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Abstract Direct and indirect plant defences are

well studied, particularly in the Brassicaceae. Gluc-

osinolates (GS) are secondary plant compounds

characteristic in this plant family. They play an

important role in defence against herbivores and

pathogens. Insect herbivores that are specialists on

brassicaceous plant species have evolved adaptations

to excrete or detoxify GS. Other insect herbivores

may even sequester GS and employ them as defence

against their own antagonists, such as predators.

Moreover, high levels of GS in the food plants of

non-sequestering herbivores can negatively affect the

growth and survival of their parasitoids. In addition to

allelochemicals, plants produce volatile chemicals

when damaged by herbivores. These herbivore

induced plant volatiles (HIPV) have been demon-

strated to play an important role in foraging

behaviour of insect parasitoids. In addition, biosyn-

thetic pathways involved in the production of HIPV

are being unraveled using the model plant Arabidop-

sis thialiana. However, the majority of studies

investigating the attractiveness of HIPV to parasitoids

are based on experiments mainly using crop plant

species in which defence traits may have changed

through artificial selection. Field studies with both

cultivated and wild crucifers, the latter in which

defence traits are intact, are necessary to reveal the

relative importance of direct and indirect plant

defence strategies on parasitoid and plant fitness.

Future research should also consider the potential

conflict between direct and indirect plant defences

when studying the evolution of plant defences against

insect herbivory.
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Abbreviations

GS Glucosinolates

HIPV Herbivore induced plant volatiles

Introduction

Plants have evolved several strategies to reduce or

prevent insect herbivory. These defence strategies can

be divided into direct and indirect defences. Direct

defences have a negative impact on development and

behaviour of the herbivore, whereas indirect defences

enhance the ability of natural enemies such as parasit-

oids and predators to exploit herbivores on the plant.

R. Gols (&)

Laboratory of Entomology, Wageningen University,

P.O. Box 8031, 6700 EH Wageningen, The Netherlands

e-mail: rieta.gols@wur.nl

J. A. Harvey

Department of Multitrophic Interactions, Netherlands

Institute of Ecology, P.O. Box 40, 6666 ZG Heteren,

The Netherlands

123

Phytochem Rev (2009) 8:187–206

DOI 10.1007/s11101-008-9104-6



Plant defences often involve the production of second-

ary chemical compounds (=allelochemicals) that can

have negative effects on the development and survival

of insect herbivores. Plant allelolochemicals are often

phylogenetically conserved in specific plant families

or genera, such as glucosinolates (hereafter GS) in the

Brassicaceae (Rosenthal and Berenbaum 1992; Schoo-

nhoven et al. 2005). Chemicals that promote the

effectiveness of natural enemies involve volatile

compounds that are produced in response to herbivore

feeding damage, so-called herbivore induced-plant

volatiles (HIPV). These HIPV are known to be

attractive to parasitoids and predators of arthropod

herbivores (Dicke 1999a; Turlings et al. 2002).

Unlike predators that may need to feed on several

prey to reach maturity, the development of parasitoids is

dependent on the finite resources contained in a single

host individual. Arthropod herbivores obtain their

nutrition directly from their food plants. Consequently,

parasitoids of these herbivores obtain their nutrition

indirectly from the plants (Bottrell et al. 1998; Turlings

and Benrey 1998). It has been shown that plant

allelochemicals may not only negatively affect the

development of herbivores but also that of their

parasitoids (Hunter 2003; Ode 2006). Furthermore,

parasitoid reproductive success is closely correlated

with the female’s ability to find hosts (Godfray 1994);

therefore, parasitoids have evolved efficient foraging

strategies to locate hosts in often complex environ-

ments. HIPV have been demonstrated to play an

important role in host-finding behaviour of parasitoids

that attack larval stages of insect herbivores (Dicke

1999a; Turlings et al. 2002). Thus, plant-mediated

effects on parasitoid performance and behaviour can

act negatively through the production of allelochemicals

and positively through the production of volatile

attractants. However, as will be discussed, these two

plant defence traits are not necessarily mutually exclu-

sive (Havill and Raffa 2000; Hunter 2003).

The Brassicaceae family contains important crops

such as cabbages (Brassica oleracea L.) and oilseeds

(B. nigra L., B. napus L. etc.). A number of insect

herbivores associated with these plants have become

serious pests and as a result the interaction between

these insects and their food plants is well studied.

Parasitoid species are often restricted to a narrow range

of host species, which has promoted the use of

parasitoids to control insect pests in agricultural

systems. Many studies have investigated the importance

of HIPV as foraging cues for parasitoids that attack hosts

feeding on brassicaceous plant species. However, little

is known about the effect of food-plant quality on

parasitoid performance in this plant family. After tissue

damage, myrosinases catalyse the hydrolysis of GS into

(iso)thiocyanates and nitriles. A vast amount of litera-

ture has demonstrated that GS hydrolysis products are

mobilised in defence against insect herbivores (Chew

1988; Rask et al. 2000). The volatile hydrolysis prod-

ucts can act as repellents, whereas the GS present in the

food may significantly alter the physiology and devel-

opment of some herbivores, through reduced growth

rates, smaller adult size and increased mortality. Insect

herbivores that mainly feed on brassicaceous plant

species have evolved special adaptations to excrete and/

or detoxify GS (Ratzka et al. 2002; Wittstock et al.

2004). Moreover, some insects sequester GS and

employ them as defence against their own antagonists

(Müller et al. 2001; Aliabadi et al. 2002). The effect of

brassicaceous plant species on the performance and

behaviour of insect parasitoids is the topic of this review.

First, we examine the effect of brassicaceous food

plants on the development of hosts and their parasit-

oids. We briefly describe the effects of sequestration

of GS by some insect herbivores on organisms in the

third trophic level. Because only a few studies have

investigated the effect of GS-sequestration on organ-

isms in the third trophic level, we examine this in

both parasitoids and predators. Second, we review

studies reporting on the attraction of parasitoids to

HIPV. Furthermore, special attention is paid to the

model plant Arabidopsis thialiana L. and its role in

elucidating mechanisms underlying tritrophic inter-

actions. Finally, we discuss the fact that most studies

investigating tritrophic interactions in brassicaceous

plant species use cultivated varieties. Artificial

selection may have changed the chemistry of crop

plants in such a way that the performance of

herbivores and their parasitoids differ on cultivated

and wild conspecific plants.

Direct plant defence: are herbivore and parasitoid

performance differentially affected by plant

quality?

Relatively few studies have investigated the effects of

secondary plant chemistry mediated through the host

on parasitoid performance (Harvey 2005; Ode 2006).
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Parasitoids of herbivores feeding on GS-containing

plants may be negatively affected by plant-derived

compounds that are stored in the haemolymph or

other body tissues of the herbivore. Furthermore, the

feeding strategy of the parasitoid larva may deter-

mine to what extent the parasitoid offspring are

exposed to plant allelochemicals (Harvey and Strand

2002). For example, parasitoid species whose larvae

are obligate tissue feeders and have to consume the

host completely before pupation are likely to be

exposed to plant-derived compounds that are stored

in the host’s body tissues or in the gut. Alternatively,

parasitoids that selectively feed on haemolymph and

fat body and pupate externally from the host larva

may avoid exposure to harmful plant-derived com-

pounds. Parasitoid performance may also be

compromised due to reduced size or quality of the

host itself. Furthermore, the efficiency of the host

immune response may be reduced when the host is

feeding on more toxic plant genotypes or species

(Karimzadeh and Wright 2008), which in turn may

increase parasitism success. In the following two

sections, we will examine studies that have investi-

gated the performance of parasitoids on hosts feeding

on different species and populations of brassicaceous

plants.

Effects of interspecific variation in plant quality

on parasitoid performance

Table 1 provides an overview of studies that have

investigated the performance of both herbivores and

parasitoids reared on different brassicaceous plant

species. Generalist herbivores, which can feed on

plant species in several plant families, are usually

more sensitive to plant allelochemicals than specialist

herbivores, which are adapted to feed on plants

containing specific phytotoxins, such as GS (Blau

et al. 1978). Likewise, parasitoids attacking general-

ist herbivores have been shown to be more strongly

affected by the herbivore’s diet than parasitoids that

attack hosts only feeding on brassicaceous plant

species (Sznajder and Harvey 2003; Gols et al.

2008c). Specialist herbivores have evolved efficient

GS detoxification mechanisms (Ratzka et al. 2002;

Wittstock et al. 2004; Agerbirk et al. 2006). Conse-

quently, parasitoids of specialist herbivores may be

exposed to only low levels of GS or their breakdown

products. However, the development of parasitoids of

hosts that are specialised on brassicaceous plant

species have also been shown to differ with host plant

quality (Benrey et al. 1998; Harvey et al. 2003;

Sznajder and Harvey 2003; Gols et al. 2007). Neg-

ative plant-mediated effects can even affect

hyperparasitoids (parasitoids that develop in other

parasitoids) in the fourth trophic level (Harvey et al.

2003; Soler et al. 2005). One factor to consider is that

brassicaceous plants contain other allelochemicals in

addition to GS. For example, cardenolides in the

annual weed Erysimum cheiranthoides L. are feeding

deterrents to larvae of specialists such as Pieris rapae

L. (Renwick 2001). Related species, like Bunias

orientalis L, are actually toxic to specialists in the

Pieridae and this leads to precocious death of their

parasitoids. However, the main GS in B. orientalis is

sinalbin (4-hydroxybenzyl-glucosinolate), which is

not toxic to pierids, thus indicating the presence of

some other, as of yet unidentified toxin (J.A. Harvey,

unpublished).

Quite often, the performance of the host and its

parasitoid are positively correlated (Benrey et al.

1998; Harvey et al. 2003; Sznajder and Harvey

2003), although the adverse effects of food plant

characteristics on insect performance are usually less

pronounced in the parasitoid than in the herbivore.

Secretion and/or detoxification of plant allelochemi-

cals by the host may dilute the effect of these

compounds on the development of the parasitoid. In

addition, the feeding strategy of the parasitoid larva

may influence the extent to which parasitoid offspring

are exposed to the adverse effects of plant-derived

compounds. For example, Gols et al. (2008b) found

that the haemolymph-feeding parasitoid Cotesia glom-

erata L. (Fig. 1b), developed equally well on hosts

feeding on Sinapis arvensis L. and Brassica nigra,

whereas its host, Pieris brassicae L., was significantly

smaller and took longer to complete development on

S. arvensis. By contrast, Karowe and Schoonhoven

(1992) showed that C. glomerata attained higher

biomass and developed faster when parasitizing

P. brassicae caterpillars that feed on Tropaeolum

majus L. than on B. napus and B. oleracea, whereas

its host P. brassicae performed better on the latter two

food plants. Tropaeolum majus contains GS, although

it is not a member of the Brassicaceae. Differences in

nutritional requirements and/or sensitivity to second-

ary plant metabolites may explain the differential

performance of the host and its parasitoid.
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Effects of intraspecific variation in plant quality

on parasitoid performance

Several studies have shown that GS are variably

expressed in different cultivars and wild populations of

B. oleracea. Levels of GS are generally lower in

B. oleracea cultivars than in wild populations (Mithen

et al. 1995; Kushad et al. 1999; Rosa 1999; Moyes

et al. 2000; Gols et al. 2008c). Brassica oleracea is an

interesting plant species with respect to foliar GS

composition in leaf tissues. The leaf tissues of this plant

species sometimes contain up to ten different GS

compounds, of which individual concentrations can

differ considerably among different cultivars and wild

populations. This is in contrast to other plant species in

which one GS dominates the GS profile (e.g., sinigrin

or 2-propenyl glucosinolate in B. nigra and sinalbin in

S. alba L.). Wild populations of B. oleracea, which

grow naturally along the Atlantic coastlines of England

and France, differ considerably in constitutive and

inducible levels of GS (Mithen et al. 1995; Moyes

et al. 2000; Gols et al. 2008c). Aliphatic GS (GS

Fig. 1 Several species of insect herbivores and parasitoids

used in research on tritrophic interactions involving brassica-

ceous plant species. (a) Microplitis mediator is a fairly

specialised solitary endoparasitoid of hosts that can feed on

plants in several plant families. Here, a female is ovipositing in

a larva of the cabbage moth, Mamestra brassicae. (b) Cotesia
glomerata is also a fairly specialised gregarious larval

endoparasitoid that attacks young larvae of pierid hosts. Here

a female is parasitising a Pieris brassicae larva. (c) Diadegma
semiclausum is a specialist solitary larval endoparasitoid of the

diamondback moth, Plutella xylostella. This parasitoid can

attack all four larval stages of its host. (d) A mummified aphid,

Brevicoryne brassicae, containing a pupa of its parasitoid,

Diaeretiella rapae. This parasitoid is a generalist and is known

to attack a number of aphids including Myzus persicae and

Br. brassicae. (e) A ‘bleeding’ larva of the sawfly, Athalia
rosae. Larvae of A. rosae sequester GS from the food plant in

their haemolymph and easily bleed when touched by self-

rupturing the integument. This bleeding has been shown to

deter predators of this herbivores. Photographs are printed with

permission of Tibor Bukovinszky, Hans Smid and Caroline

Müller
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derived from methionine) concentrations differed

among the wild populations, but did not change in

response to herbivore feeding (Gols et al. 2008a).

Concentrations of indole GS (GS derived from tryp-

tophan) have been demonstrated to be low in

undamaged plants, but are differentially induced in

response to feeding damage (Gols et al. 2008a).

The performance of herbivores feeding on plants

differing in foliar GS content has been well studied

(Hopkins et al. 1998; Li et al. 2000; Agrawal and

Kurashige 2003). Plants with high levels of GS can

reduce the performance of both generalist and specialist

herbivores, although the effects of GS on specialists are

usually less pronounced (Li et al. 2000; Gols et al.

2008a). Only a few papers have reported the effects of

intraspecific variation in GS content on parasitoid

performance (Table 2). For example, P. rapae devel-

oped faster and grew larger on one of three wild

B. oleracea populations with the lowest level of induc-

ible GS (Gols et al. 2008c). Development of both the

solitary larval endoparasitoid, C. rubecula Marshall,

and the gregarious pupal parasitoid, Pteromalus pupa-

rum L., closely reflected plant quality for P. rapae

feeding on the wild B. oleracea populations (Harvey

et al. 2007a; Gols et al. 2008c). Interestingly, the

generalist herbivore Mamestra brassicae L., and its

fairly specialised larval endoparasitoid, Microplitis

mediator Haliday (Fig. 1a), developed more poorly on

wild cabbage populations with the highest levels of

constitutive GS (Gols et al. 2008c). Performance of the

specialist herbivore, P. rapae, appeared to be affected

by inducible indole GS in its food plant, whereas the

generalist, M. brassicae, responded negatively to high

overall GS concentrations. These results reveal varia-

tion in the differential effects of plant quality, possibly

mediated through GS, on the development of oligoph-

agous and polyphagous herbivores and their parasitoids.

Above, we referred to studies where food plant

quality was compared in different strains or popula-

tions of the same species. However, the quality of an

individual plant may change in response to a suite of

biotic factors such as pathogen infections and herbi-

vore feeding (Agrawal 1999), as well as abiotic

factors such as nutrient levels and light conditions

(Schoonhoven et al. 2005). Over the course of a

growing season, the quality of leaf tissues may

change due in part to changes in abiotic conditions,

leading to concomitant effects on herbivore-natural

enemy interactions. This is particularly important for

insects that have more than a single generation over

the course of a year. Later generations of herbivores

may develop on plants that differ profoundly in terms

of their defence chemistry from the natal plants of

their parents. Current knowledge about the effects of

GS on insect development in a multitrophic frame-

work has often been based on experiments performed

during a single time frame. For instance, the devel-

opment of three cohorts of Plutella xylostella L. and

its endoparasitoid Diadegma semiclausum Hellén

(Fig. 1c) differed significantly when reared on culti-

vated B. oleracea and S. alba plants grown over the

course of a single summer and autumn season (Gols

et al. 2007). Although the plants were grown under

strictly similar conditions in a greenhouse, foliar

levels of GS changed quite dramatically from one

experiment to another, with significant effects on the

development of the herbivore and its parasitoid. This

suggests that conditions in nature, which are not

controlled, but which may change profoundly over

quite short time scales, may affect associated con-

sumers even more. Certainly, this is an understudied

area that merits further investigation.

Thus far, we have described the results of studies

investigating herbivore–parasitoid interactions in the

above-ground compartment of a plant system. How-

ever, single plant, herbivore and parasitoid

associations constitute only a small part of a complex

above- and below-ground environment. Feeding

damage caused by root and shoot herbivores may

lead to both qualitative and quantitative changes in

root and shoot tissues that are not necessarily

correlated, due to differing effects of herbivory on

primary and secondary metabolites in the below- and

above-ground domains (Masters and Brown 1997;

Bezemer and van Dam 2005; van Dam et al. 2008).

These changes in above- and below-ground plant

organs may not only affect the development of

herbivores in the two spatially separated compart-

ments, but also higher trophic level organisms

associated with these herbivores. Low levels of

herbivory by larvae of the cabbage root fly Delia

radicum L. negatively influenced development of

both the foliar herbivore P. brassicae and its para-

sitoid C. glomerata when reared on B. nigra plants

(Soler et al. 2005). The adverse effects of root

herbivory were even transmitted to the fourth trophic

level; the hyperparasitoid Lysibia nana Gravenhorst

was significantly smaller when emerging from

192 Phytochem Rev (2009) 8:187–206
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C. glomerata cocoons originating from plants

exposed to root herbivory by D. radicum (Soler et al.

2005). The authors argued that increased concentra-

tions of the GS sinigrin in foliar tissues of plants

exposed to root herbivory could be responsible for the

reduced performance of the above-ground insects. In

a reciprocal study, Soler et al. (2007a) investigated

the effect of shoot herbivory on performance of

D. radicum and its larval endoparasitoid Trybiogra-

pha rapae West. Size and survival in both

D. radicum and T. rapae were negatively affected

when reared on plants whose shoots had been

previously damaged by P. brassicae larvae, com-

pared with undamaged control plants (Soler et al.

2007a). Shoot herbivory did not affect nitrogen

concentrations in the roots. However, levels of the

indole GS, glucobrassicin (3-indolylmethyl glucosin-

olate) and neoglucobrassicin (1-methoxy-3-

indolylmethyl glucosinolate) increased significantly

in the secondary roots of plants in response to

P. brassicae feeding. These studies show that by

focusing exclusively on the above-ground environ-

ment, our understanding of the processes that

influence multitrophic interactions, e.g., between

plants, herbivore and parasitoids, is likely to be

incomplete (Harvey 2005).

The effect of sequestration of GS by insect

herbivores on predators and parasitoids

Specialised insects feeding on brassicaceous plant

species have not only evolved adaptations to cope

with the adverse effects of GS, but some insects

actively sequester GS in their haemolymph or other

body tissues and use them for their own defence. For

example, the sawfly Athalia rosae L., which mainly

feeds on GS-containing plants, concentrates GS

obtained from the food plant in its haemolymph

(for a detailed review see Müller this issue-a). The

integument of A. rosae larvae is easily disrupted

when touched and haemolymph is released from the

wound. This ‘easy bleeding’ (Fig. 1e) has been

shown to deter predators such as lizards (Vlieger

et al. 2004), ants (Müller et al. 2002) and predatory

wasps like Vespula vulgaris L. (Müller and Brake-

field 2003).

The harlequin bug Murgantia histrionica Hahn

also sequesters GS from its food plant and is

distasteful to several species of bird predators (Alia-

badi et al. 2002). The possibility of sequestration of

GS by immature stages of Pieris species has gener-

ated controversy. An early study (Aplin et al. 1975)

reported on the sequestration of GS by larvae and

pupae of P. rapae and P. brassicae. However, a

recent study by Müller et al. (2003), in which more

advanced GS analysis techniques were used, found

that GS could not be detected in body tissues or

haemolymph of P. rapae and P. brassicae larvae that

had been feeding on GS-containing food plants.

Interestingly, Wiklund and Järvi (1982), demon-

strated that starlings (Sturnus vulgaris L.) rejected

P. brassicae caterpillars as food. Moreover, Rayor

et al. (2007) reported that paper wasps (Polistes

dominulus Christ) spent more time handling P. napi

L. caterpillars that had been feeding on Erysimum

cheiranthoides, Tropaeolum majus and B. nigra,

crucifers with high levels of potentially deterrent

GS, than P. napi caterpillars that had been feeding on

a less toxic cabbage cultivar (B. oleracea capitata).

Extended handling by the wasp involved removal of

the gut, suggesting that, although GS might not be

sequestered, the presence of plant tissue material in

the gut reduces foraging efficiency. It cannot be

excluded that secondary compounds other than GS

are responsible for the observed extended handling

behaviour.

GS become toxic through a process of catalytic

hydrolysis by myrosinase enzymes, which are stored

in cytoplasm of specialised myrosin cells that are

scattered throughout the plant tissues (Mithen 2001).

Degradation of GS only occurs after cell rupture

leading to the production of nitriles, isothiocyanates,

thiocyanates and oxazolidinethiones. This myrosi-

nase-GS defence mechanism is mirrored in the aphids

Brevicoryne brassicae L. (abbreviated into Br. brass-

icae) and Lipaphis erysimi Kaltenbach (Bridges et al.

2002). Both aphid species sequester GS from phloem

sap in their host plant, but the enzyme myrosinase is

endogenous to the aphids (Bridges et al. 2002;

Kazana et al. 2007). When predatory larvae of the

ladybird beetle Adalia bipunctata L. and the hoverfly

Episyrphus balteatus de Geer fed on either Br. brass-

icae or Myzus persicae Sulzer, survival was

significantly lower on Br. brassicae (Francis et al.

2001a; Vanhaelen et al. 2002). Myzus persicae does

not sequester GS, nor does it possess endogenous

myrosinase.
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Moreover, for both predator species, survival

depended on the host plant species on which

Br. brassicae had been feeding previously. Survival

of the predators was equally low on S. alba and

B. nigra, but was higher when Br. brassicae had been

feeding on B. napus, which contains much lower

levels of total GS than the other two plant species. By

contrast, survival of A. bipunctata was very high

when the prey was M. persicae, irrespective of the

food plant species on which the aphid had been

feeding (Francis et al. 2001a). Chemical identifica-

tion of GS and related degradation products in both

aphid species revealed very low levels of GS and no

degradation products in M. persicae, and very high

levels of GS and isothiocyanates in Br. brassicae

(Francis et al. 2001a). In a separate study Francis

et al. (2001b) also found that other fitness correlates

such as development time and adult body mass were

not affected by food plant species of M. persicae.

However, fecundity of A. bipunctata females that had

been reared from M. persicae on S. alba was signif-

icantly lower than that of the same aphid species

reared on B. napus with low GS levels. In contrast,

this defence mechanism is not effective against

Diaeretiella rapae McIntosh (Fig. 1d), a parasitoid

of aphids feeding on several Brassica species. This

parasitoid has a greater innate preference for

Br. brassicae than for M. persicae, but differences

in performance when reared on the two aphid species

were found to be minimal (Blande et al. 2004).

These results demonstrate the effectiveness of

sequestration of food-derived GS by specialised

herbivores against generalist natural enemies. In

addition, the effectiveness of anti-predator activity

often depends on the host plant on which the

herbivore has been feeding. Plant-mediated effects

against natural enemies are also present in less well

adapted herbivores, but their effects can be compro-

mised by the reduced performance of the herbivore

itself.

Indirect defence: the production of volatile

chemicals that attract parasitoids of herbivores

feeding on brassicaceous plant species

Attempts have been made to elucidate which specific

volatile plant compounds play a role in the attraction

of parasitoids and predators to their host plant (Dicke

et al. 1990; de Boer and Dicke 2004; Shiojiri et al.

2006b; Halitschke et al. 2008). In addition, biosyn-

thetic pathways involved in the production of the

volatiles are being unraveled (Dicke and van Poecke

2002; Arimura et al. 2008). Brassica cultivars, espe-

cially those of B. oleracea, are well studied with

respect to HIPV and their attractiveness to the

herbivore’s natural enemies (see Table 3). All para-

sitoid species in Table 3 have been shown to

discriminate between volatiles from damaged and

undamaged plants and most of them are attracted

more to HIPV than to volatiles emitted by artificially

damaged plants. However, only a few parasitoid

species prefer volatiles from host-damaged plants

over plants damaged by non-host species (Geervliet

et al. 1996; Shiojiri et al. 2000), although some

parasitoid species can learn to differentiate between

volatiles induced by host and non-host herbivores

(Geervliet et al. 1998). These results indicate that

volatile emissions by species in the Brassicaceae are

very similar when plants are damaged by different

herbivores as has been demonstrated in earlier studies

(Blaakmeer et al. 1994; Geervliet et al. 1997). Con-

sequently, the parasitoids may be unable to detect

these minor differences.

Among the volatile chemicals involved in host–

plant location by parasitoids, green leaf volatiles and

terpenoids are assumed to play an important role,

because their levels change in response to herbivore

feeding. However, these two groups of chemicals are

ubiquitously produced in the plant kingdom and thus

may not always provide reliable cues that reveal the

identity of the host–plant complex. Alternatively, the

identity of the plant and its attacker can be deter-

mined based on differences in the relative

concentrations of compounds in the volatile blends

(de Boer et al. 2004). Physiological constraints

usually limit the number of different host species

that can be parasitised by a larval endoparasitoid, but

herbivorous hosts specialised on brassicaceous plants

can feed on a range of different plant species.

Surprisingly, few studies have compared the compo-

sition of HIPV and their attractiveness to parasitoids

in different brassicaceous plant species (Takabayashi

et al. 1998; Bukovinszky et al. 2005).

Many species in the Brassicaceae are short-lived

annuals and often grow in disturbed areas associated

with human activity (Feeny 1977). Therefore, herbi-

vores and associated parasitoids have to find these
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plants growing in patches that are often spatially and

temporally unpredictable. In addition, different gen-

erations of these insects may grow on different host

plant species. Therefore, it is critically important for

parasitoid females to be able to recognise a range of

host food plants that may differ considerably in the

composition of their volatile emissions when dam-

aged by hosts. Volatile GS hydrolysis products seem

obvious candidates as reliable signals in brassica-

ceous plant species. Attraction to GS hydrolysis

products has thus far only been demonstrated in the

aphid parasitoid D. rapae (Read et al. 1970; Brad-

burne and Mithen 2000; Blande et al. 2007).

Plant–herbivore–parasitoid interactions

in domesticated and wild Brassicaceae

In the Brassicaceae, domestication has given rise to

several important crops such as cabbages (B. oleracea,

B. napus), oilseeds (B. napus, B. juncea and B. rapa

L.) and mustard condiments (B. nigra, S. alba).

Cultivation has generally been aimed at enhancing a

trait or a suite of traits in the plant, such as the

production of specific plant organs or structures.

Importantly, this may or may not be compatible with

direct or indirect defences. For instance, one of the

most important traits in vegetable crops is their taste.

Selection on this trait may be in direct conflict with

direct defence depending on whether this trait is

emphasised (e.g., mustard condiments) or not (e.g.,

cabbage). As a consequence of artificial selection,

levels of primary and secondary plant compounds in

crop plants may have changed in such a way that these

plants have become more susceptible to insect attack.

For example, GS in B. oleracea cultivars are often

reduced compared with wild conspecific plants

(Kushad et al. 1999; Rosa 1999; Moyes et al. 2000).

Several studies have demonstrated that both herbivores

and their parasitoids perform more poorly on wild than

on cultivated brassicaceous plant species (Benrey et al.

1998; Harvey et al. 2007a; Gols et al. 2008c).

Resistance to and persistence of pesticides in the

environment have promoted the search for alternative

methods to control pests in agricultural systems. This

has resulted in a wealth of studies investigating

factors that improve the control of insect pests by the

herbivore’s natural enemies. Many studies in agro-

ecological research assume that tritrophic interactions

(e.g., plant–herbivore–parasitoid interactions) func-

tion similarly in managed and unmanaged ecosystems

(Barbosa 1993). However, the validity of these

assumptions has rarely been empirically tested. In a

seminal paper, Root (1973) introduced the ‘resource

concentration’ hypothesis, which states that specia-

lised herbivores attain higher densities in

monocultures, because they are more likely to find

and remain on host plants that are growing in pure

stands. Likewise, given that they evolved in more

complex natural ecosystems, parasitoids are often

less challenged in finding hosts in agricultural

monocultures and frequently overexploit host popu-

lations in cropping systems. Furthermore, the

resource concentration hypothesis may also apply to

generalist herbivores as a consequence of reduced

levels of allelochemicals. This may explain why

generalist herbivores, such as the cabbage moth

(Mamestra brassicae) are not easy to find in natural

plant assemblages but often become abundant, dam-

aging pests in cabbage fields. Comparison of the

foraging behaviour and population dynamics of hosts

and their parasitoids in managed agricultural and

unmanaged natural ecosystems may provide new

insights into the mechanisms underlying tritrophic

interactions (e.g., Ohsaki and Sato 1999).

For many crop plant species it has been demon-

strated that herbivore-damaged plants emit volatile

compounds that are attractive to parasitoids (for

examples of parasitoid attraction in the Brassicaceae,

see Table 3) and some parasitoids can even discrim-

inate between volatiles emitted by different cultivars

of the same crop species (Geervliet et al. 1996; Liu

and Jiang 2003). However, plant breeding aimed at

specific traits may not only have changed levels of

nutrients and GS but also the quality and/or quantity

of volatile blends produced in response to feeding

damage. Volatile GS hydrolysis products in the

headspace in cultivars of B. oleracea have been

demonstrated to be very low (Blaakmeer et al. 1994;

Geervliet et al. 1997; Bukovinszky et al. 2005). It

would be interesting to analyse and quantify HIPV

emissions and their attractiveness to parasitoids in

wild B. oleracea populations in which foliar GS have

been reported to be much higher than in cultivated

strains.

Specialist herbivores have evolved efficient GS

detoxification systems (Ratzka et al. 2002; Wittstock

et al. 2004; Agerbirk et al. 2006) and larvae of these
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species may use GS as feeding stimulants (Renwick

2002). Consequently, the negative effects of GS on the

performance of specialist herbivores are considered to

be low. However, high GS concentrations may also

affect negatively the development of specialist herbi-

vores (Agrawal and Kurashige 2003). Therefore in

natural plant populations where individual plants or

populations contain high levels of GS, it is expected that

the development of specialists may also be compro-

mised. Finally, individual GS compounds may differ in

their defence activity. Reduced levels of GS in

cultivated Brassicaceae may lead to underestimations

in the adverse effects of GS when compared with wild

conspecifics, in which levels of toxic secondary plant

compounds have not been modified.

Arabidopsis and herbivore–parasitoid interactions

The model plant A. thaliana has been used for a wide

range of research topics such as plant development,

pathogen resistance and secondary plant metabolite

chemistry. As a member of the Brassicaceae, Arabid-

opsis also synthesises GS. At present, the elucidation of

pathways involved in the biosynthesis of GS, espe-

cially aliphatic GS, relies substantially on research

with Arabidopsis (Halkier and Gershenzon 2006).

Since GS hydrolysis products play a role in plant

defence against insects, the effects of GS on herbivore

performance have recently been studied using different

genotypes/mutants of this plant species (Stotz et al.

2000; Lambrix et al. 2001; Kliebenstein et al. 2002;

Burow et al. 2006). For example, Burow et al. (2006)

and Kliebenstein et al. (2002) investigated the effect of

an epithiospecifier protein (EPS) on the performance of

generalist and specialist lepidopteran herbivores. This

ESP generates the production of nitriles instead of the

more toxic isothiocyanates. This raises the question as

to why a plant would redirect its defence chemistry and

become more susceptible to insect herbivory. Burow

et al. (2006) suggest that the expression of ESP genes

may play a role against other attackers such as

pathogens, or else plants expressing ESP may be more

attractive to insect parasitoids. An alternative expla-

nation for the existence of ESP could be that selection

against the adverse effects of ESP expression is very

low in Arabidopsis populations. Arabidopsis is a

winter annual, which starts to flower in March and

completes its development in April to early May. Most

potential herbivores, such as P. rapae, usually first

appear in April and May when Arabidopsis plants are

fully seeded and when the plant’s vegetative tissues

have disappeared. A temporal mismatch between the

phenology of Arabidopsis and insect herbivores such

as P. rapae suggests that we should interpret the

adaptive significance of defensive traits in this plant

with some caution (Yano 1994; Arany et al. 2005;

Harvey et al. 2007b). Defensive traits in Arabidopsis

may be phylogenetically conserved in the genome, and

there may be little cost in maintaining them.

The availability of many mutant and transgenic

lines has extended the study of indirect defences (i.e.,

the production of plant volatiles that attract natural

enemies of insect herbivores) to Arabidopsis. Similar

to other brassicaceous plant species, Arabidopsis

emits volatile chemicals in response to herbivore

feeding that are attractive to parasitoids (van Poecke

et al. 2001, 2003; Girling et al. 2006). Genes from

major biosynthetic pathways are induced in response

to P. rapae feeding (van Poecke et al. 2001). These

genes include AtTPS10, AtPAL1, AtLOX2, AtHPL,

and AtAOS. AtTPS10 is a terpenoid synthase involved

in myrcene production and AtPAL1 encodes phenyl-

alanine ammonia-lyase, which plays a role in methyl

salicylate production. AtLOX2 and AtHPL, encoding

lipoxygenase and hydroperoxide lyase, respectively,

are important for the production of green leaf

volatiles (C6 alcohols, aldehydes and esters). AtAOS

encodes allene oxide synthase. Both AtAOS and

AtLOX2 play a role in the production of jasmonic

acid, a plant hormone that plays an important role in

induced direct and indirect plant defence responses

(Karban and Baldwin 1997). Arabidopsis mutants

were used to elucidate signal transduction pathways

and the role of the hormones jasmonic acid and

salicylic acid in induced indirect plant defences (van

Poecke and Dicke 2002). Mutants of this plant

species that were impaired in the octadecanoid and

salicylic pathway were less attractive to the parasitoid

C. glomerata than wild-type plants. Transgenic lines

with enhanced hydroperoxide lyase (HPL) activity

produced more (Z)-3-hexanal when damaged by

P. rapae and were more attractive to C. glomerata

than wild-type Arabidopsis plants (Shiojiri et al.

2006b). An Arabidopsis mutant (all84), in which

the production of (Z)-3-hexanal was suppressed,

attracted fewer C. glomerata females when damaged

by P. rapae than wild-type plants (Shiojiri et al.
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2006a). Moreover, C. glomerata females were also

attracted to synthetic green leaf volatiles (Shiojiri

et al. 2006a). Contrastingly, C. plutellae Kurdjumov

(now C. vestalis Haliday) females did not discrimi-

nate between all84 and wild type plants when

damaged by its host P. xylostella (Shiojiri et al.

2006a). These results suggest that the relative

importance of green leaf volatiles as parasitoid

attractants is species-specific.

Mutant and transgenic lines of A. thaliana can be

used to investigate the relative role of volatile

chemicals as natural enemy attractants. However,

results should be verified using the plant species on

which these herbivores and their parasitoids naturally

occur. In addition, although many studies have

reported on parasitoid attraction to herbivore-induced

A. thaliana volatiles, only one has examined the

quality of the host for the parasitoid when reared on

Arabidopsis (Barker et al. 2007). In this study, adult

C. plutellae were significantly smaller when the host,

P. xylostella, was reared on A. thaliana, than when

the host was reared on B. rapa.

Future directions

As we have shown in this review, relatively few

studies have investigated the effects of secondary

plant chemistry mediated through the host on para-

sitoid performance (see also Harvey 2005; Ode

2006). To understand the relative importance of

bottom-up and top-down control of insect herbivores

it is important to also study bottom-up effects of plant

chemistry on the interactions between herbivores and

their natural enemies. Here we have reported studies

showing that herbivores and their parasitoids are

differentially affected by the herbivore’s food plant

and that wild brassicaceous plant species tend to be

more toxic than cultivated strains or species. Very

few studies have actually shown that GS hydrolysis

products result in reduced development of the

herbivore (Agrawal and Kurashige 2003). The com-

partmentalised myrosinase-GS defence in the

Brassicaceae complicates empirical testing of the

adverse effects of GS. Since the biosynthesis of

aliphatic GS is well-studied, the effect of GS on

insect herbivores and their parasitoids is mainly

restricted to aliphatic GS (GS derived from methio-

nine) and to a lesser extent the aromatic GS (GS

derived from phenylalanine). Indole GS, which are

derived from tryptophan, could also play a role in

defence against insects (Soler et al. 2007a; Gols et al.

2008c; Agerbirk et al. 2008). In addition, differences

in the expression of myrosinase enzymes, which

catalyze hydrolysis of GS, could differ among plants

species and populations and affect herbivore and

parasitoid performance (Li et al. 2000; Müller and

Sieling 2006). Insect growth and development also

depend on the availability of primary metabolites

such as amino acids as well as nutrients such as

nitrogen that are often limiting. It is likely that levels

of primary metabolites vary among plants species.

Artificial diets (Agrawal and Kurashige 2003), arti-

ficially selected lines (Mithen 1992; Li et al. 2000;

Müller and Sieling 2006) or the use of mutant plants

that have been modified to emphasise a single trait

may help to better understand the relative effect of

GS on insect performance, but one should also bear in

mind the effect of other defence-related compounds

as well as nutrients.

Little is known about the ability of parasitoids to

detoxify allelochemicals (see also Ode 2006). The

alimentary tract of endoparasitoid larvae is not

externally connected until after egression and pupa-

tion, and thus any phytochemicals ingested during

larval feeding must be stored until they are voided in

by-products such as meconia and/or cocoon silk

(Barbosa et al. 1986; Bowers 2003). Parasitoid larvae

may have developed their own detoxification mech-

anism(s), or else they can tolerate high levels of

allelochemicals and might even sequester them.

Some studies have investigated the detoxification of

GS in predators of insect herbivores. Feeding on

M. persicae and Br. brassicae induced glutathione

S-tranferase activity in the hoverfly E. balteatus

(Vanhaelen et al. 2001). Glutathione S-tranferase is

an important detoxification enzyme in eukaryotes.

Other enzymes such as cytochrome P450’s can also

metabolise xenobiotics and could play a role in

detoxification of plant-derived allelochemicals. The

effect of GS and other allelochemicals on physiolog-

ical traits of parasitoids is also virtually unknown. In

particular, it would be interesting to determine what

effects (if any) GS in the host’s diet have on the

ability of parasitoids to utilise resources for mainte-

nance and reproduction (Jervis et al. 2008).

The majority of studies investigating the attrac-

tiveness of HIPV to parasitoids are based on
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windtunnel or Y-tube olfactometer experiments,

mainly using crop plant species (Table 3) (for a

critical review see Hunter 2002). However, little is

known about the spatial scale at which these plant

volatiles are perceived by parasitoids in the field.

Moreover, in natural habitats parasitoids have to

forage in complex environments that may consist of

many different plant species where there are struc-

tural and chemical barriers. The foraging behaviour

of parasitoids has been demonstrated to be affected

by the structure and identity of the local plant

community (Gols et al. 2005; Bukovinszky et al.

2007). In addition, individual foraging decisions do

not necessarily translate directly into differences in

population dynamics. For example, parasitism rates

by C. plutellae differed when the parasitoids were

reared on two different host plants in short-term

experiments, but in long-term experiments the pop-

ulation dynamics were similar on both host plant

species (Karimzadeh et al. 2004). Field studies are

thus necessary to reveal the relative importance of

HIPV on plant/parasitoid fitness in both managed

agricultural and unmanaged natural ecosystems

(Geervliet et al. 2000).

One other area that is understudied is the degree of

local adaptation exhibited by herbivore and natural

enemy populations to different crucifer species that

grow in their habitats. This is especially important in

understanding how consumers respond to invasive

plants, given that several species in the Brassicaceae

are considered to be highly invasive pests in North

America and Europe (Dietz et al. 1999; Meekins and

McCarthy 1999; Lankau and Strauss 2007). Recent

empirical evidence suggests that plants with novel

secondary chemistries have the capacity to invade

new regions because the local herbivore populations

are not adapted to them (Cappuccino and Carpenter

2005; Keeler et al. 2006; Callaway and Vivanco

2007; Müller this issue-b). Furthermore, studies with

invasive plants have rarely included natural enemies

of herbivores associated with these plants. Studies

with invasive crucifers offer an excellent opportunity

for understanding mechanisms underlying novel

interactions, and how other processes such as ‘eco-

logical fitting’ (Agosta 2006) may determine the

success of insects associated with invasive plants.

In this review we have focused on the effect of the

host’s food plant and on the effects of plant volatile

emissions on the development and behaviour of

insect parasitoids and predators. In most cases, these

two plant defence strategies have been studied

independently. However direct and indirect defences

may not act independently from each other and this

may impose an evolutionary ‘dilemma’ or ‘conflict’

when a female parasitoid is attracted to a plant that

negatively influences the development of her progeny

(Dicke 1999b; Havill and Raffa 2000; Hunter 2003).

Future research should consider this potentially

important conflict when studying the evolution of

plant defences against insect herbivory.
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