature and radiation are used (Fig. 3.7). 
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Fig. 3.7 Differences (%) in simulated total biomass at the end of the growing season 

using “actual temperature and actual radiation” compared to the use of interpolated 

data for southern Spain and Germany for rainfed conditions. 
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with the detailed biomass model (Fig. 3.1c). It is evident that for this model 

combination a systematic positive linear relationship exists, i.e. a higher day-to-

day variability in weather conditions results in a larger difference in biomass 

production between input data sets. Relationships between day-to-day- 

variability in weather conditions and differences in simulation results for the 

other combinations of approaches are less distinct (not shown). 

The use of aggregated temperature data results for several stations in a small 

change in the timing of anthesis and in at most one day change in the simulated 

length of the growing season. Therefore, differences in simulated biomass are not 

attributable to simulated differences in length of the growing period, but are 

almost exclusively due to weather variability during the growing period. 
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Fig. 3.8 Relation between the average annual difference between actual and interpo-

lated weather data on the one hand (x-axis, indicating the magnitude of the day-to-day 

variability of the weather variables, Eq. 3.3), and the difference between model runs 

driven by actual and interpolated weather data on the other hand (y-axis, Eq. 3.1); for 

the combination of the Farquhar photosynthesis and the summarized leaf area index 

approach. 

 

4. Discussion and conclusions 

The objective of this study was to analyse the sensitivity of crop modelling 

approaches, representing growth processes, with different detail, in response to 

changes in the temporal resolution of weather input data. Our results show that 

the simulated biomass depends on whether actual or interpolated temperature 

and/or radiation data are used. This is in line with earlier results of Nonhebel 

(1994) and Soltani et al. (2004). Nonhebel (1994) studied locations with high 

day-to-day variability in weather conditions and found overestimates of 5−15% 

for simulated potential yields as a result of using average weather data. Soltani et 

al. (2004) found significant over-estimates of yield with linearly interpolated 

input data at the locations with optimal or supra optimal air temperatures for 

crop growth and a high day-to-day variability. Importantly, in the present study, 
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we find in addition, that the sensitivity to the interpolation of input data not only 

depends on the magnitude of the day-to-day weather variability, but also 

increases with increasing detail in the process modelling. For the most summa-

rized model combination, the difference at a particular site between simulated 

biomass with actual and simulated biomass with linearly interpolated input data 

is at most 10%, while for the most detailed model combination it is 37%. 

The large differences (higher simulated biomass with aggregated weather 

data) in the model with the Farquhar photosynthesis approach can be explained 

by the nonlinear temperature effect on the assimilation rate incorporated in that 

approach (Fig. 3.3). Due to the lack of day-to-day variability in linearly 

interpolated weather data, temperatures are more often at or near optimum 

values for growth, resulting in higher photosynthetic rates. In contrast, the more 

linear nature of the other approaches resulted in smaller differences. Further-

more, we found for the Farquhar photosynthesis approach a positive linear 

relationship between the day-to-day variability in weather conditions and the 

differences in simulated biomass between simulations driven with actual and 

with linearly interpolated input data (Fig. 3.8). This indicates that in locations 

with high day-to-day variability in weather conditions, and therefore large 

differences between actual and linearly interpolated weather data, differences 

due to the use of linearly interpolated input data are large. 

The required structure, parameter values and input data for a model to assess 

effects of extreme weather events, e.g. heat waves, on crop growth are not yet 

fully understood. Existing models that include these effects, often apply threshold 

approaches, as e.g. TmaxTmax thresholds for heat stress (Challinor et al., 2005; Teixeira 

et al., 2010). Our results, however, suggest that current threshold models cannot 

be simply applied with temporally aggregated weather data, if calibrated with 

more detailed weather data. We cannot conclude that threshold models are 

generally unsuitable in combination with aggregated data, but at least current 

threshold values will have to be re-parameterized if weather data with different 

characteristics (interpolated vs. actual; mean vs. maximum) are being used. 

Furthermore, whether threshold temperature models for heat damage to crops 

can be applied with interpolated monthly data also largely depends on the local 

day-to-day temperature variability and their statistical distribution 

characteristics. An in-depth analysis of a global set of daily temperature measure-

ments would be required, which is beyond the scope of this study. 

In addition to heat stress, effects such as yield reductions due to ozone 

pollution are also simulated using threshold values (e.g. Ewert and Porter, 2000). 

This effect has not been considered here, as it is not addressed in any global-scale 
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crop growth model, however, it is likely that re-parameterization is also 

advisable if input data with a different temporal resolution are being used, than 

that applied in the original model. 

Based on the results presented here, we stress the importance of the provi-

sion of daily weather data. Such data may be generated through weather genera-

tors, in combination with or directly by global circulation models. However, site-

specific observed daily weather data, which are often required to calibrate 

weather generators, are currently unavailable for large parts of the Earth (Liu et 

al., 2009), which hampers the application of weather generators at the global 

scale. For that reason, we stress that observed daily weather data should be 

made available for more regions and measurement sites. Results of weather 

generators should be tested for various climates, especially for climates with 

extreme temperatures, in order to assess their applicability in climate impact 

assessments, which may require rather detailed crop growth models, at least for 

conditions of high day-to-day weather variability. 

Our hypothesis that model sensitivity to the use of temporally aggregated 

data increases with an increasing degree of detail in the modelling approach, is 

supported by the results of this study. This observation has implications for the 

choice of a specific approach to model a certain process, which thus depends on 

the temporal resolution of the available input data. However, whether model 

uncertainty is unnecessarily increased if detailed approaches are combined with 

temporarily sparse weather data, needs further evaluation. Nevertheless, we 

suggest that the available temporal resolution of the input data and the implica-

tions for model results and model applicability need to be taken into account in 

the design of a (global) crop growth model. More detailed models need to be 

(re-)evaluated or re-parameterised if driven with less detailed input data, while 

more summarized models may prove to be unsuitable for studies addressing the 

effects of changes in day-to-day weather patterns, such as studies on weather 

extremes.  
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Abstract 

Policy decisions are often taken at the regional scale, while crop models, 

supporting these decisions, have been developed for individual locations, 

expecting location-specific, spatially homogeneous input data. Crop models are 

able to account for the variation in climatic conditions and management activities 

and their effects on crop productivity. However, regional applications require 

consideration of spatial variability in these factors. Several studies have analysed 

effects of using spatially aggregated climate data on model outcomes. The effects 

of spatially aggregated sowing dates on simulations of crop phenological 

development have not been studied, however. We investigated the impact of 

spatial aggregation of sowing dates and temperatures on the simulated 

occurrence of ear emergence and physiological maturity of winter wheat in 

Germany, using the phenological model of AFRCWHEAT2. 

We observed time ranges for crop emergence exceeding 90 d, whereas for 

harvesting this was more than 75 d. Spatial aggregation to 100 km × 100 km 

reduced this range to less than 30 and 20 d for emergence and harvest, 

respectively. Differences among selected regions were relatively small, 

suggesting that non-climatic factors largely determined the spatial variability in 

sowing dates and consecutive phenological stages. Application of the 

AFRCWHEAT2 phenology model using location-specific weather data and 

emergence dates, and an identical crop parameter set across Germany gave 

similar deviations in all studied regions, suggesting that varietal differences were 

less important among regions than within regions. Importantly, bias in model 

outcomes as a result of using aggregated input data was small. Increase in 

resolution from 100km to 50km resulted in slight improvements in the 

simulations. We conclude that using spatially aggregated weather data and 

emergence dates to simulate the length of the growing season for winter wheat 

in Germany is justified for grid cells with a maximum area of 100 km × 100 km 

and for the model considered here. As spatial variability of sowing dates within a 

region or country can be large, it is important to obtain information about the 

representative sowing date for the region.  
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1. Introduction 

Results of crop models are often used to inform policy makers about the effects 

of climate change on the productivity of crops (Boote et al., 1996; Hansen and 

Jones, 2000; Harrison et al., 2000; Leemans, 1997; Tubiello and Ewert, 2002). 

However, there is often a mismatch between the scale of policy decision support 

and the scale for which crop models have been developed. Recommendations to 

mitigate the effects or to adapt to climate change often refer to large scales such 

as regions or countries (Hansen and Jones, 2000; Harrison et al., 2000). On the 

other hand, crop growth and development models have been developed for 

individual locations, expecting location-specific, spatially homogenous input data 

(De Wit et al., 2005; Hansen and Jones, 2000; Mearns et al., 2001; Monteith, 2000; 

Tao et al., 2009; Van Ittersum et al., 2003). However, crop models are increas-

ingly applied to larger scales (e.g. Bondeau et al., 2007; Challinor et al., 2009, 

2004; Tan and Shibasaki, 2003), but systematic evaluations of the effects of 

spatially heterogeneous input data on the simulations of growth and develop-

ment processes are scarce. 

Winter wheat (Triticum aestivum) yields are determined to a large extent by 

the length and timing of the various phenological stages (Ewert et al., 1996; 

Jamieson et al., 1998b). These are governed by the interactions of genetic 

properties and environmental conditions, such as temperature and day length 

(Kirby et al., 1987; Porter et al., 1987), modified by crop management, especially 

sowing date and cultivar selection. 

A suitable cultivar and an optimal sowing date should be selected to maximize 

grain yields, e.g. in northern regions grain filling should be finished before the 

new winter starts, whereas in southern regions grain filling should be completed 

before the onset of the dry and hot summer (Dennett, 1999; Gomez-Macpherson 

and Richards, 1995; Nonhebel, 1996; Worland et al., 1994). However, optimal 

sowing dates cannot always be realized for a variety of reasons related to e.g. 

limited water availability in the soil during the sowing period (Gomez-

Macpherson and Richards, 1995; Sharma et al., 2008; Stephens and Lyons, 1998), 

delayed harvest of the preceding crops or limited machinery and labour capacity 

(Dennett, 1999), resulting in substantial heterogeneity in sowing dates for winter 

wheat in a region (Harrison et al., 2000). Stephens and Lyons (1998) investigated 

the spatial and temporal variability in sowing dates of wheat for several 

Australian States. However, variability at smaller scales was not investigated. 

Chmielewski et al. (2004) reported on temporal variability in sowing dates for 

crops in Germany, but did not address their spatial variability. 
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The availability of climate change projections by Regional Climate Models 

(RCMs) is increasing, however, they are still in an early stage of development 

with therefore considerable limitations. As a result, climatic input data for crop 

models used in large-scale climate change impact assessment studies are usually 

derived from General Circulation Models (GCMs). GCMs use spatial grids with 

resolutions typically of the order of hundreds of square kilometres (Challinor et 

al., 2009, 2003; Mearns et al., 2001). In those large-scale grids, however, 

heterogeneity in growing conditions within a grid cell is neglected. The same 

applies to other inputs for crop models, such as sowing date (Abildtrup et al., 

2006). 

To generate reliable model results for regional application and/or estimate 

associated uncertainties, it is important to understand and consider the effects of 

such data generalization on simulation results. It is expected that with increasing 

spatial aggregation, local extremes will be averaged out, with unknown implica-

tions for the simulation results. 

Several studies have analysed the effects of using spatially aggregated climate 

data on simulated yields by crop models. It has been shown (Easterling et al., 

1998) that agreement between simulated and observed yields for wheat and 

maize improves considerably when climate data were disaggregated from 

2.8° × 2.8° to approximately 1° × 1° resolution, with disaggregation below 0.5° × 

0.5° showing no further improvement. Disaggregation of soil data showed little 

effect on model results (Easterling et al., 1998). Olesen et al. (2000) and De Wit et 

al. (2005) reported as well that a grid cell size of 0.5° × 0.5° is an appropriate size 

to simulate yields at regional scale. However, other studies showed (e.g. Baron et 

al., 2005; Wassenaar et al., 1999) that especially in regions where water-

limitations played a role, model results for wheat and millet yields were sensitive 

to aggregation of precipitation and soil data. 

The effects of spatially aggregated sowing dates on simulations of crop 

development have not systematically been studied. It is unclear to what extent 

heterogeneity in sowing dates within a region will affect the simulation results, 

particularly for day length- and vernalization-sensitive winter crops. Unclear is 

also how the use of aggregated climate data affects simulations of crop develop-

ment without and in combination with aggregated sowing dates. 

Therefore, the present paper investigates the impact of different levels of 

aggregation of observed sowing dates and temperatures on the simulated timing 

of the development stages of ear emergence and physiological maturity of winter 

wheat for different regions across Germany. Long-term temporal changes in 

stage occurrence as presented by Chmielewski et al. (2004) and Estrella et al. 
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(2007) to identify climate change impacts are not subject of this study. However, 

our analysis covers several years to investigate temporal variability in pheno-

logical development and possible interactions with the spatial pattern of stage 

occurrence. Furthermore, spatial and temporal heterogeneity in selected 

phenological stages are studied in detail. 

 

2. Materials and methods 

2.1 Data description 

The weather data and observed dates of phenological events of wheat used in 

this research were derived from the climate data bank (KLIDABA) of the 

Deutscher Wetterdienst (German Meteorological Service). Observations on crop 

phenological stages on production fields were recorded by about 1500 voluntary 

observers across Germany. As observations have been carried out by volunteers, 

only selected stages have been recorded, instead of more frequent observations 

as typical for field experiments (e.g. Porter et al., 1987). It can also not be 

ensured that all observers identified the precise occurrence of a stage and not 

only the stage when observing the crop through regular visits. This might have 

resulted in deviations, but as the dataset is extensive, both in space and over 

time, spatial and temporal patterns of stage occurrence will still be realistic and 

an acceptable basis for model evaluation. Only locations were selected with 

complete time series for the phenological stages considered (emergence, ear 

emergence and harvest) and weather data for the period 1983 through 1988. The 

period 1995 through 1998 and specifically the year 1995 were selected, as data 

were most complete for all regions in Germany. We considered crop emergence 

as starting point for the model simulations, as data were more reliable than 

sowing dates: in the database, observed sowing dates sometimes refer to the 

onset of field preparation, such as tilling and drilling.  

 

2.2 Description of the crop model 

The phenological model AFRCWHEAT2 simulates the timing of different 

developmental stages of wheat, using the common temperature sum approach, 

modified by the effects of photoperiod and vernalization. The model has been 

tested under a range of conditions, such as in New Zealand (Jamieson et al., 2007; 

Porter et al., 1993), northeast Germany (Ewert et al., 1996), the Netherlands, 

Belgium, Ireland, United Kingdom, Sweden, France, Germany, and Denmark 

(Ewert et al., 1999) and in a large-scale application across Europe (Harrison et 

al., 2000). 
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AFRCWHEAT2 is described in detail in Weir et al. (1984) and Ewert et al. 

(1996). Here, we report only the basic aspects of the model. To simulate the 

timing of developmental stages, temperature is accumulated above a base 

temperature and corrected for effects of photoperiod and vernalization, in 

dependence of developmental stage. The photoperiod and vernalization effects 

are computed on the basis of cultivar-specific parameters. It is assumed that 

vernalization is optimal at temperatures between 3 and 10 °C; effectiveness is 

zero if temperature is lower than −4 °C or higher than 17 °C and a linear increase 

and decrease is considered between −4 and 3 °C and 10 and 17 °C, respectively 

(Ewert et al., 1996; Weir et al., 1984). Required input data for the model as used 

in this study are temperature (daily minimum and maximum), latitude, 

emergence date, and cultivar-specific parameters. 

To examine the behaviour of the model, six 100 km × 100 km grid cells across 

Germany (Fig. 4.1), representing three agro-environmental zones (Atlantic 

Central, Atlantic North, and Continental; Metzger et al., 2005), were selected. In 

each grid cell, ten observed ear emergence and harvest dates were compared 

with their simulated results for the period 1983 through 1988, using information 

from weather stations and observed emergence dates in the vicinity. 

Because of lack of information about the cultivar grown at each location, we 

assumed the same cultivar, characterized by specific crop parameters, to be 

grown in all locations across Germany. This yields information on the possibility 

of using identical parameter values across a large area, such as Germany. The 

parameter values (Table 4.1) were estimated based on field trials for a medium 

maturity class variety, typically grown in Germany. 

For each region, average goodness-of-fit of the model was expressed in root 

mean squared errors (RMSE) and averaged over five years:  

 

RMSE =

v

u

u

t

1

n

n
X

i=1

(xsimi
¡ xobsi

)2   (Eq. 4.1) 

 

where i is the observation number, n the total number of observations (which 

varies among regions), xsimi
 the simulated dates, and xobsi the observed dates. Two 

values for RMSE were calculated per region: RMSEdate, expressing the deviation 

in number of days between observed and simulated dates and RMSElength, 

expressing the deviation between observed and simulated lengths of the pheno-

logical phase (in percentages of the observed lengths). 
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Furthermore, based on the five years, average observed and simulated dates 

for ear emergence and harvest, average observed and simulated lengths of the 

development periods from emergence till ear emergence and from emergence till 

harvest were calculated per region. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.1 Locations of the observation stations 

(weather data and emergence dates) in six 

regions in Germany selected for this study. 

 

 

 

Table 4.1 

Cultivar-specific parameter values. 

Parameter Value Parameter Value 

Tb emergence – anthesis 1.0 °C PVTTemergence-double ridge  270 °Cd 

Tb anthesis – maturity 9.0 °C PTTdouble ridge-terminal spikelet   90 °Cd 

Pb emergence – double ridge 0 h PTTterminal spikelet-°ag leaf emergence 310 °Cd 

Pb double ridge – anthesis 7 h PTT°ag leaf emergence-awn emergence 140 °Cd 

Popt 20 h PTTawn emergence-beginning anthesis 100 °Cd 

Vb 8 d PTTbeginning anthesis-end of anthesis   40 °Cd 

Vsat 33 d TTanthesis-start of grain ¯lling 100 °Cd 

Vvmin
 -4.0 °C TTgrain l̄ling 320 °Cd 

Vvmax
 17.0 °C TTend of grain ¯lling-mature crop   60 °Cd 

Optimum temperature 

range for vernalization 
3.0 – 10.0 °C   

Tb base temperature, Pb base photoperiod, Popt optimum photoperiod, Vb base 

vernalization, Vsat saturated vernalization, Vvmin base temperature for vernalization, Vvmax
 

maximum temperature for vernalization, PVTT  photo-vernal-thermal time, PTT  photo-

thermal time, TT  thermal time 
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2.3 Aggregation procedure 

2.3.1 Effect of grid cell size on spatial heterogeneity of phenological stages 

Germany was divided into grid cells with an area of 10 km × 10 km. To obtain 

one (aggregated) date per grid cell, data (of emergence, ear emergence, and 

harvest dates) of all observation stations falling into a common grid cell were 

spatially aggregated by calculating their arithmetic mean for the year 1995. 

Aggregated dates per grid cell for all development stages were also calculated for 

grid cells with areas of 20 km × 20 km through to 100 km × 100 km in steps of 10 

km. The earliest and latest of the aggregated dates were identified for the whole 

of Germany for each phenological stage and per grid cell size. 

 

2.3.2 Spatial and temporal heterogeneity of emergence, ear emergence, and 

harvest dates 

In order to assess possible spatial patterns of phenological events, cumulative 

relative frequency distributions of observed emergence, ear emergence and 

harvest dates were created for the whole of Germany for each year of the period 

from 1995 to 1998. In addition, semi-variograms to determine the degree of 

spatial dependency of observations were calculated and fitted with the program 

Vesper; 100 lags and a 50% lag tolerance were used for the calculations, and 

exponential models were fitted to the variograms. 

Spatial and temporal heterogeneity in observed emergence, ear emergence, 

and harvest dates were studied in more detail in six selected 100 km × 100 km 

grid cells (Fig. 4.1). Spatial heterogeneity among locations for one randomly 

chosen year (1986) was determined based on the average, earliest, and latest 

dates for each of the selected phenological events per grid cell, which were 

calculated based on ten randomly selected observations per event and per grid 

cell. The temporal heterogeneity for the period 1983 through 1988 was deter-

mined based on one randomly selected observation per event and per grid cell. 

 

2.3.3 Effects of data aggregation on simulated results 

In each of the six 100 km × 100 km grid cells, ten combinations of an observed 

emergence date with a weather station in the vicinity were selected for the 

period 1983 through 1988. Subsequently, the 100 km × 100 km grid cells were 

divided into four 50 km × 50 km grid cells, with the northwest 50 km × 50 km 

grid being used for the analyses, assuming that this was a representative grid. 

Data of combined observations of emergence dates and weather at specific 

locations falling into a common grid cell of 50 km × 50 km or 100 km × 100 km 
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were spatially aggregated by calculating the arithmetic mean from the occurring 

values. 

Fig. 4.2 Overview of the model runs: w = weather data measured (—), 

e = emergence date observation (– – –). Data were aggregated based on the two grid cell 

resolutions (100 km × 100 km and 50 km × 50 km). 

 

To be able to distinguish between the effects of aggregated emergence dates 

and aggregated weather, the model was run with either aggregated emergence 

dates or aggregated weather, or with their combination (Fig. 4.2). Simulated 

dates and lengths of development periods were averaged over the years and 

compared with averaged observed dates and lengths, goodness-of-fit of the 
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model being expressed in RMSE (Eq. 4.1). The spatial heterogeneity in weather 

conditions for each 100 km × 100 km grid cell was expressed in the difference in 

highest and lowest temperatures on each day among the ten weather stations. 

 

3. Results and discussion 

3.1 Variability in observed phenological stages across Germany 

3.1.1 Spatial variability in stage occurrence 

Fig. 4.3 shows the cumulative relative frequency distributions of all observed 

emergence, ear emergence and harvest dates for the whole of Germany for the 

period 1995 through 1998. 

 

 

 

 

 

 

Fig. 4.3 Cumulative relative frequency 

distribution of all observed 

a) emergence, b) ear emergence, or 

c) for harvest dates for the whole of 

Germany for the period 1995 through 

1998. 
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The slopes around the inflexion points of the development stages are 

different. The less steep slope for emergence indicates that the spread in 

observed emergence dates is larger than that for both ear emergence and harvest 

dates. Or in other words, the slopes of the graphs indicate that the variance in 

dates for the four years is largest for emergence and smaller, but similar, for ear 

emergence and harvest. The mean observed dates for emergence are 

approximately the same for all years. The mean observed ear emergence and 

harvest dates are different for the four years, most likely associated with inter-

annual variability in weather conditions. 

Semi-variogram parameters based on data from the whole of Germany for the 

years 1995 through 1998 are given in Table 4.2 and the semi-variograms from 

the year 1997 are given in Fig. 4.4 as examples. The parameter range represents 

the lag distance beyond which there is no autocorrelation among variables 

(Webster and Oliver, 2001) and is therefore a measure of the sampling distance. 

Ranges are different for emergence on the one hand and ear emergence and 

harvest on the other hand. The values for ear emergence and harvest indicate 

that in this case sampling grid cell sizes in the range 50 km × 50 km to 100 km × 

100 km are reasonable. 

 

 
Table 4.2 

Semi-variogram parameters for different develop- 

ment stages and years of winter wheat grown in 

Germany. 

Year Sill Nugget Range (km) 

Emergence 

1995 10126 126.4 103967 

1996 10138 138.1 75519 

1997 10201 201.4 42047 

1998 10203 202.6 92336 

Ear emergence 

1995 106 80.1 32 

1996 84 64.4 94 

1997 76 57.6 42 

1998 170 82.1 2579 

Harvest 

1995 64 41.5 119 

1996 138 57.3 60 

1997 69 31.7 27 

1998 10061 60.9 277683 
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The differences in ranges might be explained by the differential influences of 

management and climate. Sowing, and therefore emergence, is mainly driven by 

management and only partly by climate; harvest date and especially ear 

emergence are more strongly influenced by climatic conditions. Climatic 

conditions are spatially dependent with a variability range of 50 – 100 km in 

most years according to Table 4.3. 

 

 

 

 

 

 

 

Fig. 4.4 Semi-variograms for emergence, 

ear emergence and harvest for the year 

1997 of winter wheat grown in Germany. 

 

 

 

 

 

Table 4.3 

Mean difference between the highest minimum and maximum temperatures and the 

lowest minimum and maximum temperatures for the ten weather stations within a 100 

km × 100 km grid cell per region, averaged for the year 1984. 

Region Minimum temperature (°C) Maximum temperature (°C) 

Baden-Württemberg 5.7 5.5 

Bayern 3.2 3.3 

Nordrhein-Westfalen 4.0 2.9 

Schleswig-Holstein 2.5 2.0 

Hessen 2.6 2.2 

Niedersachsen 3.9 4.1 
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3.1.2 Effects of aggregation on spatial heterogeneity of phenological stages 

Aggregated emergence dates for the 10 × 10, 50 × 50, and 100 km × 100 km grids 

from the year 1995 are shown in Fig. 4.5. The results of the 10 × 10 resolution 

show that, in spite of the large number of observers, aggregation of data is 

necessary to obtain a full cover of emergence dates for the whole of Germany. At 

50 km × 50 km resolution, only at the northern border of Germany full data cover 

is not attained; at 60 km × 60 km resolution, full data cover is attained by aggre-

gation (not shown). 

Aggregation results in reduced heterogeneity: increasing aggregation results 

in reduced spatial variability for emergence, harvesting, and ear emergence dates 

(Figs 4.5 and 4.6).  

 

 

Fig. 4.5 Aggregated emergence dates from 

the year 1995 for the resolutions: 

a) 10 × 10, b) 50 × 50, and c) 100 km × 

100 km grid cells. 

 

 
 

 

 

 

 

Fig. 4.6 Range (=latest–earliest dates) in 

aggregated emergence, ear emergence, 

and harvest dates for different grid cell 

areas, based on data from the whole of 

Germany. 
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3.1.3 Spatial vs. temporal heterogeneity of phenological stages 

Spatial and temporal heterogeneity in the timing of emergence, ear emergence 

and harvest dates across Germany are compared for observations in the six 

100 km × 100 km grid cells (Fig. 4.1) for the period 1983 until 1988. Fig. 4.7 

shows the average, earliest and latest dates of emergence, ear emergence and 

harvest within each 100 km × 100 km grid cell. Ranges in stage occurrence differ 

among regions. The temporal range in emergence dates between 1983 and 1988 

for a randomly selected observation was narrowest in Schleswig–Holstein (12 d), 

widest in Baden–Württemberg (36 d) and for all regions on average 21 d. The 

spatial range in emergence dates for the year 1986 for different locations was 

narrowest in Baden–Württemberg (32 d), widest in Hessen (64 d) and for all 

regions on average 44 d. The temporal heterogeneity is thus smaller than the 

spatial heterogeneity. A possible explanation might be that individual farmers 

are inclined to sow at approximately the same date each year, while planning of 

sowing is different among farmers within a region. 

Spatial heterogeneity in sowing dates was also found in Australia, where the 

average range in sowing (earliest–latest) for a 13-year period was about a month 

at State level (Stephens and Lyons, 1998), which is, despite the larger area, 

slightly narrower than the results observed here. 

Average temporal heterogeneity is equal for crop emergence and ear 

emergence dates (21 d), but larger for harvest dates (41 d). The range in ear 

emergence dates might be explained by inter-annual variability in weather 

conditions. That variability may also explain the range in harvest dates, but 

additional heterogeneity might originate from planning of harvest activities 

based on available machinery and labour, explaining the wider range in harvest 

dates. 

 

3.2 Simulation of phenological stages across Germany 

3.2.1 Comparison of simulated (AFRCWHEAT2) with observed data 

To assess the predictive accuracy of AFRCWHEAT2, the average observed and 

simulated dates (Dobs  and Dsim) for ear emergence and harvest, the average 

observed and simulated lengths (Lobs  and Lsim) of the period from emergence till 

ear emergence and from emergence till harvest, the spatial range in observed 

and simulated dates (Robs  and Rsim), as well as the root mean squared errors  

(RMSE) were calculated per region (Table 4.4). 

Simulated ear emergence is in general later than the observations. Average 

RMSEdate = 13.8 d, with a maximum deviation for Baden–Württemberg (16.8 d) 

and a minimum for Nordrhein–Westfalen (9.6 d). 



Spatial aggregation of input data     Chapter 4 

 

81 

 

Fig. 4.7 Average and range (= latest – earliest, indicated by error bar) in emergence, ear 

emergence, and harvest dates for 100 km × 100 km grid cells for each region. 

 

 

The period from emergence to harvest is longer than from emergence till ear 

emergence, this implies that the same calculated average RMSEdate (13.8 d) 

indicates slightly smaller deviations in simulated harvest dates, with a maximum 

deviation for Nordrhein–Westfalen (19.0 d) and a minimum for Hessen (6.9 d). 

The delay in simulated ear emergence dates is less visible for simulated harvest 

dates. Ranges in observed dates, for both ear emergence and harvest, are in 

general wider than ranges in simulated dates. 
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Table 4.4 

Root mean squared errors (RMSE) for lengths of development periods from emergence 

till ear emergence and from emergence till harvest (RMSElength) and for ear emergence 

and harvest dates (RMSEdate), average observed and simulated dates (Dobs and Dsim) for 

ear emergence and harvest, average observed and simulated lengths (Lobs and Lsim) of 

the period from emergence till ear emergence and from emergence till harvest, as well 

as the range in observed and simulated dates (= latest – earliest date) (Robs and Rsim) 

per region. 

Region 
RMSElength RMSEdate Dobs  Dsim  Lobs  Lsim Robs Rsim  

(%) (d) (day of year) (d) 

Emergence – ear emergence 

Baden-

Württemberg 

7.0 16.8 
171 182 239 250 49 33 

(nn = 44) 

Schleswig-

Holstein 

6.2 15.1 
162 170 243 252 53 29 

(nn = 44) 

Bayern 
6.7 14.9 

164 176 222 234 35 25 
(nn = 45) 

Hessen 
6.5 14.3 

159 172 222 233 35 27 
(nn = 46) 

Nordrhein-

Westfalen 

4.5 9.6 
159 164 215 217 45 33 

(nn = 38) 

Niedersachsen 
5.1 12.1 

168 171 239 242 42 38 
(nn = 50) 

Emergence - harvest 

Baden-

Württemberg 

5.8 17.7 
238 247 306 315 57 67 

(nn = 44) 

Schleswig-

Holstein 

3.5 11.0 
236 233 317 315 41 39 

(nn = 49) 

Bayern 
4.8 13.7 

229 232 287 290 96 33 
(nn = 47) 

Hessen 
2.4 6.9 

228 228 290 289 49 34 
(nn = 49) 

Nordrhein-

Westfalen 

6.7 19.0 
231 222 285 275 93 40 

(nn = 46) 

Niedersachsen 
4.7 14.3 

235 234 306 305 44 65 
(nn = 50) 
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Important for crop yields are, in addition to the timing of a development 

stage, the lengths of the various phases and in particular that of the grain filling 

phase. For the length of the period between emergence and ear emergence 

RMSElength is 6.0%, with a maximum for Bayern (7.0%) and a minimum for 

Nordrhein–Westfalen (4.5%). The length of the period between emergence and 

harvest is simulated more accurately with an average RMSElength of 4.7%, with a 

maximum for Baden–Württemberg (5.8%) and a minimum for Hessen (2.4%). 

Fig. 4.8 shows the scatter plots for the location with the largest deviations 

between simulations and observations (Baden–Württemberg) and that with the 

smallest deviations (Hessen). Results for the other regions are given in Table 4.4. 

Differences between simulations and observations may be explained by the 

effect of management on, e.g. harvest time, which may be based either on devel-

opment stage of the crop (physiological maturity) as well as on availability of 

machinery and labour. This could also explain the wider ranges in the 

observations than in the simulations. Furthermore, observation errors could be a 

contributing factor. 

RMSEdate found by Porter et al. (1993) and Jamieson et al. (2007) for 

simulations with AFRCWHEAT2 and experimental data from New Zealand, range 

from 4.5 to 7.3 d for several development stages. These smaller deviations are, 

however, based on calibrated models, while we used the same parameter values 

across the whole of Germany. Also, development stages can be recorded more 

precisely in field experiments by trained technicians than by many different 

observers in commercial fields across the country. 

 

3.2.2 Effects of data aggregation on model outcomes 

To quantify the bias in model results due to the use of aggregated input data, the 

six 100 km × 100 km grid cells in Germany were used, each comprising ten 

observation points of emergence dates for winter wheat and nearby weather 

stations. To quantify the bias at an intermediate level of aggregation, the 100 km 

× 100 km grid cells were divided into four 50 km × 50 km grid cells. 

AFRCWHEAT2 was run with either non-aggregated or aggregated input data at 

the two spatial resolutions (Fig. 4.2). 

Deviations between observations and simulation for ear emergence and 

harvest dates and the length of two phases (from emergence till ear emergence 

and from emergence till harvest) are small for all input data sets (Fig. 4.9; Table 

4.5). Deviations are largest for ear emergence, with a maximum of 4.4% for the 

length of the period from emergence till ear emergence, if aggregated weather 

data are used. 
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Fig. 4.8 Scatter plots showing simulated dates (y-axis) (day of year for ear emergence 

and harvest (left figures); and lengths from emergence till ear emergence and from 

emergence till harvest (right figures)) plotted versus observed data (x-axis) for Baden–

Württemberg (top figures) and Hessen (bottom figures). AFRCWHEAT2 was run with 

location-specific information. 

 

For the 50 km × 50 km grid cells deviations between simulations and 

observations are generally smaller, in line with our expectations; however, 

improvements are only small. Results from Baden–Württemberg again show the 

largest deviations between observations and simulations (Fig. 4.9). 

Our results indicate that the use of the combination of aggregated weather 

data and aggregated emergence dates in the model results in the largest devia-

tions from observations. Considering aggregated weather data and emergence 

dates separately indicates that especially aggregation of weather data influences 

model results. However, deviations are only small and comparable with 

deviations using location-specific data, which is in line with conclusions from 

other studies (De Wit et al., 2005; Easterling et al., 1998; Olesen et al., 2000). 
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Fig. 4.9 Effects of aggregation of input data on model results: ear emergence dates 

(o resolution of 50 km and  resolution of 100 km); and harvest dates (Δ resolution of 

50 km and  resolution of 100 km). 

 

 

 

As shown in Section 3.1, observed emergence dates show large spatial 

heterogeneity. As an example of the spatial heterogeneity in temperatures, the 

range in temperatures within the 100 km × 100 km grid cell in Baden–

Württemberg, showing the largest variability in measured temperatures (Table 

4.3), is shown in Fig. 4.10. Spatial aggregation results in disappearance of 

extreme values of emergence dates and temperatures, which especially 

influences model results if the model uses non-linear relationships. The small 

deviations in simulated length of the growing season when using spatially 

aggregated input data in our simulations can be explained by two aspects. First, 

AFRCWHEAT2 uses only one non-linear relationship (that between temperature 

and vernalization effectiveness), in which, moreover, the optimum temperature 

range is rather wide (3–10 °C). Second, differences in temperature among 

stations are rather small in all regions (Fig. 4.10; Table 4.3), so aggregation of 

weather data results in only minimum levelling out of extreme values. 
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Table 4.5 

Root mean squared errors (RMSElength) for lengths of development periods from 

emergence till ear emergence and from emergence till harvest and RMSEdate for ear 

emergence and harvest dates for different levels of aggregation of input data. 

Input data RMSElength(%) 
RMSEdate 

(d) 

RMSElength 

(%) 

RMSEdate 

(d) 

 50 km 100 km 

Emergence - ear emergence 

Unique weather date and 

unique emergence date 
2.7 6.4 4.1 9.4 

Aggregated weather data and 

unique emergence date 
2.7 6.3 4.4 10.0 

Unique weather data and 

aggregated emergence date 
2.7 6.4 4.2 9.6 

Aggregated weather data and 

aggregated emergence date 
2.6 6.0 4.4 10.0 

Emergence - harvest 

Unique weather data and 

unique emergence date 
2.2 6.5 1.9 5.6 

Aggregated weather data and 

unique emergence date 
2.7 8.2 2.2 6.5 

Unique weather data and 

aggregated emergence date 
2.3 6.8 2.1 6.1 

Aggregated weather date and 

aggregated emergence date 
2.1 6.4 2.2 6.7 

 

 

 

 

4. Conclusions 

We have shown that the spatial heterogeneity in timing of phenological stages 

from crop emergence to harvest in a region or country can be large. Our study 

indicates that it is possible to capture the average response pattern of the 

development of winter wheat across a larger country such as Germany, with one 

crop phenological parameter set. The remaining unexplained variation can (at 

least partially) be attributed to cultivation of a range of varieties, which we did 

not consider in our study. 

We did not specifically address the uncertainties in model outcomes 

originating from e.g. uncertainties in parameter values or input data. 

Probabilistic modelling, as in Bayesian approaches, could be a helpful mean in 

this respect to quantify such uncertainties and should be further explored in 

future studies. 
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Fig. 4.10 The largest differences between the highest and lowest temperatures obser-

ved (minimum and maximum temperature) within the Baden–Württemberg 100 km × 

100 km grid cell for the ten weather stations. 

 

 

Aggregation of available phenological information improves the spatial data 

coverage of a region, but reduces spatial heterogeneity. Importantly, the use of 

aggregated weather data and emergence dates for simulations of crop phenology 

has little effect on the aggregated predicted phenological events. Our results 

suggest that for the model used in this study, spatially aggregated weather data 

and emergence dates to simulate the length of the growing season for winter 

wheat is justified for grid cells with a maximum area of 100 km × 

100 km for a number of regions in Germany. 

Our results should also be applicable to other regions in Europe and 

elsewhere in the world with similar climatic conditions, and for other models 

that are mainly based on linear relationships for estimating phenological 

development. Caution is required in regions with high spatial variability in 

weather conditions or with models comprising more non-linear relationships. In 

those situations, aggregation errors are likely to be larger and smaller spatial 

scales should be applied for regional modelling of phenological development. 
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Abstract 

In this study we aimed to simulate the sowing dates of 11 major annual crops at 

the global scale at high spatial resolution, based on climatic conditions and crop-

specific temperature requirements. Sowing dates under rainfed conditions are 

simulated deterministically based on a set of rules depending on crop- and 

climate-specific characteristics. We assume that farmers base their timing of 

sowing on experiences with past precipitation and temperature conditions, with 

the intra-annual variability being especially important. The start of the growing 

period is assumed to be dependent either on the onset of the wet season or on 

the exceeding of a crop-specific temperature threshold for emergence. To vali-

date our methodology, a global data set of observed monthly growing periods 

(MIRCA2000) is used. We show simulated sowing dates for 11 major field crops 

world-wide and give rules for determining their sowing dates in a specific 

climatic region. For all simulated crops, except for rapeseed and cassava, in at 

least 50% of the grid cells and on at least 60% of the cultivated area, the 

difference between simulated and observed sowing dates is less than 1 month. 

Deviations of more than 5 months occur in regions characterized by multiple-

cropping systems, in tropical regions which, despite seasonality, have favourable 

conditions throughout the year, and in countries with large climatic gradients. 

Sowing dates under rainfed conditions for various annual crops can be 

satisfactorily estimated from climatic conditions for large parts of the earth. Our 

methodology is globally applicable, and therefore suitable for simulating sowing 

dates as input for crop growth models applied at the global scale and taking 

climate change into account.   
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1. Introduction 

In addition to soil characteristics, the suitability of a region for agricultural 

production is largely determined by climate. Precipitation controls the 

availability of water in rainfed and to some extent in irrigated production 

systems, temperature controls the length and timing of the various phenological 

stages on one hand and the productivity of crops on the other hand (Larcher, 

1995; Porter and Semenov, 2005), and available radiation controls, via energy 

supply, the photosynthetic rate (Larcher, 1995). Furthermore, low temperatures 

and inadequate soil water availability during germination lead to low emergence 

rates and poor stand establishment, due to seed and seedling diseases, as shown, 

for example, in sugar beet (Jaggard and Qi, 2006) and soybean (Tanner and 

Hume, 1978), leading to low yield levels. To maximize or optimize production, 

farmers therefore aim to select suitable cropping periods, crops and 

management strategies. 

With climate change, climatic conditions during the growing period will 

change (Burke et al., 2009). Both mean and extreme temperatures are expected 

to increase for large parts of the earth with rising CO2 concentrations (Yonetani 

and Gordon, 2001). To cope with these changing climatic conditions, adaptation 

strategies are required, e.g. changing the timing of sowing (Rosenzweig and 

Parry, 1994; Tubiello et al., 2000). 

Crop growth models are suitable tools for the quantitative assessment of 

future global crop productivity. They are increasingly applied at global scale (e.g. 

Bondeau et al., 2007; Liu et al. 2007; Parry et al. 2004; Stehfest et al. 2007; Tao et 

al. 2009). Key inputs for crop growth models are weather data and information 

on management strategies, e.g. the choice of crop types, varieties and sowing 

dates. Future weather data for global application of crop growth models are 

usually provided by global circulation models (GCMs). It can be assumed that 

farmers will adapt sowing dates to changes in climatic conditions and therefore 

current sowing date patterns (Portmann et al., 2008; Sacks et al., 2010) will 

change over time. To adequately simulate sowing dates for future climatic 

conditions, it is necessary to understand the role of climate in the determination 

of sowing dates. 

Different approaches are applied in existing crop models to determine current 

and future sowing dates. Crop models such as LPJmL (Bondeau et al., 2007) 

identify sowing dates from climate data and crop water and temperature 

requirements for sowing. Another approach is to optimize sowing dates using the 

crop model by selecting the date which leads to the highest crop yield, a method 

applied, for example, in DayCent (Stehfest et al., 2007), or by selecting the 
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optimal growing period based on pre-defined crop-specific requirements, as in 

GAEZ (Fischer et al., 2002). Finally, pre-defined sowing dates based on observa-

tions have been used, e.g. in the Global Crop Water Model (GCWM) (Siebert and 

Döll, 2008) and in GEPIC (Liu et al., 2007). 

In contrast to pre-defined sowing dates, determining sowing dates from 

climate data, as well as the optimization of sowing dates, provides the 

opportunity to simulate changing sowing dates under future climatic conditions. 

However, outcomes of the optimization method are largely dependent on the 

crop model used, adding extra uncertainties to the outcomes. The calculation 

procedure currently applied in LPJmL (Bondeau et al., 2007) is not applicable for 

all crops in different climatic regions and has only been evaluated for temperate 

cereals. Therefore, our aims are to: (1) describe an improved method to identify 

sowing dates within a suitable cropping window, based on climate data and crop-

specific requirements at global scale, and (2) evaluate the agreement with global 

observations of sowing dates. Non-climatic reasons for the timing of sowing, such 

as the demand for a particular agricultural product during a certain period or the 

availability of labour and fertilizer, are not considered in the simulations of 

sowing dates. The outcomes of our analysis will be: (1) a set of rules to determine 

the start of the growing period for major crops in different climates; (2) an 

evaluation of the importance of climate in determining sowing dates; and 

(3) maps of simulated global patterns of sowing dates. Our outcomes will lead to 

improved simulation of crop phenology at the global scale, which will make an 

important contribution to estimates of carbon and water fluxes in dynamic global 

vegetation models. Furthermore, sowing dates in suitable cropping windows 

under future climatic conditions can be estimated, and are likely to improve 

integrated assessments of global crop productivity under climate change. 

 

2. Materials and methods 

2.1 Input climate data 

Monthly data of temperature, precipitation and number of wet days on a 0.5° × 

0.5° resolution are based on a data set compiled by the Climatic Research Unit 

(Mitchell and Jones, 2005). A weather generator distributes monthly precipita-

tion to observed number of wet days, which are distributed over the month 

taking into account the transition probabilities between wet and dry phases 

(Geng et al., 1986). Daily mean temperatures are obtained by linear interpolation 

between monthly mean temperatures. 
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2.2 Deterministic simulation of sowing dates 

Sowing dates, averaged over the period from 1998 to 2002, were simulated 

deterministically, based on a set of rules depending on crop and climate 

characteristics. Sowing dates were simulated for 11 major field crops (wheat, 

rice, maize, millet, pulses, sugar beet, cassava, sunflower, soybean, groundnut 

and rapeseed) under rainfed conditions. We did not consider irrigated systems, 

because if irrigation is applied, sowing dates are strongly determined by the 

availability of irrigation water (e.g. melting glaciers upstream) and labour, factors 

not considered in the methodology.  

Fig. 5.1 Procedure to determine seasonality type and sowing date. Annual variation 
coefficients for precipitation (CVprec) and temperature (CVtemp) are calculated from past 
monthly climate data. Tcm is temperature of the coldest month. 

 

We assumed that farmers base the timing of their sowing on experiences with 

past weather conditions: e.g. in southern India, farmers use a planting window 

for rainfed groundnut based on experiences of about 20 years (Gadgil et al., 

2002), in the African Sahel, knowledge for decision making is influenced by 

previous generations' observations (Nyong et al., 2007), while farmers in the 

south-eastern USA are expected to adapt their management to changes in 

climatic conditions within 10 years (Easterling et al., 2003). In order to be able to 
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use a generic rule across the earth we represented the experiences of farmers 

with past weather conditions by exponential weighted moving average 

climatology. This gave a higher importance to the monthly climate data from the 

most recent years than the monthly climate data from less recent years for the 

calculation of the average monthly climate data. Consequently, the month of 

sowing is determined by past climatic conditions, whereas the actual sowing date 

within that month is simulated based on the daily temperature and precipitation 

conditions from the specific year. Figure 5.1 shows a schematic overview of the 

methodology followed. 

 

2.2.1 Determination of seasonality types 

We assumed that the timing of sowing is dependent on precipitation and temper-

ature conditions, with the intra-annual variability of precipitation and 

temperature being especially important. Precipitation and temperature 

seasonality of each location are characterized by the annual variation coefficients 

for precipitation (CVprec) and temperature (CVtemp), calculated from past monthly 

climate data. To prevent interference from negative temperatures if expressed in 

°C, temperatures are converted to kelvin. The variation coefficients are calculated 

as the ratio of the standard deviation to the mean: 

 

CVj =
¾j

¹j

  (Eq. 5.1) 

with  

¾j =

v

u

u

t

1

12 ¡ 1
£

12
X

m=1

(Xm,j ¡ ¹j)2 ,   (Eq. 5.2) 

 ¹j =
1

12
£

12
X

m=1

Xm,j ,  (Eq. 5.3) 

and  

Xm,j = ®£ Xm,j + (1¡ ®)£ Xm,j-1  (Eq. 5.4) 

 

where X m,j  is the mean temperature (K) or precipitation (mm) of month m in 

year j, Xm;j the exponential weighted moving average temperature or precipita-

tion of month m in year j, ¹j the annual mean temperature or precipitation in 

year j, ¾j the standard deviation of temperature or precipitation in year j, and ® 

the coefficient representing the degree of weighting decrease (with a value of 

0.05). The calculation was initialized by Xm;j=1 = Xm;j=1. 
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Variation coefficients are commonly used to distinguish different seasonality 

types (Walsh and Lawler, 1981; Jackson, 1989; Hulme, 1992). Walsh and Lawler 

(1981) provided a classification scheme for characterizing the precipitation 

pattern of a certain region based on the value of CVprec and suggested describing a 

region with a CVprec exceeding 0.4 as ‘rather seasonal’ or ‘seasonal’. We could not 

find such a value for CVtemp in the literature; however, in order to simulate a 

reasonable global distribution of temperate and tropical regions, we assumed 

temperature seasonality if CVtemp exceeds 0.01. Accordingly, four seasonality 

types can be distinguished: (1) no temperature and no precipitation seasonality, 

(2) precipitation seasonality, (3) temperature seasonality, and (4) temperature 

and precipitation seasonality. 

In situations with a combined temperature and precipitation seasonality, we 

additionally considered the mean temperature of the coldest month. If the mean 

temperature of the coldest month exceeded 10 °C, we assumed absence of a cold 

season, i.e. the risk of occurrence of frost is negligible, which is in line with the 

definition of Fischer et al. (2002). Consequently, temperatures are high enough to 

sow year-round, therefore precipitation seasonality is determining the timing of 

sowing. If the mean temperature of the coldest month is equal to or below 10 °C, 

we assumed temperature seasonality to be determining the timing of sowing. 

 

2.2.2 Determination of the start of the growing period 

The growing period is the period between sowing and harvesting of a crop. We 

applied specific rules per seasonality type to simulate sowing dates (Fig. 5.1). In 

regions with no seasonality in precipitation and temperature conditions, crops 

can be sown at any moment and we assigned a default date as sowing date 

(1 January, for technical reasons). 

In regions with precipitation seasonality, we assumed that farmers sow at the 

onset of the main wet season. The precipitation-to-potential-evapotranspiration 

ratio is used to characterize the wetness of months, as suggested by 

Thornthwaite (1948). Potential evapotranspiration is calculated using the 

Priestley–Taylor equations (Priestley and Taylor, 1972), with a value of 1.391 for 

the Priestley–Taylor coefficient (Gerten et al., 2004). As a region may experience 

two or more wet seasons, the main wet season is identified by the largest sum of 

monthly precipitation-to-potential-evapotranspiration ratios of four consecutive 

months; the 4 months period was selected because the length of that period 

captures the length of the growing period of the majority of the simulated crops. 

Crops are sown at the first wet day in the main wet season of the simulation year, 
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i.e. with a daily precipitation higher than 0.1 mm, which is in line with the 

definition of New et al. (1999). 

In regions with temperature seasonality, the onset of the growing period 

depends on temperature. Crop emergence is related to temperature; accordingly, 

sowing starts when daily average temperatures exceed a certain threshold 

(Larcher, 1995). Crop varieties such as winter wheat and winter rapeseed 

require vernalizing temperatures and are therefore sown in autumn. 

Accordingly, for those crops, temperatures should fall below a crop-specific 

temperature threshold (Table 5.1). To be certain to fulfil vernalization require-

ments, crop-specific temperature thresholds are set around optimum vernaliza-

tion temperatures, which resembles the practice applied by farmers in southern 

Europe for example (Harrison et al., 2000). Earlier research, i.e. the analysis of 

Sacks et al. (2010) on crop planting dates, showed that temperatures at which 

sowing usually begins vary among crops, but are rather uniform or in the same 

range for a given crop throughout large regions. For simplicity, we assumed that 

one crop-specific temperature threshold is applicable globally. The sowing 

month is the month in which mean monthly temperatures of the past  

(Xm;j) exceed (or fall below) the temperature threshold. In addition, typical daily 

temperatures of the preceding month are checked. If the typical daily 

temperature of the last day of this preceding month already exceeds (or falls 

below) the temperature threshold, this month is selected as the sowing month. 

Typical daily temperatures are computed by linearly interpolating the mean 

monthly temperatures of the past (Xm;j). Next, daily average temperature data of 

the simulated year determine the specific date of sowing in the sowing month, in 

order to consider the climatic specificity of the simulated year. 

We derived the temperature thresholds, for non-vernalizing crops only, by 

decreasing and increasing the temperature thresholds given by Bondeau et al. 

(2007) for sowing by −4 °C to +8 °C and selected the temperature thresholds that 

resulted in an optimal agreement between observed and simulated sowing dates 

in regions with temperature seasonality. The resulting temperature thresholds 

for sowing are plausible when compared with base temperatures for emergence 

found in the literature (Table 5.1). Although our temperature thresholds are 

slightly higher or at the top end of the range of base temperatures found, 

temperatures just above these base temperatures for emergence will result in 

retarded emergence (Jaggard and Qi, 2006). 
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Table 5.1 

Crop-specific temperature thresholds for sowing. 

Crop 

Base temperature for emergence found in literature Temperature 

used in this 

study (°C) 
Reference Temperature (°C) Range (°C) 

Cassava 
Hillocks and Thresh, 2002 

Keating and Evenson, 1979 

16 

12 − 17 
12 − 17 22 

Groundnut 

Angus et al., 1980 

Mohamed et al., 1988  

Prasad et al., 2006 

13.3 

8 − 11.5 

11 − 13 

8 − 13.3 15 

Maize 

Birch et al., 1998 

Coffman, 1923 

Grubben and Partohardjono, 1996 

Kiniry et al., 1995 

Pan et al., 1999 

Warrington and Kanemasu, 1983 

8 

10 

10 

12.8 

10 

9 

8 − 12.8 14 

Millet 

Garcia-Huidobro et al., 1982 

Grubben and Partohardjono, 1996 

Kamkar et al., 2006 

Mohamed et al., 1988 

10 − 12 

12 

7.7 − 9.9 

8 − 13.5 

7.7 − 13.5 12 

Pulses 

Angus et al., 1980 − field pea 

Angus et al., 1980 − cowpea 

Angus et al., 1980 − mungbean 

1.4 

11 

10.8 

1.4 − 11 10 

Rice 
Rehm and Espig, 1991 

Yoshida, 1977 

10 

16 − 19 
10 − 19 18 

Soybean 

Angus et al., 1980 

Tanner and Hume, 1978 

Whigham and Minor, 1978 

9.9 

10 

5 

5 − 10 13 

Spring 

rapeseed 

Angus et al., 1980 

Booth and Gunstone, 2004 

Vigil et al., 1997 

2.6 

2 

1 

1 − 2.6 5 

Spring wheat 

Addae and Pearson, 1992 

Del Pozo et al., 1987 

Khah et al., 1986 

Kiniry et al., 1995 

0.4 

2 

1.9 

2.8 

0.4 − 2.8 5 

Sugar beet 
Jaggard and Qi, 2006 

Rehm and Espig, 1991 

3 

4 
3 − 4 8 

Sunflower 
Angus et al., 1980 

Khalifa et al., 2000 

7.9 

3.3 − 6.7 
3.3 − 7.9 13 

Winter 

rapeseed* 
   ≤ 17 

Winter 

wheat* 
   ≤ 12 

*Winter wheat and winter rapeseed are sown in autumn, as both crops have to be 
exposed to vernalizing temperatures. Their base temperatures for emergence have been 
selected around the optimum vernalization temperatures. 
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2.3 Procedure to validate the methodology 

2.3.1 Data set of observed growing periods: MIRCA2000 

To validate our methodology, the global data set of observed growing areas and 

growing periods, MIRCA2000 (Portmann et al., 2008) at a spatial resolution of 

0.5° × 0.5° and a temporal resolution of 1 month was used. Monthly data in 

MIRCA2000 were converted to daily data following the approach of Portmann et 

al. (2010), by assuming that the growing period starts at the first day of the 

month reported in MIRCA2000. The data set includes 26 annual and perennial 

crops and covers the time period between 1998 and 2002. For most countries, 

MIRCA2000 was derived from national statistics. For China, India, the USA, 

Brazil, Argentina, Indonesia, and Australia, subnational information was used as 

well, mainly from the Global Information and Early Warning System on food and 

agriculture (FAO-GIEWS) and from the United States Department of Agriculture 

(USDA). Based on the extent of cropland, derived from satellite-based remote 

sensing information and national statistics (Ramankutty et al., 2008), the 

growing area combined with the growing period of each crop was distributed to 

grid cells at a spatial resolution of 5′ × 5′, which were finally aggregated to grid 

cells of 0.5° × 0.5° (Portmann et al., 2008). Sacks et al. (2010) recently compiled a 

similar data set of crop planting dates, also using cropping calendars from FAO-

GIEWS and USDA. MIRCA2000, in contrast, distinguishes between rainfed and 

irrigated crops, which allows a comparison of sowing dates for rainfed crops 

only. 

MIRCA2000 distinguishes up to five possible growing periods per grid cell, 

reflecting different varieties of wheat, rice and cassava and/or multiple-cropping 

systems of maize and rice, but for most crops only one growing period per year is 

reported. For wheat, spring varieties and winter varieties are distinguished; for 

rice a number of growing periods are distinguished, i.e. for upland rice, deep-

water rice and paddy rice, with up to three growing periods for paddy rice 

(Portmann et al., 2010). For cassava, an early and a late ripening variety with 

different sowing dates are distinguished. 

In contrast, we assumed only one growing period per year in single-cropping 

systems. For wheat and rapeseed, we distinguished between spring and winter 

varieties: in regions with suitable climatic conditions for both varieties, the 

winter variety has been selected. If daily average temperatures exceed 12 °C 

(17 °C for rapeseed) year round or drop below that threshold before 15 

September (Northern Hemisphere) or before 31 March (Southern Hemisphere), 

the spring variety was selected. As MIRCA2000 reports several growing periods 

for some crops, it was difficult to select the most suitable growing period for 
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comparison. Consequently, we selected the best corresponding growing period, 

indicating the reasonableness of the simulated sowing dates but not their 

representativeness. Portmann et al. (2010) reported several uncertainties and 

limitations of MIRCA2000: data gaps and uncertainties in the underlying national 

census data, the lack of subnational data for some larger countries and therefore 

neglect of possible effects on growing periods due to climatic gradients, and the 

fact that very complex cultivation systems, in which more than one crop is grown 

on the same field at the same time, could not be represented adequately. These 

constraints, as well as the temporal resolution of 1 month of MIRCA2000 should 

be taken into account when assessing the comparison between observed and 

simulated sowing dates. 

 

2.3.2 Methodology for comparing observed and simulated sowing dates 

To assess the degree of agreement between simulated and observed sowing 

dates, two indices of agreement were calculated for each crop: the mean absolute 

error (ME ) and the Willmott coefficient of agreement (W ) (Willmott, 1982): 

 

ME =

PN

i=1
jSi ¡ Oij £ Ai
PN

i=1
Ai

  (Eq. 5.5) 
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¯
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¯
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 (Eq. 5.6) 

 

where S i  is the simulated and O i  the observed sowing date (day of year) in grid 

cell i, O  the mean observed sowing date (day of year), A i  the cultivated area (ha) 

of the crop in grid cell i, and N the number of grid cells. 

Indices are area-weighted, so the agreement in the main growing areas of a 

crop is considered more important than the agreement in areas where the crop is 

grown on smaller areas. W  is dimensionless, ranging from 0 to 1, with 1 showing 

perfect agreement. ME  indicates the global average error between simulations 

and observations, W  additionally considers systematic differences between 

simulations and observations (Willmott, 1982). In addition to the two indices of 

agreement, we calculated the cumulative frequency distribution of the mean 

absolute error in days between the observed and simulated sowing dates, to 

show the frequency of grid cells and of cultivated area below a certain threshold. 
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3. Results 

We show the global distribution of seasonality types (Fig. 5.2) as well as sowing 

dates simulated with the presented methodology and the comparison with 

observed sowing dates from MIRCA2000 (Figs B5.1 – AB.11 in Appendix B). To 

assess these results, we performed a sensitivity analysis of crop yields on sowing 

dates (see Fig. B5.12). Regions without seasonality are not considered in the 

evaluation of results, because sowing dates do not substantially affect crop yield 

there, as indicated by the sensitivity analysis (Fig. B5.12). 

Fig. 5.2 Global distribution of seasonality types. Seasonality types are based on the 
annual patterns of precipitation and temperature. For each seasonality type one 
example region is marked. 

 

3.1 Seasonality types 

The spatial pattern of the calculated seasonality types (Fig. 5.2) resembles the 

distribution of various climates across the earth. Locations around the equator in 

the humid tropics are characterized by a lack of seasonality in both temperature 

and precipitation (e.g. Iquitos, Peru). The semi-humid tropics, with dry and wet 

seasons, are characterized by precipitation seasonality only (e.g. Abuja, Nigeria). 

The temperate zones in the humid middle latitudes with warm summers and cool 

winters are characterized by temperature seasonality (e.g. Amsterdam, the 

Netherlands). In locations with precipitation seasonality and a distinct cold 

• 4 

• 1 

• 2 

• 5 

• 3 

Mollweide equal area projection

0 2.500 5.000 7.500 10.000

km

0     2500  5000   7500 10000     

1 Delhi (India); 2 Abuja (Nigeria); 3 Kansas City (USA) 

4 Amsterdam  (the Netherlands); 5 Iquitos (Peru) 

  

Precipitation seasonality 

Temperature seasonality 

Both seasonalities and the temperature of the coldest month > 10 °C 

Both seasonalities and the temperature of the coldest month ≤ 10 °C 

No seasonality 

  



Simulation of global sowing dates     Chapter 5 
 

101 

season (e.g. Kansas City, USA), low temperatures limit the growing period of 

crops and sowing dates are simulated based on temperature. If a cold season is 

absent in a location with precipitation seasonality (e.g. Delhi, India), sowing dates 

are simulated based on precipitation. Figure 5.3 shows annual variations in 

temperature and precipitation for five locations and Fig. 5.2 indicates their 

location. 

Fig. 5.3 Annual variations in temperature (above) and precipitation (below) for five 
locations.  

 

3.2 Comparison of observed and simulated sowing dates 

Figures B5.1 – B5.11 show simulated and observed sowing dates, as well as the 

deviations per crop. As a condensed overview, Fig. 5.4 shows the cumulative 

frequency distribution of the mean absolute error between observations and 

simulations for all crops, for all grid cells combined, and separately for the two 

rules. 
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Fig. 5.4 Cumulative percentage of grid cells (or crop area in a grid cell) with certain 
differences between observed and simulated sowing date. Deviations are shown for: 
a) all grid cells, b) crop area of all grid cells, c) grid cells where sowing dates are 
determined by a temperature threshold, and d) grid cells where sowing dates are 
determined by the onset of the main wet season. Grid cells with a crop area smaller than 
0.001% of the grid cell area are not considered in the calculations. Curves are only 
shown if the number of grid cells in which a specific rule to determine the sowing date 
for a specific crop is applied exceeds 1% of all grid cells. 

 

Figure 5.4 and the difference maps (Figs B5.1a – B5.11a) indicate close 

agreement for rice, millet, sugar beet, sunflower, soybean and groundnut 

globally, as well as close agreement for pulses in regions where temperature 

seasonality determines sowing dates. Figure 5.4 shows that for all crops except 

rapeseed and cassava, in at least 50% of the grid cells and on at least 60% of the 

cultivated area the error between simulations and observations is less than 1 

month. Even in regions where simulated sowing dates deviate from observed 

sowing dates by 1 month, the results from the sensitivity analysis suggest that 

this range hardly affects computed crop yields from a global dynamic vegetation 
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Table 5.2 

Indices of agreement between simulated sowing dates and observed sowing dates.  

 Mean absolute error (days)  Willmott coefficient (-)   

 
Sowing date 

determined by: 

All 

cells 

Sowing date 

determined by: 

All 

cells 

% of all cells 

  
Wet 

season 

Temp. 

threshold 

Wet 

season 

Temp. 

threshold 

Wet 

season 

Temp. 

threshold 

Wheat 37 (37*) 
45  

(30*) 

44 

(30*) 

0.9 

(0.9*) 

0.88 

(0.96*) 

0.88 

(0.96*) 

18 

(22*) 

82  

(78*) 

Rice 22 23 24 0.92 0.94 0.92 82 18 

Maize 38 32 34 0.89 0.87 0.89 48 52 

Millet 14 33 15 0.95 0.86 0.91 63 37 

Pulses 79 37 69 0.62 0.84 0.63 50 50 

Sugar beet   18 18   0.71 0.81 1 99 

Cassava 48 51 48 0.93 0.96 0.93 83 17 

Sunflower 43 22 25 0.88 0.93 0.93 25 75 

Soybean 36 33 34 0.94 0.93 0.95 32 68 

Groundnut 33 19 31 0.82 0.97 0.84 81 19 

Rapeseed 133 39 54 0.14 0.91 0.85 16 84 

Bold values indicate which rule determining sowing date results in a closer agreement. 
Indices of agreement are only shown if the number of cells in which a specific rule for 
determining the sowing date is applied is > 1% of all cells. Grid cells with a crop area 
smaller than 0.001% of the grid area are not considered in the calculations. 
* indices of agreement without Russia 

 

and crop model (Fig. B5.12), if they fall within a suitable growing period (e.g. the 

main wet season or spring season). 

Poor agreement, with differences between simulations and observations of 

more than 5 months, is found for wheat in Russia, for maize and cassava in 

Southeast Asia and China (and in East Africa for maize), for pulses in Southeast 

Asia, India, West and East Africa, the south-east region of Brazil and southern 

Australia, for groundnut in India and Indonesia, and for rapeseed in northern 

India, southern Australia and southern Europe. Deviations are also large for 

crops growing in the southern part of the Democratic Republic of Congo, in Indo-

China and in regions around the equator. 

Table 5.2 shows both ME  and W  for each crop for all cells where the crop is 

grown and differentiated for the rules to determine sowing date. The ME  for all 

cells is less than 2 months, with the exception of pulses. For wheat (without 

Russia), rice, millet, sugar beet and sunflower, the agreement is even closer, with 

a difference of at most 1 month between simulations and observations. The W  
values are high, and show close agreement between simulations and 

observations (W  > 0.8) with the exception of pulses. Both indices show closer 
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agreement for pulses, groundnut, sunflower and rapeseed in regions where 

sowing dates are determined by the temperature threshold than in regions 

where the onset of the main wet season determines sowing date. In contrast, 

both indices show closest agreement for millet in regions where sowing dates are 

determined by the onset of the wet season. 

 

4. Discussion 

Non-climatic reasons can considerably affect the timing of sowing. They arise 

from social attitudes and customs, religious traditions and the demand for 

certain agricultural products (Gill, 1991). In addition, agronomic practices, 

technological changes and farm size can influence the timing of sowing. Depend-

ing on crop rotation, sowing can be affected by the harvest of the preceding crop 

(Dennett, 1999), and available labour and machinery, depending on farm size, 

determine whether sowing can be completed in the desired time period 

(Kucharik, 2006). The timing of sowing may also be influenced by the weather 

later in the growing season, e.g. in order to avoid possible dry spells during 

certain stages of crop development that are relatively sensitive to drought stress. 

Information on these technological and socio-economic conditions and their 

influence on the timing of sowing is scarce at the global scale and has therefore 

not been considered in this study. The results of our study (Figs 5.4 & B5.1 – 

B5.11) show, however, that close agreement between simulated and observed 

sowing dates for large parts of the earth for wheat, rice, millet, soybean, sugar 

beet and sunflower, as well as for pulses and maize in temperate regions, can be 

realized based on climatic conditions only. For most crops, the disagreement 

between simulated and observed sowing dates is only 1 month or less for the 

largest part of the global total cropping area (Fig. 5.4b). At least 80% of the global 

cropping area displays a disagreement of less than 2 months (except for rape-

seed, Fig. 5.4b). However, some regions show mediocre or poor agreement 

between simulated and observed sowing dates. The agreement is especially poor 

in tropical regions, where, despite a possible seasonality, climatic conditions are 

favourable throughout the year, and in regions characterized by multiple-

cropping systems. Furthermore, agreement is poor in temperate regions, where 

both spring and winter varieties of wheat and rapeseed are grown, and in regions 

where observations are lacking or have been replaced or adjusted in MIRCA2000. 

In the sections below the most likely reasons for strong disagreements are 

identified in example regions. Reasons can be limitations and uncertainties in 

MIRCA2000, e.g. the spatial scale of MIRCA2000 or data gaps, uncertainties in our 

methodology, the use of one global temperature threshold for sowing 
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temperatures, which is known to vary between regions (Sacks et al., 2010), or the 

application of specific crop management techniques, e.g. multiple-cropping 

systems. 

 

4.1 Pulses and groundnuts in multiple-cropping systems 

The poor agreement between simulated and observed sowing dates for pulses in 

Southeast Asia, India, West and East Africa, and south-east Brazil, and for 

groundnuts in India (Fig. B5.10a), originates from a mismatch in the production 

systems assumed. In these regions, it is common practice to grow pulses and 

groundnuts in multiple-cropping systems. In the south-eastern region of Brazil, 

with wet seasons long enough for a multiple-cropping system of maize and 

beans, beans are sown in combination with maize or after maize has been 

harvested (Woolley et al., 1991). In West and East Africa, cowpea is largely 

grown as a second crop in multiple-cropping systems with maize or cassava (in 

humid zones) and millet (in dry zones) (Mortimore et al., 1997). These patterns 

are reflected in MIRCA2000. In contrast, we have assumed only single-cropping 

systems, so that sowing of pulses and groundnut starts at the beginning of the 

wet season, i.e. too early in comparison to the observations. Where cowpea is 

grown as a single crop, as in coastal regions of East Africa (Mortimore et al., 

1997), there is close agreement with the observed sowing dates (Fig. B5.5a). 

The deviations in India for pulses (Fig. B5.5a), and for groundnut in western 

India (Fig. B5.10a), are associated with the occurrence of multiple-cropping 

systems. Here, cowpea is grown in mixtures with sorghum and millet (Steele and 

Mehra, 1980) and groundnuts may be grown in the dry season following rice, 

often under irrigation (Norman et al., 1995). 

 

4.2 Maize in multiple-cropping systems in Southeast Asia 

In Southeast Asia, as well as in China, a large number of crops may be grown on 

the same plot. According to Portmann et al. (2010), this indicates high land use 

intensities with multiple-cropping systems. Intensive rice and wheat production 

are common practice in Asia (Devendra and Thomas, 2002), and maize has a 

subsidiary place in some of the Asian cropping systems as a second crop follow-

ing the wet-season rice crop (Norman et al., 1995). This rice–maize multiple-

cropping system is covered by MIRCA2000, e.g. in China and Burma. As a 

consequence, the simulated growing period of maize starts earlier in the year 

than the observed growing period (Fig. B5.3a). 
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4.3 Wheat and rapeseed in temperate regions 

The poor agreement for wheat and rapeseed in temperate regions of Russia, 

Australia, and small parts of Europe (Fig. B5.11a) is the result of disagreement 

between the simulated and observed varieties of wheat and rapeseed. In Russia, 

MIRCA2000 overestimates the share of winter wheat (Portmann et al., 2010), 

because the cropping calendar for Russia is partly derived from the cropping 

calendars from Ukraine, Norway and Romania, where mainly winter wheat is 

grown (Portmann et al., 2008). In contrast, we exclude winter wheat in Russia 

because temperatures drop below 12 °C before 15 September, and consequently 

spring wheat is simulated in Russia. This is in line with the cropping calendar 

from USDA, which reports, in addition to winter wheat, large areas of spring 

wheat in Russia (USDA, 1994). In other temperate regions the agreement 

between simulated and observed sowing dates is good with only 1 month 

deviation, and simulated sowing dates are similar to those shown in Bondeau et 

al. (2007). 

For rapeseed in southern and eastern Australia, our rules simulate sowing 

dates in May and June (Fig. B5.11b), whereas MIRCA2000 reports a sowing date 

in December (Fig. B5.11c). However, in line with the simulations, West et al. 

(2001) and Robertson et al. (2009) confirm that rapeseed is grown as a winter 

crop, starting in May and June in Australia. In Europe, winter rapeseed is also the 

dominant cultivar due to its higher yield levels. Sowing dates of winter rapeseed 

in southern Europe can be extended from mid-August to early September, as 

indicated by Booth and Gunstone (2004) and USDA (1994), which is in line with 

the simulated sowing dates in countries like Spain, France, Hungary, Ukraine and 

Romania for example (Fig. B5.11b). MIRCA2000, however, identifies spring 

rapeseed sown in May in those countries. 

 

4.4 Cassava in multiple-cropping systems 

MIRCA2000 reports that in China, Thailand and Vietnam, cassava is sown in 

March as an early ripening variety. In China, farmers plant cassava from 

February to April before the wet season starts in order to use the cover of 

cassava plants to avoid soil losses due to the impact of heavy rains (Yinong et al., 

2001). Planting before the onset of the wet season may also avoid damage from 

pests (Evangelio, 2001). These practices explain the differences in southern 

China and Southeast Asia between observed and simulated sowing dates (Fig. 

B5.7a), because the simulated sowing dates are associated with the main wet 

season starting in May to July, not with the agronomic practices described in the 

literature. 
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4.5 Specific climatic conditions in temperate regions 

Other examples of differences between observed and simulated sowing dates 

occur in European countries, partly in countries which are characterized by a 

Mediterranean climate. For sugar beet, both MIRCA2000 and our simulations 

indicate mainly spring sowings in the Mediterranean region. However, the 

mediterranean climate is characterized by mild winters and winter rainfall. In 

those regions, sugar beet is therefore sown in autumn, avoiding the high 

temperatures and high evapotranspirational demand of summer (Castillo Garcia 

and Lopez Bellido, 1986; Rinaldi and Vonella, 2006; Elzebroek and Wind, 2008). 

The effect of this specific climatic condition on sowing dates is not reflected in 

MIRCA2000, or in our simulations. 

 

4.6 Limitations of MIRCA2000 

Large differences between observed and simulated sowing dates occur in coun-

tries characterized by strong climatic gradients, associated with the size of 

countries (e.g. Russia, Democratic Republic of Congo, Mexico), or to large climatic 

variability, associated with large differences in elevation (e.g. Kenya). These 

gradients and variability influencing sowing dates are captured in our 

methodology, but not in MIRCA2000, where sowing dates for one spatial unit 

(country or subnational unit) are assigned to grid cells of 0.5°× 0.5°. An example 

is the large difference between observations and simulations in the southern part 

of the Democratic Republic of Congo, where in MIRCA2000 missing observations 

were replaced by the cropping calendar from the neighbouring country Rwanda 

(Portmann et al., 2008). While this procedure might be adequate for the northern 

parts of the Democratic Republic of Congo which are characterized by the same 

bimodal seasonal rainfall distribution, it is not adequate for the southern parts, 

where the main wet season does not start until November/December (McGregor 

and Nieuwolt, 1998). 

Deficiencies in simulated sowing dates may strongly influence the results of 

applications of the sowing date algorithm, depending on the application and 

model used. A deviation of sowing dates by 2 or 3 months (e.g. sunflower in 

France, sugar beet in Spain, soybean in the northern USA, or maize in Europe; see 

Figs B5.1 – B5.11) could already strongly affect the results of crop model 

applications, e.g. the assessment of crop evapotranspiration and crop virtual 

water content. The level of agreement per crop and region is therefore depicted 

in Figs B5.1 – B5.11, which allows for a more detailed evaluation when to use our 

sowing date algorithm with caution. 
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5. Conclusions 

This study presents a novel approach for deterministically simulating sowing 

dates under rainfed conditions for various annual field crops. We show that 

sowing dates for large parts of the earth can be satisfactorily estimated from 

climatic conditions only. Close agreement is achieved between simulated and 

observed sowing dates, although substantial deviations occur in: (1) tropical 

regions and (2) regions with high land-use intensity and multiple-cropping 

systems. Even if those regions show seasonality in temperature or precipitation, 

climatic conditions can be suitable throughout the year for crop growth. In both 

types of regions, climatic conditions are of minor importance for the timing of 

sowing, instead it is determined mainly by other criteria such as the demand for 

special agricultural products, availability of labour and machines, and religious 

and/or social traditions (Gill, 1991; Kucharik, 2006). Furthermore, certain 

cropping practices and crop rotations are applied in order to avoid pests and 

disease infestations. These agronomic practices cannot be considered in our 

methodology due to lack of information at the global scale. Differences between 

simulated and observed sowing dates in regions without precipitation and 

temperature seasonality have little impact on the computed crop yield in global 

crop growth models such as LPJmL. Sowing date deviations of 1 month or more, 

in locations with temperature and precipitation seasonality may lead to 

substantially different simulated crop yields. In the LPJmL model with the 

currently implemented cultivars, sowing dates simulated with the presented 

methodology are within the most productive cropping window for almost all 

locations displayed in Fig. B5.12. However, the interaction of sowing dates, 

management options, and cultivar characteristics will have to be evaluated 

further. 

Our methodology is explicitly developed for the global scale. Climate and soil 

characteristics, as well as agricultural management practices, can vary 

considerably among regions. If applied at smaller scales, parameter values as 

proposed here should be adapted, e.g. the temperature threshold for sowing can 

show spatial variability (Sacks et al., 2010), and important socio-economic and 

technical drivers should be considered to attain higher accuracy. In addition, if 

reliable daily minimum and maximum temperature and precipitation data are 

available, rules should adapted in order to consider avoidance of damage by frost 

or extreme high temperatures. At the global scale, our methodology is suitable 

for simulating sowing dates for global crop growth models. In our methodology, 

we are able to apply current and future climate input data. We are therefore able 
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to account for some possible global responses to climate change by farmers 

changing their sowing dates. 
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Abstract 

Crop yields are determined for a large part by the duration and timing of pheno-

logical phases, which are influenced by temperature and daylength. Due to the 

broad range of cultivars adapted to local conditions in daylength and climate, 

crops like wheat and maize can be cultivated in a wide range of environments. In 

many field scale crop growth models the effects of temperature (directly and in 

case of winter varieties also indirectly via vernalization requirements) and 

photoperiod are implemented to simulate phenology. In contrast, most large scale 

studies apply only thermal relationships. To our knowledge we present in this 

study the first attempt to combine thermal relations with the effects of photo-

period to simulate crop phenology at the global scale. We developed simple 

algorithms to compute location–specific parameter values, which account for 

differences between cultivars in vernalization requirements and sensitivity to 

photoperiod and temperature. In the main cropping regions of wheat we were 

able to simulate lengths of the cropping period that correspond well with 

observed lengths. Agreement between observed and simulated lengths of the 

cropping period was lower for maize than for wheat, with in the main maize 

cropping regions over- and underestimations of 0.5 to 1.5 month. Moreover, we 

found that interannual variability in simulated harvest dates, in particular of 

wheat, decreased due to the inclusion of daylength effects. Despite some scope 

for further improvement the presented methodology provides a good basis for 

modelling phenological development of crops at global scale in the absence of 

location-specific variety characteristics of phenological development. 



Phenology simulation at the global scale     Chapter 6 

 

113 

1. Introduction 

Phenology, which is defined as: “the study of the timing of recurring biological 

phases, the biotic and abiotic forces that cause the variation in timing, and the 

interrelation among phases of the same or different species” (Lieth, 1974), has 

recently emerged as an important research topic (Zhang et al., 2006). Besides the 

importance of plant phenology for global carbon modelling (Arora & Boer, 2005), 

as an indicator for climate change (Menzel et al., 2006), or on human health via 

the start of the pollen season (Van Vliet et al., 2002) also food security is closely 

related to phenology (Xiao et al., 2009). 

Crop yields are determined for a large part by the duration and timing of 

phenological phases. There should be an appropriate balance between the 

durations of the vegetative and reproductive phase and the grain filling phase 

should be finished before the end of the growing season (Hay & Porter, 2006). 

Vulnerable stages like anthesis (flowering) should occur with an optimum timing, 

e.g. avoiding episodes of high temperatures (Craufurd & Wheeler, 2009) or 

periods with large frost risk (Boer et al., 1993; Slafer & Whitechurch, 2001).  

Two major components influence the duration and timing of phenological 

phases: temperature (directly and in case of winter varieties also indirectly via 

vernalization requirements) and daylength (also referred to as photoperiod). 

Development is linearly related to temperature, i.e. higher temperatures 

accelerate development (Slafer & Rawson, 1994). Vernalization is the influence of 

cold temperatures on the flowering response (Raven et al., 2005), expressed in 

this study as a required amount of days with vernalizing temperatures. Devel-

opment is delayed as long as the plant has not experience sufficient days with 

vernalizing temperatures (Miralles & Slafer, 1999). Finally, photoperiodism is the 

response to a change in the proportions of light and darkness in a 24–h cycle. For 

long–day plants (e.g. wheat) development is accelerated if photoperiod increases, 

for short–day plants (e.g. maize) development is accelerated if photoperiod 

decreases (Raven et al., 2005). 

Crops like wheat and maize are cultivated in a wide range of environments 

(Gouesnard et al., 2002; Trethowan et al., 2006). This is possible due to the broad 

range of cultivars adapted to local conditions in photoperiod and climate, 

especially temperature. This is shown by sensitivity differences between maize 

and wheat cultivars to changes in photoperiod. Wheat cultivars are known to 

differ in their vernalization requirements, ranging from spring–type wheat (i.e. 

no exposure to vernalizing temperatures is required) to true winter wheat (i.e. a 

certain duration of exposure to vernalizing temperatures is required). Finally, the 

development rates of maize and wheat cultivars differ in their sensitivity to 
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temperature. Due to responses to photoperiod and vernalizing temperatures, 

wheat and maize development is synchronized between plants, so all plants can 

be harvested at the same time, and between years despite of interannual 

variability in weather conditions (Hay & Kirby, 1991; Gouesnard et al., 2002; 

Craufurd & Wheeler, 2009; Wang et al., 2009). 

Impact assessments of climate change on future crop productivity typically 

make use of crop simulation models. The dominant effect of climate change on 

crop productivity in many of those assessments is often via simulated effects of 

global warming on phenological development of crops. Given the widely reported 

sensitivity of crops to photoperiod, its role as key determination of crop adapta-

tion to climatic conditions, and its synchronizing function, it is important to 

consider it appropriately in phenological modules of crop simulation models. In 

addition cultivars differences should be accounted for (Craufurd & Wheeler, 2009). 

In many field scale crop growth models the effects of photoperiodism are 

implemented, e.g. in ARFCWHEAT2 (Porter, 1993; Ewert et al., 1996) and CERES–

maize (Jones et al., 1986). In contrast, most large scale studies apply only thermal 

relationships to simulate phenology while the effects of photoperiodism are not 

considered (Craufurd & Wheeler, 2009), see e.g. Challinor et al. (2004), Fisher et al. 

(2005), Bondeau et al. (2007), Stehfest et al. (2007) or Deryng et al. (2011).  

For Europe, Harrison et al. (2000) developed a method for scaling–up 

AFRCWHEAT2, from site to continental scale, accounting for effects of photoperiod 

and temperature. Cultivar differences in vernalization requirements and 

sensitivity to photoperiod and temperature were taken into account via model 

parameters. These were derived from previous studies, in which AFRCWHEAT2 

had been calibrated and validated for several cultivars. Due to data scarcity, 

cultivar specific parameter values could not be established for all European 

regions. Therefore model outcomes could only be interpreted and validated for 

specific regions. Effects of climate change on phenological development of winter 

wheat were studied by comparing the relative performance of all available 

cultivars across the whole region, thus cultivar choice as an adaptation measure to 

climate change was ignored. 

In addition to parameters used in previous simulation studies, some 

information with respect to cultivar–specific phenological characteristics can be 

obtained from studies in which cultivars where grown under different, but 

constant thermal and photoperiod conditions (see e.g. Davidson et al., 1985; 

Worland et al., 1994; Ortiz Ferrara et al., 1998). The results of these studies give 

useful indications about the roles of temperature and photoperiod on develop-

ment and differences between cultivars. However, temperature and photoperiod 
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conditions continually change in the field and therefore results from those 

studies are not suitable as a basis for parameter estimation. Moreover, the 

number of cultivars used world-wide is countless and, in addition, location–

specific information with regard to cultivar use is lacking. Consequently, 

adequate parameter estimates for the large range in cultivars are missing at the 

global scale. 

The results of the large scale crop phenology simulations by Bondeau et al. 

(2007) and Deryng et al. (2011), in which only temperature determined 

phenological development, were evaluated in their studies for a single year only. 

However, photoperiod effects on development should have consequences for e.g. 

the interannual variability in simulated harvest dates, but were not evaluated in 

their studies or in other global studies. Thus, in this study we examined these 

consequences. We hypothesized that accounting for the effects of photoperiod and 

vernalization results in less interannual variability in the lengths of cropping 

periods than simulation of phenology based on thermal requirements only. 

The objectives of this study were therefore: (1) to develop simple algorithms 

to compute location–specific parameters, which account for differences between 

cultivars in vernalization requirements and sensitivity to photoperiod and 

temperature, based on observations and information from literature; (2) to 

evaluate if and how well simulated harvest dates can represent observed harvest 

dates, considering: (i) thermal requirements only and (ii) combinations of 

thermal with photoperiod and/or vernalization requirements; and (3) to 

investigate the interannual variability in harvest dates based on: (i) thermal 

requirements only and (ii) combinations of thermal with photoperiod and/or 

vernalization requirements; and finally (4) to investigate the required level of 

accuracy for simulated harvest dates for global crop productivity assessments. 

Wheat and maize are used as example crops accounting for approximately 30% 

of the total harvested global crop area (FAO, 2011).  

 

2. Data and Methods 

In this section we first describe the phenological model ARFCWHEAT2 (Weir et 

al., 1984; Porter, 1993; Ewert et al., 1996) which we used to simulate the length of 

the cropping period for wheat and maize. We also provide a description of the 

input data required for running the model and for evaluating the outcomes. We 

assumed that farmers choose the best adapted wheat and maize cultivars for their 

local climatic and photoperiod conditions. This assumption was implemented in 

ARFCWHEAT2 by adapting several parameters to local conditions. The 

methodology of computing these location–specific parameters is described in 
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detail. Finally, the procedures of evaluating the outcomes and the sensitivity of 

crop yields to simulated harvest dates are presented. 

We define in this study “growing season” as the time during which climatic 

conditions are favourable for crop growth, while the “cropping period” refers to 

the time from sowing to harvesting. 

 

2.1 Input data 

2.1.1 Dataset of observed cropping periods  

To compare simulated with observed lengths of cropping periods we used the 

global dataset MIRCA2000 (Portmann et al., 2010). MIRCA2000 reports monthly 

growing areas of 24 different irrigated and rainfed crop classes at a spatial 

resolution of 5' × 5' for the period around the year 2000. After aggregating the 

data to a resolution of 0.5° × 0.5° the monthly growing areas for rainfed maize 

and rainfed wheat were extracted. 

MIRCA2000 is mainly based on the Global Information and Early Warning 

System on food and agriculture (FAO–GIEWS) and on data from the United States 

Department of Agriculture (USDA). We assumed that sowing was at the first day 

of the first reported cropping month while harvest was assumed to occur at the 

last day of the last reported cropping month. Day of emergence was set equal to 

the sowing date and physiological maturity was assumed to correspond with the 

harvest date. Up to five possible cropping periods per grid cell are indicated in 

MRICA2000, reflecting different varieties of wheat and multiple–cropping 

systems with maize. The cropping periods with the maximum reported area were 

selected for this study. 

Several uncertainties and limitations of MIRCA2000 were reported in 

Portmann et al. (2010): data gaps and uncertainties in the underlying national 

census data, the lack of sub–national data for some larger countries, and as a 

result, the omission of possible effects on cropping periods due to climatic 

gradients in those large counties. Furthermore, complex cultivation systems, in 

which more than one crop is grown on the same field at the same time, could not 

be represented adequately. A dataset similar to MIRCA2000 was developed by 

Sacks et al. (2010) but they did not distinguish rainfed and irrigated crops. Since 

cropping periods often differ between irrigated and rainfed crops we prefer to 

use MIRCA2000. 

 

2.1.2 Photoperiod and temperature data 

Daily photoperiod (PiPi, h d–1) was calculated based on latitude and day of the year, 

as described in Monteith and Unsworth (1990). Monthly mean temperature data 
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on a 0.5° × 0.5° resolution were provided by the Climate Research Unit dataset 

TS3.0 (Mitchell & Jones, 2005). Exponentially weighted moving average monthly 

temperatures (Tm;jTm;j, °C) were calculated to compute the location–specific 

parameter values to account for cultivar differences: 

 

Tm,j = ®£ Tm,j + (1¡ ®)£Tm,j-1Tm,j = ®£ Tm,j + (1¡ ®)£Tm,j-1           (Eq. 6.1) 

 

where Tm,jTm,j (°C) is the mean monthly temperature of month m in year j and ®® (–) a 

coefficient representing the degree of weighting decrease (with a value of 0.05). 

The calculation was initialised by Tm;j=1970 = Tm;j=1970Tm;j=1970 = Tm;j=1970. 

Exponentially weighted moving average monthly temperatures of the 

previous year were used to compute the location–specific parameter values for 

the coming year (i.e. Tm;j=2004Tm;j=2004 for the year 2005). Exponentially weighted moving 

averages were used so we could account for farmer experiences with previous 

climatic conditions and to prevent large interannual variability in the location–

specific parameter values. Daily mean temperatures (TiTi, °C) were generated by 

linear interpolation between the monthly means. 

The observed cropping periods from MIRCA2000 refer not to a single year but 

a number of years around 2000. To evaluate our methodology we therefore used 

exponentially weighted moving average monthly temperatures for the year 2000 

(T m;j=2000T m;j=2000) to compute the location–specific parameter values and to generate the 

daily mean temperatures (see above) to simulate the harvest dates for the year 

2000. To evaluate interannual variability in simulated harvest dates we used the 

mean monthly temperatures of the years 1995 up to 2005 (e.g. Tm;j=2005Tm;j=2005 for the 

year 2005) to generate daily mean temperatures. For the generation of location–

specific parameters we used the exponentially weighted moving average 

monthly temperatures of the years 1994 up to 2004 (e.g. T m;j=2004T m;j=2004 for the year 

2005). 

 

2.2 Phenological model ARFCWHEAT2 

To simulate phenological development of wheat and maize we used the well–

established concept of heat units. Daily temperature (TiTi) is accumulated above a 

base temperature (TbTb, °C) (i.e. the heat unit sum HUsumHUsum, °Cd) (until the required 

heat units from emergence to physiological maturity (HUreqHUreq, °Cd) are reached. The 

increment in heat units is modified by the effects of photoperiod (photoperiod 

factor, PfiPfi, –), and in case of winter wheat by the effects of vernalization 

(vernalization factor, VfiVfi, –), as applied in the AFRCWHEAT2 model (Porter, 1993; 
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Ewert et al., 1996) (see Fig. 6.1 for a graphic description of PfiPfi and VfiVfi and their 

mathematical description): 

 

HUsum =
PN

i=1(Ti ¡ Tb)£Pfi £VfiHUsum =
PN

i=1(Ti ¡ Tb)£Pfi £Vfi  if HUsum · HUreqHUsum · HUreq     (Eq. 6.5) 

 

so NN is the simulated length of the cropping period in days. The simulation of 

maize was stopped when temperatures dropped below the base temperature. 

With help of HUsumHUsum a phenological development scale (DVSDVS , –) was derived, 

ranging from 0 (sowing/emergence) to 1 (harvest/physiological maturity) 

during the cropping period: 

 

DVS =
HUsum

HUreq

DVS =
HUsum

HUreq

  (Eq. 6.6) 

 

The development scale was used to determine the timing of the phenological 

stages flowering (DVSfDVSf, –) and double ridges (floral initiation) (DVSdrDVSdr, –). We 

assumed that the rate of development of wheat and maize is sensitive to photo-

period from emergence to flowering, as indicated by Craufurd and Wheeler 

(2009). In addition, the rate of development of winter wheat was modified by the 

effect of vernalization from emergence to the double ridge stage (Slafer & 

Rawson, 1994). All wheat cultivars in this study were considered long–day 

plants; all maize cultivars were considered short–day plants, although there are 

some wheat cultivars behaving as short–day plants (Evans, 1987). 

 
 

 

 

 

 

 

Fig. 6.1 a) Effect of photoperiod on phenological development (photoperiod factor, 
PfiPfi, −, ranging from 0 to 1): PiPi (h d–1) the daily photoperiod , PbPb (h d–1) base photoperiod 

(i.e. the longest (shortest) photoperiod below (above) which no further photoperiod–

induced delay in long–day (short–day) plants is observed), PoptPopt (h d–1) optimum 

photoperiod (i.e. the shortest (longest) photoperiod above (below) which no 

photoperiod–induced delay in long–day (short–day) plants is observed); 

b) daily vernalizing effectiveness (Ve®i
Ve®i

, −): TiTi (°C) the daily temperature, TvnTvn (−) factors of 

vernalization effectiveness, VDDVDD (d) accumulated vernalized days, KK (−) number of days 

from sowing to the double ridge stage or till VDD ¸VsatVDD ¸Vsat; 

c) effect of vernalizing temperatures on phenological development (vernalization factor, 
VfiVfi, −, ranging from 0 to 1): VbVb (d) base accumulated vernalized days, VsatVsat (d) saturated 

vernalization requirement (i.e. required duration of exposure to vernalizing 

temperatures) (adapted from Ewert et al., 1996).  
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Table 6.1 

Crop specific parameter values. 

Parameter Spring wheat Winter wheat Maize 

Base temperature (TbTb,°C) 0
a
 0

a
 8

a
 

Required heat units for maturity 

(HUreqHUreq, °Cd) 
Location specific Location specific Location specific 

Phenological development scale 

double ridge (DVSdrDVSdr, –) 
− 0.2

b
 − 

Fraction of HUreqHUreq when flowering 

occurs (DVSfDVSf, –) 
0.58

c 
0.5

c
 0.7

c
 

Minimum temperature for effective 

vernalization (Tv1Tv1, °C) 
− –4

d
 − 

Minimum temperature for optimal 

vernalization (Tv2Tv2, °C) 
− 3

d
 − 

Maximum temperature for optimal 

vernalization (Tv3Tv3, °C) 
− 10

d
 − 

Maximum temperature for effective 

vernalization (Tv4Tv4, °C) 
− 17

d
 − 

Saturated vernalization requirement 

(i.e. required duration of exposure to 

vernalizing temperatures, VsatVsat, d) 

− 
Location specific, 

from 0 till 70 
− 

Maximum saturated vernalization 

requirement per month possible 

(Vsat maxVsat max, d) 

− 
70/5 = 14 

(d month
–1

)
e − 

Base accumulated vernalized days 

(VbVb, d) 
− 

1
5
£Vsat

1
5
£Vsat

f
 − 

Base photoperiod (PbPb, h d
–1

) 8 8
d
 24 

Optimum photoperiod (PoptPopt, h d
–1

) Location specific Location specific Location specific 

aKiniry et al. (1995); bVan Bussel et al. (in press); cKiniry et al. (1995); dEwert et al. 

(1996); eThe value of Vsat maxVsat max was based on a study by Baloch et al. (2003), they indicated 

that winter wheat cultivars with high vernalization requirements need at least 70 days of 

optimum vernalizing temperatures. We assumed an equal distribution over the five 

months; fWang and Engel (1998). 

 

Table 6.1 lists the crop–specific parameter values for the simulation of the 

length of the cropping period. The model was run on a spatial resolution of 0.5° × 

0.5°, which is the spatial resolution of the temperature input data. 

 

2.3 Simulation of location–specific phenological parameter values 

To account for cultivar differences in sensitivity to photoperiod, temperature, 

and vernalization requirements the following parameters were calibrated for 

local conditions: optimum photoperiod (PoptPopt, h d–1) and required heat units for 

maturity (HUreqHUreq, d) for spring and winter wheat and maize; and the required 

duration of exposure to vernalizing temperatures (VsatVsat, d) and base accumulated 

vernalized days (VbVb, d) for winter wheat. 
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2.3.1 Vernalization requirements of winter wheat cultivars 

Due to the exposure of winter wheat to vernalizing temperatures tolerance to 

below–freezing temperatures is built up. Once the vernalization requirement is 

met the tolerance gradually disappears (Mahfoozi et al., 2001). We therefore 

assumed that the vernalization requirement of cultivars is adapted to winter 

duration and coldness, i.e. vernalization requirements of cultivars grown on 

locations with a long and cold winter should be higher than of cultivars grown on 

locations with milder winters, in line with findings from Iwaki et al. (2001).  

Ewert et al. (1996) indicated that both the effectiveness of temperature on the 

vernalization process and the vernalization requirements are different among 

cultivars. Due to data scarcity, however, we assumed equal temperature 

effectiveness for all cultivars, and only varied the vernalization requirements (VsatVsat 

and VbVb, d) between cultivars. 

We used the temperature of the five coldest months of the year as an indicator 

of the winter duration and coldness, with the assumption that in winter wheat 

growing regions the frost–period has a maximum length of five months. By 

considering the five coldest months separately and not their average, influences 

of possible relatively warm months are minimized. The required amounts of 

vernalized days in year jj (Vsat,jVsat,j) were computed as follows (see also Fig. 6.2): 

 

Vsat,j =
PN

m=1 Vsat,m,jVsat,j =
PN

m=1 Vsat,m,j           (Eq. 6.7) 

 

with: 

Vsat,m,j = Vsat maxVsat,m,j = Vsat max   if Tm;j¡1 · Tv2Tm;j¡1 · Tv2    

Vsat,m,j = 0Vsat,m,j = 0   if Tm;j¡1 ¸ Tv3Tm;j¡1 ¸ Tv3 

Vsat,m,j =
Vsat max

Tv3 ¡ Tv2

£ Tm,j-1Vsat,m,j =
Vsat max

Tv3 ¡ Tv2

£ Tm,j-1    if Tv2 < Tm;j¡1 < Tv3Tv2 < Tm;j¡1 < Tv3 

 

where NN (–) represents the five coldest months, Vsat maxVsat max (d month–1) the maximum 

possible required duration of exposure to vernalizing temperatures per month 

(see Table 6.1), T m;j¡1T m;j¡1 the average monthly temperature of the previous year (Eq. 

6.1), and Tv2Tv2 and Tv3Tv3 (°C) the minimum and maximum temperatures for optimal 

vernalization, respectively (Ewert et al., 1996). VbVb was assumed to be one fifth of 

VsatVsat, in line with Wang and Engel (1998). Only optimal temperatures for the 

vernalizing process were considered in Eq. 6.7, since it is based on monthly 

temperatures. 

Based on Eq. 6.7 we computed vernalization requirements for all locations 

with autumn sown wheat according to MIRCA2000. We also computed 
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vernalization requirements for locations with spring sown wheat as indicated by 

MIRCA2000, but for these locations (i.e. sown during the period from the coldest 

month up to the warmest month inclusive) we changed the computed 

vernalization requirements to zero.  

 

 

 

 

 

 

 

 

Fig. 6.2 Required amount of vernalized 

days per month as a function of tempera-

ture. 

 

 

 

2.3.2 Photoperiodism sensitivity 

To simulate differences among cultivars for wheat and maize with respect to 

photoperiod, we adapted PoptPopt values to local conditions; PbPb was kept constant 

among the cultivars, the used PbPb values are based on values reported in 

literature. 

 

Wheat 

Wheat cultivars originating from higher latitudes (e.g. UK or Finland) are true 

photoperiod sensitive cultivars (Worland et al., 1994), while modern cultivars 

grown in lower latitudes such as the Mediterranean region in west Asia and 

North Africa are insensitive to photoperiod (Ortiz Ferrara et al., 1998). Miralles 

and Slafer (1999) indicated that for wheat cultivars with different sensitivities to 

photoperiod optimum photoperiod differed significantly, ranging from ca. 15 to 21 

h d–1. Miralles et al. (2007) found the optimum photoperiod of Argentinean wheat 

cultivars to be 13.4 h d–1, which approximately coincides with the average 

maximum photoperiod (PmaxPmax, h d–1, i.e. PP  at June 21st in the northern hemisphere 

and PP  at December 21st in the southern hemisphere) in the main wheat growing 

area in Argentina. We therefore characterized sensitivity to photoperiod by 

setting PoptPopt equal to the location–specific PmaxPmax. 
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At high latitudes PmaxPmax is higher than at lower latitudes and as a consequence 

PoptPopt is higher for cultivars grown at high latitude. In Fig. 6.1a the solid black line 

indicates the response to photoperiod of a cultivar from a high-latitude location; 

the solid grey line indicates the response of a lower-latitude cultivar. The slopes 

of the lines indicate that with equal photoperiod (e.g. 15 h d-1) the photoperiod 

effect of the high-latitude cultivar is smaller (PfPf  = 0.5) than the lower-latitude 

cultivar (PfPf  = 0.7). Since the increment in heat units is multiplied with PfPf  the 

delay in development is largest for the high-latitude cultivar, an indication for 

higher sensitivity to photoperiod. 

 

Maize 

The relative difference in photoperiod between two successive days is smaller at 

lower latitude locations than at higher latitude locations. It is therefore plausible 

that the most sensitive responses to photoperiod are found in tropical cultivars 

of short–day plants (Summerfield et al., 1997). Indeed, maize cultivars adapted to 

temperate regions (i.e. cool, long–day environments) show lower or no photo-

period sensitivity than tropical cultivars (Bonhomme et al., 1994; Birch et al., 

1998). In line with wheat cultivars, maize cultivars also differ in their optimum 

photoperiod (Birch et al., 1998). Rood and Major (1980) found optimum 

photoperiods varying from < 14 h d–1 to 24 h d–1. Location–specific PoptPopt values for 

maize were established as follows: 

 

Popt = max

µ

0;Pmax £

µ

1¡
1

Pmax ¡ Pmin

¶¶

Popt = max

µ

0;Pmax £

µ

1¡
1

Pmax ¡ Pmin

¶¶

 (Eq. 6.8) 

 

where PminPmin (h d–1) is the minimum photoperiod possible on a certain location (i.e. 

PP  at December 21st in the northern hemisphere and at June 21st in the southern 

hemisphere).  

1 ¡ 1
Pmax¡Pmin

1 ¡ 1
Pmax¡Pmin

 was used to account for the annual course of photoperiod. At 

high latitudes PmaxPmax and the difference between PmaxPmax and PminPmin is higher than at 

lower latitudes, as a consequence PoptPopt is also higher and approaching PbPb. 

In Fig. 6.1a the dashed black line indicates the response to photoperiod of a 

cultivar from a high-latitude location; the dashed grey line indicates the response 

of a lower-latitude cultivar. The slopes of the lines indicate that with equal 

photoperiod (e.g. 18 h d-1) the photoperiod effect of the high-latitude cultivar is 

smaller (VfVf = 0.5) than the lower-latitude cultivar (VfVf = 0.375). Since the 

increment in heat units is multiplied with VfVf the delay in development is largest 

for the lower-latitude cultivar, an indication for higher sensitivity to photoperiod. 
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2.3.3 Required heat units from emergence to maturity 

To simulate differences among wheat and maize cultivars with respect to 

temperature we assumed that cultivars adapted to cooler climates require less 

heat units from emergence to maturity (HUreqHUreq, °Cd) than cultivars adapted to 

warmer climates. A range of HUreqHUreq values could not be established from literature. 

A reasonable range for HUreqHUreq was therefore derived based on observed HUreqHUreq 

values, which were calculated with help of the observed cropping periods in 

MIRCA2000. 

The aim of our study was to evaluate if and how well simulated harvest dates 

represented observed harvest dates, considering: (1) thermal requirements only 

and (2) the combinations of thermal with photoperiod and/or vernalization 

requirements. Two models for maize and spring wheat were distinguished: a 

thermal model, taking into account temperature effects only and a photo–

thermal model, taking into account temperature effects combined with 

photoperiod effects, including the cultivar differences as described above 

(Section 2.3.2). For winter wheat two additional models were distinguished: 

temperature effects combined with vernalization effects (vernal–thermal model) 

and temperature effects combined with vernalization and photoperiod effects 

(vernal–photo–thermal model), including cultivar differences in vernalization 

requirements and sensitivity to photoperiod. For each model a specific range for 

HUreqHUreq was required. 

For all models we first calculated observed HUsumHUsum values per grid cell, using 

the observed cropping periods from MIRCA2000. Per model the specific 

processes implemented in the model were considered in the calculation of 

observed HUsumHUsum values. Spring and winter wheat were simulated separately. It 

was assumed that winter wheat was sensitive to vernalization until the required 

duration of exposure to vernalizing temperatures was met; wheat and maize were 

sensitive to photoperiod until flowering. 

We assumed that location-specific climate conditions could be used to derived 

HUreqHUreq values. Secondly, we therefore examined by means of linear regression 

analyses which climatic variable explained the patterns in observed HUsumHUsum values 

best: (1) total annual available heat units (HUsum yearHUsum year, °Cd) (similar to Deryng et 

al., 2011) or (2) available heat units during an estimated vegetative cropping 

period (HUsum veg-periodHUsum veg-period, °Cd). Available HUsumHUsum values were calculated based on 

temperature effects only, with the consideration of crop specific base 

temperatures. For maize we estimated the vegetative period from May to July in 

the northern hemisphere and November to January in the southern hemisphere; 

for wheat from March to June in the northern hemisphere and September to 
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December in the southern hemisphere. HUsum veg-periodHUsum veg-period was chosen as a proxy of the 

temperature during the whole cropping period, in line with Bignon (1990), who 

used it for maize in Europe. We assumed this proxy to be valid for maize and 

wheat for the rest of the world as well. 

In addition, we assumed grid cells with HUsum yearHUsum year < 750 °Cd to be too cold to 

grow maize. Due to the large spatial resolution of MIRCA2000 some sowing dates 

are reported in those grid cells, nevertheless we excluded them from the 

regression analyses. Finally, for maize we divided the observed HUsumHUsum in two 

groups, based on HUsum yearHUsum year: maize cultivars grown in warm regions (HUsum yearHUsum year ≥ 

3000 °Cd) and maize cultivars grown in cold regions (HUsum yearHUsum year < 3000 °Cd). 

 

2.4 Procedure of assessing the simulated length of the cropping 

period 

2.4.1 Indices of agreement 

The simulations were carried out on a 0.5° × 0.5° grid, while the observations in 

MIRCA2000 are reported in administrative units, which are related to 

administrative boundaries (i.e. countries or states). Therefore, for the 

comparison between observed and simulated harvest dates, first the lengths of 

the observed and simulated cropping periods were calculated. Next, simulated 

cropping periods at the grid cell level were aggregated to one average value per 

administrative unit, weighted by crop area. To take into account the temporal 

resolution of one month in MIRCA2000, simulated harvest dates were finally 

converted into harvest months. 

To evaluate if and how well cropping period lengths can be simulated based 

on location-specific parameters, which were computed with help of simple 

algorithms, we assessed the degree of agreement between simulated and 

observed cropping periods. Several indices of agreement were calculated for 

each crop: the mean absolute error (MAEMAE , d), the root mean square error (RMSERMSE , 

d), and the Willmott coefficient of agreement (WW , dimensionless, ranging from 0 

to 1, with 1 showing perfect agreement) (Willmott, 1982). MAEMAE  and RMSERMSE  

indicate the global average error between simulations and observations. In 

addition, WW  is a relative measure for the differences (Willmott, 1982). Indices are 

area–weighted, which implies that deviation in spatial units with a large cropping 

area is considered more important than deviation in spatial units where the crop 

is grown less: 

 

MAE =

PN

i=1 jOi ¡ Sij £ Ai
PN

i=1 Ai

MAE =

PN

i=1 jOi ¡ Sij £ Ai
PN

i=1 Ai

  (Eq. 6.9) 
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RMSE =

s

PN

i=1(Oi ¡ Si)2 £ Ai
PN

i=1 Ai

RMSE =

s

PN

i=1(Oi ¡ Si)2 £ Ai
PN

i=1 Ai

  (Eq. 6.10) 

 

W = 1¡

PN

i=1(Oi ¡ Si)
2 £Ai

PN

i=1(
¯

¯Si ¡ O
¯

¯ +
¯

¯Oi ¡O
¯

¯)2 £Ai

W = 1¡

PN

i=1(Oi ¡ Si)
2 £Ai

PN

i=1(
¯

¯Si ¡ O
¯

¯ +
¯

¯Oi ¡O
¯

¯)2 £Ai

 (Eq. 6.11) 

 

where SiSi  (months) is the simulated and OiOi  (months) the observed length of the 

cropping period in spatial unit i, OO (months) the mean observed length of the 

cropping period based on all spatial units, AiAi (ha) the cultivated area of the crop 

in spatial unit i, and N (–) the number of spatial units. 

 

2.4.2 Sensitivity analysis of crop yields for length of cropping period 

A possible application of harvest dates simulated with the presented 

methodology is to provide global crop growth models under future conditions 

with estimates of suitable cropping windows. To evaluate the required level of 

accuracy for simulated harvest dates for this application we investigated the 

sensitivity of simulated crop yields by the LPJmL dynamic global vegetation and 

crop model (Bondeau et al., 2007) for different cropping period lengths for five 

contrasting locations (Delhi, India; Abuja, Nigeria; Kansas City, USA; Amsterdam, 

the Netherlands; Iquitos, Peru). 

In LPJmL, crop growth is simulated using a combination of processes (photo-

synthesis, respiration, evapotranspiration, biomass allocation, and leaf area 

development) on a daily basis (for more details, see Bondeau et al., 2007). The 

effects of extreme temperatures on crop growth and development, e.g. frost 

damage or heat stress is not considered by LPJmL. To simulate phenological 

development we used the vernal–photo–thermal model for wheat and the photo–

thermal for maize. Rainfed yields were simulated for each location for several 

HUreqHUreq values, and as a consequence, a range of cropping period lengths. Sowing 

dates (from MIRCA2000) and location–specific parameters were kept constant 

per location; the monthly climate data of the year 2000 were used. 

 

3. Results 

3.1 Vernalization requirements 

Figure 6.3 shows the computed location–specific vernalization requirements for 

winter wheat. Cultivars grown in large parts of Russia, Western Europe, the 

northern USA, and north–east Asia have the maximum required duration of 

exposure to vernalizing temperatures, because winter temperatures are optimal 
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or winters are long and cold (with too low temperatures for the vernalization 

process). In southern USA and southern Europe a gradient is visible. 

Fig. 6.3 Computed location–specific vernalization requirements (i.e. required duration 

of exposure to vernalizing temperatures, VsatVsat, d) for winter wheat. 

 

The pattern of the computed vernalization requirements corresponds with 

information found in literature, e.g. in the south–eastern border of the Australian 

wheat belt winter wheat is grown, while in rest of the belt spring wheat is grown 

(Fisher, 1999). Also the low computed vernalization requirements for wheat in 

west Asia (e.g. Yemen and Saudi Arabia) and north Africa are in line with results 

of previous studies (see e.g. Ortiz Ferrara et al., 1998). Kato and Yokoyama 

(1992) determined vernalization requirements of traditional cultivars 

originating from various countries. They found vernalization requirements of 

approximately 31 days for landraces originating from western Turkey, Italy, and 

Greece; 35 days for landraces originating from Afghanistan, Pakistan, Nepal, and 

Bhutan; 56 days for landraces origination from Georgia, east Turkey, and north 

and east Iran; 28 days for landraces origination from Armenia; and 7 and 14 days 

for landraces from Egypt and Ethiopia. This pattern is reflected in our results. 

 

3.2 Required heat units for maturity 

To explain the patterns in observed HUsumHUsum values we carried out linear 

regressions with: (1) total annual available heat units (HUsumyearHUsumyear) and (2) availa-

ble heat units during an estimated vegetative cropping period  

(HUsum veg-periodHUsum veg-period). Table 6.2 gives the coefficients of determination (R2) for the two 
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climatic variables. The R2 values indicate that for spring and winter wheat 

available HUsumyearHUsumyear and available HUsum veg-periodHUsum veg-period explained observed HUsumHUsum values 

comparably well. For maize however, the observed trends in HUsumHUsum can best be 

explained by available HUsum veg-periodHUsum veg-period. We therefore used the available 

HUsum veg-periodHUsum veg-period to compute the location–specific HUreqHUreq values. Table 6.2 gives the 

relationships. The slopes of the relationships are an indicator for the spatial 

heterogeneity in HUreqHUreq values: a higher value gives higher spatial heterogeneity. 

Spatial heterogeneity decreases if photoperiod is included in the model (e.g. for 

spring wheat: 1.06 for the thermal model versus 0.91 for the photo-thermal 

model). 
 

 

 

Table 6.2 

Coefficients of determination from the linear regression analysis with total annual 

available heat units (HUsum yearHUsum year) and available heat units during an estimated vegetative 

cropping period (HUsum veg-periodHUsum veg-period), as well as the accompanying relationships to compute 

location–specific HUreqHUreq values based on HUsum veg-periodHUsum veg-period.  

Crop Relationship                    R
2
 

    

Thermal model  

Spring wheat HUreq =1:06£HUsum veg-period +815:08HUreq =1:06£HUsum veg-period +815:08 0.75 0.77 

Winter wheat HUreq =1:18£HUsum veg-period +941:45HUreq =1:18£HUsum veg-period +941:45 0.45 0.45 

Maize 

warm region: 

HUreq = 1:4£HUsum veg-period +399:66HUreq = 1:4£HUsum veg-period +399:66 

cold region: 

HUreq =1:82£HUsum veg-period¡150:51HUreq =1:82£HUsum veg-period¡150:51 

 

0.44 

 

0.92 

 

0.25 

 

0.82 

Photo–thermal model  

Spring wheat HUreq =0:91£HUsum veg-period +775:27HUreq =0:91£HUsum veg-period +775:27 0.64 0.68 

Winter wheat HUreq =0:66£HUsum veg-period +1126:49HUreq =0:66£HUsum veg-period +1126:49 0.26 0.24 

Maize 

warm region: 

HUreq =1:06£HUsum veg-period +145:04HUreq =1:06£HUsum veg-period +145:04 

cold region: 

HUreq = 1:52£HUsum veg-period¡72:08HUreq = 1:52£HUsum veg-period¡72:08 

 

0.35 

 

0.91 

 

0.01 

 

0.76 

Vernal–thermal model  

Winter wheat HUreq =0:99£HUsum veg-period +811:52HUreq =0:99£HUsum veg-period +811:52 0.44 0.46 

Vernal–photo–thermal model  

Winter wheat HUreq =0:87£HUsum veg-period +907:47HUreq =0:87£HUsum veg-period +907:47 0.36 0.36 
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3.3 Comparison of observed and simulated cropping periods 

To evaluate if and how well simulated harvest dates patterns (based on 

computed location–specific HUreqHUreq (see Table 6.2), PoptPopt and/or VsatVsat values) 

represent observed harvest dates, the area weighted indices of agreement 

between simulated and observed cropping periods for the different models are 

given in Table 6.3. Scatterplots of observed versus simulated cropping periods 

based on the vernal–photo–thermal model for wheat and the photo–thermal 

model for maize are shown in Fig. 6.4. The radius of the circles is a measure for 

the cultivated crop area in the spatial units of MIRCA2000. Scatterplots for the 

other models look similar and are therefore not shown. 

For wheat, results for the different phenological models are in the same range 

(Table 6.3), with the vernal–thermal model giving the lowest deviations and the 

photo–thermal the highest deviations. Average simulated lengths of the cropping 

period are in the same range as the average observed length; the spatial 

heterogeneity in the simulated cropping periods is slightly lower than in the 

observed cropping periods (simulated versus observed coefficient of variation). 

Agreement between observed and simulated lengths of cropping periods of 

countries with large wheat cropping areas, such as Russia, Canada, and Turkey, is 

high (Fig. 6.4a). 

 
 

 

Table 6.3 

Area weighted means, standard deviations, and indices of agreement between 

simulated and observed cropping periods for wheat and maize. 

Crop 
Mean 

(months)*  

Coefficient of 

variation 

MAEMAE 

(months) 

RMSERMSE 

(months) 
WW  (–) 

Observations 

Wheat 8.7 3.8 − − − 

Maize 5.7 2.1 − − − 

Thermal model 

Wheat 8.6 3.6 0.73 0.92 0.97 

Maize 5.5 2.1 0.75 0.92 0.54 

Photo–thermal model 

Wheat 8.7 3.6 0.77 0.96 0.97 

Maize 5.5 2.1 0.89 1.03 0.42 

Vernal–thermal model 

Wheat 8.7 3.7 0.66 0.82 0.98 

Vernal–photo–thermal model 

Wheat 9.0 3.6 0.75 0.97 0.97 

*Recalculation of mean, standard deviation, and differences from days to months is 

done by assuming an equal amount of days per month (i.e. 365/12 = 30.42 days per 

month) 
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For maize, deviations between observed and simulated cropping periods are 

slightly lower based on the thermal model than based on the photo–thermal 

model. The simulated cropping periods underestimate the observed cropping 

period on average by approximately two weeks; also the spatial heterogeneity in 

cropping period is underestimated by the simulations (Table 6.3). The scatterplot 

(Fig. 6.4b) indicates that in countries situated in warmer regions, e.g. Mexico and 

Nigeria, the model overestimates the length of the cropping period, while in 

cooler regions, e.g. the USA and Russia, the model underestimates the length of 

the cropping period.  

Fig. 6.4 Scatterplots of observed versus simulated cropping periods per spatial unit of 

MIRCA2000 for: a) wheat, based on the vernal–photo–thermal model; b) maize, based 

on the photo–thermal model. The solid line represents the 1:1 line; the extent of the 

circle represents the cultivated area of the crop per spatial unit. 

 

 

3.4 Interannual variability in harvest dates 

To test our hypothesis that accounting for the effects of photoperiod and vernali-

zation results in less interannual variability in the length of cropping periods 

than simulation of phenology based on thermal requirements only, we used the 

different models to simulate the lengths of the cropping period for the period 

1995 to 2005. As an indicator for interannual variability we calculated the 

differences between the earliest and latest harvest dates in that period per grid 

cell and per model. We plotted the relative cumulative frequency distributions of 

these differences (Fig. 6.5). 

Fig. 6.5a indicates that if wheat phenology is simulated based on the thermal 

model 46% of the grid cells have a difference of more than 20 days between the 

earliest and latest harvest date, while for the vernal–photo–thermal model this is 
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only 20%. The initially steeper slopes of the vernal–photo–thermal and photo–

thermal model for wheat indicate that accounting for especially photoperiodism 

results in less variability in harvest dates between years. Accounting for vernali-

zation in the simulation of wheat phenology reduced only slightly the interannual 

variability in harvest dates. We also mapped the spatial distribution of the 

differences between the earliest and latest harvest dates (results not shown). The 

maps indicate that especially in areas with high interannual variability in 

weather conditions, e.g. north-eastern USA, north and Western Europe, and 

Russia interannual variability in harvest dates decreases due to inclusion of 

photoperiod effects in the phenology model. 

For maize we did not find the dimming effect of photoperiodism on variability 

of harvest dates, inclusion of photoperiodism only slightly decreased interannual 

variability in harvest dates (Fig. 6.5b). This small reduction is a consequence 

from the low sensitivity to photoperiod in the areas with high interannual 

variability in weather conditions (e.g. western Europe, north-east USA), while in 

areas with high sensitivity to photoperiod interannual variability in weather 

conditions is low (tropics). 

 

3.5 Sensitivity analysis of crop yields for length of cropping period 

Figure 6 displays the simulated wheat and maize yields per cropping period 

length for the five locations, compared to the maximum simulated yield per 

location. For wheat (Fig. 6.6a), an increase in cropping period length gives higher 

yields in the locations situated in Peru, the Netherlands, and the USA. Yields in 

the Netherlands and the USA level off if the cropping period length approaches 

350 days, this is the result of temperatures becoming unsuitable for the photo-

synthesis process and autotrophic respiration becomes low as well. The cropping 

period length for the locations in India and Nigeria shows an optimum range for 

simulated yields, this results from the occurrence of wet seasons: right timing of 

water availability during the cropping period gives high yields. 

For maize (Fig. 6.6b), cropping periods longer than approximately 150 and 

180 days could not be simulated for the locations in the Netherlands and the USA, 

respectively, because temperatures dropped below the base temperature of 

maize in autumn. Nevertheless, temperatures below the base temperature are 

also unfavourable for photosynthesis and therefore simulated yields will not 

increase, but rather a decrease in yields is possible due to autotrophic respiration 

in case of longer cropping periods. Similar as with the simulated wheat yields, 

maize yields in Nigeria and India are optimal within a certain cropping period 

length. 
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Fig. 6.5 Relative cumulative frequency distributions of the coefficients of variation of 

the period 1995 till 2005 for: a) wheat and b) maize. The lines indicate the different 

models used to simulate the length of the cropping period. 

 

 

 

 

4. Discussion and concluding remarks 

4.1 Simulated cropping period lengths at the global scale 

To our knowledge we present in this study the first attempt to include the effects 

of photoperiod and temperature (directly and indirectly) on crop phenology at 

the global scale. We developed simple algorithms to compute location–specific 

parameter values, which account for differences between cultivars in vernaliza-

tion requirements and sensitivity to photoperiod and temperature. We find that 

the simulated pattern of required exposure of winter wheat to vernalizing 

temperatures (i.e. vernalization requirements) matches the observed pattern. 

Moreover, inclusion of photoperiod and vernalization effects decreases spatial 

heterogeneity and temporal variability of required heat units from emergence to 

physiological maturity for wheat. This result is in line with Miralles and Slafer 

(1999) who reported that differences in development rate among wheat cultivars 

mainly originate from differences in sensitivity to photoperiod and differences in 

vernalization requirements. 
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Fig. 6.6 Sensitivity of a) wheat yields and b) maize yields to cropping period lengths for 

five locations. Between brackets, the simulated respectively observed cropping period 

lengths are given. The dashed line indicates 80% of maximum simulated yield. 

 

The indices of agreement between observed and simulated cropping period 

lengths (Table 6.3) and the scatterplots of observed versus simulated cropping 

periods (Fig. 6.4) indicate that in general, agreement is lower for maize than for 

wheat, which is especially visible in the value of the Willmott coefficient. The heat 

unit requirements could be derived more effectively from general climatic 

parameters for maize than for wheat (Table 6.2), especially for the cold regions. 

This can be explained by the different timing of harvest of wheat and maize and 

their different base temperatures. In cooler regions, such as the USA and Europe, 

wheat is normally harvested during the warmest period of the year, while maize 

is harvested in autumn, when temperatures approach the base temperature of 
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maize. As a consequence, an equal over- or underestimation of the HUreqHUreq values 

gives higher deviations in the simulated harvest dates for maize than for wheat. 

Finally, deviations between observed and simulated harvest dates might be a 

consequence of MIRCA2000 reporting harvest dates, while the models simulate 

physiological maturity; harvesting is derived from maturity, but includes 

management aspects.  

The indices in Table 6.3 indicate that the accuracy of simulated harvest dates 

for a specific year does not improve if the models are expanded with the effects 

of photoperiod and/or vernalization. However, the hypothesis that accounting for 

effects of photoperiod and vernalization decreases interannual variability in 

lengths of cropping periods is supported by the results of this study (Fig. 6.5). This 

effect is especially visible for wheat. For maize inclusion of the effect of 

photoperiod reduced only slightly the interannual variability in lengths of 

cropping period. 

According to good modelling practice models should be as simple as possible 

given their objectives, but enough detail should be included so effects of major 

processes are still represented by the model (De Wit, 1968). Including the effects 

of photoperiodism and vernalization is a clear example of adding extra detail to a 

model. Here it is shown that the added detail influences the behaviour of the 

model, i.e. decreased interannual variability. Nevertheless, information with 

regard to of interannual variability in harvest dates at the global scale is scarce, 

only information for some crops and a few countries is available, e.g. Germany 

(Chmielewski et al., 2004; Van Bussel et al., in press) and the USA (Sacks & 

Kucharik, 2011). Based on this limited amount of data we could not conclude 

whether interannual variability in simulated crop phenology at the global scale is 

unrealistic if only thermal relations are applied and needs therefore further 

evaluation. 

 

4.2 Implications for global crop growth modelling 

The results of the sensitivity analysis indicate that, deviations between simulated 

and observed cropping period lengths are acceptable with relatively small 

impacts on simulated harvest dates (Fig. 6.6). The rather low sensitivity of crop 

yields for the length of the cropping period is partly the result of the lack of crop 

damaging factors in LPJmL e.g. heat stress or crop damage by freezing 

temperatures. In field experiments it is however showed that crop yields are 

sensitivity to the timing and length of the cropping period (see, e.g. Cirilo & 

Andrade, 1996; Thomson et al., 1997; Sadras et al., 2009). It is therefore expected 

that feeding a more detailed crop growth model, which includes e.g. heat and 
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frost stresses combined with daily weather input data, with the simulated 

harvest dates will probably give higher sensitivities. Finally, the interaction of 

simulated sowing dates (see e.g. Waha et al., 2011) with simulated cultivar 

characteristics will need further evaluation. 

Although we have not discussed climate change before, by using the history of 

climate for parameter generation, our approach explicitly assumes that farmers 

adapt to climate change via changes in cultivar use. As a consequence, future 

simulated cropping periods will be similar to those simulated for current climatic 

conditions as the variety parameters (e.g. sensitivity to vernalization) will 

change. Therefore, the dominant effect of climate change on crop productivity via 

simulated effects on phenological development of crops as seen in many climate 

impact assessments (Craufurd & Wheeler, 2009) will be less visible if our 

methodology is applied. A change in cultivar use, especially related to the 

cropping period, is also suggested in other studies to combat the negative effects 

of climate change (Torriani et al., 2007; Moriondo et al., 2010). Changes in 

cultivar use have been observed in the past, e.g. improved modern wheat 

cultivars in the Mediterranean countries are insensitive to vernalization and 

photoperiod, while old local cultivars show sensitivity to vernalization and 

photoperiod (Ortiz Ferrara et al., 1998). In the USA, maize cultivar characteristics 

have changed, with especially an increase in the required heat units for the 

reproductive phase (Sacks & Kucharik, 2011).  

 

4.3 Limitations of our methodology and directions for further 

research 

Only two datasets, with roughly the same data sources, reporting global sowing 

and harvest dates are available (Portmann et al., 2010; Sacks et al., 2010). No 

other literature reporting reasonable ranges of observed HUreqHUreq across the world 

is available. Therefore we had to calibrate and evaluate the models with the same 

dataset. Being aware of this limitation, we still find it valid to test whether 

observed patterns of harvest dates can be reproduced when cultivar-specific 

parameters are computed with help of simple algorithms. Clearly, we did not aim 

at evaluating the concept of heat units but a methodology to model location-

specific variety parameters used in the heat unit concept.  

We assumed in this study that only photoperiod and temperature conditions 

determine cultivar characteristics. However, the choice of farmers to grow a 

certain cultivar with specific characteristics is dependent on numerous other 

reasons. Socio–economic reasons such as the application of multiple–cropping 

systems require cultivars with a specific cropping period length, for example in 
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rice–wheat systems in South and East Asia (Timsina & Connor, 2001) or the 

demand for specific cultivars with respect to quality, such as bread wheat in 

western Europe or durum wheat in Italy (Dettori et al., 2011). At large scales 

information with regard to specific cultivar use or specific agronomic practices is 

scarce and could therefore not be included in our methodology of generating 

location–specific cultivar characteristics.  

Besides the appropriate length of the cropping period, vulnerable stages like 

anthesis should occur with an optimum timing (Boer et al., 1993; Slafer & 

Whitechurch, 2001; Craufurd & Wheeler, 2009). As a consequence, simulation of 

the right timing of vulnerable stages is essential for accurate simulation of crop 

productivity (Jamieson et al., 2007). In southern Australia, maximum yields are 

achieved if anthesis occurs late enough to avoid late spring frosts, but early 

enough to avoid the grain–filling phase to enter the dry and warm summer 

(Sharma et al., 2008). Cultivar characteristics can also be adapted to avoid 

excessive rainfall, such as in Nepal, where early–heading cultivars are used to 

avoid damage of pre–harvest sprouting by the monsoonal rain in early summer 

(Kato & Yokoyama, 1992) or to avoid pests and diseases that are only indirectly 

related to climate (Kouressy et al., 2008). The sensitivity to photoperiod is the 

major factor determining timing of anthesis (Davidson & Christian, 1984; Slafer 

& Whitechurch, 2001). These examples show that cultivar characteristics are not 

only dependent on location–specific photoperiod and temperature conditions, 

but that more factors play a role. Currently this complex system is not well 

understood. We therefore stress the importance of collecting anthesis dates, 

cultivar characteristics, and cultivar use at the global scale to make it possible to 

understand this complex system and further improve the simulation of crop 

phenology at the global scale, including accurate simulations of anthesis dates. 

We also stress the importance of continuously expanding datasets such as 

MIRCA2000 in space and over time. When data of multiple years are available it 

is possible to examine interannual variability in phenological events and assess if 

simulated phenology represent this variability. 

 

4.4 Concluding remarks 

We show in this study that for large parts of the globe our methodology to 

simulate location-specific parameters of heat units including sensitivities to 

daylength and vernalization is able to estimate reasonably well harvest dates of 

wheat and maize. Despite some scope for further improvement this methodology 

provides a good basis for modelling phenological development of crops at global 

scale in the absence of location-specific variety characteristics of phenological 
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development. As we explicitly developed this methodology for application at the 

global scale it may be insufficiently accurate if applied at smaller scales or with a 

more detailed crop growth model, where a higher accuracy in simulated harvest 

dates (and intermediate development stages) is required. Further development of 

the proposed methodology should include the consideration of additional factors 

such as stress avoidance determining location-specific phenology parameters. 

Advances in modelling large scale phenology will also depend on available data to 

test models which are presently only available to a limited extent. 
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The general objective of the work described in this thesis was to enhance the 

understanding of the use of crop growth models for global application. In 

particular I concentrated on the required level of detail to represent important 

processes for crop growth in global crop growth models. Moreover, I studied the 

effects of spatial and temporal aggregation of input data on crop growth model 

outcomes. Finally, I examined the simulation of crop phenology at the global 

scale, in particular the simulation of sowing dates of various crops and the 

generation of phenological parameters to characterize cultivars differences in 

wheat and maize.  

In this final chapter the main findings of the thesis are discussed. I start with 

the discussion of methodological issues related to large scale crop growth 

modelling. New insights obtained in this thesis are used to discuss the design of a 

global crop growth model, followed by directions for additional research for 

further improvement of global crop growth models. 

 

1. Methodological issues of large scale crop growth modelling 

Early crop growth models were mainly developed for the plot and field scale, 

requiring location-specific, spatially homogenous input data (Hansen and Jones, 

2000; Monteith, 2000; Mearns et al., 2001; Van Ittersum et al., 2003; De Wit et al., 

2005; Tao et al., 2009). Recently, the scale of crop production assessments has 

been extended and crop growth models are increasingly applied at the 

continental or global scale, e.g.: LPJmL (Bondeau et al., 2007), DAYCENT (Stehfest 

et al., 2007), GEPIC (Liu et al., 2007), GLAM (Challinor et al., 2004), GAEZ 

(Tubiello and Fischer, 2007), and WOFOST (Reidsma et al., 2009). Data 

availability normally decreases if the scale of application increases, therefore 

data availability is one of the problems faced if crop growth models are applied at 

large scales (Nonhebel, 1994; Therond et al., in press). To overcome the problem 

of data availability it is either possible to use aggregated data (input or output) or 

to generate/simulate input data. Both methodologies may have implications for 

model outcomes. In addition, there may be implications for the model design, 

since the level of detail to represent a process in a model should be adjusted to 

the available data (Challinor et al., 2003; Ewert, 2004b). 

 

1.1 Model structure related issues 

The appropriate level of detail to represent a process in a model is often seen as a 

critical, but difficult step in model development (Brooks and Tobias, 1996; Van 

Delden et al., in press). The level of detail should be a good balance between the 

objective of the model (Brooks and Tobias, 1996), which includes the scale of 
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application, and the spatial and temporal resolution of the available data 

(Challinor et al., 2003; Ewert, 2004b). Table 1.1 (Chapter 1) shows that global 

crop growth models’ objectives and their level of detail to represent processes 

differ, ranging from less detailed empirical models, e.g. GAEZ aiming at yield 

simulations, to more detailed mechanistic models, e.g. LPJmL aiming at more 

comprehensive studies, e.g. the investigation of the impact of agriculture on 

global carbon and water cycles. Yet, knowledge about the required level of 

modelling detail to accurately represent crop growth processes in large scale 

crop growth models is scarce. In addition, Ewert (2004a) indicated that, despite 

the importance of a good representation of leaf area dynamics for crop produc-

tion simulations, this process received less research attention compared with 

photosynthesis. 

With a systematic analysis of the importance of model structure for simulat-

ing potential yields, considering crop growth models with different levels of 

detail, we made a start to enhance knowledge related to the required level of 

detail in large scale crop growth models (Chapter 2). In particular we focussed on 

the processes of light interception, determined by leaf area dynamics, and light 

utilization for biomass production, using spring wheat (Triticum aestivum) as an 

example. For each process two approaches with different levels of detail were 

included in the framework, reflecting the range of detail found in (global) crop 

growth models. We first tested model performance for several contrasting 

locations. After calibration, simulated yields reproduced the observed yield with 

average rRMSErRMSEs ranging between 17% and 32%, depending on the model. 

Agreement between simulated and observed yields was closest for models which 

represented leaf area dynamics with the lowest level of detail. The representa-

tion of leaf senescence, particularly its onset, was found to be critical for model 

performance. 

In the following part of our study the models were driven with weather data 

from contrasting locations in Europe to reflect the spatial heterogeneity in 

weather conditions that is encountered in large scale model applications. We 

found the choice for the light interception approach significantly influencing 

model outcomes, with the leaf area dynamics approach with the lowest detail 

level simulating higher yields than the more detailed approach. This result 

confirms conclusions from previous studies in which the importance of leaf area 

index for crop yields was emphasized (Heath and Gregory, 1938; Watson, 1947; 

Jamieson et al., 1998a; Ewert, 2004a). The two approaches representing light 

utilization for biomass production gave similar outcomes, but the results sug-

gested that the use of a constant value for the radiation use efficiency (one of the 
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light utilization approaches) for the whole cropping period may have been an 

oversimplification of reality.  

Recently, Biernath et al. (2011) carried out a similar study, in which models 

with different levels of detail were evaluated for their ability to represent 

observed growth of spring wheat under elevated atmospheric CO2 concentra-

tions, including the effects of limited water availability, from so-called open-top 

chamber (OTC) experiments. Although OTCs are artificial systems they are often 

used to study the effects of factor combinations which are difficult to investigate 

under field conditions. Biernath et al. (2011) found results which agree well with 

the results from Chapter 2. Both studies showed that yields simulated by the 

different models are comparable, despite different approaches to represent the 

light interception and light utilization processes. In agreement with the 

conclusions from Chapter 2, Biernath et al. (2011) concluded that more 

mechanistic models do not generally result in better model performance. 

In addition to spatial heterogeneity in weather conditions, crop yields also 

vary between years due to interannual variability in weather conditions (Hansen 

and Jones, 2000). It is therefore essential to evaluate, besides model outcomes for 

a specific year, whether observed temporal variability is appropriately reflected 

in model outcomes. In Chapter 6 we studied if the level of detail considered in a 

phenological model has implications for the simulated interannual variability in 

harvest dates. Previous studies indicated that the effect of daylength (also 

referred to as photoperiod) can synchronize crop development between plants 

and between years (Hay and Kirby, 1991; Gouesnard et al., 2002; Craufurd and 

Wheeler, 2009; Wang et al., 2009). In contrast to weather conditions, daylength 

conditions are equal between years. We therefore expected influences on the 

simulated interannual variability in harvest dates if effects of daylength were 

included in the model. Hence, we compared simulated interannual variability in 

harvest dates by a simple phenological model, which is based on thermal rela-

tionships only, an approach often used in global crop growth models (Craufurd 

and Wheeler, 2009), with model outcomes from a more extended model (i.e. 

thermal relationships combined with the effects of daylength and/or vernaliza-

tion), the approach in most field-scale crop growth models (see e.g. Jones et al., 

1986; Porter, 1993; Ewert et al., 1996). We found that, after model-specific 

calibrations, model extension did not improve model performance for a specific 

year: simulated harvest dates showed mean absolute errors of less than one 

month at the global scale for the extended and simple models. However, when 

considering several years, we found that interannual variability in simulated 

harvest dates changed indeed due to the inclusion of daylength effects. At 
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locations with a high interannual variability in weather conditions, e.g. Western 

Europe, simulated interannual variability in wheat harvest dates decreased with 

approximately 70% (from approximately more than 7 weeks to 2 weeks, the 

former probably an overestimation according to the results of Chapter 4) due to 

the consideration of the effects of daylength in the model. To our knowledge, our 

study was the first to explore required complexity in simulation of crop phenol-

ogy at the global scale. Previous studies from Porter et al. (1993) and Masle et al. 

(1989) indicated that for field-scale conditions considering the effects of 

daylength and vernalization improved the simulation of phenology. Their conclu-

sions, combined with the effects on interannual variability in harvesting dates, 

point to the importance of including daylength effects in crop phenology models 

for global application. 

In Chapter 2 & 6 we pointed out to possible risks and consequences of over-

simplification of process representations in models. However, including unneces-

sary detail or adding extra model components might give model users a false 

sense of accuracy if the required input data is not available or if the process is not 

fully understood (Van Delden et al., in press) and should therefore be avoided. In 

this context, information about interannual variability in harvest dates of wheat 

is very limited at the global scale, with few quantitative indications (see e.g. 

Chapter 4 for temporal heterogeneity in harvest dates in Germany) and some 

qualitative indications, e.g. winter wheat in the UK is normally harvested in 

August (Landau et al., 1998). Although the inclusion of daylength in the simula-

tion of global crop phenology hinted at more realistic interannual variability in 

harvest dates, observations about interannual variability in harvest dates at the 

global scale should be collected first before it is justified to extend the model by 

the daylength effect following the approach proposed in this thesis. 

 

1.2 Data related issues 

1.2.1 Data aggregation 

In contrast to field scale model applications, large scale applications often rely on 

data aggregated over space and/or time. With increasing aggregation (i.e. an 

increase in size of the area or time period from which the synthesis of multiple 

data points into a single value for the area or time period is composed) variability 

of data will decrease and local extremes will be levelled out (Easterling et al., 

1998; Baron et al., 2005; Hansen and Ines, 2005). To prevent incorrect model 

outcomes it is important to examine the bias in model outcomes resulting from 

the removed variability. 
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The results from Chapter 2 indicated that models with different degrees of 

detail may simulate similar yields for defined conditions. In Chapter 2 the models 

were driven by daily weather input data, the temporal resolution required in 

many field-scale crop growth models (De Wit et al., 2004; Soltani et al., 2004). 

Availability of daily weather data at high spatial resolutions is limited at the 

global scale. Instead, monthly weather data aggregates supplied by global 

circulation models (GCMs) are often used in global crop growth models (Table 

1.1, Chapter 1). The day-to-day variability in weather data, which might substan-

tially influence crop yields (Wheeler et al., 2000; Porter and Semenov, 2005) is 

lacking in those monthly aggregates. Whether daily weather data can be replaced 

by monthly aggregates in crop growth model applications was therefore studied 

in Chapter 3. In particular, we studied if the degree of detail in crop growth 

models determines their sensitivity to temporally aggregated weather input data. 

We analysed the same models as in Chapter 2, i.e. with different levels of detail in 

the representation of crop growth processes. The models were run with 

temperature and radiation data with two temporal resolutions: monthly and 

daily weather data. The results showed that replacing daily weather data with 

temporally aggregated weather data resulted in higher simulated amounts of 

biomass. This difference was as high as 37% at a location characterized by high 

day-to-day weather variability for rainfed conditions. Similar results were found 

by Nonhebel (1994) and Soltani et al. (2004). Nonhebel (1994) found differences 

of 5 − 15% for potential yields and up to 50% for rainfed conditions. According to 

Soltani et al. (2004) the use of temporally aggregated weather data resulted in 

significant differences in simulated biomass, especially due to the lack of extreme 

temperatures (cold or hot events) in the monthly aggregates. In our study we 

additionally found that model sensitivity to temporal aggregation of input data 

increased with increasing detail in the model. The model with the detailed 

biomass production approach was most sensitive to the aggregation of input data 

(with a maximum difference of 37%), while the less detailed model showed a 

maximum difference of 10%. We explained the higher sensitivity of the detailed 

model by its higher non-linear nature. 

Most global crop growth models are run on a grid-based system (see Table 

1.1). In grid-based systems spatially aggregated data are used, i.e. it is assumed 

that data such as weather and crop management are homogeneous within a grid 

cell of a certain resolution, e.g. 0.5° × 0.5° (approximately 50 km × 50 km around 

the equator). Several studies investigated the bias in crop growth model 

outcomes of different levels of spatially aggregated climate data. In general, a 

grid cell size of 0.5° × 0.5° is considered to be appropriate for regional crop 
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growth simulations (Easterling et al., 2000; Olesen et al., 2000; De Wit et al., 

2005), unless water-limitation plays a role, in which case simulations at a finer 

resolution are required (Wassenaar et al., 1999; Baron et al., 2005). In Chapter 4 

we studied the effects of different levels of spatial aggregation of weather data 

and sowing dates (both input data) on simulation of winter wheat phenology. 

Analysing observed phenological data in several regions in Germany we found 

temporal heterogeneity in sowing dates to be smaller than spatial heterogeneity, 

on average 21 d versus 44 d, an indication that farmers try to sow each year in 

the same weeks of the year. Based on the results of semi-variograms we showed 

that to capture observed spatial heterogeneity in ear-emergence and harvest 

dates, sampling in grid cell sizes ranging from 50 km × 50 km to 100 km × 100 

km is reasonable. For sowing dates we could not find such an indication due to its 

high spatial variability. For winter wheat phenology simulation, which consists of 

mainly linear relationships to represent the effects of temperature and 

daylength, we concluded that the use of sowing dates and weather data with a 

100 km × 100 km resolution is appropriate for regions with homogenous climatic 

characteristics such as Germany. In addition, the results indicated that our 

assumption to use one phenological parameter set to capture the average 

response pattern of the development of different winter wheat cultivars found in 

a large country such as Germany, was justified. However, in order to capture the 

range of wheat development for larger areas, phenological parameter sets 

reflecting phenological characteristics from more cultivars will be required. 

Generalizing the findings from Chapter 3 & 4 it can be concluded that data 

aggregation might have considerable effects on model outcomes and therefore I 

stress that the resolution of the available input data in space and over time 

should be tested for its usefulness in the chosen model. Yet, if the chosen crop 

growth model contains mainly linear relationships the use of weather input data 

with a monthly resolution at a 50 km × 50 km grid combined with spatially 

aggregated sowing dates at a 100 km × 100 km grid seems to be justified for the 

simulation of wheat growth and development. 

 

1.2.2. Data generation 

Generation or simulation of input data for crop growth models is necessary if the 

spatial resolution of the available data is unsuitable, when data are expected to 

change under future conditions, or when data are not available. Phenological 

data, e.g. sowing and harvesting dates, are examples of data that are often 

simulated within global crop growth models or are required as input data if not 

simulated. Global crop growth models apply various methodologies to simulate 
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the cropping period (see Table 1.1). In many quantitative climate change impact 

assessments crop growth models are used to study the effects of climate change on 

future crop production. The dominant effect of climate change on crop production 

in those assessments often goes via simulated effects of global warming on 

phenological development of crops (Craufurd and Wheeler, 2009). Simulation, 

including evaluation, of the cropping period deserves therefore considerable 

research attention. Nevertheless, only recently two comprehensive global data 

sets of cropping calendars with global coverage, combining several sources of 

observed cropping calendars, have been developed (Portmann et al., 2010; Sacks 

et al., 2010). As a consequence until recently simulation of phenology at the 

global scale, including the simulated start and end of the cropping period, could 

hardly be evaluated. 

In Chapter 5 we aimed at simulating sowing dates (i.e. the start of the 

cropping period) of several major rainfed crops based on climatic conditions. We 

assumed farmers to sow either when temperature exceeds a crop-specific 

threshold or at the onset of the wet season, depending on the interannual varia-

bility in climatic conditions. From our results we concluded that our 

methodology is more accurate in regions in which temperature is the main 

limiting factor for the length of the growing season in comparison with regions in 

which precipitation plays a major role. For all considered crops, except for 

rapeseed and cassava, on at least 60% of the cultivated area the difference 

between simulated and observed sowing dates, the latter from Portmann et al. 

(2010), is less than one month. 

To simulate the end of the cropping period (i.e. harvest dates) we developed 

simple algorithms to generate unknown crop- and location-specific phenological 

parameters based on location-specific climatic and daylength characteristics, 

using wheat and maize as example crops (Chapter 6). In the main cropping 

regions of wheat (e.g. Russia, Canada, and France) we were able to simulate the 

lengths of the cropping period that correspond well with observed lengths. 

Agreement between observed and simulated lengths of the cropping period was 

lower for maize than for wheat, with in the main maize cropping regions over- 

and underestimations of 0.5 to 1.5 month. 

Recently Deryng et al. (2011) presented a similar methodology to simulate 

the length of the cropping period. Their results for simulated sowing dates are 

similar, while the presented methodology in this thesis to simulate the length of 

the cropping period resulted in better simulated harvest dates. For example in 

the main maize cropping areas of the USA our methodology underestimated the 



General discussion     Chapter 7 

 

147 

length of the cropping period by one month, while the methodology of Deryng et 

al. (2011) resulted in an underestimation of two to three months. 

The objective of a global crop growth model is generally yield simulation. 

Therefore, besides the comparison of observed and simulated sowing and 

harvesting dates, we also evaluated possible consequences for simulated yields 

related to these deviations (Chapters 5 & 6). We showed that simulated yields are 

sensitive to the simulated sowing and harvesting dates. Yet, our evaluation of 

possible consequences for simulated yields related to uncertainties in simulated 

sowing and harvesting dates showed that simulated yields (for wheat and maize) 

are rather similar using either simulated sowing and harvesting dates or 

observed sowing and harvesting dates; the difference not being larger than 20%.  

Based on the outcomes of Chapters 5 & 6 I conclude that our methodologies to 

simulate the length of the cropping period are accurate enough to simulate global 

crop yields. This conclusion is only valid for the used crop growth model (LPJmL) 

combined with monthly climate input data. Whether simulated sowing and 

harvesting dates are accurate enough for more detailed crop growth models in 

which crop damaging factors such as heat and frost stress are included, com-

bined with more detailed climate input data, needs further evaluation. 

 

1.3 Design of global crop growth models: matching data and models 

The first step in developing a model is to define its objective. The main aim of 

crop growth models embedded in large scale integrated assessment models such 

as IMAGE 2.4 (MNP, 2006) or SEAMLESS (Van Ittersum et al., 2008) is the 

simulation of accurate yields for various crops. The main variable of interest in 

this thesis was therefore yield, or important determining processes of yield such 

as phenology. Although simulations of water- and nutrient-limited productivity 

are also important for integrated assessment models, in my opinion for accurate 

simulation of these production levels, first large scale simulation of potential 

yields should be carefully examined. Below I propose a structure for a global crop 

growth model and the suitable temporal and spatial resolutions for input data to 

simulate potential yields. 

In Chapter 4 we concluded that for accurate simulation of crop phenology 

emergence/sowing dates should be available at a spatial resolution of at least 

100 km × 100 km in Germany. For natural vegetation, Rötzer and Chmieleski 

(2001) found the start of the growing season (as determined by temperature) to 

move with a speed of 44 km d−1 from south to north, 200 km d−1 from west to 

east, and 32 m d−1 with increasing altitude across Europe. Their results indicate 

that temperature gradually changes over space. This knowledge, combined with 
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the results from Chapter 4, justified our choice in Chapter 5 to generate sowing 

dates at a resolution of 0.5° × 0.5°. In Chapter 4 we also concluded that one 

phenological parameter set is sufficient for accurate simulations of crop 

phenology for a country as large as Germany; therefore, the spatial scale at which 

our methodology to generate phenological parameters was applied (0.5° × 0.5°) 

can be defended (Chapter 6). Moreover, in Chapter 3 we concluded that 

increasing non-linearity in models gave higher sensitivity to temporal aggrega-

tion of climate data. The use of climate data with a monthly resolution in Chapter 

6 is justified, as we simulated phenology mainly with help of linear relationships. 

Challinor et al. (2004) and Bondeau et al. (2007) indicated that a mechanistic 

crop growth model is required to capture the impact of climatic variability on 

crop yields of large areas. In addition, the level of detail should be adjusted to the 

resolution of the available data (Challinor et al., 2003; Ewert, 2004b). The level of 

detail of particularly the representations of light interception and light utilization 

for biomass production and the resolution of the weather data used differs 

between large scale crop growth models (Table 1.1). Interestingly, two crop 

growth models with approximately equal levels of detail to simulate crop growth, 

GLAM-MOSE2 (Challinor et al., 2004; Osborne et al., 2007) and LPJmL (Bondeau 

et al., 2007) use climate input data with rather different temporal resolutions, 30 

minutes versus monthly, respectively. The results of Chapter 2 indicated that 

extra detail in the representation of biomass production did not significantly 

change model results, although the less detailed representation of light 

utilization for biomass production may have been an oversimplification of reality. 

In Chapter 3 we found that adding extra detail to a model (i.e. non-linear 

relationships) resulted in a higher sensitivity of model outcomes to weather data 

with a low resolution. Whether model uncertainty unnecessarily increases when 

detailed approaches are combined with climate data with a low resolution needs 

further examination by using observations of biomass. Nevertheless, combining 

the conclusions of Chapter 2 & 3 may imply that if the main objective of the 

model is to simulate yield and if only temporarily sparse weather data are 

available, the less detailed representations of both light interception and light 

utilization for biomass production are best suited for a global crop growth model. 

I therefore plead to let the resolution of the available data influence the final 

design of a crop growth model as much as the aim of the model. 

Based on the conclusions of this thesis and conclusions from previous 

research, I constructed a schematic overview of a model which I expect to 

simulate reasonable potential yields at the global scale if only monthly aggre-

gates of climate data at a 0.5° × 0.5° are available (Fig. 7.1). The proposed model 



General discussion     Chapter 7 

 

149 

consists of the light interception representation as applied in the global crop 

growth model LPJmL, combined with the radiation use efficiency approach (see 

Chapter see 2 & 3 for detailed descriptions of these approaches) as, among 

others, applied in the global crop growth models GEPIC, DAYCENT, and PEGASUS, 

and phenology determining the value of the partitioning coefficients. Simulation 

of sowing dates and phenological cultivar characteristics should be part of the 

model (see Chapter 5 & 6), based on location-specific climatic and/or daylength 

conditions. The question marks in Fig. 7.1 indicate issues which are important for 

potential yields, but require more research before they can be implemented in 

the proposed model. These items will be discussed in the next section. 

Fig. 7.1 Schematic overview of the proposed global crop growth model for potential 

yield simulations at a resolution of 0.5° × 0.5°; boxes in light grey indicate processes, 

state/rate variables, or simulated parameters, boxes in dark grey indicate input data. 

LAImaxLAImax and shape parameters define the shape of the leaf area index curve, including the 

onset of leaf senescence; SLASLA influences the biomass allocated to the leaves, the 

partitioning coefficients determine the biomass allocated to the other organs; kk is the 

light extinction coefficient and RUERUE  radiation use efficiency. See Chapter 2 & 3 for a 

description of the leaf area index and biomass production simulation, Chapter 5 & 6 for 

a description of the simulation of sowing dates and generation of cultivar charac-

teristics. The question marks indicate issues for further research (see Section 1.4). 
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1.4 Directions for future research to improve global potential yield 

simulations 

1.4.1 Phenology: simulation of flowering dates at the global scale 

In this thesis the importance of the simulation of phenological development of 

crops for yield simulation has been addressed several times (Chapters 2, 4, 5 & 

6). In Chapter 2 we showed the importance of representing the right timing of 

the onset of leaf senescence for simulated wheat yields; it is expected that also 

for other crops the timing of leaf senescence is essential for crop growth simula-

tion. Yet, we found that the onset of leaf senescence is not explicitly and 

unambiguously defined by the crop modelling community, since between 

modelling approaches the definition of the parameter representing the onset of 

leaf senescence is different (see e.g. Havelka et al. (1984), Mi et al. (2000), Araus 

and Tapia (1987), and Neitsch et al. (2005)). Although the exact timing of leaf 

senescence is not well-defined, it is clear that the onset of leaf senescence is 

related to the timing of flowering (also referred to as anthesis), as most of the 

biomass produced after anthesis is used for grain filling (Schnyder, 1993) and 

hence there is no biomass available to form new leaves after anthesis. In Chapter 

6 we indicated that the complex process that determines differences in the 

timing of flowering between cultivars is not well-understood. To improve the 

simulation of crop production at the global scale I therefore propose that 

research that enhances the understanding of the timing of flowering of cultivars 

used in different regions of the globe should be given priority. The next step 

should be the development of a methodology that is capable of accurately 

simulating flowering dates at the global scale, including possible adaptation 

strategies by farmers to combat negative effects of climate change via changes in 

cultivar use. Finally simulated flowering dates should be connected to the 

simulation of leaf area index, so that the onset of leaf senescence is simulated 

more accurately (via the shape parameters, Fig. 7.1, question mark a). As indi-

cated in Chapter 6, simulated interannual variability of harvesting, and possibly 

also simulated interannual variability of flowering dates, depends on whether or 

not daylength is considered in the simulation of crop phenology. However, 

observations of flowering and harvesting dates for multiple years and multiple 

regions are required to clarify whether considering the effects of daylength in the 

simulation of phenology improves the simulation of phenological stages (Fig. 7.1, 

question mark b). 

Due to the expected increase in extreme weather events (Easterling et al., 

2000; Salinger et al., 2005; Beniston et al., 2007) possible crop yield losses as a 

result of extreme temperatures is an emerging research topic. Useful studies 
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have been carried out at the regional (see Trnka et al. (2011) and Challinor et al. 

(2005)) and global scale (see Teixeira et al. (under review)). Crops are in 

particular vulnerable to extreme temperatures during flowering (Mitchell et al., 

1993; Ferris et al., 1998; Challinor et al., 2005; Craufurd and Wheeler, 2009). Yet, 

the above stated studies did not address the simulation of flowering dates (Trnka 

et al., 2011) or evaluate simulated flowering dates (Challinor et al., 2005; 

Teixeira et al., under review), which makes the outcomes of these studies 

questionable. A methodology capable of accurate simulation of the timing of 

flowering could therefore also improve assessments of possible implications of 

extreme temperature events on future crop production (Fig. 7.1, question mark 

c). 

 

1.4.2 Other issues related to potential yield simulation 

As indicated in Fig. 1.1 (Chapter 1) atmospheric CO2 concentration influences 

potential yields. Both global and field scale crop growth models take this effect 

into account, e.g. LPJmL and GECROS (Yin and van Laar, 2005), although the best 

approach of modelling the CO2 effect on crops is still subject of debate (Long et 

al., 2006; Ewert et al., 2007; Tubiello et al., 2007). In Chapter 2 we indicated that 

the use of a constant value for the radiation use efficiency for the whole cropping 

period may have been an oversimplification of reality. It should therefore be 

investigated if it is possible to extend the radiation use efficiency approach to 

account for effects of atmospheric CO2 concentration and temperature and 

radiation conditions during the growing season, as proposed by e.g. Reyenga et 

al. (1999) or Stöckle and Kemanian (2009). In particular it should be studied if 

the approach is suitable for global application, taking into account the spatial and 

temporal resolution of the available climate data (Fig. 7.1, question mark d). 

A challenge for crop growth modellers is to allocate simulated biomass to the 

different organs of the plant (Kemanian et al., 2007). Existing global crop growth 

models apply different methodologies, ranging from an empirical approach in 

which among others leaf area index determines the produced leaf biomass (e.g. 

in LPJmL), to a more mechanistic approach in which produced leaf biomass 

determines the leaf area index (e.g. in PEGASUS). To my knowledge a systematic 

analysis comparing different approaches has not been carried out. Since simu-

lated yield may be sensitive to the allocation approach chosen, enhanced insight 

in the representation of this process will give scope for further improvement of 

global crop growth models (Fig. 7.1, question mark e). 

As indicated by Ewert et al. (2007) technological progress over time, due to 

improved crop management and cultivars via progress in breeding (e.g. im-
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proved harvest index or delay of leaf senescence) is important to account for in 

global crop growth models, especially if they are applied for future crop produc-

tion assessments. To be able to account for improved cultivars, a mechanistic 

approach should be developed which translates improvements in cultivar 

characteristics into yield increases via parameters that represent cultivar charac-

teristics, e.g. a change in the partitioning coefficients could account for a change 

in the harvest index. In the absence of such mechanistic approaches for global 

crop modelling, empirical relationships about yield changes due to technology 

development as proposed by e.g. Ewert et al. (2005) for the European situation, 

remain most suitable to account for the effects of technology development on 

crops. It is however important to separate in this approach the effects of yield 

gap closure (e.g. due to a higher or better balanced application of fertilizers) on 

the one hand and increases in yield potential (due to progress in breeding) on the 

other hand. Moreover, it should be studied how to extrapolate these relation-

ships to other regions outside Europe (Fig. 7.1, question mark f). 

 
1.4.3 Evaluation of global crop growth models 

To establish an overall credibility of a model it must be evaluated. In general, the 

objective of global crop growth models is yield simulation. Observed yield data 

are therefore required to evaluate global crop growth models. Nevertheless, yield 

data alone are not sufficient. To assess whether the model is right for the right 

reasons (i.e. to be able to identify possible compensation errors), evaluation of 

other simulated variables (e.g. timing and length of cropping period) is also 

essential. The evaluation of existing global crop growth models has mainly been 

based on statistics from the Food and Agriculture Organization of the United 

Nations (FAO) reporting actual yields, often only per country. Recently databases 

developed with more comprehensive information on harvested area, crop yield 

(also largely based on FAO statistics (Monfreda et al., 2008)), and cropping 

periods (Portmann et al., 2010; Sacks et al., 2010) give scope for further evalua-

tion of global crop growth models. The databases were already applied by 

Deryng et al. (2011) for the evaluation of PEGASUS. Importantly, it should be 

noted that yield data reported by FAO are actual yields, i.e. yields determined by 

deficiencies in water, nutrients, and other (a)biotic stresses such as heat stress or 

the effects of pests and diseases, the latter stresses not being captured by global 

crop growth models (or field-scale crop growth models). Therefore, the useful-

ness of FAO data for the evaluation of global crop growth models is limited. 

Obviously, simulated potential yields should at least be higher than yields 
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reported by FAO. Hence, as a first check of global crop growth models FAO data 

could be used to examine if simulated potential yields are high enough. 

A more promising approach to evaluate simulated potential yields is given by 

Reidsma et al. (2009). In their study, a European database (Farm Accountancy 

Data Network) was used with among other things regionally averaged observed 

crop yields and maximum observed crop yields as achieved by the ‘best’ farmers. 

They assumed the maximum observed crop yield per region to be indicative for 

the yield potential for that region. Results from such analyses might be extended 

to other regions with similar climatic conditions and with knowledge about 

applied management (e.g. irrigation and fertilisation practices). In addition to 

this, a global database with experimental yields, including other variables such as 

leaf area development and timing of senescence, will be a useful instrument for in 

depth evaluations of global crop growth models. Finally, remote-sensing data 

may be an addition source of data to evaluate e.g. simulated crop development 

(Viña et al., 2004). 

Besides observations, knowledge from local experts on potential crop yields 

and possible yield gaps due to water and/or nutrient deficits and/or other 

(a)biotic stresses may be a valuable addition for the evaluation of global crop 

growth models. Recently Hengsdijk and Langeveld (2009) made a start with the 

collection of these data. Finally, as I discussed in Chapter 1, a comparative 

analysis of yields assessed with different methods, i.e. global crop growth models 

the frontier function as proposed by Neumann et al. (2010) or the statistical 

approach used by Lobell et al. (2011), could help forward the global crop growth 

modelling community. 

 

2. Conclusions 

The work described in this thesis enhances understanding related to the 

upscaling of crop growth models from field to globe. In particular it shows that: 

1. for crop growth models applied at large scales, particular attention should 

be given to the choice of the representation of the leaf area development. A 

more mechanistic approach does not generally result in better model 

performance;  

2. an increase in the level of detail in models results in higher sensitivity to 

temporally aggregated input data, hence the temporal resolution of the 

available input data should define the design of a (global) crop growth 

model as much as the aim of the model; 
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3. spatial variability of sowing dates within a region or country can be large, 

nevertheless, the use of aggregated sowing dates at a 100 km × 100 km 

resolution in crop growth models results in simulated lengths of cropping 

periods which deviate less than one week from observed lengths; 

4. it is acceptable to simulate missing sowing dates of various crops based on 

location-specific climatic conditions (i.e. sowing is simulated on the day 

when temperature exceeds a crop-specific threshold or at the onset of the 

wet season). The level of accuracy of the simulated sowing dates is high 

enough for application within a global crop growth model, with differences 

in simulated yields less than 20%, using either simulated sowing and 

harvesting dates or observed sowing and harvesting dates; 

5. required but unknown parameter values to represent phenological 

characteristics of wheat and maize cultivars can be generated based on 

location-specific temperature and daylength conditions. With help of these 

generated parameters observed lengths of cropping periods can be 

adequately simulated at the global scale, including a probably realistic 

interannual variability in cropping period lengths. 
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Appendix A 

 

1. Radiation interception  

1.1. Detailed leaf area index approach 

During the juvenile stage or until a certain LAILAI  threshold (LAIjLAIj, m2 m−2), the rate 

of increase of LAILAI  is exponential and mainly driven by temperature, through its 

effect on cell division and extension: 

 
dLAI

dt
= LAI £Rg £ Te® £Wf

dLAI

dt
= LAI £Rg £ Te® £Wf  (Eq. A.3.1) 

Te® = max(0; [Taverage ¡ Tbase])Te® = max(0; [Taverage ¡ Tbase])  (Eq. A.3.2) 

 

where RgRg ((°Cd) −1) is the maximum relative growth rate of LAILAI , Te®Te®  (°C) the 

effective temperature, calculated as the difference between daily average 

temperature (TaverageTaverage, °C) and a base temperature (TbaseTbase, °C), and WfWf (−) a water 

stress factor, derived from the ratio between actual and potential transpiration. 

 

Beyond the juvenile stage: 

 
dLAI

dt
=

dWl

dt
£ SLA £Wf

dLAI

dt
=

dWl

dt
£ SLA £Wf  (Eq. A.3.3) 

 

where dWl=dtdWl=dt (g C m−2 d−1) is the simulated rate of increase in leaf weight and SLASLA 

(m2 (g C)−1) is a constant specific leaf area of new leaves.  

The senescence rate is described by: 

 
dLAI

dt
= ¡rd £ LAI

dLAI

dt
= ¡rd £ LAI   (Eq. A.3.4) 

 

with: 

 

rd = max
¡

Rd-ag; Rd-sh

¢

rd = max
¡

Rd-ag; Rd-sh

¢

 and   (Eq. A.3.5) 

Rd-sh = max

·

0;min

µ

Rd-shmx;Rd-shmx £
LAI ¡LAIc

LAIc

¶¸

Rd-sh = max

·

0;min

µ

Rd-shmx;Rd-shmx £
LAI ¡LAIc

LAIc

¶¸

 (Eq. A.3.6) 

 

where Rd-agRd-ag is an exogenously defined relation between temperature and the 

relative death rate due to ageing (Fig. 3.2), which only takes place after anthesis. 
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Rd-shRd-sh is the relative death rate due to shading, where LAIcLAIc (m2 m−2) is the critical 

value above which shading only takes place and Rd-shmxRd-shmx (d−1), the maximum 

possible relative senescence rate due to shading. 

 

1.2. Summarized leaf area index approach 

Before senescence starts, the fraction of an exogenously defined maximum leaf 

area index (fLAImaxfLAImax, −) is calculated as: 

 

fLAImax =
fTsum

fTsum +exp(l1 ¡ l2 £ fTsum)
fLAImax =

fTsum

fTsum +exp(l1 ¡ l2 £ fTsum)
  (Eq. A.3.7) 

l1 = ln

µ

fTsum1

fLAI1

¡ fTsum1

¶

+l2 £ fTsum1
l1 = ln

µ

fTsum1

fLAI1

¡ fTsum1

¶

+l2 £ fTsum1
  (Eq. A.3.8) 

l2 =
ln

£ fTsum1

fLAI1
¡ fTsum1

¤

¡ ln
£ fTsum2

fLAI2
¡ fTsum2

¤

fTsum2
¡ fTsum1

l2 =
ln

£ fTsum1

fLAI1
¡ fTsum1

¤

¡ ln
£ fTsum2

fLAI2
¡ fTsum2

¤

fTsum2
¡ fTsum1

 (Eq. A.3.9) 

 

where fTsumfTsum (−) is the fraction, on a specific day, of the total temperature sum 

required to reach maturity (based on the effective temperature), and l1l1 (−) and l2l2 

(−) are shape coefficients, calculated from the fractions of leaf area index 

(fLAI1fLAI1, −; fLAI2fLAI2, −) and the fractions of the temperature sum (fTsum1
fTsum1

, −; fTsum2
fTsum2

, −) 

at exogenously defined inflexion points on the leaf area development curve. 

Following the onset of senescence, fLAImaxfLAImax is calculated as: 

  

  

fLAImax =
(1¡ fTsum)2

(1¡ fTsum a)
2

fLAImax =
(1¡ fTsum)2

(1¡ fTsum a)
2
  (Eq. A.3.10) 

 

where fTsum afTsum a (−) is the fraction of the total temperature sum when senescence 

starts.  

Potential leaf area index (LAIpLAIp, m2 m−2) is calculated from an exogenously 

defined crop-specific maximum leaf area index (LAImaxLAImax, m2 m−2) and fLAImaxfLAImax: 

 

LAIp = fLAImax £ LAImaxLAIp = fLAImax £ LAImax  (Eq. A.3.11) 

 

LAIpLAIp is reduced if the biomass required to support the calculated leaf area index 

is not available: 

 

LAI = min
¡

LAIp;
£

Bt ¡Br

¤

£SLA

¢

LAI = min
¡

LAIp;
£

Bt ¡Br

¤

£SLA

¢

  (Eq. A.3.12) 
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where BtBt and BrBr (g C m−2) are standing total biomass and standing root biomass, 

respectively (Bondeau et al., 2007; Neitsch et al., 2005). 

To account for water stress, in the pre-anthesis phase a water scaler (WsWs,−) is 

included to reduce LAIpLAIp. This water stress scaler is either based on the ratio of 

actual and potential transpiration (in combination with the radiation use 

efficiency approach), or (in combination with the Farquhar photosynthesis 

model) as follows: 

 

Ws =
S

¡

Eq £ ®max

¢

=
¡

1 + gm

gp

¢Ws =
S

¡

Eq £ ®max

¢

=
¡

1 + gm

gp

¢  (Eq. A.3.13) 

 

where SS  is water supply (see Eq. A.3.30, mm d−1), (Eq £ ®max)(Eq £ ®max) potential 

evapotranspiration (mm d−1), gmgm a scaling factor (mm s−1), and gpgp potential 

canopy conductance (see Eq. A.3.29, mm s−1) (Gerten et al., 2004). 

 

2. Biomass productivity 

2.1. Detailed biomass productivity approach 

Daily net photosynthesis (AndAnd, g C m−2 d−1) is calculated as the gradual transition 

between the light-limited (JeJe, g C m−2 h−1) and Rubisco-limited (JcJc, g C m−2 h−1) 

conditions: 

 

And =

µ

Je + Jc ¡

p

(Je + Jc)2
¡ 4£ µ £ Je £ Jc

2£ µ

¶

£dl ¡RdAnd =

µ

Je + Jc ¡

p

(Je + Jc)2
¡ 4£ µ £ Je £ Jc

2£ µ

¶

£dl ¡Rd (Eq. A.3.14) 

 

where θ  is a co-limitation parameter (−), dldl (h d−1) the day length, and RdRd 

(g C m−2 d−1) the “dark respiration”, with: 

 

Je =
C1 £ APAR £ Cq

dl

Je =
C1 £ APAR £ Cq

dl

  (Eq. A.3.15) 

Jc =
C2 £ Vm

24
Jc =

C2 £ Vm

24
  (Eq. A.3.16) 

 

where APARAPAR  (MJ m−2 d−1) is daily absorbed photosynthetically active radiation 

and CqCq (mol photons MJ−1) a conversion factor for solar radiation, with: 

 

C1 = ÁTC3 £Cmass £®C3 £
pi ¡¡¤

pi + 2£¡¤
C1 = ÁTC3 £Cmass £®C3 £

pi ¡¡¤
pi + 2£¡¤

,  (Eq. A.3.17) 

C2 =
pi ¡ ¡¤

pi + KC £ (1 + [O2 ]
KO

)
C2 =

pi ¡ ¡¤

pi + KC £ (1 + [O2 ]
KO

)
,  (Eq. A.3.18) 
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pipi (Pa), the partial pressure of CO2 in the intercellular air spaces of the leaf: 

 

pi = ¸£ ca £ Ppi = ¸£ ca £ P  and  (Eq. A.3.19) 

 

papa (Pa), the partial pressure of ambient CO2: 

 

pa = ca £ Ppa = ca £ P   (Eq. A.3.20) 

 

¡¤¡¤ (Pa), the CO2 compensation point: 

 

¡¤ =
[O2]

2£ ¿
¡¤ =

[O2]

2£ ¿
, and  (Eq. A.3.21) 

 

the temperature dependent parameters KCKC, KOKO, and ¿¿: 

 

Ki =K25£Q
(T¡25)=10
10Ki =K25£Q
(T¡25)=10
10   (Eq. A.3.22) 

 

where the number 24 (h d−1) is the number of hours per day, ÁTC3ÁTC3 (–) a 

temperature stress factor, CmassCmass (g mol–1) the atomic mass of carbon, ®C3®C3 the C3 

quantum efficiency (μmol μmol−1), [O2][O2] (Pa) the partial pressure of oxygen, ¸̧ (Pa 

Pa−1) the ratio of pipi to papa (¸̧ = ¸max¸max under optimal water conditions), caca (μmol mol–

1) the ambient mole fraction of CO2, PP  atmospheric pressure (Pa), KCKC (Pa) the 

Michaelis-Menten constant for CO2, KOKO (Pa) the Michaelis-Menten constant for 

O2, ¿¿  (μmol μmol–1) the CO2/O2 specificity ratio, with KiKi either KCKC, KOKO or ¿¿ , and 

Q10Q10 the accompanying Q10Q10 values, and VmVm (g C m−2 d−1) the maximum daily rate of 

photosynthesis:  

 

 Vm =

µ

1

b

¶

£

µ

C1

C2

¶

£

£¡

2£ µ¡ 1
¢

£s¡
¡

2£ µ£ s¡C2

¢

£¾
¤

£APAR£CqVm =

µ

1

b

¶

£

µ

C1

C2

¶

£

£¡

2£ µ¡ 1
¢

£s¡
¡

2£ µ£ s¡C2

¢

£¾
¤

£APAR£Cq  

  (Eq. A.3.23) 

with: 

 

¾ =

·

1 ¡
C2 ¡ s

C2 ¡ µ £ s

¸1=2

¾ =

·

1 ¡
C2 ¡ s

C2 ¡ µ £ s

¸1=2

,  (Eq. A.3.24) 

s =
24

dl

£ bs =
24

dl

£ b, and  (Eq. A.3.25) 
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the “dark” respiration (RdRd): 

 

Rd = b£ VmRd = b£ Vm  (Eq. A.3.26) 

 

where bb  is a constant Rd=VmRd=Vm ratio (−). 

In case of water stress, the photosynthesis rate is related to canopy conductance 

through the diffusion gradient in CO2 concentration as a result of the difference in 

pipi and papa. This can be expressed in terms of total daytime net photosynthesis. 

Total daytime net photosynthesis (AdtAdt, g C m−2 d−1) is calculated as: 

 

Adt = And +
¡

1¡
dl

24

¢

£RdAdt = And +
¡

1¡
dl

24

¢

£Rd  (Eq. A.3.27) 

 

or, expressed in terms of canopy conductance: 

 

Adt =
dl £ (gc ¡ gmin)

1:6
£ [ca £ (1¡ ¸)]Adt =

dl £ (gc ¡ gmin)

1:6
£ [ca £ (1¡ ¸)]  (Eq. A.3.28) 

 

where gcgc (mm s−1) is average daytime canopy conductance, gmingmin (mm s−1) the 

minimum canopy conductance, which accounts for water loss not directly related 

with photosynthesis, the factor 1.6 accounts for the difference in the diffusion 

coefficients of CO2 and water vapour; in Eq. A.3.28 AdtAdt is expressed in mm d−1 

(the conversion from g C m−2 d−1 to mm d−1 is based on an the ideal gas) and dldl is 

expressed in s. gcgc is calculated by rearranging Eq. A.3.28: 

 

gc = gmin +
1:6£Adt

[ca £ (1¡¸)]£dl
gc = gmin +

1:6£Adt

[ca £ (1¡¸)]£dl
  (Eq. A.3.29) 

 

Maximum (non-water limited) daily net potential photosynthesis rate is 

calculated with help Eq. A.3.28 with ¸̧ = ¸max¸max, and accordingly, applying Eq. A.3.29 

and Eq. A.3.14 with ¸̧ = ¸max¸max and APARAPAR  = PARPAR , i.e. all available photosynthetically 

active radiation, gives the maximum average daytime canopy conductance, i.e. 

maximum potential canopy conductance (gpgp, mm s−1).  

Water stress occurs when water supply (SS , mm d−1) is lower than water demand 

(DD, mm d−1). Supply is given by the maximum daily transpiration rate possible 

under well-watered conditions (EmaxEmax, mm d−1) and the relative soil moisture in 

the rooting zone (WrWr, m3 m−3): 

 

S = Emax £WrS = Emax £Wr  (Eq. A.3.30) 
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The soil is represented by a simple bucket containing two layers, each with a 

fixed thickness and a fixed fraction of the roots present. The soil water content of 

each layer is updated daily, taking into account transpiration, evaporation, 

runoff, and percolation through the layers. WrWr is calculated by summing the soil 

water content of the two soil layers, which are multiplied by the fraction of roots 

in the specific layer and divided by its thickness. Finally, WrWr is expressed as a 

fraction of WmaxWmax, which is a soil-specific parameter, indicating the difference 

between field capacity and wilting point. Initialisation of the water balance is 

obtained by a spin-up run (for more details, see Gerten et al., 2004). 

Demand is dependent on the fraction of the daytime the canopy is wet (ww, −), 

potential evapotranspiration ((Eq £ ®max)(Eq £ ®max), mm d−1), based on the Priestley-Taylor 

equations, gpgp, and an empirical parameter gmgm (mm s−1): 

 

D = (1¡ w)£
(Eq £ ®max)

(1 + gm

gpot
)

D = (1¡ w)£
(Eq £ ®max)

(1 + gm

gpot
)

  (Eq. A.3.31) 

 

Water stress results in a lower canopy conductance, therefore, Eqs A.3.20 and 

A.3.33 are solved simultaneously, using a bisection method, to obtain values of 

AndAnd and ¸̧ under water-limited conditions. 

Finally, net primary production (NPPNPP , g C d−1 m−2) is calculated as: 

 

NPP = And ¡ Rr ¡ Rso ¡ Rp ¡ RgNPP = And ¡ Rr ¡ Rso ¡ Rp ¡ Rg  (Eq. A.3.32) 

 

where RR (g C m−2 d−1) is the maintenance respiration of roots, storage organs and 

a reserve pool, respectively, based on tissue-specific C:N ratios, temperature, the 

amount of biomass, and a respiration rate, and RgRg the growth respiration: 

 

Rg = max(0; 0:25 £ And ¡ Rr ¡ Rso ¡ Rp)Rg = max(0; 0:25 £ And ¡ Rr ¡ Rso ¡ Rp) (Eq. A.3.33) 

 

A more detailed description of the functions used is provided by Haxeltine and 

Prentice (1996) and Sitch et al. (2003). 
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2.2. Summarized biomass productivity approach 

Net productivity (NPPNPP , g C m−2 d−1) is calculated as: 

 

NPP = RUE £ Rdr £ 0:5 £ (1 ¡ e¡k£LAI ) £WfNPP = RUE £ Rdr £ 0:5 £ (1 ¡ e¡k£LAI ) £Wf  (Eq. A.3.34) 

 

where RUERUE  (g C MJ−1) is the radiation use efficiency, RdrRdr (MJ m−2 d−1) daily 

incoming short-wave radiation, and kk  (−) the light extinction coefficient, the 

number 0.5 (MJ PAR (MJ short-wave radiation)−1) is used, because half of the 

daily incoming short-wave radiation is photosynthetically active radiation, and 

WfWf (−) a water stress factor, i.e. the ratio of actual and potential transpiration. 

Potential transpiration is calculated based on the Penman equation (Penman, 

1948), actual transpiration is calculated based on its potential value, but also on 

soil water content (WcWc, m3 m−3) and soil characteristics. Water available for the 

crop is calculated on the basis of a soil water balance, calculated for one layer. 

The thickness of the layer increases with increasing root extension. Newly 

explored soil is assumed to be at field capacity. Water content of the soil is 

updated daily, taking into account precipitation, transpiration, evaporation, 

runoff and percolation. Initial water content, fed into the model, is used for 

initialisation of the water balance (for more details, see Farré et al., 2000).
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Fig. B.5.1 Analysis of sowing date patterns of wheat: a) difference between simulated 

sowing dates and observed sowing dates, b) simulated sowing date, c) observed sowing 

dates according to MIRCA2000. White colours indicate crop area smaller than 0.001% 

of grid cell area. Sowing dates in regions without seasonality are not shown.  
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Fig. B.5.2 Analysis of sowing date patterns of rice: a) difference between simulated 

sowing dates and observed sowing dates, b) simulated sowing date, c) observed sowing 

dates according to MIRCA2000. White colours indicate crop area smaller than 0.001% 

of grid cell area. Sowing dates in regions without seasonality are not shown.  
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Fig. B.5.3 Analysis of sowing date patterns of maize: a) difference between simulated 

sowing dates and observed sowing dates, b) simulated sowing date, c) observed sowing 

dates according to MIRCA2000. White colours indicate crop area smaller than 0.001% 

of grid cell area. Sowing dates in regions without seasonality are not shown.  
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Fig. B.5.4 Analysis of sowing date patterns of millet: a) difference between simulated 

sowing dates and observed sowing dates, b) simulated sowing date, c) observed sowing 

dates according to MIRCA2000. White colours indicate crop area smaller than 0.001% 

of grid cell area. Sowing dates in regions without seasonality are not shown.  
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Fig. B.5.5 Analysis of sowing date patterns of pulses: a) difference between simulated 

sowing dates and observed sowing dates, b) simulated sowing date, c) observed sowing 

dates according to MIRCA2000. White colours indicate crop area smaller than 0.001% 

of grid cell area. Sowing dates in regions without seasonality are not shown.  
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Fig. B.5.6 Analysis of sowing date patterns of sugar beet: a) difference between sim-

ulated sowing dates and observed sowing dates, b) simulated sowing date, c) observed 

sowing dates according to MIRCA2000. White colours indicate crop area smaller than 

0.001% of grid cell area. Sowing dates in regions without seasonality are not shown.  

Mollweide equal area projection

a)

b)

c)

0 2.500 5.000 7.500 10.000

km

day of year

1 - 30

31 - 60

61 - 90

91 - 120

121 - 150

151 - 180

181 - 210

211 - 240

241 - 270

271 - 300

301 - 330

331 - 365

day of year

1 - 30

31 - 60

61 - 90

91 - 120

121 - 150

151 - 180

181 - 210

211 - 240

241 - 270

271 - 300

301 - 330

331 - 365

months

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

6

0     2500  5000   7500 10000     



 

186 

Fig. B.5.7 Analysis of sowing date patterns of cassava: a) difference between simulated 

sowing dates and observed sowing dates, b) simulated sowing date, c) observed sowing 

dates according to MIRCA2000. White colours indicate crop area smaller than 0.001% 

of grid cell area. Sowing dates in regions without seasonality are not shown.  
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Fig. B.5.8 Analysis of sowing date patterns of sunflower: a) difference between sim-

ulated sowing dates and observed sowing dates, b) simulated sowing date, c) observed 

sowing dates according to MIRCA2000. White colours indicate crop area smaller than 

0.001% of grid cell area. Sowing dates in regions without seasonality are not shown.  
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Fig. B.5.9 Analysis of sowing date patterns of soybean: a) difference between simulated 

sowing dates and observed sowing dates, b) simulated sowing date, c) observed sowing 

dates according to MIRCA2000. White colours indicate crop area smaller than 0.001% 

of grid cell area. Sowing dates in regions without seasonality are not shown.  
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Fig. B.5.10 Analysis of sowing date patterns of groundnut: a) difference between sim-

ulated sowing dates and observed sowing dates, b) simulated sowing date, c) observed 

sowing dates according to MIRCA2000. White colours indicate crop area smaller than 

0.001% of grid cell area. Sowing dates in regions without seasonality are not shown.  
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Fig. B.5.11 Analysis of sowing date patterns of rapeseed: a) difference between sim-

ulated sowing dates and observed sowing dates, b) simulated sowing date, c) observed 

sowing dates according to MIRCA2000. White colours indicate crop area smaller than 

0.001% of grid cell area. Sowing dates in regions without seasonality are not shown.  
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Sensitivity analysis of crop yields 

to sowing dates 

 

Methodology 

A possible application of sowing dates simulated with the presented method-

ology is to provide global crop growth models under future conditions with 

suitable cropping windows. We tested the sensitivity of the LPJmL dynamic 

global vegetation and crop model for different sowing dates on simulated crop 

yields for five locations with different seasonality types, using maize as an 

example crop. In LPJmL, crop growth is simulated using a combination of 

processes (photosynthesis, respiration, evapotranspiration, and leaf area devel-

opment) on a daily basis (for more details, see Bondeau et al., 2007). LPJmL does 

not consider the effects of extreme temperatures on crop growth and develop-

ment, e.g. frost damage. Phenological development of maize is simulated by 

accumulating temperature above the maize specific base temperature (8°C) until 

maturity is reached, taking into account the effect of photoperiod, as applied in 

the AFRCWHEAT2 model (Ewert et al., 1996), until anthesis. It was assumed for 

the five locations that farmers grow cultivars which are adapted to their 

environment. Required temperature sums till maturity per location-specific 

cultivar were calculated based on observed sowing and harvest dates, monthly 

temperature data from the year 1998, and photoperiods. Equal sensitivity to 

photoperiod between the cultivars was assumed (the optimum photoperiod was 

assumed to be 12.5h and the base photoperiod 24h). Yield was simulated for 

each location for a range of sowing dates (52, starting at the first of January, with 

steps of 7 days) for rainfed conditions, using the monthly climate data of the year 

1998, and assuming that farmers grow the same cultivar throughout the whole 

year. The crop was allowed to grow for a period of maximum 250 days. 

 

Results and Discussion 

In Fig. B.5.12, we display simulated maize yields per sowing date for the five 

locations, compared to the maximum simulated maize yield per location. The 

sensitivity of simulated maize yield to the sowing date at a location with no 

seasonality (Iquitos, Peru) is relatively small: simulated yield is, irrespective of 

sowing date, always at least 80% of the maximum simulated yield. Larger 

sensitivity is shown for locations with temperature seasonality (Amsterdam, the 

Netherlands and Kansas City, USA). In the Netherlands, yields of at least 80% of 
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the maximum yield are simulated, with sowing dates ranging from day of year 14 

to day of year 140. In the USA, yields of at least 80% of the maximum yield are 

simulated, with sowing dates ranging from day of year 21 to day of year 147. In a 

location with precipitation seasonality and a long wet season (Abuja, Nigeria), 

the range of sowing dates which results in simulated yields of at least 80% of the 

maximum is wider in comparison to a location with a shorter wet season (Delhi, 

India).  

 

Fig. B.5.12. Sensitivity of maize yield to sowing dates for five locations. Between 

brackets, the simulated respectively observed sowing dates are given. The dashed line 

indicates 80% of maximum simulated yield. 
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Summary 
 

In recent years, the scale of interest for application of crop growth models has 

extended from the plot and field to the region or even globe. In addition, the time 

frame of the assessments has increased from a season or a year to much longer 

time frames, e.g. 50-100 years as considered in climate change impact studies. 

The application of a crop growth model originally developed for the plot or field 

scale at larger scales without any adaptation might lead to inaccuracies in model 

outcomes. Moreover, if crop growth models are applied at large scales, problems 

arise with respect to missing input data and lack of parameter values for 

different regions. 

The appropriate level of detail to represent a process in a model is often seen 

as a critical and difficult step in model development. The level of detail should be 

a good balance between the objective of the model, which includes the scale of 

application, and the spatial and temporal resolution of the available data. 

Knowledge about the required level of modelling detail to accurately represent 

crop growth processes in crop growth models to be applied at large scales is 

scarce. In this thesis we analysed simulated potential yields, which resulted from 

models which apply different levels of detail to represent important crop growth 

processes, for a wide range of climatic conditions. In particular, we focussed on 

the processes of light interception, determined by leaf area dynamics, and light 

utilization for biomass production, two key processes for crop growth. Our 

results indicated that, after location-specific calibration, models with different 

levels of detail may perform similarly, but model performance was in general 

best for models which represented leaf area dynamics with the lowest level of 

detail (i.e. leaf area dynamics are simulated with help of a forcing function, 

defined in terms of sigmoidal and quadratic functions). Especially the 

representation of leaf senescence, and in particular its onset, was found to be 

critical for model performance. Additional tests of the behaviour of the models 

indicated that the light interception approach significantly influences model 

outcomes and that the light utilization process with the lowest level of detail 

(radiation use efficiency approach) may be an oversimplification of reality, since 

this approach does not consider the effects of high temperatures and high 

radiation intensities on the light utilization process. 

In contrast to field scale model applications, large scale applications often rely 

on data aggregated over space and/or time, e.g. the use of monthly weather data 

while crop growth models were originally developed and evaluated for daily 

weather data. We examined if daily weather data can be replaced by monthly 
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weather data in crop growth models. In particular, we studied whether the 

degree of detail in crop growth models determines their sensitivity to temporally 

aggregated weather input data. Results from different climatic regions in Europe 

showed that replacing daily weather data with temporally aggregated weather 

data resulted in higher simulated amounts of biomass. The magnitude of the day-

to-day variability in weather conditions affects the results: increasing variability 

results in stronger differences between model results due to aggregation. In 

addition, we found increasing detail in a modelling approach to give higher 

sensitivity to aggregation of input data. 

Most global crop growth models are run on a grid-based system. In grid-based 

systems spatially aggregated data are used, i.e. it is assumed that data such as 

weather and crop management (e.g. sowing dates or cultivar use) are 

homogeneous within a grid cell. We investigated the impact of the use of spatially 

aggregated sowing dates and temperatures on the simulated phenology of winter 

wheat in Germany. We found model outcomes as a result of using aggregated 

data to be similar in comparison with the use of non-aggregated data (i.e. 

location-specific data). We concluded that for simulation of winter wheat 

phenology, which consists of mainly linear relationships, the use of sowing dates 

and weather data with a 100 km × 100 km resolution is appropriate for regions 

with homogenous climatic characteristics, such as Germany. In addition, the 

results indicated that our assumption to use one phenological parameter set to 

capture the average response pattern of the development of different winter 

wheat cultivars found in a large country such as Germany, was justified. 

Generation or simulation of input data for crop growth models is necessary if 

the spatial resolution of the available data is unsuitable, when data are expected 

to change under future conditions, or when data are not available. Phenological 

data, e.g. sowing and harvesting dates, are examples of data that are often 

simulated within global crop growth models. Only recently two comprehensive 

global data sets of cropping calendars with global coverage, combining several 

sources of observed cropping calendars, have been developed. As a consequence, 

until recently simulation of phenology at the global scale, including sowing and 

harvesting dates, could hardly be evaluated. We aimed at simulating sowing 

dates of several major rainfed crops based on climatic conditions. We assumed 

farmers to sow either when temperature exceeds a crop-specific threshold or at 

the onset of the wet season, depending on the intra-annual variability in climatic 

conditions. From our results we concluded that our methodology is more 

accurate in regions where temperature is the main limiting factor for the length 

of the growing season than in regions where precipitation plays a major role. 
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Nevertheless for a large part of the globe our methodology is capable of 

simulating reasonable sowing dates, i.e. for the simulated crops (among others 

important crops such as maize, wheat, and rice) on at least 60% of the cultivated 

area the difference between simulated and observed sowing dates is less than 

one month, except for rapeseed and cassava.  

To simulate the end of the cropping period (i.e. harvesting dates) we 

developed simple algorithms to generate unknown crop- and location-specific 

phenological parameters based on location-specific climatic and daylength 

conditions, using wheat and maize as example crops. In the main cropping 

regions of wheat we were able to simulate lengths of the cropping periods that 

correspond well with observed lengths, i.e. on average there is a difference of 

approximately 2 weeks. Our methodology worked less well for maize, i.e. in the 

main maize cropping regions we over- and underestimated the cropping period 

length with 0.5 to 1.5 month, which can partly be explained by the high base 

temperature of maize and the low temperatures during the period in which 

maize is normally harvested at the northern hemisphere. Importantly, our 

evaluation of possible consequences for simulated yields related to uncertainties 

in simulated sowing and harvesting dates showed that simulated yields (for 

wheat and maize) are rather similar using either simulated sowing and 

harvesting dates or observed sowing and harvesting dates; the difference not 

being larger than 20%. The consideration of daylength reduces the simulated 

interannual variability of phenological stages to values that are probably more 

realistic compared to simulations of phenology based on temperature alone.  

The work described in this thesis enhances understanding related to the 

upscaling of crop growth models from field to globe. It became clear that for crop 

growth models designed for large scales particular attention should be given to 

the choice of the representation of the leaf area development. Moreover, the 

resolution of the available input data should define the design of a (global) crop 

growth model as much as the aim of the model. Additionally we found that it is 

possible to generate missing input data such as sowing and harvesting dates. The 

thesis concludes with a discussion on a proposed structure of a global crop 

growth model, in which this enhanced understanding is applied. The model is 

expected to simulate reasonable potential yields at the global scale if monthly 

aggregates of climate data at a 0.5° × 0.5° grid are available. The proposed model 

consists of a forcing function, defined in terms of sigmoidal and quadratic 

functions to represent light interception, combined with the radiation use 

efficiency approach, and phenology determining the allocation of biomass to the 

organs of the crop. To obtain sowing dates and phenological cultivar characteris-
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tics at an appropriate spatial resolution and to be able to take into account 

possible adaptation of farmers to changes in climatic conditions, these data are 

simulated within the model, based on location-specific climatic and daylength 

conditions. Based on the proposed model the thesis finally derives directions for 

future research to further enhance global crop growth modelling. It is indicated 

that further improvement of global crop growth models will be possible with 

increased understanding of the differences in timing of the flowering process 

between cultivars. In addition, research is required to improve the evaluation 

process of global crop growth models. 
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Samenvatting 
 

Het schaalniveau van de toepassing van gewasgroeimodellen is recentelijk 

uitgebreid van het perceel en veld naar de regio en zelfs de wereld. Bovendien is 

de tijdshorizon van de toepassingen toegenomen van een seizoen of een jaar tot 

veel langere periodes, bijvoorbeeld, zoals gebruikelijk in klimaatimpactstudies, 

50-100 jaar. Echter, het toepassen van modellen die oorspronkelijk ontwikkeld 

zijn voor de perceel- of veldschaal op grotere schaalniveaus zonder enige aan-

passing, kan leiden tot fouten en onnauwkeurigheden in de modeluitkomsten. 

Bovendien ontstaan er meestal problemen met betrekking tot ontbrekende 

invoergegevens en parameterwaardes voor verschillende regio’s als gewas-

groeimodellen worden toegepast op grote schaalniveaus. 

Het bepalen van de geschikte mate van detail om een proces weer te geven is 

een cruciale en moeilijke stap in het modelontwikkelingsproces. De mate van 

detail moet een balans zijn tussen het doel van het model, dat ook het 

schaalniveau betreft, en de ruimtelijke en temporele resolutie van de beschikbare 

invoergegevens. Kennis over de benodigde mate van detail om accuraat gewas-

groeiprocessen weer te geven in gewasgroeimodellen voor toepassing op grote 

schaalniveaus is schaars. In dit proefschrift hebben we daarom potentiële 

opbrengsten geanalyseerd, gesimuleerd door gewasgroeimodellen die 

verschillende maten van detail toepassen om belangrijke processen voor gewas-

groei weer te geven. We hebben hierbij gebruik gemaakt van weersgegevens van 

locaties met zeer verschillende klimaten. In het bijzonder hebben we de sleutel-

processen voor gewasgroei, namelijk lichtinterceptie, wat bepaald wordt door de 

groei van het bladoppervlak, en lichtbenutting voor biomassaproductie 

bestudeerd. Onze analyse liet zien dat, na locatiespecifieke kalibratie, modellen 

met verschillende maten van detail vergelijkbaar kunnen presteren, maar dat de 

modelprestatie in het algemeen het best was indien de groei van het 

bladoppervlak met het minste detail werd weergegeven (d.w.z. de groei van het 

bladoppervlak wordt gesimuleerd met behulp van sigmoïde en kwadratische 

functies). Het meest cruciaal voor de modelprestatie bleek de weergave van de 

bladveroudering, in het bijzonder het tijdstip van begin van de bladveroudering. 

Aanvullende testen met betrekking tot het gedrag van de modellen gaven aan dat 

de manier van weergave van de lichtinterceptie een significante invloed heeft op 

de modeluitkomsten. Verder gaven de uitkomsten aan dat de keuze voor de 

weergave van de biomassaproductie met het minste detail (stalings-

benuttingsefficiëntie) een te eenvoudige beschrijving van de werkelijkheid kan 
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zijn, omdat deze de effecten van hoge temperaturen en hoge stralingsinten-

siteiten niet meeneemt. 

Gewasgroeimodellen zijn oorspronkelijk ontwikkeld en geëvalueerd voor het 

gebruik van dagelijkse weergegevens. Echter, voor toepassingen van modellen op 

grote schaalniveaus wordt vaak gebruik gemaakt van invoergegevens die zijn 

samengevoegd in de ruimte en/of over de tijd (aggregatie), bijvoorbeeld 

weergegevens met een maandelijkse resolutie. We hebben onderzocht of in 

gewasgroeimodellen dagelijkse weergegevens vervangen kunnen worden door 

maandelijkse weergegevens. In het bijzonder hebben we bestudeerd of de mate 

van detail van processen in gewasgroeimodellen de gevoeligheid van de 

modellen voor het samenvoegen van weergegevens over de tijd beïnvloedt. 

Resultaten van verschillende klimatologische regio’s in Europa wezen uit dat het 

vervangen van dagelijks weer door maandelijks weer leidt tot grotere hoeveel-

heden gesimuleerde biomassa. De modeluitkomsten liet zien dat de omvang van 

de dag-tot-dag variabiliteit in weercondities de modeluitkomsten beïnvloedt: een 

toenemende variabiliteit resulteert in een groter verschil tussen 

modeluitkomsten met aan de ene kant dagelijks weer en aan de andere kant 

maandelijks weer. Bovendien vonden we dat een toenemende mate van detail in 

een model resulteert in een toenemende gevoeligheid voor de samenvoeging van 

invoergegevens. 

De meeste mondiale gewasgroeimodellen worden toegepast op een grid-

gebaseerd systeem. Daarbij wordt aangenomen dat de gegevens, bijvoorbeeld 

weer en gewasmanagement (zaaidata of het gebruik van bepaalde variëteiten, 

etc.) homogeen zijn binnen een gridcel. We onderzochten de effecten van het 

gebruik van ruimtelijk samengevoegde zaaidata en temperatuurgegevens op de 

simulatie van wintertarwe in Duitsland. We vonden dat het gebruik van samen-

gevoegde gegevens overeenkomende modeluitkomsten geeft met het gebruik 

van niet-samengevoegde gegevens (d.w.z. locatiespecifieke gegevens). We 

concludeerden dat voor de simulatie van fenologie van wintertarwe, een proces 

dat voornamelijk wordt weergegeven met behulp van lineaire relaties, zaaidata 

en weergegevens op een grid met een resolutie van 100 km × 100 km geschikt 

zijn voor regio’s met homogene klimaatkarakteristieken, zoals Duitsland. Boven-

dien gaven de resultaten aan dat onze aanname, om één fenologische 

parameterset te gebruiken om het gemiddelde responspatroon van de 

ontwikkeling van verschillende wintertarwevariëteiten die in een groot land 

zoals Duitsland gevonden worden, redelijk was. 

Het kan nodig zijn om invoergegevens voor gewasgroeimodellen te genereren 

of simuleren indien de ruimtelijke resolutie van de beschikbare gegevens 
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ongeschikt is, indien het te verwachten is dat de gegevens veranderen onder 

invloed van toekomstige omstandigheden, of indien de gegevens niet 

beschikbaar zijn. Fenologische gegevens, bijvoorbeeld zaai- en oogstdata, zijn 

voorbeelden van gegevens die vaak worden gesimuleerd binnen mondiale 

gewasgroeimodellen. Pas recentelijk zijn twee veelomvattende gegevenssets met 

geobserveerde gewaskalenders met mondiale dekking ontwikkeld. Daardoor kon 

de simulatie van fenologie op de mondiale schaal, inclusief zaai- en oogstdata, tot 

voor kort maar nauwelijks geëvalueerd worden. We hadden daarom tot doel 

zaaidata van verschillende belangrijke gewassen in de niet geïrrigeerde land-

bouw te simuleren, gebaseerd op klimatologische condities, en daarna te 

evalueren. We namen aan dat boeren zaaien, ofwel wanneer de temperatuur een 

gewasspecifieke drempel overschrijdt, ofwel wanneer het regenseizoen begint; 

de keuze voor temperatuur of regenseizoen gebaseerde zaaidata is afhankelijk 

van de variabiliteit in de klimatologische omstandigheden binnen jaren in een 

gebied. Gebaseerd op onze resultaten konden we concluderen dat onze methode 

nauwkeuriger is in regio’s waar voornamelijk de temperatuur de limiterende 

factor voor de lengte van het groeiseizoen is, dan in regio’s waar hoofdzakelijk 

neerslag de lengte van het groeiseizoen bepaalt. Desalniettemin zijn we met onze 

methode in staat om voor een groot deel van de aarde redelijke zaaidata te 

simuleren. Dat wil zeggen, voor de gesimuleerde gewassen, o.a. de belangrijke 

gewassen maïs, tarwe en rijst, is het verschil tussen de gesimuleerde en 

geobserveerde zaaidata minder dan één maand op minimaal 60% van de 

gecultiveerde oppervlakte; dit gold niet voor koolzaad en cassave. 

Om het einde van de groeiperiode (d.w.z. de oogstdatum) te bepalen hebben 

we eenvoudige algoritmen ontwikkeld, die ontbrekende gewas- en 

locatiespecifieke fenologische parameters genereren. De algoritmen gebruiken 

locatiespecifieke klimatologische en daglengte omstandigheden; als voorbeeld-

gewassen zijn tarwe en mais gebruikt. In de belangrijkste groeigebieden van 

tarwe kwamen onze gesimuleerde lengtes van de groeiperiode goed overeen met 

de geobserveerde lengtes, d.w.z. de gemiddelde afwijking tussen de simulaties en 

observaties was ongeveer twee weken. Onze methode werkte voor mais minder 

goed; in de belangrijkste groeigebieden werd de groeiperiode over- en onder-

schat met 0,5 tot 1,5 maand. Deze over- en onderschattingen kunnen gedeeltelijk 

verklaard worden door de hoge basistemperatuur van mais en de relatief lage 

temperaturen tijdens de periode wanneer mais normaal gesproken geoogst 

wordt op het noordelijk halfrond. Desondanks liet onze evaluatie met betrekking 

tot mogelijke consequenties voor de gesimuleerde opbrengsten als gevolg van 

onzekerheden in de gesimuleerde zaai- en oogstdata zien dat de gesimuleerde 
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opbrengsten (voor tarwe en mais) vrijwel gelijk zijn indien ofwel gesimuleerde 

ofwel geobserveerde zaai- en oogstdata worden gebruikt: het verschil was niet 

groter dan 20%. Tenslotte werd gevonden dat het mede beschouwen van de 

effecten van daglengte in de simulatie van wintertarwefenologie de gesimuleerde 

variabiliteit van fenologische fases tussen jaren reduceert. In vergelijking met 

simulaties gebaseerd op alleen temperatuur, komt deze gereduceerde 

variabiliteit hoogstwaarschijnlijk beter overeen met de werkelijke variabiliteit. 

De studies beschreven in dit proefschrift hebben het inzicht met betrekking 

tot het opschalen van gewasgroeimodellen van de veldschaal naar de wereld-

schaal vergroot. Het is duidelijk geworden dat voor gewasgroeimodellen die 

ontwikkeld worden voor toepassing op grote schaal, vooral aandacht geschonken 

dient te worden aan de keuze hoe de groei van het bladoppervlak weer te geven. 

Bovendien moet de resolutie van de beschikbare invoergegevens het ontwerp 

van het (mondiale) gewasgroeimodel evenveel beïnvloeden als het doel van het 

model. Daarnaast werd duidelijk dat het mogelijk is om missende invoer-

gegevens zoals zaai- en oogstdata te simuleren. Het proefschrift sluit af met een 

voorstel met betrekking tot de structuur van een mondiaal gewasgroeimodel, 

waarin de verkregen inzichten verwerkt zijn. De verwachting is dat dit mondiale 

model redelijke potentiele opbrengsten kan simuleren, indien maandelijkse 

weergegevens op een grid met een resolutie van een 0,5° × 0,5° beschikbaar zijn. 

Het voorgestelde model bestaat uit sigmoïde en kwadratische functies om het 

proces van lichtinterceptie weer te geven, gecombineerd met de stalingsbenut-

tingsefficiëntieaanpak om de biomassaproductie te berekenen. Tenslotte wordt 

de toewijzing van de biomassa naar de verschillende organen van het gewas 

bepaald door de fenologie. Om zaaidata en fenologische variëteits-

karakteristieken met een geschikte ruimtelijke resolutie te verkrijgen, en om 

rekening te kunnen houden met mogelijke aanpassingen van boeren aan 

veranderende klimatologische omstandigheden, worden deze gegevens gesimu-

leerd, gebaseerd op locatiespecifieke klimatologische en daglengte omstandig-

heden. Gebaseerd op het voorgestelde model geeft het proefschrift tenslotte 

richting aan toekomstig onderzoek voor verdere verbetering van mondiale 

gewasgroeimodellen. In het bijzonder moet prioriteit worden gegeven aan 

onderzoek dat verschillen in timing in het bloeiproces tussen variëteiten 

bestudeerd. Bovendien is onderzoek nodig om het evaluatieproces van mondiale 

gewasgroeimodellen te verbeteren. 
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Propositions 
 

 

1. Availability and aggregation of input data limits the use of detailed crop 

growth models in climate change impact assessments. (this thesis) 

 

2. Development of crop growth models for global application would have 

been more advanced, if previous research money allocation had been 

better balanced between studies focussing on light interception and 

light utilization. (this thesis) 

 

3. The mere fact that the emergency timetable of the Dutch railroad 

company requires testing, makes models of more complex systems, such 

as the global climate system, questionable. 

 

4. The fact that human suffering may increase by preventive medical 

examination receives insufficient attention. 

 

5. The supply of additional feeding to animals in Dutch nature reveals 

short-term thinking. 

 

6. If the trend to make use of open-plan offices has arisen to stimulate 

social interaction between people, it has failed. 

 

7. A compulsory supply of source code to reviewers of scientific papers 

which describe newly developed models, will enhance the integrity of 

science. 

 

8. To fight food waste, urban vegetable gardens should be promoted. 
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