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Abstract Uptake of water by plant roots can be considered at two different Dar-
cian scales, referred to as the mesoscopic and macroscopic scales. At the mesoscopic
scale, uptake of water is represented by a flux at the soil–root interface, while at the
macroscopic scale it is represented by a sink term in the volumetric mass balance. At
the mesoscopic scale, uptake of water by individual plant roots can be described by
a diffusion equation, describing the flow of water from soil to plant root, and appro-
priate initial and boundary conditions. The model involves at least two characteristic
lengths describing the root–soil geometry and two characteristic times, one describing
the capillary flow of water from soil to plant roots and another the ratio of supply of
water in the soil and uptake by plant roots. Generally, at a certain critical time, uptake
will switch from demand-driven to supply-dependent. In this paper, the solutions of
some of the resulting mesoscopic linear and nonlinear problems are reviewed. The
resulting expressions for the evolution of the average water content can be used as a
basis for upscaling from the mesoscopic to the macroscopic scale. It will be seen that
demand-driven and supply-dependent uptake also emerge at the macroscopic scale.
Information about root systems needed to operationalize macroscopic models will be
reviewed briefly.

Keywords Falling rate · Richards equation · Root length density ·
Uptake of water · Steady state approximation · Steady rate approximation

1 Introduction

1.1 Theory of Richards for flow of water in unsaturated soils

About 70 years ago, Lorenzo A. Richards consolidated the efforts of previous gener-
ations of soil physicists by formulating a general, macroscopic theory for movement
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of water in rigid, unsaturated soils (Richards 1931). Richards theory fits experience in
many branches of continuum mechanics. It combines the balance of mass, expressed
in the equation of continuity, and of momentum, expressed in Darcy’s law:

∂θ̄

∂t
= −∇ · (θ̄v) − λ̄, (1)

θ̄v = −k̄∇h̄ + k̄∇z, (2)

where t is the time, ∇ is the vector differential operator, θ̄ is the volumetric water
content, v̄ is the velocity of the water, θ̄v is the volumetric flux, λ̄ is the volumetric rate
of uptake of water by plant roots (see Sect. 1.2), k̄ is the hydraulic conductivity, h̄ is
the capillary pressure head, and z is the vertical coordinate taken positive downward.
The bars above the symbols denote that at this stage the scale of discourse is based on
macroscopic volume elements containing representative amounts of roots, such that
the uptake can be represented by a volumetric sink term λ̄ in the volumetric water
balance (1).

The capillary pressure head h̄ is defined by

h̄ =
(
p̄w − p̄g

)

γwg
= − p̄c

γwg
, (3)

where p̄w and p̄g are the pressures of the aqueous and gaseous phases, p̄c is the capillary
pressure, γw is the mass density of the water, and g is the magnitude of the gravita-
tional force per unit mass. In the theory of Richards, it is assumed that the pressure of
the gaseous phase is spatially uniform and constant. The capillary pressure head h̄ and
the hydraulic conductivity k̄ are highly nonlinear functions of the volumetric water
content θ̄ . A further complicating factor is that the relationship h̄

(
θ̄
)

is hysteretic.
For processes not involving hysteresis, Darcy’s law can also be written as

θ̄v = −D̄∇ θ̄ + k̄∇z, (4)

or

θ̄v = −∇ϕ̄ + k̄∇z, (5)

where D̄ = k̄dh̄/dθ̄ is the soil water diffusivity, and ϕ̄ is the matric flux potential
defined by

ϕ̄ − ϕ̄ref =
h̄∫

h̄ref

k̄ dh̄ =
θ̄∫

θ̄ref

D̄ dθ̄ , (6)

where the subscript ref denotes a reference state. The volumetric flux θ̄v is the sum of
a matric component −k̄∇h̄ = −D̄∇ θ̄ = −∇ϕ̄ and a gravitational component k̄∇z. The
matric component of the volumetric flux is given by the gradient of ϕ̄ and therefore
it is appropriate to call ϕ̄ the matric flux potential (Raats 1970). A transformation of
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the type (6) was given around 1880 by Kirchhoff in his lectures on heat conduction
(Kirchhoff 1894). For this reason, often ϕ̄ is called the Kirchhoff potential and the
transformation from h̄ or θ̄ to ϕ̄ is referred to as the Kirchhoff transformation.

The theory of Richards can be justified on the basis of the principles of surface
tension and viscous flow at the pore scale (Miller and Miller 1956, Whitaker 1986).
It can also be formulated within the framework of the modern continuum theory of
mixtures (Truesdell and Toupin 1960), provided that one recognizes from the outset
the existence of the separate solid, liquid, and gaseous phases (Raats 1984, 1998).

In the context of Richards equation, the relationships among the water content θ̄ ,
pressure head h̄, and hydraulic conductivity k̄ define the hydraulic properties of a soil.
Two major conferences on physical characterization were organized in 1989 and 1997
by the U.S. Salinity Laboratory and the University of California at Riverside (Raats
1992, Van Genuchten et al. 1999). One can distinguish two groups of parametric
expressions describing hydraulic properties (Raats 2001, Raats et al. 2002).

The first group yields flow equations that can be solved analytically, either directly
or following one or more transformations, in most cases as a result of linearization
following one or more transformations. To the first group belong:

– the class of linear soils with the diffusivity D̄ = k̄dh̄/dθ̄ constant and the hydraulic
conductivity k̄ linear in θ̄ ;
This leads to a linear Fokker–Planck equation, which can be solved relatively easily.
It yields useful results for integral aspects of the water balance, but is rather unreli-
able with respect to details of the distribution of the water content. As will be seen
in this paper, the class of linear soils has regularly been considered in problems
involving uptake of water

– the class of Brooks–Corey power function soils.
For this class of soils h̄, k̄, and D̄ are all power functions of θ̄ . In Sect. 4.4.2 of this
paper the power function D̄(θ̄) relationship is used:

D̄ = (
D̄s/θ̄

n
s
)
θ̄n, (7)

where θ̄s is the water content at saturation and D̄s the corresponding diffusivity. The
class of Brooks–Corey power function soils has turned up regularly in recent years
as resulting from fractal models of pore structure. It also plays a key role in the
mathematical literature on the so-called porous medium equation, i.e. the nonlin-
ear diffusion equation with the diffusivity a power function of the volumetric water
content, and on the corresponding special case of the Richards equation (Gilding
1991). The main interest has been in so-called similarity solutions.

Other classes of soils, belonging to the first group, and associated flow problems are
discussed in recent review papers (Raats 2001, Raats et al. 2002).

The second group of parametric expressions describing the soil hydraulic proper-
ties is favored in numerical studies and to a large extent shares flexibility with a rather
sound basis in Poiseuillean flow in networks of capillaries. In this group of relation-
ships among the water content θ̄ , pressure head h̄, and hydraulic conductivity k̄, the
latter is calculated from the water retention characteristic and certain assumptions
concerning the geometry of the pore system (Raats 1990b, 1992). The procedure in
essence links physico-mathematical models at the Darcy and Navier–Stokes scales. By
introducing a very general equation for the water retention characteristic and a rather
general predictive model for the relative hydraulic conductivity, various well known
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classes of soils can be regarded as subclasses of one and the same superclass, thus sum-
marizing a widely scattered literature. The subclasses include those of Brooks–Corey
and of Van Genuchten–Mualem as special cases.

1.2 Uptake of water by plant roots at different scales

The volumetric rate of uptake λ̄ in Eq. 1 represents the uptake averaged over a large
number of roots. The uptake of water by the plant roots is induced by the flow inside
the plant to the above-ground evaporating surfaces. Where the water is taken up
depends on the spatial distribution of the roots and of the water status of the soil, and
perhaps also on the resistance to water flow in the plant. If the other terms in (1) are
determined, then λ̄ can be calculated. The term ∂θ̄/∂t can be evaluated from measure-
ments of the water content in the course of time. The term ∇ · (θ̄v) can be calculated
on the basis of Darcy’s law, making use of measurements of the k̄(θ̄) relationship of
the soil and measurements of the pressure head h̄ in the course of time. A detailed
review of this procedure to determine the spatial distribution of λ̄ is presented in
Raats (1982).

If the crop or vegetation has a certain demand for water and the water status of
the soil is such that the demand can be met at all times, then it may be appropriate to
simply assume that the spatial and temporal distribution of the uptake is given by

λ̄(x, t) = f (x, t)T(t) (8)

where T is the rate of transpiration and f (x) is the distribution function for uptake of
water by plant roots. In this connection the distribution function

f (x, y, z) = δ−1exp(−z/δ), (9)

where δ can be interpreted as an equivalent rooting depth, has turned out to be rather
useful (Raats 1974a).

The uptake process becomes more complex when the soil is too dry for the flow
to the plant roots to satisfy the evaporative demand. In water balance models limited
availability of water is often accounted for by empirical equations. These equations
are partly based on experience and partly on models of flow of water to individual
roots. The main purpose of the remainder of this paper is to review and extend the
latter models. Individual roots function at a mesoscopic scale, which is intermediate
between the microscopic Navier–Stokes scale and the macroscopic scale considered
in Eqs. 1 and 2. It is common practice to use the same physical model of capillary flow
at the macroscopic and mesoscopic scales. The differences are:

– At the macroscopic scale, the uptake by plant roots is represented by a sink term λ̄

in the volumetric mass balance, while at the mesoscopic scale it is represented by a
flux at the soil–root interface.

– The variables and parameters at the macroscopic scale introduced in Sect. 1 were
denoted by bars. For the corresponding parameters and variables at the mesoscopic
scale these bars are omitted.

– In Darcy’s law, the gravitational force is likely to be important at the macroscopic
scale, but unlikely to be important at the mesoscopic scale.

The remainder of this paper mainly concerns the derivation of expressions for the
rate of uptake λ̄ at the macroscopic scale from an analysis of flow at the mesoscopic
scale.



Uptake of water from soils by plant roots 9

2 Description of root systems

In the literature, a variety of parameters have been proposed to describe aspects of the
geometry of plant roots. In the following, first some commonly used geometric param-
eters and relationships among them are presented. Next the geometrical parameters
commonly used in soil–plant-atmosphere models are related to the root mass based
parameters often measured by ecologists.

2.1 Geometry of root systems

For an individual plant root, two characteristic lengths can be identified:

– r0, radius of the plant root and also the internal radius of the equivalent cylindrical
shell of soil associated with the plant root;

– r1, external radius of the equivalent cylindrical shell of soil associated with the plant
root.

For a system of plant roots distributed in soil, the three following parameters can be
used:

– L, the root length per unit volume;
– σ , the root surface area per unit volume;
– φr and φs, the root and soil volume fractions, subject to the constraint

φr + φs = 1. (10)

For spatially uniformly distributed roots, the root length density L is equal for the
inverse of the volume of roots plus soil associated with unit length of root:

L =
(
πr2

1

)−1
. (11)

The root volume fraction φr is equal to the ratio of the volume of a unit length of root
and the volume of this unit length of root plus the cylindrical shell of soil associated
with it:

φr = (r0/r1)
2 = πr2

0L. (12)

The constraint (10) on the volume fractions implies:

φs = 1 − φr = 1 − (r0/r1)
2 = 1 − πr2

0L. (13)

The root surface area σ is equal to the ratio of the surface area of a unit length of root
divided by the volume of root plus the cylindrical shell of soil associated with unit
length of root:

σ = 2r0/r2
1 = 2πr0L = 2 (πφrL)1/2 . (14)

From (11) and (14) it follows that

r0 = σ (2πL)−1 , (15)

and

r1 = (πL)−1/2 =
(

2r0

σ

)1/2

. (16)



10 P. A. C. Raats

Clearly, the characterizations of a uniform root system by the radii r0 and r1 and by
the root length density L and the specific root surface area σ are equivalent. Solving
Eq. 12 for r0/r1 gives:

r0/r1 = φ
1/2
r . (17)

This shows that, to characterize the geometry of a uniform root system, either the radii
r0 and r1, or two of the parameters L, σ , and φr or φs can be used. In experimental
practice, the root length density L and the root radius r0 are usually measured. Then
Eq. 16 can be used to calculate r1 and Eqs. 12–14 can in turn be used to calculate σ ,
φr and φs.

2.2 Spatial-temporal description and interconversion of bulk root mass density
and geometrical parameters

Root water uptake is strongly related to the geometrical parameters root length den-
sity and root radius. Such root system data are scarce and therefore it is of interest to
relate more widely available root mass density data to these geometrical parameters.
This will also clarify the different ways researchers describe root systems.

Multiplication of the root volume fraction φr by the intrinsic mass density γr, i.e.
the mass per unit volume of root tissue, gives the macroscopic root mass density µ.
Together with (12) this definition gives:

µ = γrφr = γr (r0/r1)
2 = γrπr2

0L. (18)

The factor πr2
0γr in (18) represents the root mass per unit length of root. Van Noord-

wijk (1987) refers to it as the specific root length. A complicating factor related to the
intrinsic density γr is the often considerable gaseous volume fraction of root tissue,
in particular in plants adapted to growing in wet soils (Van Noordwijk and Brouwer
1991). Also, in view of the variance of the root radii, Van Noordwijk and Brouwer
(1991) propose the use in (18) of the square of the quadratic average root radius which
is equal to the square of the linear average root radius plus the variance of the root
radius. Equation 18 relates the geometrical parameters root radius r0 and root length
per unit volume L used in water uptake models to the bulk root mass volumetric
density µ often measured by ecologists. Equation 18 implies that it is important that
root system databases for use in specific types of soil–water–plant-atmosphere models
should not be restricted to the spatial-temporal distribution of µ(z, t). They should
in addition also contain some information on the intrinsic density γr and the root
radii r0.

In the following two sub-subsections various models for the spatial-temporal dis-
tribution of roots are reviewed.

2.2.1 The power law model of Gale and Grigal

Gale and Grigal (1987) introduced the following expression for a time-invariant cumu-
lative root biomass fraction as a function of depth:

Y(z) = B(z, t)
B∞(t)

= 1 − β−z/δ , (19)

where B(z, t) is the root biomass per unit area of land above depth z at time t,
B∞(t) = B(∞, t) is the total root biomass per unit area of land at time t, and β and δ
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are vegetation dependent parameters. Equation 19 has been widely used to represent
depth-cumulative root biomass distribution data (Jackson 1999; Jackson et al. 1996,
1997; Feddes et al. 2001; Zeng 2001; Zeng et al. 1998). To render those data useful in
root water uptake models, they should be converted first to spatial-temporal distribu-
tions of the bulk root mass density µ(z, t) and next to spatial-temporal distributions
of the root length density L(z, t).

Partial differentiation of B(z, t) with respect to z gives an expression for the bulk
root mass density µ(z, t):

µ(z, t) = ∂B(z, t)
∂t

= dY(z)

dz
B∞(z) = δ−1(ln β)B∞(t)β−z/δ . (20)

Equation 20 implies that the surface root biomass density µ(0, t) = δ−1

(ln β)B∞(t). Note that an equivalent uniform root system with root biomass den-
sity µ(z, t) = µ(0, t) = δ−1(ln β)B∞(t) in the depth range 0 � z � δ(ln β)−1 will have
the same total root biomass B∞(t). Thus δ(ln β)−1 in (20) can be interpreted as the
characteristic rooting depth based on the surface root biomass density and the total
root biomass.

Equation 20 implies that, at any time t and at any position z, the relative time rate
of change of the root biomass density µ(z, t) is equal to the relative time rate of change
of the total root biomass B∞(t):

1
µ(z, t)

∂µ(z, t)
∂t

= 1
B∞(t)

dB∞(t)
dt

. (21)

Equation 21 shows that the model of Gale and Grigal (1987) implies an allometric
relationship between µ(z, t) and B∞(t), independent of time t and depth z. The model
also implies that roots are present at all depths z > 0 at all times t > 0. Especially for
crops and vegetations in the early stages this will not be realistic.

Solving (18) for the root length density L and introducing (20) for the root mass
density µ(z, t) gives:

L(z, t) = µ(z, t)

πr2
0γr

= δ−1(ln β)B∞(t)β−z/δ

πr2
0γr

. (22)

2.2.2 The exponential model of Arora and Boer

Arora and Boer (2003) developed a more versatile root distribution model by intro-
ducing two modifications in the model of Gale and Grigal (1987):

– They specialized the model by setting:

β = e implying ln β = ln e = 1. (23)

– To allow for the common experience that rooting depth increases in the course of
time, they replaced the constant parameter δ by a parameter δt with a power-law
dependence upon the total root biomass B∞(t):

δt = δBα∞(t), (24)

where δ and α are constants.
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Introducing (23) and (24) in, respectively, (20) and (19) gives:

µ(z, t) = δ−1
t B∞(t) exp(−z/δt) = δ−1B1−α∞ (t) exp(−z/(δBα∞(t))), (25)

Y(z, t) = B(z, t)
B∞(t)

= 1 − exp(−z/δt) = 1 − exp(−z/(δBα∞(t))). (26)

Equation 25 implies that the surface root biomass density µ(0, t) =
δ−1

t B∞(t) = δ−1B1−α∞ (t). An equivalent uniform root system with root biomass den-
sity µ(z, t) = δ−1

t B∞(t) = δ−1B1−α∞ (t) in the depth range 0 � z � δt = δBα∞(t) will
have the same total root biomass B∞(t). Thus the parameter δt = δBα∞(t) in (25) can
be interpreted as the time dependent characteristic rooting depth based on the total
root biomass B∞(t) and the surface root biomass density δ−1B1−α∞ (t). Note that, unlike
in (19), the cumulative root biomass fraction in (26) depends on time, whenever the
total root biomass depends on time.

The relative time rate of change of the root biomass density corresponding to (25)
is given by

1
µ(z, t)

∂µ(z, t)
∂t

= [(1 − α) + αz/δt] 1
B∞(t)

dB∞(t)
dt

= [(1 − α) + αz/(δBα∞(t))] 1
B∞(t)

dB∞(t)
dt

= g(z, t)
1

B∞(t)
dB∞(t)

dt
. (27)

Clearly, unlike in (21), in (27) the relative time rates of change of µ(z, t) and B∞(t)
are no longer equal to each other. Equation 27 shows that the model of Arora and
Boer (2003) implies a spatially non-uniform and temporally variable allometric rela-
tionship between µ(z, t) and B∞(t), depending on α, δ, B∞(t) and z. Following Huxley
(1972), we may refer to g(z, t) in (27) as the growth coefficient. For a given time t and
depth z, g(z, t) describes the relative time rate of change of the mass density µ(z, t)
in comparison with the relative time rate of change of the total root biomass B∞(t).
However, note that the model of Arora and Boer (2003) still implies that roots are
present at all depths z > 0 and at all times t > 0. Again, for crops and vegetations in
the early stages this will not be realistic.

Solving (18) for the root length density L(z, t) and introducing (25) for root mass
density µ(z, t) gives:

L(z, t) = µ(z, t)
πr2

oγr
= δ−1B1−α∞ (t) exp(−z/(δBα∞(t)))

πr2
0γr

. (28)

It is worthwhile to consider two special cases of the model of Arora and Boer
(2003) with, respectively, α = 0 and α = 1.

If α = 0, (24) implies that δt = δ so that (25–28) reduce to

µ(z, t) = δ−1B∞(t) exp(−z/δ), (29)

Y(z, t) = 1 − exp(−z/δ), (30)

1
µ(z, t)

∂µ(z, t)
∂t

= 1
B∞(t)

dB∞(t)
dt

, (31)
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L(z, t) = µ(z, t)

πr2
0γr

= δ−1B∞(t) exp(−z/δ)

πr2
0γr

. (32)

Note that (29), (30) and (32) correspond to, respectively, (19), (20) and (22) with β = e
and that, not surprisingly, (31) is identical to (21). According to (31), for this special
case of the model of Arora and Boer (2003) the allometric relationship between µ(z, t)
and B∞(t) is spatially uniform and temporally constant. Exponential dependence on
depth has been considered earlier for the root distribution (Gerwitz and Page 1974)
as well as the volumetric rate of water uptake (Raats 1974a; see Eqs. 8 ,9 above).

If α = 1, Eq. 24 implies that the characteristic rooting depth δt is proportional to
the total root mass density B∞(t) and (25–28) reduce to

µ(z, t) = δ−1 exp(−z/(δB∞(t))), (33)

Y(z, t) = 1 − exp(−z/(δB∞(t))), (34)

1
µ(z, t)

∂µ(z, t)
∂t

= z/(δt)
1

B∞(t)
dB∞(t)

dt

= z/(δB∞(t))
1

B∞(t)
dB∞(t)

dt

= g(z, t)
1

B∞(t)
dB∞(t)

dt
, (35)

L(z, t) = µ(z, t)

πr2
0γr

= δ−1 exp(−z/(δB∞(t)))

πr2
0γr

. (36)

Equation 33 implies that the surface root biomass density µ(0, t) = δ is constant. An
equivalent uniform root system with root biomass density µ(z, t) = δ in the depth
range 0 � z � δt = δB∞(t) will have the same total root biomass B∞(t). Thus δB∞(t)
in (33) can be interpreted as the time dependent characteristic rooting depth based on
the surface root biomass density and the total root biomass. In other words, for α = 1
the surface root density is constant and the characteristic rooting depth increases lin-
early with the total root biomass B∞(t). Note that in (35) the growth coefficient g(z, t)
is proportional to depth z and inversely proportional to the total root biomass B∞(t).

3 Uptake of water by a root from a cylindrical shell of soil

3.1 Formulation in terms of dimensional variables

The mesoscopic flow of water in the soil towards an individual plant root is described
by the nonlinear diffusion equation resulting from a volumetric mass balance (1) and
the diffusion form of Darcy’s law (4):

∂θ

∂t
= 1

r
∂

∂r

[
rD(θ)

∂θ

∂r

]
, (37)

where r is the radial coordinate, θ is the volumetric water content at the mesoscopic
scale in the region of influence of individual plant roots, and D(θ) is the soil water
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diffusivity. Note that, since the scale of discourse is now based on mesoscopic volume
elements, no bars appear above θ and D. The initial distribution of the water content
is assumed to be uniform:

t = 0, r0 < r < r1, θ = θi, (38)

where θi is the initial water content. The boundary condition at the outer boundary
of the cylindrical shell of soil is:

t > 0, r = r1,
∂θ

∂r
= 0. (39)

The boundary condition at the soil–root interface is governed by the demand of water
by the plant root and by the ability of the flow from the soil to the plant root to satisfy
this demand. At the scale of the vegetation, consider a representative rooted volume
V of soil. The uptake U of water from this volume of soil can be written as:

U =
∫

V

λ̄ dv =
∫

V

−Fσ dv =
∫

V

D(θ)
∂θ

∂r
σ dv, (40)

where F is the flux at the soil–root interface. If the flow of the water to the root
is not limiting, the uptake U is determined by the atmospheric conditions and the
growth stage of the vegetation. If the root system is uniform, then at each point of the
soil–root interface the flux can be written as:

F = − U
σV

= − λ̄

σ
= − r2

1

2r0
λ̄ = −D(θ)

∂θ

∂r
. (41)

Clearly, increases of the specific root surface area σ and the rooted volume V reduce
the demand F on an individual root basis. For the boundary condition at the soil–root
interface, two possibilities are considered:
A. during the period, up to the critical time tcrit, of constant rate of uptake λ̄c:

0 < t < tcrit, r = ro, D(θ)
∂θ

∂r
= λ̄c

σ
= r2

1

2r0
λ̄c; (42)

B. during the period, after the critical time tcrit, of falling rate of uptake λ̄:

t > tcrit, r = ro, θ = θcrit. (43)

During the constant rate period, the overall mass balance at time t requires that the
total uptake of water per unit volume, λ̄ct, is equal to the average depletion per unit
volume φs(θi − θ̄ ), so that

φs(θi − θ̄ ) = λ̄ct or t = φs(θi − θ̄ )

λ̄c
. (44)

Equation 44 shows simply that during the constant rate period the average water
content decreases linearly with time.

3.2 Formulation in terms of dimensionless variables

The problem formulated in the previous section will next be reformulated in terms of
dimensionless variables. The dimensionless position ρ, time τ , water depletion of the
soil �, and diffusivity � are, respectively, defined as:
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ρ = r
r1

, τ = t
td

, � = θi − θ

θi − θcrit
, � = D

D̂
, (45)

where the mean diffusivity D̂ and the characteristic time td associated with the capil-
lary flow of water are, respectively, defined as:

D̂ =
∫ θi
θcrit

D dθ

θi − θcrit
, td = r2

1

D̂
. (46)

The characteristic time td describes the capillary flow of water from the soil to the
plant roots. A second characteristic time tc is defined as the ratio of the supply of water
in the soil and the rate of uptake λ̄c by plant roots during the constant rate period:

tc = (θi − θcrit)φs

λ̄c
. (47)

The characteristic time tc is the duration of the period during which water would be
available if all of the water in the soil could be taken up at the constant rate λ̄c. The
flow of water to a plant root from the surrounding soil depends on the geometrical
number ρ0 and, during the constant rate period, also on the availability number τc,
respectively, defined by

ρ0 = r0/r1 = φ
1/2
r , τc = tc/td = D̂(θi − θcrit)(1 − ρ2

o)

λ̄cr2
1

. (48)

The availability number τc compares the duration tc of the period water would be
available if all of the water in the soil could be taken up at the constant rate λ̄c to the
characteristic time td of the capillary flow from the soil to the plant root.

In terms of the dimensionless position ρ, time τ , water depletion of the soil �, and
diffusivity �, the flow problem becomes:
flow equation:

∂�

∂τ
= 1

ρ

∂

∂ρ

[
ρ�(�)

∂�

∂ρ

]
; (49)

initial condition:

τ = 0, ρ0 < ρ < 1, � = 0; (50)

boundary condition at the outer boundary of the cylindrical shell of soil:

τ > 0, ρ = 1,
∂�

∂ρ
= 0; (51)

boundary condition at soil–root interface:
– during the period of constant rate of uptake:

0 < τ < τcrit, ρ = ρo, �(�)
∂�

∂ρ
= 1 − ρ2

0

2ρ0τc
, (52)

–during the period of falling rate of uptake:

τ > τcrit, ρ = ρo, � = 1. (53)
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From Eq. 52 it follows that the flux at the soil–root interface is large if the product
of the geometrical number ρ0 and the availability number τc is small.

The dimensionless counterpart of Eq. 44, expressing the overall mass balance dur-
ing the constant rate period, is:

τ = τc�̄. (54)

According to Eq. 54, during the constant rate period the dimensionless time τ can
be replaced by τc�̄ in all expressions for the distribution of the water content in the
cylindrical shell of soil surrounding a root.

4 Mesoscopic analysis of water uptake by a single root and its macroscopic
implications

4.1 Approximate solution of linear problem for small geometrical number ρ0

Let us assume that the plant roots are relatively thin and the spatial distribution of
the roots is relatively sparse. Then r0 � r1, so that the geometrical number ρ0 → 0,
and the solution for a line sink embedded in a soil of infinite extent is an appropriate
approximation (Carslaw and Jaeger 1959):

θi − θ = r2
1λ̄c

4D

∞∫

r2

4Dt

e−x

x
dx = r2

1λ̄c

4D

(
−Ei

(
− r2

4Dt

))
, (55)

where Ei(. . . ) is the exponential integral. For small values of r2
1/(4Dt), and, thus, for

large values of t, this solution can be approximated by

θi − θ = r2
1λ̄c

4D

(

ln
4Dt
r2 − γ + 4Dt

r2 + O
4Dt
r2

2
)

≈ r2
1λ̄c

4D

(
ln

4Dt
r2 − γ

)
. (56)

Philip (1957) used this solution to evaluate the time dependence of the water content
at the soil–root interface. Philip was particularly interested in the instant t = tw at
which the water content θ = θ0 at the soil–root interface reaches the value θ0w at
which the plant wilts. From Eq. 56 at that instant:

θi − θ0w ≈ r2
1λ̄c

4D

(

ln
4Dtw

r2
0

− γ

)

. (57)

The overall water balance implies that at time t = tw the total volume uctw taken up
is equal to the average depletion (θi − θ̄w), so that (cf. Eq. 44)

tw = (θi − θ̄w)

λ̄c
, (58)

where φs → 1 has been used. Introducing Eq. 58 in Eq. 57 and solving for the average
water content θ̄ at wilting gives:

θ̄w = θi − eγ r2
0λ̄c

4D
exp

(
4D(θi − θ0w

r2
1λ̄c

)

. (59)
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The older literature of plant physiology and soil science regarded the water content at
which a plant wilted to be a soil property, called the wilting point of a soil. Philip (1957)
used Eq. 59 to demonstrate that the average water content at wilting does not only
depend on the soil properties θ0w and D, but also on the geometrical parameters of
the plant root system, i.e. the radii r0 and r1, and the water demand λ̄c. He concluded
that ‘uncritical use of the “wilting point” as an invariant index of the lower limit of
the availability of soil moisture to plants can be very misleading’.

The solution to this problem can be formulated more concisely in terms of dimen-
sionless variables. Corresponding to Eqs. 57–59 we have then:

� ≈ 1
τc

(
ln

4τ

ρ2 − γ

)
, (60)

τw = τc�̄, (61)

�̄ = ρ2
0

4τc
exp(4τc�0w + γ ) or 4τc�̄ = ρ2

0 exp(4τc�0w + γ ). (62)

4.2 Transient soil water depletion regarded as a succession of steady-state profiles

Gardner (1960) used the two-term approximation of (56) to calculate the water deple-
tion pattern around individual roots. But perhaps more importantly, he also used it as
a point of departure for the formulation of a simpler model, in which the depletion
resulting from uptake by a single root is treated as a series of steady flows in the
cylindrical shell of soil surrounding the root, with the soil–root interface at the inner
edge and the water coming from the outer edge. This simple model has served ever
since as a point of departure for more sophisticated mesoscopic as well as macroscopic
models of water uptake.

In the single root model of Gardner (1960), the root is viewed as a cylinder of
uniform radius r0 and infinite length having uniform water absorbing properties. For
steady state conditions ∂θ/∂t = 0 in the soil shell surrounding the root with water
flowing from the outer cylindrical surface at r = r1 to the inner cylindrical soil–root
interface at r = r0, the solution of Eq. 2 under the assumption of constant k gives the
following expression for the flux at the soil–root interface at the meso-scale:

(θv)r = Gk(h1 − h0), (63)

where (θv)r is the rate of water uptake per unit length of root, h1 is pressure head
of the soil water at r = r1, h0 is the pressure head at the soil–root interface, and the
dimensionless geometric and root distribution factor G is given by

G = 2π

ln(r1/r0)
. (64)

At the macro-scale, the volumetric rate of uptake λ̄ is obtained by multiplying both
sides of (63) by the root length density L:

λ̄ = GLk(h1 − h0). (65)

Cowan (1965) realized that the assumption of constant k used in deriving (65) can
be avoided. In essence he replaced (65) by

λ̄ = GLkav(h1 − h0) = GLDav(θ1 − θ0) = GL(φ1 − φ0), (66)
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where the average hydraulic conductivity kav and average diffusivity Dav are
defined by

kav =
∫ h1

h0
k dh

h1 − h0
, Dav =

∫ θ1
θ0

D dθ

θ1 − θ0
. (67)

The integrals in (67) can be easily evaluated for any of the commonly used expressions
to represent the k(h) and D(θ) relationships for specific classes of soils.

In an attempt to account for the location of the soil layer, one might be tempted to
replace h0 in (65) and (66) by hrootsystem − z, where hrootsystem is the pressure head in
the root system evaluated at the soil surface. However, as will become apparent from
an analysis of the hydraulic connection between the soil–root interface and the xylem
discussed later on, this cannot be justified.

4.3 Period of constant rate of uptake

4.3.1 Solution of linear problem

The solution of Eq. 49 subject to Eqs. 50–52 is given by De Willigen and Van Noordwijk
(1987):

τc� = τ + ρ2

4
− 1

2
lnρ − 3 + 4ρ2

0 lnρ0 − 2ρ2
0 − ρ4

0

8(1 − ρ2
0 )

−
∞∑

n=1

An(ρ, ρ0)exp(−β2
nt) (68)

with

An(ρ, ρ0) = π(1 − ρ2
0 )

2

J2
1(βn)(J0(βnρ)Y1(βnρ0) − Y0(βnρ)J1(βnρ0))

βnρ0(J2
1(βnρ0) − J2

1(βn))
, (69)

and the βn are the roots of

J1(βnr0)Y1(βn) − J1(βnY1(βnr0) = 0. (70)

Equation describes the distribution of the water content around an individual root
resulting from a constant rate of uptake. The structure of this solution is very simple.
Two parts can be distinguished:

– terms guaranteeing that the initial condition is satisfied: they have the form of an
exponentially fading, infinite series with a characteristic time τd;

– terms guaranteeing that the flux boundary conditions and the overall mass balance
are satisfied: they have the form of a profile of time invariant form, with the water
content decreasing linearly with time everywhere at the same rate.

Using Eq. 54, expressing the proportionality between τ and � in the constant rate
phase, Eq. 68 can also be written as:

τc� = τc�̄ + ρ2

4
− 1

2
ln ρ − 3 + 4ρ2

0 ln ρ0 − 2ρ2
0 − ρ4

0

8(1 − ρ2
0 )

−
∞∑

n=1

An(ρ, ρ0)exp(−β2
nτc�̄). (71)
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In the soil science-plant physiology literature the asymptotic, time invariant pro-
files are usually referred to as steady rate profiles (Cowan 1965; Passioura and Cowan
1968). Distributions of water content of time invariant form have also been postu-
lated and calculated for the more complicated mixed boundary condition at the soil
root interface with the flux being zero over part of this interface due to poor contact
between the plant and the soil (De Willigen and Van Noordwijk 1987).

4.3.2 Transient depletion as a succession of steady rate profiles

An attractive alternative to (65) or (66) is to regard the withdrawal of water to be
uniformly distributed over the cylindrical shell of soil. In fact, if Richards equation
were linear and the water demand were constant, there would be a solid basis for
this at intermediate times when the memory of the details of the initial water content
distribution has already faded and the constant demand can still be met.

Assuming steady rate conditions, i.e. ∂θ/∂t = constant, and zero flux at the outer
cylindrical surface at r = r1 of the soil shell surrounding the root, the solution of
(1) and (2) for the meso-scopic flux (θv)r at the soil–root interface is (Passioura and
Cowan 1968; Jacobsen 1974):

(θv)r = G∗k(h1 − h2) = G∗D(θ1 − θ0) = G∗(φ1 − φ0), (72)

where the dimensionless geometric and root distribution factor G∗ is given by

G∗ = 2π

[1 − (r0/r1)]−1 ln(r1/r0) − 1/2
. (73)

For r0 � r1, the factor G∗ can be approximated by

G∗ ≈ 2π

ln(r1/r0) − 1/2
≈ 2π

ln(0.6064r1/r0)
. (74)

Comparison of the expressions for G in (64) and for G∗ in (74) shows that whereas
in the steady state approximation all the water is assumed to originate from r = r1, in
the steady rate approximation it seemingly originates from r = 0.6064r1.

The corresponding steady rate mesoscopic expression for the volumetric rate of
uptake λ̄ is:

λ̄ = G∗Lk(h1 − h0). (75)

The steady rate feature has long been known as an important term in the full
solutions of linear equations subject to flux boundary conditions for heat conduction
and flow to wells. Cowan (1965) demonstrated its relevance for flow to plant roots,
even for a diurnally varying, but on average constant demand. Passioura and Cowan
(1968) compared the predictions of the water content at the soil root interface based
on the approximate steady state and steady rate solutions and the exact numerical
solution, finding reasonable agreement among them, with the steady rate method
being somewhat more accurate than the steady state one.
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4.4 Period of falling rate of uptake

4.4.1 Linear problem

Of course, the water content cannot decrease indefinitely. At a certain instant tcrit, the
water content at the soil–root interface reaches a critical value θw0 and then the flux
boundary condition at the soil–root interface will switch to a water content boundary
condition. From that time onwards the rate of supply of water from the soil will gov-
ern the falling rate of uptake. If the Richards equation were linear, in the falling rate
phase the solution would again be the sum of two parts:

– an exponentially fading infinite series with characteristic diffusion time td = r2
1/D,

which guarantees that the intermediate condition at the transition from the constant
rate phase to the falling rate phase is satisfied;

– a term that has the form of the product of two terms, one depending on the radial
coordinate and one depending exponentially on time, again involving the charac-
teristic diffusion time td = r2

1/D,

The change from the constant rate phase to the falling rate phase is basically a
change from the plant-dominated boundary condition to the soil-dominated bound-
ary condition. Constant and falling rates also occur for the uptake of nutrients by
plant roots (De Willigen and Van Noordwijk 1994a,b). Similar switches of boundary
conditions are well known in other environmental physics problems. Evaporation
from saturated bare soil, starting at a constant rate being determined only by atmo-
spheric conditions, may at a certain instant switch to a falling rate phase in which the
evaporation rate depends only on the hydraulic properties of the soil. For infiltration
of water into soil, an analogous switch occurs at the so-called ponding time.

4.4.2 Nonlinear problem

Introducing Eq. 7 in Eq. 49, using the definitions of � and � in (45) gives:

∂(b − �)

∂τ
= ∂

∂ρ2 4aρ2(b − �)n ∂(b − �)

∂ρ2 , (76)

where

a = (n + 1)(θi − θcrit)
n+1

θn+1
i − θn+1

crit

, b = θi

θi − θcrit
. (77)

In terms of the dependent variable b−�, the boundary condition (53) at the soil–root
interface for the falling rate phase reduces to

τ > τcrit, ρ = ρo, b − � = b − 1. (78)

For the special case with θcrit = 0, so that b = 1 in (76–78), a possible solution of
Eq. 76 subject to (78) has the form of a product of two terms, one depending on ρ and
the other depending on τ (cf., Aronson and Peletier 1981):

(1 − �(τ , ρ)) = (1 − �τ (τ))(1 − �ρ(ρ)). (79)
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Introducing Eq 79 in the ‘porous medium equation’ (76) with b = 1 gives two ordinary
differential equations, one in τ and the other in ρ:

d(1 − �τ )

dτ
= λ(1 − �τ )

n+1, (80)

d
dρ2

(
4a(1 − �ρ)nρ2 d(1 − �ρ)

dρ2

)
= λ(1 − �ρ). (81)

The solution of the ordinary differential equation (80) in τ is:

1 − �τ (τ) = ((1 − �τ (τ0))
−n − nλ(τ − τo))−1/n. (82)

A solution of the nonlinear ordinary differential equation (81) in ρ for this cylin-
drically symmetric problem is not known to me. Even so, an interesting expression
for 1 − � at time τ is obtained by introducing Eq. 82 in Eq. (79):

1 − �(τ , ρ) = ((1 − �τ (τ0))
−n − nλ(τ − τo))−1/n(1 − �ρ(ρ)). (83)

On the right hand side of Eq. 83, bringing (1 − �ρ(ρ)) inside the parenthesis of the
τ−dependent term and noting that

1 − �(τ0, ρ) = (1 − �τ (τ0))(1 − �ρ(ρ)), (84)

gives:

1 − �(τ , ρ) = ((1 − �(τ0, ρ))−n − nλ(1 − �ρ)−n(τ − τ0))
−1/n. (85)

Also without knowing the solution for 1 − �ρ , we can write for the average water
content at time τ :

1 − �̄(τ ) = (1 − �τ (τ))(1 − �̄ρ). (86)

From Eqs. 86 and 82 it follows that the average water content �̄ satisfies an equation
of the same form as Eq. 85:

1 − �̄(τ ) = ((1 − �̄(τ0))
−n − nλ(1 − �̄ρ)−n(τ − τ0))

−1/n. (87)

This nonlinear relationship between �̄ and τ for the falling rate period can be seen
as the counterpart of the simple linear relationship (54) between these two variables
in the constant rate period. Such explicit expressions for the average water content
are a promising basis for upscaling from the mesoscopic to the macroscopic scale.

4.5 Hydraulic connection between the soil–root interface and the xylem

Taylor and Klepper (1975) used a steady state model (cf. Section 4.2) to interpret
experimental data for uptake of water by cotton root systems. Specifically, they used
the following equations of the same form as (65) and (66):

λ̄ = Bsoil−rootsystemLksoil−rootsystem(h1 − hxylem), (88)

where hxylem is a value obtained from shoot water potential measurements, ksoil−
rootsystem is the hydraulic conductivity of the combined soil–root pathway, and the
dimensionless geometric and root distribution factor Bsoil–rootsystem is given by

Bsoil−rootsystem = 2π

ln(r1/rstele)
, (89)
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where rstele is the radius of the root stele. Taylor and Klepper (1975) demonstrated
that in the wet range ksoil−rootsystem was up to six orders of magnitude smaller than
k(θ) for just the soil. This strongly suggests that, at least for cotton, most of the resis-
tance resides in the roots, except when the soil is very dry and ksoil−rootsystem becomes
comparable to kav given by (67).

Herkelrath et al. (1977a) investigated the influence of θ and h upon root water
uptake in a laboratory experiment with winter wheat. They used wax layers, pen-
etrable by roots but not by water, to divide their soil column in different sections.
Their observations imply a large resistance between the soil–root interface and the
xylem and a small resistance between the xylem and the leaves. Water uptake began
to decrease rapidly when θ fell below about 0.10, corresponding to about h = −0.1
bar, in agreement with the data of Taylor and Klepper for cotton.

To account for their observations, Herkelrath et al. (1977b) complemented the
steady state model (63) or the steady rate model (72) with the following expression
to describe the flow from the soil–root interface to the xylem:

qr = C
θ0

θs
(h0 − hxylem), (90)

where C is the conductance of the region between the soil and the xylem. The degree
of saturation θ0/θs of the soil at the soil/root interface is a factor accounting for the
poor contact between the soil and the root. In view of the θ0 proportionality in (90),
it is interesting to note that for θ > 0.03, Taylor and Klepper (1975) found a more
or less linear increase of the rate of uptake with θ . Eq.(90) is similar to an equation
commonly used to describe the steady flow of water across a surface crust into the
underlying soil where the water is at a uniform water content and pressure head and
steadily flows downward under the influence of gravity. Raats (1974b) described a
simple graphical procedure to analyze such steady infiltration into a crusted soil. Van
Noordwijk (1983), see also De Willigen and Van Noordwijk (1987) and Raats (1990a),
used a similar procedure to analyze the implications of (90). For a critical value of
hxylem = hxylemw at which wilting starts, it follows from (90) that:

h0w = h0xylemw + θs

θ0w

qr

C
. (91)

The graphical or equivalent iterative procedure consists of reducing the seemingly
infinity of possible pairs to a single pair by determining the intersection of (91) with
the soil water retention curve:

h0w = h(θ0w). (92)

The root contact model (90) has been used extensively by Jensen et al (1990, 1993).
The concept of contact resistance is particularly relevant for heavier textured soils in
which the roots have a strong tendency to grow at the surface of aggregates.

In view of (72), (75) and (90) the flow from the soil to the xylem can be described by

λ̄ = B∗kL(h1 − h0) = C
θ0

θs
L(h0 − hxylem). (93)

Assuming that he soil conductance is large in comparison with the root conduc-
tance, i.e. B∗kL(h1 − h0) � CLθ0/θs or B∗k(h1 − h0) � Cθ0/θs , so that the water
status around the individual roots is nearly uniform, i.e. h0 ≈ h̄ ≈ h1 and θ0 ≈ θ̄ ≈ θ1,



Uptake of water from soils by plant roots 23

where h̄ is the pressure head and θ̄ is the water content at the macroscopic scale.
Equation 93 may hen be replaced by

λ̄ = C
θ̄

θs
L(h̄ − hxylem). (94)

If in addition the xylem conductance is large in comparison with the root conductance
CLθ0/θs, so that the xylem pressure head hxylem at depth z can be written as the sum
of the root pressure head hroot evaluated at the soil surface and the gravitational head
z, i.e. hxylem = hroot − z, then (94) further reduces to

λ̄ = C
θ̄

θs
L(h̄ − hroot + z). (95)

Clearly, Eq. 95 should only be used if the soil resistance and the xylem resistance are
negligible.

5 Macroscopic models for water uptake

5.1 Macroscopic physical models directly inspired by mesoscopic models

In Sect. 4 it was shown that mesoscopic analysis of water uptake by a single root based
on a variety of assumptions can be used to infer various forms of the macroscopic
volumetric rate of uptake λ̄.

Philip (1957) used Eq. 59 to cast doubt on the concept of the “wilting point” as
an invariant index of the lower limit of the availability of soil water to plants. Fol-
lowing this pioneering study, Philip (personal communication, sometime in the 1980s)
in later years became rather skeptical about models at the scale of individual roots.
In fact, when he returned to the problem of uptake of water by plants later (Philip
1991, 1997), he introduced the root extraction rate directly as a sink term in the flow
equation, recognizing, of course, that it depends on the water status of the soil, the
characteristics of the soil and the root system, and the meteorological conditions.

Equation 65, based on the transient water depletion regarded as a succession of
steady states by Gardner (1960), has been widely used to interpret uptake data. An
example is the analysis by Feddes (1971) of uptake of water by cabbage from a clay
soil. In Sect. 4 several variants of the Gardner model were also discussed: the general-
ization by Cowan (1965) leading to (66), the steady rate version (75) of Passioura and
Cowan (1968) and Jacobsen (1974), the identification in (88) of the resistance residing
in the region between the soil–root interface and the xylem by Taylor and Klepper
(1975), and the root contact model (93) of Herkelrath et al. (1977a,b). Despite all
this attention, like Philip, Gardner (1991) more recently also became rather skeptical
about upscaling from the mesoscopic to the macroscopic scale. He specifically pleaded
for a more direct semi-empirical, macroscopic approach, with due attention for the
effect of solutes on water uptake, as was pioneered at the mesoscopic scale by Dalton
et al. (1975) and by Fiscus (1975).

The steady rate approximation has been extensively used by De Willigen and Van
Noordwijk (1987), De Willigen et al. (2000), Heinen (1997), and Heinen and De Wil-
ligen (1998, 2001), not only for uptake of water, but also for the uptake of nutrients
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(De Willigen and Van Noordwijk 1994a,b). They have also considered extensions to
cases where the flow to the individual roots is not radially symmetric, either due to par-
tial soil–root contact or due to non-uniform spatial root distributions. De Willigen and
Van Noordwijk (1987,Chapter 10) demonstrated that the fraction of the potentially
available water that can be acquired by the root system at a certain rate decreases with
decreasing soil–root contact and increasing spatial clustering of roots. In effect this
is an alternative to the method for dealing with limited soil–root contact discussed
in Sect. 4.5. Whitaker 1986 (1992) showed that limited soil–root contact leads to a
decrease of uptake of water and nitrate, explaining the existence of an optimum in
the response curve of crops to soil compaction.

Yet another approach was explored tentatively by Rappoldt (1992), as a byproduct
of a practical method for the description of transport processes at the mesoscopic
scale in aggregated soils. His method is based on a simplification of the complex
geometry of natural structural soils, in such a manner that the essential geometric and
structural characteristics governing diffusion processes are preserved. This is done as
follows. The geometry of the natural system is replaced by a model system of plates,
or cylinders, or spheres. The distribution of the thicknesses of the plates, or the radii
of the cylinders or spheres, is chosen such that the structured soil and the model
system have the same distance distribution. Calculations of diffusion processes are
carried out in the model system. On this basis, Rappoldt (1992) analyzed in detail
various aspects of aeration of heterogeneous soils (see also Rappoldt 1990; Rappoldt
and Verhagen 1999). To illustrate the generality of the method, he also used it to
analyze the uptake of water and nutrients by an irregularly distributed root system
(Rappoldt 1992, chapter 7). The full treatment of this uptake model remains to be
published.

5.2 Macroscopic empirical models indirectly inspired by mesoscopic models

Denmead and Shaw (1962) experimentally verified the early predictions that water
is not equally available to plants in the range between field capacity and the per-
manent wilting point, and that transpiration can be restricted and plants can wilt
over a wide range of soil water contents, depending on root density, on the soil
hydraulic properties, and last but not least on the transpiration demand of the atmo-
sphere. Tanner (1967, Fig. 5) nicely summarized other data available at that time
relating the ratio of actual and potential transpiration to the amount of water in
the soil.

Based on such data, observed spatial-temporal patterns of the volumetric water
uptake, and the results of the mesoscopic approach, Feddes et al. (1978) boldly pro-
posed a volumetric rate of uptake of the form:

λ̄(h, Tp) = α(h, Tp)λ̄p, (96)

where α(h, Tp) is a dimensionless, prescribed function of the pressure head and the
potential transpiration rate Tp governed by atmospheric conditions, and λ̄p is the
potential, i.e. maximal possible, rate of uptake. Under optimal water conditions, λ̄p
integrated over the rooting depth is equal to Tp. For the reduction function α(h, Tp)

Feddes et al. (1978) proposed:
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α(h, Tp) =

0 h ≥ h1
h1 − h
h1 − h2

h1 > h ≥ h2

1 h2 > h ≥ h3(Tp)

h − h4

h3(Tp) − h4
h3(Tp) > h ≥ h4

0 h4 > h

, (97)

where h1 is the pressure head above which the water uptake is zero due to oxygen
deficiency, h4 is the pressure head below which the water uptake is zero due to dry-
ness, and h2 and h3 are pressure heads between which the water uptake is maximal.
Between h1 and h2 and between h3 and h4 a linear variation is assumed. In line with
the data of Denmead and Shaw (1962), the value of h3 depends on the potential
transpiration Tp.

Van Genuchten (1987) proposed an extension of the macroscopic empirical model
to include reduction of water uptake due to osmotic stress. He replaced the piece-
wise linear water stress reduction function (97) of Feddes et al. (1978) by a nonlinear
reduction function α(h), introduced a similar osmotic stress reduction function α(ho),
where ho is the osmotic pressure, and explored additive and multiplicative combina-
tions of these as net water-salinity stress reduction functions. Feddes and Raats (2004)
reviewed the rather extensive literature that grew out of this proposal. It appears that
such semi-empirical approaches are now favored in simulation models. Of course,
in following this trend, one should try not to not loose sight of the physical and
physiological basis of the phenomena.
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