

RERUNS.DAT

program FORSIM

actions: -opens and writes to
LOG file ———31 MODELLOG
-controls RERUNs

-calls driver routine

communication:
-list of arguments
-External MODEL

TIMER.DAT

subroutine EUDRIV

actions: -reads TIMER data | ——3»{ MODEL.LOG

-controls time loop

-calls user MODEL
-integrates rates

-writes to LOG file

communication:

-list of arguments
-COMMON /INFO/
-External MODEL

MODEL.DAT

user subroutine MODEL
actions: -reads model data |——>» RES.DAT
-calculates rates
-writes output to
RES file

Figure 48. Lay out of FORTRAN simulation modules using the integration method of Euler, sho-
wing a main program FORSIM, the driver subroutine EUDRIV (formerly 'program EUDRIV'),
the user subroutine MODEL, their communication, input files RERUNS.DAT, TIMER.DAT and
MODEL.DAT) and output files (MODEL.LOG and RES.DAT).

FORSIM, and the minor changes in program EUDRIV from Figure 46 to transform it into subrou-
tine EUDRIV, need some explanation.

The program code of FORSIM is shown in Figure 49. We first consider lines 18-25. The call to
RDSETS (line 18) detects if a RERUNS.DAT file is present and if so, it analyses the data file. The
variable INSETS is returned and contains the number of rerun sets present in the rerun file; its
value is zero if the rerun file is absent. DO-loop 20 (lines 20-25) runs INSETS+1 times, because it
starts at the counter value IS=0, which corresponds with the first simulation run. The value of the
DO-loop counter is then used in the call to RDFROM to select a parameter set for the simulation. If
IS equals zero, the standard data files (MODEL.DAT and TIMER.DAT) will be used by the RD
routines (see Table 6). If IS is larger than zero, the RD routines will replace the values in the stan-
dard files with those from the rerun file. Therefore, no changes are necessary in the user's
MODEL, as these replacements are internal to the RD routines. Results of the first simulation run
and the reruns are written to the output file after completion of all runs, since this is done in the ter-
minal section of MODEL (Figure 47, line 77-78). Subroutine RDFROM is also called before a
rerun is started to check if all the variables of the preceeding set were used. If this is not the case, it
is assumed that there is a typing error in the data files and the simulation is halted when the logi-

145

Appendix §

Derivation of the average conductivity of two adjacent layers of unequal thickness with different conducti-

vity or resistance.

The substitution resistance (Rg, where index s stands for substitution) of two resistances in series is

simply the sum of the two resistances:

RS=R1 +R2

The resistance of a medium is directly proportional to its length (L), and inversely proportional to its
surface area (A) and to its specific conductivity (C). This implies the following for the three resistances:

Now, assume that the surface area through which the matter will flow, has a common value, so A =
A, = A,. Consequently, the surface area may be omitted. Furthermore, Ly =L, + L,. Therefore, sub-
stitution of the three expressions for the resistances in the first equation, and writing C, explicitly, results

in:

Lg — L1+Lp

Cs

"L1/C1 + La/C; L1/Cy + L2/Ca

Consider the following drawing for the application of this equation:

TCOM(I-1) ; COND(I-1)

The index convention for the average conduc-
tivity, is similar to that for fluxes: the index
is taken similar to the number of the layer

into which it enters.
l—) AVCOND(I)
The following holds for a layered medium:
TCOM(I) ;COND() Ly = TCOM(1) = TCOM(I-1)
C, =COND(1) = COND(1-1)
L AVCOND(I+1) Ly = TCOM(2) = TCOM()
C, = COND(2) = CONIDXI)
TCOM(I+1) ; COND(I+1) Cs=AVCOND(2) =AVCOND()
Which resulits in the following equation:
AVCOND(T) = TCOM(I-1) + TCOM(T)

TCOM(I-1)/COND(I-1) + TCOM(I)/COND(I)

251

Appendix 6

The main program FORSIM, the Euler and Runge-Kutta drivers, and the adapted integration routines from Press et
al. (1986), including subroutine headers which explain their meaning.

Notes:

To run the the programs in this appendix, the utility library TTUTIL should be linked. The library may be obtai-
ned from the department of Theoretical Production Ecology of the Wageningen Agricultural University. With the
library goes a technical description on how to create and use an object library for the VAX mainframe computer, the
Apple Macintosh and the IBM-PC.

In the main program FORSIM the possibility is introduced to choose between the integration methods of Euler
and Runge-Kutta.

If more than 250 state equations are needed PARAMETER (NDEC=250) in EUDRIV (Figure 46, line 15) and
RKDRIV (Figure 51, line 15), and PARAMETER (NL=250) in RKQCA and RK4A should be adapted.

PROGRAM FORSIM

Main programming for calling the rerun facilities in the
TTUTIL library and for calling a driver routine for the
application of Euler or Runge-Kutta integration to a
user specified model (here called MODEL).

* Xk A

variables:

IULOG - Unit number of logfile. Used by the rerun facility
for messages and available in the user program via
COMMON /INFO/ declared in the driving routine(s).
(When IULOG=0 no logfile is used by utility).

IURER - Unit number used for the temporary file RERUNS.TMP
(IURER+1 is used for the data file RERUNS.DAT itself)

IUDRIV - Unit number used for the reading the timer routine
in routine RKDRIV and EUDRIV, also IUTIM+1 is used.

IJUMOD - First of a series of free unit numbers to be used
by the user suplied model. It is suggested to keep
a decade of unit numbers free.

INSETS - Number of parameter sets in RERUNS.DAT.

Is - Set number in rerun loop.

FATAL - Flag, determines reaction on non-used variables in
rerun sets ; currently set .true.

MODEL - Name of external user model subroutine, (see this

example and the header of RKDRIV or EUDRIV for a
description of the form of this routine).

Subroutines and/or functions called:

- from library TTUTIL: DECCHK, DECINT, DECREA, ENTDCH, ERROR,
EUDRIV, EXTENS, FOPENG, IFINDC, I1EN,
ISTART, RDDATA, RDFROM, RDINDX, RDINIT,
RDSETS, RDSREA, RK4A, RKDRIV, RKQCA,
UPPERC

d* O % ok ok ok oF ot b ok % % o Ok b % % % O ok d X F o * *

*

, Author: Kees Rappoldt
* Date : October 1990

* declarations
INTEGER 1S, IULOG, IURER, IUDRIV, IUMOD

252

REAL DUM
CHARACTER METHOD*2
LOGICAL FATAL
EXTERNAL MODEL

* unit numbers used for logfile and for rerun facility
DATA IULOG/20/, IURER/30/

* unit numbers used for driver and model
DATA IUDRIV/40/, IUMOD/50/

* fatal errors on non-used rerun variable values

DATA FATAL/.TRUE./

* choose integration method

10 CONTINUE
CALL ENTDCH ('Euler (E) or Runge-Kutta (RK) method', 'RK',METHOD)
CALL UPPERC (METHOD)
IF (.NOT. (METHOD.EQ.'E '.OR.METHOD.EQ.'RK')) GOTO 10

* dummy model call (some machines do not correctly externalyze MODEL)
CALL MODEL (O, .FALSE.,DUM,DUM,DUM,DUM,1,IS)

* open logfile and analyse rerun file
CALL FOPENG (IULOG, 'MODEL.LOG', 'NEW','SF',0,'DEL’)
CALL RDSETS (IURER, IULOG, 'RERUNS.DAT', INSETS)

* model runs
DO 20 IS = 0,INSETS
WRITE (IULOG,'(//,A,I4,/,A)') ! Run', IS+1,' !
WRITE (*'(//,AI4,/,0)") ! Run',IS+1,’! =mmm—me !

CALL RDFROM (IS,FATAL)

IF (METHOD.EQ.'E ') CALL EUDRIV (IULOG,IUDRIV,IUMOD,MODEL)

IF (METHOD.EQ.'RK') CALL RKDRIV (IULOG, IUDRIV,IUMOD,MODEL)
20 CONTINUE

IF (INSETS.GT.0) CLOSE (IURER,STATUS='DELETE')
STOP
END

AR KK AR AKARKAKIKRAIRK AR KA A AR AR AR A AR Ik hkkhkkk A kkkkhkkkhkkrkkkhk kX kdkkhk

SUBROUTINE EUDRIV (IUL, IUD,IUM,MODEL)

Solves an initial value problem with the simple Euler method.
This driver routine initializes the model, reads a control
file TIMER.DAT and drives the user supplied model until the
finish time FINTIM given in TIMER.DAT is reached.

* % A ot

IUL
IUD
IUM
MODEL

logfile unit number

first of two. free unit numbers used by this driver
first of a series of free unit numbers for model
external model routine

HHHH

Subroutines and/or functions called:

- from library TTUTIL: DECCHK, DECINT, DECREA, ERROR, EXTENS,
FOPENG, IFINDC, ILEN, ISTART, RDDATA,
RDINDX, RDINIT, RDSREA, UPPERC

* % A o o A F o

*

Author: Kees Rappoldt
* Date : October 1990

* The user supplied routine MODEL:

253

0k ok b ok ok o ok Xk b ok ok ok F Ok ok ok Ok Ok A Ok A A Ok o X o o F F

F ok b oF A ok O b b ok F ok F ok Ok kA A * F

254

The differential equations are actually contained in the user
supplied subroutine MODEL which is called by this driver as:
CALL MODEL (ITASK, OUTPUT, TIME, STATE,RATE, SCALE, NDEC, NEQ)

Note that the user routine may have an arbitrary name which is

given as an EXTERNAL in the CALL to this driver EUDRIV. The

action of the user supplied model subroutine depends on the

value of ITASK in the following way.

ITASK = 1 The model is initialized. The number of state variables
(differential equations) NEQ is set. Model parameters are
set or are read from file. Time and states are set to their
initial values. Also the corresponding scales have to be
set. The scale array SCALE contains the order of magnitude
of each state variable in STATE. A scale needs to be a
positive number, for instance 0.001, 0.5 or 30000.0. Also
output should be initialized (files opened, headers etc.)

The SCALE array is not used in the EULER integration method.

]
N

Values in the STATE array and the current TIME are used
to calculate rates of change for each status variable.

In order to prevent confusion it is advised to use local
and more meaningfull names for state variables than just
the input array elements STATE(l), STATE(2), etc. Then,

at first, the state array is copied into the local
variables, then the rates are calculated which are finally
copied into the output array RATE.

Terminal call to the model. Final output may have to be
generated, files closed, etc.

ITASK

1
>

ITASK

Some CALL's with ITASK=2 ("rate calls") take place with the logical
OUTPUT set to .TRUE. Then the user supplied model produces output to
file and/or screen. The period between successive output times is
PRDEL, a variable read from the control file TIMER.DAT.

At the start of a new time step, the state array STATE contains

a valid (new) status of the system. If anything has to be c¢hanged
in the state array in order to account for discontinuities, for
instance, that should be done at such moments. Therefore, the rate
CALL's to MODEL at the beginning a new time step are carried out
with common variable KEEP equal to 1. Otherwise KEEP is 0.

This common variable, KEEP, is part of a small common block /INFO/.
INFO also contains the unit number of an opened logfile and the first
of a series of free unit numbers that can be used by the model.
Further /INFO/ contains a logical TERMNL. This logical can be set
to .TRUE. by the model routine at any momemt. It causes the
termination of the current simulation run. Note that, after setting
TERMNL to .TRUE. a number of CALL's to MODEL will follow in order
to terminate the current time step and to produce final output.
Hence, when the flag TERMNL is set, it should never be reset by

the model. Then its status could be missed by the driver.

Also the timer variables DELT,PRDEL,DELMAX,FINTIM are included in
the common INFO to be able to manipulate time when discontinuities
occur, and to have the possibility to print these variables.

formal parameters
INTEGER IUL,IUD,IUM
EXTERNAL MODEL

common /INFO/

REAL DELT , PRDEL, DELMAX, FINTIM
INTEGER IULOG , IUMOD, KEEP
LOGICAL TERMNL

COMMON /INFO/ DELT , PRDEL, DELMAX, FINTIM,
IULOG , TUMOD, KEEP , TERMNL

%

10

_ DELT
" DELTO

local (non-common) variables

INTEGER r - , Ip , NEQ , NDEC

REAL i STTIME, TIME , TNEXT , DEL , DELTO
REAL : DELHLP, MULTI1, MULTI2

REAL | ~ STATE , RATE , SCALE

PARAMETER (NDEC=250)

DIMENSION STATE (NDEC) , RATE (NDEC), SCALE(NDEC)
LOGICAL HALT,OUTPUT

SAVE

'“get copy -of logfile unit number and model unit number into /INFO/
IUL

~IULOG =
JUMOD = IUM -

* IF (IULOG.GT.0)

S WRITE (IULOG,'(A)') ! Initialize model'’
WRITE (*, (@A) ! Initialize model'’

read timer variables

CALL RDINIT (IUD,IULOG, 'TIMER. DAT')

CALL RDSREA ('STTIME',STTIME)

CALL RDSREA ('FINTIM',6 FINTIM)

CALL RDSREA ('PRDEL' ,PRDEL)

CALL RDSREA ('DELMAX', DELMAX)

CALL RDSREA ('DELT' ,DELT)

CLOSE (IUD,STATUS='DELETE')

IF (PRDEL .LE. 0.0) CALL ERROR ('EUDRIV', 'Tllegal value PRDEL')
IF (DELT .GT. PRDEL) CALL ERROR ('EUDRIV','Illegal value DELT')
IF (DELMAX .GT. PRDEL)

$§ CALL ERROR ('EUDRIV', 'Illegal value DEIMAX')

investigate if DELT is a multiple of PRDEL
MULTII PRDEL/DELT
MULTIZ = FLOAT(INT (PRDEL/DELT))
IF (MULTI1 .NE. MULTI2) THEN
DELT is no multiple of PRDEL; a new DELT should be calculated
DELHLP = PRDEL/2.
IF (DELHLP .LT. DELT) THEN
, DELT = DELHLP
"ELSE
' DELHLP = DELHLP/2.
. GOTO 5
ENDIF
ENDIF
MIN (DELT,DELMAX)
‘DELT

initialize timing

TERMNL = .FALSE.

TIME “STTIME

TNEXT “STTIME

HALT ~ TIME.GE.FINTIM

Ip 1 + INT ((FINTIM - STTIME) / PRDEL - 0.01)

i n ufn

to simplify debugging: set states and rates to 0
DO 10 I=1,NDEC

STATE(I) = 0.0

RATE(I) = 0.0
CONTINUE

initialize model
CALL MODEL (1, .FALSE.,TIME,STATE,RATE, SCALE,NDEC,NEQ)

error checks

255

IF(MQLEO)CMLEme(Emmnp L e
$ 'No value of NEQ was specified in MODEL') T
IF (NEQ.GT.NDEC) CALL ERROR ('EUDRIV', =~~~ =%

$ 'Too many state variables')

* . dynamic loop . .
IF (IULOG.GT.0) o
$ WRITE (IULOG,'(A)') ' Dynamic loop’

WRITE (*,0@ay) ! Dynamic loop'

20 IF (.NOT.HALT) THEN
* \ ioutput required ?
4 .-OUTPUT. = (TNEXT—TIME)/PRDEL LT 0. 0001 .OR. TERMNL

* get rates of change at beginnin§ of"time step (write ouput)
* this is the rate call at the start of a new step (KEEP 1)
KEEP = 1
CALL MODEL (2,0UTPUT, TIME, STATE, RATE, SCALE, NDEC, NEQ)
KEEP = 0
IF (OUTPUT) THEN ‘ . -
* get next output time ; leave dynamlc loop ? ‘ X
Ip =1IP -1 ST
TNEXT = FINTIM - IP * PRDEL ') '
HALT = TNEXT.GT.FINTIM .CR. TERMNL
END IF
* time step limitation and integration
IF (.NOT.HALT .AND. .NOT.TERMNL) THEN
* limit timestep
DELT = MIN (DELTO,DELMAX)
IF (TIME+DELT .LT. TNEXT) THEN
* accept advised step
DEL = DELT
ELSE
* reduce time step
DEL = TNEXT-TIME
END IF - . :
* integration

TIME = TIME + DEL

DO 30 I=1,NEQ
STATE (I) = STATE(I) + DEL * RATE (I)

30 CONTINUE :

DELT = DELTO
- END IF . L o
.. GOTO 20 , \ o :
END IF

* terminate model
- IF (IULOG.GT.0) . - - .
s WRITE (IULOG,’(A)') ' . Terminate model'. '
WRITE . (,"(A)'). ' Terminate model'’ : ~
CALL MODEL (4 .FALSE., TIME, STATE, RATE, SCALE, NDEC NEQ)

RETURN | . S
END L . : o

’\j*;t,}***************j(***********

B

SUBROUTINE RKDRIV (IUL,IUD, IUM,MODEL)

* Solves an initial value problem with the fourth order Runge Kutta

256

* o A F

* O A A ok X ok A o F

* o

*****1—**********>¢-X-***************************

method described by Press et al. (1986). This driver routine
initializes the model, reads a cbntrol file TIMER.DAT and drives
the user supplied model untll the finish t;me in TIMER.DAT is
reached. ‘)

IUL - logfile unit number 7 T
IUD - first of two free unit numbers used by this driver ® I
IUM - first of a series of free unit numbers for model I
MODEL - external model routine I

Subroutines and/or functions called: , o ‘
- from llbrary TTUTIL: DECCHK, DECINT, DECREA, ENTDCH, - ERROR,

. EXTENS, FOPENG, IFINDC, ILEN, ISTART
RDDATA, RDINDX, RDINIT, RDSREA, =~ RK4A,
RKQCA, UPPERC

Author: Kees Rappoldt
Date : October 1990

The user supplied routine MODEL:
The differential equations are actually contained in the user
supplied subroutine MODEL which is called by this driver as:

CALL MODEL (ITASK,OUTPUT,TIME, STATE,RATE,SCALE, NDEC,NEQ)
Note that the user routine may have an arbitrary name which is
given as an EXTERNAL in the CALL to this driver RKDRIV. The
action of the user supplied model subroutine depends on the
value of ITASK in the following way.
ITASK = 1 The model is initialized. The number of state variables
(differential equations) NEQ is set. Model parameters are
set or are read from file. Time and states are set to their
initial values. Also the corresponding scales have to be
set. The scale array SCALE contains the order of magnitude
of each state variable in STATE. A scale needs to be a
positive number, for instance 0.001, 0.5 or 30000.0. Also
output should be initialized (files opened, headers etc.)
Values in the STATE array and the current TIME are used
to calculate rates of change for each status variable.
In order to prevent confusion it is advised to use local
and more meaningfull names for state variables than just
the input array elements STATE(l), STATE(Z2), etc. Then,
at first, the state array is copied into the local
variables, then the rates are calculated which are finally
copied into the output array RATE.
Terminal -call to the model. Final output may have to be
generated, files closed, etc.

I
N

ITASK

I
S

ITASK

Some CALL's with ITASK=2 ("rate calls") take place with the logical
OUTPUT set to .TRUE. Then the user supplied model produces output to
file and/or screen. The period between successive output times is
PRDEL, a variable read from the control file TIMER.DAT.

At the start of a new time step (taken by the Runge Kutta routine
RKQCA), the state array-STATE contains a valid (new) status of the
system. If anything has-to be changed in the state array in order
to account for -discontinuities, for instance, that should be done
at such moments. Therefore, the CALL's to MODEL at the beginning
a new time step are carried out with the common variable KEEP
equal to 1. Otherwise KEEP is 0.

This common variable, KEEP, is part of a small common block /INFO/.
INFO also contains the unit number of an opened logfile and the first
of a series of free unit numbers that can be used by the model.
Further /INFO/ contains a logical TERMNL. This logical can be set
to "TRUE.”by the model routine at any momemt. It causes ‘the -

257

* A o ok A A A %

* %

258

termination of the current simulation run. Note. that, .after setting
TERMNL to .TRUE. a number of CALL's to MODEL will follow in order -
to terminate the current time step and to produce final output.
Hence, when the flag TERMNL is set, it should never be reset by

the modell.Then its’ status.could be missed by the driver:

Also the timer variables DELT,PRDEL,DELMAX,FINTIM are included in
the common INFO to be able to manipulate time when. discontinuities
occur, and to have the possibility’to print these variables.:

formal parameters T P S
INTEGER IUL,IUD,IUM T
EXTERNAL MODEL L I A

v) - . - Vs, e T TN, R

common /INFO/

REAL DELT , PRDEL, DEILMAX, FINTIM
INTEGER IULOG , IUMOD, KEEP

LOGICAL TERMNL

COMMON /INFO/ DELT , PRDEL;. DEIMAX, FINTIM,! -

$ IULOG , IUMOD, KEEP -, TERMNL

local (non-common) variables

INTEGER I , IP , NEQ ,NDEC C

REAL STTIME, EPS , TIME , TNEXT,DELDID, DELNXT DUMMY
REAL STATE , RATE, SCALE

PARAMETER (NDEC=250) :

DIMENSION ~" STATE{NDEC), RATE(NDEC) SCALEINDEC)
LOGICAL HALT,OUTPUT

SAVE - A

get copy of 1ogfile unlt number and model unlt number into /INFO/

IULOG = IUL

IUMOD = IUM

IF (IULOG.GT.OQ) : o
$ WRITE (IULOG,'(A)') ! Initialize model!’ N
WRITE (*, '"(A)') ! Initialize model'’

read timer wvariables - S oo s o
CALL RDINIT (IUD, IULOG, 'TIMER DAT")
CALL RDSREA ('STTIME',STTIME) T
CALL RDSREA ('FINTIM',FINTIM)

CALL RDSREA ('PRDEL' ,PRDEL) e hemn,

CALL RDSREA ('EPS' ,EPS) sEL

CALL RDSREA ('DELMAX',DELMAX) i

CALL: RDSREA-('DELT': ,DELT.)

CLOSE (1UD, STATUS='DELETE') ..:

IF (PRDEL .LE. 0.0)

“$ CALL ERROR ('RKDRIV', 'Illegal value PRDEL' ywrﬂg“‘“

IF (DELMAX .GT. PRDEL)
$ “CALL ERROR ('RKDRIV' 'I:negal value DELMAX') '

initialize timlng Do
.FALSE. b

TERMNL =

TIME = STTIME

TNEXT = STTIME

HALT = TIME.GE.FINTIM

IP = 1 + INT ((FINTIM - STTIME) / PRDEL - 0. Ol) N
DELNXT = DELT i

to simplify debugging: set states and rates to 0 and scales to 1
DO 10 I=1,NDEC = '
STATE (I)
RATE(I)

0.0
0.0 ERS

loiﬁmnCONTINUELT;i :

* ﬂlnltiallze model ik N : ;1,;:
CALL MODEL (l"'FALSE TIME STATE RATE SCALE NDEC NEQ)
" i «?1>z~§i LT o . T
* . erraqr. CheCkS' PR : e ,i Yo
IF (NEQ.LE. 0):CALL ERROR (RKDRIV' : AR g
$ 'No value of NEQ was specified in MODEL')
IF (NEQ.GT.NDEC) CALL ERROR ('RKDRIV',
$ 'Too many state variables') T
DO 20 I=1,NEQ Ll .
IF (SCALE(I).LE.0.0) CALL ERROR ('RKDRIV’ SR R

S 'At least one SCALE variable is not positive')
20 CONTINUE . .
i G . .
* dynamic loop e e pRT
IF (IULOG.GT.O0) AR R
$ WRITE (IULOG, ' (A).") % .© Dynmamic loop': ' A :
WRITE . (*, ' (A) "}s+* Dynamic loop*

30 IF (.NOT.HALT) THEN
* output requlred ? <L
.QUTRUT =. (TNEXT=TIME)/PRDEL. LT 0 0001 OR TERMNL

* get rates of change at beginning of time step (write oﬁput)
* this is the rate call at the start of a new step (KEEP—l)
KEEP = 1 .
CALL MODEL (2,0UTPUT, TIME, STATE, RATE, SCALE, NDEC NEQ)
KEEP = 0
: IF (OUTPUT) THEN
* get next output time ; leave dynamlc loop ?
IP =7IP -1
TNEXT = FINTIM - IP * PRDEL
HALT = TNEXT.GT.FINTIM .OR. TERMNL
END IF o L
* one step with accuracy control using RKQCA
IF (.NOT.HALT .AND. .NOT.TERMNL) THEN
* limit timestep -

DELNXT = MIN (DELNXT,DELMAX) -

IF (TIME+DELNXT .LT. TNEXT) THEN (o

* accept advised step c
DELT = DELNXT peantTEe
CALL RKQCA (STATE,RATE .,NDEC _ ,NEQ TIME DELT EPS,
S SCALE, DELDID DELNXT, MODEL)
ELSE
* reduce time step,-but.de not overwrlte previous advise

DELT = TNEXT-TIME o
CALL RKQCA !(STATE,RATE - ,NDEC" ANEQ ',TIME DELT EPS

S SCALE, DELDID, DUMMY, MODEL)
END IF
END IF
GOTO 30
END IF
* terminate model :)
IF (IULOG.GT.O0) : o
S WRITE (IULOG,'‘'(A)') ' Terminate model'’
CJWRITE--(- *, ' (A)') - Terminate model'’

CALL MODEL (4, .FALSE. TIME STATE, RATE, SCALE, NDEC NEQ);lb

RETURN . <.£. |

259

END L

AE R

‘k*‘******************

- E ~ v ,f T) T R

$UBROUTINE RKQCA (STATE RATE, NDEC, NEQ,TIME
$ ' DELTRY, EPS, SCALE DELDID DELNXT MODEL)
Runge Kutta 1ntegratlon with stepsize control i't:l“,{;%
Adaptedﬂfrom routlne RKQC from Prpss et. al (1986)

* *

P " G " T
BN R PR Cooa

* “STATE - state array of model I/O
* RATE - rates of:.change for (TIME,STATE) . I/0 ..
* NDEC - declared size of input arrays ;ggf_azkl, o
* NEQ - Number of state / rate variables BRI S
* TIME --~:time ... - e e ooT/o. o
* DELTRY - time step trled Lol L R
* ;~EPSWyWWQJrelat1ve accuracy of crLterlon - I
* SCALE - size scale of state variablées I
* DELDID - time step taken 0
* DELNXT - advise for new step 0 .
* MODEL - external model. called w1th ITASK-ZXW‘ I
* for rate calculation
* B PO
* Subroutlnes and/or functions called: -
* - from library TTUTIL: ENTDCH, ERRCR, ILEN, ISTART, RK4A
* Author: Kees Rappoldt; adapted from Press et al. (19&6)
* Date : February 1990 .
* formal parameters } '5W
INTEGER NDEC ,NEQ
REAL STATE, RATE, TIME, DELTRY, EPS, SCALE DELDID DELNXT
DIMENSION STATE(NDEC) RATE (NDEC) , SCALE(NDEC) e
EXTERNAL MODEL . 5f
x* local variables L e ‘
INTEGER I,NL B
PARAMETER (NL=250) e } .
REAL TSTATE, SSTAT , SRATE, FCOR, ONE SAFETY ERRCON o
REAL PGROW PSHRNK,TSAV DELT,DELT2, ERRMAX
DIMENSION TSTATE (NL), SSTAT(NL) SRATE (NL)
CHARACTER*1 ANS
LOGICAL GOOD
PARAMETER - (FCOR=.0666666667;ONE=1.0, SAFETY=0.9, ERRCON=6.E~4)
SAVE : Sy {"",
PGROW = -0.20 '
PSHRNK = -0.25 LT
* check size of local arrays
- IF- (NEQ..GT.NL)» CALL« ERROR ('RKQCA', 'Local -arrays -too .short.'). ..
* save current time, state and rate - . .- L

TSAV = TIME
DO 10 I=1,NEQ
SSTAT (I) = STATE(I)
SRATE (I) = RATE (I)
10 CONTINUE ~ s - S

* accept suggested value
DELT = DELTRY: i . - . s
GOOD = .FALSE. , e

260

20

30

40

P

do while

IE . (.NOT.GOQR). . THEN. . N
at first two integratlon steps are made, ‘each with half DELT"
DELT2 = 0.5*DELT . .
CALL RK4A (SSTAT SBATE}NDEC ﬁEQ,TSAV,DELTZ TSTATE SCALE MODEL)
the second half, with result stored 1n STATE
TIME = TSAV + DELTZ ~ ' T
CALL MODEL (2, .FAT'SE' TIME TSTATE RATE SCALE~NDEC NEQ)‘
CALL RK4A (TSTATE, RATE, NDEC, NEQ, TIME, DELTZ STATE, SCALENMQQEL)

now the full step is taken ,‘check sign;ficance-"“ R
TIME = TSAV + DELT '~ '* FE : S '
IF(TIME EQ.TSAV) THEN ~ s = o mT o
WRITE (*,'(A)') °* Stepsize not 31gnificant 1h- RKQCA‘ N
CALL ENTDCH ('Do you want to STOP” ?', 'N';ANS): f
IF (ANS.NE.'N') CALL‘ERROR (RKQCA' 'Executiﬁn terminated')
END IF 5

integration over full step. = -
CALL RK4A (SSTAT, SRATE NDEC, NEQ,TSAV DELT TSTATE SCALE MODEL)

e R

from the dlfference the error crlterlon is found

ERRMAX = i S
DO 30 I=1, NEQ ; R - :

TSTATE(I) = STATE(I) - TSTATE(I)

ERRMAX = = MAX ‘(ERRMAX, ABS{(TSTATE (I)/SCALE(L))) @ -
CONTINUE e NTE L
get new time step when not OK
ERRMAX = ERRMAX/EPS -

GOQP . .= ERRMAX.LT.ONE

IF (.NOT. GOODY DEET'*,SAFETY*DELT*(ERRMAX**PSHRNK)
GOTO 20 S
END IF

accept step and calculate advise for new DELT
DELDID = DELT
IF (ERRMAX .GT.ERRCON) THEN
DELNXT-'= SAFETY * DELT * (ERRMAX**PGROW)
ELSE . _ e
DELNXT = 4.0 * DELT - E - -
ENDIF -
correct’ the-half step result with the differenceé in TSTATE
DO 40 I=1,NEQ
STATE (I) = STATE(I) + TSTATE(I)*FCOR
CONTINUE

RETURN
END

-~

R Rl Bl AR Pt sy S P g Y L L2 R L R LR L N TR R e

* ot

* * ¥ % ok

SUBROUTINE RK4A (STATE,RATE,NDEC,NEQ, TIME,DELT, STATE2, SCALE, MODEL)

Fourth order Runge Kutta integration over DELT :
Adapted from routine RK4 from Press et al. (1986) AL

STATE - state array of model
RATE - rates of change for (TIME,STATE)

HHHHH
t
I3
il
Is

NDEC - declared size of input arrays
NEQ - Number of state / rate variables
TIME - time =

DELT - time step I
STATEZ - output state array o}
SCALE - size scale of state variables I
MODEL -~ external model called with ITASK=2 I

for rate calculation

Subroutines and/or functions called:
- from library TTUTIL: ERROR

* ok A ok o o A o

*

Author: Kees Rappoldt, adapted from Press et al. (1986)
* Date : February 1990

* formal parameters
INTEGER NDEC , NEQ
REAL STATE, RATE, TIME, DELT, STATEZ2, SCALE

DIMENSION STATE (NDEC), RATE (NDEC), STATE2(NDEC) , SCALE (NDEC)
EXTERNAL MODEL

* % local variables
INTEGER I, NL ,
REAL STATET, RATET, RATEM, DELT2, DELT6, TIME2

PARAMETER (NL=250)
DIMENSION STATET (NL), RATET (NL) , RATEM (NL)
SAVE

* check size of local arrays
IF (NEQ.GT.NL) CALL ERROR ('RK4A', 'Local arrays too short')

DELTZ2 = DELT*0.5
DELT6 = DELT/6.0
TIME2 = TIME + DELT2
* get midpoint state using initial rate

DO 10 I=1,NEQ
STATET (I) = STATE(I) + DELT2*RATE(I)
10 CONTINUE

* find midpoint rates and a new midpoint state
CALL MODEL (2, .FALSE.,TIMEZ2, STATET,RATET, SCALE, NDEC, NEQ)
DO 20 I=1,NEQ
STATET (I) = STATE(I) + DELT2*RATET(I)
20 CONTINUE

* get a second estimate of midpoint rates,
* estimate final state, get sum of the two midpoint rates
CALL MODEL (2, .FALSE.,TIMEZ2, STATET, RATEM, SCALE, NDEC, NEQ)
DO 30 I=1,NEQ
STATET (I)
RATEM(TI)
30 CONTINUE

STATE(I) + DELT*RATEM(I)
RATET (I) + RATEM(I)

* get final rates, calculate new state from all calculated rates
CALL MODEL (2, .FALSE.,TIME+DELT,STATET, RATET, SCALE, NDEC, NEQ)
DO 40 I=1,NEQ
STATE2(I) = STATE(I) + DELT6 * (RATE(I)+RATET(I)+2.0*RATEM(I))
40 CONTINUE

RETURN
END

KA AR A AR AR AR AR AR LA AKA A AR AKAKR KRR KRR AR A I KRAAKREARR AR KA AR AR AR A kA AT F Ak hhkhhhk

262

‘ E
1

e

[P N
T T Fower

R A DTS C N A S

oo

e e v e g [T T ey gy e e
SR ELNT Fao DA TTE TTTAN | OEM) I AT
N
RS o
s T ot
e - e an
g e e PR R
N LT e LA Ry L [
PR
LAWY
- R ey - e -
~.»]: R AT i LA
wrep
- e b w b b .
[BELOSALT I ¥
o oo r
R
N Vi e !
R
[a1 i
A o
PR
T s
-,f,".‘.Jr’.‘,J L Lo
' . ; -5
g en A Ly oo . U I
LETST DEIZLUTLED JLE T asene
s AN P L ra O e A N R T S) ‘.
Lperd b o G PRbett So A SR PR+ V5 SRR TR Y
e s s, e g e e -t - ey e
(L MITT AR T T AT RS A 0ow el VoL nETATY
-
B T T T - P

263

264

el

