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Abstract 
 

Archontoulis S.V., 2011. Analysis of growth dynamics of Mediterranean bioenergy crops. 

Doctorate Thesis, Wageningen University, Wageningen, the Netherlands, with English 
and Dutch summaries, 235 pp.  

 

In spite of the rapidly growing bioenergy production worldwide, there is lack of field 

experience and experimental data on the cultivation of bioenergy crops. This study aims to 

advance crop management operations and modelling studies by providing essential 

information on phenology, agronomy and crop physiology of three Mediterranean 

bioenergy crops: Helianthus annuus (sunflower), Hibiscus cannabinus (kenaf) and Cynara 

cardunculus (cynara). These crops cover a wide range of bio-industrial applications and fit 

into different cropping strategies. For these crops, we identified the most important 

knowledge gaps and performed a series of field experiments to fill some of those, 

particularly for cynara. 

Information on phenology and seed yield potential for cynara was missing mainly 

due to its complex inflorescence structure. This thesis codifies and describes cynara’s 

phenological growth stages according to the universal BBCH coding system. This scale can 

be used by everyone involved in the production of this crop under all circumstances. In 

addition, we present a robust allometric model for estimating seed yield under diverse 

management and environmental conditions. Inputs to the model are two easily 

quantifiable inflorescence traits: total weight and number of seed-bearing heads per unit 

area.  

Additionally, this thesis investigates factors at leaf, canopy and crop level that 

determine biomass production for all tested crops and provides key parameters for crop 

growth modelling. Leaf photosynthesis and respiration rates in response to light, 

temperature and leaf nitrogen were quantified. Based on such data, a biochemical model 

for C3 leaf photosynthesis and an empirical model for respiration were parameterized and 

validated. Then, to upscale these rates from the leaf to the canopy level, light- and nitrogen 

extinction coefficients over time and in response to water availability were determined in 

detail. It was shown that the light extinction coefficient changes under water stress 

conditions and time of year, while leaf nitrogen only shows a strong vertical distribution 

within crop canopy during the mid-season. Relevant agronomic data, such as biomass 

production over time and leaf area index in response to management practices, are also 

presented for the three crops.  

This thesis contributes to the general objective of gaining more insight into bioenergy 

production from crop species. The findings can help farmers, researchers and modellers to 

better evaluate agricultural land uses and to improve biomass quantity and quality. 

Among the studied species, the perennial cynara shows the greatest potential for energy 

production in the Mediterranean region because a significant part of the production is 

achieved in the winter–spring period relying on natural rainfall.   

 

Key words: cynara, kenaf, sunflower, phenology, agronomy, crop physiology, modelling, 

biomass production, crop growth, growth stages, BBCH code, seed yield, oil/seed ratio, leaf 

area index, leaf nitrogen, light and nitrogen extinction coefficients, photosynthesis, respiration, 

respiration acclimation, bioenergy, Greece, Mediterranean region.     
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I am deeply grateful to my promotor and main supervisor Prof. dr. Paul Struik 

for his excellent guidance during this PhD study. Working with Paul (since 2005 

including MSc studies) I learned that I must look after every detail; to be precise and 

concrete. Paul’s detailed comments in my draft manuscripts improved considerably 

my ability to write scientific papers while his overall efforts guaranteed high quality of 

this thesis. Paul, thank you for your prompt –always within few hours!– and very 

informative responses to all my queries, for editing the manuscripts,  
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Chapter 1 
 

 
 

General introduction 
  

 

 

Abstract  
 

This chapter provides an overview of renewable energy sources, with particular 

emphasis on bioenergy production. Options to increase bioenergy production from 

plants are addressed and knowledge gaps are highlighted. The aim of the thesis, the 

methodological framework and an overall thesis structure are outlined in this 

chapter.   
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Drivers for renewable energy production 
 

By 2050, the world population is likely to be 9.1 billion, the atmospheric CO2 

concentration 550 ppm, the ozone concentration 60 ppb, the climate warmer by ca 

2°C (Jaggard et al., 2010) and the fossil fuel reserves most likely will be depleted 

(Saidur et al., 2011a). This indicates that measures must be taken to satisfy future 

population needs, i.e. increase food and energy production, and to protect our 

environment. So far, energy has received the most attention. This is because: (1) 

fossil fuels – oil, coal-lignite and natural gas – currently dominate the world 

energy economy, covering more than 80% of the total primary energy supply 

worldwide (Fig. 1.1a; Heinimo & Junginger, 2009); (2) energy consumption is 

increasing much faster than the increase in population (Hein, 2005; Sims et al., 

2006); (3) energy use is by far the most important source of environmental 

pollution, i.e. oil and gas fired power stations contributed almost 60% to 

greenhouse gas emissions in EU-27 in 2007 (Eurostat, 2010); (4) there is a desire to 

reduce dependency on fossil fuel imports, i.e. in 2007 55% of the total energy 

consumed in the EU-27 was imported, and it was predicted that this could rise to 

70% if measures were not taken to increase domestic energy supplies (Eurostat, 

2010;  Magar et al., 2011); and (5) the political cost of the high oil prices and the 

saturated markets for the agri-products (Ohlrogge et al., 2009; Banse et al., 2011).  

 

Gas

21%
Oil

35%

Coal

25%

Renewables

13%

(a) 

Nuclear

 6%

Other 

8%

Hydropower

15%

Bioenergy
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Industrial and  

municiapal wastes 
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liquor and charcoal 
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Agriculture

10%
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Agricultural by-products
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Animal by-products

30%

Energy crops

30%

(d) 

 

Figure 1.1: Panels a and b illustrate the breakdown of the primary energy sources (oil, 

coal, gas, nuclear and renewable) and of the renewable energy sources (biomass, 

hydropower, and others including geothermal, wind and solar energy), respectively. 

Panel c illustrates the different biomass sources for bioenergy production and panel d 

indicates the contribution of energy crops to bioenergy production. Data are retrieved 

from IEA Bieonergy (2009) and refer to global level (2005/2006).   

 

Favourable policies and international climate agreements (e.g. Kyoto 

Protocol) promoted a rapid growth of renewable energy sources over the last 

decade (see an overview by Lychnaras & Scneider, 2011). For instance, the latest 

EU directive (2009/28/EC) highlighted: (1) raise the share of renewable energy to 

20%; (2) increase the level of liquid biofuels in transport sector to 10% by 2020 (in 

addition to liquid biofuels, renewable electricity for trains and electric cars will be 
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taken into account); (3) reduce greenhouse gas emissions by at least 20% 

compared to 1990; and (4) improve energy efficiency by 20%.  

These targets had a strong impact on society. Indeed, over the last decade, 

scientific research on renewable energy (particularly bioenergy) increased 

exponentially (Fig. 1.2; and Romo-Fernandez et al., 2011), investors tremendously 

increased the number of energy processing plants (AEBIOM, 2008), and farmers 

incorporated bioenergy cultivations into their farms (Christou et al., 2010). 

However, currently the contribution of renewable energies to total energy supply 

is still small (Fig. 1.1a), although trends show a stable annual increase (Eurostat, 

2010).  

The world’s current total primary energy supply is about 510 EJ per year (1 

EJ=1018 Joule) and expected to reach 600–1000 EJ by 2050 (IEA Bioenergy 2009; 

IEA, 2010). Renewable energy sources accounted for 13% (60 EJ) of this (Fig. 1.1a). 

In EU-27, primary energy production totalled 849.6 million toe (tonnes of oil 

equivalent) in 2007 (1 toe = 48.87 GJ; 1 GJ =109 Joule) (Eurostat, 2010). In Europe, 

production of renewable energy sources accelerated (Table 1.1), with biomass to 

be the most important source (Fig. 1.1b; Table 1.1). 
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Figure 1.2: Relative number of publications per year found in ISI Web of knowledge 

(assessed on 2nd of May 2011) using the following keywords: biomass production, biofuel 

production, energy crops and renewable energy. The corresponding total number of 

publications appeared for the above keywords were 40440, 2205, 3684 and 14681, 

respectively. Relative values (%) calculated by dividing the actual year value with the 

maximum value for each keyword.  
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Table 1.1: Primary production and distribution of renewable energies in EU countries  

 Production  

(1000 toe1) 

Share of total, 2007  

(%) 

 
1997 2007 

Solar  

energy 

Biomass 

& waste 

Geothermal 

energy 

Hydropower 

energy 

Wind 

energy 
 

EU-27 92390 138831 0.9 69.3 4.2 19.2 6.5 

Belgium 633 1273 0.4 93.4 0.2 2.6 3.3 

Bulgaria 488 995 – 71.5 3.3 24.8 0.4 

Germany 7712 28121 2.1 78.7 0.4 0.1 19.3 

Greece 1340 1677 9.5 67.0 0.8 6.4 12.1 

Spain 6737 10288 1.3 52.4 0.1 23.2 23.0 

France 17646 18645 0.2 70.2 0.7 27.1 1.9 

Italy 8412 11901 0.5 30.9 42.0 23.7 2.9 

Netherlands 1547 2496 0.9 86.9 – 0.4 11.9 

Austria 5985 7839 1.4 56.5 0.4 39.5 2.2 

Finland 6752 8589 0.0 85.6 0.0 14.2 0.2 

Sweden 13774 15639 0.1 62.8 0.0 36.4 0.8 

UK 2071 4368 1.1 78.5 0.0 10.0 10.4 

(source: Eurostat, 2010) 

 

 

Energy from biomass  

 

Globally, bioenergy represented 10.4% (50 EJ or 1023 million toe) of the world 

primary energy use in 2005/2006 (Sims et al., 2006; IEA Bioenergy, 2009; Yusuf et 

al., 2011). 

The total biomass production possible is debatable, with estimates up to 700 

EJ, but in most cases between 150 and 500 EJ per year, indicating that plants are 

grossly under-explored (Jurginger et al., 2006; Tilman et al., 2006; de Vries et al., 

2007; Campbell et al., 2008; Dornburg et al., 2008; Wise et al., 2009; Haberl et al., 

2010; Beringer et al., 2011). Residues from forests and agricultural and other 

organic wastes can provide 50–150 EJ per year, while the remaining would come 

from energy crops, surplus forest growth, and increased agricultural productivity 

(IEA Bioenergy, 2009; see also Table 2 in Heinimo & Junginger, 2009). By 

including production constrains like irrigation water, sustainability criteria and 

impact of climate change on crop production, Beringer et al. (2011) recently 

estimated global biomass production potentials as moderate as 126 to 216 EJ by 

2050. Bioenergy crops comprised 15 to 27% of this potential.  

In EU-27, biomass accounted for 70% of the renewable energy production or 

11.3% of total primary energy production in 2007 (Table 1.1). In US, biomass 

                                                 

1 toe = tonnes of oil equivalent. 1 toe = 48.87 GJ = 48.87 × 109 Joule 
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accounted for 50% of the renewable energies in 2009 (Boundy et al., 2010). Based 

on present technological achievements, bioenergy has the following advantages 

compared to other renewable energies:  

 

⇒ biomass raw materials come in a wide range of forms (crops, trees, residues, 

organic waste and animal manure) which are abundant in most parts of the 

world while wastes will always exist (EUR 21350, 2005; Saidur et al., 2011b);  

⇒ biomass is a versatile fuel that can be converted using existing technology to 

different types of fuels like solid, liquid and gaseous, satisfying different 

needs;  

⇒ all products that currently results from the processing of petrochemicals can 

be produced from biomass feedstock (Sims et al., 2006; Christou et al., 2010; 

Yusuf et al., 2011); 

⇒ bioenergy is recognized as being carbon-neutral, significantly reducing the 

amount of carbon dioxide in the atmosphere compared with burning fossil 

fuels (Menichetti & Otto, 2009; Magar et al., 2011). For instance, net carbon 

emissions from generation of a unit of bioenergy are 10 to 20 times lower 

than emissions from fossil fuel-based generations (Sims et al., 2006);  

⇒ bioenergy production and processing promotes regional economic 

development for farmers and society with alternative new employment 

positions;  

⇒ bioenergy promotes energy stability (reduced dependence on short-term 

weather changes compared to wind and photovoltaic systems);  

⇒ biomass has fewer problems with energy storage compared to wind and 

photovoltaic systems (Saidur et al., 2011b)  

⇒ biomass plantations, if managed well, may actually increase biodiversity 

(Semere & Slater, 2007; Baum et al., 2009) and soil qualities (Tilman et al., 

2006), at least on previously degraded land. Sims et al. (2006) provided a list 

with additional social, environmental, and economic benefits of bioenergy. 

 

On the other hand there are some concerns about bioenergy. This is because 

biomass plantations require land, water and nutrients. If not managed correctly, 

the large-scale cultivation of biomass plantations and a substantial utilization of 

residues from agriculture and forestry, may increase greenhouse gas emissions, 

environmental degradation, and may introduce new risks for food security 

(Beringer et al., 2011). For example the water requirements of energy derived 

from biomass is about 70 to 400 times more than those for energy derived from 

fossil fuels, wind and sun (Gerben-Leenes et al., 2008). More than 90% of the 

water needed is used in the production while a small amount is used in the 

processing of biomass (Berndes, 2002; De Fraiture & Berndes, 2009).  
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Table 1.2: Meteorological characteristics of five climatic zones and possible energy crops 

including short rotation coppice (SRC) of trees for Europe (adapted from Krasuska et al., 

2010) 

Climatic zone Rainfall (mm) Temperature (°C) Months 

 Oct–Apr May–Sep Min Max Temp < 0°C 
 

Nemoral a 309.8 310.8 2.4 9.3 4.6 

Continental b 380.9 393.4 4.2 13.1 4.1 

Atlantic c 662.1 393.7 5.4 12.4 1.1 

Lusitanian d 851.5 321.7 8.4 17.4 0.0 

Mediterranean e  474.0 166.3 9.7 19.4 0.2 
 

Table 1.2 continued  

Climate zone EU country f  Energy crops and SRC (alphabetical order) 
 

Nemoral  
EE, FI, LV, LT, PL, 

SE 

flax, poplar, rapeseed, reed canary grass, 

willow 
 

Continental  

AT, BE, BG, CZ, DK, 

DE, HU, LT, LU, PL, 

RO, SK 

flax, maize, miscanthus, poplar, rapeseed, 

sorghum, sugarbeet, sunflower, willow 

 

Atlantic  
DK, DE, IE, NL, UK, 

BG, FR,  

flax, hemp, miscanthus, poplar, rapeseed, 

sugarbeet, switchgrass, willow 
 

Lusitanian  FR, PT, ES 

eucalyptus, hemp, maize, miscanthus, 

poplar, rapeseed, sorghum, soybean, 

sugarbeet, sunflower, willow 
 

Mediterranean   FR, GR, IT, PT, ES 

cynara, ethiopian mustard, eucalyptus, 

flax, giant reed, kenaf, maize, miscanthus, 

poplar, rapeseed, safflower, sorghum, 

soybean, sugarbeet, sunflower 
a: Nemoral covers the lowlands and undulating plains of south Scandinavia and the 

north-west of the Russian Plain including the Baltic countries. 
b: Continental is mostly on the plains and lowlands of central and eastern Europe and 

uplands and low mountains of the Balkan peninsula, lowlands, valleys and mountain 

peripheries on the middle- and lower-Danube Plains, and the Black Sea. 
c: Atlantic covers Britain, Ireland, western coast of Scandinavia, and lowlands and plains 

of Jutland, north and west Germany, north and central France, Belgium, and the 

Netherlands.  
d: Lusitanian covers from west Atlantic coast of France to the North Atlantic coast of 

Spain and the North Atlantic coast of Portugal. 
e: Mediterranean covers the whole Mediterranean basin  
f: EE = Estonia, FI = Finland, LV = Latvia, LT = Lithuania, PL = Poland, SE = Sweden, AT = 

Austria, BE = Belgium, BG = Bulgaria, CZ = Czech Republic, DK = Denmark, DE = 

Germany, HU = Hungary, RO = Romania, SK = Slovak Republic, IE = Ireland, NL = 

Netherlands, UK = United Kingdom, FR = France, PT = Portugal, ES = Spain, GR = 

Greece, IT = Italy   
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Biomass sources and biofuel types  
 

There are three main sources of biomass: (1) the purpose-grown energy crops and 

trees; (2) harvest and process residues from forest and agriculture; and (3) 

organic wastes including animal manure and municipal wastes.  

Biomass can be converted by a variety of processes to a wide range of 

products: (1) solid biofuel including chips, pellets and briquettes; (2) liquid 

biofuel including bioethanol and biodiesel; (3) gaseous biofuel (biogas); and other 

bio-products like bio-plastics, lubricants, etc. In literature the terms bioenergy 

and biofuel are misused (Karp & Shield, 2008). In this thesis, bioenergy is a 

generic term that includes all types of biofuels, while the term biofuel with the 

word solid or liquid or gaseous in front refers to a specific bioenergy product.   

Solid biofuels are mainly used for heating and power generation, liquid 

biofuels for transportation, and gaseous biofuels for all. However, use of solid 

biofuel in transport sector is currently possible (viz. electrical trains and cars; 

Ohlrogge et al., 2009).  

 

Energy crops and short rotation forestry  

 

Presently energy derived from dedicated bioenergy crops is small (Fig. 1.1c, d), 

but in future years is expected to make up most of the total biomass potential. 

The choice for the most suitable energy crop to grow is complex and relies on 

many factors like soil-climate conditions (e.g. Table 1.2), market availability, 

harvesting and transportation issues, etc. Below, I categorize energy crops and 

short rotation trees in six major categories based on structural composition, 

conversion technology and bioenergy use: 

 

(1) Woody lignocellulosic plants like poplar, willow and eucalyptus for 

production of wood-chips, pellets or bioethanol based on 2nd generation 

crop/fuel chains2;  

(2) Herbaceous lignocellulosic plants like miscanthus, switchgrass, cynara, fibre 

sorghum, and kenaf for production of agro-pellets, biogas or bioethanol 

based on 2nd generation crop/fuel chain; 

                                                 

2 First, second and third generation biofuels are crop/fuel chains based on existing 

(from sugar, starch and oil crops), developing (from lignocellulosic feedstock) and on 

emerging / future conversion technologies (including hydrogen production from 

biomass or biodegradable waste), respectively. Source: Karp & Shield et al., 2008.   
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(3) Oil crops like rapeseed, oil palm, sunflower and soybean for biodiesel 

production based on 1st generation crop/fuel chain and agro-pellets 

production by using crop residues;  

(4) Sugar crops like sugarcane, sweet sorghum and sugarbeet for bioethanol 

production based on 1st or 2nd generation crop/fuel chain;  

(5) Starch crops like wheat, rye, triticale and maize for agro-pellets using crop 

residues and bioethanol production based on 1st generation crop/fuel chains;  

(6) Leguminous plants and grasses can be processed together with manure or 

waste to produce biogas for heat, electricity or fuel.  

 

Some energy crops are multi-purposed with various applications (e.g. 

Cynara cardunculus). In EU, bioenergy production from crop species initiated with 

the utilization of the traditional annual crops like rapeseed, wheat, barley and 

maize, for liquid biofuels. However, recent studies indicated that (1) practices to 

convert food-product carbohydrates or plant oils into ethanol and biodiesel have 

only limited, if any, capabilities to curb emissions (Crutzen et al., 2008; Fargione et 

al., 2008); (2) direct competition with food production for the most fertile lands 

(Searchinger et al., 2008; Melillo et al., 2009; Lapola et al., 2010); and (3) lower 

benefits compared to perennial crops (e.g. miscanthus, willow) in terms of 

production costs, agrochemical and fertilizer inputs, adaptability and 

productivity in low fertile soils, and carbon sequestration (Venturi & Venturi, 

2003; Lemus & Lal, 2005; Sartori et al., 2006; Sims et al., 2006; Beringer et al., 2011).  

At a global level, sugarcane, oil palm, rapeseed, and to a much lower extent 

miscanthus, poplar, willow and eucalyptus comprise the dominant energy 

cultivations. In EU-27, rapeseed is the leading crop for biodiesel production 

(followed by sunflower), while miscanthus, willow and poplar are currently used 

for solid or gaseous biofuels production (Christou et al., 2010). Of course there are 

several other crops that are currently tested at a large scale, e.g. cynara (Gominho 

et al., 2011).   

 

Harvest and process residues from agriculture and forestry  

 

Direct use of forest trees or indirect use of forest residues constitutes the major 

source for solid biofuel production (e.g. wood-pellets; Fig. 1.1c). In general, the 

demand for wood-pellets has increased considerably in recent years, e.g. pellet 

consumption in Sweden increased by 240% from 1997 to 2006, causing shortage 

of the “traditional” raw materials such as sawdust and wood shavings, indicating 

therefore a need for further exploitation of the agricultural residues and/or crops 

(Nilsson et al., 2011).  
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Organic wastes  

 

Municipal and industrial solid and liquid wastes comprise a supplementary but 

significant source of biomass (~22%; Fig. 1.1c). Approximately each EU citizen 

produces on average 500 kg of municipal waste per year, which yields 225 

million tonnes of municipal waste per year (EUR 21350, 2005). Typically, 

municipal waste has a heating value of 8–12 MJ kg-1, meaning that from one 

tonne of municipal waste 2 GJ electricity can be produced, which should not be 

neglected.  

 

Solid biofuels: chips, pellets and briquettes  

 

In the EU-27, primary energy production from solid biomass yielded 69 million 

toe in 2008, increased by 48% since 1995, i.e. the year in which the European 

White Paper on renewable energies was adopted (Christou et al., 2010). In 2008, 

more than 440 pellet plants were operated in Europe. Its number is increasing 

continually due to the dynamic market development, while its production 

capacity is 7.5 million tonnes of pellets per year, providing therefore a reliable 

renewable energy supply (AEBIOM, 2008). The energy content of wood pellets is 

about 17 GJ per tonne dry biomass having a density of 650 kg m-3. To replace oil, 

one needs about three times its volume in pellets.  

 

Liquid biofuels: biodiesel and bioethanol   

 

Transport biofuels (bioethanol ~21 MJ L-1 and biodiesel ~34 MJ L-1) are currently 

the fastest growing modern bioenergy sector, receiving a lot of public attention. 

Presently, they represent 1.5% of total road transport fuel consumption and 2% of 

bioenergy (IEA Bioenergy, 2009). However, to meet the demand for road 

transport fuel, biofuel production is expected to increase by a factor 10 to 20 by 

2030, which corresponds to a 6–8% average annual growth rate (IEA Bioenergy, 

2009). There are also different views, i.e. biofuels can make only a modest 

contribution to future transport sector (~10%; Connor & Hernandez, 2009).  

In EU-27 liquid biofuels contributed 12 million toe to bioenergy (~13%) in 

2008 and showed a remarkable growth rate over the last decade (Eurostat, 2010). 

Biodiesel represented 79.5% of biofuels dedicated to transport (2.6% of total 

transport fuel; Fischer et al., 2010a), far ahead from bioethanol (19.3%). For 

biodiesel, rapeseed is the principal feedstock followed by sunflower, while some 

120 biodiesel plants are currently operating in Europe (Christou et al., 2010). For 

bioethanol cereals (~70% in 2008) and to a lesser extent sugar crops are currently 

used in Europe.  
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Gaseous biofuels: biogas   

 

Biogas is produced from a variety of organic wastes, including plant straw, 

through gasification. Chemically biogas comprises a mixture of hydrocarbons 

(mainly methane) and other gases (Yuan et al., 2008). In EU-27 biogas production 

contributed 7.5 million toe (~7.8%) to bioenergy in 2008 (Eurostat, 2010). Biogas 

has a calorific value 6 kWh m-3 (1 kWh = 3.6 MJ) that corresponds to about half a 

litre of diesel oil.   

 

Bioproducts   

 

Any consideration of biomass for energy purposes would be incomplete without 

a reference to its use for non-energy products. All products that currently result 

from the processing of petrochemicals can be produced from biomass feedstock 

(Sims et al., 2006). These include traditional plant-based products like oils, starch, 

textiles, pharmaceutical products (vaccines) or others like lubricants, polymers 

additives, high matrix composites, biodegradable plastics, paints, surfactants, etc. 

Christou et al., 2010). Sims et al. (2006) put forward the view that energy crops 

may become more economic if high value products are first extracted from the 

plants and the remaining are used for lower value energy production.  

 

Options to increase bioenergy production   
 

To meet ambitious future targets, energy production from all renewable sources 

must increase further. In terms of bioenergy, it was estimated that about 230–250 

million toe are needed for Europe by 2020 (Ragwitz et al., 2005; AEBIOM, 2010; 

Christou et al., 2010). This means that bioenergy production should more than 

double in the following 13 years (from 96.2 million toe in 2007; Table 1.1). A key 

question addressed in several studies is how bioenergy production can be 

increased in an economical and sustainable manner without causing major 

distortions in the food, feed and other markets (Connor & Hernandez, 2009; 

Christou et al., 2010; Krasuska et al., 2010; Beringer et al., 2011; Mueller et al., 2011).  

In previous sections of this chapter, all possible biomass sources for energy 

production were reviewed and their potentials were given. It became clear that 

forest wood and wood residues (sawdust, wood shavings) that presently 

comprise the major bioenergy contributor (Fig. 1.1c; AEBIOM, 2008) have already 

reached a near saturation point (Nilsson et al., 2011). Thus options to further 

explore wood will probably no longer yield much gain. On the other hand there 

are reports indicating that there are large amounts of unexplored biomass, e.g. 

tree pruning, but in those cases exploitation is constrained by logistical issues. 

Municipal and industrial wastes comprise an important source (Fig. 1.1c) but 
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options to increase bioenergy from wastes are through better utilization 

efficiency. 

Obviously, a substantial increase in bioenergy must come from agricultural 

crops and residues, which at present have a small contribution (Fig. 1.1c and d; 

Heinimo & Junginger, 2009) but a large potential (see earlier section). A number 

of reasons including public acceptability, food security, and agronomic and 

ecological issues were responsible for the low contribution of energy crops so far. 

However, as mentioned earlier, the favourable policies, the high oil prices, the 

saturated markets for the agro-products (Banse et al., 2011) and the rapid growth 

of the international bioenergy trade and market (AEBIOM, 2008; Saidur et al., 

2011a) helped to overcome many issues. In a recent survey (Magar et al., 2011), it 

was found that bioenergy is viewed quite favourably in the EU and bioenergy 

use is publicly accepted.        

Options to increase bioenergy production from agriculture are: to increase 

crop area and/or crop yields and to employ more efficient extraction and 

conversion methods, i.e. second or third generation crop/fuel chains. The global 

Scientific Committee on Problems of the Environment (SCOPE) announced that 

countries can find solutions, but at a global level, expansion of bioenergy 

production from agriculture must be achieved in the context of a 50% increase in 

food production by 2030 (Connor & Hernandez, 2009). This means that a 

sustainable increase in bioenergy production must come firstly from a greater 

productivity of the existing arable land and secondly by increasing crop land. 

This view is also supported by many others, while for example Karp & Shield 

(2008) stated that it will be a challenge to elevate energy crop yields further; 

unlike the yield advances in food crops, this increase must be achieved without 

significantly increasing the input requirements.  

Another way to increase bioenergy consumption in EU-27 is by increasing 

modern biofuel imports but this is not a viable option. At global level, to achieve 

bioenergy targets in the longer term, government policies and industrial efforts 

need to be directed at increasing biomass yield levels and modernising 

agriculture in regions such as Africa, and Latin America, thus directly increasing 

global food production and the resources available for biomass utilization (IEA 

Bioenergy, 2009).  

 

Expansion in crop land: Europe 

 

In the EU approximately 150 million ha are covered by forests and some 180 

million ha are devoted to agricultural activities (60% arable crops). Finding land 

for growing energy crops is an important issue, but not as catastrophic as has 

been presented by the media.  Cultivation of non-food crops like cotton, flax, 

hemp, etc., has a long tradition in Europe and sometimes occupied considerable 
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areas of land. In recent years, the surplus of food production drove policy-makers 

to support set-aside policies, i.e. in 2001 some 5.7 million ha of crop land was left 

fallow (EUR 21350, 2005).  

According to Krasuska et al. (2010) up to 13.2 million ha (~7.3% of EU crop 

land) have not been used for food or feed production over the period 2003–2007 

(the 80% of this land was fallow land). The same authors estimated that some 20.3 

million ha (theoretical area) could be available for cultivation of non-food crops 

(including bioenergy) in Europe by the year 2020. In 2008, some 3 million ha 

(~1.6% of EU crop land) of energy crops were grown in EU-27. Obviously, this 

proportion was not enough to have any effect on food production or prices (see 

additional arguments by Mueller et al., 2011).   

Future projection studies indicated that in order for Europe to reach 2020 

targets, the area devoted to energy crops should expand to 18–25 million ha 

(~12% of EU crop land; approximately 15 million ha crops for biodiesel; 5 million 

ha for biogas and 5 million ha for solid biofuel; EEA, 2006; Jossart, 2009; Ozdemir 

et al., 2009; AEBIOM, 2010; Christou et al., 2010). Other studies predicted that this 

area will need to be 20.5 million ha by 2020 and 26.3 million ha by 2030 (Krasuska 

et al., 2010) or 44–53 million ha by 2030 (Fischer et al., 2010b). Although above 

estimates gave a preliminary indication about the future land use, they were 

based on limited information regarding the crops’ adaptability and productivity 

issues and on a number of unwarranted assumptions (e.g. effects of climate on 

crop production). Nevertheless, all agreed that central and eastern European 

countries like Bulgaria, Poland, Romania and the Czech Republic will play a very 

significant role in the near future (van Dam et al., 2008).    

 

Improve energy crop yields  

 

To improve biomass yields, combined efforts should be made from different 

research areas such as biotechnology, genetics, agronomy, and engineering. 

Progress so far is extremely slow because the importance of energy crops was 

underestimated in previous years (EUR, 2006). Dedicated energy crops are 

largely undomesticated (have not undergone the centuries of improvement that 

characterize major food crops) with large yield variability (Zegada-Lizarazu et al., 

2010). This indicates that large gains can be expected over the next few decades 

via breeding programmes, e.g. long-term breeding of switchgrass in US has 

produced large yield gains (Sims et al., 2006). Some of the preferable traits for 

improvement are: radiation interception; photosynthesis, light, water and 

nutrient use efficiencies; etc. (Sims et al., 2006; Karp & Shield, 2008). Emerging 

advanced approaches, like new biotechnological routes with genetically modified 

plants and/or a systems biology approach can also help in improving yields. 

Currently such information exists only for poplar.  
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Another way to explore further and improve yields of energy crops is by 

using crop simulation models, via the selection of the best management 

techniques and the identification of the most suitable areas for cultivation. Such 

models are powerful tools for investigating potential and actual growth under 

different conditions. A number of growth models have been developed for 

annual and perennial crops (van Ittersum et al., 2003; Yin & van Laar, 2005; see 

also Table 5 in Karp & Shield, 2008), which vary in their degree of empiricism 

and number of parameters affecting yield. Empirical models are very useful in 

helping to predict yield at different sites. However, from the viewpoint of target 

traits process-based models are more informative. If models are robust and their 

parameters characterize genotypes, the models can be used to test different 

hypotheses concerning the importance of altering different traits. In this context, 

more research on agronomy and crop physiology is needed to parameterize these 

models for new energy crops (Karp & Shield, 2008). The recent crop growth 

model for miscanthus is a good example (Hastings et al., 2009).    

Given that the data accumulated so far are still not enough to allow yield 

improvements in short-term through biotechnology and genetics, use of crop 

models seems a viable option in finding short-term solutions. Moreover, for the 

perennial crops which are considered as the most promising for bioenergy it will 

take several years for a new improvement to be realized by using genetic 

approaches (Connor & Hernandez, 2009). Improvements in mechanization of 

energy crops will also improve yields because at present there are large yield 

gaps between attainable and harvestable biomass for the majority of energy crops.     

 

Employing second generation technologies 

  

Introduction of the second generation crop/fuel chains (lignocellulosic biomass to 

fuel) into commercial scale is expected after 2015–2020 (Ragauskas et al., 2006; 

Duer & Christensen, 2010).  

 

Problem statement 
 

As discussed in previous sections of this chapter, in the near-future new energy 

crops will be included in the cropping systems while the production area of other 

crops will expand further to meet targets for bioenergy production. However, it 

is generally recognized that in spite of the fast bioenergy growth worldwide due 

to favourable policies, there is a lack of strong data to support this growth. This 

limitation is particularly noticeable for the agronomy and crop physiology of new 

energy crops (EUR, 2006; Sims et al., 2006; Karp & Shield, 2008; Connor & 

Hernandez, 2009; Krasuska et al., 2010; Zegada-Lizarazu et al., 2010; Banse et al., 

2011). This kind of information is needed to provide farmers with new 
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perspectives and options to diverse farming activities; researchers to select 

appropriate species/genotypes for specific regions; and modellers to better 

evaluate future land use including food, fibre, feed and fuel crops. Recently, 

Beringer et al. (2011) stated that assessments of global bioenergy potentials suffer 

inherently from a lack of data and limited field experience from bioenergy 

cultivations. Obviously data from different regions with different soil-climatic 

conditions and on different cropping systems should emerge. In line with the 

general objective, I chose the Mediterranean region and three bioenergy crops to 

provide such information.    

Currently, experience with large scale bioenergy plantations is limited to 

sugarcane and rapeseed. Lignocellulosic bioenergy plantations are sporadic (e.g. 

willow, poplar, miscanthus) or are still in experimental basis (e.g. sorghum, 

cynara) and it is debatable whether yield levels observed at controlled test sites 

are transferable to large areas with less favourable climate, soil and management 

conditions (Beringer et al., 2011). This indicates a further need to accumulate 

more agronomic knowledge in order to optimize their production, both 

quantitatively and qualitatively, and to integrate them into traditional cropping 

systems (Zedada-Lizarazu et al., 2010).  

On the other hand, in order to interpret biomass production in relation to 

genotype × management × environment interactions, advances in crop 

physiology should also be obtained. For instance, studies on leaf/canopy 

photosynthesis or base temperature for plant growth, which comprise 

fundamental aspects in crop science, can hardly be found in literature for 

dedicated energy crops. The importance of such information is vital given also 

that crop production is directly linked to climatic variables, such as CO2, 

radiation and temperature, which are expected to change. The lack of such data is 

because studies on energy crops were initiated only recently (Fig. 1.2) and were 

focused at crop level adaptability and productivity issues.  

To speed up our understanding on energy crops and to design or improve 

production systems, future studies should aim to enhance physiological 

understandings of their growth and development dynamics. Such understanding 

will help generate parameters for use in generic crop growth models (see earlier 

section). Later, by combining such models with soil maps, more reliable 

assessments of regional and global bioenergy potentials (and greenhouse gas 

emissions from agriculture) are possible.  

 

Mediterranean region  

 

Each country has to make its own contribution to the overall bioenergy target. In 

this thesis, I focus on the Mediterranean region where suitable bioenergy 

plantations have yet to be formulated, in contrast to central and northern 
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European where such cultivations exist (e.g. rapeseed). Irrigation water, the most 

limiting factor of crop production in the Mediterranean region, brings another 

important issue for consideration.   

 

Selected crop species  

 

There are several candidate species for bioenergy production in 

Mediterranean countries (Table 1.2). In this thesis, I study Helianthus annuus 

(sunflower), Hibiscus cannabinus (kenaf) and Cynara cardunculus (cynara or 

cardoon) because these crops cover a wide range of bio-industrial applications, fit 

into different cropping strategies (short or long growing periods, cultivation with 

or without irrigation, etc.) and because previous studies have shown promising 

results in terms of their production potential.  

Sunflower is an annual C3 oil crop for biodiesel production, the second most 

important “biodiesel” crop in Europe. Earlier studies showed that sunflower can 

reach high seed yield up to 5.5 t ha-1, with an oil/seed content of 44% (Danalatos 

et al., 2004, 2005).  

Kenaf is an annual C3 fibre crop with viable bio-products for the industry 

(e.g. Alexopoulou et al., 2005; Ardente et al., 2008) and lignocellulosic biomass for 

energy production. Stem comprises the commercial product with yields of 10 to 

20 t dry matter ha-1 (Danalatos & Archontoulis, 2010).  

Cynara is a perennial C3 herb with annual cycles that can be used for 

combined heat and electricity production, for biodiesel production (from seeds) 

or for bioethanol production (lignocellulosic biomass). Cynara is propagated by 

seeds, grown as rainfed during autumn-winter-spring periods, and harvested dry 

during summer time achieving biomass yields from 6 to 30 t dry matter ha-1 y-1 

(Fernández et al., 2006; Danalatos, 2008).                      

 
Objectives 
 

The goal of this study is to enhance agronomic and crop physiological 

information for sunflower, kenaf and cynara needed for improved crop 

management and for initiating modelling studies exploring the potential role of 

these crops as suppliers of biomass for energy production in Mediterranean 

environments. For this, studies on phenology, biomass yields, crop growth, 

canopy profiles of light and nitrogen, and leaf gas exchange rates were scheduled. 

Among selected crops considerable less information was available in literature 

for cynara; while given its perennial character and advantages in terms of water 

saving, more effort will be put on it. For these crops, we identified the most 

important knowledge gaps and performed a series of field experiments to fill 

some of those, particularly for cynara. The specific objectives were: 
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⇒ To define phenological growth stages of Cynara cardunculus (Chapter 2); 

⇒ To develop a robust and easily applicable methodology to estimate seed 

yields of  Cynara cardunculus and to explore its yielding potential 

(Chapter 3); 

⇒ To investigate temporal dynamics in the vertical distributions of light 

and nitrogen in canopies of cynara, kenaf and sunflower in relation to 

water stress (Chapter 4); 

⇒ To quantify photosynthesis and respiration parameters for sunflower, 

kenaf and cynara (Chapter 5);  

⇒ To explore growth and biomass accumulation over time for sunflower, 

kenaf and cynara in relation to management practices in Greece 

(Chapter 6). 

 

 

Methodological framework  
 

This thesis is mainly based on experimental field work, data analysis and 

modelling. Three major field experiments were set up in central Greece (Palamas, 

39°25’N, 22°05’E) in 2007, 2008 and 2009. Each experiment (same design) 

represented one crop. The experimental design was a split–plot in four blocks. 

Main factor comprised the irrigation application at two levels (fully irrigated and 

water stressed) and the sub-factor was nitrogen application at three levels (0, 80 

and 160 kg N ha-1). Crops were grown in different sections of the same field. The 

soil at the site was a deep, fertile loamy, with moderately shallow groundwater 

table (Aquic Xerofluvent; USDA, 1975).  

Additionally in the same field, several supplementary plots with sunflower 

and kenaf crops were sown at different dates each year. This aimed to determine 

phenological events particularly for the kenaf crop, which is a short-day crop in 

terms of its response to photoperiod, and secondly for gas exchange 

measurements in order to assess leaves with different leaf age. All supplementary 

plots were irrigated. For cynara additional measurements were taken from 

several other fields that were located some 5–100 km from the main site (see 

Chapter 3).  

The experimental protocol consisted of the following measurements per 

crop and per year: (1) destructive harvests at frequent time intervals to determine 

growth rates, biomass accumulation, leaf area index, specific leaf area, nitrogen 

concentrations and biomass partitioning over time; (2) midday measurements of 

light penetration at several insertion points within crop canopies and at different 

times; (3) day- and night-time gas exchange measurements at different crop 
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stages; (4) frequent assessments of phenological events (e.g. flowering) and of leaf 

water potential. Full meteorological data and canopy temperatures at different 

insertion heights and at different crop stages were also recorded on a hourly 

basis. The experimental protocol, measurements and data analysis were designed 

in such a way in order to parameterize later the dynamic crop growth model 

GECROS (Yin & van Laar, 2005). Data from experiments conducted on sunflower 

and kenaf in 2006 were included in the analyses of the data generated in this 

project.  

It should also be mentioned that the present thesis only includes part of the 

data accumulated in all these years; the remaining data are currently analyzed 

and will be published soon elsewhere. For instance, parameterization of GECROS 

model for the studied bioenergy crops is in process.                        

 

Outline of the thesis  
 

This thesis consists of seven chapters (Fig. 1.3). Chapter 1 (this chapter) provides 

an update on bioenergy production and shows the importance of energy crops. 

Knowledge gaps are identified, while a list of objectives and the way to deal with 

them is also presented. Chapter 2 deals with crop phenology and describes 

growth stages of the perennial Cynara cardunculus using a universal coding 

system, the BBCH code. Chapter 3 provides an allometric model to predict 

Cynara cardunculus seed yield and reports attainable seed and biomass yields 

from 16 field experiments. Chapters 4 and 5 provide ecophysiological parameters 

for use in crop models and vital information for researchers to interpret biomass 

formation for any environment. Light and nitrogen extinction coefficients as well 

as photosynthetic and respiration rates are provided for sunflower, kenaf and 

cynara. Chapter 6 is a collection of annual studies describing crop growth and 

biomass accumulation in relation to management practices. Chapter 7 (General 

discussion) provides a synthesis of the results reported in previous chapters and 

discusses the overall contribution of this thesis.  
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Figure 1.3: Schematic thesis outline. Grey boxes represent research undertaken and 

analyzed in this thesis. Combined with the white boxes a view on how to deal with 

future demands as well as the potential contribution of this thesis is illustrated. Concerns 

about energy security and environmental protection as well as present and future status 

of bioenergy production from plants are reviewed in Chapter 1. Different kinds of arrows 

indicate information flow.  
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Chapter 2 
 

 

 

Phenological growth stages of Cynara cardunculus: 

codification and description according to the BBCH scale 
  

 

 

Abstract 
 

Cynara cardunculus is a herbaceous perennial crop known from ancient times. During 

the last three decades this thistle has intensively been researched and recently 

became a commercial crop for biofuel production. As there is an increasing need for 

more information on this crop, we present here the phenological growth stages based 

on the Biologische Bundesanstalt, Bundessortenamt, CHemische Industrie (BBCH) 

scale and its associated decimal code. Nine principal growth stages have been 

defined and each principal stage has been subdivided into secondary growth stages. 

Descriptive keys with illustrations are also provided. A practical use of the scale is 

proposed, with particular reference to harvest time and management treatments. 

This scale aims to support farmers and researchers to efficiently plan management 

practices and experimental treatments. 
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Introduction 
 

Knowledge of crop phenology is central in plant-related sciences. It comprises: (a) 

a useful tool for scheduling management applications (e.g. irrigation, fertilisation, 

pesticide application; Arcila-Pulgarin et al., 2002; Proctor et al., 2003); (b) the basis 

for the construction of crop growth simulation models and (c) a reference for 

assessing crop performance under variable inputs and conditions (e.g. Barlog & 

Grzebisz, 2004).  

Based upon Zadoks’ descriptions of cereals (Zadoks et al., 1974), a general, 

uniform decimal code, known as the Biologische Bundesanstalt, 

Bundessortenamt, CHemische Industrie (BBCH) scale, was proposed by 

Bleiholder et al. (1991) and Lancashire et al. (1991). A more advanced scale, the 

extended BBCH scale, was proposed by Hack et al. (1992) and Hess et al. (1997). 

Later, the ‘BBCH–Monograph’ representing a group of 27 crops and weeds was 

published (Meier, 1997; Meier et al., 2009a). Recently the Global Phenological 

Monitoring Network introduced and accepted the BBCH scale and its coding 

system to be used as the standard system to describe phenological stages of 

plants (van Vliet et al., 2003). The BBCH scale is a universal two-digit coding 

system, flexible, which can be used worldwide (Hess et al., 1997; Smith & 

Froment, 1998; Arcila-Pulgarin et al., 2002; Garcia-Carbonell et al., 2002). For some 

crops (e.g. rose, ginseng) a three-digit scale including the so called mesostages 

was used (Meier, 1997; Meier et al., 2009a,b; Proctor et al., 2003). 

Cynara cardunculus L., commonly known as cynara, wild cardoon or thistle 

artichoke, is a perennial herbal (≈10 years), very deep-rooting C3 plant of 

Mediterranean origin. It is well-adapted to the xerothermic conditions of 

southern Europe. Cynara has an annual growth cycle, in which the crop grows 

and develops during autumn, winter and spring and is ready for harvest during 

summer time. Cynara may achieve high biomass yields annually (Fernández et al., 

2006; Archontoulis et al., 2008a; Angelini et al., 2009) while requiring only modest 

inputs (Danalatos, 2008). 

Cynara is a multipurpose crop that can be utilised as forage in winter and 

spring, as a raw material in the paper pulp industry, but most importantly as 

solid (pellets or chips) and/or liquid (biodiesel) biofuel in the bio-energy sector. 

Cynara may play a significant role in biofuel production in Mediterranean 

climates worldwide. In southern Europe the area cropped with cynara is at 

present exponentially expanding, from only some experimental hectares in 2005 

to some thousand hectares in 2009. As this species of the genus Cynara is a new 

commercial crop, studies on phenology and ecophysiology are relevant in order 

to be able to design sustainable production systems.  

The development stages of cynara have not yet been defined and described. 

This is the first attempt to develop a simple, illustrated description and coding 
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system, using the BBCH decimal coding system (Meier, 1997; Meier et al., 2009a), 

for the growth stages of C. cardunculus L. based on field observations in Greece. 

 

Cynara species 
 

Cynara cardunculus is a diploid (2n = 34) perennial species, belonging to the 

Asteraceae (Compositae) family. The small genus Cynara comprises about eight 

taxa (Duarte et al., 2006). The genus includes the cultivated C.cardunculus L. subsp. 

scolymus (L.) Hegi = C. scolymus L. (globe artichoke), C. cardunculus L. var. altilis 

D.C. (cultivated cardoon) and C. cardunculus L. var. sylvestris Lam. (wild cardoon). 

The globe artichoke is a perennial rosette plant, grown throughout the world for 

its large fleshy heads. The cultivated cardoon is grown as a vegetable since 

ancient times for its succulent young leaves (Raccuia & Melilli, 2007a). The wild 

cardoon (or cynara or thistle artichoke) is a robust thistle with a characteristic 

rosette of large spiny leaves and branched flowering stems. It is cultivated for 

bio-energy production or industrial applications. The main differences between 

cultivated and wild cardoon are the larger production potential of the former and 

the distribution of the assimilates between shoot and root, with the wild type 

investing more carbohydrates in the roots providing more resistance to adverse 

climatic conditions (Raccuia & Melilli, 2004). 

 

Cynara cultivation and yields 
 

Cynara cardunculus is indigenous to many regions of the world (Europe, North 

Africa, Madeira and Canary Islands, and South America). It does well in harsh 

environments with high temperatures and water stress in summer, even on thin, 

unproductive and stony soils. Cynara is tolerant to water-limited conditions, 

thanks to its deep root system which may exceed 5 min depth. The life cycle may 

usually exceed 10 years. These two characteristics, large root system and 

perennial growth, together with the high annual biomass production (from 10 to 

33 t dry matter ha−1), give the crop a great advantage compared with many other, 

more common agricultural crops. 

 

Field observations 
 

The description below applies to Mediterranean climates (cool humid winters, 

hot and dry summers). Our measurements and observations on cynara were 

undertaken in several field experiments with crop stands of different ages and 

carried out at different sites across Greece (latitude of 39° ± 1.5°N; elevation range: 

50–250 m asl; years 2006–2009). 
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Table 2.1: Phenological growth stages of Cynara cardunculus according to the BBCH scale   
 

Code Description 

Principal growth stage 0:a (assessed at crop level) 

 Germination  

(first growing cycle; only) 

Sprouting, bud development  

(second growth cycle; onwards) 

00 Dry seed (achene) — 

01 Beginning of seed imbibition   Bud swelling  

03 Seed imbibition complete  End of bud swelling 

05 Radicle emerged from seed — 

06 Radicle elongated, root hairs developing  — 

07 Hypocotyl with cotyledons emerged from seed  Beginning of sprouting or bud 

breaking 

08 Hypocotyl with cotyledons growing towards soil surface  Shoot growing towards soil surface 

09 Emergence: cotyledons emerge through soil surface  Buds showing green tips 

Principal growth stage 1: Leaf development b (assessed at plant level) 

10 Cotyledons completely unfolded   First leaf spread/separated  

11 First elliptic leaf visible    First leaf visible 

12 Two elliptic leaves visible  Two leaves visible  

13 Three elliptic leaves visible  Three leaves visible  

14 Four elliptic leaves visible; leaf changing shape from 

elliptic to runcinate with lobed margins 

 Four leaves visible  

15 Five leaves visible; two of them have different shapes  Five leaves visible  

16 Six leaves visible (small rosette visible)  Six leaves visible  

1. Stages continue till…  Stages continue till… 

19 Nine or more leaves visible (rosette developed)  Nine or more leaves visible  

Principal growth stage 3: Rosette growth (crop cover; assessed at crop level)     

31 Leaves cover 10% of ground  

33 Leaves cover 30% of ground 

35 Leaves cover 50% of ground 

37 Leaves cover 70% of ground 

39 Crop cover complete: leaves cover 90% of ground 

Principal growth stage 4: Development of harvestable vegetative plant part c (crop level) 

41 10% of the maximum leaf mass reached  

43 30% of the maximum leaf mass reached 

45 50% of the maximum leaf mass reached 

47 70% of the maximum leaf mass reached 

49 90% of the maximum leaf mass reached 

Principal growth stage 5: Inflorescence emergence and development (whole plant) c, d   

51  501 Beginning of stem elongation; main inflorescence buds visible between the newly formed leaves 

(hardly detectable). No branching yet  

53  503 30% of the final stem height achieved; stem branching starts; buds swelling and become visible 

from above (green colour); caulicle leaves are formed    

55  505 Corymb formed; initial branch leaves visible; production of higher order branch; elongation of 

older branches 

57  507 Corymb reaches 70% of final volume; older buds enlarged and newly formed; buds have green 

colour 

59  509 Corymb reaches 90% of final volume; 90% of the buds formed; first flowers formed on primary 

branch; main stem fully elongated  

–    521 Second order stem (branch) inflorescence visible  

–    525 Second order stem (branch) elongated; bud enlarged  

–    529 First flower formed on secondary inflorescence  

–    5N1 nth order stem (branch) inflorescence visible   

–    5N5 nth order stem (branch) elongated; bud enlarged 

–    5N9 First flower formed on nth inflorescence  

Principal growth stage 6: Flowering and capitulum formation (whole plant) c 

60  600 First flower petals visible on main stem inflorescence   

61  601 10% of heads in blossom   

63  603 30% of heads in blossom  

65  605 50% of heads in blossom   

67  607 70% of heads in blossom 
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Table 2.1: Continued  

Code Description  
 

69  609 End of flowering 

–    620 First flower petal on secondary inflorescence  

–    621 Beginning of flowering of secondary inflorescence: about 10% of flower petals visible  

–    625 Full flowering of secondary inflorescence: at least 50% of flower petals visible 

–    627 Majority of florets discolour (secondary inflorescence)   

–    629 End of flowering of second order stem    

–    6N1 Beginning of flowering of nth order inflorescence: about 10% of flower petals visible 

–    6N. Stages continuous till… 

–    6N9 End of flowering of nth order stem inflorescence    

Principal growth stage 7: Development of capitulum (or head) (whole plant) 

71  701 Heads have formed and are beginning to expand, seeds formed and expanded   

75  705 50% of the heads have reached full size 

79  709 Nearly all heads have reached full size; seeds full sized 

–    721 Secondary head (on the second order stem) has formed and is expanding, seeds formed and 

expanded  

–    725 Secondary head has reached 50% of final size 

–    729 Secondary head has reached full size; seeds full sized 

–    7N1 nth head (on the nth order stem) has formed and is expanding; seeds formed and expanded  

–    7N. nth head has reached 50% of final size 

–    7N9 nth head has reached has reached full size; seeds full sized 

Principal growth stage 8: Capitulum and seed ripening (whole plant) 

80  800 Upper part of the primary head turning yellow. Mature lilac florets still present 

81  801 10–20% of the heads turning yellow (upper part)  

82  802 20–30% of the heads turning yellow (upper part)    

83  803 <20% of the heads completely yellow  

84  804 >20% of the heads completely yellow  

85  805 Advance maturity: > 50% of the heads have completely brown-yellow colour. Only a few lilac 

florets visible 

86  806 Pappus visible on the main head (upper part of the head opens, enlarged) 

87  807 <20% of the heads have opened (pappus visible) 

88  808 >20% of the head have opened (pappus visible) 

89  809 Majority of heads are opened, brown-yellow, dry and senesced. Seeds fully ripped; dispersal 

evident  

–    820 Upper part of the secondary head turning yellow. Mature lilac florets still present  

–    821 10% of the secondary head turning yellow  

–    823 30% of the head turning yellow 

–    825 > 50% of the head has completely brown-yellow colour. Only a few lilac florets visible 

–    826 Pappus visible on the secondary head (upper part of the head opens, enlarged) 

–    829 Secondary head fully opened, brown-yellow, dry and senesced. Seeds fully ripped; dispersal 

evident 

–    8N0 Upper part of the nth head turning yellow. Mature lilac florets still present   

–    8N. Stages continuous till… 

–    8N9 nth head fully opened, brown-yellow, dry and senesced. Seeds fully ripped; dispersal evident 

Principal growth stage 9: Senescence e (whole plant)  

91 Shoot development completed 

92 Basal leaves completely dead; caulicle and branch leaves discoloured and senesced   

93 Stalk’s moisture around 70%; head’s moisture around 25%; Majority of leaves are dead 

95 Stalk’s moisture round 50% (green to yellow colour); head’s moisture around 12%; beginning of 

head over ripening and seed dispersal; All leaves are dead 

97 Stalk’s moisture around 30%; seed dispersal enhanced 

99 Plant dead and dry (moisture around 10%). New leaves from sprouting visible (= stage 110) 
a: Germination of plants from true seeds as well as sprouting were classed in the same principal growth scale 
(stage 0) although they are completely different biological process.  
b: Leaf development from seeds as well as from sprouting were also classed in the same growth scale (stage 
1). Both ends in the development of a rosette plant. 
c: Harvesting for forage.  
d: Spring sowings may not produce inflorescences in the first year.  
e: Harvesting seeds for biodiesel production or whole biomass for solid biofuel production.  



Chapter 2 

 24 

Extended BBCH scale 
 
The extended BBCH scale (Hack et al., 1992) considers 10 principal growth stages, 

numbered from 0 to 9 (Table 2.1). For cynara, growth begins with seed 

germination (first year) or sprouting/bud development (second and later years) 

(stage 0). Vegetative growth is represented by three principal growth stages 

corresponding to leaf development (stage 1), rosette growth (stage 3) and 

development of harvestable vegetative plant parts (stage 4). Inflorescence 

emergence and development is included in stage 5. Flowering (stage 6), 

development of capitulum and fruits (stage 7), inflorescence ripening (stage 8) 

and plant senescence (stage 9) complete the scale. In our case, some stages 

overlap or run concurrently, hence the code of the more advanced stage is used 

for phenology description or both stages are indicated separated by a diagonal 

stroke. 

Secondary growth stages are referred to by a second digit in the code 

(numbered from 0 to 9; Table 2.1) and correspond to ordinal or percentage values 

of crop development. For instance, for leaf development (stage 1), the stage when 

the third leaf becomes visible is assigned a value of 13. In general easily detected 

criteria like number of leaves, size and colour were used for the codification of 

the secondary growth stages.  

For some plants, a further subdivision may be necessary between principal 

and secondary stages, enlarging the code to a three-digit code. This intermediate 

stage is called mesostage and coded with a number from 0 to 9 (Hack et al., 1992). 

In our case, we adopted the three-digit scale to describe in more detail the 

principal stages 5–8 (Table 2.1). For example, stage 51 describes the formation of 

the main stem inflorescence, whereas stage 521 describes the formation of the 

secondary inflorescence (second order stem; branch). Additionally, stage 65 

describes blossoming of the 50% of heads per plant; whereas stage 655 describes 

full flowering of the fifth inflorescence (fifth order stem). 

 
Growth stages of cynara 
 

Principal growth stage 0: germination/sprouting/bud development 

 

The germination of the seed (first growth cycle or year of crop establishment) and 

the sprouting (second and later years during growth cycle) are both classified as 

the principal growth stage 0 (Table 2.1); even though they are the result of 

different biological processes they result in phenologically analogous structures 

(Lancashire et al., 1991). 

The development of cynara from seeds (brown colour; moisture content of 

about 6–9%), starts in stage 0 and ends when cotyledons emerge through the soil  
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surface (stage 9; Fig. 2.1). Depending on temperature, soil moisture, sowing 

depth and sowing period the duration of this phase is 1–2 weeks approximately 

(for a spring sowing) to 1–2 months (for a late autumn sowing) or around 50–

60◦C-days (using a minimum threshold temperature of 10°C). However, from the 

second year onwards the duration of this phase is much shorter compared with 

the first year (sprouting might occur before crop harvesting). After crop 

harvesting, regrowth starts from several vegetative buds that are positioned on 

the upper part of the root system (stage 01). This stage ends when buds show 

green tips (stage 09). Usually, two to four buds per plant are generated annually; 

they grow in parallel until competition for resources in advanced stages ceases 

growth of some of them (Fig. 2.2; see below). 

Crop establishment is suggested to take place very early in autumn for the 

following reasons: (a) the crop will be ready for harvest from the first year, (b) the 

crop will emerge in a short period (1–2 weeks) because of high temperatures 

occurring in early autumn, (c) probably, a sooner establishment could help plants 

to better withstand winter cold and (d) autumn weeds are less competitive 

compared with spring weeds and usually cynara growth is not suppressed by 

them.  

 

00 09
 

Figure 2.1: Dry seeds and cotyledons emerge through soil surface.  

 

Principal growth stage 1: leaf development 

 

This stage describes the aerial development of the young plant. The number of 

visible leaves including visible petioles) determines the code (Table 2.1). Very 

young, small leaves without petioles are not counted (Fig. 2.3). Leaf development 

from seeds begins after the cotyledons are fully unfolded (stage 10; Fig. 2.2). The 

first four rosulate leaves (stage 14; Fig. 2.2) are entire with an elliptic shape and 
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crenate margins; later on leaves are expanding in blade area and petiole elongates. 

After stage 14, the leaves change shape (from elliptic to runcinate with lobed 

margins) while one more lobed leaf is formed (stage 15; Fig. 2.2). Main stage 1 

continues with the production of more leaves (stage 16, developing a small 

rosette; Fig. 2.2) and ends when at least nine leaves are visible (stage 19) in a 

rosette form. 
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Figure 2.2: Leaf development from seeds and from sprouting (principal stage 1). 

 

Leaf development from sprouting (second year onwards) begins after the first 

leaf is expanded (stage 10; Fig. 2.2). Very often two to four new leaves (and 

consequently shoots) per plant are formed and they grow in parallel (Fig. 2.2).  
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These leaves are divided having pinnatifid margins and they rapidly 

expand. The number of (the produced) leaves per plant determines the code. For 

instance, formation of three leaves is coded in stage 13, while formation of nine 

leaves in stage 19. The small rosette is obvious in stage 16 (Fig. 2.3).  

Although leaf development within the first year and leaf development 

during the subsequent growth cycles follow different patterns, leaf development 

is classed into the principal growth stage 1 (Lancashire et al., 1991), whilst both 

biological processes end with the development of a rosette plant (stage 19). Leaf 

development from sprouting is much faster than from seedlings, because the 

reserves in the roots are more abundant to support growth. This is also in 

agreement with studies on ginseng, another perennial herb (Proctor et al., 2003). 

Stage 1 is usually overlapping with stage 3, hence the code of the more advanced 

stage is used for the description (Lancashire et al., 1991). Usually after the 

development of the fifth and sixth leaves, the growth of the crop is assessed by 

the percentage of ground cover by the crop (see stage 3). 

During stages 10–15 of first growing cycle farmers should pay particular 

attention to weed control, because the crop is not as competitive as in more 

advanced stages or in following cropping cycles (Danalatos, 2008). 

 

11 cm

Stage 1

Stage 3

Stage 4 

Adult leaves

100 cm

Petiole visible

Young leaves (1
st

 year)

 
Figure 2.3: Leaf growth during stages 1–4. Leaves are counted when their petiole is 

visible. The illustration above depicts the leaf expansion during different stages. The 

leaves from seedlings are entire with an elliptic shape and crenate margins. Leaves are 

expanding in size and soon after the development of the fourth leaf, subsequent leaves 

start to change shape from elliptic to runcinate with lobed margins finally producing 

adult leaves with pinnatifid margins with an undetermined number of leaflets. Leaves 

from sprouting are usually divided, have pinnatifid margins and expand in size at a high 

rate. A full-grown leaf may reach 100 cm in length.       
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Figure 2.4: Rosette growth (crop cover, stage 3).  

 

Principal growth stage 2: formation of side shoots/tillering 

 

This is included as a stage within the BBCH scale, but is not applicable to the 

cynara crop. 

 

Principal growth stage 3: rosette growth 

 

This principal stage describes the proportion of ground cover by the plants. For 

instance stages 31 and 39 reflect 10% and 90% of the ground cover, respectively 

(Table 2.1; Fig. 2.4). The leaves are surrounded by small spines, which are mainly 

located on the petioles. During this stage leaves are further expanding (see Fig. 

2.3).  This stage is characteristic of the cynara growth cycle. It is crucial that the 

crop enters and/or passes this stage before winter time, when air temperatures 

fall below 10°C for long periods and when snow and frost are frequent under 

Mediterranean conditions, partially damaging the aerial part of the crop (Fig. 2.6).  



Phenological growth stages of Cynara cardunculus 

 29 

In practice, particular attention should be given to the late autumn sowing time 

of the first year, because in that situation the crop requires more growing degree 

days to pass stage 3. In case of regrowth (second year onwards), the crop usually 

passes stage 3 before the winter period. Once the plant develops the rosette, it 

becomes rather tolerant to cold; it may stand severe frost (<−10°C; unpublished 

data). When the crop is planted at very low densities (<1 plant m−2) stage 3 is 

overlapping with stage 4. 
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Figure 2.5: Development of harvestable vegetative plant part (stage 4). 
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Figure 2.6: Aerial vegetative biomass damaged by snow and/or (excessive) frosts during 

winter time.  

 

Principal growth stage 4: development of vegetative plant parts 

 

This stage reflects the increase of leaf biomass as percentage of its maximum 

biomass (Table 2.1). After full ground cover (stage 40) the crop continues to 

increase in vegetative biomass until the crop reaches maximum biomass (stage 49; 

Fig. 2.5); the biomass is determined by genotype × management × environment 

interactions. The increase in biomass is attained by further leaf expansion and 

from the production of new leaves. The leaves of stage 4 (basal leaves) are often 

compound, very large in size, with leaflets arranged on both sides of the very 

fleshy petiole (Fig. 2.3). A fully developed basal leaf (1 m long) could have a leaf 

area of 0.45 m2, and with 10 leaves per plant the leaf area of a single plant could 

be 4.5 m2 (stage 49). During the principal stage 4, the older leaves senesce and 

litter (Fig. 2.5).  

Under Mediterranean climate, the crop usually stays in this stage during the 

winter time until mid-spring. The biomass yield during this stage is very variable 

and depends on the variation in air temperature (Fig. 2.6). Although the crop is 

able to survive excessive snow and prolonged frosts, such conditions cause a 

reduction in biomass yield; however, the magnitude of yield reduction is strongly 

associated with the extent, the timing and the duration of the adverse conditions. 
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If the stress occurs in spring time the reduction in biomass yield will be very 

remarkable (even total yield loss in the season but with no consequences for crop 

survival). For example, excessive snow and frost conditions during the whole 

February in Greece reduced substantially cynara final dry biomass yield 

(Danalatos et al., 2007a). Under snow conditions (>10 cm of snow; Fig. 2.6), the 

petiole breaks because of the excessive weight it has to carry. The break usually 

occurs at the middle of the petiole. The crop recovers from an adverse event by 

producing new leaves, when air temperatures rise to satisfactory levels. 

Within this principal stage 4, the crop can be harvested for forage purposes, 

however, farmers and advisors should be aware of the following consequences of 

harvesting: (a) the summer end biomass yield (biofuel purposes) will be much 

lower; (b) nutrient extraction will be significant (note that leaves are harvested 

fresh); (c) cynara in the absence of foliage biomass becomes sensitive to any 

adverse conditions that might occur after harvesting and (d) there is always the 

risk of soil compaction during the winter time. In general, winter harvests should 

be avoided, in order to preserve yield potential. 

 

Principal growth stage 5: inflorescence emergence and development 

 

These stages describe the inflorescence of the whole plant, with particular 

reference to the main stem inflorescence. If it is necessary to code the production 

of buds/inflorescences on the side branches, this may be performed by 

mesostages (Table 2.1). In general, the two digit code will be sufficient. At growth 

stage 51 (Fig. 2.7), the stem begins to elongate, the buds are present but initially 

surrounded by green leaves and are thus not easily detectable. These buds show 

swelling and become fully visible in stage 53 (Fig. 2.7).  

During stage 53 the biomass partitioning changes a lot: the stem has reached 

30% of its final height, (visible) branching starts and caulicle leaves (stem leaves) 

are being formed. Crop development continues with the production of higher 

order branches (new buds formed) and the elongation of the older branches 

(buds enlarged) giving finally rise to a corymb or a compound corymb (stage 55; 

Fig. 2.7). At the same time, new caulicle leaves and branch leaves are being 

formed and enlarge. The corymb increases in volume (stage 57) and this stage 

ends (stage 59; Fig. 2.7) when the corymb reaches 90% of its maximum volume 

(or alternatively when 90% of the buds have been formed). During stage 59, the 

stem and the older branches are fully elongated, the buds are soft (green colour) 

and surrounded by green soft erect spines. The primary inflorescence starts to 

discolour and the flowering petals starts to become visible (see Fig. 2.9). 
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Figure 2.7: Inflorescence emergence and development (stage 5). 
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The basic type of cynara inflorescence is the capitulum (head), in which the 

florets (flowers) are located on a flattened surface (receptacle), surrounded by 

bracts (erect spines; see Fig. 12). Inside the capitulum and subtending the florets, 

there are many bristles (interflower bracts) like stiff white hairs (Duarte et al., 

2006; Gominho et al., 2009).  

The final number of inflorescences per plant is strongly affected by 

genotype × management (viz. plant density) × environment interactions and it is 

usually ranging from some 1–4 to 8–12 inflorescences per plant for poor and 

fertile soils, respectively. During the establishment year the number of 

inflorescences per plant is considerably lower than that of the later years 

(approximately 50–70% lower considering an autumn sowing). In case of spring 

sowing the crop may not produce an inflorescence during the first growing cycle. 

Usually inflorescence emergence starts at the end of April and the development 

requires approximately 5 weeks (340°C–days). 
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Figure 2.8: Flowering and capitulum (or head) formation (stage 6). 

 

Principal growth stage 6: flowering and capitulum formation 

 

Principal stage 6 assesses the flowering of the whole plant as a proportion of full 

flowering (blossoming). Stage 60 reflects the flowering of the main inflorescence 

(Fig. 2.8). Stages 61–69 represent the progressive blossoming of the heads, from 

10% to 90%, respectively (Fig. 2.8). At flowering, florets have a lilac or bluish 

colour, while the upper part of the capitulum changes colour from green to dark  
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red (Fig. 2.9). After flowering this part is further discoloured to yellow (Fig. 2.9). 

During stages 59–69 the crop sustains its maximum fresh biomass yield, which 

can be harvested (whole plant) for forage production. Usually flowering is 

apparent during June. Stage 6 is overlapping with stage 7 and sometimes with 

stage 8, because cynara has an indeterminate growth pattern. A three-digit code 

should be used, when flowering is to be described on multiple branches (Table 

2.1). 

 

Stage 5 Stage 5 Stage 5

Stage 5/6 Stage 6/7 Stage 6/7

Stage 7/8 Stage 8 Stage 8

Stage 8 Stage 8 Stage 8
 

 

Figure 2.9: Inflorescence growth and development during stages 5–8.  
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Principal growth stage 7: development of capitulum and seeds 

 

These stages refer to the development of the capitulum (heads) and fruits (seeds). 

A head is considered as fully developed when it has reached its maximum size 

(reflected by the basal head diameter), and it is fully surrounded by erect green 

spines (Figs 2.9 and 2.10). Principal stage 7 runs concurrently with principal stage 

6 and sometimes is overlapping with the principal stage 8, because of the 

indeterminate growth pattern of the crop. Three secondary growth stages are 

defined: stage 71 when the capitulum is formed and starts to expand, seeds are 

formed and expanding as well; stage 75 (Fig. 2.10) when heads continue to 

enlarge while about the 50% of heads per plant have reached full size and stage 

79 when >90% of the heads per plant have reached full size and seed have 

reached full size as well (Table 2.1). The seeds are attached to the receptacle (still 

soft; see also Fig. 2.12). With the development of the heads and seeds, the 

vegetative growth slows considerably down, whilst the senescence of the basal 

and lower positioned caulicle leaves is accelerated. 

The final shape of the heads is ovate to globular and may vary in final size. 

The basal head diameter usually ranges from 3 to 10 cm, while the seed number 

per head ranges from 0 to 650 (Archontoulis et al., 2008a). The chronological 

progression of the head formation/development determines the final size of each 

head, with the early formed heads (i.e. of the primary and secondary 

inflorescence) reaching the largest sizes. Heads with basal head diameters below 

4 cm contain only a few seeds. 

 

67 / 75

 

Figure 2.10: Development of inflorescence (head, stage 7). The principal stage 7 runs 

concurrently with principal stage 6, thus both stages are mentioned.  
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82

85

86 / 92

89 / 95

85

Head yellow-

brown colour;  

mature dark 

lilac florets 

are present 

Branch leaves

start to senescence 

Main stem still green

Caulicle leaves 

senescence in  progress

 
 

Figure 2.11: Capitulum and seed ripening (stage 8). The advanced secondary stages run 

concurrently with the early secondary stages of the principal stage 9, hence both stages 

are mentioned.   

 

Principal growth stage 8: capitulum and seed ripening 

 

Once the heads have reached physiological maturity, they start to change colour 

to yellow and to brownish-yellow (from the top to the bottom; Fig. 2.9). Initially, 

this is evident on the upper part of the primary head, the colour changing from 

dark red to yellow (stage 80). A head is regarded as discoloured, only when the 
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yellow colour covers at least one third of the head area. In case that 10–20% of the 

heads per plant has changed the colour of the upper part to yellow, the stage is 

coded 81, while if 20–30% then the stage is coded as stage 82 (Fig. 2.11). 

When the colour intensifies and more heads become fully yellow, stages 83 

(<20%) and 84 (>20%) are reached, respectively. Stage 85 refers to advanced 

maturity when at least 50% of the heads are brown-yellow (Fig. 2.11). Through 

stages 80–85, mature florets are still coloured, generally lilac, and the calyx 

changes into pappus (plumose crown of hairs), a structure that is required for 

seed dispersal (Duarte et al., 2006; Gominho et al., 2009). The pappus becomes 

visible in stage 86, usually on the primary head (Figs 2.11 and 2.12). Pappus 

appearance is accompanied by enlargement of the upper part of the head (head 

opens). The stage is continued with the opening of more heads of a plant (if <20% 

heads are opened then the plant is in stage 87; if >20% then stage 88 is reached). 

In stage 89 the majority of the heads are brown-yellow, dry, senesced and the 

pappus is clearly visible (Fig. 2.11). At the bottom of each pappus a seed (achene) 

is attached. The opposite part of the seed is connected to the receptacle (Fig. 2.12). 

At stage 89, the seeds are fully ripened and brown and have a moisture content of 

about 9–15%. Additionally, the receptacle is completely dry; hence seeds become 

free and dispersed through the pappus (Fig. 2.13). The dry weight of a mature 

head usually varies from 10 to 110 g, 30–40% of this is seed weight. The seeds are 

quite variable in colour (light to dark brown) and size, with the weight of 1000 

seeds usually ranging from 15 to 55 g. For sowing, seeds with a weight above 30 

g per 1000 seeds should be preferred (Archontoulis et al., 2008a). 

 

Seed (achene) Stage 81 Stage 86 

Seed dispersal

(pappus) 

Receptacle  

Bracts 

(erect spines) 

Mature florets

(dark lilac colour) 

Pappus  

 
Figure 2.12: The capitulum (stage 8).  
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93 / 88 >20% of heads are opened

Stalks have yellow-green colour

The majority of 

the leaves are dry

Leaf yellowing & dryness

Stage 92

97

Seed dispersal covering soil

95–97

Dead plant

99
 

 

Figure 2.13: Plant senescence and harvesting (stage 9).   

 

When cynara is cultivated for biodiesel production, it is wise to be 

harvested just before or during stage 89 in order to avoid seed dispersal (seed 

losses) which is also enhanced by the harvesting machinery. However, very often 

the stages 86–89 run concurrently with the stages 91–95; hence both stages are 

indicated by a diagonal stroke (Figs 2.11 and 2.13). Inflorescence ripening usually 
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occurs in July. Similarly to principal stage 5, 6 and 7, the three-digit code should 

be applied in case of more precise description of capitulum and seed ripening 

(Table 2.1).  

 

Principal growth stage 9: senescence 

 

This principal stage describes the gradual decrease of the plant moisture content 

(Table 2.1). It starts with stage 91, where the shoot development is completed and 

shifts to yellowing and dryness of the caulicle and branch leaves (stage 92; note 

that the basal leaves have already senesced; Fig. 2.13). Thereafter, principal stage 

9 is assessed based on the decrease of the stalk (stem and branches) moisture 

content, from 70% (stage 93) to 50% (stage 95), then to 30% (stage 97) and finally 

to 10% (stage 99; Fig. 2.13). Stalks change colour during these stages (from green 

to yellow then to dry/brown). Stage 95 is identical to stage 89 (head moisture 

12%), however, stage 95 describes the whole plant, while stage 89 only relates to 

the inflorescences. The number of open heads may be retained as a 

supplementary code. Plant senescence usually takes place from mid-July and 

continues during August.  

It is remarkable that beyond stage 95/89, the seed dispersal is enhanced and 

soon the soil surface is covered with pappus (while depending on the wind 

velocity may travel to neighbouring fields; Fig. 2.13). This should be taken into 

consideration when scheduling harvesting treatments (either for seeds, biodiesel 

production or for the whole biomass including seeds, solid biofuel production). 

Actually, there is a trade off between advantageous end product moisture (viz. 

for seeds 9%, for whole biomass <15%) for industrial processing and 

seed/biomass yield. Seed harvesting should be at stage 95/89 and whole biomass 

harvesting should be at stage 97. Beyond stage 95, the regrowth processes for the 

next cropping cycle starts and this becomes apparent during stages 97–99 when 

the first leaves emerge from the soil surface (stage 09). 

 

Discussion 
 
Cynara is a rather complex crop in terms of morphology and growth. Two phases 

of growth of the crop can be distinguished: (a) the vegetative phase (principal 

stages 0–4, duration 220 days or 660°C-days, approximately from September to 

April) and (b) the reproductive phase (principal stages 5–9, duration 95 days or 

1300°C-days, approximately from May to August). It is hard to specify the exact 

duration of each stage, because many growth stages are overlapping (e.g. 1/3 and 

8/9; Figs 2.2 and 2.13) because of the indeterminate growth character of the crop. 

Moreover, studies concerning temperature and photoperiod effects on the 

development rate of cynara are lacking in literature. However, irrespective of the 
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rate of development that varies among regions and varieties, the presented 

phenological scale can be applied under all circumstances. Additionally, this 

study provides precise start and end points of each development stage, which are 

essential in studies on temperature versus development rate (Trudgill et al., 2005). 

The BBCH scale proposed here can be used by anyone involved in cynara 

cropping. It is relevant to farmers, who must interpret information on input 

application and harvesting treatments, and for researchers who are working in 

the field of production and logistics. An essential aim of the corresponding BBCH 

coding system is that it facilitates scientific communication at an international 

level (Meier et al., 2009b). 

The most important BBCH stages that require particular attention by the 

farmers and researchers are: (a) stages 00–15: presowing herbicide application 

and mechanical weed control during the first year; proper time for sowing 

according to climate of each production area; (b) principal stages 4–6: the crop 

can be harvested for forage feed; (c) principal stages 5–7: crop nutrients 

requirements maximised and (d) stages 93–97: harvesting the crop for seed 

and/or biomass production. 
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Chapter 3 
 

 

Inflorescence characteristics, seed composition, and 

allometric relationships predicting seed yields in the 

biomass crop Cynara cardunculus 
 

 

Abstract 

 

Cynara (Cynara cardunculus) is a perennial C3 herb that has its potential as bioenergy 

crop. This paper aims (a) to derive empirical relationships to predict cynara seed 

yield per head and per unit area, avoiding laborious extraction of seeds from the 

complex structure of its inflorescences; (b) to determine the head-weight distribution 

per unit area, the seed composition and the oil profile of cynara seeds; and (c) to 

estimate the range of cynara biomass, seed and oil yield in representative parts of 

Greece. We analyzed 16 field experiments, varying in crop age and environmental 

conditions in Greece. Seed yield per head (SYhead) can be accurately predicted as a 

linear function of dry head weight (Hw): SYhead = 0.429 · Hw – 2.9 (r2=0.96; n=617). Based 

on this relationship, we developed a simple two-parameter equation to predict seed 

yield per unit area (SY): SY = HN · (0.429 · μ  –  2.9), where μ is the mean head weight 

(g head-1) and HN is the total number of heads per unit area, respectively. The 

models were tested against current and published data (n=180 for head-level; n=35 

for unit area-level models), and proved to be valid under diverse management and 

environmental conditions. Attainable cynara seed yields ranged from 190 to 480 g m–

2 y–1, on dry soils and on aquic soils (shallow ground water level). This variation in 

seed yield was sufficiently explained by the analyses of head-weight distribution per 

unit area (small, medium and large heads) and variability of seed/head weight ratio 

at head level. Seed oil concentration (average: 23%) and crude protein concentration 

(average: 18.7%) were rather invariant across different seed sizes (range: 26 to 56 mg 

seed–1) and growing environments.  
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Introduction  

 

Cynara cardunculus (commonly known as cynara) is a perennial C3 herb 

prioritized as a new energy crop for Mediterranean areas because of its multiple 

uses and good yields even under harsh conditions. The crop can be used for solid 

biofuel production (Danalatos, 2008), as well as for biodiesel production, fibre 

production and forage production (Fernández et al., 2006). Cynara’s perennial 

character, its large root system, and the winter–spring growth cycle (usually 

rainfed) are important advantages of the crop. 

Four important variables determine whether it is feasible to include cynara 

into the current cropping systems: biomass yield, product quality, heating value 

and production cost. Studies in Mediterranean region showed that cynara 

cultivation has an energy output : input ratio in the range of 15–30 (Danalatos, 

2008; Angelini et al., 2009; Mantineo et al., 2009). This ratio is lower compared 

with other perennials, viz. giant reed and miscanthus. However, particularly due 

to its lower resource input (e.g. propagated by seeds instead of rhizomes and 

growing without irrigation during winter–spring), compared with summer C4 

perennials researchers inferred that cynara could be introduced in southern 

Europe for biomass production.  

Cynara’s biomass yield under rainfed conditions is usually reported at 15 t 

ha–1 y–1 (Fernández et al., 2005; Danalatos et al., 2006a; Danalatos et al., 2007a; 

Raccuia and Melilli, 2007a; Angelini et al., 2009) while dry biomass yields in 

excess of 30 t ha–1y–1 have been attained (Dalianis et al., 1996; Archontoulis et al., 

2008). The average heating value of the cynara plant has been estimated at 15–17 

MJ kg–1 (Piscioneri et al., 2000; Fernández et al., 2006; Grammelis et al., 2008; 

Angelini et al., 2009). This energy content depends on the fraction of each plant 

component and its chemical composition and especially on the proportion of the 

oil rich seeds. Normally, the heating value per individual plant component is 

rather invariant contrary to the partitioning fractions (e.g. oil/seed and 

seed/biomass weight ratio) which largely depend on the environment × 

management interactions. Obviously detailed quantification of these seed-related 

fractions is essential in view of using the crop in the bioenergy sector.   

Cynara cardunculus seed oil concentration ranges from 18.6 to 32.4% across 

different environments (Piscioneri et al., 2000; Curt et al., 2002). Regarding seed 

yield and seed/biomass ratio current information is rather scarce. To the best of 

our knowledge, rainfed cynara’s seed yields range from 80 to 250 g m–2 at 

planting densities of ≤ 2 plant m–2 (Foti et al., 1999; Piscioneri et al., 2000; Raccuia 

and Melilli, 2007a; Ierna & Mauromicale, 2010). However, seed yield under 

appropriate management (e.g. higher plant densities; Raccuia & Melilli, 2007b) 

and high yielding environments is unknown.  



Reproductive allometry of Cynara cardunculus 

 

 43 

The relatively few reports on seed yield might be attributed to the complex 

structure of cynara inflorescences. The basic type of inflorescence is the 

capitulum (head), which is organized in a (compound) corymb form. Within a 

plant or a unit area the heads of Cynara cardunculus are variable in terms of size, 

number, maturity and position on the plant. Within a head, seeds (achenes) are 

positioned at the base of the head (receptacle) surrounded by hairs (pappus) and 

bracts (erect spines), making seed extraction extremely laborious and time-

consuming (Archontoulis et al., 2010a). Moreover, the seed/head weight ratio 

varies considerably across different head weights, thus cannot be easily 

addressed by a default value (Archontoulis et al., 2009).  

Quantitative (allometric) relations are commonly used to quantify the 

relation that exists between the growth rates of different plant components. 

Allometric relations have also been used to assess a crop’s investment in 

reproductive growth, both in annual crop species (e.g. in soybean, sunflower, 

maize; Vega et al., 2000) and in perennial crop species (e.g. in Lesquerella; 

Ploschuk et al., 2005).  

Taking into account aforementioned difficulties in measuring seed yield, the 

primary objectives of this paper is to derive simple quantitative relationships, 

which can be used in practice to estimate seed yield per head and per unit area 

based on easily measurable inflorescence traits of cynara. In view of the lack of 

adequate information on attainable seed yield under varying management × 

environmental conditions, we also investigate the head-weight distribution per 

unit area, the seed composition and the oil profile of cynara seeds as a function of 

seed size, and the range of Cynara cardunculus biomass, seed and oil yield in 

representative parts of Greece.   

 

Materials and Methods      

 

Experimental sites and treatments  

 

The data used in this paper were taken from 16 diverse experiments conducted in 

eight sites representing a wide range of environments in Greece. Table 3.1 shows 

the geographic location and some soil characteristics of the eight sites. Table 3.2 

provides details for each of the 16 experiments, including crop age, cycle length 

and sampling date. The experimental sites cover a wide range of soil types, 

fertility status, and ground water levels. The crop had been established in 

different years (2004–2008) providing plant samples from the 1st to the 6th 

growing cycle. Moreover, some crops were sown in spring (March 20th ± one 

week) and some in autumn (November 15th ± one week). Hence, the growing 

cycle length varied from 9 to 16 months (Table 3.2). Crops were kept free from 
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weeds during the period of crop establishment by applying a pre-sowing 

herbicide and by mechanical weeding during initial crop stages.  

 
Table 3.1: Geographic location and some soil characteristics of the experimental fields  

 
Location 

Coordinates 
and altitude 

Soil type and 
classificationa  

Ground water tableb 
organic matter (OM) and pH   

 

Palamas 39°25’49 N 
      22°05’09 E 
      Alt. 107 masl 

Loam 
   Aquic Xerofluvent 

Presence of shallow ground water 
   OM=1.0–1.6% at 0–50 cm 
   pH=8–8.2 

Ermitsi 39°24’49 N 
      22°05’03 E 
      Alt. 100 masl 

Loam 
   Aquic Xerofluvent 

Presence of shallow groundwater 
   OM=1.2–1.8% at 0–50 cm 
   pH=7.9–8.1 

Kalivakia 39°26’19 N 
      22°04’51 E 
      Alt. 97 masl 

Loam 
   Aquic Xerofluvent 

Presence of shallow groundwater  
   OM=1.1% at 0–50 cm 
   pH=8.2 

Koskina 39°29’08 N 
     22°00’24 E 
     Alt. 85 masl 

Loam 
   Aquic Xerofluvent 

Presence of shallow groundwater  
   OM=1.4% at 0–30 cm 
   pH=8.1 

Velestino 39°23’55 N 
      22°44’36 E 
      Alt. 87 masl 

Clay 
   Calcixerollic 
Xerochrept 

No groundwater table 
   OM=1.5–2.3% at 0–30 cm 
   pH=7.6−8.0 

Elliniko 39°19’53 N 
      22°16’45 E 
      Alt. 120 masl 

Clay 
   Vertic Xerochrept 

Presence of shallow groundwater  
   OM=2.5% at 0–30 cm 
   pH=8.2 

Fillo 39°24’52 N 
      22°11’84 E 
      Alt. 107 masl 

Clay 
   Vertic Xerochrept 

Presence of shallow groundwater  
   OM=2.0% at 0–30 cm 
   pH=8.2 

Mataraga 39°24’47 N 
      22°03’52 E 
      Alt. 102 masl 

Silty clay 
  Aquic Vertic Xerofluvent 

Presence of shallow groundwater  
   OM=1.6% at 0–30 cm 
   pH=8.3 

Kilkis 41°14’39 N 
      22°45’56 E 
      Alt. 250 masl 

Sandy loam 
   Typic Xerochrept 

No ground water table 
   OM=1.0% at 0–30 cm  
   pH=6.8 (Slope relief) 

All fields located in Thessaly Plain (central Greece), except for Kilkis.  
a: According to USDA, 1975.   
b: Shallow means that ground water ranged from 250 to 600 cm below surface during May; 
for other cases (Velestino and Kilkis) groundwater was deeper than 20 m below surface.   

 

At some sites (viz. Palamas, Velestino, Kilkis, Ermitsi) the levels of irrigation 

and nitrogen fertilization were varied. Briefly, at Palamas (Karditsa) site, a 2×3 

factorial experiment was carried out in which cynara was grown under a) rainfed 

conditions (common farmer practice) with three N-application levels (0, 8 and 16 g N 

m-2); and b) supplementary irrigation during BBCH 59–65 (2–3 irrigations; total 120–

170 mm; Exp 5, 10 and 16) with the same N levels. The BBCH coding system 

(Archontoulis et al., 2010a) is used here to assess specific growth stages. At the 

Velestino site (Magnesia), two experiments were carried out; one was sown during 

2004 with a plant arrangement of 100×50 cm (Exp 11, 12; Table 3.2) and one was 

established during 2008 with a plant arrangement of 75×25 cm (Exp 1). During the 

subsequent year, Exp 1 was divided into two analogous experiments (Exp 8: irrigated 

with 138 mm during BBCH 53–63 and Exp 9: rainfed).  
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Within each experiment 5 N–rates were applied (0, 6, 12, 18 and 24 g N m-2). 

At Kilkis, the crop was grown under rainfed conditions and three N rates were 

applied (0, 8 and 16 g N m-2; Exp 7). At Ermitsi (Karditsa) site (second growth 

cycle) the field was fertilized with 0, 8, or 16 g N m-2 and irrigated once during 

BBCH 60 with 55 mm (Exp 6). In all fertilized fields, N application took place 

during BBCH 51–55. The other fields (Exp 2, 3, 4, 13 and 15) comprised 

commercial crops, grown without additional irrigation and fertilizer inputs. The 

size of the specific experiments varied from 0.1 to 0.4 ha (individual plot size: 48–

90 m2) and the commercial fields comprised an area of several hectares. Planting 

arrangement was 75×25 cm in all experiments except Exp 11 and 12. There were 

no pests or diseases in the experimental plots.     
 

Table 3.2: Summary of the experimental details and final plant height  

Exp. # 

(symbol)  

Location Growing 

season 

Cyclea 

length 

(month) 

Year Sampling 

date 

Number 

of   

Samples 

Number 

of   

headsb 

Plant 

height 

(cm) 

Parameterization datasets 

1   (○) Velestino 1st  9 2008 Aug 1 6 30 55 

2   (○) Kalivakia 1st  9 2009 Aug 20 6 18 131 

3   (○) Mataraga 1st  9 2009 Aug 20 5 16 76 

4   (○) Koskina 1st  9 2009 Aug 20 6 18 118 

5c  (□) Palamas 2nd  16 2007 Aug 4 12 72 238 

6   (□) Ermitsi 2nd  16 2008 Aug 5 6 48 305 

7   (□) Kilkis  2nd  16 2008 Aug 8 9 48 114 

8   (□) Velestino 2nd  10 2009 Aug 2 30 90 208 

9   (□) Velestino 2nd  10 2009 Aug 1 30 86 206 

10 (∆) Palamas 3rd  11 2008 Aug 4 24 128 234 

11 (+) Velestino 5th  10 2008 Aug 2 6 33 144 

12 (×) Velestino 6th  10 2009 Aug 1 6 30 194 

Total       146 617  

Validation datasets 

13 (●) Fillo 1st  9 2009 Aug 19 10 31 99 

14 (▲) Elliniko 2nd  16 2009 Aug 4  10 31 191 

15 (■) Ermitsi 3rd  11 2009 Aug 4 11 36 263 

16 (♦) Palamas 4th  11 2009 Aug 3 24 82 245 

Total       55 180  
a: from BBCH 10 to 95–97.   
b: Refers to the heads that were used for seed separation and not to total heads per sample. 

c: At six additional samples, the total head weight, the total head number and the total seed 

yield per sample were measured (see later, Table 3.5).   

 

Sampling protocol and measurements  

 

Plants were cut approximately 10 cm above ground level at BBCH 95–97 (total: 

n=201 samples from 16 fields, Table 3.2). The sampling area was always 1 m2. 

Every harvested sample was separated into stalks (stem and branches) and 
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heads, and fractions were weighed fresh in the field. Plant height was measured 

as well (Table 3.2). Leaves were left out from our analysis since they were dry 

and usually fell off during sampling. The moisture content of the harvested 

plants was around 30%. The collected materials were put in a storage room to dry 

naturally. The moisture content in equilibrium with the storage environment was 

subtracted after assessing dryness of random sub-samples by weighing in an 

oven at 70°C until constant weight.  

After drying, stalks were weighed again to determine the total stalk dry 

weight m-2. Per sample the heads were counted and weighed individually using 

an electronic balance (2-digits); the sum of the individual weights provided the 

total dry head weight m-2. Total aerial dry biomass weight m-2 was calculated as 

the sum of the weights of stalks and heads. Then, 3–8 heads per sample (small: 

<20 g, medium: 20–40 g and large: >40 g; for abbreviations see Table 3.3) were 

randomly selected to manually separate the seed (n=797 heads, Table 3.2). The 

diameters of the selected heads were accurately measured too. The extracted 

seeds per head were counted and weighed. The quotient between seed weight 

and seed number expresses the individual seed weight (SW, Table 3.3). 
 

 

Table 3.3: List of terms and abbreviations  

Symbol Definition Unit 
 

Small Head weight size class:    < 20  g head-1 – 

Medium Head weight size class:  20–40 g head-1 – 

Large Head weight size class:    > 40  g head-1 – 

HN Total number of seed-bearing heads per unit area heads m-2 

HW Total weight of seed-bearing heads per unit area g m-2 

Hw Single head weight g head-1 

Hbase Threshold Hw required for seed set g head-1 

HIhead Seed / head weight ratio  g g-1 

SYhead Seed weight per head g seed head-1 

SY Seed yield per unit area g m-2 

SNhead Seed number per head seeds head-1 

SN Seed number per unit area  seeds m-2 

SW Individual seed weight (SY / SN × 1000) mg seed-1 

μ Mean head weight (HW / HN) g head-1 

 

 

Seed composition and oil profile  

 

Cynara cardunculus fruit (called seed for simplicity) is an achene, formed by the 

embryo (also called true seed or kernel) and the pericarp (hull). Seed materials 

were forwarded to chemical laboratories soon after processing, to avoid any 

hydration of the stored grain as observed by Maccarone et al. (1999). Two sets of 

experiments were performed. In 2008, medium sized seeds (30–40 mg seed-1) 
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were analyzed per location (Palamas, Ermitsi, Velestino and Kilkis). In 2009, 

seeds were graded into five weight classes (very small: <20 mg, small: 20–30, 

medium: 30–40, large: 40–50 and very large: >50 mg per seed) and analyzed for 

seed composition (oil, protein, cellulose, free fatty acids and ash). The 

concentrations (%) were expressed on dry weight basis, while total oil and 

protein content per seed (mg seed-1) were calculated as SW multiplied by the 

concentration of each component. Seed protein concentration was approximated 

by the product of nitrogen concentration times (the default value of) 6.25, 

referred to as crude protein hereafter. Fatty acid composition of the extracted oil 

per group was also determined by gas chromatography. All data reported are 

expressed on dry-weight basis. 

 

Data analysis  

 

Seed parameters (weight and number) were first determined per head and 

subsequently converted into values per unit area. Two explanatory variables 

were initially assessed: (i) the weight of a single head and (ii) the diameter of a 

single head. Both variables are easily measurable inflorescence traits. Head 

weight is considered as an accurate measure while diameter as a fast and non-

destructive measure. Among several methods/models in literature (e.g. Vega et 

al., 2000), we selected the following two types of “allometric” models (simple and 

biologically meaningful) to fit our data:  

 

Linear:       Y = a + bX                    

Non-linear:   Y = Ymax × {2 / (1+exp(–c × (X – Xbase) ))–1}     

 

where Y denotes the dependent variable; X, is the independent variable; a is a 

constant parameter; b, is the slope of the regression (allometric coefficient); Ymax is 

the asymptote of the dependent variable; c is the parameter determining the 

steepness of the curve for the non-linear model; Xbase is the intercept of the X-axis 

denoting a threshold value. In order to fit our models we used 12 datasets 

(parameterization sets: Exp 1–12, n=617; Table 3.2). Model validations were 

conducted using four independent datasets (Exp 13–16, n=180; Table 3.2).  

 

Head-weight distribution  

 

Per sample the heads were graded into three classes (small, medium and large; 

see Table 3.3) and frequency distribution histograms were produced per 

experiment. Statistical descriptors such as kurtosis (k), a measure of the 

“peakedness” of the frequency distribution, skewness (s), a measure of the 

asymmetry of the probability distribution, mean head weight μ, and standard 
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deviation σ, a measure of the variability in head weight, were calculated. The 

uniformity or the relative variability of the head-weight distribution per unit area 

was assessed by the coefficient of variation (CV, %), calculated as σ/μ × 100.  

Thereafter, the 16 experiments were separated into three major groups. 

Group 1 comprises the first growth cycle experiments (Exp 1, 2, 3, 4, and 13; 

Table 3.2). Groups 2 and 3 refer to subsequent growth cycles experiments. Group 

2 represents the experiments carried out on soils with no ground water (Exp 7, 8, 

9, 11 and 12; Table 3.1 and 3.2) and Group 3 refers to the experiments carried out 

on soils with shallow ground water levels (Exp 5, 6, 10, 14, 15 and 16; Table 3.2).  

 

Statistics 

 

Analyses of variance were performed using GenStat software (12th Edition). At 

head-level, linear regression with groups (given the accumulated analysis of 

variance table) was performed to examine whether regression slopes and 

intercepts differed significantly among different experiments. Non-linear model 

parameters were derived from non-linear least-square regression in GenStat. The 

model’s goodness of fit was assessed graphically (measured vs. predicted, 

residual plots) and by calculating r2, bias, and rRMSE (relative root mean square 

error), as follows:  
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where Pi and Oi are the predicted and observed values, respectively, O  is the 

observed mean value and n is the number of observations. The bias measures the 

average difference between observed and predicted data. The rRMSE measures 

the relative difference between observed and predicted data, while a model’s fit 

improves as rRMSE approaches zero. Seed and oil composition parameters across 

five seed sizes were assessed following one-way analysis of variance. Similarly, 

the parameters of the head-weight distribution per group were also subjected to 

one-way ANOVA.  

 

Weather conditions  

 

Thessaly Plain (central Greece) is characterized by a typical Mediterranean 

climate with hot, dry summers and cool, humid winters. A 30-year Thessaly  
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climatic average (1974–2006; data from Hellenic National Meteorological Service) 

reports mean annual precipitation of 568 mm (172, 113, 70 and 211 mm during 

winter, spring, summer and autumn periods, respectively) and a mean daily air 

temperature of 16.0 °C (7.5, 20.1, 25.3 and 11.1 °C during winter, spring, summer 

and autumn periods, respectively). The major part of cynara’s growth cycle takes 

place in winter and spring, during which usually no irrigation is applied. The 

total amounts of effective precipitation at the experimental fields of Thessaly 

(period: October–July) were 449, 378 and 709 mm for the 2007, 2008 and 2009 

seasons, respectively. For Kilkis (2008) the precipitation was 401 mm. 

Temperature did not fluctuate much from its climatic mean values.    
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Figure 3.1: (a) Seed weight per head (SYhead), (b) seed number per head (SNhead), (c) 

seed/head weight ratio (HIhead) and (d) individual seed weight (SW) as a function of head 

weight (Hw). Different symbols indicate material collected from different environments 

(Exp 1–12; Table 3.2). Fitted equations (solid bold lines) and parameters are provided in 

the text. Y-variable residuals are shown in the insets. Vertical broken lines indicate three 

classes of different head weights (small, medium, large; Table 3.3). Horizontal broken 

line (panel d) indicates seed sink potential. Arrow (panel a) indicates the threshold head 

weight required for seed set (Hbase). *** indicates significant at P<0.001; bias and rRMSE 

definitions are provided in the text.   
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Results 
 

Seed yield    

 

Figure 3.1 illustrates the relationships between seed yield per head (SYhead), seed 

number per head (SNhead), seed/head weight ratio (HIhead) and individual seed 

weight (SW) as a function of head weight (Hw, Table 3.3).  

SYhead ranged from 0 to 41 g head–1 and Hw ranged from 2.5 to 100 g (Fig. 

3.1a). SYhead showed a linear relationship with Hw for each treatment × experiment 

combination included in the study (n=146 sets; Table 3.2). Regression analyses 

showed that lines ran almost parallel, and the intercepts were very similar. Thus, 

treatments within each experiment were grouped and 12 regression lines were 

constructed (Table 3.4).  
 

Table 3.4: Parameters (standard error in parenthesis) of the linear regression (Y=a+bX) 

between seed yield per head and two explanatory variables for 12 independent sets   

 Variable 1: head weight (g) Variable 2: head diameter (cm)  

Exp. b    a r2 b      a r2 n 
 

1 0.432 (0.01) –3.091 (0.54) 0.97 3.90 (0.30) –11.44 (1.75) 0.86 30 

2 0.408 (0.03) –1.952 (0.87) 0.93 3.02 (0.36)   –7.27 (2.11) 0.81 18 

3 0.469 (0.02) –2.384 (0.57) 0.98 5.33 (0.59) –17.66 (3.31) 0.85 16 

4 0.446 (0.03) –1.314 (1.33) 0.93 3.50 (0.58) –  6.34 (3.96) 0.70 18 

5 0.425 (0.01) –3.003 (0.38) 0.98 5.09 (0.19) –17.46 (1.30) 0.92 72 

6 0.448 (0.01) –3.165 (0.73) 0.95 4.70 (0.36) –15.06 (2.52) 0.79 48 

7 0.448 (0.02) –4.161 (0.63) 0.95 6.49 (0.50) –29.29 (3.26) 0.79 48 

8 0.412 (0.01) –3.007 (0.32) 0.96 4.64 (0.20) –15.74 (1.18) 0.86 90 

9 0.443 (0.01) –3.453 (0.38) 0.94 4.78 (0.32) –16.06 (1.69) 0.72 86 

10 0.410 (0.01) –1.933 (0.34) 0.95 4.85 (0.21) –17.45 (1.35) 0.81 128 

11 0.431 (0.01) –3.185 (0.54) 0.97 3.63 (0.36) –  9.24 (2.18) 0.77 33 

12 0.424 (0.01) –2.777 (0.44) 0.98 4.28 (0.39) –13.12 (2.30) 0.82 30 

All regressions were significant at P <0.0001.  

Details per experiment are provided in Table 3.2.  

n, number of individuals per set.  

 

This analysis showed that slopes did not differ significantly across 

environments (P=0.123). Accordingly, data from all experiments were pooled 

(n=617). Within this complete dataset, we further examined possible differences 

in slope between head weight classes (small, medium and large). Three 

regression lines were constructed and stepwise regression analysis revealed that 

SYhead vs. Hw relationship remained unchanged for the different head weight 

classes (P=0.075; Fig. 3.1a). Hence, SYhead could be described adequately by a 

single, simple linear regression model (r2=0.96; Fig. 3.1a):  
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SYhead = 0.4293 (±0.003) · Hw – 2.9048 (±0.144)                         (1) 

 

where SYhead is the seed yield per head and Hw is the single head weight. Values 

in parenthesis represent ± standard error of the regression estimates. SYhead 

becomes zero when Hw = 6.76 g. The value of 6.76 g thus indicates the threshold 

head weight, required for seed set (hereafter Hbase). Thus, Eq. (1) is applicable to 

Hw ≥ 6.76 g. The slope of the regression (viz. 0.4293) is an allometric coefficient 

that expresses the fraction of head growth above the threshold allocated to seeds. 

Eq. (1) was validated by using four independent data sets (Exp 13–16, Table 

3.2). Graphical visualization of its performance is depicted in Fig. 3.2. Statistical 

criteria revealed that the model performed well (r2 = 0.89–0.97; rRMSE = 0.12–0.19; 

bias = –0.35 to 0.68 g; Fig. 3.3) and was therefore accurate enough for further use. 

Consequently, Eq (1) was applied to every head present in a sample, thus 

upscaling individual head weights to seed yield per unit area level (SY, g m–2) as 

indicated below:  

 

s
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i w
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                                                   (2) 

 

where As refers to the size of the sample area (m2). Eq. (2) was used in our study 

to derive seed yields per treatment. This procedure implies separate weighing of 

all heads (n parameters) included in a sample. To obtain a more convenient 

procedure for determining seed yield, Eq (2) can be simply re-written also as:  

 

SY = HN · (0.4293· μ – 2.9048)                  (2a) 

 

or   

 

SY = 0.4293· HW – 2.9048 · HN                                  (2b) 

 

where μ is the mean head weight, HN and HW (=μ × HN) are the total number 

and weight of all seed-bearing heads per unit area respectively (Table 3.3). Eq. (2a 

or 2b) simply shows that SY increases with an increase of HW, whereas the term 

2.9048·HN accounts for the cumulative threshold head weights required for seed 

set. Eq. (2a and b) illustrates a two-parameter model, comprising a much faster 

and easier way to calculate total seed yield per unit area. For such a purpose, 

barren heads (≤ 6.76 g head-1) should be excluded in the calculation.  
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Figure 3.2: Predicted versus measured seed yield per head (SYhead, left panels) using Eq. 

(1) and seed number per head (SNhead, right panels) using Eq. (3). Four independent 

datasets (Exp 13–16; 1st, 2nd, 3rd and 4th growing cycle; Table 3.2) were used to evaluate Eq. 

(1) and (3) goodness of fit at head-level. Diagonal broken lines are 1:1. Statistics as in Fig. 

3.1.  
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Five independent data sets (Table 3.5) were used to evaluate the ability of 

Eq. (2b) to predict total seed yields (Fig. 3.3). Eq. (2b) performed very well for 

data from Exp 5 (μ=33 g m-2; rRMSE=0.07; Fig. 3.3) and for the published data 

from Piscioneri et al. (2000), Raccuia & Melilli (2007a) and Ierna & Mauromicale 

(2010) (μ = 18 g m-2; rRMSE=0.24; Fig. 3.3). Data from Foti et al. (1999) were not 

predicted well (Fig. 3.3), most probably due to a low μ (= 12 g head–1), which led 

us to suspect that non seed-bearing heads (≤ 6.76 g) were included in the sample. 

However, the general trend across all datasets (n=35) indicated a good agreement 

between predicted and measured seed yield (r2=93%; bias=14 g m-2; rRMSE=0.23; 

n=35; Fig. 3.3). Predictions using Eq. (2b) would be further improved, if 

information on number of barren heads (≤ 6.76 g) per sample was known for the 

published data sets.  
 

 

Table 3.5: Validation datasets used to test the performance of Eq. (2b) at unit area level  

Set Yeara Genotype(s)b Density μ n Sourcec 
 

1 1994 

1995 

Bianco avorio 

Gigante di Lucca  

1.2 pl m-2 13.0 4 Foti et al. (1999) 

2 1995 

1996 

9 genotypes  

(see reference)  

1 pl m-2 19.2 18 Piscioneri et al. (2000) 

3 1999 

2000 

Bianco avorio 

Cardo di Nizza 

2 pl m-2 17.7 4 Raccuia & Melilli (2007a) 

4 1999 

2000 

2001 

Cardo gigante  

di Romagna 

1.3 pl m-2 15.0 3 Ierna & Mauromicale (2010) 

5 2007 Bianco avorio  5 pl m-2 32.1 6 This study (Exp 5)d  
a: Observation year. 
b: All genotypes belong to the botanical variety C. cardunculus L. var. altilis DC. 
c: Literature data on total head weight, number and seed yield were recorded from 

tables or read from figures and refer to mean values. Presence or absence of non seed-

bearing heads (<6.76 g) in the sample is unknown. Experiments were carried on clay 

soils (without groundwater).  
d: Barren heads were excluded.   

n, number of data per set; μ, mean head weight per set.   
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Figure 3.3: Seed yield of Cynara cardunculus predicted by Eq. (2b) versus measured seed 

yield.  Details on the validation datasets are provided in Table 3.5. Statistical indices refer 

to all data (n=35). The three encircled points are outliers, resulting from the low mean 

head weight (μ=13 g head-1). 

 

Seed number  

 

Across the 12 experiments, seed number per head (SNhead) showed a non-linear 

relationship with Hw (Fig. 3.1b). We described this relationship using the 

following non-linear model (r2=0.86; n=617): 

 









−

±−⋅±−+
⋅±= 1

))526.0(422.5()002.0(0436.0exp(1

2
)9.16(2.665

w

head

H
SN

         (3) 

 

Values in parenthesis represent ± standard error of the estimates. Eq. (3) 

estimated the threshold head weight for seed set at 5.4±0.53 g head-1, which is 

(not surprisingly) close to the threshold estimated based on seed yield by Eq. (1). 

To avoid any misunderstandings, we propose that Eq. (3) should be applied to 

heads ≥ 6.76 g, similar to the seed yield model. The maximum seed number per 

head was most often 650–680 (Fig. 3.1b).  

The non-linear model can also be parameterized separately for specific 

experiments. To test whether Eq. (3) was valid for material collected from 

different experiments (Exp 1–12; Table 3.2), Eq. (3) (with three parameters) was 

compared with the experiment-specific model (12 experiments × 3 parameters = 
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36 estimates). Predictions were assessed using the adjusted r2 in order to account 

also for the degrees of freedom (slightly higher prediction is counterbalanced by 

a loss of degrees of freedom). The experiment-specific model improved 

predictions only slightly, from radj2 = 0.860 to radj2 = 0.884, meaning that the 

combined three-parameter model was adequate enough for further use. 

Eq. (3) fitted the data well if Hw ranged from 6 to 75 g, and slightly 

underestimated seed number at very large head weights (>75 g; Fig. 3.1b inset). 

However this is of low importance, since such large heads are rare, even under 

optimum conditions. We also tested other non-linear models such as negative 

exponential and rectangular hyperbola, to see whether this underestimation 

would disappear. The r2 values, residual plots, and biases were similar for all 

model types. Therefore, we continued our analysis using Eq. (3) because its 

parameters have a clear biological meaning.  

The higher scattering of the seed number data compared with seed weight 

data, caused slightly lower prediction ability of Eq. (3). Similar to Eq. (1), Eq. (3) 

was also evaluated with four independent datasets (Exp 13–16; Table 3.2) and 

statistics showed that predictions were good (r2 ≈ 0.85; rRMSE ≈ 0.18; bias ≈ 10; 

Fig. 3.2). Consequently, model (3) was applied to every seed-bearing head 

present in a sample, thus upscaling individual head weight to seed number per 

unit area level (SN, seeds m-2) as indicated below:  
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The calculated seed number m–2 ranged from a minimum of 1764 to a maximum 

of 20566 seeds m-2.      

 

Seed harvest index and individual seed weight  

 

Fig. 3.1c depicts the relationship between the seed/head weight ratio HIhead (g g-1) 

and Hw. This relationship was described from Eq. (1) by dividing both parts with 

Hw, as follows: 

 

w

head

H
HI

9048.2
4293.0 −=

         (5) 

 

Eq. (5) implies that HIhead increases with increasing Hw. The mean HIhead per 

head class was: 0.18, 0.33 and 0.39 g g-1 for small, medium and large heads 

respectively. The low determination coefficient of Eq. (5) (r2 = 0.79; Fig. 3.1c) is  
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due to the large data scatter caused by the combined random error of SYhead and 

Hw.  

Fig. 3.1d shows that the individual seed weight, (SW, calculated as 

SYhead/SNhead) varied considerably across different Hw. It ranged from about 10 to 

a maximum value of 57 mg seed-1 (data mean: 33.4 mg seed-1). This upper 

threshold value gives an indication of the potential sink capacity of Cynara 

cardunculus seed under Greek conditions (Fig. 3.1d).   

 

Head diameter and head surface area as predictors   

 

Head samples collected from different environments, although having similar 

weights, showed differences in shape (ovate to globular). Small, medium and 

large heads had diameters of 2–5, 3–7 and 4–10 cm, respectively (Fig. 3.4a). 

Contrary to Hw, the head diameter (non-destructive method) did not strongly 

correlate with SYhead (see r2 in Table 3.4) and SNhead (data not shown). Fig. 3.4a 

illustrates the relationship between SYhead and head diameter, while Table 3.4 

presents the regression slopes and the constant values for the 12 experiments 

(parameterization datasets). Slopes of the regressions were significantly different 

(P<0.01) among the 12 sets, thus our hypothesis on using head diameter as an 

appropriate means to estimate seed yield was rejected. We also examined the 

head surface area as the predictor (Fig. 3.4b) but regression slopes were still 

significantly different among environments. Our analysis indicated that neither 

head diameter nor surface area should be used as predictors for SY and SN.     
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Figure 3.4: (a) Seed weight per head (SYhead) as a function of head diameter and (b) of 

head surface area. Different symbols indicate material collected from different 

environments (Exp 1–12; Table 3.2). Broken bold lines indicate linear regressions.  
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Head-weight distribution  

 

Cynara cardunculus is an indeterminate crop species and forms many heads of 

various weights. Small, medium and large head-weight frequency distributions 

as well as statistical descriptors per experiment are illustrated in Fig. 3.5. The 

analyses indicated that the head distributions, the total number of heads, and the 

mean head weight varied significantly across 16 experiments, in contrast to 

coefficient of variation, kurtosis and skewness that varied only slightly.   
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Figure 3.5: Frequency distributions (± standard deviation) of Cynara cardunculus heads 

per m2 (small, medium and large; Table 3.3) for 16 experiments carried out in Greece in 

2007–2009. Open columns represent the 1st cropping cycle experiments. Partially and 

fully gray columns refer to experiments from 2nd to 6th growing cycle, for dry and aquic 

soils, respectively. Details on the experiments are provided in Tables 3.1 and 3.2. HN =  

total number of head per m2, μ = mean head weight (g head-1), s = skewness, k = kurtosis, 

CV = coefficient of variation, for other symbols see Table 3.3.  
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In the present analysis, we classified the experiment-to-experiment 

variability into three major groups (Group 1: 1st cycle; Group 2 and Group 3 refer 

to subsequent cycles on dry and aquic soil types, respectively; Table 3.6 and Fig. 

3.5). Under the prevailing management conditions in Greece (note planting 

arrangement 75×25 cm), cynara produced about 12 heads m-2 during the 

establishment year. During subsequent years, the crop formed 25 and 40 heads 

m-2 on dry and on aquic soils types, respectively (P<0.001; Table 3.6).  
 

 

Table 3.6: Inflorescence characteristics of Cynara cardunculus during crop establishment 

cycle (Exp. 1, 2, 3, 4 and 13: group 1) and during subsequence growing cycles on dry 

(Exp. 7, 8, 9, 11 and 12: group 2) and on aquic soils (Exp. 5, 6, 10, 14, 15 and 16: group 3) 

in Greece in 2007–2009  

 Number of heads per m2     

Total Small Medium Large μ CV k s Exp.  

Group # # % # % # % g head-1 % – – 
 

Group 1 12.1a   4.8a 38b   5.8a 50a   1.4a 12a 25.8a 43a –0.8c 0.14a 

Group 2 24.8b 11.1a 42b 10.1ab 41a   3.6ab 17a 25.6a 50a –0.4ab 0.39b 

Group 3 39.8c   8.1a 20a 18.5c 46a 13.2c 34b 34.5b 44a –0.2a 0.34b 
 

Mean 25.6   8.0 33 11.5 46 6.1 21 28.6 46.0 –0.5 0.29 

Different letter within a column indicates significant difference at P < 0.05.  

CV, coefficient of variation; k, kurtosis; s,skewness, for other symbols see Table 3.3.  

 

 

Fig. 3.5 depicts that the frequency distributions, and particularly the 

distributions of small and large heads were significantly affected across different 

sets of experiments (P<0.05; Table 3.6). Nevertheless, the CV was unchanged for 

these sets of experiments (CV = 46%; P=0.22; Table 3.6). This is because on dry 

sites the distribution was: small 42%, medium 41% and large 17%, whereas on 

aquic sites the distribution was: small 20%, medium 46% and large 34%. Hence, it 

can be inferred that beyond the 1st cycle, under conditions of high soil moisture 

availability (shallow ground water) an increased HN by some 35% (large heads 

by 72%) may be expected compared to conditions of moderate water stress (dry 

soils). This is expected since cynara – as all crops – performs much better on aquic 

soils where high seed yields are expected (see later Fig. 3.6). Across different 

experiments the mean head weight, μ, was ≤ 40 g head–1 (Fig. 3.5), indicating an 

upper threshold value.                

Analysis of skewness and kurtosis showed that on average Cynara cardunculus 

head-weight distribution was platykurtic (k = –0.48) and positively skewed (s = 

0.29; Table 3.6). On aquic soil types this distribution tended to reach the normal 

distribution, since k and s shifted from –0.39 to –0.22 and from 0.41 to 0.34, 

respectively (Table 3.6; Fig. 3.5). 
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Seed composition  

 

Seed composition parameters for different SW classes are presented in Table 3.7. 

Oil concentration significantly increased with an increase in seed size from 17 to 

26 mg seed-1 (P=0.016), while in the range from 26 to 52 mg seed-1, the oil 

concentration was rather constant at 22.9%. Calculating oil content per seed (mg 

oil seed-1), a significant effect of seed size was detected (P<0.001), throughout the 

range of seed weights studied (Table 3.7). Crude protein concentration (%) was 

not significantly affected by seed size (average 18.7%; P=0.252), but for protein 

content (mg protein seed-1), the effect proved significant (P<0.001). Seed ash 

concentration significantly decreased with increasing seed size (P=0.01), whereas 

cellulose (mean: 22.1%), free fatty acids (mean: 1.18%) and seed moisture (mean: 

5.9%) contents were not affected by seed size (P>0.05; Table 3.7). Seed samples 

collected from different environments (2008), showed similar oil (P=0.132) and 

protein (P=0.992) concentrations (data not shown). Across four different sites, 

Cynara cardunculus seed oil concentration ranged from 20.9 to 25.9%, while crude 

protein ranged from 14.1 to 20.9% (average: 18%).  

 

 
Table 3.7: Cynara cardunculus seed composition (n=3) as affected by seed size    

Seed size (mg) Oil Crude protein Cellulose Ash FFA Moisture 

Range Aver. % mg % mg % % % % 
 

< 20 17a 17.01a   2.73a 19.76a  3.06a 24.31a 4.41a 2.40a 6.39a 

20–30 26b 21.38b   5.57b 19.46a  5.05b 21.95a 3.97b 1.61a 6.38a 

30–40 35c 23.20b   8.06c 18.21a  6.26c 21.48a 3.44c 0.93a 5.69a 

40–50 46d 23.09b 10.62d 16.98a  7.81d 21.74a 3.44c 0.61a 5.53a 

    >50  52e 22.53b 11.94d 19.32a 10.23e 21.96a 3.28c 0.51a 5.24a 
 

Mean 35.07 21.81 7.81 18.68 6.44 22.09 3.61 1.18 5.85 

Different letter within a column indicates significant difference at P < 0.05.  

FFA, free fatty acids. 

 

 

Oil composition  

 

The oil composition for different SW is provided in Table 3.8. Gas 

chromatography allowed to separate methyl esters of fatty acids from C12:0 

(lauric) to C24:0 (lignoceric). No significant differences were observed for any of 

the studied gas chorography parameters (P>0.05), indicating that chemical 

composition of cynara seed oil was conservative. The average fractions of the 

major fatty acids were: 12.2% palimitic (C16:0), 3.7% strearic (C18:0), 27.9% oleic 

(C18:1) and 54.0% linoleic (C18:2). These four acids amounted to 97.8% of the 

total, while the remaining 2.2% was divided over several minor acids (C14:0 = 
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0.14%, C16:1 = 0.23%, C17:0 = 0.05%, C18:3 = 0.06%, C20:0 = 0.40%, C22:0 = 0.13%, 

C24:0 = 0.23%, etc.). The effect of location on oil profile was not significant (data 

not shown).  
 

 

Table 3.8: Major fatty acid composition (n=2) of the seed oil obtained from different 

seed sizes  

Seed mg (range) C16:0 (palmitic) C18:0 (stearic) C18:1 (oleic) C18:2 (linoleic) 
 

   < 20 15.47a 4.84a 28.83a 47.66a 

20–30 11.96a 3.70a 27.64a 54.58a 

30–40 11.10a 3.20a 24.89a 59.12a 

40–50 11.10a 3.42a 28.18a 55.25a 

    >50  11.19a 3.53a 29.98a 53.44a 
 

Mean 12.16 3.74 27.90 54.01 

Different letter within a column indicates significant difference at P < 0.05.  

Values expressed in %.  

 

 

Cynara yields in Greece  

 

Figure 3.6 presents average biomass, seed and oil yields per experiment. During 

the year of establishment, Cynara cardunculus biomass productivity was about 550 

g m-2, while during subsequent cycles, the biomass productivity increased to 1300 

g m-2 on dry and to 2700 g m-2 on aquic soils, respectively (Fig. 3.6a). Harvest 

index ranged from 0.104 to 0.196 g g-1 (Fig. 3.6b), and the lower values were 

obtained on dry soils. Seed yields ranged from 100 g m–2 during the first cycle to 

190 (dry soils) and to 480 g m–2 (aquic soils) during subsequent crop cycles (Fig. 

3.6b). The range of Cynara cardunculus oil yield potential in Greece was 23 to 110 g 

m–2 (Fig. 3.6c). Seed number ranged from about 3200 (1st cycle) to 6000 on dry 

soils and finally to 14000 seeds m-2 on aquic soil types, respectively (data not 

shown).   

By combining Eq. (2a) and Eq. (4) the average SW per m-2 was calculated for 

each experiment (32 ± 4 mg seed-1; Fig. 3.6d). Despite the great variation in 

biomass, seed yield and seed number across experiments (e.g. Fig. 3.6a and b), 

the average seed weight (mg seed-1) was rather invariant and varied only by 10%.  
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Figure 3.6: (a) Cynara cardunculus average (± standard deviation) biomass yield, (b) seed 

yield (calculated from Eq. 2a), (c) oil yield (estimated at 23% of SY) and (d) individual 

seed weight (calculated as SY/SN) for 16 experiments carried out in Greece in 2007–2009. 

Open columns represent the 1st cropping cycle experiments (group 1). Partially and fully 

gray columns refer to experiments from 2nd to 6th growing cycle, for dry (group 2) and 

aquic (group 3) soils, respectively. Details on the experiments are provided in Tables 3.1 

and 3.2. Broken lines refer to average values per group (as in Table 3.8) while arrows 

accompanied by a percentage value indicate yield reduction from group 3 to group 2 and 

from group 2 to group 1. The range of seed harvest index (g g-1; leaves were excluded in 

calculations) per group is also provided in panel b. 

 
 
 
Discussion  
 

This paper provides information on head weight, head number, seed quantity 

and seed quality of Cynara cardunculus. We provide an easy and robust 

methodology for estimating seed yield under varying management × 

environmental conditions, thus improving our understanding of the reproductive 

allometry of this perennial species.  
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Seed yield in relation to inflorescence traits 

    

This study documented that in Cynara cardunculus the threshold head weight 

required to support seed set is 6.8 g per head and that of all additional biomass 

investments in the head a fraction of 0.43 is allocated to the seeds (Fig. 3.1a). 

These allometric coefficients were the same for different growing situations in 

Greece (e.g. crop age, location, soil types etc; Table 3.4). Environmental as well as 

management variables affect seed yield through their effects on μ and HN (Fig. 

3.5 and 3.6). Based on these parameters (Hw, μ, and HN) we presented a variety of 

allometric models, which can be used from organ- to land-level studies, 

depending on the research interest.  

At head-level, using Hw as independent variable, the seed yield can be 

estimated very accurately (r2=0.96; Eq. 1; Fig. 3.1a) while seed number can also be 

estimated but with somewhat lower accuracy (r2=0.86; Eq. 3; Fig. 3.1b). This is 

attributed to the observed variability in seed number per head (Fig. 3.1b). Harper 

et al. (1970) stated that seed number and seed size represent alternative strategies 

in the allocation of reproductive resources, while Sadras (2007) mentioned that 

seed number is plastic and highly sensitive to resource availability. Due to this 

sensitivity, the SNhead model (Eq. 3) could not be as precise as the SYhead model 

(Eq. 1). Lastly, at organ level, a strong association between HIhead over varying Hw 

was presented (Fig. 3.1c). With larger heads (>40 g) the initial investment (6.8 g) is 

supported by more seeds, resulting in a higher HIhead (average: 0.39) compared to 

smaller heads (<20 g; average HIhead: 0.18; Fig. 3.1c), meaning that growers and 

researchers should aim for practices resulting in a higher number of large heads. 

In literature, Foti et al. (1999), Piscioneri et al. (2000), Fernández et al. 2005; 

Fernández et al. (2007a) and Gominho et al. (2009) reported HIhead from 0.18 to 0.40 

g g-1, which fits within our range.  

 At unit area-level, the parameters of Eq. 2a or 2b are two easily measurable 

inflorescence traits (HW and HN), which are commonly determined in cynara 

ecophysiological studies (e.g. Piscioneri et al., 2000). The fact that SY model 

performed well (r2=0.93; Fig. 3.3) across a wide range of published data (Foti et al., 

1999; Piscioneri et al., 2000; Raccuia & Melilli, 2007a; Ierna & Mauromicale, 2010) 

and the current data (Table 3.5) including different management techniques, 

environmental conditions as well as different genotypes, implies the potential 

applicability of the present empirical model.  

This model could also assist yield component analysis. Eq. (2a) indicates 

that seed yield is determined by mean head weight (μ) and total head number 

per unit area (HN). Simply increasing the number of heads will be beneficial for 

seed yield as long as this doesn’t put a too strong burden on μ. According to Fig. 

3.5 and Table 3.5, the μ is largely dependent on management × environment 

interactions.  
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Our analysis implies advantage can be gained from developing a crop with 

larger heads (higher μ) and secondly from increasing the number of heads, 

particularly in high yielding environments, in order to minimize the loss caused 

by the initial investment in heads before seed set. This view is confirmed by 

Raccuia & Melilli (2007b), who – while increasing planting density from 1 to 4–8 

plants m-2 (1st cycle) – noticed that branching and head number plant-1 reduced, 

resulting in a higher μ, and consequently higher seed yield per unit area (more 

than double). Moreover, the same authors’ (Raccuia & Melilli, 2007a), found a 

great variability in seed yield among several (cultivated and wild cardoon) 

genotypes; indicating therefore that breeding programs can also assist in 

developing cultivars suitable for varying cropping systems.         

This study also depicted the range of attainable yields of Cynara cardunculus 

(biomass, seed and oil) in representative parts of Greece. Maximum observed 

biomass production was 3500 g m–2 – in line with Dalianis et al. (1996) – and it 

was obtained on aquic soils after a growth period of 16 months. Actually, at one 

of the sites with this soil type, the depth of cynara’s main roots was measured up 

to 180 cm whereas the fine roots were found at a depth up to 330 cm (in May), 

providing evidence that the crop can make use of deep ground water. Across 

three growing seasons on aquic soils the average biomass production was 2700 g 

m-2 y-1, which was 51% higher than obtained in dry environments (see Fig. 3.6 and 

also Piscioneri et al., 2000; Fernández et al., 2005; Danalatos et al., 2007a). 

Similarly, the seed yield on aquic soils (480 g m-2 y-1) was 60% higher compared 

with yield on dry soils. Cynara seed yields are even close to sunflower grain 

yields obtained in Greece.   

Great differences were also found for SN among 16 experiments. 

Nevertheless, the individual seed weight, SW, varied less than 10% among the 16 

experiments (32 ± 4 mg seed-1; Fig. 3.6d) and this might give an indication for the 

attainable sink capacity of Cynara cardunculus seeds under Greece conditions. 

Experimental average SW values are in accordance with literature data (Foti et al., 

1999; Raccuia & Melilli, 2007a; Ierna & Mauromicale, 2010). However, despite the 

great head-to-head variability in SW, it seems that the average SW at unit area 

level was rather conservative, similarly to most common grain crops (Sadras, 

2007).      

 

Seed quality     

 

Four parameters define the potential of cynara as an oil crop: seed yield, seed oil 

content, fatty acid profile and heating value (Fernández et al., 2006). This paper 

addresses three of those. The higher oil heating value has been measured at 33 MJ 

kg-1 (Fernández & Curt, 2004). The current results on seed oil concentration are in 

close agreement (±5%, Table 3.9) with data obtained in previous works from 
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Spain (Curt et al., 2002), Portugal (Carvalho et al., 2006) and from Italy (Piscioneri 

et al., 1999; Raccuia & Melilli, 2007a). Usually high temperatures during grain 

filling result in lower oil concentrations (Fernández-Moya et al., 2005). Under 

Greek conditions, cynara seed contains approximately 23% oil, which is lower 

than common annual oil seed crops growing in the Mediterranean region for 

biodiesel production (viz. sunflower, rapeseed: 40–46%; S.V. Archontoulis, 

unpublished results).       

The observed stabilization/constancy of the seed-oil concentration at 

medium–large sized seeds (Table 3.7) might be attributed to the oil distribution 

within the seed. Curt et al. (2002) reported that the seed fraction to hull (44.5%) 

and to kernel (55.5%) was similar between different seed sizes. Stabilization of oil 

concentration across different kernel weights has also been observed for maize 

(Borrás et al., 2002).  

The fatty acid composition of the oil determines its suitability for either food 

or industrial uses. The current findings have shown 10.9% higher palmitic, 4.5% 

lower stearic and 3.6% lower oleic acid and 3.5% higher linoleic acid compared to 

data on cynara oil profile from other countries (Table 3.9).  

 
Table 3.9: Oil concentration and fatty acids composition of cynara, sunflower and maize 

seeds  

  Oil (%) Fatty acid composition (%) 

Crop Location Aver.  Range C16:0 C18:0 C18:1 C18:2 
 

Cynaraa Italy (40.9°N)b 20.7 18.6–23.6   7.7  3.6 26.1 61.5 

Cynaraa Italy (37.2°N)c 24.1 22.8–25.1 10.3  2.8 21.8 62.7 

Cynara  Spain (37.2–41.3°N)d 25.0 20.0–32.4 10.6  3.7 24.9 59.7 

Cynara Portugale 24.3 – 10.9  3.3 23.1 61.2 

Cynaraa Greece (39.2°N)f 23.2 20.9–25.9 11.1   3.2 24.9  59.1  

Sunflower Greece (39.2°N)g 43.3 37.5–48.8   6.6  3.9 34.6 51.9 

Maize Greece (39.2°N)g   4.7 3.62–5.80 10.9  2.5 31.2 51.9 
a: cv. Bianco avorio. 
b: Piscioneri et al. (2000). 
c: Maccarone et al. (1999), Raccuia & Melilli (2007a).  
d: Curt et al. (2002). 
e: Carvalho et al. (2006). 
f: This study; based on medium–sized seeds (30–40 mg seed-1; see Table 3.7 and 3.8)    
g: Unpublished results (S.V. Archontoulis) 
 

 

When comparing the cynara oil profile with sunflower and maize oil 

profiles (Table 3.9), it can be inferred that cynara has a profile similar to 

sunflower oil and rather close to maize (Maccarone et al., 1999). Moreover, 

Carvalho et al. (2006) found that cynara’s fatty acid composition did not differ 

significantly also from canola, cannabis, and safflower, and that cynara oil is 

suitable for production of human nutrients after a refining process.  Regarding 
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crude protein, results from Greece confirms the high nutritive value of cynara 

seeds in line with reports from Spain and Italy (Curt et al., 2002; Raccuia & 

Melilli, 2007a). Cynara seeds scored high crude protein (viz. 18 %), which is 10% 

lower than in sunflower seed and 47% higher than in maize kernels growing in 

the same environment in central Greece (S.V. Archontoulis, unpublished results).  

 

 

Conclusions   
 

The present work provides a robust and easily applicable methodology to 

estimate seed yield of Cynara cardunculus. Our approach overcomes problems 

arising from the compound crop structure of inflorescences, and head 

(capitulum) structure as well. By measuring two simple inflorescence traits (total 

weight and number of all seed-bearing heads per unit area), the accuracy of seed 

yield prediction was > 93%. In representative parts of Greece (16 experiments), 

attainable Cynara cardunculus seed yields (beyond 1st cycle) ranged from 190 to 

480 g m–2 y–1, on dry soils and on aquic soils (shallow ground water level). During 

the 1st cropping cycle, seed yields were 57 to 80% lower than in subsequent 

cycles. This variation in seed yield was sufficiently explained by the analyses of 

head-weight distribution (small, medium and large heads) and variability of 

seed/head weight ratio at head level. Our proposed methodology can be easily 

applied in any environment as well as under variable management practices.   

Seed quality characteristics such as oil (23%) and protein (18.7%) 

concentration was rather invariant through different seed sizes (range: 26 to 56 

mg seed–1) as well as growing environments meaning that under Greek 

conditions, these fixed values can be used to estimate seed oil and protein yields.  

Seed/biomass as well as oil/seed fractions are now quantified precisely and 

this can assist (a) researchers to more efficiently estimate crop heating value for 

solid and/or liquid biofuel production; and (b) policy makers to better plan land 

uses.  
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Chapter 4 
 

 

Temporal dynamics of light and nitrogen vertical 

distributions in canopies of sunflower, kenaf and cynara 
 

 

 

Abstract  

 

To enhance eco-physiological and modelling studies, we quantified vertical 

distributions of light and nitrogen in canopies of three Mediterranean bio-energy 

crops: sunflower (Helianthus annuus), kenaf (Hibiscus cannabinus) and cynara (Cynara 

cardunculus). Field crops were grown with and without water stress in 2008 and 2009. 

Canopy vertical distributions of leaf area index (LAI), photosynthetically active 

radiation (PAR), specific leaf area (SLA), nitrogen concentration (Nconc) and specific 

leaf nitrogen (SLN) were assessed over time for each crop × year × water input 

combination. Light and nitrogen distributions were quantified by the Beer’s law 

(exponential model) and extinction coefficients for light (KL) and nitrogen (KN) were 

calculated. Within a year, KL did not change significantly over the studied period in 

all irrigated crops, but differences in KL were significant between years (sunflower: 

0.74 vs. 0.89; kenaf: 0.62 vs. 0.71; cynara: 0.77). KL estimates were always lower (–48 to 

–65%) in water-stressed sunflower and kenaf crops because of the reduction in leaf 

angle. These results should be taken into account, when simulating water-limited 

biomass production. Vertical SLN distributions were found in canopies when LAI 

was > 1.5 (40 from 51 cases). These distributions were significantly correlated with 

the cumulative LAI from the top (r2=0.75–0.81; P<0.05), providing parameters to 

upscale photosynthesis from leaf to canopy levels. Vertical SLN distributions 

followed species-specific patterns over the crop cycle and varied less compared to 

PAR distributions between years. Lastly, we observed strong associations between 

SLN and PAR distributions in irrigated sunflower and kenaf canopies (r2>0.66; 

P<0.001). However, observed SLN distributions were less steep than the distributions 

that would maximize canopy photosynthesis. 

 

 

 

Published as: 

Archontoulis SV, Vos J, Yin X, Bastiaans L, Danalatos NG, Struik PC. 2011. 

Temporal dynamics of light and nitrogen vertical distributions in canopies of 

sunflower, kenaf and cynara. Field Crops Research 122: 186–198.  
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Introduction  
 

A sharp increase in energy production from biomass in the coming years (Tuck et 

al., 2006), requires that new energy crops (e.g. cynara) will be included in the 

cropping systems while the production area of other crops (e.g. sunflower) 

would need to be expanded. The global Scientific Committee on Problems of the 

Environment (SCOPE) announced that expansion of biofuel production on area 

basis must be achieved in the context of a 50% increase in food production by 

2030 (Connor & Hernandez, 2009). This means that a sustainable increase in 

bioenergy production must come from greater productivity of existing arable 

land. Crop modelling is an appropriate way to explore such objectives by 

conducting scenario studies. 

A prerequisite to model crop growth and productivity is an appropriate 

quantification of crop canopy dynamics (light penetration and nitrogen 

allocation) in response to management and environmental conditions. Vertical 

distributions of light and nitrogen in a crop canopy have been quantified by so-

called extinction coefficients for light (KL) and for nitrogen (KN). In simple crop 

models such as LINTUL (van Ittersum et al., 2003), KL is widely used to calculate 

light interception by the canopy and to predict biomass yields based on the light 

use efficiency concept. More detailed approaches, in which both KL and KN are 

used to scale up photosynthetic CO2 fluxes from leaf to canopy levels (Leuning et 

al., 1995; de Pury & Farquhar, 1997), have been incorporated into crop growth 

simulation models such as GECROS (Yin & van Laar, 2005). However, research is 

needed to parameterize these models for new energy crops.     

Even for well-known food crops such as wheat, little is known about the 

dynamic changes in KL and KN (Bertheloot et al., 2008), nor about the effects of 

drought on these changes (O’Connell et al., 2004). Without water stress, vertical 

distributions of light and nitrogen in a canopy were sufficiently described by 

assuming an exponential decline over canopy depth - the Beer’s law (Hirose & 

Werger, 1987; Monsi & Saeki, 2005). In most studies, KN was shown to be closely 

related to KL, indicating that nitrogen allocation is driven to some extent, either 

directly or indirectly, by light distribution (e.g. Evans, 1993, Anten et al., 1995; 

Milroy et al., 2001; Pons et al., 2001; Bertheloot et al., 2008). Under water stress, the 

light and nitrogen distributions over canopy depth are more complicated because 

water stress affects not only appearance and elongation of leaves and uptake and 

partitioning of nitrogen, but also morphological aspects of leaf positioning, angle 

and azimuth angle.     

In this work, we aim to quantify extinction coefficients for light (KL) and for 

nitrogen (KN) for potential energy crops sunflower (Helianthus annuus), kenaf 

(Hibiscus cannabinus) and cynara (Cynara cardunculus), crops with contrasting leaf 

area distributions along the stem. Sunflower, kenaf and cynara were chosen for 
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this study because (i) they have a great potential in terms of seed and biomass 

production in Mediterranean type climates (Geronikolou et al., 2005; 

Archontoulis et al., 2010b; Danalatos & Archontoulis, 2010; and references 

therein), including regions like southern Australia, South Africa, Southern 

California, and Chile (Estienne & Godard, 1970); and (ii) they cover a large range 

of bio-industrial applications (biodiesel for transport, pellets for heating, biomass 

for electricity production, bio-products for buildings, fibres; Karp & Shield, 2008).  

Our specific research questions were (i) Can light and nitrogen distributions 

in canopies of sunflower, kenaf and cynara be accurately described by Beer’s 

(exponential) formula? (ii) How do KL and KN depend on species, canopy 

development, water limitation, time of season and year? (iii) Which 

generalizations about values of KL and/or KN can be made that are suitable for 

implementation in models? and (iv) Can conservative associations between KL 

and KN be derived from this study? To investigate these questions, we studied 

three energy crops in the field under two irrigation regimes for two consecutive 

years in Greece.  

   

Materials and methods 
 

Growing conditions, species, management and climate 

 

All experiments were carried out on a loamy fertile soil (Aquic xerofluvent; high 

ground water levels; Archontoulis et al., 2010b) in central Greece (Thessaly Plain, 

Karditsa, 39°25’N, 22°05’E, 107 m asl.) in 2008 and 2009. The crops, sunflower, 

kenaf and cynara, were grown in different sections of the same field in east-west 

rows (plot size: 184 m2). No attempt was made to include species into a common 

layout for practical reasons (irrigation application and inter-plot interference). 

Per crop, pests were controlled chemically and manually, while there were no 

obvious diseases. Sunflower and kenaf are fast growing summer crops (Figs. 4.1 

and 4.2), while cynara is a perennial crop with annual cycles of 11 months each 

(for growth stages see Archontoulis et al., 2010a).  

Table 4.1 provides an overview for the studied species and summarizes 

details such as growing conditions, management practices and water treatments. 

Per crop, the combination of two years × two irrigation rates resulted in four 

water treatments: T1= 2009, irrigated; T2 = 2009, water stressed; T3 = 2008, 

irrigated; T4 = 2008, water stressed (Table 4.1). Irrigation was applied via a drip 

irrigation system. For the summer crops T1 and T3, the irrigation rate was based 

on class A-pan evaporation measurements (for site-specific calculations see 

Danalatos & Archontoulis, 2010) at weekly intervals (Fig. 4.2a and b). Water-

stressed summer crops (T2 and T4) received one irrigation application during 

early growth. For cynara the water treatments were: 3–4 irrigation applications 
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(T1 and T3) during the period of rapid increase in biomass (BBCH 55–65; May–

June) and no irrigation application (T2 and T4) as is common for cynara.  

Full weather data were recorded hourly by an automatic meteorological 

station (DL2, Delta–T, UK) which was installed at the experimental site. The 

mean air temperature during summer was 25.9 °C for 2008 and. 24.6 °C for 2009 

(Fig. 4.1), close to the long-term average for this site of 25 °C. Precipitation during 

winter–spring season varied considerably between years: 103 and 295 mm for 

2008 and 2009, respectively (Fig. 4.2c). Radiation is not a limiting factor in this 

region (summer period: 25 MJ m–2 d–1).    

 

 

5

10

15

20

25

30

35

90 120 150 180 210 240 270 300

Julian days

A
ir

 t
e

m
p

e
ra

tu
re

 (
°C

)

0

500

1000

1500

2000

G
ro

w
th

 d
e

g
re

e
 d

a
y
s
 (
°C

d
)

KenafSunflowerCynara 

 

Figure 4.1: Mean daily air temperature (……○……: 2008 and —●—: 2009 year) and 

accumulated degree days per crop (sunflower, kenaf and cynara) and per year (▬▬: 

2008 and ▬▬: 2009 year). X-axis intercepts depict the day of 50% crop emergence for 

sunflower and kenaf. Cynara re-emerged around September 22nd in both years (not 

visible).  

 

Sampling protocol  

 

In sunflower and kenaf, first the fraction of intercepted photosynthetically active 

radiation (PAR) was measured, followed by sampling, and assessments of leaf 

area, dry weight and nitrogen (N) concentration. Measurements began when the 

canopy height was at least 25 cm; at the first sampling the canopy was not 

divided into layers. Later on, when plant height increased (Fig. 4.2d and e), the 

number of layers was increased progressively to three for sunflower and to five 

for the kenaf crop. These successive canopy layers had equal vertical thickness 

per crop (calculated based on plant height). PAR extinction was measured during 

vegetative stages for kenaf and during vegetative and flowering stages for 
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sunflower. However, vertical N distribution in the canopy was measured 

throughout the crop cycle for both crops (Table 4.1).    

In cynara PAR and N profiles were assessed separately at different periods 

(Table 4.1) for practical reasons. PAR penetration was measured at vegetative 

stages (BBCH 10–37; no layer defined) because later during reproductive growth, 

the canopy was too voluminous to allow us to perform accurate measurements 

(note LAI>7). Vertical N distributions were undertaken during reproductive 

growth (BBCH 59–82; 4 layers of equal vertical thickness were defined) because 

at vegetative stages leaves formed a rosette. Periods of PAR and N measurements 

per species are provided in Table 4.1. Sampling frequency can be seen in Fig. 4.2.  
 

Measurements  

 

Fraction of PAR intercepted by the successive canopy layers was measured using 

a 1-m light sensor (Delta–T Devices, Cambridge, UK). We measured under clear 

skies to avoid poor quality of incident PAR (O’Connell et al., 2004) and around 

maximum sun height (11:30–13:30 h summer time; diffuse/total≈0.2; 

radiation≈1000 MJ m–2 s–1) when differences in leaf angle due to solar tracking –

evident in sunflower and kenaf– would be minimal (Sassenrath-Cole, 1995). In 

each measurement, a reference light sensor was placed above the canopy to 

provide simultaneous readings of incident PAR. At the bottom height of the 

canopy layers defined beforehand, the 1-m light sensor was placed diagonally 

across two rows (in an X pattern) and 10 readings were taken at each depth in the 

canopy. Few measurements above the canopy were also taken to check the 

reference light sensor. Per sampling event (combination of crop species × year × 

water level × date), measurements were taken from two to four independent 

samples.   

 Early during the following morning, plant samples were taken (2 rows of 

0.66 m long each = 1 m2) and green leaf lamina area (henceforth leaf area index, 

LAI) was determined per layer using a LI-COR area meter (LI-3000A, Nebraska, 

USA). Leaf samples (excluding petioles) were dried at 70 °C to constant weights 

and weighed. Then materials were analyzed for total nitrogen concentration on a 

mass basis (Nconc, g N kg-1 dry weight) using the Kjeldahl method. When 

measuring light extinction and sampling for N profiles, the senesced leaves 

(>50% green surface area) were removed; this is in line with many reports (e.g. 

Connor et al., 1995; Hall et al., 1995). When the proportion of a partially senesced 

leaf (<50% of green area) appeared desiccated and brittle; this part was separated 

from green laminae and excluded from analysis in order to avoid leaf area 

measurement inaccuracy. This was evident a few times in sunflower and cynara.   
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Table 4.1: Species description (all dicots) and summary of experimental details for the 

two study years  

Crop species  Sunflower  Kenaf  Cynara 

General description  

Latin name Helianthus annuus Hibiscus cannabinus Cynara cardunculus 

Family  Asteraceae Malvaceae Asteraceae 

Photosynthesis  C3  C3  C3  

Growth cycle annual annual perennial (10 cycles) 

Cycle length (days) a 110 180 330 

Growth habit Determinate  Indeterminate  Indeterminate  

Leaf or leaflet shape b  Cordate Cordate Elliptic or runcinate 

Commercial product Seeds (oil) Stalks (fibre) Seeds and stalks 

Experimental details  

Genotype  Panter (high oleic) Everglades 41 Biango avorio  

Sowing timec  13/5/08 and 15/5/09  13/5/08 and 15/5/09 13/4/06 and 30/11/08 

Observed shoots m-2 6.6 ± 0.8 13 ± 3.8 4.3 ± 1.1  
Row-to-row distance (cm) 75 75 75 

N–P–K input (g m-2) d 8–5–5 8–5–5 8–5–5 

Water treatments (mm)e     

     T1  378 628 755 

     T2   143 227 617 

     T3  370 611 513 

     T4  82 83 377 

Base temperature (°Cd) 5 10 7.5 
Cycle length (°Cd)  

& growth stages (BBCH) f 
2100  

(BBCH 10–97)  

1900  

(emergence–flowering) 
 650 + 1600 = 2250 

(BBCH 10–49; 50–97) 

Periods of profile assessment g   

     Light BBCH 35–73 Vegetative BBCH 10–37 

     Nitrogen BBCH 35–85 Vegetative to flowering  BBCH 59–82 
a: under Greek conditions (39.2°N). 
b: adult cynara leaves have an undetermined number of leaflets (details in Archontoulis et al., 

2010a).  
c: for perennial cynara crop, 1st sowing (April 2006) refers to 2nd and 3rd growth cycle during 

the     studied years (2008 and 2009) when N profiles were measured while 2nd sowing 

(November 2008) refers to 1st growth cycle when PAR profiles were measured.  
d: P, K applied before sowing; N applied during crop growth.            
e: T1= 2009, irrigated; T2 = 2009, water stressed; T3 = 2008, irrigated; T4 = 2008, water stressed. 

Values (mm) are sums of precipitation plus irrigation from emergence until last sampling 

(Fig. 4.2a, b and c).  
f: For sunflower (Lancashire et al., 1991) and cynara (Archontoulis et al., 2010a) the BBCH 

coding system was used to assess specific growth stages. Degree days (°Cd) refer to the 

corresponding BBCH period. For cynara degree days were further separated for vegetative 

(autumn to spring) and reproductive growth (spring to summer). For kenaf °Cd counted from 

50% emergence to 90% flowering. Values are means across two years (Fig. 4.1). 
g: PAR measurements ceased after a certain period to avoid confounding from biomass 

partitioning and excessive leaf senescence.  
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Calculations of morphological and phenological indexes  

 

We distinguish LAI (surface area of green laminae per unit ground area, m2 m-2) 

from the green area index (GAI, surface area of green tissues per unit ground 

area, m2 m-2). To calculate GAI, the projected surface area of the petioles was 

added to LAI. Stem and inflorescence surface areas were not included. Specific 

leaf area (SLA, m2 laminae kg-1 dry laminae mass) was calculated by dividing 

green laminae area by the dry laminae mass. The quotient between Nconc and SLA 

expresses the leaf laminae nitrogen per unit leaf area (specific leaf nitrogen, SLN, 

g N m-2 leaf laminae). 

Growth degree days (GDD, °Cd) were calculated based on daily maximum 

and minimum air temperatures using threshold values of 5 °C for sunflower, 7.5 

°C for cynara and 10 °C for kenaf. GDD was counted from 50% crop 

(re)emergence in all species. The threshold temperatures for the studied 

genotypes were derived from plots of seed germination rates versus temperature 

(S.V. Archontoulis & E. Skoufogianni unpublished) and agree well with 

published data for sunflower (e.g. Villalobos et al., 1996), kenaf (Carberry & 

Abrecht 1990) and cynara (Virdis et al., 2009).  

 

Estimation of light and nitrogen extinction coefficients 

 

PAR was assumed to be attenuated through the canopy following Beer’s law 

(Monsi & Saeki, 2005), based on GAI or LAI: 

 
iL GAIK

oi
eII

⋅−⋅=  or  iL LAIK

oi
eII

⋅−⋅=                                (1) 

 

where GAIi or LAIi is the cumulative GAI or LAI from the top of the canopy 

downwards; KL (m2 ground m-2 green tissue or laminae) is the direct light 

extinction coefficient at noon; Io and Ii (μmol m-2 s-1) are the PAR 

(photosynthetically active radiation) values in a horizontal plane above the 

canopy and at depth i, respectively. Unless specified otherwise, our analysis for 

KL is mainly based on GAI to account for the capture of PAR by non-laminar 

green tissues.    

Light interception and photosynthesis are intrinsically area-based processes; 

therefore, analysis of the vertical nitrogen distribution is most meaningful when 

expressed per unit leaf area (SLN). The vertical gradient of SLN was described as 

a function of the absolute LAI (Del Pozo & Dennett, 1999; Lötscher et al., 2003; Yin 

et al., 2003a; van Oosterom et al., 2010): 

  
iN LAIK

oi
eSLNSLN

⋅−⋅=                                 (2) 
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where KN (m2 ground m-2 green lamina) is the nitrogen extinction coefficient; 

SLNo and SLNi are the SLN at the top of the canopy (i.e. LAIi = 0) and at depth i, 

respectively. A common alternative in literature to describe the exponential SLN 

distribution is to use the relative LAI, i.e. LAIi/LAI (e.g. Hirose & Werger, 1987). 

We used eq. (2) in order to account for the dynamic change of LAI and to obtain a 

KN with the same unit as KL. It is worthy to note that the nitrogen extinction 

coefficient obtained by Eq. (2) and the relative one, are mathematically related as: 

Krelative = KN · LAI.  

By eliminating LAIi from equations 1 and 2, SLNi and Ii/Io are related as:  

 

L

N

K

K

o

i

o

i

I

I

SLN

SLN









=

                                            (3) 

 

Eq. (3) was used to examine associations between light and nitrogen 

distributions. Eq. (3) allows the use of the combined data of SLNi and Ii/Io to 

estimate SLN0 and the power term (KN / KL). This approach bypasses the use of 

LAIi data, but requires that light and nitrogen vertical distributions are measured 

on the same dates and at the same positions of the canopy. We also investigated 

associations between light and nitrogen distributions indirectly (based on LAI 

data) by calculating the quotient of KN (Eq. 3) to KL (Eq. 1).   

 

Statistics  

 

Values of parameters in equations 1, 2 and 3 were estimated from iterative 

nonlinear least-square regression using the Gauss method, as implemented in 

PROC NLIN procedure in SAS software (version 9.1). The goodness of fit was 

assessed by calculating r2.  

To examine whether estimates varied among dates of sampling, water levels 

and species, equations were log-transformed to the linear form and then 

subjected to analysis of variance by applying linear regression with groups (given 

the accumulated analysis of variance table) in Genstat software (12th edition). 

Slopes and intercepts were further evaluated separately (multiple t-tests) to 

identify (i) whether lines differed due to differences in intercepts and/or due to 

differences in slopes, (ii) significant differences within a group of lines. 

Significance of differences among and between estimates were assessed based on 

F and t tests (P=0.05). To examine differences among canopy layers in Nconc, SLA 

and SLN, one-way ANOVA was performed for each treatment separately. 

Similar analysis was done to examine differences in Nconc, etc., over time of 

season per layer for each treatment.     
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Figure 4.2: Per crop (sunflower: left; kenaf: middle and cynara: right panels), cumulative 

precipitation plus irrigation application (panels: a, b and c), plant height (panels: d, e and 

f), leaf laminae dry weight (panels: g, h and i) and leaf area index (panels: j, k and l). Data 

are means (± standard error bars) of two to four independent replicates. Vertical arrows 

in the lower panels indicate flowering. T1 = 2009, irrigated; T2 = 2009, water stressed; T3 = 

2008, irrigated; T4 = 2008, water stressed. Note: From 600 to 1000°Cd, cynara had LAI > 7, 

while the plant height increased from 160 to 250 cm.     
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Results   

 

Canopy dynamics in relation to species and to irrigation application  

 

Species showed different dynamics in height, leaf weight and LAI, maximum 

values being obtained around flowering (Fig. 4.2). Irrigated kenaf attained much 

higher LAI values and realized longer periods with LAI > 3 than irrigated 

sunflower (Fig. 4.2j and k). Cynara had LAI > 3 from 350 to 1600 °Cd, with 

maximum values of 11 m2 m–2 around 650 °Cd (inflorescence emergence; BBCH 

50; not shown). Species had also contrasting canopy structures in terms of leaf 

area distribution along the stem (Fig. 4.3). The largest fractions of leaf mass and 

area in well developed crops were allocated at the middle, top and bottom of the 

canopy for sunflower, kenaf and cynara, respectively (Fig. 4.3). Additionally, 

species have different leaf shapes (all broad-type, Table 4.1) with different 

maximum leaf or leaflet surface areas (sunflower: 500, kenaf: 120 and cynara 280 

cm2). Differences in height, leaf weight and area between irrigated and water-

stressed summer crops were significant in both years beyond 900 °Cd (P<0.05; 

Fig. 4.2). Canopy traits for cynara were not affected by supplementary irrigation 

in either years (P>0.05; Fig. 4.2f, i and l), because crops had received ample water 

(≥ 400 mm; Fig. 4.2c).  

       

Light extinction in relation to growing degree days, water stress, year and 

species  

 

We present our results, all using GAI as independent variable (Fig. 4.4). KL 

estimates based on LAI (not shown) were approximately 2.2%, 5.6% and 12.1% 

higher –compared to the estimates based on GAI– for the sunflower, kenaf and 

cynara crop, respectively. Eq. (1) adequately described all PAR sets (n=24; P=0.04–

0.0001). Best fits were found to data obtained under irrigated conditions or at 

initial stages of water stress (r2=0.69–0.98; Fig. 4.4). Under prolonged drought 

periods, Eq. (1) described PAR distribution rather poorly (r2=0.42; Fig. 4.4b), 

because the leaf angle tended to shift from a horizontal orientation (0–30° from 

horizontal) to a vertical one (60–90° from horizontal). In kenaf leaf rolling was 

also evident.  

KL did not change significantly during the studied period in sunflower (T1, 

P=0.188–0.916 among lines; T2, P=0.451; T3, P=0.133; Fig. 4.4a, inset) or in cynara 

(P=0.376–0.889; Fig. 4.4c, insert). For irrigated kenaf, although no significant effect 

of time of season on KL (T1, P=0.057–0.982; T3, P=0.306–0.905) was observed, there 

was an increasing trend from 600 to 1200°Cd (Fig. 4.4b, inset). For water-stressed 

kenaf crops, KL significantly declined over time (T2, P=0.01; Fig. 4.4b, insert), 
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indicating that under drought we cannot use a common KL value over the entire 

crop cycle to assess light interception/distribution. In sunflower and kenaf, KL 

estimates were always lower in water-stressed crops than in irrigated crops (Fig. 

4.4a and b insets). As drought prolonged, the differences between irrigated and 

water-stressed plants became larger and statistically significant (P<0.05).  

Per summer crop, data from irrigated treatments were pooled per year (T1 

and T3) and the effect of year on KL was investigated. Year effects on KL were 

significant for both sunflower (0.89 vs. 0.74, P=0.001) and kenaf (0.71 vs. 0.62, 

P=0.008) as revealed by t-tests. Consequently, in order to compare light 

extinctions among species we used only the 2009 data. Statistics revealed a 

significantly (P=0.016) greater KL value for sunflower compared to other two 

species (Fig. 4.4) and no significant difference between kenaf and cynara (P=0.66).  

           

Vertical SLN distributions in relation to GDD, water stress, year and species 

 

From 51 datasets (51 crop × water treatment × date combinations), we found 

obvious vertical SLN distributions in canopies when LAI was larger than 1.5 (40 

sets; Figs. 4.5 and 4.6). When LAI was ≤ 1.5, i.e. at early or late growth stages or in 

water-stressed canopies (Fig. 4.2), there were no obvious SLN gradients (e.g. Fig. 

4.5). Eq. 2 described distributions adequately, when they existed. However, in 

some SLN/LAI plots linear models also gave proper predictions, while in a very 

few sets, polynomials gave the best fits. We continue our analysis based on Eq. 

(2) because coefficients have clear biological meaning and can be compared with 

literature reports.     
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Figure 4.3: Distribution of leaf area (expressed by LAI) within sunflower, kenaf and 

cynara canopies at flowering (fully developed plants). Canopy height calculated from the 

ground level. Data are means (± standard error bars) of two to four independent 

replicates. Symbols refer to water treatments: —▲—: T1 (2009, irrigated crops); ……∆……: T2 

(2009, water stressed crops). Y-axis intercept in kenaf indicates absence of leaves at 

bottom canopy layer during that period.  
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Figure 4.4: Main panels: fraction PAR interception as a function of green area index 

(GAI) for irrigated (full symbols; different shapes refer to different dates) and water 

stress crops (open symbols). Inset panels: Light extinction coefficients (KL ± standard 

error bars) per water treatment (T1 =2009, irrigated; T2 = 2009, water stressed; T3 = 2008, 

irrigated; T4 = 2008, water stressed) as a function of thermal time.  Fitted lines in the main 

panels (a, b) indicate fits of the model Y=1–exp(–KL· X) to data with the largest and the 

smallest KL values. In panel (c) an average fit is given. All fits were significant at P<0.001, 

unless indicated in the panel (viz. kenaf T2).   
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Figure 4.5: Cumulative LAI counted from the top of the canopy versus sunflower leaf 

laminae nitrogen content per unit area (SLN) at different times (expressed as thermal 

time). ▲: T1 = 2009, irrigated; ∆: T2 = 2009, water stressed; ●: T3 = 2008, irrigated; ○: T4 = 

2008, water stressed. Lines (―: irrigated; ……: water stressed), when given indicate 

significant (P<0.05) fits from Eq. (2) to datasets. Parameters and statistics are presented in 

Table 4.2.  
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Sunflower vertical SLN distributions 

 

At early growth stages (GDD<600 °Cd; LAI<1.5), there were no vertical SLN 

distributions. Later, with increasing LAI (823–1014 °Cd; Fig. 4.2j), yellowing of 

lower leaves was reflected in more steeply declining vertical distributions (Fig. 

4.5). At that period, SLN non-uniformities were maximal. After anthesis and 

towards maturity (1200–1769 °Cd; Fig. 4.5) lamina Nconc at the top of the canopy 

declined sharply (Fig. 4.7a) while at the same time senescence of the bottom 

leaves accelerated (reflected by the decrease in LAI, Fig. 4.2j). The combination of 

these two processes resulted in progressively declining SLN profiles (1485 °Cd; 

Fig. 4.5). Above 1500 °Cd there were no vertical SLN distributions (Fig. 4.5). Eq. 

(2) gave significant fits in eight out of the fifteen sunflower canopies (Table 4.2). 

Within these eight canopies, SLNo significantly decreased from flowering 

towards maturity (T1, P=0.017–0.596; T3, P=0.01–0.14 among lines; Table 4.2). For 

KN, while t-tests among dates showed no significant decrease over time (T1, T3, 

P>0.106), there was an obvious decreasing trend from 973 to 1485°Cd (Table 4.2; 

Fig. 4.5). Similarly, water stress (1014 °Cd) reduced both SLNo (P=0.002) and KN 

(P=0.372; Fig. 4.5). In general, drought stress accelerated senescence of bottom 

leaves, minimizing or even overruling any SLN gradients.     

      
 

Table 4.2: Probability (P), determination coefficient (r2), and parameters of Eq. (2) used to 

assess sunflower vertical SLN distributions in Fig. 4.5. Estimates, SLNo and KN, are 

presented per thermal time (GDD) for each water treatment (▲,●,∆,○)   

GDD Symbola  P r2 SLNo KN 

Irrigated sunflower canopies 

823 ▲ 0.000 0.85 2.91 (0.10) 0.183 (0.02) 

936 ▲ 0.000 0.86 3.10 (0.20) 0.213 (0.04) 

973 ● 0.004 0.90 3.44 (0.19) 0.243 (0.04) 

1014 ▲ 0.000 0.92 3.48 (0.15) 0.217 (0.02) 

1200 ● 0.000 0.79 3.06 (0.12) 0.215 (0.03) 

1254 ▲ 0.004 0.72 2.60 (0.19) 0.172 (0.04) 

1485 ● 0.012 0.48 2.57 (0.17) 0.159 (0.05) 

1585 ▲ 0.123 0.31 1.82 0.131 

1769 ● 0.479 0.05 1.89 0.080 

Water stressed sunflower canopies 

936 ∆ 0.079 0.38 2.73 0.157 

1014 ∆ 0.009 0.51 2.78 (0.23) 0.178 (0.05) 

1200 ○ 0.056 0.25 2.74 0.164 

1254 ∆ 0.052 0.49 2.23 0.158 

1485 ○ 0.960 0.00 2.24 0.004 

1585 ∆ 0.674 0.05 1.60 0.122 

Standard error of estimates in parenthesis is given when P<0.05; otherwise estimates are 

shown to depict the course of SLN vertical distribution throughout the cycle.     
a: symbols refer to Fig. 4.5.  
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Kenaf vertical SLN distributions 

  

Significant fits of Eq. (2) were observed in 20 out of 24 kenaf canopies or from 596 

to 1879 °Cd  (P<0.05; r2=0.61–0.95; Fig. 4.6a). Vertical SLN distributions 

maximized during mid-season for the irrigated crops (1000–1201 °Cd; height≈170 

cm; Fig. 4.2e) because differences in leaf age between top–bottom canopy layers 

(reflected by the SLA or Nconc; Figs. 4.7b and e) were maximal at that period, 

imposing strong SLN gradients (Fig. 4.7h). Beyond flowering (usually October), 

crop growth is constrained by temperature (Fig. 4.1), resulting in fast leaf 

senescence.  

Multiple t-tests comparing dates in irrigated crops indicated no significant 

(P>0.057) change in SLNo. For KN, marginally significant differences (P=0.015–

0.042) were observed only between mid- and late-season. When SLNo or KN were 

regressed separately with thermal time (see Fig. 4.6a-inset) or with LAI by using 

combined irrigated data over two years (n=14), we still did not find changes in 

SLNo (P>0.256) but a significantly reduction of KN with time (P=0.001) or LAI 

(P=0.003). This is because SLN declined over time particularly in the bottom 

shade leaves (through the decrease in Nconc) while the SLN in the top layer almost 

remained unchanged due to continuous production of new leaves (Fig. 4.7h). In 

water-stressed canopies, when SLN distributions existed (T2, T4: 1378–1875 °Cd) 

these remained unchanged over time (SLNo: P>0.168; KN: P>0.310) most probably 

due to minor growth (see also LAI; Fig. 4.2k). Irrigation application significantly 

affected SLNo in only a few cases but did not significantly affect the KN parameter 

(P>0.098; Fig. 4.6a).    

 

Cynara vertical SLN distributions 

 

Beer’s law described significantly all sets (P<0.05; r2=0.56–0.91; n=12; Fig. 4.6b). 

Within the experimental period (1052–1693 °Cd), vertical SLN distributions 

varied little with time (SLNo: P=0.055; KN: P=0.904; Fig. 4.6b-inset) or water stress 

(SLNo: P=0.025; KN: P=0.742). This is because the decrease of Nconc was 

counterbalanced by the decrease in SLA and thus SLN distributions remained 

almost constant over the studied period (Fig. 4.7c, f and i). Only the last T2 profile 

at 1693 °Cd differed significantly from the other 11 profiles. Beyond 1693 °Cd, 

there were practically no vertical distributions in cynara (see fast decrease in LAI; 

Fig. 4.2l). In cynara, the top canopy layer (1/4 of the plant’s height; LAI<1; Fig. 

4.3) consisted of branch type leaves. These leaves are very thick with dense vein 

structures and small leaflet areas resulting in very low SLA values (Fig. 4.7f), and 

consequently in high SLN values (Fig. 4.7i). These values have been visualized in 

the upper part of Fig. 4.6b (LAI<1; above dotted horizontal line). We investigated 

whether exclusion of these top leaves (little contribution to total LAI; Fig. 4.3) 
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would improve Eq. (2) fits, but this proved unsuccessful because of the loss of 

degrees of freedom in the regression analysis.    
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Figure 4.6: Main panels: Cumulative LAI counted from the top of the canopy versus leaf 

lamina nitrogen per unit area (SLN), for kenaf (a) and cynara (b) canopies. Symbols are 

measurements and dashed lines are average fits from Eq. 2, to facilitate comparison 

between species. The horizontal dotted line in panel (b) indicates the height of the branch 

leaves. Inset panels: Estimates (± standard error bars) of Eq. (2) versus thermal time for 

each set of data with a significant fit. SLNo: SLN at the top; KN: nitrogen extinction 

coefficient. T1 = 2009, irrigated; T2 = 2009, water stressed; T3 = 2008, irrigated; T4 = 2008, 

water stressed. 
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Year and species effects on vertical SLN distributions 

 

Vertical SLN distributions varied little between years for each crop (Figs. 4.5 and 

4.6). To assess differences in SLN distributions among species we used sets that 

satisfied two criteria: (i) irrigated canopies in both years and (ii) flowering 

periods (±10 days), in order to avoid any confounding effects from GDD and 

water levels. Results are presented in Table 4.3, indicating steeper vertical SLN 

distributions in sunflower (P<0.05) than in kenaf and cynara. It was shown earlier 

(3.3.2) that within a species KN decreased with increasing LAI. It follows that the 

difference in KN among species might be an artefact because of the higher LAI of 

the latter two crops at flowering periods (Fig. 4.2).   

 

 

 

 

Spatiotemporal variations in Nconc and SLA determine vertical SLN distributions 

 

In irrigated crops, top–down SLN distributions were due to the combined effects 

of higher Nconc (Fig 4.7a, b and c; P<0.01) and lower SLA values (Fig 4.7d, e and f; 

P=0.005–0.581) for top leaves. This was also evident in water-stressed crops albeit 

less so (not shown). In sunflower and kenaf, variation in Nconc within layers (top–

bottom) was much larger than variation in SLA within layers; the opposite was 

observed for cynara (Fig. 4.7).  

 

 

 

 

 

Table 4.3: Parameters of Eq. (2) used to describe vertical SLN distribution in three 

irrigated crops during flowering periods (±10 days). All fits were significant at P<0.001  

Species Period (°Cd)  SLNo KN r2 n 
 

Sunflower   936–1254 3.12b 0.214b 0.731 54 

Kenaf 1378–1879 2.59a 0.124a 0.780 55 

Cynara 1052–1327 2.88ab 0.142a 0.745 48 

Different letters within a column indicates significant differences at P<0.05. 
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Figure 4.7: Dynamics of leaf nitrogen concentration (Nconc; panels a–c), specific leaf area 

(SLA; panels: d–f) and laminae nitrogen per unit leaf area (SLN; panels: g–i) at different 

canopy layers (layer 1 being the bottom layer) in sunflower, kenaf and cynara canopies. 

Data are means (± standard error bars) of two to four independent replicates for the 

water treatment T1 (2009, irrigated). Vertical arrows in the lower panels indicate 

flowering.  

 

 

Relationships between SLN and PAR distributions 

 

To examine whether the difference in vertical distribution of SLN can be 

explained by different light climates within the crop canopies, SLN (expressed on 

a relative scale) was plotted against relative PAR (I/Io). For eight sunflower and 

11 kenaf canopies –PAR and SLN data obtained on same dates–, the relationship 

was convex (Fig. 4.8). The power function, Eq. 3, gave significant fits for each 

crop when the data were pooled across sampling dates (irrigated, P<0.001, 

r2=0.66–0.81; water stressed canopies, P<0.017, r2=0.38–0.60; Fig. 4.8 main panels). 

Individual sets were significant at P<0.09 (Fig. 4.8 inset panels).  
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Cynara was excluded from this analysis because SLN and PAR data were 

collected at different periods (Table 4.1). In both crops, GDD and water stress 

significantly affected the shape of the PAR–SLN relation through the significant 

(P<0.05) change in the SLNo parameter (Eq. 3). The power term changed only 

slightly (P>0.048), implying that the ratio KN/KL was rather conservative over the 

measuring period. The term KN/KL was higher in water stressed than in irrigated 

crops, because under drought KL decreased (Fig. 4.4a and b) and hence the KN/KL 

increased. Similar results were obtained when the KN/KL ratio was calculated 

using estimates derived from LAI equations (see Figs. 4.4 and 4.6; Table 4.2).   
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Figure 4.8: Main panels: Relationships between relative SLN (SLNi/SLNo) and relative 

PAR (Ii/Io) in sunflower (leaf panels: a, b) and kenaf (right panels: c, d) canopies for 

different water treatments (▲: T1 = 2009, irrigated; ∆: T2 = 2009, water stressed; ●: T3 = 

2008, irrigated; ○: T4 = 2008, water stressed). Per crop and per water treatment (pooled 

data across dates) an average fit from Eq. (3) is given (―: irrigated; - - - : water stressed). 

Inset panels indicate individual estimates (± standard error bars) of the power term (KN / 

KL, Eq. [3]) over thermal time for each crop. Estimates of the second parameter of the Eq. 

(3), the SLNo, are not presented here because values were very close to that presented in 

Table 4.2 and Fig. 4.6a for sunflower and kenaf respectively.  
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Discussion  
 

Light extinction coefficient and implications for crop modelling  

 

KL might be affected by many factors influencing canopy structure, and factors 

associated with solar position. In our study we focussed on (i) the effect of water 

stress, because water stress is the major concern in the Mediterranean area, and 

on (ii) the effect of time (season and year) in order to examine the widely used 

assumption in crop models that KL remains constant over time (Evers et al., 2009). 

Regarding the effect of time of day (not assessed in this study), in literature there 

are at least two generic approaches to convert noon to daily KL values (Charles-

Edwards & Lawn, 1984; Sinclair, 2006); see Pereyra-Irujo & Aguirrezábal (2007) 

for an application.  

 

Beer’s law    

 

As was expected, our data were significantly described by Eq. (1). However, 

under prolonged drought periods, the assumption that light attenuates 

exponentially with canopy depth was poorly confirmed (P=0.04; Fig. 4.4b) 

because of the irregular reduction in leaf angle and due to leaf rolling. In cynara, 

application of Beer’ law beyond growth stage BBCH 37 implies measurement 

inaccuracy due to complex crop structure (Archontoulis et al., 2010a). Thus, 

indirect approaches (cf. leaf angle or plant geometry or even 3D modelling; Vos et 

al., 2010) should be applied in order to further explore KL.  

 

Crop age and year effects on KL 

 

Without water stress, use of an average KL value per crop cycle in sunflower, 

kenaf and cynara probably does not result in excessively large errors in 

modelling. Between years, we observed some variations (12–17%; P<0.05) in KL 

values in sunflower and kenaf (Fig. 4.4). This is a common phenomenon in 

literature (Kiniry et al., 1999; Lindquist et al., 2005; Dercas & Liakatas, 2007) and it 

is most likely attributed to differences in cloudiness (ratio of direct to diffuse 

light), while some variation in water condition, plant density, time of day at 

which measurement occurred etc., always exists between years. 

Our findings for irrigated sunflower agree well with Gimenez et al. (1994) 

who found a constant KL value with time of season and Sadras et al. (1991) who 

reported significant changes in KL only beyond BBCH 80. Moreover, for 

sunflower Rawson et al. (1984) and Zaffaroni & Schneiter (1989) related KL to LAI 

by using the equation: KL≈1.4·LAI–0.5 (r2=0.69). This equation shows a severe KL 

reduction with increasing LAI at low LAI values (<1.0) and near constant KL 
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values of 0.9 at LAI values from 1 to 4 (similar to our findings; Fig. 4.4a). Such a 

relation between KL and LAI would be advantageous because sunflower canopies 

can maintain high light-utilization efficiency over the entire cycle. For irrigated 

kenaf earlier studies from Muchow (1992), Manzanares et al. (1993) and Losavio et 

al. (1999) including different genotypes and management practices indicated 

constant KL values per experimental season (KL of 0.56, 0.72 and 0.35 

respectively). In our study we found KL values of 0.62 to 0.71 from year to year 

and an increasing trend of KL with the time of season (P=0.057; Fig. 4.4b). For 

cynara there are no relevant data to compare our findings with.  

 

Water stress effects on KL    

 

Under water limited conditions KL values were always smaller (Fig. 4.4 insets) 

than under irrigated conditions, as a result of irregular adjustment of leaf 

orientation to incident radiation particularly during midday. Sadras et al. (1991) 

working with short and tall sunflower hybrids under different water regimes 

(255–446 mm) found KL values of 0.54 to 0.67, while Ferreira & Abreu (2001) 

studying rainfed (128 mm) sunflower crops found KL values of 0.44–0.65. These 

KL estimates –in line with our data under water limited conditions– were 

substantially lower than the estimates obtained for irrigated sunflower crops 

(KL=0.74–0.89; Fig. 4.4a and Bange et al., 1997; Flénet et al., 1996; Gimenez et al., 

1994). The same statements also hold for kenaf (Fig. 4.4b), although there are no 

relevant literature data to benchmark our data. Therefore, crop modellers should 

include a water supply or transpiration-based reduction factor to account for a 

lower KL when simulating water-limited productivities. Our view is supported 

by O’Connell et al. (2004) who also stated that use of KL and radiation use 

efficiency parameters in models should be limited to environments where these 

values were measured.  

However, to mechanistically quantify KL in response to water stress, it is 

necessary to first understand what causes the decline of KL under the stress. A 

possible reason is that the stomatal closure induced by water stress leads to high 

leaf temperature that will consequently alter leaf angle. This is a common plant 

strategy, which is also called structural photoprotection (Valladares et al., 1999 

and references therein) to avoid excessive light capture inducing high rates of 

transpiration. An alternative model approach is to establish an empirical function 

for use in crop models. For that, an experiment is needed in which various 

severities of water stress would be imposed to plants.  
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Leaf shape, position and orientation effects on KL 

 

Despite the large differences in vertical leaf area distribution among the studied 

species (C3, dicot, Fig. 4.3) we found only 30% differences in KL values (0.62 to 

0.89; no water stress; Fig. 4.4). Estimates are close to the range reported for 

species with broad-leaf type (0.7–1.0; Monsi & Saeki, 2005). According to leaf 

shape, it seems that species with larger individual leaf or leaflet surface area 

showed the higher KL values (sunflower > cynara > kenaf). Given the rapid 

reduction in KL (–48 to –65%; Fig. 4.4) under water stress due to a decrease in leaf 

angle, we can infer that foliage position in the canopy (also leaf shape) is less 

important than foliage inclination (Goudriaan, 1988; Yin & van Laar 2005) in 

determining KL. For a review on the effects of foliage inclination and position on 

light penetration see Niinemets (2010).  

 

Canopy vertical SLN distributions 

 

All species showed non-uniform SLN distributions, particularly in periods when 

LAI was ≥1.5 (e.g. Fig. 4.5). Non-uniformity has been reported for many crops (cf. 

Shiraiwa & Sinclair, 1993; Wright & Hammer, 1994; Anten et al., 1995; Bange et al., 

1997; Del Pozo & Dennett, 1999; Lötscher et al., 2003; van Oosterom et al., 2010) 

but few studies treated the canopy as a dynamic system. In all irrigated canopies, 

observed high SLN values at the top leaves (2.2–3.8 g N m-2; Fig. 4.7g, h and i) are 

comparable with observations of leaf photosynthesis in sunflower (Connor et al., 

1993; Bange et al., 1997), kenaf (Muchow, 1990) and cynara (Archontoulis et al., 

2008b), where maximum net assimilation rates were saturated at SLN > 2.0. SLN 

values at the canopy bottom, were around 1.0 g N m-2 when LAI was ≥ 3 in all 

species (Figs. 4.5 and 4.6). Apparently canopy vertical SLN distribution 

approached values required for photosynthetic saturation at the top and SLN 

decreased to values equivalent to minimum photosynthetic activity roughly at 

high LAI values where much of the radiation had already been intercepted (Fig. 

4.4).  
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Quantification of vertical SLN distributions 

 

Beer’s law (Eq. 2) approximated well SLN distributions in 40 canopies with 

average r2 values of 0.75, 0.81 and 0.79 for sunflower, kenaf and cynara, 

respectively (Figs. 4.5, 4.6; Tables 4.2, 4.3). Bange et al. (1997) found a linear 

SLN/LAI relation for sunflower approximately a week after flowering (SLN = 2.5 

– 0.26·LAI; r2 = 0.76), whereas the slope of the line (KN) and the initial SLN value 

(SLNo) were close to our results. In contrast, Hall et al. (1995) observed 

curvilinear SLN/LAI plots between anthesis and physiological maturity for 

sunflower. In our study we showed that in sunflower vertical SLN distributions 

practically existed only for about 20–25 days during BBCH: 59–75 (Fig. 4.5; Table 

4.2). For kenaf and cynara there are no literature data to compare our findings. 

Anten et al. (1995) and Sands (1995) modified Eq. (2) to reflect the 

distribution of the effective SLN (=SLN – SLNbase; where SLNbase is the minimum 

SLN required for photosynthesis) that is associated with photosynthesis. This 

modified version uses three input parameters, SLNo, SLNbase and the effective KN 

(KNeffective). We used –derived from leaf photosynthesis/SLN plots– SLNbase values 

of 0.3 for sunflower (Connor et al., 1993), 0.43 for kenaf (Muchow, 1990) and 0.42 

for cynara (authors’ unpublished data; see Chapter 5) and then applied this 

modified “effective” equation to our datasets (not shown). Analysis indicated 

that nitrogen extinction coefficients calculated from different equations provided 

much different estimates for the same dataset (KNeffective = 1.28 · KN – 0.0003, n=40, 

r2=0.91). This result agrees well with previous observations by Yin et al. (2003a) 

and therefore explains fairly well the large discrepancy among nitrogen 

extinction values reported in literature, even within the same species.     

 

Year, time of season and water stress effects on vertical SLN distributions 

 

Between years, SLN distributions were rather conservative per crop species, 

meaning that common estimates (SLNo and KN) can be used in modelling (Figs. 

4.5 and 4.6). Within a season, each crop showed a species-specific vertical SLN 

distribution (Table 4.3). However, in all species, higher SLNo were associated 

with higher KN estimates (r2=0.55; P=0.002; n=40 canopies), which is not too 

surprising considering that those canopies with greater SLNo have a steeper 

decline in SLN in the canopy (e.g. Fig. 4.5).  

In sunflower, the remarkable non-uniformity at flowering disappeared in 

the course of the grain filling period (Fig. 4.5; Table 4.2) in line with Sadras et al. 

(1993) and Connor et al. (1995). In kenaf, despite the coexistence of leaves of 

varying age in the same canopy layer –due to a continuous increase in height 

(Fig. 4.2e)– a vertical SLN distribution was apparent for the most of the growing 

cycle (Fig. 4.6a). Overall the data from 20 kenaf and 12 cynara canopies suggest 
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fairly common SLN profiles over the studied periods with little variation across 

water treatments (Fig. 4.6). It seems that during crop growth with and without 

water stress, Nconc and SLA, the two components of the SLN (Fig. 4.7), changed in 

such a way that changes in SLN are small over thermal time and between water 

regimes.  

For common agricultural crops, lack of change in vertical SLN distributions 

over a large part of the growing cycle has also been reported for wheat 

(Bertheloot et al., 2008), soybean (Shiraiwa & Sinclair, 1993) and peanut canopies 

(Wright & Hammer, 1994). Lastly, it should be added that crops responded to 

irrigation by increasing their LAI (Fig. 4.2j and k) or maintaining high LAI values 

for a longer period (Fig. 4.2l) rather than changing the pattern of SLN distribution 

(Figs. 4.5 and 4.6).  

  

Associations between PAR and SLN distributions 

 

This study has shown that SLN distributions in irrigated sunflower and kenaf 

canopies appeared to be largely associated with the light environment (r2>0.66; 

P<0.001; Fig. 4.8). Such associations between light and nitrogen gradients have 

been found in many crops (Sadras et al., 1993; Anten et al, 1995; Del Pozo & 

Dennett 1999; Milroy et al., 2001; Lötscher et al., 2003), and are explained either 

from an adaptive response to irradiance gradient in order to maximise canopy 

photosynthesis (Hirose & Werger, 1987) or as a consequence of the mediation by 

cytokinins in the transpiration stream on the response to light (Pons et al., 2001).  

By calculating the ratio of KNeffective/KL as the optimization theory requires 

(Sands, 1995), we found values much below unity. This means that observed 

(actual) vertical distributions in sunflower and kenaf canopies were less steep 

than the optimal one that would maximize canopy photosynthesis. Gimenez et al. 

(1994) and Connor et al. (1995) showed that the advantage in canopy 

photosynthesis between actual and optimal distributions was small in sunflower 

(3 to 14%) while Hirose & Werger (1987) showed theoretical gains up to 20% in 

daytime canopy photosynthesis.  

  

Conclusions   
 

Light and nitrogen extinction coefficients were quantified for the C3 dicots 

sunflower, kenaf and cynara. Per crop species, KL was rather conservative in the 

course of the study (no water stress), but values differed between years (12–17%). 

Water-stressed summer crops had significantly lower KL values (–48 to –65%) 

than irrigated crops. We found non-uniform SLN distributions in all crops when 

LAI was ≥ 1.5. These vertical distributions were significantly correlated with 

cumulative LAI from the top (r2>0.75 all crops), providing new equations to 



Light and nitrogen canopy profiles 

 91 

upscale photosynthesis from leaf to canopy levels. Vertical SLN distributions 

generally were showed a strong association with light distributions (r2>0.66; 

sunflower and kenaf), but not always intimately so since observed SLN 

distributions were less steep than those that would maximize canopy 

photosynthesis. Our results can be used to estimate light interception and canopy 

photosynthesis, thereby enhancing our ability to assess potential and water-

limited yields of these energy crops.  
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Chapter 5 
 

 

Leaf photosynthesis and respiration of three bioenergy 

crops in relation to temperature and leaf nitrogen: How 

conservative are biochemical model parameters among 

crop species? 
 

 

Abstract  

 

Given the need for parallel increases in food and energy production from crops in the 

context of global change, crop simulation models and data sets to feed these models 

with photosynthesis and respiration parameters are increasingly important. This 

study provides information on photosynthesis and respiration for three energy crops 

(sunflower, kenaf, cynara), reviews relevant information for five other crops (wheat, 

barley, cotton, tobacco, grape), and assesses how conservative photosynthesis 

parameters are among crops. Using large datasets and optimization techniques we 

parameterized the C3 leaf photosynthesis model of Farquhar et al. (FvCB) and an 

empirical night respiration model for tested energy crops accounting for effects of 

temperature and leaf nitrogen. Instead of the common approach of using information 

on net photosynthesis response to CO2 at stomatal cavity (An–Ci), we parameterized 

the model by analysing the photosynthesis response to incident light intensity (An–

Iinc). We first provided convincing evidence that maximum Rubisco-carboxylation 

rate or maximum electron transport rate was very similar whether derived from An–

Ci or from An–Iinc datasets. We then determined parameters characterizing Rubisco 

limitation, electron transport limitation, the degree to which light inhibits leaf 

respiration, night respiration, and the minimum leaf nitrogen required for 

photosynthesis. Model predictions were validated against independent sets. Only 

few FvCB parameters were conservative among crop species, thus species-specific 

FvCB model parameters are needed for crop modelling. Therefore, information from 

readily available but under-explored An–Iinc data should be re-analyzed, thereby 

expanding the potential of combining classical photosynthetic data and the 

biochemical model.  

 

Submitted for publication as: 

Archontoulis SV, Yin X, Vos J, Danalatos NG, Struik PC. 2011. Leaf 

photosynthesis and respiration of three bioenergy crops in relation to 

temperature and leaf nitrogen: How conservative are biochemical model 

parameters among crop species?  



Chapter 5 

 94 

Introduction  

 

In conventional crop modelling leaf photosynthesis is calculated from net 

photosynthesis light response curves (An–Iinc) at ambient atmospheric CO2 level 

using empirical functions (e.g. SUCROS; Goudriaan & van Laar, 1994). In the 

context of better understanding biological processes and exploring the impact of 

climate change, recent crop models (e.g. GECROS; Yin & van Laar, 2005), 3D 

models (e.g. Evers et al., 2010) or terrestrial ecosystem models (e.g. LPJmL; 

Beringer et al., 2011), calculate photosynthesis based on the mechanistic model of 

Farquhar, von Caemmerer & Berry (1980; the FvCB model hereafter).  

The FvCB model describes photosynthesis as the minimum of the Rubisco-

limited rate and the electron transport limited rate. The key parameters of the 

model are the maximum Rubisco-carboxylation rate (Vcmax; see symbols 

explanation in Table 5.1), the maximum electron transport rate (Jmax), and the 

mitochondrial day respiration (Rd). These biochemical parameters are influenced 

both by the physiological status of a leaf such as the amount of leaf nitrogen per 

unit area (Na) (e.g. Harley et al., 1992) and by short- and long-term changes of 

environmental variables such as temperature, light (e.g. Hikosaka, 2005), CO2 (e.g. 

Makino et al., 1994) and drought (e.g. Galmes et al., 2007).  

Usually, the FvCB parameters are obtained by analysis of net 

photosynthesis response to CO2 at stomatal cavity (An–Ci) (e.g. Sharkey et al., 

2007) or by combining An–Ci and An–Iinc curves (e.g. Braune et al., 2009) or by 

combining these curves with chlorophyll fluorescence measurements (Yin et al., 

2009). Obviously, to parameterize the FvCB model, information on An–Ci is 

predominantly considered to be essential, and an ongoing discussion is mainly 

focused on improving the methods of analyzing these A–Ci curves (Ethier et al. 

2004; Sharkey et al., 2007; Gu et al., 2010).  

In the context of forward crop modelling typically for predictions at 

ambient CO2 level, the FvCB model is used to project leaf photosynthetic rates in 

response to both temporal (diurnal and seasonal) and spatial (within a crop 

canopy) variation in incoming light intensity. This implies that in the context of 

inverse modelling important FvCB-model parameters Jmax and Vcmax should and 

can be estimated from An responses to Iinc. This would reflect better the tradition 

that crop modellers describe leaf photosynthesis from its response to light 

intensity (e.g. Goudriaan, 1979), in contrast to the tradition that photosynthesis 

physiologists study gas exchange measurements mainly across various levels of 

CO2 (e.g. von Caemmerer & Farquhar 1981). In fact, the FvCB model can be 

parameterized from analysis of An–Iinc data alone (Niinemets & Tenhunen, 1997; 

Kosugi et al., 2003), but so far there is no information about the accuracy of Jmax 

and Vcmax parameters derived from such an analysis. If Jmax and Vcmax estimates 
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derived from analysis of An–Iinc are similar to those obtained from the common 

A–Ci analysis or combined analysis of An–Ci and An–Iinc curves, it may generate 

an opportunity to reduce empiricism in crop models by using readily available 

An–Iinc data. Therefore the first objective of this paper is to explore this 

opportunity by parameterising the FvCB model using An–Iinc data.  

In the light of current trends for parallel increase in food and energy 

production from crop species in the context of climate change, the use of the 

FvCB-based simulation models together with an urgent need to feed these 

models with appropriate photosynthetic and respiration parameters has been 

increased (e.g. see Beringer et al., 2011). In literature, reports on Jmax, Vcmax, Rd and 

night respiration (Rn) parameters in relation to environmental and management 

factors are few for economically important crop species and especially for new 

bioenergy species, compared to the rich information found for trees. This is 

highly noticeable in recent studies (Medlyn et al., 2002a; Müller et al., 2005; 

Braune et al., 2009). Therefore, the second objective of this paper is three-fold: (i) 

to provide new information on photosynthesis and respiration for three 

Mediterranean energy crops (Helianthus annuus, sunflower; Hibiscus cannabinus, 

kenaf; and Cynara cardunculus, cynara); (ii) to summarize existing information for 

five major cash crops (wheat, barley, cotton, tobacco and grape); and (iii) to assess 

how conservative FvCB parameters are among crop species to better assist 

modellers in this exploitation.  

Our analysis is based on the FvCB model and focuses on the effects of 

temperature and Na. This is because earlier studies on Vcmax and Jmax temperature 

dependencies showed great species-to-species variability (Leuning, 2002; Medlyn 

et al., 2002a) and because use of an “average leaf” (neglecting Na) to represent 

whole leaf life-span resulted in large errors in modelling (Wilson et al., 2001). Na 

is linearly related to Rubisco content that drives CO2 fixation (Makino et al., 1994), 

reflects well leaf dynamics (leaf age, rank; Archontoulis et al., 2011a), and 

comprises a reference index for scaling photosynthetic CO2 assimilation from leaf 

to canopy levels (de Pury & Farquhar, 1997).  

Sunflower, kenaf and cynara crops were chosen because of their diverse bio-

energy uses. Recently, relevant information for modelling like light and nitrogen 

distribution within crop canopies was derived for these crops (Archontoulis et al., 

2011a). Among these crops, the perennial cynara has long annual growth cycles 

(~ 10 months each; Archontoulis et al., 2010a). Given the numerous reports 

together with their diverse findings on photosynthetic and respiratory 

acclimation to growth environment (Atkin et al., 2005; Ow et al., 2008; Yamori et 

al., 2005, 2010; Silim et al., 2010), we also investigate seasonal acclimation effects 

on photosynthesis and respiration for the cynara crop.  
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Table 5.1: List of main symbols used in this study with their definition and unit  
 

Symbol  Definition Unit  
 

Ac Rubisco limited net photosynthetic rate µmol CO2 m-2 s-1 

An Net assimilation rate µmol CO2 m-2 s-1 

Aj Electron transport limited net photosynthetic rate µmol CO2 m-2 s-1 

An,max Light saturated An µmol CO2 m-2 s-1 

aR Constant parameter in Eq. 12 µmol CO2 m-2 s-1 

bR Slope parameter in Eq. 12 – 

Cc CO2 chloroplast partial pressure µbar 

Ci Intercellular CO2 partial pressure µbar 

Dj, Dv Deactivation energy of Jmax and Vcmax (Eq. 6) J mol-1 

EKmc, EKmo Activation energy for Kmc and for Kmo  J mol-1 

Ej, ERn, Ev  Activation energy of Jmax, Rn and Vcmax (Eqs. 5–6) J mol-1 

ERn(a) Constant parameter (Eq. 11) J mol-1 

ERn(b) Slope parameter in (Eq. 11) J m-2 mol-1 g-1 N 

gm Mesophyll conductance for CO2 diffusion  mol m-2 s-1 

gs Stomatal conductance for H2O  mol m-2 s-1  

Iinc Incident light on leaf surface  µmol photons m-2 s-1 

J Photosystem II electron transport rate µmol e–m-2 s-1 

Jmax Maximum electron transport rate  µmol e–m-2 s-1 

Jmax25 Value of Jmax at 25°C  µmol e–m-2 s-1 

Kmc Michaelis-Menten constant for CO2 µbar 

Kmo Michaelis-Menten constant for O2 mbar 

Na Leaf nitrogen per unit area g N m-2 leaf 

Nb Minimum Na required for photosynthesis  g N m-2 leaf 

O Oxygen partial pressure of the air (=210) mbar 

R Universal gas constant (=8.314) J K-1 mol-1 

Rd Day respiration rate µmol CO2 m-2 s-1 

Rn Night respiration rate  µmol CO2 m-2 s-1 

Rn25 Value of Rn at 25°C µmol CO2 m-2 s-1 

Sj, Sv Entropy term for Jmax and Vcmax (Eq. 6) J K-1 mol-1 

Vcmax Maximum carboxylation rate µmol CO2 m-2 s-1 

Vcmax25 Value of Vcmax at 25°C µmol CO2 m-2 s-1 

Γ* Ci based CO2 compensation point in the absence of Rd µbar 

θ Convexity factor for the response of J to Iinc – 

κ2LL Conversion efficiency of Iinc into J at low light  mol e- mol-1 photons 

ΦCO2LL Apparent quantum yield of An at low Iinc mol CO2 mol-1 photons 

χj Slope of the Jmax25 and Na relationship (Eq. 10) µmol e- g-1 N s-1 

χR Slope of the Rn25 and Na relationship (Eq. 8) µmol CO2 g-1 N s-1 

χv Slope of the Vcmax25 and Na relationship (Eq. 9) µmol CO2 g-1 N s-1 
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Materials and Methods  
 

Literature data (An–Ci versus An–Iinc)  

 

As stated in Introduction, the first objective of this study was to compare Vcmax 

and Jmax estimates derived either from An–Ci or from An–Iinc curves with those 

from the combination of the two types of curves. For this we used published data 

from Yin et al. (2009) for Triticum aestivum (cv. Minaret). This set contains the 

dependences of An to both Ci and Iinc, while all relevant parameter values 

required to fit the FvCB model to dataset were available, therefore avoiding any 

statistical artifact in Vcmax and Jmax estimation (see below). In addition, wheat 

measurements (4 replicates; all at 25°C) were conducted at leaves with different 

Na status (15 sets of An–Ci and 15 of An–Iinc curves), allowing the comparison of 

Jmax and Vcmax estimates to be made over a wide range of their values. For more 

information about the measurements see Yin et al. (2009).             

 

Energy crop species and study site  

 

Sunflower (cv. Panter), kenaf (cv. Everglades 41) and cynara (cv. Biango avorio) 

crops were grown in different sections of the same field (for details see 

Archontoulis et al., 2011a) in central Greece (39o25’43.4’’ N, 22o05’09.7’’ E, 105 m 

asl) for three years (2007–2009). The site has a Mediterranean climate with 

cold/wet winters and warm/dry summers (Fig. S-5.1 in supplementary files). The 

soil was loamy, classified as Aquic Xerofluvent, with shallow groundwater table 

(1.8–2.8 m below surface during May). In general, crops grown at that site 

produce much higher biomass yields than crops grown on dry soils (e.g. 

Archontoulis et al., 2010b). During summer, sunflower and kenaf crops were 

frequently irrigated at intervals of 4–6 days according to potential 

evapotranspiration (for site-specific calculations, see Danalatos & Archontoulis, 

2010) while cynara was irrigated only a few times, when necessary during May–

June but not during November–April (see precipitation in Fig. S-5.1).  

  

Gas exchange measurements and experimental protocol 

 

Leaf gas exchange (GE) measurements were implemented in situ in fully 

expanded leaves using a portable open gas exchange system with a 6.25 cm2 

clamp-on leaf chamber (ADC, LCi/LCpro+, Bioscientific Ltd., Hoddesdon, UK). 

CO2/H2O exchanged by the leaf was measured using an infrared gas analyzer in a 

differential mode. The system allowed for an automated micro-climate control in 

the leaf chamber. Before each measurement, attached leaves were adapted 10–45 

min to chamber conditions, depending on leaf age, time of the day and season. 
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Day-time GE measurements were taken within one to two days after irrigation 

application and during morning hours to ensure no water stress and to avoid 

photosynthesis midday depression. Night-time GE measurements were initiated 

30–45 min after sunset and lasted for 4–5 hours each time. 

To parameterize the model, a common experimental protocol was applied 

per species, including four different sets of GE measurements. In all sets, CO2 

concentration was kept at 380±5 µmol mol-1. The first set aimed to determine the 

response of net photosynthesis (An) to incident light (Iinc). Accordingly, at fixed 

leaf temperature and measured Na, An was determined in eleven Iinc steps (2000, 

1500, 1000, 500, 250, 200, 150, 100, 50, 20 and 0 µmol photons m-2 s-1); in total 76 

curves were constructed. Adaptation time to each Iinc level was approximately 5 

min, except for Iinc=0 where it was >10 min; three to five replicated An 

measurements were taken at each Iinc step to ensure stability and precision of 

measurements. Given that the examination of steady-state photosynthesis takes 

considerable time and that GE measurements should be done within a limited 

time frame in order to avoid stress conditions (see above), we determined the 

response of An to leaf temperature (set II) at three Iinc levels, 450, 900 and 1800 

µmol photons m-2 s-1. Na was also determined. At each Iinc, leaf temperature was 

increased or decreased up to 10°C from the ambient temperature in steps of 2–

4°C and replicated An measurements were recorded every 5 min.  

To establish the relationship between net photosynthesis and Na (set III), it 

was necessary to evaluate leaves with as wide a Na range as possible. So, in 

addition to earlier sets, An measurements were done at saturated Iinc (1600–1800 

µmol photons m-2 s-1) on leaves from different insertion height in the canopy, 

from different growth stages and from plots with different N-status. Per leaf 

(approx. 180 leaves assessed), 5–10 measurements were taken at leaf temperature 

close to the ambient temperature. To obtain direct measurements of the 

mitochondrial respiration occurring in the night (Rn), the response of Rn to 

temperature was investigated (set IV). Leaf temperature increased or decreased 

up to 10°C from the ambient temperature at small steps of 1–2°C and replicated 

Rn measurements were recorded every 4 min. Measurements were done on 

leaves with (as much as possible) variable Na.  

To validate the models we used GE measurements obtained at the same 

genotypes growing in the same site during summer 2005 and 2006 (set V). 

Sunflower and kenaf GE measurements were collected using similar techniques 

and time frames as described for sets I to IV. In cynara, a different protocol was 

followed. The external unit that controls chamber microclimate was removed and 

measurements refer to real ambient conditions. Measurements were recorded 

every 4–8 minutes while climatic variables were continuously changing following 

24 diurnal trends.  
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The wide range of measuring temperature used (15–40°C) unavoidably 

resulted in variation in vapour pressure difference (VPD). An effort was made to 

reduce that variation by keeping humidity high at high temperature. In most 

cases, VPD was maintained below 3 kPa to prevent stomata closure (Bernacchi et 

al., 2001). Although VPD was sometimes above 3 kPa at the highest temperatures, 

the stomatal conductance for H2O vapour was not less than 0.30 mol m-2 s-1 (as in 

Yamori et al., 2005).  

To minimize artifacts associated with commercial photosynthesis systems 

(for a review, see Pons et al., 2009), we took the following actions: a) we corrected 

for the CO2 respired under the gasket surface (total 4 mm width; R. Newman, 

pers. comm.) following the common approach of Pons & Welschen (2002) and b) 

we increased the number of replications and observations to reduce the 

measurement noise, especially when low CO2 exchange rates were measured (e.g. 

respiration). All gas exchange characteristics were re-calculated according to von 

Caemmerer & Farquhar (1981).  

The portion of the leaf used for measurements was cut and its area was 

measured with a Li-Cor area meter. The leaf material was then weighed after 

drying at 70°C to constant weight and its total nitrogen concentration was 

measured using the Kjeldahl method. From these measurements, the leaf 

nitrogen content Na (g N m-2) was calculated.       
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Figure 5.1: Typical net photosynthesis light response curve (An–Iinc) at ambient CO2 

concentration. Curve regions for the Rubisco-carboxylation limited rate (Ac-limited, Eq. 2; 

──) and electron transport limited rate (Aj-limited, Eq. 3; - - -) are indicated. Usually, Ac-

limitation occurs above 1500 µmol photons m-2 s-1; however, it is also possible that the 

entire An–Iinc curve is described as Aj-limited.     
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Model and its parameterization 

  

The FvCB model predicts net assimilation rate (An µmol CO2 m-2 s-1) as the 

minimum of two processes (see Fig. 5.1), Rubisco-carboxylation limited rate (Ac) 

and RuBP-regeneration or electron transport limited rate (Aj):  

 

},min{ jcn AAA =
                                  (1) 

 

Rubisco limited photosynthesis is calculated as a function of maximum 

carboxylation capacity (Vcmax, µmol CO2 m-2s-1):  

 

( ) d

momci

ic

c R
KOKC

CV
A −

++

Γ−
=

1

)( *max

            (2) 

 

where Ci (µbar) and O (mbar) are the intercellular partial pressures of CO2 and O2 

respectively, Kmc (µbar) and Kmo (mbar) are the Michaelis-Menten coefficients of 

Rubisco for CO2 and O2, respectively, Γ* (µbar) is the CO2 compensation point in 

the absence of Rd (day respiration in µmol CO2 m-2 s-1, which comprises 

mitochondrial CO2 release occurring in the light other than photorespiration; von 

Caemmerer et al., 2009).  

There are various equations to describe the rate of photosynthesis when 

RuBP regeneration is limiting (Farquhar & von Caemmerer 1982; Yin et al., 2004). 

The most widely used form is given by: 
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where J (µmol e– m-2 s-1) is photosystem II electron transport rate that is used for 

CO2 fixation and photorespiration. J is related to the amount of incident 

photosynthetically active irradiance (Iinc; µmol photons m-2 s-1) by:  
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where Jmax (µmol e– m-2 s-1) is the maximum electron transport rate at saturating 

light levels, θ is a dimensionless convexity factor for the response of J to Iinc, and 

κ2LL (mol e- mol-1 photons) is the conversion efficiency of Iinc into J at limiting light 

levels (Yin et al., 2009; Yin & Struik, 2009a). The formulation of Eqs (2) and (3) 

assumes infinitive mesophyll conductance (gm) for CO2 transfer to chloroplast, so 

that Ci is used as the proxy to chloroplast CO2 level (Cc). There is increasing 
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evidence that gm might be low enough to allow a significant drawdown of Cc 

from Ci in most species (Warren, 2004; Flexas et al., 2008). However based on our 

available gas exchange data it was risky to evaluate gm (Pons et al., 2009; von 

Caemmerer et al., 2009; Yin & Struik, 2009b), hence we were obliged to use the 

forms of Eqs (2) and (3) as in most earlier studies (e.g. Medlyn et al., 2002a; 

Kosugi et al., 2003). Omitting gm in our analysis means that an appropriate 

consideration is needed in choosing values of the Rubisco kinetic constants (see 

below). 

The temperature responses of respiration and of Rubisco kinetic properties 

(Kmc and Kmo) are described using an Arrhenius function (Eq. 5) while the 

temperature responses of Vcmax and Jmax were explored using a peaked Arrhenius 

function (Eq. 6); both functions were normalized with respect to their values at 

25°C:   
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where T is the leaf temperature (°C); X25 is the value of each parameter at 25°C 

(Rn25, Kmc25, Kmo25, Vcmax25, Jmax25); Ex is the activation energy of each parameter (ERn, 

EKmc, EKmo, Ev and Ej; in J mol-1); Dx is the deactivation energy for Jmax and Vcmax (Dj 

and Dv in J mol-1); Sx is the entropy term for Jmax and Vcmax (Sj, Sv in J K-1 mol-1) and 

R is the universal gas constant (= 8.314 J K-1 mol-1). Given that Eq. (5) is a special 

case of Eq. (6), F-tests were performed to determine whether Eq. (6) described 

temperature responses of Vcmax and Jmax significantly better than Eq. (5) did. When 

Eq. (6) was over-parameterized, as often observed in literature (Medlyn et al., 

2002a; Dreyer et al., 2001), then we fixed Sx at 650 J K-1 mol-1 (Harley et al., 1992). 

Rubisco kinetic properties are generally assumed constant among C3 species 

(von Caemmerer et al., 2009). However, values of these constants and their 

temperature dependency reported in the literature vary appreciably, so the 

choice of Rubisco parameters is a matter of considerable uncertainty (Dreyer et al., 

2001). In this work, similar to many other reports (e.g. Medlyn et al., 2002a; 

Müller et al., 2005) we selected Rubisco parameters reported by Bernacchi et al. 

(2001) because (i) these values were estimated from in vivo measurements 

without disturbance of the leaf, and (ii) they were derived using the Ci–based 

FvCB model and hence compatible with our analysis assuming an infinite gm (see 
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above). The parameter values are: Kmc25=404.9 µbar; Kmo25=278.4 mbar; EKmc=79430 

J mol-1; and EKmo=36380 J mol-1 (Table 5.1). Furthermore, using these values the 

temperature dependence of Γ* was calculated as (Yin et al., 2004):  
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where the factor 0.5 is mol CO2 released when Rubisco catalyses the reaction with 

1 mol O2 in photorespiration. The term in the brackets was derived using 

Bernacchi et al. (2001) parameters for temperature dependence of maximum 

carboxylation and oxgenation rates of Rubisco.  

The basal capacity of Rn25, Vcmax25 and Jmax25 is linearly related to Na (Harley et 

al., 1992; Hirose et al., 1997; Müller et al., 2005; Braune et al., 2009):  

 

)(25 baRn NNR −= χ                      (8) 

)(25max bac NNV −= νχ                      (9) 

)(25max baJ NNJ −= χ                     (10) 

 

where χR (µmol CO2 g-1 N s-1), χv (µmol CO2 g-1 N s-1) and χj (µmol e- g-1 N s-1) are 

the slopes for Rn25, Vcmax25 and Jmax25 respectively, and Nb (g N m-2) is the minimum 

value of Na at or below which An is zero. In principle, this Nb is practically 

impossible to be measured and its estimation depends on the statistical methods 

used and on the available datasets. For instance, different Nb estimates were 

found when different datasets were examined (An or Vcmax or Jmax; e.g. Harley et al., 

1992; Müller et al., 2005; Table S-5.1 in the supplementary file) or when Nb was 

estimated simultaneously with other parameters in optimization procedures or 

when different equations (linear or non-linear) were applied to the same dataset 

(Niinemets & Tenhunen, 1997). Given the simplicity required in modelling and 

the lack of biological interpretation of different Nb values for the same species, we 

determined a unique Nb value (per species) beforehand from direct assessments 

of An–Na plots. Then this estimate was used as input parameter.   

Besides the basal capacities, there is some evidence that the activation 

energy for respiration (ERn) depends on the position of the leaf in the canopy 

(Bolstad et al., 1999; Griffin et al., 2002) and perhaps ERn is also associated with Na 

since a close relation between leaf canopy position and Na usually exists 

(Archontoulis et al., 2011a). We tested this by assuming a linear relation between 

ERn and Na: 
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and checked whether the slope parameter ERn(b) differed significantly from zero.   

So far, we have described temperature and nitrogen relations for Rn, as we 

had extensive GE measurements during the night period. However, the FvCB 

requires estimates for Rd, which is much more difficult to measure. To estimate 

Rd we applied regression analysis to the linear sections of the An–Iinc curves for 

each species (Kok method; see Sharp et al., 1984). From this analysis, Rd was 

calculated as the y-axis intercept of the linear regression (Iinc range: 20–150 µmol 

photons m-2 s-1) and the corresponding Rn was estimated as the mean of the An 

values at 0 µmol photons m-2 s-1. Additionally, the apparent quantum efficiency at 

limiting light (ΦCO2LL, mol CO2 mol-1 photons) on the incident light basis was 

calculated from the slope of the regression. We then related the estimated Rd to Rn 

as:  

 

RnRd aRbR +⋅=                                 (12) 

 

where bR and aR are the slope and the constant parameter of the linear model, 

respectively. By assuming that activation energies for Rd and Rn are similar and 

taking into account the precise quantification of Rn based on a large dataset, the 

temperature and nitrogen dependencies of Rd can be calculated from combining 

Eqs. 5, 8, 11 and 12. This approach allows us to estimate Rd values for sets II and 

III (see above) where Iinc exceeds 350 µmol m-2 s-1, for which we were unable to 

use the Kok method for estimating Rd.  

 

Summary of parameters and statistics  

 

The basic equations of the FvCB model, Eqs. (1–4), capture the response of An to 

Ci and to Iinc. Coupled with auxiliary temperature (Eqs. 5–6) and nitrogen (Eqs. 7–

12) equations, the model also quantifies leaf photosynthesis and respiration (Rd 

and Rn) in response to these environmental variables. Data from sets I to IV were 

analyzed using step-wise optimization procedures. Per crop, 16 parameters were 

estimated following the order: step 1: Nb; step 2: χR, ERn(a), ERn(b); step 3: bR, aR; step 

4: χv, Ev, Dv, Sv; step 5: κ2LL; step 6: χj, Ej, Dj, Sj, and θ (see results). Inputs to the 

model are: Ci, Iinc, leaf temperature and Na.  

For each step, regression fitting was carried out using the GAUSS method in 

PROC NLIN of SAS (SAS institute Inc,). To investigate for seasonal effects of 

acclimation on photosynthesis and respiration rates of cynara, datasets were split 

into two periods: a cold period with low light from November to April and a 

warm period with high light from May to June (Fig. S-5.1). Then, we introduced 

dummy variables (Z1=1 and Z2=0 for warm and Z1=0 and Z2=1 for cold periods, 

respectively) into regression analysis to separate for the effects. Dummy variable 

was also used to best estimate the Nb parameter (see Results).  
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The goodness of model fit was assessed by calculating r2 and the relative 

mean root square error (rRMSE). A sensitivity analysis was also performed. 

Model predictions were validated against independent datasets (set V).     

 

Re-analysis of the wheat datasets (An–Ci vs. An–Iinc) 

 

Vcmax and Jmax estimates per set of data for the wheat (Yin et al., 2009) were 

calculated by applying the same curve-fitting techniques in SAS. The following 

parameters were set as inputs to the model (see Eqs. 1–4 and 7): Kmc25 and Kmo25 

from Bernacchi et al. (2001); and Rd25, Rn25, κ2LL and θ per set of data from Yin et al. 

(2009). Vcmax and Jmax were successfully estimated simultaneously in 40 out of the 

45 cases (15 sets × 3 methodologies). In five cases, we failed to estimate Vcmax from 

An–Iinc curves analysis because in these cases the entire curve was Aj-limited (Fig. 

5.1). Then we calculated Vcmax directly from Eq. 2 with simple substitution using 

data points where Iinc >1500 µmol photons m-2 s-1, and by setting Vmax as an input 

to the model we estimated again the Jmax parameter. To be consistent, results for 

all An–Iinc curves were presented following the two-step approach, because 

estimates from both approaches were very close.  
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Figure 5.2: Relationships between Vcmax (µmol CO2 m-2 s-1) and Jmax (µmol e–m-2 s-1) 

estimated from photosynthetic light response curves at ambient CO2 concentration (○; 

An–Iinc) or from photosynthetic CO2 response curves at saturated light (●; An–Ci) versus 

estimates obtained from an analysis of combined An–Iinc and An-Ci curves. Data for An–Ci 

and An–Iinc measurements are from Yin et al. (2009) for Triticum aestivum (n=15).  
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Results   

 

Vcmax and Jmax estimates from An–Ci and/or An–Iinc curves 

 

Fig. 5.2 illustrates Vcmax and Jmax from An–Ci and from An–Iinc curves versus the 

combination of those curves. As expected, Vcmax and Jmax estimates obtained from 

An–Ci curves were almost identical to the estimates based on the combined data 

(r2 = 0.97–0.99). However, we found that An–Iinc curves alone provided also 

sufficient estimates (r2=0.91–0.93) and thus can be considered as alternative to 

predominant An–Ci curves to parameterize the FvCB model. In fact, regression 

lines in Fig. 5.2 were matching across a very wide range of Vcmax and Jmax values. 

Even in cases where photosynthetic responses to light was entirely Aj–limited 

(Fig. 5.1), Vcmax estimates obtained either from An–Iinc or An–Ci data were close 

(Fig. 5.2). The slight discrepancy of the estimates at high Vcmax and Jmax values (Fig. 

5.2) caused a lower r2 for the An–Iinc compared to An–Ci estimates.     

 
Table 5.2: Estimates (standard error in parenthesis) of the non-linear equation used to 

describe data illustrated in Fig. 5.3. Amax is the maximum net assimilation rate (µmol CO2 

m-2 s-1) at saturated light, maximal leaf nitrogen content, ambient CO2 concentration and 

at optimum (filled symbols) and non-optimum (open symbols) temperature ranges; c is a 

dimensionless factor determining the steepness of the non-linear model; and Nb is the 

minimum leaf nitrogen content (g N m-2) required for photosynthesis  

Species Symbol1 Amax  c Nb2 
 

filled (26–34°C) 36.6 (2.48) 1.19 (0.195) 
Sunflower 

open 26.4 (1.45) 1.65 (0.313) 
0.387 (0.078)  

filled (27–35°C) 35.8 (2.18) 1.29 (0.269) 
Kenaf 

open 29.2 (2.12)  1.45 (0.334) 
0.390 (0.126)  

filled (22–31°C) 36.4 (2.41)  1.08 (0.191) 
Cynara 

open 23.9 (2.16) 1.22 (0.725) 
0.416 (0.097)  

1: symbols used in Fig. 5.3. 
2: the confidence limits for Nb are: 0.231 to 0.541, 0.139 to 0.640 and 0.225 to 0.608 for 

sunflower, kenaf and cynara, respectively.  

 

Step-wise estimation of model parameters  

 

Step 1: Nb estimation  

 

Measured light saturated An (An,max) responded non-linearly to increasing Na in 

all tested crops (Fig. 5.3; r2>0.81; P<0.001). An effect of temperature was detected 

in this relationship only at high Na (Fig. 5.3). To properly estimate the Nb value 

from these plots we used a dummy variables approach, in order to obtain a 

unique Nb estimate per crop, while allowing the equation to vary with different 

temperatures (optimum vs. non-optimum temperature ranges; Fig. 5.3). Derived 
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parameters are listed in Table 5.2. Nb values for all crops were close to 0.4 g N m-2, 

while the lack of Na data below 0.7 g m-2 caused a high standard error of the 

estimate for Nb (Table 5.2).  
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Figure 5.3: Relationships between light saturated net photosynthesis, An (Iinc >1500 µmol 

m-2s-1; CO2=380 µmol mol-1) and leaf nitrogen content, Na. Filled symbols refer to data 

obtained at temperatures near the optimum temperature for photosynthesis per species 

(sunflower: 26–34°C; kenaf: 27–35°C; cynara: 23–31°C) and open symbols refer to data 

obtained at sub- (□) or supra- (∆) optimum temperature ranges. Each point is an average 

of 4 to 10 measurements. Lines are fits from a three-parameter non-linear equation: 

An=Amax{2/(1+exp(–c(Na–Nb)))–1}, (see Sinclair & Horie 1989); where Amax is the asymptote 

(maximum value) of the dependent variable; c is the parameter determining the 

steepness of the curve; Nb is the intercept of the X-axis denoting a threshold leaf nitrogen 

value at or below An equals zero. Estimates of parameters are given in Table 5.2. Cynara’s 

data points were mostly collected during May–June.   
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Step 2: Rn in relation to temperature and Na  

 

By combining equations 5, 8 and 11, Rn parameters were estimated (Table 5.3). In 

the case of cynara, an additional seasonal effect was found with significantly 

higher Rn rates for the winter/cold compared to summer/warm growing leaves 

(Fig. 5.4). Incorporation of this effect into the model improved r2 from 0.68 to 0.72. 

Of the two Rn parameters, temperature sensitivity (ERn) was significantly (P<0.01) 

affected by season; but the slope of the Rn–Na relation (χR) was not (P=0.263), thus 

a common χR value was calculated (Table 5.3). Rn models’ goodness of fit was 

satisfactory (r2> 0.72; rRMSE <0.28 across species).   
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Figure 5.4: Cynara’s night respiration rates (Rn) in relation to leaf temperature. Data is 

presented per growth season and includes leaves with various Na. Panel (a) shows the 

predicted Rn from a simple temperature sensitive model (Eq. 5; used parameter values 

shown in panel a),  while panel (b) shows the predicted Rn from a combined nitrogen, 

temperature and acclimation sensitive model (see parameter values in Table 5.3).    
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Table 5.3: Estimates (standard error in parenthesis) of parameters used to describe 

temperature and nitrogen sensitivities of photosynthesis and respiration rates in three 

bioenergy crops. For cynara, when significant differences between warm and cold season 

were found, two estimates are given  

 Parameter Sunflower Kenaf Cynara-warma Cynara-colda 
 
 

Rn χR  0.609 (0.006) 0.954 (0.015) 0.775 (0.009) 

 ERn(a)  117912 (1814) 100740 (3250) –10900 (5617) 146956 (4281) 

 ERn(b)  –23346 (770) –15743 (1455) 33040 (2490) –26640 (1858) 

 n (night)b 2492 1403 3212 

 r2 0.799 0.793 0.724 
 

Rd/Rn bR  

 αR  

0.843 (0.040) 

0.390 (0.107) 
 

Vcmax χv  73.8 (0.94) 66.7 (0.92) 65.2 (0.62) 

 Ev  53688 (1631) 61812 (1402) 190831 (33853) 

 Dv  205638 (355) 0 158486 (30907) 

 Sv  650c 0 550 (108.2) 

J χj  144.2 (3.4) 122.1 (1.88) 100 (0.91) 92.2 (0.88) 

 Ej  43295 (5122) 28584d (1131) 23111 (971) 

 Dj  125324 (12653) 0d 204489 (218) 

 Sj  405 (38.47) 0d 650c  

 κ2LL  0.255 (0.018) 0.278 (0.013) 0.314 (0.014) 0.419 (0.011) 

 θ 0.607 (0.027) 0.627 (0.023) 0.847 (0.011) 

 n (day)b 1366 2042 2334 

 r2 0.928 0.909 0.916 
 

Ratio  Jmax/Vcmax e 1.95 1.83 1.53 1.41 

 Rd/Vcmaxe 0.0057 0.0103 0.0085 

For units see Table 5.1. 

a: warm period, from early May to end of June; cold period, from November to mid-April; see  

Fig. S-5.1 
b: number of data used in analysis 
c: fixed value (see Materials and methods).  
d: alternatively the following parameters: Ej = 28149, Dj = 474614 and Sj = 1482 (with a 

temperature optimum of 41.7°C) gave equal temperature sensitivities but values were 

rejected due to high standard error of estimate. 
e: normalized to 25°C.     

 

 

Step 3: Relation between Rd and Rn 

 

Plotting Rd vs. Rn gave a robust linear relation with no significant differences 

among species (P=0.225; Fig. 5.5; Table 5.3). Analysis showed that mitochondrial 

respiration was inhibited by about 28% in the light for the species studied. The 

observed x-axis intercept (aR=0.39) differed significantly from zero (P=0.0039), 

indicating that Rn and Rd were not entirely proportional (Fig. 5.5). Additionally, 
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no effect of Na (r2=0.01; P=0.67) but a significant effect of temperature (r2=0.18; 

P=0.008) was found on the Rd/Rn ratio, showing that the ratio approached unity at 

high temperatures. Similarly, the ratio of Rn/An,max, which ranged from 7–11% 

across species, was insensitive to changes in Na (P>0.05), but increased 

significantly with increasing temperature (r2=0.62; P<0.01; data not shown).  

 

Step 4: Vcmax in relation to temperature and Na 

 

The relationships of Vcmax with temperature and Na were quantified by fitting Eqs 

2 and 5–12 to data obtained at very high light levels (Iinc≥1500 µmol photons m-2 s-

1) to ensure that An is limited only by Rubisco. All required parameters (χv, Ev, Dv 

and Sv) were well estimated. Across species, there were small differences (<12%; 

Table 5.3) in χv, and large differences in temperature sensitivities above 30°C (Fig. 

5.6a; including other crops).  

Sunflower temperature sensitivity was best described by the peaked 

Arrhenius equation (r2=0.736; P<0.001; Table 5.3), showing an optimum 

temperature for Vcmax at 38.7°C (calculated from Eq. A1 in the Appendix). For 

kenaf and cynara no optimum temperature was observed within our 

measurement range (18–41°C; Fig. 5.6a). To explore any acclimation of Vcmax to 

growth environments in cynara, we allowed the model to estimate different 

parameters for two contrasting seasons. We did not find any significant effect of 

the growing season on χv (65.8 vs. 64.3; P=0.094) neither on Ev, Dv and Sv 

parameters (P=0.247), meaning little seasonal Vcmax acclimation.  

 

Step 5: κ2LL in relation to temperature and Na 

 

In a next analysis we used the entire dataset and earlier estimates for Vcmax to 

calculate electron transport parameters using the full model. The optimization 

procedure failed to simultaneously estimate six parameters (over-fitting). 

Therefore, we first estimated κ2LL indirectly from ΦCO2LL information (see equation 

A2), and then set κ2LL as an input to the model. To that end, correlations of κ2LL 

with temperature, light and nitrogen were investigated. Results indicated poor 

correlations with Na (r2=0.26, P=0.025), leaf temperature (r2=0.19, P=0.104), and the 

combination of the above (r2=0.44, P<0.01; data not shown). However, better 

relationships were obtained when κ2LL was regressed against seasonal 

temperature (r2=0.40, P=0.004) and radiation data (r2=0.34, P=0.003), showing a 

long-term κ2LL acclimation. This became clearer when average κ2LL values per 

crop and per growth environments were considered (Fig. 5.7). Our findings were 

supported fairly well by literature data (Fig. 5.7). Based on this analysis, we 

considered average κ2LL values per species in further analyses (including 

acclimation effect for cynara, Table 5.3).  
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Figure 5.5: Relationship between day (Rd) and night (Rn) respiration rates (see Table 5.3).    
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Figure 5.6: Temperature sensitivities for Vcmax (a) and Jmax (b). Values normalized to 1 at 

25°C. Filled symbols refer to bioenergy crops while open symbols refer to wheat (de Pury 

& Farquhar, 1997), barley (Braune et al., 2009), cotton (Harley et al., 1992), grapevine 

(Schultz, 2003), tobacco (Bernacchi et al., 2001; 2003) and to perennial Plantago asiatica 

(Ishikawa et al., 2007). For kenaf both observed Jmax temperature sensitivities are plotted 

(see Table 5.3; note that for kenaf the measurement range was up to 41°C).  
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Figure 5.7: Conversion efficiency of incident light into electron (κ2LL) in relation to (a) 

seasonal growth temperature, (b) short-term changes in leaf temperature, (c) seasonal 

irradiance  and (d) Na, for three bioenergy crops (filled symbols; ■: sunflower, ●: kenaf, 

▲: cynara warm, ▲: cynara cold) and four major field crops (open symbols; see panels 

for details). Growth temperatures and irradiances calculated from Fig. S-5.1. For 

sunflower and kenaf one average κ2LL value (± vertical standard error) was calculated 

because measurements (set I) were conducted during the July–August period when 

temperature and radiation do no change much (Fig. 5.1). In contrast, for cynara (cold and 

warm) four average κ2LL values were calculated, reflecting the months: November, April, 

May and June, respectively. Horizontal bars (when larger than symbols) indicate the 

mean standard error of the explanatory variable. We could not retrieve information on 

growth temperature and irradiance from Müller et al. (2005) and Schultz (2003) studies.  
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Step 6: Jmax in relation to temperature and Na 

 

All Jmax temperature sensitivities (except kenaf; Table 5.3) were best described 

using Eq. (6). Across species, Jmax temperature sensitivity was highly variable (Fig. 

5.6b including other crops), while the maximum Jmax was obtained at lower 

temperature than the maximum Vcmax (temperature optimum of 32, 42 and 33°C 

for sunflower, kenaf and cynara, respectively; Fig. 5.6). As a result, there was a 

decreasing trend of Jmax/Vcmax ratio with increasing temperature (Fig. 5.8). For 

cynara, a significant (P<0.05) temporal change was found for the χj parameter 

(Table 5.3). The χj parameter showed a larger variability (36% change) than χv 

(12% change) among species and growth environments studied (Table 5.3). The 

parameter θ was lower for sunflower (0.60) and higher for cynara (0.84), but close 

to the commonly used value of 0.75 in all cases. All these differences (including 

temperature and nitrogen sensitivities) among species and growth environments 

became smaller when the Jmax/Vcmax ratio was plotted against leaf temperature 

(Fig. 5.8).  
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Figure 5.8: Jmax/Vcmax ratio versus leaf temperature. Coloured symbols refer to bioenergy 

crops, the remaining symbols to major field crops (symbols and references as in Fig. 5.6). 

Note for cynara two lines were plotted because the parameter Jmax25 differs between 

seasons (see Eq. 10 and Table 5.3).  
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Sensitivity and validation analysis 

 

To investigate the uncertainty introduced in our estimates by the chosen Rubisco 

kinetic parameters, the initial values of Bernacchi et al. (2001) were increased or 

decreased by 20% and optimization procedures were repeated. Not surprisingly 

a maximum change was obtained in the estimated Vcmax25, whereas the remaining 

parameters were less affected (<5%; data not shown). Given that even the 

maximum change in Vcmax was ca 11% in response to a 20% change, our 

parameter estimates were quite stable despite the uncertainties in values of 

Rubisco kinetic constants. A further analysis showed that the predicted An was 

sensitive to a 20% decrease in χv and χj whereas its sensitivity to other changes 

was weak (Fig. 5.9).  
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Figure 5.9: Sensitivity analysis of the predicted An in response to ± 20% change in input 

parameter values for the photosynthesis model. Relative change in predicted value was 

calculated as: 100×(An, predicted – An, predicted, original)/An, predicted, original. When 

input parameters were part of a linear or polynomial equation (e.g. Ej, Dj, Sj; Eq. 6) and 

strongly intercorrelated, a combined change was implemented.   
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Lastly we intended to validate the models against independent datasets (Fig. 

5.10). Predictions vs. observations for sunflower and kenaf were satisfactory 

(rRMSE<0.15; Fig. 5.10a and b). For cynara we tested the FvCB model using 

measurements from a series of 24 h diurnal cycles (Fig. 5.10c), where stress 

conditions were unavoidably present (datasets outside our calibration range). In 

general, predictions were close to actual measurements, except for those data 

obtained from 14:00h to 18:00h, where a systematic overestimation was detected 

(Fig. 5.10c). The FvCB model responded to lowering temperature in late 

afternoon by increasing An, however, actual measurements indicated that the 

photosynthetic apparatus could not recover so quickly from the ‘photosynthesis 

midday depression’. The failure in predicting the depression and its after-effect 

during the recovery hours (Fig. 5.10c) might be attributed to the “steady state” 

character of the FvCB model. These results suggest that prediction of diurnal 

photosynthesis for species grown in the Mediterranean region requires more 

detailed approaches in which gm, recovery functions for An (midday depression), 

and the effects of leaf water potential should be included.      
   

 

y = 0.8761x + 1.9382

r
2
 = 0.9396

rRMSE = 0.129

n = 492

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

Measured An (µmol CO2 m
-2

 s
-1

)

P
re

d
ic

te
d
 A

 n
 (
µ

m
o
l 
C

O
 2 

m
-2

 s
-1

)

(b) Kenaf

Na= 1.7 - 2.4 g N m
-2

Temperature = 17 - 39 °C

Iinc = 100 - 2000 µmol m
-2

 s
-1

CO2 = 380 µmol mol
-1

y = 0.9316x + 2.0039

r
2
 = 0.9192***

r RMSE=0.145

n = 454

0

5

10

15

20

25

30

35

40

0 5 10 15 20 25 30 35 40

Measured An (µmol CO2 m
-2

 s
-1

)   

P
re

d
ic

te
d
 A

 n
 (
µ

m
o
l 
C

O
 2 

m
-2

 s
-1

) 
  

.

Na= 2.1 - 2.3 g N m
-2

Temperature = 16 - 41 °C

Iinc = 100 - 2000 µmol m
-2

 s
-1

CO2 = 380 µmol mol
-1  

(a) Sunflower

-10

0

10

20

30

40

50

0:00 6:00 12:00 18:00 0:00

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Day 1(c) Cynara

temperature

light 

-10

0

10

20

30

40

50

0:00 6:00 12:00 18:00 0:00

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Day 2

predicted

measured

-10

0

10

20

30

40

50

0:00 6:00 12:00 18:00 0:00

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Day 3

A
 n

, 
 R

n
 (
µ

m
o
l 
C

O
 2 

m
-2

 s
-1

),
  

te
m

p
e
ra

tu
re

 (
°C

) 
  

  

. 
 

In
c
id

e
n
t 

lig
h
t 

(µ
m

o
l 
p
h
o
to

n
s
 m

  -2
 s

-1
)

 

 

Figure 5.10: Measured versus predicted photosynthesis (all panels) and measured versus 

predicted night respiration (only at the lower panel c). In panel c, canopy CO2 varied 

from 350–380 during day time to 450–600 µmol mol-1 during night time; VPD followed 

temperature variations, and stomata conductance ranged from 0.05 mol m-2 s-1 during 

night up to 0.48 mol m-2 s-1 during day time. The model predicted diurnal trends 

moderately (r2=0.814, rRMSE=0.553, n=720). When midday measurements were excluded 

(14:00–16:00h), the model fit was improved (r2=0.930, rRMSE=0.335, n=543).  



Modelling leaf photosynthesis and respiration    

 115 

Discussion   
 

Use of An–Iinc curves to parameterise the FvCB model  

 

The parameters of the FvCB model, Jmax and Vcmax in particular, have been 

predominantly estimated from data of An–Ci curves (Harley et al., 1992; Medlyn et 

al., 2002a). The value of An–Ci curves for parameterising the FvCB model is 

confirmed in our analysis (Fig. 5.2). We also showed that Vcmax and Jmax can be 

estimated sufficiently well by an appropriate analysis of An–Iinc data alone 

(r2=0.91–0.93; Fig. 5.2). Our analysis indicated that unlike Jmax, Vcmax cannot be 

always estimated from An–Iinc curves, i.e. when the entirely curve is Aj-limited 

(Fig. 5.1). This is often observed in field crops (e.g. cotton; Wise et al., 2004). 

Actually, Boote & Pickering (1994) used only the Aj-equation of the FvCB model 

to calculate leaf photosynthesis in their canopy photosynthesis model. For the 

purpose of using the complete FvCB model, we propose the two-step approach to 

estimate both Vcmax and Jmax from An–Iinc data (see M&M), in line with Niinemets 

& Tenhunen (1997). In contrast, Kosugi et al. (2003) and Müller et al. (2005) who 

also parameterized the FvCB model using An–Iinc data, assumed a fixed Jmax / Vcmax 

ratio of 2.1 at 25°C (based on Wullschleger, 1993). However, this approach does 

not allow for the flexibility of the ratio as observed for different species or for the 

same species when grown under different environments, thereby introducing 

many uncertainties in parameter value (see Fig. 5.8 and discussion below).  

 Our results indicated that the information of An–Iinc curves has been 

under-explored. Use of A-Iinc curves has an additional advantage in that data of 

An-Ci curves may be uncertain due to CO2 leakage during gas exchange 

measurements when CO2 set point values are either below or above ambient-air 

CO2 level (Flexas et al. 2007). Crop modellers used to measure photosynthetic 

light response curves under an ambient CO2 condition, upon which an empirical 

model for light-response curves is parameterised. Provided that values of Ci 

across Iinc levels are properly monitored, re-analysing readily available An–Iinc 

data to parameterise the FvCB model will strengthen photosynthesis calculation 

in crop models. This would expand the potential of combining classical 

photosynthetic data and the biochemical FvCB model to assess the impact of 

climate change on crop production and to examine options of bioenergy 

production under a changing climate.  

Below we discuss temperature, Na and seasonal effects on the parameters of 

the FvCB–photosynthesis model and respiration equations, i.e. Jmax, Vcmax, Rd, Rn, 

κ2LL and θ, all derived from An–Iinc data for three bioenergy crops sunflower, 

kenaf and cynara. We will compare our findings with those obtained for wheat, 

barley, cotton, tobacco and grapevine based on An–Ci or combined An–Ci and An–

Iinc datasets.  
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Night and day respiration parameters: χR, ERn(a), ERn(b), bR, aR  

 

This study is among few in literature providing direct Rn measurements, 

underlining the high importance of respiration in carbon budgets (Valentini et al., 

2000). Our estimates for χR (range: 0.61–0.95 μmol CO2 g-1 N s-1; Table 5.3), agree 

well with previous reports for crops (Hirose et al., 1997; Reich et al., 1998; Müller 

et al., 2005; Braune et al., 2009), but current values are almost double compared to 

those for trees (Griffin et al., 2002; Bolstad et al., 1999). The temperature sensitivity 

for respiration (ERn) was significantly correlated with Na in all species (Eq. 11; 

Table 5.3), indicating that respiration in leaves with high Na values (young/sun 

leaves) was less sensitive to changes in temperature, while leaves with lower Na 

values were more sensitive (senescence/shade leaves). Griffin et al. (2002) and 

Bolstad et al. (1999) working with tree leaves that were positioned in different 

canopy layers – having also different Na values – found temperature sensitivities 

similar to those in our study, while Turnbull et al. (2003) reported the opposite. 

However, in none of these studies ERn was significantly correlated with Na.  

For cotton, Harley et al. (1992) reported a simple temperature sensitive Rn 

model for leaves with variable Na. Our analysis indicated that it is useful to 

calculate both Rn components as a function of Na (e.g. Fig. 5.4; across all species, r2 

scaled from 0.53 to 0.77). The component Rn25 accounted for the 27% and ERn for 

the other 5% of this improvement in r2. However, the high remaining 

unexplained variability in night datasets (see r2 in Table 5.3; Fig. 5.4) means that 

apart from Na, other factors should be explored.   

  Unlike Rn, Rd is hard to measure directly. Its value is empirically estimated 

indirectly using various methods (for a comparison see Yin et al., 2011), or is 

commonly fixed as 1% of Vcmax or as 50% of Rn (de Purry & Farquhar, 1997; 

Wohlfahrt et al., 1998; Medlyn et al., 2002a; Kosugi et al., 2003; Braune et al., 2009). 

Here, application of the Kok method (Sharp et al., 1984) indicated a 28% 

reduction in Rd compared to Rn (light inhibition of respiration), which estimate is 

positioned at the lowest reported range (inhibition range: 24–90%; Buckley & 

Adams, 2011 and references therein).  

 

Rubisco and electron transport parameters: Nb, χv, χj, κ2LL, θ, Ev, Ej, Dv, Dj 

 

The parameter Nb has a vital role in all nitrogen equations. Our findings 

(Fig. 5.3) along with published data support the idea that this threshold value for 

photosynthesis (Nb) is not affected by temperature (Sage & Pearcy, 1987; Makino 

et al., 1994; Niinemets & Tenhunen, 1997), CO2 (Harley et al., 1992; Hirose et al., 

1997) or irradiance levels (Makino et al., 1997). Excluding the statistical bias that 

usually exists in Nb estimations (see Materials and Methods) it is believed that a 
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common Nb is 0.3–0.4 g N m-2 for C3 crop species (excluding legume crops; Table 

S-5.1). For the use in modelling, we showed that ±20% change in Nb value 

resulted in less than 5% change in the predicted An (Fig. 5.9).  

The relationships between light saturated An and Na at near-optimum 

temperature ranges for sunflower, kenaf and cynara (Fig. 5.3) agreed well with 

several non-legume C3 species (Fig. S5.2). The observed decline of An at high 

temperature (Fig. 5.3; Na >2 g N m-2) is associated with gm (Bernacchi et al., 2002) 

and/or Vcmax and Jmax limitations of photosynthesis (Fig. 5.6). Nevertheless, the 

observed constancy among An–Na plots (Fig. S-5.2) along with the similar χv 

estimates for sunflower, kenaf, cynara, cotton, wheat and barley (range: 60–82 

μmol CO2 g-1 N s-1; Table 5.3; Harley et al., 1992; de Pury & Farquhar, 1997; Müller 

et al., 2005, 2008; Braune et al., 2009) suggests that χv is very conservative for this 

plant group (An,max=30–35 μmol CO2 m-2 s-1; Fig. S-5.2).  

Unlike χv, χj for the same group was highly variable (90–165 μmol e- g-1 N s-

1). However, parameter χj (which determines Jmax25; Eq. 10) is not independent of, 

but interrelated with, the values of κ2LL and θ (see Eq. 4). The increase of one 

parameter is somewhat counterbalanced by the decrease in the value of the other 

parameter in Eq. (4). This means that use of a constant κ2LL and θ values across 

species and environments will bias Jmax estimates and therefore the Jmax/Vcmax ratio. 

Among sunflower, kenaf and cynara, χj varied by 36%, κ2LL by 39% and θ by 28%, 

but in different directions (Table 5.3). When we fixed κ2LL to 0.3 and θ to 0.7 

(commonly assumed values; de Pury & Farquhar, 1997; Medlyn et al., 2002a), χj 

variation among crops and growing environments became smaller (15%), and the 

Jmax/Vcmax ratio less variable.  

Our analysis showed that variation in electron transport rate among 

bioenergy crops followed changes in environmental conditions during growth 

(Fig. S-5.1), with higher J rates for cynara in low light (<700 μmol m-2 s-1; winter 

period) and higher J rates for sunflower and kenaf in high light conditions (>700 

μmol m-2 s-1; summer period; Table 5.3, Eq. 4). This is consistent with recent 

findings for tobacco (Yamori et al., 2010) where plants grown under low light 

enhanced the efficiency of light acquisition while those grown under high light 

enhanced the capacity of light utilization, through changes in Chl contents, Chl 

a/b ratio, cyt f and Rubisco contents.   

In earlier studies (Wullschleger 1993; Dreyer et al., 2001; Medlyn et al., 2002a) 

the parameter κ2LL was fixed as a constant (0.18, 0.24 and 0.30, respectively) across 

species, crop stages and environments. However, Yin et al. (2009) demonstrated 

directly a positive relation between κ2LL and Na, which was confirmed by the 

results of model curve-fitting procedure (Müller et al., 2005; Braune et al., 2009; 

Yamori et al., 2010). In Fig. 5.7, we summarized κ2LL information for eight crops 

and interpreted this large variation in the light of long or short-term response to 

temperature or irradiance. Across species, higher κ2LL values were found for 
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crops grown under low irradiance and temperature conditions (Fig. 5.7a and c). 

To understand this, it is necessary to underline the components of the κ2LL 

parameter (see Eq. A3 derived by Yin et al., 2004; 2009; Yin & Struik, 2009a; also 

see Eq. 6 in Niinemets & Tenhunen, 1997).  

The fraction of Iinc absorbed by the leaf photosynthetic pigments (parameter 

β in Eq. A3) is affected by long-term changes in light and temperature through its 

chances in leaf morphology. Leaves grown at high temperature are generally 

thinner, with a lower ability to absorb light (Poorter & Evans, 1998; Yamori et al., 

2005) providing therefore a reasonable explanation for the observed κ2LL 

reduction with increasing temperature. On the other hand, leaves grown at high 

irradiance are thicker (Niinemets & Tenhunen, 1997) indicating that κ2LL variation 

is much more complex and still not fully understood. Nonetheless, caution 

should be exercised when modelling canopy photosynthesis based on the 

sun/shade approach (de Pury & Farquhar, 1997; Yin & van Laar, 2005) because 

κ2LL increases with increasing Na (Fig. 5.7d), while κ2LL also increases with 

decreasing light (Schultz, 2003; shade leaves which generally have low Na values; 

Fig. 5.7b).  

The normalized temperature functions of Vcmax and Jmax were highly variable 

across crops (Fig. 5.6), particularly above 30°C in line with Leuning (2002). This 

mean that the assumption used in crop modelling, unique An response to 

temperature across crop species, is inappropriate when photosynthesis is 

calculated by the FvCB model. In case of no available data, we suggest 

researchers as a first approximation to use Vcmax and Jmax temperature parameters 

from species that belong to the same family (see Fig. 5.6; cotton and kenaf belong 

to Malvaceae; sunflower and cynara to Asteraceae).  

The Jmax/Vcmax ratio provides an estimate of the relative activities of RuBP 

regeneration and Rubisco carboxylation and incorporates both temperature and 

Na effects. This study confirms (Table 5.3) the general reported Jmax/Vcmax value of 

2.0±0.5 (Wullschleger, 1993; Poorter & Evans, 1998; Bunce, 2000; Leuning, 2002; 

Medlyn et al., 2002a). However, this ratio should not be considered constant in an 

absolute term. Vcmax is dependent on Rubisco parameters used (up to 11% change; 

see also Medlyn et al., 2002a) and Jmax is affected by the assumed κ2LL and θ values 

used (see earlier discussion). For instance, grape showed much higher Jmax/Vcmax 

ratio compared to other crops (Fig. 5.8). Apart from the effect of species, there are 

two possible artifacts for that; the different Rubisco parameters used in that study 

(Schultz, 2003) and the lower grape κ2LL values compared to the other crops (Fig. 

5.7b). Also use of Ci instead of Cc affects this ratio. Thus approaches (e.g. Kosugi 

et al., 2003; Müller et al., 2005) that fix Jmax/Vcmax ratio at a constant value to 

parameterize the FvCB model are not supported from this study.  
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Seasonal effects on photosynthesis and respiration in cynara  

 

Direct interpretation of the seasonal effects on An and Rn for cynara is difficult 

because both the climate (Fig. S-5.1) and the plant stage are different, with new 

and old leaves being present (Archontoulis et al., 2010a; Searle et al., 2011). In 

general, Rn acclimated to cold and warm environment to a larger extent than An 

did (Table 5.3; Fig. 5.4). This is consistent with previous studies in growth 

chambers (Yamori et al., 2005; Ow et al., 2008; Silim et al., 2010). 

The nature of Rn acclimation is highly variable within and among plant 

species and it is usually related either to changes in ERn and/or to changes in Rn25 

(Atkin et al., 2005; Searle et al., 2011). Nevertheless, since the χR estimate did not 

change between seasons (P=0.269; Table 5.3) and given that the measured winter 

leaves had higher Na values than the summer leaves (on average 2.48 vs. 1.53 g N 

m-2; see also Fig. 5.7d), this indicates that basal capacity, Rn25, plays an important 

role in this acclimation. Secondly, ERn was also higher during winter periods. 

Apparently, cynara follows an “acclimation type II” (Atkin et al., 2005) where the 

overall elevation of the Rn–temperature response was affected by season and 

growth stage (Fig. 5.4).  

Among several photosynthetic parameters analyzed, we found seasonal 

effects on two electron transport parameters, χj and κ2LL (Table 5.3 and earlier 

discussion) and none related to Vcmax. Literature information on photosynthetic 

acclimation is diverse among studies (Hikosaka, 2005; Wilson et al., 2000; Medlyn 

et al., 2002a; Bernacchi et al., 2003; Yamori et al., 2005; Braune et al., 2009; Silim et 

al., 2010). To our knowledge, only Wilson et al. (2000) reported both χj and χv 

seasonal changes in trees, while Braune et al. (2009) for barley found only χj 

variation as in this study. For cynara, the normalized Vcmax and Jmax temperature 

functions were slightly changed between seasons, in contrast to growth chamber 

studies where tobacco (Bernacchi et al., 2003), spinach (Yamori et al., 2005), 

Plantago spp. (Ishikawa et al., 2007), and barley (Braune et al., 2009) grown only at 

different temperatures. The fact that we assessed leaves with different Na status 

may be a reason. Other field studies (Schultz, 2003; Medlyn et al., 2002b) reported 

also no seasonal effect of season on the normalized Vcmax and Jmax temperature 

functions. This shows an inconsistency between actual field and controlled 

chambers studies.  

The Jmax/Vcmax ratio has been reported to be either sensitive or insensitive to 

growth temperature (see discussion by Hikosaka et al., 2005), growth irradiance 

(Poorter & Evans, 1998; Yamori et al., 2010) and seasonal changes (Bunce, 2000; 

Medlyn et al., 2002b). Our results suggest that cynara regulates the balance 

between RuBP regeneration and Rubisco carboxylation to maintain the Jmax/Vcmax 

ratio almost constant (change <8%; Table 5.3) across seasons and growth stages.     
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Model requirements for further development  

 

Present coupled FvCB–photosynthesis and empirical-respiration model can 

predict An under varying levels of Ci, Iinc, temperature and Na and Rn under 

varying levels of temperature and Na for three bioenergy crops (Table 5.3; Fig. 

5.10). To increase further present model prediction and application ability, future 

research should focus on developing: (i) gs and gm sub-models for CO2 transfer 

resistances from atmosphere to stomatal cavity and to chloroplast (Yin & Struik, 

2009a); (ii) functions to relate biochemical parameters to leaf water potential (Vico 

& Porporato, 2008); and (iii) algorithms to quantify diurnal midday depression 

(Tuzet et al., 2003) and recovery period of photosynthesis, which are very 

important for Mediterranean species (Fig. 5.10c). It should be mentioned that a 

later modification of the FvCB model to account for the TPU limited rate 

(Sharkey, 1985) was not considered here because this was not possible to be 

estimated from An–Iinc datasets as in Niinemets & Tenhunen (1997).  

 

Conclusions  
 

This study brings new information on photosynthesis and respiration rates for 

three bioenergy crops, sunflower, kenaf and cynara. It provides an alternative 

way to parameterize the FvCB model from An–Iinc data, instead of using An–Ci 

data that are more expensive to obtain. We showed that major FvCB model 

parameters, Vcmax and Jmax, derived either from An–Ci or An–Iinc analysis are very 

close (r2=0.92). Present models can predict photosynthesis under varying levels of 

Ci, Iinc, temperature and leaf nitrogen, and can estimate night respiration under 

varying levels of temperature and leaf nitrogen, for three bioenergy crops. 

Comparisons of FvCB model parameters among sunflower, kenaf, cynara, cotton, 

wheat, barley, tobacco and grapevine indicated that only few parameters were 

conservative. This means that in order to feed properly crop models, species-

specific FvCB model parameters are needed. In this context, readily available An–

Iinc data – that has been under-explored – can assist in that respect. By combining 

classical photosynthetic data and the biochemical model, the potential of crop 

growth models to assess the impact of climate change on crop production and to 

examine options of bioenergy production under a changing climate is enlarged. 

Further research is needed to reliably quantify the effects of photosynthetic 

acclimation and diurnal midday depression identified in this study. 
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Appendix 
 

1. Estimating the optimum temperature from the peaked Arrhenius equation 

 

The optimum temperature for Vcmax or Jmax in Eq. (6) is given by the following 

equation (Medlyn et al., 2002a): 
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2. The relation between κ2LL and ΦCO2LL 

 

By dividing both parts of Eq. (3) by Iinc and re-arranging, the efficiency of incident 

light conversion into e–, κ2LL, can mathematically be calculated from ΦCO2LL:    
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This approach was also used by Niinemets et al. (2001), but lacks any further 

interpretation.  

 

3. Components of parameter κ2LL 

 

Yin et al. (2004) described a generalized stoichiometric equation for Aj, where the 

linear photosystem II (PSII) electron transport rate (J) was replaced by the total 

electron transport rate passing PSII (J2) and fractions of the total e- flux passing 

PSI that follow cyclic (fcyc) and pseudocyclic (fpseudo) pathways. Again, at low light 

conditions, dividing J by Iinc yields κ2LL as follows (Yin et al., 2009; Yin & Struik, 

2009a):      
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By definition, the variable J2 can be replaced by the term ρ2·β·Φ2LL·Iinc, where ρ2 is 

the fraction of absorbed irradiance partitioned to PSII (usually assumed 0.5), β is 

the fraction of Iinc absorbed by the leaf photosynthetic pigments, and Φ2LL is the 

PSII e- transport efficiency under limiting light.  
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Supplementary materials (Chapter 5) 
  
 

Table S-5.1: Reported Nb values (minimum leaf nitrogen for photosynthesis, in g N m-2) 

for various species. Data grouped into four categories: C3 crops and weeds, C3 legume 

crops, C3 trees and C4 crops. The dataset used and the model applied (L=linear and 

NL=non-linear) by the authors to derive the Nb value is given. An = light saturated net 

assimilation rate at ambient CO2 concentration and at near-optimum temperature (μmol 

CO2 m-2 s-1); Ag = An plus day respiration (μmol CO2 m-2 s-1); Rn = night respiration rate 

(μmol CO2 m-2 s-1); Vcmax25 = maximum carboxylation rate at 25°C (μmol CO2 m-2 s-1); Jmax25 

= maximum electron transport rate at 25°C (μmol e- m-2 s-1);  and Na = leaf nitrogen 

content (g N m-2)   

Source Species Common name (cultivar) Nb (±SE) Dataset  Model  

 

C3 Crops and weeds (Average value = 0.305 ± 0.027) 

[1] Triticum aestivum L. Wheat (Yecora 70) 0.30a An–Na NL 

[2] Triticum aestivum L.  Winter wheat (Orestis)  0.36 An–Na NL 

[2] Triticum aestivum L.  Winter wheat (Orestis)  0.09 Vcmax25–Na L  

[3] Triticum aestivum L. Spring wheat 0.29 An–Na NL 

[4] Triticum aestivum L. Spring wheat (Minaret) 0.38 An–Na L 

[5] Triticum aestivum L.  Spring wheat (Minaret)  0.318 Ag–Na L 

[6] Hordeum vulgare L. Spring barley (Barke) 0.085 An–Na L 

[6] Hordeum vulgare L. Spring barley (Barke) 0.198b Vcmax25–Na L 

[6] Hordeum vulgare L. Spring barley (Barke) 0.229b Jmax25–Na L 

[7] Gossypium hirsutum L. Cotton (Coker 315) 0.16 Vcmax25–Na L  

[7] Gossypium hirsutum L. Cotton (Coker 315) 0.05 Jmax25–Na L  

[8] Gossypium hirsutum L. Cotton (Sicala V-2i) 0.65 An–Na NL 

[9] Helianthus annuus L. Sunflower (Prosol 35) 0.30 (0.05) An–Na NL 

[9] Helianthus annuus L. Sunflower (Prosol 35) 0.24 Rn–Na NL 

[10] Helianthus annuus L. Sunflower (Suncross 41) 0.48 (0.01)  An–Na NL 

– Helianthus annuus L. Sunflower (Panter) 0.386 (0.08)c An–Na NL 

[11] Brassica napus L. Oilseed rape (Lirajet) 0.40 An–Na L  

[5] Brassica napus L. Oilseed rape (Aries) 0.106 Ag–Na L 

[12] Brassica napus L. Oilseed rape (Ceres) 0.318 An–Na NL 

[13] Brassica oleracea L. Cauliflower (Fremont) 0.395 Ag–Na L 

[14] Oryza sativa L.  Rice (Notohikari) 0.35a An–Na NL 

[15] Oryza sativa L. Rice 0.30 An–Na NL 

[35] Oryza sativa L. Rice (Araure 4) 0.359 An–Na L 

[16] Beta vulgaris L. Sugar beet (MSBI×NB4) 0.08 An–Na NL 

[17] Solanum tuberosum L. Potato (Vebeca) 0.50d An–Na NL 

[18] Hibiscus cannabinus L.  Kenaf (Guatemala) 0.43 (0.06) An–Na NL 

– Hibiscus cannabinus L.  Kenaf (Everglades 41) 0.39 (0.12)c An–Na NL 

– Cynara cardunculus L. Cynara (Bianco avorio) 0.416 (0.09)c An–Na NL 

[19] Chenopodium album L. – 0.111–0.421 An–Na L  

[20] Chenopodium album L. – 0.23 An–Na L 

[21] Chenopodium album L.  – 0.64–0.78 An–Na L 

[22] Abutilon theophrasti L. – 0.35 Ag–Na NL 

[22] Ambrosia artemisiifolia L. – 0.39 Ag–Na NL  

[23] Alocasia macrorrhiza L. – 0.10 An–Na L 

[23] Alocasia macrorrhiza L. – 0.116 Vcmax25–Na L 

[23] Alocasia macrorrhiza L. – 0.146 Jmax25–Na L  

[23] Colocasia esculenta L. – 0.261 Vcmax25–Na L  

[23] Colocasia esculenta L. – 0.10 Jmax25–Na L  
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Table S-5.1: Continued 

Source            Species                               Common name (cultivar)        Nb (±SE)          Dataset             Model 

 

C3 Legumes crops (Average value = 0.531 ± 0.059) 

[15] Glycine max L. Soybean 1.00 An–Na NL 

[35] Glycine max L. Soybean (Merr) 0.406 An–Na L 

[24] Arachis hypogaea L.  Peanut 0.46 An–Na L  

[24] Arachis hypogaea L. Peanut 0.60 An–Na NL  

[25] Vicia faba L. Bean (Tina) 0.66 An–Na NL  

      

C4 Crops (Average value = 0.211 ± 0.010) 

[26] Sorghum bicolor L. Sorghum (Dekalb DK55) 0.20 d An–Na NL 

[26] Sorghum bicolor L. Sorghum (Savannah) 0.20 d An–Na NL 

[35] Sorghum bicolor L. Sorghum (Pioneer) 0.175 An–Na L  

[26] Zea mays L. Maize (Dekalb XL82) 0.20 d An–Na NL 

[27] Zea mays L.  Maize (Lincoln) 0.25 An–Na NL 

[15] Zea mays L. Maize (Skyliner) 0.20 An–Na NL 

[36] Zea mays L. Maize (2–02R10074) 0.242b An–Na L 

[28] Saccharum spp. Sugarcane, 8 clones  0.222 An–Na NL  

      

C3 Trees (Average 0.30 ± 0.05) 

[29] Acer saccharum L. Red maple 0.277 An–Na L  

[29] Acer saccharum L. Sugar maple 0.216 An–Na L  

[30] Acer saccharum L. Sugar maple 0.105 An–Na L  

[31] Acer saccharum L. – 0.12 An–Na L 

[31] Acer saccharum L. – 0.40 An–Na NL 

[32] Acer rubrum L. Red maple 0.333–0.431 Vcmax25–Na L  

[33] Prinus persica L. Nectarine (Fantasia) 0.609 An–Na NL 

[34] Pinus radiate L. – 0.150 a An–Na L 

[34] Pinus radiate L. – 0.100 a Vcmax20–Na L  

[20] Quercus myrsinaefolia L. Oak 0.052 An–Na L  

[29] Quercus myrsinaefolia L. Oak 0.655 An–Na L  

[32] Quercus alba L. White oak 0.299–0.576 Vcmax25–Na L  

[32] Quercus prinus L. Chestnut oak 0.222 Vcmax25–Na L  
a: read from their figure. 
b: estimated through optimization runs and not from simple regression analysis.   
c: this study. 
d: fixed by the authors.  
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Figure S-5.1: Average monthly temperatures, radiation and precipitation at the 

experimental site (period: 2007–2009). Sunflower measurements were taken from July to 

August; kenaf measurements from July to September and cynara measurements from 

November to June.  
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Figure S-5.2: Reported relationships between saturated net assimilation rate at ambient 

CO2 concentration and at near-optimum temperature (An,max in μmol CO2 m-2 s-1) and leaf 

nitrogen content (g N m-2) for C3 crops (panel a), C3 legume crops and trees (panel b) and 

C4 crops (panel c). Panel (d) shows an average relationship for C3 and C4 crops.  
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Chapter 6.1 
 

 

The agronomy of Cynara cardunculus growing on an aquic 

soil in central Greece 
 

 
 

Abstract  

 

The aim of the present work is to provide more insight into the factors that determine 

biomass and seed productivity in Cynara cardunculus (cynara) in central Greece. For this, a 

two-year (2006–2007) field experiment was conducted on an aquic soil and the effects of 

irrigation and N-fertilization were investigated. Crop growth and biomass productivity were 

monitored over time by means of periodical sampling together with measurements of leaf 

photosynthesis and N concentrations per plant component. We found that cynara 

maintained very high leaf area indices (above 3) for the most of the 16 month growing 

period. During May, when air temperature was at near optimum level (viz. 22°C) for 

photosynthesis (28 μmol CO2 m-2 s-1), the crop performed maximum rates of increase in 

biomass (range: 215–250 kg ha-1 d-1). N-fertilization and irrigation had a significant effect on 

seed productivity but not on stalk biomass yield. On average the crop performed well, 

producing a total aerial dry biomass of 27 t ha-1 and a seed yield of 5 t ha-1 on average values. 

Such yields are among the highest that have ever been reported in literature. At the end of 

the cropping cycle, total nitrogen uptake ranged from 170 to 300 kg N ha-1 in response to N-

fertilization and irrigation, while the nitrogen-use efficiency (NUE) varied from 97 to 132 kg 

kg-1.    

 

 

 

 

 

 

Adapted from:   

Archontoulis SV, Danalatos NG, Struik PC, Vos J, Yin X. 2008. Agronomy of Cynara 

cardunculus growing on an aquic soil in central Greece. In: Proceedings of the International 

Conference on Agricultural Engineering, Crete, Greece. Abstract in p.42; full paper 15 pp on 

CD.   
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Introduction  
 

Cynara cardunculus L., commonly known as cynara or cardoon or Spanish thistle 

artichoke, is a perennial herbal, very deep-rooting C3 plant of Mediterranean origin, well-

adapted to the xerothermic conditions of southern Europe. Cynara has annual growth 

cycles, with the crop to be developed during autumn, winter and spring and to be ready 

for harvest during summer time, achieving yields of 9–30 t dm ha-1 depending on water 

availability (Dalianis et al., 1996; Foti et al., 1999; Piscioneri et al., 2000; Gherbin et al., 2001; 

Curt et al., 2002; Gonzáles et al., 2004; Fernández et al., 2005, 2006;  Danalatos et al., 2007a; 

Panoutsou, 2007; Raccuia & Melilli, 2007a).  

Apart from the obvious low production costs that this crop has, due to its perennial 

growth cycle (10–15 year), cynara has also a large range of industrial and other 

applications, providing many reasons for inclusion in near future land use schemes. 

Indeed, cynara can be cultivated for fibre production in the pulp industry (25% fibres in 

volume), for forage production, but most importantly for solid and/or liquid biofuel 

(Quilhó et al., 2004; Fernández et al., 2006; Danalatos, 2008). Additionally, it can be used 

in pharmacology, since active compounds like cynarin, silymarin (from leaves; Curt et 

al., 2002) and inulin (from roots; Sonnante et al., 2007) can be extracted, and lastly from 

the florets a kind of cheese for human consumption can be produced (Duarte et al., 2006).  

Regarding environmental issues, cynara is a very competitive plant (White & Holt, 

2005), thus it can be cultivated without the use of agro-chemicals after the 2nd growing 

cycle. Cultivation of cynara keeps the soil covered throughout most of the year, thus 

minimizing the risk of soil erosion and desertification that threatens more than 35% of 

the Mediterranean areas (Danalatos et al., 2008). Its deep and effective rooting system 

takes perfect advantage of the soil’s inherent fertility, avoiding risks of N-leaching, and 

prevents soil and groundwater pollution. It can also be grown in areas with salinity 

problems, which are frequently observed under Mediterranean conditions (Raccuia et al., 

2004; Benlloch-Gonzales et al., 2005).  

Although cynara’s adaptability and market potential have been studied around the 

Mediterranean region, there are still many important agronomic aspects that need to be 

addressed in order to design sustainable cynara cultivation systems. Thus, in this work 

we aim to provide more insight into the factors that determine cynara’s biomass 

production. Potential and water/nitrogen limited crop growth will be studied, including 

light- and temperature-response curves of leaf photosynthesis. These quantitative 

datasets will be used later to parameterize the dynamic simulation model GECROS (Yin 

& van Laar, 2005).  
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Materials and methods 
 

Field management  

 

A two-year field experiment was carried out on the Western Thessaly Plain (Palamas, 

coordinates: 39°25’N, 22°05’E, alt. 105 m) in 2006–2007. The soil at the site was a deep, 

fertile loamy soil classified as Aquic Xerofluvent according to USDA (1975), having a 

shallow groundwater table. A 2×3 factorial spit–plot design was used in four blocks with 

the main plots comprising two irrigation treatments (I1=rainfed, I2=irrigated), and 

subplots comprising three nitrogen dressings (N1=control, N2=80, and N3=160 kg N ha-1).  

Seeds of cynara (cv. Bianco avorio) were sown on April 13 (50% emergence 11 days 

later) with a plant density of 5.3 pl. m-2 (75 cm × 25 cm). Before sowing, all plots received 

a basal fertilization with 50 kg P-K, while N-fertilization of 80 and 160 kg N ha-1 

(fertilizer: 26% N – 0% P – 0% K plus 13% S, with 18.5% NH4 and 7.5% NO3) was applied 

in the second year just before inflorescence emergence on April 28th 2007. The crop 

received irrigation via an automatic drip irrigation system. In the first year, the crop was 

irrigated with a total of 200 mm in the period July–August (5 applications); in the second 

year (2007), the crop received a total of 120 mm in two applications, on May 7 and 16, 

respectively. Weather data, such as incident solar radiation, air temperature, rainfall, 

relative humidity, wind speed and class-A pan evaporation rate, were recorded hourly 

using an automatic meteorological station, which was installed in the experimental field. 

All measured and derived data were subjected to analysis of variance using GenStat (7th 

edition).   

 

Measurements  

 

Growth parameters (plant height, specific leaf area and leaf area index) and above-

ground dry biomass productivity per plant component (stem, branches, leaves and 

storage organs) were measured in subsequent destructive harvests throughout the 

growing period, at the following dates: 20/6, 3/7, 28/7, 14/8, 9/9 and 15/11 in 2006, and 

14/1, 29/1, 21/3, 27/4, 6/5, 15/5, 1/6, 19/6, 18/7 and 6/8 in  2007. In each manual harvest, the 

sample was divided into the various plant organs and weighed fresh in the field. Then 

the samples were oven-dried at 90°C until constant weight (2−4 days) and weighed again 

in order to determine the dry weights per plant component. Leaf area (green leaves) was 

measured using an automatic LI−COR area meter (LI−3000A). Samples of the last harvest 

were dried at 70°C and then analyzed for their nitrogen concentrations (Kjeldahl 

method).  

Given the complex structure of cynara’s inflorescence, in order to determine seed 

yield we developed an allometric equation to upscale seed weight from head to crop 

level. For that a sample of 72 randomly chosen heads were analysed (see methodology in 
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Chapter 3). The allometric equation that was used in this study was: seed weight per 

head = 0.4403 × head weight – 3.1215 (r2=0.981, n=72). For more details see Chapter 3.  

Photosynthesis was measured in the field, using an open exchange system (ADC, 

LCpro+, UK) equipped with an adjustable light source and ventilation for temperature 

control. Measurements were undertaken during November (fully expanded leaflet). 

Response curves of net assimilation (A, μmol CO2 m-2 s-1) to light (Q, μmol m-2 s-1), and to 

temperature were constructed (see methodology in Chapter 5). All gas exchange 

parameters were re-calculated according to equations described by von Caemmerer & 

Farquhar (1981).  

 

Results  
 

Weather conditions  

 

Figure 6.1.1 illustrates maximum, minimum air temperatures and sunshine duration at 

the experimental site in 2006–2007. The winter of 2007 was the hottest and the driest of 

the last 5 years at this specific site (viz. 7.5 °C in 2007 vs. 4.5 °C in the 5-year average). 

During spring and August 2007, the mean average daily temperatures were 14.8 and 25.9 

°C, respectively, while the A-pan mean evaporation rates for the same periods were 4.3 

and 7.6 mm d-1. Regarding the effective precipitation (from sowing to harvest), 420 and 

290 mm were recorded, for the 2006 and 2007, respectively.   
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Figure 6.1.1: Maximum and minimum daily air temperatures and maximum sunshine duration at 

the experimental site (central Greece) during 2006–2007.  

 

Leaf photosynthesis  

 

Determination of photosynthesis light and temperature response curves is very 

important for crop growth modelling, since many parameters can be estimated from 

them (e.g. see Chapter 5). Here we report only the basic information. Fig. 6.1.2 illustrates 

that cynara’s photosynthesis was light saturated above 750 μmol m-2 s-1, while the 

maximum net assimilation rate depended on leaf temperature (viz. 28.1 and 20.7 μmol 
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CO2 m-2 s-1 at 20 °C and 36 °C, respectively). The temperature response curves illustrate 

that the optimum range for photosynthesis (during winter time) increased with an 

increased light level; under saturated light (clear days) and limited light (overcast days) 

the optimum temperature range was 19–23 °C and 18–22 °C, respectively. Below and 

beyond this optimum the photosynthetic rate was lower. In the sub-optimum part, the 

photosynthetic apparatus was limited by the enzymatic reaction rates (kinetic properties 

of Rubisco are temperature-dependent), while in the supra-optimum part, the 

oxygenation reaction of Rubisco increased more than the carboxylation, so that 

photorespiration became more important (cf. Atwell et al., 1999). Lastly, it seemed that 

below 7.5 °C photosynthesis became zero, and this might be a good indication for the 

base temperature of plant growth.   
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Figure 6.1.2: Leaf net photosynthesis (a) light- and (b) temperature-response curves of Cynara 

cardunculus growing in central Greece. Data points are mean values of 5 measurements. Light 

curves presented for two temperature regimes (a; 20 and 36°C) and temperature curves for three 

light levels (b; 400, 800 and 1600 μmol m-2s-1). Measurements were taken during November.  

 

Crop growth  

 

No significant interactions between irrigation and nitrogen fertilization levels (P>0.05) 

were observed in any of the measured parameters during the growing cycle. Figures 

6.1.3 and 6.1.4 depict the time course of plant height, specific leaf area, leaf area index, 

fresh and dry biomass as affected by the various treatments. Both irrigation and 

fertilization applications had a positive impact on fresh and dry matter production and 

leaf area index (P<0.05; Figs. 6.1.3 and 6.1.4), while no significant differences were found 

in cases of specific leaf area and plant height (P>0.05; Figs. 6.1.3 and 6.1.4).  

After an initial lag phase of crop establishment (root development; May 2006), the 

crop passed to the rosette stage (complete soil cover; June 2006) and thereafter developed 

a fully closed canopy (July 2006). At this stage the crop had a height of 50 cm, a leaf area 

index (LAI) of about 4.3 and a dry weight of 4.2 t ha-1.  
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Figure 6.1.3: Time course of (a) plant height; (b) specific leaf area; (c) leaf area index; (d) fresh and 

(e) dry biomass of Cynara cardunculus, grown under irrigated (●) and rainfed (○) condition in 

central Greece in 2006–2007. Vertical bars (LSD at P< 0.05) when visible indicate significant 

differences between two irrigation levels. Each point represents the mean of the three N levels. 
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Figure 6.1.4: Time course of (a) plant height; (b) leaf area index; (c) total fresh and (d) total dry 

biomass of Cynara cardunculus, grown under three N levels (○: control; □: 80 and ∆: 160 kg N ha-1) 

in Palamas in 2007. Vertical bars (LSD at P<0.05) when visible indicate significant differences 

among N-levels. Each point represents the mean value of the two water-supply levels. 

 

         Thereafter and until mid-September 2006 the crop further increased in height, 

biomass, and LAI. Irrigation application significantly increased crop growth rates 

(P<0.05; Fig. 6.1.3). During autumn and winter, cynara remained in the vegetative 

growth stage with some fluctuation in the aerial biomass. The fluctuation in biomass was 

due to the variability of weather; in frost periods the foliage was damaged and biomass 

decreased, while the crop recovered after an increase in temperature and so on.  

During spring 2007, when temperature and radiation increased (Figs. 6.1.1 and 

6.1.2), the crop showed maximum growth rates (250 and 215 kg ha-1 d-1 for the irrigated 

and rainfed crop, respectively) reaching maximum biomass yields of 30.4 and 27.1 t ha-1 

for the irrigated and rainfed treatments, respectively (P<0.05; Fig. 6.1.3). This period 

coincided with a rapid stem elongation (viz. 2.7 cm d-1), inflorescence emergence, and 

flowering initiation. Within this period, LAI reached maximum values of 6.9 and 8.5 (for 

I1 and I2, respectively, P<0.05; Fig. 6.1.3), while specific leaf area (average canopy 

measure) decreased without considerable differences among treatments. Significant 



Chapter 6.1 

 140 

differences between nitrogen inputs were detected for fresh and dry weight and LAI 

during mid–May to mid–June, as well (P<0.05; Fig. 6.1.4).  

During June and July 2007, the crop passed through fruit development, ripening 

and senescence stages, by dropping the leaf mass, increasing dry/fresh ratio and finally it 

was ready for harvest during mid-August 2007. Within this period the nitrogen 

concentration in stems and heads were 0.47 and 1.37%, respectively. The maximum 

nitrogen uptake of 312 kg N ha-1 was found in the high input treatments, while the NUE 

ranged among treatments from 132 to 97 kg kg-1 (Table 6.1.1). 

 

 

Table 6.1.1: Nitrogen concentration, total aerial nitrogen uptake and nitrogen use efficiency 

(NUE) of Cynara cardunculus growing in central Greece in 2007. Data refer to the last sampling 

(August) and are average values   

N supply (kg ha-1) N concentration (%) 

 Stalks Heads 

Total N uptake  

(kg ha-1)  

NUE  

(kg aerial dm) (kg Nup)-1 

Irrigated crops 

  0 0.40 1.13 203.3 128.0 

  80 0.50 1.27 254.0 112.5 

  160 0.48 1.47 312.8 100.4 

Rainfed crops  

  0 0.43 1.10 171.5 132.8 

  80 0.50 1.25 235.6 110.9 

  160 0.50 1.43 298.9   97.7 

 

 

Biomass production 

At final harvest, total fresh (average: 38.5 t ha-1) and total dry biomass (average: 27.4 t ha-

1) were significantly affected by irrigation and nitrogen inputs (Table 6.1.2; P<0.05), while 

dry heads and dry seed yield (average: 5.16 t ha-1) were affected statistically only by 

nitrogen applications (Table 6.1.2; P<0.05). Stem yields and fractions of the various plant 

components over the total biomass were not affected significantly (Table 6.1.2; P>0.05). 

At harvest, the plant components had different moisture contents (viz. seeds: 6–9%, 

heads: 12–14%, stems: 35–45%), resulting in different seed harvest index: 13% expressed 

on fresh basis and 19% expressed on dry basis (Table 6.1.2).  
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Table 6.1.2: Cynara’s yield components during the final harvest (6 August 2007) in central 

Greece. No significant irrigation × fertilization interactions were observed  

Parameter  I1 I2 P  N1 N2 N3 P 
 

Total FW (t ha-1) 36.31 40.79 0.008  34.87 37.4 43.37 0.001 

Total DW (t ha-1) 26.05 28.68 0.001  24.41 27.37 30.32 <0.001 

Stalk DW (t ha-1) 12.24 13.84 0.086  12.11 13.13 13.88 0.231 

Head DW (t ha-1) 13.81 14.84 0.268  12.30 14.24 16.44 0.005 

Seed DW (t ha-1) 04.90 05.36 0.154  04.24 05.20 05.97 0.004 

Fraction  (fresh basis) 

     Stalk / total 0.563 0.58 0.561  0.592 0.560 0.563 0.347 

     Head / total 0.436 0.419 0.561  0.407 0.440 0.436 0.347 

     Seed / total 0.135 0.132 0.701  0.123 0.139 0.138 0.104 

Fraction (dry basis) 

     Stalk / total 0.473 0.481 0.752  0.498 0.477 0.456 0.322 

     Head/ total   0.527 0.519 0.752  0.502 0.523 0.544 0.322 

     Seed / total 0.187 0.187 0.986  0.174 0.19 0.197 0.090 

For symbols explanation see Materials and methods. 

FW, fresh weight; DW, dry weight.  
 

 

Discussion  
 
This work highlights the high potential of Cynara cardunculus for biomass and seed 

production in central Greece. The observed total dry biomass yields (24–30 t ha-1) are 

among the highest that have ever been reported (Dalianis et al., 1996; Foti et al., 1999; 

Gonzáles et al., 2004; Raccuia & Melilli, 2007a; Danalatos et al., 2007). Due to spring 

sowing (see April 2006), the crop remained in the vegetative phase from summer 2006 to 

spring 2007 (in total 16 months) and this provided an advantage to the crop (longer 

growing period), compared to the annual growth cycles (~10 months) that this crop 

commonly experiences after the 2nd year.  

According to Fernández et al. (2006), a minimum of 400 mm as rainfall is required 

during autumn-spring in order for cynara to achieve good yields. In our case (dry plots), 

during that period some 440 mm of precipitation were recorded. Commonly the water-

use efficiency (WUE) is examined to provide more insight into the process efficiency of 

turning water and CO2 into biomass. Various ways of calculating WUE have been 

reported (Jorgensen & Schelde, 2001). Here we estimate the WUE according to Passioura 

(2002), by plotting above-ground biomass against the amount of water supplied. The 

results show a WUE (estimated as the slope of the plot) of 2.7 and 3.6 g dm (kg water)-1, 

for the irrigated and non-irrigated crop, respectively, while the evaporation from the soil 

(estimated as the x-axis intercept) was found at similar level for both the irrigated and 

rainfed crops (50 mm; data not shown). Our estimated WUE is in line with reports from 
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Spain (AIR2-CT92-1089) for cynara, and is much higher than that for other common 

agricultural C3 crops (viz. 1.6 ± 0.4 g kg-1; Jorgensen & Schelde, 2001).  

The observed fluctuation in dry biomass accumulation rate from October 2006 until 

March 2007 was due to fluctuation in temperature (from 1.3 to 21.4 °C; average 9.7 °C) 

and due to fluctuation in daily total radiation (from 0.4 to 19 MJ m-2 d-1). Figure 6.1.2 

relates these variables to photosynthesis, explaining the observed variation in dry 

biomass. From April to mid-June, the mean day-time air temperature was 21.4 °C, which 

is within the optimum range for maximum photosynthesis of cynara (Fig. 6.1.2b). This, in 

combination with the saturated light (above 750 μmol m-2 s-1), the low night-time 

temperatures (14.8 °C, very low respiration losses) and the fully closed canopy (see LAI > 

3, in all cases), explains the high growth rates that were observed within this period 

(215–250 kg ha-1 d-1).  

The observed high nitrogen uptake rates (Table 6.1.1) are most probably attributed 

both to the high growth rates observed in 2007 (N demand approach) and also to soil 

availability (N supply approach; Gastal & Lemaire, 2002). It was estimated that the study 

soil can provide some 90–120 kg N ha-1 by mineralization while the additional 50–80 kg 

N ha-1 comprise the residual nitrogen from previous years extracted by the extensive 

cynara rooting in deeper soil layers (root zone depth measured at 300 cm in June 2007), 

and also partly by the nitrogen in the previous crop litter. Reports from Spain mentioned 

nitrogen uptake rates of about 125–145 kg N ha-1, under water and nitrogen limited 

conditions (Fernández et al., 2006). Considering such high uptake rates, restoration seems 

to be essential for maximize yield. Nitrogen balance approaches deserve additional 

caution, since cynara produces some 7–12 t ha-1 leaf and petiole litter (see LAI; Figs. 6.1.3 

and 6.1.4) with a minimum nitrogen concentration of 1.3% and 0.6%, respectively. In our 

case, some 95–110 kg N ha-1 had been added to the soil in total.  

The NUE of cynara ranged from 97 to 132 kg kg-1, which is rather high compared to 

common agricultural crops (maize-grains and biomass: 66 and 111, wheat-grains: 83 to 

87 and potato: 73 kg kg-1; Beale & Long, 1997; Jorgensen & Mortensen, 2000) and 

somewhat lower compared to “woody” energy crops (miscanthus: 135–700, hemp: 169–

179 and kenaf: 117–144 kg kg-1; Beale and Long, 1997; Flengmark, 2000; and authors’ 

unpublished data). The lower NUE of cynara compared to C3 hemp is because of the 

production of seeds that have a high nitrogen concentration (~3%). Cardoon seeds are 

economically valuable products that can be used directly for bio-diesel production or can 

be added to the whole biomass, increasing the heating value of the product.  

 

 
Conclusions   
 

This study provides for the first time an overall assessment of growth and biomass 

productivity of Cynara cardunculus in an aquic soil. Light and temperature response 

curves were also reported for the first time in literature for this crop. We found 
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maximum net assimilation rate of 28 μmol CO2 m-2 s-1, a value that is close to the 

maximum photosynthesis for C3 species. We recorded very high total dry biomass yields 

from 24 to 30 t ha-1 (in response to irrigation and N-fertilization application) in this 

particular experiment. These large biomass yields even under zero inputs make cynara 

by far the most interesting energy crop for solid biofuel production in Greece.  
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Chapter 6.2 
 

 

The effect of nitrogen fertilization and irrigation on seed and 

biomass productivity of Cynara cardunculus growing in a 

semi-arid environment in central Greece 
 

 
 

Abstract  

 

The effects of nitrogen fertilization and irrigation on growth, biomass and seed yield of 

Cynara cardunculus were investigated in a dry environment of central Greece (Velestino, 

2008/2009) during the crop’s second growth cycle. The growth was monitored by periodical 

destructive sampling. Nitrogen input–yield relations were analysed using a three-quadrant 

diagram. We found that nitrogen fertilization and irrigation significantly (P<0.001) increased 

total dry biomass yield (24% increase), head weight (43% increase) and seed yield (50% 

increase). Final productivities in the studied area ranged from 12.8 to 17.5 t ha-1 (biomass) 

and from 1.4 to 2.8 t ha-1 (seed) for dry and irrigated crops, respectively. Irrigation 

contributed most to this yield increase, because it prolonged the growing period by two 

weeks and increased  crop growth rates from 170 (rainfed) to 246 (irrigated) kg ha-1 d-1. 

Nitrogen effect was more evident at advanced growth stages when head (and seed) growth 

created a strong sink for nitrogen. Cynara’s nitrogen use efficiency was estimated at 125 kg 

dm kg-1 N. The studied soil provided to the crop 64 to 95 kg N ha-1 (basic uptake). The 

efficiency of fertilizer application (recovery fraction) was 28 and 49% under rainfed and 

irrigated conditions, respectively. These estimates can serve as reference in nitrogen 

restoration approaches.    
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18th European Biomass Conference, Lyon, France, p. 273–279.    
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Introduction  
 

Cynara cardunculus L. (cynara) is a perennial herb with a C3 photosynthetic pathway. 

Cynara’s perennial character, its large root system, and its winter–spring growth cycle 

are important advantages of the crop. In Greece, biomass production of rainfed cynara 

crops ranges from 15 t ha-1 on dry sites (Danalatos et al., 2006a, 2007a) to some 25–35 t ha-

1 on aquic sites (Archontoulis et al., 2008a, 2009). Differences in crop growth and 

development between dry and aquic areas become evident after inflorescence emergence 

(coinciding with stem elongation; principal growth stage 5 based on BBCH system; 

Archontoulis et al., 2010a). In Greece, this period occurs in May. Usually, during May, 

crop transpiration increases as temperature increases, when the prevailing water deficit 

is no longer satisfied by precipitation and/or the available soil moisture in the dry soils.  

The larger water deficit on dry soils has the following chronological consequences 

for the cynara crop (compared with a crop on aquic soils): i. formation of fewer heads per 

plant (end of May), ii. acceleration of the senescence of the basal leaves, reduction of leaf 

area index, lower light interception as well as lower growth rates (end of June), iii. 

incomplete head growth and a relatively smaller proportion of seeds in the total head, iv. 

lower biomass (and seed) yields. Given these consequences, we hypothesised that 

supplemental irrigation accompanied with nitrogen application during the principal 

growth stage 5 might increase biomass and seed yield in a semi-arid (dry) environment 

of central Greece.  

Thus the objective of this work was to investigate the growth and the biomass 

productivity of cynara under supplemental irrigated and under rainfed conditions 

(control) in central Greece. Within each plot, the effect of five nitrogen application rates 

(range: 0–240 kg N ha-1) was also investigated. Emphasis was given on nitrogen 

extraction during the final harvest in order to determine parameters what will serve as 

reference in nitrogen restoration approaches. Nitrogen input–yield responses were 

analyzed with the so-called ‘three quadrant diagrams’ (van Keulen, 1982; de Wit, 1992; 

Vos, 1997, 2009). With such a diagram the ‘agronomic response’, i.e. yield versus N 

supply (quadrant I), is split up into its components: the relation between yield and N 

uptake (quadrant II) and the relation between N supply and N uptake (quadrant III). 

Yield–N uptake relation is primarily determined by the physiology of the plant, while N 

supply–N uptake relationship is governed by processes in the soil.  

  

Materials and Methods   
 

Experimental site and design  

 

The field experiment was carried out on a clay soil with no ground water level (moderate 

fertility) in the Experimental Farm of the University of Thessaly (Velestino, Magnesia, 

coordinates: 39°23’ N, 22°44’ E, altitude 87 m asl). The soil is classified as Calxixerollic 
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Xerochrept according to USDA (1975). The crop was established on November 27th, 2007 

at a sowing density of 5.3 pl. m-2 (plant arrangement: 75 × 25 cm) and grew without any 

additional water and nutrient application inputs during the first cycle (2007/2008).  

 After crop harvesting (August 2008) and before new sprouts became visible (BBCH 

stage 10) the plantation was modified to a 2×5 split-plot experiment in six blocks (60 

experimental units). Main factor comprised the two irrigation treatments (I1 = rainfed 

and I2 = with supplementary irrigation) and the sub-factor comprised the five N 

fertilization dressings (F1=0, F2=60, F3=120, F4=180 and F5=240 kg N/ha). N-fertilization 

(fertilizer: 34.5–0–0) was applied on April 28th 2009 (inflorescence emergence; BBCH 

stage 50). Irrigation was applied using a drip irrigation system from 20/5 to 10/6, with a 

total amount of 138 mm in three applications. The present study reflects the 2nd growth 

cycle of the crop (2008/2009).  

 

Measurements   

 

Growth and biomass productivity data were collected during five different crop stages: 

April 28th (stage 50), May 19th (stage 57), June 5th (stage 63), July 2nd (stage 82) and August 

3rd 2009 (stage 97). In each destructive harvest (area: 1 m2), the sample was weighed fresh 

in the field, and then a sub-sample (usually one or two representative off-shoots/sample) 

was taken for further analyses. The sub-sample was divided into various biomass 

fractions (green leaves, dead leaves, petioles, stem, branches and heads). Materials were 

oven-dried at 70°C until constant weights and weighed again to determine the respective 

dry weights. Before drying, green lamina leaf area was measured using an automatic 

LI−COR area meter (LI−3000A). During the final harvest, different plant components 

were also analyzed for nitrogen concentration (% dry weight) using the Kjeldahl method.  

 

Calculations  

 

The leaf area index (LAI, m2 green leaf m-2 ground) was determined as the product of 

green leaf dry weight (kg m-2 ground) times the specific leaf area (SLA in m2 leaf kg-1). 

Green petiole area was excluded in LAI estimations. 

The course of dry biomass over time for each treatment (I × F) was described using 

the beta growth function (Yin et al., 2003b):  
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where Wmax is the maximum biomass weight (W), t is the days after emergence, tm is the 

day when the increment of biomass is maximal, and te is the day where W = Wmax. From 
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Eq. (1) the maximum crop growth rate (CGR, kg ha-1 d-1), which is achieved at time tm, 

was calculated as (Yin et al., 2003b):  
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Seed yield (SY) was estimated using the following allometric equation 

(Archontoulis et al., 2010b; see Chapter 3): 

 

SY = HN · (0.4293 · μ – 2.9048)                                               (3) 

 

where μ is the mean head weight per unit area (g head-1) and HN is the total number of 

all seed-bearing heads per unit area.  

Nitrogen input–biomass yield responses were analyzed using the three quadrant 

diagram and by calculating the common nitrogen use efficiency index:  

 

NUE = yield / Nupt                                      (4) 

 

where NUE is the nitrogen use efficiency (kg dry matter per kg nitrogen taken up), yield 

refer to total biomass or to seed yield (t ha-1) and Nupt is the nitrogen that has been taken 

up by the crop or by the seeds (kg N ha-1). NUE approximates the physiological 

efficiency (quadrant II). The slope of the (linear regression) line in quadrant III indicates 

the average nitrogen recovery fraction (kg N taken up per kg N supplied), while the 

intercept indicates the basic N uptake. Similarly the slope of the (linear regression) line in 

quadrant I indicates the average agronomic efficiency (kg dm produced per kg N 

supplied).  

 

Statistics  

 

All measured and derived datasets were subjected to analysis of variance using GenStat 

(12th edition) following a split-plot design. Statistically significant differences were 

assessed at P<0.05, while the LSD0.05 criterion was used to examine differences among 

means. Curve fittings were implemented in SAS software from iterative non-linear least-

square regression.   
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Results and Discussion  
 

Weather conditions and crop phenology   

 

During growth, the crop received 590 mm as effective precipitation (autumn: 173; winter: 

254, spring: 111 and summer: 52 mm; Fig. 6.2.1). This precipitation was 25% and 50% 

higher compared with an average and with a dry year for this area, respectively 

(Danalatos & Archontoulis, 2009). Thus the growing season of 2008/2009 is characterized 

as a moist season, exceeding the empirical value of 400 mm required for realization of 

good cynara yields (Fernández et al., 2006). Irrigation (138 mm; Fig. 6.2.1) during growth 

stages 53–63 partially fulfilled the transpiration deficit generated by the increased 

temperature (+8°C) and the relatively low precipitation (59 mm) during May–June (Fig. 

6.2.1).  

During September–October the crop experienced good temperatures (17.5 °C) and 

precipitation amounts (131 mm). This resulted in a prompt re-sprouting and a fast soil 

cover (stage 39), avoiding any competition from weeds. Thereafter the crop passed to 

(principal) stage 4 (November) and it remained in that stage until mid-April. During the 

winter period, vegetative (foliage) biomass yield fluctuated following the temperature 

variation (average minimum: –4.5 °C; average maximum: 17.4 °C; average mean: 6.5 °C; 

Fig. 6.2.1). Note that cynara’s leaf photosynthesis practically ceases below a temperature 

of 7.5 °C (Archontoulis et al., 2008a). The crop entered into the reproductive stage (BBCH 

51) at the end of April–early May and it was ready for harvest (BBCH 97) during the first 

week of August.    
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Figure 6.2.1: Monthly precipitation, supplemental irrigation during May–June and monthly 

temperature records in the study area of Velestino (central Greece) in 2008/2009. 
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Crop growth and maximum biomass yields 

 

Stalk height (stem + branches) was 156 cm on April 28th (BBCH 50) and increased with a 

rate of 1.5 cm d-1 to reach a final height of 210 cm on June 5th (BBCH 61; P>0.05 among 

treatments). During April 28th LAI was 6.7 m2 m-2 and thereafter decreased progressively 

until the first week of July. The decrease of LAI was more evident in the control plots 

compared with high-input plots, although this was not statistically significant (P>0.05; 

data not shown). Basal leaves were the first to senesce and litter, causing a strong LAI 

reduction (note that basal leaves comprised 55–70% of the total LAI during May–June). A 

relevant study on an aquic soil (Archontoulis et al., 2008a) confirms that in central Greece 

cynara’s maximal LAI is observed during the end of April until May (stage 5) and 

thereafter LAI decreases because assimilates are distributed to reproductive organs to 

support head and seed growth. However, the level of the maximum LAI in this site was 

32% lower compared to what was observed in a site with aquic soil (6.7 vs. 9.8 m2 m-2).  

Fig. 6.2.2 presents the dynamic course of the total dry matter (aerial part) in 

response to five nitrogen treatments (range: 0–240 kg N ha-1) under both rainfed and 

irrigated conditions. Results indicated that N-dressing had a minor effect on biomass 

productivity in the dry plots (see also Table 6.2.1). Some significant differences were 

detected at advanced growth stages (July 2nd and August 2nd; Fig. 6.2.2). On July 2nd, 

differences were evident between the control plot and the highly fertilized plots (180–240 

kg N ha-1; P=0.005). However, differences between 60 and 120–240 kg N ha-1 were not 

significant. Crops with supplemental irrigation showed a stronger response to nitrogen 

application (Fig. 6.2.2). Soil nitrogen mineralization and crop N uptake were favoured by 

water supply and thus the wet control plot (I2–F1) reached 35% higher maximum 

productivity than the dry control plot (I1–F1; Fig. 6.2.2). Significant differences (P<0.05) in 

biomass production were observed between the 0–60 and the 180–240 kg N ha-1 

application input levels (Fig. 6.2.2). In an adverse year (frost during February) at this 

particular site, Danalatos et al. (2007a) reported no effect of nitrogen fertilization (range: 

0–100 kg N ha-1) on biomass production.  

The effect of nitrogen on biomass productivity became evident after mid–June (Fig. 

6.2.2). This is attributed to the fact that this period coincides with the head growth and 

seed development, thus the crop develops a strong sink for nitrogen after mid–June. On 

average across five N-dressings, maximum dry weight (Wmax) was 20.8 and 28.7 t ha-1 for 

the dry and wet crops, respectively (Table 6.2.1). This maximum yield was attained on 

June 16th (te) for the dry plots and two weeks later for the wet plots (June 30th, Fig. 6.2.2 

and Table 6.2.1). This delay is due to the higher resource availability of the I2–plots 

compared with the I1–plots (higher soil moisture enhanced soil nitrogen mineralization 

and crop N uptake). This increase in N availability is reflected by the higher growth rates 

(I2 = 246 vs. I1 = 170 kg ha-1 d-1; Table 6.2.1), which finally resulted in a higher Wmax (28% 

increase).  
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Within I–plots, N-supply also delayed te by 1–3 weeks, increasing therefore the 

Wmax by 14–22% (Table 6.2.1). However, supplemental irrigation had the largest effect in 

delaying te, while increasing CGR and Wmax as well. By comparing the control plots (I1F1 

vs. I2F1), te was delayed by about four weeks and CGR almost doubled (126 vs. 212 kg ha-

1d-1; Table 6.2.1). Thus it can be inferred that on dry sites, farmers should first aim to 

irrigate the plantations during May and secondly to apply fertilizers. The latter also 

depends on the specific soil properties of each site. During July (principal BBCH stages 8 

and 9), the crop dries out and a substantial amount of foliage biomass is lost, decreasing 

thereafter Wmax. Additionally, mitochondrial biomass respiration caused further decrease 

in the final biomass yield (Fig. 6.2.2).   
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Figure 6.2.2: Time course of total dry biomass as affected by five nitrogen application levels (F1–

F5) on a dry (left) and on a wet plot (right) in Velestino in 2008/2009. Symbols (F1:×; F2:▲; F3:■; 

F4:●; and F5:♦) refer to observations while lines represent fits from Eq. (1); parameters are given in 

Table 6.2.1. Vertical bars (LSD at P<0.05) when visible indicate significant differences among N-

leaves. F1–F5 represents five nitrogen application rates: 0, 60, 120, 180 and 240 kg N ha-1.   
 

 

Table 6.2.1: Parameters of Eq. (1) used to describe biomass time course in Fig. 6.2.2 

 I1: Rainfed crops  I2: Irrigated crops 

Parameter F1 F2 F3 F4 F5  F1 F2 F3 F4 F5 
 

Wmax    (t ha-1) 17.1 21.9 21.4 21.8 21.7  22.5 22.5 26.3 27.6 28.7 

te             (days) 150 171 164 174 175  177 177 183 181 185 

tm            (days) 55 110 94 110 100  123 119 135 132 132 

P 0.007 0.005 0.019 0.000 0.004  0.004 0.004 0.009 0.017 0.001 

CGR (kg ha-1d-1) 126 193 176 185 168  212 204 263 275 276 

For symbol explanation see Materials and methods.  
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Figure 6.2.3: Total dry biomass weight (a), head dry weight (b), seed yield (c) and seed harvest 

index (d) during the final harvest of the crop. I1 = dry and I2 = irrigated plots, F1–F5 represent five 

nitrogen application rates: 0, 60, 120, 180 and 240 kg N ha-1. Vertical bars indicate standard error 

of difference of means. Different letters within a factor indicate significant differences 

between/among means at P<0.05, as detected by the LSD test.    
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Figure 6.2.4: Total number of heads per unit area (a) and mean head weight (b) during the final 

harvest of the crop. Symbols and statistics as in Fig. 6.2.3. 
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Final biomass and seed yield 

 

Final harvest took place on August 2nd (stage 95–97), when the plant materials had an 

average moisture content of 23%. Stalks had higher moisture contents (31%) than heads 

(9%). Basal leaves were lying on the ground (dry), whereas stem- and branch-leaves 

remained on the plant stand (dry). In our analysis, all leaves were left out since they were 

dry and usually fell off during sampling. Hence, total dry biomass yield was estimated 

as the sum of stalk and head weights. Data of the final harvest are presented in Figs. 6.2.3 

and 6.2.4 as average values per factor studied since no significant interactions were 

found between factors (P>0.05).  

Irrigation had a significant effect on total dry biomass yield (P=0.009; 24% increase; 

Fig. 6.2.3a), and a paramount effect on the head weight (P<0.001; 43% increase, Fig. 

6.2.3b), seed yield (P<0.001; 50% increase; Fig. 6.2.3c) and on seed harvest index (P<0.001; 

34% increase; Fig. 6.2.3d). Similarly, N-supply significantly affected the above-mentioned 

parameters (15 to 46% increase) except for harvest index (Fig. 6.2.3). Not surprisingly, 

stalk biomass yield (stems plus branches) was unaffected by water (P=0.639) and 

nitrogen supply (P=0.183). This is because stalk formation and development ceased after 

growth stage 59 (approximately end of May). Thus the effects of water and nitrogen 

application were more pronounced in the reproductive biomass (Fig. 6.2.3b and c, 46% 

increase) rather than in the total biomass yield (Fig. 6.2.3a, 25% increase). Given that 

water application doubled seed yield (from I1 = 1.4 to I2 = 2.8 t ha-1) and the overall 

seed/biomass ratio increased by 25% (Fig. 6.2.3d), it can be stated that the overall heating 

value of the crop was increased. Note that the heating value of the seeds is 26% higher 

than that of stalks (22.6 vs. 16.7 MJ kg-1; Fernández et al., 2006; Grammelis et al., 2008).  

Cynara’s final productivities in the dry area of Velestino (2nd growth cycle) ranged 

from 12.8 to 17.5 t ha-1 (biomass) and from 1.4 to 2.8 t ha-1 (seed) for dry and wet plots, 

respectively. The lower final yields were obtained in the control plots (10.3 and 0.9 t ha-1; 

for biomass and seed yield, respectively), and the higher final yields in the I2-F4 plots 

(20.1 and 3.4 t ha-1; for biomass and seed yield, respectively). Such findings are in 

accordance with previous studies in this dry area (Danalatos et al., 2006a; 2007a), with 

many literature findings for dry sites (Fernández et al., 2005; Angelini et al., 2009; Raccuia 

& Melilli, 2007a; Ierna & Mauromicale, 2010) and values are 50% lower compared with 

yields obtained on aquic soils (see Chapters 3 and 6.1). This indicates that cynara’s 

biomass yields obtained on aquic soils cannot be realized on dry soils, even when crops 

are appropriately managed (water and nitrogen supply).  

Since water and nitrogen effects were more pronounced in the reproductive biomass 

(heads) and especially in seed yield, this study also provides a seed yield component 

analysis according to Eq. (3). Results indicated that supplemental irrigation increased the 

number of the seed-bearing heads by 20% (Fig. 6.2.4a) and the mean head weight by 26% 
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(Fig. 6.2.4b), while the effect of nitrogen was significant only on head number and not on 

mean head weight (Fig. 6.2.4). This is because μ is the ratio of weight (Fig. 6.2.3b) over the 

number (Fig. 6.2.4a) and since both increased with N-supply, μ remained constant and 

about 21.3 g head-1.  Usually μ varies from 13 to 40 g head-1 (see Chapter 3).  

 

Nitrogen input – yield relations  

 

Nitrogen–yield relations are presented in the form of a three-quadrant diagram (van 

Keulen, 1982). Fig. 6.2.5 consists of three graphs. Quadrant I depicts the N supply–yield 

relations. It shows that irrigation application increased the yield of the control crops by 

22% (I1 = 10.3 vs. I2 = 13.2 t ha-1), and thereafter for every additional kg nitrogen supplied, 

the yield increased by 21 and 31 kg ha-1 for the dry and wet crops, respectively 

(agronomic efficiency).  

Quadrant II (N uptake – yield) shows that a strong proportional relation existed 

between biomass yield and N uptake, irrespective of water application (Fig. 6.2.5). A 

second order polynomial curve was fitted through the pooled data (r2 = 0.98). At low N-

uptake rates, the relation was linear; while as N-uptake increased, dry matter production 

per unit nitrogen uptake declined but a ‘point of saturation’ was not reached in the 

experimental data (Fig. 6.2.5). This is also observed in many crop species (van Keulen, 

1982; Vos, 1997; 2009).   

NUE for total biomass was somewhat higher for the dry compared to the wet crop 

(135 vs. 117 kg dm produced per kg N taken up) because dry crops are associated with 

lower N uptake rates (Fig. 6.2.5). The lower uptake rates were caused by the lower 

proportion of the nitrogen-rich seeds in the biomass. NUE progressively declined with 

an increase in N-supply (13–22% reduction at high N-levels compared to controls, Fig. 

6.2.5). Our estimates (dry soil) are very close to what was found on an aquic soil (NUE = 

100–128 kg kg-1 Archontoulis et al., 2008a), lower compared with miscanthus (160–190 kg 

kg-1) and sorghum (130–190 kg kg-1), and similar compared with kenaf (117–144 kg kg-1) 

and maize (97–111 kg kg-1; Beale & Long, 1997; Danalatos et al., 2007b; 2009; Cosentino et 

al., 2007). The NUE for the seeds was relatively low (viz. 35 kg kg-1) compared with total 

biomass because of the higher N concentration of the seeds (~3%) compared with the 

average biomass N concentration (~1%). This estimate for the cynara crop is close to the 

NUE for sunflower grains (33 kg kg-1), higher compared with rapeseed (16–23 kg kg-1) 

and considerably lower compared with maize kernels (66–76 kg kg-1) and with wheat 

grains (53 kg kg-1; Beale & Long, 1997; Danalatos et al., 2009; Danalatos & Archontoulis, 

2009).  
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Figure 6.2.5: Three-quadrant diagram of Cynara cardunculus biomass production response to 

nitrogen application on a dry soil in central Greece (▲: irrigated and ∆: rainfed crops). In 

quadrant III, the slopes of the regression lines (recovery fraction of the applied fertilizers) are 

illustrated.  

 

 The relation between fertilizer application and total uptake by the crop is 

illustrated in quadrant III (Fig. 6.2.5). Linear regression analysis was performed to 

characterize this relation (up to maximum N uptake). The basic N uptake rate (intercept) 

was 65.4 and 95.2 kg N ha-1 for the dry and the wet plots, respectively. This parameter 

represents the inherent fertility of the studied soil, governed (a) by the quantity and 

quality of the organic matter present in the soil and (b) by the environmental conditions, 

notably soil temperature and soil moisture, which govern the rate of decomposition of 

the organic matter and the ultimate fate of the nitrogen mineralized or immobilized 

during this process (van Keulen, 1982). The efficiencies of the fertilizer (recovery fraction, 

Fig. 6.2.5) were estimated at 27.8% and 49.4% for the dry and wet plots, respectively 

(r2>0.92), indicating clearly the important role of soil moisture on N-uptake. These 

estimates are very useful for proper calculations of nitrogen budgets in this environment. 
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However, the fertilizer efficiency is also dependent on the timing of N-application. In 

this study, N-supply took place during BBCH 50 (end of April), when the canopy was 

fully closed (LAI > 5). The efficiency of fertilization application at different growth stages 

(e.g. stage 1; considering practical matters) is still unknown. Thus, future studies should 

address this.  

 

Conclusions  
 

Irrigation and nitrogen application during inflorescence emergence stage (May), 

significantly increased final biomass (24%) and seed (46%) yields in a dry soil of central 

Greece. Irrigation played the most dominant role in this yield increase, because it 

expanded the growing period by two weeks and doubled crop growth rates in that site. 

Nitrogen effect was more evident at advanced growth stages, when seed growth created 

a strong sink for nitrogen. Cynara’s nitrogen use efficiency was estimated at 125 kg dm 

kg-1 N, while the basic nitrogen uptake was ranged from 65 to 95 kg N ha-1 in that site. 

We concluded that even under appropriate management techniques, i.e. irrigation and 

nitrogen application at critical crop stages, cynara’s biomass yields in Eastern Thessaly 

Plain (dry soils) can never reach the high biomass yields that obtained in aquic soils of 

Western Thessaly Plain, central Greece.  
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Chapter 6.3 
 

 

Irrigation and N–fertilization effects on the growth and 

biomass productivity of sunflower growing in an aquic soil  

in central Greece 
 

 
 
 

Abstract  

 

Biomass and seed productivity of the new released sunflower hybrid “70−G−3920” in 

relation to irrigation and nitrogen fertilization were assessed in central Greece during 2006. 

Farm budgets and profitability of the sunflower cultivation were also estimated. A 3 

(irrigation levels) × 3 (nitrogen levels) split-plot experiment (36 plots) was carried out on an 

aquic soil. The results demonstrated no significant effect (P> 0.05) of irrigation and nitrogen 

input on the growth and seed yield of sunflower, due to both shallow groundwater table and 

high fertility status of the soil. Sunflower biomass yields in fully irrigated/fertilized and 

control plots were 13.9 and 12.8 t ha-1, respectively, while the harvest index was rather 

constant (0.34), resulting in final seed yields of 4.7 and 4.4 t ha-1, respectively. Present 

findings (2006) suggest that cultivation of sunflower in this area is economically feasible and 

therefore a very good option for increasing county’s biodiesel production, in line with the EU 

targets.   
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Introduction   
 

Sunflower (Helianthus annuus L.) is one of the most important oilseed crops worldwide. 

In Greece sunflower is traditionally grown in the northern parts of Greece as rainfed 

crop with a seed yield of 1.5 t ha-1 (Kallivroussis et al., 2002). In central Greece sunflower 

was not cultivated over the last two decades because the cotton cultivations had a 

dominant role in this region (Thessaly Plain). However, after the adoption of Directive 

2003/30/EC on the promotion of biofuels for transport, research on sunflower increased 

in order to identify the best genotypes and the best cultivation techniques for central 

Greek conditions. In literature, agronomic information on sunflower is generally rich 

(Connor et al., 1993; Villabolos et al., 1996; Rinaldi, 2001; Ruffo et al., 2002; Rinaldi et al., 

2003; Albrizio & Steduto, 2005), but adaptability and productivity data for the specific 

soil-climatic conditions of central Greece are very few (Danalatos et al., 2005; 

Geronikolou et al., 2005). Such data are of high importance in order to design profitable 

sunflower cultivations in this region.  

Cultivation of sunflower in central Greece and under new CAP conditions will be 

possible if farmers get similar or higher profits than the profits made now by the cotton, 

maize and alfalfa (traditional for the area) cultivations. Sunflower seeds are rich in 

nitrogen (~3.3% concentration), while irrigation application is very important for 

realizing adequate seed yields in Mediterranean environments (Zuibillaga et al., 2002; 

Goskoy et al., 2004). We hypothesized that sunflower cultivations on aquic fertile soils of 

central Greece could reach high seed yields under minimum input applications, and 

therefore it can provide a stimulus to Greek farmers to shift from cotton to sunflower 

cultivation in order to increase country’s biodiesel production.   

In this context, we assessed biomass and seed productivity of a recently released 

sunflower hybrid “70–G–3920” on an aquic soil in central Greece under different 

irrigation and nitrogen application inputs. Farm budgets were also constructed to 

investigate whether sunflower cultivation can be profitable in this region.   

 

Materials and Methods  
 

A field experiment was carried out in the Western Thessaly Plain (Palamas, central 

Greece; 39°25’N and 22°05’E, 107 m asl.) in 2006. The soil at the site was a deep, fertile, 

loamy soil, classified as Aquic Xerofluvent, due to the occurrence of shallow 

groundwater table (Table 6.3.1). The soil is a calcareous (pH=8.0−8.2) loam (sand 40−42%, 

silt 40−41%, clay 18−19%), and has an organic matter content of more than 1% at a depth 

of 50 cm. A 3×3 split-plot field experiment in four replicates (36 plots) was carried out, 

where the main factor comprised the three irrigation regimes (I1= 0, I2= 50 and I3= 100% of 

ETm) and the sub-factor comprised the three nitrogen regimes (N1= 0, N2= 60 and N3= 120 

kg N ha-1).  
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The crop was sown on May 18th, while herbicide- and basal fertilization application 

with 50 kg P ha-1 and 50 kg K ha-1 took place one day prior to sowing. N-fertilization was 

applied at the phenological stage V6 (three pairs of fully expanded leaves) according to 

the Schneiter & Miller (1981) phenological scale for sunflower. Irrigation was applied 

using an automatic drip irrigation system approximately every week, starting one month 

after crop emergence (Table 6.3.1, Fig. 6.3.1). The irrigation regimes were calculated 

based on maximum evapotranspiration (ETm), using sunflower crop specific coefficients 

and class-A pan evaporation rate. The amount of irrigation water applied and some 

other relevant phenological, agronomic and weather data are summarized in Table 6.3.1. 

During the cropping cycle, six destructive harvests were conducted every 2−3 

weeks on: 20th June, 3rd July, 16th July, 28th July, 17th August and 9th September 2006. Each 

time, the growth (plant height, number of leaves per plant, leaf area index, specific leaf 

area), and biomass production of leaves, stems, and storage organs were measured. At 

each manual harvest, the crop samples were divided into the various plant organs and 

weighed in the field. Leaf area (green leaves) was measured using an automatic LI−COR 

area meter (LI−3000A). Then the samples were oven-dried at 90°C until constant weights 

(2−3 days) and weighed again in order to determine the dry weights per plant 

component. Weather data such as radiation, air temperature, precipitation, air humidity, 

wind speed and class A-pan evaporation were recorded hourly by a fully automatic 

meteorological station which was installed at the borders of the experimental site. All 

datasets were subjected to analysis of variance (ANOVA) using GenStat (7th edition).   

 
 
Table 6.3.1: Basic information regarding the sunflower cultivation in 2006 
 

Date of 50% crop emergence 22 May 2006 

Final harvest date 9 Sept 2006 

Density of surviving plants (plants m-2) 7.6 ± 0.1 

Eo (A-class evaporation pan) (mm) 726 

Estimated ETm (mm) 581 

Effective rainfall (mm) 46 

Maximum irrigation applied from 22/6 to 1/9/06 (mm) 394 

Groundwater level at sowing (cm)a 190 

Cumulative heat-units (°C days)b 2350 
a: measured from a tube 
b: Base temperature 4°C (Villalobos et al., 1996) 
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Results  
 

Weather parameters 

 

Fig. 6.3.1 illustrates maximum and minimum air temperature and incident global 

radiation. The average daily temperature during the growing season was around 25 °C. 

June 2006 was somewhat cooler (–2.2 °C) compared to the long term climatic average 

(data not shown), due to the occurrence of some rainfalls that accompanied by days with 

heavy cloud cover. Mean incident global radiation during the cropping cycle was 24.7 

MJ m-2 s-1. 
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Figure 6.3.1: Daily air temperature and radiation during the experimental period. Vertical bars 

refer to time of irrigation, while dashes refer to time of precipitation (for amounts see Table 6.3.1).   

 

 

Growth parameters  

 

No significant interactions (irrigation × nitrogen) were observed for any of the measured 

or calculated variables (P>0.05). Sunflower plant height increased from crop emergence 

onwards with rates of 3.5 cm d-1, reaching a final height of 210 cm during flowering 

irrespective of irrigation or nitrogen input (P> 0.05; data not shown). No significant effect 

of irrigation and N-fertilization on specific leaf area (SLA) was observed (P> 0.05). SLA 

was around 20 m2 kg-1 until the beginning of flowering (53 DAE) and then it decreased 

gradually during seed feeling period to 15 m2 kg-1 (data not shown).  
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The LAI increased rapidly from crop emergence upon flowering initiation to reach 

a maximum value of 3.5–4.1 m2 m-2 (Fig. 6.3.2). Irrigation application affected 

significantly LAI (P< 0.05) after the flowering phase. The crop had a closed canopy (LAI 

>3) for 58 growing days (Fig. 6.3.2).   
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Figure 6.3.2: Time course of leaf area index (LAI) as affected by three irrigation (■: 100%, ●: 50% 

and ▲: 0% of ETm) and three N fertilization inputs (□: 120, ○: 60, and ∆: 0 kg N ha-1) in central 

Greece in 2006. Vertical bars (LSD at P<0.05) when visible indicate significant differences among 

irrigation or N-fertilization treatments. 

 

 

Biomass production  

 

Irrigation and nitrogen fertilization application did not affect significantly (P>0.05) 

sunflower biomass production during the growing, despite the somewhat higher values 

found for the high-input treatments (viz. I3 and N3; Fig. 6.3.3). The crop showed high 

growth rates from V6 stage (3 pairs of leaves) until the end of anthesis (265 and 239 kg 

ha-1 d-1; for full- and non-irrigated plants, respectively). During the seed filling period 

until maturity the crop increased with lower growth rates (~ 60 kg ha-1 d-1), reaching a 

final biomass of 13.9, 12.9, 12.8 t ha-1 for I3, I2 and I1 plants, respectively (Fig. 6.3.3). At the 

end of the growth cycle (crop ready for harvest: 9th September), the storage organs 

comprised on average the 48% of the total dry biomass, while the seed/head ratio on a 

dry basis was averaged 0.7 resulting in a seed harvest index of 0.34 (kg seeds kg total dry 

weight-1) and seed yields of 4.69 and 4.41 t ha-1 for the irrigated and water/nitrogen 

stressed plants.     
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Figure 6.3.3: Time course of total dry and storage organ biomass as affected by irrigation (■: 

100%, ●: 50% and ▲: 0% of ETm) and N-fertilization (□: 120, ○: 60, and ∆: 0 kg N ha-1) in central 

Greece in 2006.  

 

Biomass allocation 

 

Since no differences were observed among treatments, the data were pooled to assess the 

biomass allocation to various plant components. This is illustrated in Fig. 6.3.4. At 

maturity (109 DAE; 2350 °Cd) storage organs (heads), stems and leaves (green and 

yellow) comprised 48, 36 and 16% of the total biomass respectively. 
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Figure 6.3.4: Biomass allocation to different plant components for the sunflower crop. 

 

 

 

 

 



Sunflower growth and biomass production 

 163 

Production cost 

 

Table 6.3.2 summarizes the production cost, gross margin and net farmer’s income from a 

sunflower cultivation on an aquic soil under fully and water/nitrogen stress conditions. 

The total cultivation cost ranged from 400 until 600 € ha-1 depending on the management 

(full or no irrigation/nitrogen). Taking into account a selling price of 200 € t-1 for the 

sunflower seeds (2006), the net farmer’s income was estimated at 345 and 470 € ha-1 under 

high and low input management practices. 

 
 

Table 6.3.2: Farm budget of a sunflower cultivation in the experimental site of central 

Greece 

Category Unit Potential Limited 
 

Field preparation including plowing, disc-harrowing, & sowing € ha-1 190 190 

Material supply including seeds, herbicide, and nutrients  € ha-1 110 50 

Field management including weeding, irrigation, and harvest  € ha-1 300 160 

         Total cost  € ha-1 600 400 

Total biomass yield  t ha-1 13.9 12.8 

Seed harvest index  kg kg-1 0.34 0.34 

Selling price  € t-1 200 200 

Gross margin  € ha-1 945 870 

        Net income  € ha-1 345 470 

Potential refers to I3N3 and limited to I1N1 treatment (see Materials and methods).  

Subsidies are not taken into account.  

 

 

Discussion  
 

Growth  

 

This study shows that a sunflower seed yield of 4.5 t ha-1 can be obtained on aquic soils 

of central Greece under minimum inputs of water and N-fertilization. The observed seed 

yield (hybrid: 70–G–3920) is comparable to yields found for other hybrids in that site (cf. 

Sanbro, Sanluka, Favorit, Peredovick, Panter, Turbo, and Golden Word; Danalatos et al., 

2005), and thus is recommended for biodiesel production. The observed yield is three 

times higher compared to sunflower yields obtained in northern Greece and is similar to 

those reported in literature under non-limiting growing conditions: 3.5–5 t ha-1 in 

Argentina (Zuibillaga et al., 2002; Ruffo et al., 2003), 4.1 t ha-1 in Turkey (Goskoy et al., 

2004) and 4.3–4.5 t ha-1 in Italy (Rinaldi et al., 2001; Albrizio & Steduto, 2005). The 

observed harvest index was 0.34 irrespective of irrigation and nitrogen application, in 

line with other studies (Zuibillaga et al., 2002; Ruffo et al., 2003; Goskoy et al., 2004).  

Sunflower has an optimum temperature for growth of 28 °C (Villalobos et al., 1996) 

and an optimum temperature for photosynthesis of 18–31 °C (Connor et al., 1993). Thus 
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the high growth rates and yields obtained in central Greece can be explained by the 

favourable weather conditions (Fig. 6.3.1) and by the associated very high net 

assimilation rates of this genotype (35 μmol CO2 m-2 s-1; data not shown). The decrease of 

the crop growth rate from 250 to 60 kg ha-1 d-1 and of the crop light-use efficiency from 

1.62 to 0.55 g MJ-1 intercepted light (data not shown) during the post-anthesis period is 

the consequence of higher carbon cost of lipids synthesis during seed-filling (Albrizio & 

Steduto, 2005).  

The experimental site has shallow ground water table (Table 6.3.1), and this is the 

main reason for the small effects of irrigation on sunflower growth and yield in this area. 

In addition during that year rainfalls from March 1st to May 18th (sowing time) amounted 

160 mm. We observed a slight LAI reduction in response to water availability (Fig. 6.3.2), 

but in all cases LAI was above the critical value of 2.89 m2 m-2 that is required by 

sunflower in order to achieve maximum seed yields (Ruiz & Maddonni, 2006). Irrigation 

and N-fertilization application did not affect seed and biomass yields. This is probably 

explained by the high fertility status of the soil given also that during the previous 4 

years this field was cultivated with cotton that had received excessive amounts of N 

fertilization. This study lacks analysis of N in various plant components, but it is 

believed that N fertilization rate of 60 kg ha-1 would suffice for adequate sunflower seed 

yields at this site. In literature there are several recommendations for N-fertilization in 

sunflower (from 40 to 190 kg N ha-1; Zuibillaga et al., 2002; Lopez-Bellido et al., 2003).  

 

Economic appraisal   

 

Earlier studies at this site indicated that sunflower has an energy output : input ratio of 

7.36:1 (Geronikolou et al., 2005), which is almost double compared to the 4.5:1 reported 

for northern Greece (Kallivrousis et al., 2002; using the same methodology). In terms of 

net return, sunflower cultivation for biodiesel production today (2006/2007) could 

provide to the farmer a net income of 345 to 470 € ha-1 (excluding subsidies). This profit is 

lower compared to profits made from the cotton cultivations in this area. Assuming a 

higher selling price of 250 € t-1, the net farmer profit would be 580−688 € ha-1, approaching 

the profits made by cultivating cotton. Presently, there is an uncertainty regarding oil, 

materials and end-product selling prices. This means that sunflower cultivation can be 

considered as a good alternative to traditional cotton, maize and alfalfa cultivations for 

this region. Supplementary, sunflower stems (viz. 38% of the total dry biomass; Fig. 

6.3.4) can be used for solid biofuel production, in view of increasing farmer profitability.  

Since sunflower seed yields had been stabilized in that area at about 4.5 t ha-1 for a 

number of hybrids (Danalatos et al., 2005), different cropping strategies should be 

designed to increase farmer profitability. For example, sowing sunflower during March 

to mid-April (very early sowing), the crop can make better use of the spring rainfalls, 

thus it can further reduce production costs. In Italy, Rinaldi (2001) investigated this 

scenario using a simulation model and found that early sowing is more profitable than a 
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late one in terms of yielding potential and net returns (1300 vs. 400 € ha-1). A second 

strategy could be a very late sunflower planting just after wheat harvesting in the same 

field for a supplementary income. These hypotheses should be tested in further studies 

in central Greece.  

 

Concluding remarks  

 

The newly released sunflower hybrid gave very high seed yield (4.5 t ha-1), even under 

minimum nitrogen input and little supplemental irrigation. Given the obligation to use 

biodiesel at rates of 2% (in 2006) – 6% (in 2010) of the annual diesel consumption at 

national level, sunflower cultivation in Western Thessaly Plain (central Greece) is highly 

recommended.   
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Chapter 6.4 
 

 

Irrigation effects on the growth and biomass productivity 

of two kenaf genotypes growing in an aquic soil in central 

Greece 
 

 
 

Abstract  

 

The effects of varying irrigation supply on growth and biomass productivity of two 

kenaf genotypes (Tainung 2 and Everglades 41) were investigated in an aquic soil of 

central Greece in 2006. On May 18th, the crops were planted at 75 cm row-to-row 

distances (plant density of 13.5 pl. m-2). During the growing period, plant height, leaf 

area index (LAI), specific leaf area (SLA) and biomass productivity per plant 

component were measured or calculated. We found a significant effect (P<0.05) of 

irrigation on total dry biomass and plant height, although the absolute differences 

among treatments were relatively small (10–20%). Cv. Tainung 2 showed slightly 

higher values for the assessed parameters, compared to Everglades 41. On average, 

the crop reached a height of 3.9 m, a maximum LAI of 7.5 m2 m-2, while SLA 

fluctuated around 18.5 m2 kg-1 for a large part of the growing period. The crop 

reached maximum biomass yields of 19.6, 22.8 and 24.5 t ha-1 under no-, moderate- 

and full irrigation regimes, respectively. These yields are among the highest that 

have ever been recorded under Mediterranean conditions.  
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and productivity of two kenaf genotypes growing in an aquic soil in central 
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Introduction   
 

Kenaf (Hibiscus cannabinus L.,) is a warm-season annual C3 fibre crop that can be 

cultivated for various purposes, including textile, paper pulp, building materials, 

substrates and bioenergy. In 2003, a European Network was established, 

BioKenaf, aiming to study kenaf adaptability, productivity and market potential 

in south Europe (Alexopoulou et al., 2005). In this project, kenaf’s biomass 

productivity was investigated in different experimental sites (cf. Greece, Italy, 

Spain, Portugal, France) following the same experimental protocols. Results over 

the period 2003 to 2005 demonstrated high biomass yields up to 22 t ha-1 in 

Greece (Danalatos et al., 2006b).   

Among cultivars tested, Tainung 2 and Everglades 41 (late-mature) showed 

the highest yields in the Mediterranean region (Alexopoulou et al., 2005). 

Between these two cultivars there are noticeable differences in leaf morphology, 

but no differences in photosynthesis and respiration (Archontoulis et al., 2006a, 

b). Both cultivars are short-day plants; flowering did not occur above a critical 

photoperiod of 12.9 h (Carberry et al., 1992).  

According to BioKenaf experimental protocol, all kenaf varieties were 

planted at a row-to-row distance of 50 cm. In central Greece, this sowing distance 

implies mechanical constraints (e.g. sowing, weeding and/or harvesting 

machines) because the traditional maize and cotton crops are sown at 75 and 95 

cm row-to-row distance, respectively. Therefore our first objective was to 

investigate the growth and biomass productivity of the cv. Tainung 2 and 

Everglades 41 at row-to-row distance of 75 cm, similar to that of maize to assist 

crop mechanization. The second objective was to investigate water deficit effects 

on Everglades 41, as the response of this cultivar to irrigation had not been 

studied so far in BioKenaf project.  

 

Material and Methods 
 

A field experiment was carried out in central Greece (Palamas, 39°25’ N and 

22°05’E, 107 m asl) in 2006. The soil at the site was a deep, fertile, loamy soil, 

classified as Aquic Xerofluvent, due to the occurrence of shallow groundwater 

table (Table 6.4.1). The soil is calcareous (pH=8.0−8.2) loam (sand 40−42%, silt 

40−41%, clay 18−19%), and has an organic matter content of more than 1% at a 

depth of 50 cm. A 3×2 split–plot design was used in five replications (30 plots) 

with the main plots comprising the three irrigation treatments (I1=0, I2=50, and 

I3=100% of the ETm), and the subplots comprising the two cultivars (E41 = 

Everglades 41 and T2 = Tainung 2).  

The crop was sown on May 18th at distances of 0.75 m between the rows and 

0.083 m within the rows (or 16 plants m-2). Herbicides and basal fertilizer (50 kg P 
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ha-1 and 50 kg K ha-1) were applied one day prior to sowing; N–fertilizer (60 kg N 

ha-1) was applied at the onset of the basic vegetative phase (plant height ≈ 0.5 m). 

Irrigation applied by a drip irrigation system to ensure high accuracy of water 

inputs. The quantity of water applications was determined by the maximum 

evapotranspiration (ETm). The plants were irrigated every 6−7 days (about 50−60 

mm per application in I3 treatment). The total amount of irrigation water and 

some other relevant agronomic and weather data are summarized in Table 6.4.1. 
 

Table 6.4.1: Basic information regarding the kenaf cultivation in 2006 
 

Date of 50% emergence  22 May 2006 

Date of 50% flowering  17 October 2006 

Density of survived plants (plants m-2)  13.5 ± 0.2 

Mean air temperature (°C)  23.29 

Mean relative humidity (%)  65.01 

Mean wind speed (m s-1) 1.38 

Maximum irrigation applied from 22/6 to 12/9/06 (mm)  482 

Estimated ETm (mm)  408 

Eo (A-class evaporation pan) (mm)  470 

Effective rainfall (mm)  

           Emergence to September 49 

           September to flowering 210 

Ground water level (cm) a  

           Upon sowing  190 

           At flowering   405 
a: measured in a tube denoting that the real ground water level was much higher in the soil. 

 

 

Plant height, number of nodes per plant, specific leaf area (SLA), leaf area 

index (LAI) and dry biomass productivity per plant component were measured 

in throughout the growing period, i.e. on the dates 20–Jun; 3–Jul; 28–Jul; 14–Aug; 

1–Sept; 2–Oct and 28–Oct–2006. In each manual harvest, the sample was divided 

into the various plant organs and weighed in the field. Then the samples were 

oven-dried at 90 °C until equal weights (2−4 days) and weighed again in order to 

determinate the dry weights per plant component. Leaf area (green leaves) was 

measured using an automatic LI−COR area meter (LI−3000A). All measured and 

derived data were subjected to analysis of variance (ANOVA), using GenStat (7th 

edition). Weather data were recorded hourly by an automatic meteorological 

station, which had been installed at the borders of the experimental site at 2 m 

height.  
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Results and Discussion  
 

Weather conditions 

 

In general the study area is characterized by a typical Mediterranean climate with 

hot, dry summers and cool, humid winters. During the summer period (June–

August), the air temperature fluctuated between 18 °C (night) and 32 °C (day-

time), whereas only 50 mm of precipitation was recorded (see also Fig. 6.3.1). 

Contrary to previous experimental years (cf. Danalatos & Archontoulis, 2004; 

2005), the autumn in 2006 was surprisingly wet (Table 6.4.1), reflecting well year-

to-year variability. The sharp decrease in the air temperature during September 

(by 5.8 °C; data not shown) and the high precipitation (Table 6.4.1) greatly 

influenced kenaf phenology, growth and biomass production (see below).  

 

Table 6.4.2: Kenaf plant height (cm) over time as affected by treatments in 2006. No 

significant interaction between irrigation and cultivar on plant height was found (P>0.05) 

 3 July 28 July 14 August 1 September 2 October 28 October 

Irrigation effect 

I1 102a 176a 215a 234a 314a 330a 

I2 102a 186b 230b 247a 352b 371b 

I3 102a 189b 237b 272b 382c 393b 

Cultivar effect 

E41 97a 178a 217a 242a 342a 350a 

T2 106b 189b 237b 260b 356b 379b 

For symbol explanation see Materials and methods. 

Different letters within a factor and within a day indicate significant differences at P<0.05 

 

 

Growth characteristics      

 

No irrigation × cultivar interactions were observed for any of the measured or 

estimated growth characteristics (P>0.05). The results demonstrated a significant 

effect of irrigation (P<0.05) on plant height, with the I3-irrigated plants to reach 

higher rates of increase (3.5 cm d-1; Table 6.4.2) than the water stressed plants. 

Also, T2 reached at higher plant height that E41 did (Table 6.4.2). Kenaf reached 

on average a plant height of 250 cm at the end of the basic vegetative phase and 

at the onset of the photoperiod induced phase (see sun-duration ≈ 11.8 h; 1st 

decade of September). From then on, and due to intensive rain (Table 6.4.1) that 

occurred at the site, the crop postponed the transition to the next phenological 

stage (viz. reproductive growth) and continued growing at high rates (3.4 cm d-1; 

Table 6.4.2). The crops reached final plant heights during flowering of 395 and 

330 cm, for full– and non– irrigated treatments, respectively (Table 6.4.2).    
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Plotting the total number of nodes per plant and the nodes per plant 

without leaves (hereafter “dead”) against plant height, a good fit was observed 

with high determination coefficients, viz. r2= 0.946 and 0.931, respectively (Fig. 

6.4.1). Note that one node can produce more than one leaf and that the node 

production ends at flowering time. The final number of nodes per plant was 

higher compared to other experiments at higher plant densities (Danalatos & 

Archontoulis, 2004; 2005). This is also in line with earlier findings (Carberry et al., 

1992).  
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Figure 6.4.1: Total number of nodes per plant (open symbols) and number of nodes 

without petioles and leaves (full symbols; “dead”) as a function of plant height. The 

regression lines are: total: y=0.23.9∙x, r2=0.946; dead: y=0.162∙x – 27.27, r2=0.932. Different 

symbols refer to different treatments (irrigation × cultivar).   

 

Fig. 6.4.1 depicts clearly that the littering of the shaded leaves started when 

the plant reached a height of ~170 cm (usually 1st decade of August). The total 

node production rate is 1 node per 5 cm. Beyond 170 cm in height, the rate of 

increase of the number of dead nodes is 1 node per 6.25 cm, meaning that the net 

gain in node production rate after the critical plant height is 1 new node per 12.5 

cm (Fig. 6.4.1). This analysis is useful when simulating kenaf leaf area 

developments (e.g. see approach developed by Carberry & Muchow, 1992). 

Furthermore, the littering of the shaded leaves had no impact on LAI (Fig. 6.4.2) 

as LAI remained high (above 4).  

After a temporary initial lag period of about one month (root development), 

LAI increased rapidly over time (Fig. 6.4.2). Slight differences among I–inputs did 

exist but were not statistically significant. T2 produced somewhat higher LAI 

values than E41 but this difference was not consistently significant (Fig. 6.4.2). 

LAI reached values of 4.9, 5.3, and 6.1 for I1, I2, I3 plants, respectively, at the end 

of August (Fig. 6.4.2).   
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Figure 6.4.2: Total dry biomass (―) and leaf area index (- - -) as affected by three 

irrigation inputs (○: 100%, ∆: 50% and ×: 0% of ETm) and by two cultivars (■: Everglades 

41, ●: Tainung 2). Within a panel, vertical bars (LSD at P<0.05) when visible indicate 

significant differences among irrigation inputs or between cultivars. 
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Figure 6.4.3: Stem (―) and leaf (-----) dry biomass as affected by three irrigation regimes 

(○: 100%, ∆: 50% and ×: 0% of ETm) and by two cultivars (■: Everglades 41, ●: Tainung 2). 

Within a panel, vertical bars (LSD at P<0.05) when visible indicate significant differences 

among irrigation inputs or between cultivars. 
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These LAI values were considered being maximum based on previous 

findings at the same site (Danalatos & Archontoulis, 2004; 2005). In contrast to 

our expectations, LAI increased further in September reaching values close to 7.5, 

most probably due to the effective rains falling at that time (Table 6.4.1). Specific 

leaf area index (SLA) remained close to 18.5 m2 kg-1 for a large part of the 

growing season (June-August; data not shown) in all treatments (P>0.05).   

 

Biomass production  

 

As illustrated in Fig. 6.4.2, the growth and total biomass productivity were 

partially influenced by irrigation (P<0.05) with the I3 plants to reach maximum 

growth rates of 254 kg ha-1 d-1 (from 209 to 226 JD) and 292 kg ha-1  d-1 (from 244 to 

275 JD). Maximum yields were observed during flowering and were 19.6, 22.8 

and 24.5 t ha-1 for I1, I2, I3 plants, respectively. At flowering, stems comprised 83% 

of the total biomass (including petioles) and the leaves the remaining 17%. (Fig. 

6.4.3). Stem and leaves dry weights were slightly affected by the different 

irrigation regimes but not statistically significant for the whole growing period 

(Figs. 6.4.2, 6.4.3). Significantly higher yield was found for the T2 than for E41 

(P<0.05; Figs. 6.4.2, 6.4.3) with respect to total and stem dry weight. This might be 

attributed to the differences in the leaf shape between the two cultivars that 

allows light to penetrate deeper into T2 canopy than in E41. No differential 

response in leaf mass was obtained between the two genotypes (P>0.05; Fig. 

6.4.3).    

 These biomass yields obtained in 2006 (Fig. 6.4.2) are among the highest 

that have ever been reported for the Mediterranean region (Manzanares et al., 

1997; Quaranta et al., 2000; Alexopoulou et al., 2005). Based on previous results 

(Danalatos et al., 2006b), maximum yield under non-limited conditions at this site 

(Palamas) was 18–22 t ha-1, whereas precipitation from September till 50% 

flowering was 32, 87, and 5 mm, for 2003, 2004 and 2005, respectively. In central 

Greece, the day length decreases substantially during September, and the crop 

responds qualitatively to the shortening days. Indeed flowering initiation was 

recorded at September 9th, but the duration of the flowering period was 

expanded to 38 days contrary to 25 days in previous years (Danalatos et al., 

2006b).  

The remarkable growth rates that were observed during September 

(average: 268 kg ha-1 d-1) and the continuation of biomass accumulation by about 

8 t ha-1 (average) are surprisingly high, considering the advanced development 

stage (Fig. 6.4.2). Calculating the relative growth rate (RGR) for this time period, 

it was found that the increase expressed per unit plant mass was relatively 

constant at 11 g kg-1 d-1 (Fig. 6.4.4).   
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Dissecting RGR into its components, it was found that this high growth rate 

was mainly attributed to the increase in the net assimilation rate (Fig. 6.4.4). This 

might have occurred due to a decrease in temperature (viz. from 26°C to 20°C) 

and in vapour pressure deficit, denoting lower C losses and higher C gain, 

through reduced respiration (dark and light mitochondrial respiration) and the 

absence of photosynthesis mid-day depression  (Archontoulis et al., 2006a, b). 

Temperature mostly affects the carbon losses, while the decrease in leaf to air 

vapour pressure deficit has an effect on the net carbon gain, due to absence of 

mid-day depression of the photosynthetic apparatus (Archontoulis et al., 2006a).  

Amount and duration of sunlight decreased as well from August to September 

by about 32% (amount) and 2 h (duration), respectively, but they are considered 

adequate to obtain high assimilation rates. 
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Figure 6.4.4: Relative growth rate (RGR, ●, left y-axis), Net assimilation rate (NAR, ∆, left 

y-axis) and Leaf area ratio (LAR, □, right y-axis) average values of all treatments 

(irrigation × cultivar) over the growing season of 2006 in central Greece.  

 

On-farm yield 

 

After completion of flowering, the biomass yield decreased (litter of leaves) 

irrespective of the various treatments, reaching an average value of ~21 t ha-1 at the 

end of October (Fig. 6.4.2) with ~75% plant moisture content. Two months later, the 

plant moisture content decreased further, while the on-farm yield harvested with a 

(maize) chopping machine was 15.4 t dry matter ha-1 (average values). The further 

decrease (27%) in biomass within these two months was attributed to: (i) the 

littering of the leaves; (ii) the stem maintenance respiration and (iii) the cutting 

height of the commercial machine (i.e.  25–35 cm above ground instead of 0–5 cm 

in the manual harvest).      
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Concluding remarks  

 

This study confirms the high potential of the kenaf in central Greece and 

generally in the Mediterranean region. The present results of 2006 contribute 

significantly to the BioKenaf database due to peculiarity in the amount of 

precipitation that occurred during September and also due to the change in the 

plant arrangements. Cultivar Everglades 41 showed slightly lower yields, 

compared to cultivar Tainung 2. With respect to irrigation application, we believe 

that capillary rise in the studied soil strongly influenced yield and minimized the 

difference among different irrigation inputs. Lower plant density (13.5 instead of 

18–28 pl. m-2) due to longer row spacing distance (0.75 instead of 0.5 m) did not 

influence biomass productivity, denoting that kenaf can undertake a wide range 

of plant population densities without any yield costs.   
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Chapter 7 
 

 

 

General discussion 
  

 

 

Abstract  
 

In Chapter 1 of this thesis it was argued that the acreage of energy crops is going to 

expand to meet the increasing demands for bioenergy and that there is a lack of 

experience and strong data to support this sector. In this context, we focused on 

biomass production aspects and we performed leaf–canopy–crop level studies to 

enhance our understanding and to support future cropping strategies for three 

Mediterranean bioenergy crops: sunflower, kenaf and cynara (Chapters 2–5). We also 

carried out agronomic research for inferences on the practicality of biomass 

production in Greece (Chapter 6). This Chapter 7 broadens the discussion of 

preceding chapters to the overall achievements and to issues that are related to the 

suitability of the tested crops. The following issues are discussed: (1) advances made 

in crop physiology; (2) agronomic aspects; (3) implication for crop modelling; and (4) 

future of the tested crops in the Mediterranean region.   
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Advances made in crop physiology   
 

This section of the general discussion focuses on quantification of light 

interception by the canopy and on vertical distributions of light and nitrogen 

within canopies. It argues that leaf photosynthesis and respiration are central for 

modelling the crops and for interpreting biomass production in response to 

genotype × management × environment interactions.      

 

Light interception, and light and nitrogen canopy profiles  

 

Canopy light interception (= radiation × 1–exp–(LAI × KL)) is fundamental for 

calculating canopy photosynthesis or radiation use efficiency (amount of dry 

matter produced per unit of light intercepted; Monteith, 1977), and therefore for 

assessments of crop productivity. Obviously, knowledge of KL (the light 

extinction coefficient) is very important. This study brings new information on KL 

for three bioenergy crops, paying particular attention to the effects of water stress 

– the major agricultural concern in the Mediterranean region (Katerji et al., 2008) – 

and to the effects of crop age and time of year (Chapter 4).  

In general, KL is affected by several factors including canopy structure and 

solar position, but also by the methodology through which it is assessed (Johnson 

et al., 2010). For instance, canopy structure might be affected by crop age (change 

in LAI; e.g. Zaffaroni & Schneiter, 1989; Lizaso et al., 2003), leaf thickness which 

affects light transitivity (Thornley, 2002), plant arrangement (e.g. Flénet et al. 1996; 

Maddonni et al., 2001), water and nitrogen availability (e.g. Sadras et al., 1991; 

Muchow, 1992), genotype (e.g. Madakadze et al., 1998), and growing 

environments (e.g. Rosenthal & Gerik, 1991; Kiniry et al., 1999). Also, KL has been 

reported to change with daytime, day of year, location and solar beam 

direct/diffuse composition (Clegg et al., 1974; Sadras et al., 1991; Goudriaan & van 

Laar, 1994; Flénet et al., 1996; Anten, 1997; Sinclair, 2006; Evers et al., 2009).  

For determining KL, laborious and time consuming measurements are 

required and this explains why earlier studies on modelling used literature 

values of related species and why indirect approaches were developed for its 

assessment (e.g. leaf angle, plant geometry; Goudriaan, 1998; Sinoquet et al., 2000; 

Rosati et al., 2001; Pronk et al., 2003; Wang et al., 2007). In this study we used the 

traditional direct approach to derive KL (Beer’s law; Monsi and Saeki, 2005), but 

instead of measuring light penetration at different crop stages or at different crop 

heights at only one development stage, we applied a combined experimental 

protocol similar to Bertheloot et al. (2008).  

It is commonly assumed in crop modelling that KL does not change in 

relation to time or level of input of resources for growth. When we tested these 

assumptions, we found that under irrigated conditions KL slightly changed over 
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time (P>0.05) but under water stress conditions KL was always lower than under 

irrigated conditions and moreover decreased to even lower values as water stress 

prolonged (Fig. 4.4). Our findings and generalizations for sunflower and kenaf 

species (petiole-leaves) are not applicable to cereal crops (stem-leaves).  

Another objective of this thesis was to estimate the nitrogen extinction 

coefficient (KN). In general, KN is less researched than the KL parameter because it 

finds application in only a few crop models (e.g. GECROS). However, it is a 

significant parameter when leaf photosynthesis is related to leaf nitrogen (leaf 

anatomy × nitrogen availability; see Chapter 5) and when detailed methodologies 

are applied to scale up photosynthetic CO2 fluxes from leaf to canopy levels 

(Leuning et al., 1995; Anten, 1997; de Pury & Farquhar, 1997). In all crops studied, 

we found non-uniform distributions of leaf nitrogen within crop canopies only 

when LAI was ≥1.5 (Fig. 4.5) and that was particularly evident during mid-season. 

The highest values were always at the top (2.2–3.8 g N m-2; Fig. 4.7g, h and i) and 

the lowest at the bottom of the canopy (around 1.0 g N m-2); showing also that 

nitrogen distribution is somehow related to the light distribution (r2>0.66; Fig. 

4.8). However, observed leaf nitrogen extinction was less steep than the one that 

would maximize canopy photosynthesis (KN < KL), in line with many studies (e.g. 

Hirose & Werger, 1987; Anten et al., 1995; Bertheloot et al., 2008).  

 

Leaf photosynthesis and respiration  

 

Generally leaf-level studies (gas exchange rates) for energy crops are rare. For the 

species studied, some information existed for sunflower (e.g. Connor et al., 1993), 

little for kenaf (Muchow, 1990; Ramachandra Reddy & Ramma Das, 2000; 

Cosentino et al., 2004; Archontoulis et al., 2005, 2006a, 2006b) and none for cynara. 

Chapter 5 of this thesis fills this knowledge gap by providing comprehensive gas 

exchange data and analysis for sunflower, kenaf and cynara. The photosynthetic 

data were analyzed using the biochemical model of Farquhar, von Caemmerer & 

Berry (the FvCB model) for two reasons. Firstly, this model represents 

mechanistically the effects of elevated CO2 and has the potential to accurately 

represent the effect of elevated temperature on photosynthesis and thus can 

easily assist studies on climate change (Yin & Struik, 2010). Secondly, the model 

provides understanding of the factors limiting photosynthesis (Vcmax, Jmax, Rd). 

Although FvCB parameters are required by very detailed crop models (e.g., 

GECROS; Yin & van Laar, 2005), present findings can also feed simpler crop 

models such as SUCROS (Goudriaan & van Laar, 1994).  

In this thesis the effects of CO2 (at stomata cavity), irradiance, temperature 

and leaf nitrogen content on net assimilation rate were successfully quantified 

(r2>0.91; Table 5.3; Fig. 5.10). Thus photosynthesis can be predicted under a wide 

range of climatic and management conditions. Impact of management was 
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reflected here by the leaf nitrogen content as this input parameter reflects well 

leaf dynamics (leaf age, rank; see Chapter 4). However, to further increase 

prediction of the present models and their application for practical purposes, new 

algorithms for CO2 transfer resistance from atmosphere to stomatal cavity and/or 

to chloroplast level (e.g., Yin & Struik, 2009a) should be evaluated in the near 

future. The same holds for functions relating biochemical parameters to leaf 

water potential (e.g. Vico & Porporato, 2008).   

An innovation of this thesis is that the FvCB model was parameterized from 

light response curves and not from CO2 response curves as is common (e.g. Wise 

et al., 2004; Yamori et al., 2005). Although this perhaps is a matter of debate, 

earlier studies showed no apparent differences in model behaviour 

parameterized either from An–Iinc or An–Ci data (Niinements & Tenhunen, 1997; 

Wohlfahrt et al., 1998). In addition, our approach bypasses current concerns about 

the appropriate method of fitting An–Ci curves (Ethier et al., 2004; Sharkey et al., 

2007; Miao et al., 2009; Patrick et al., 2009; Su et al., 2009; Gu et al., 2010) and 

provides opportunities to reduce empiricism in crop models which is strongly 

needed (Müller et al., 2005; Yin & Struik, 2010). Currently, most of the crop 

models use empirical algorithms to calculate leaf photosynthesis (van Ittersum et 

al., 2003) and it is uncertain whether they can accurately predict the effect of 

climate change on crop production (Yin & Struik, 2009a). Our study provides an 

alternative means to derive such parameters from An–Iinc data that are widely 

available and commonly used in crop modelling.  

A second innovation of this thesis is that it (among very few other studies) 

provided direct night time respiration measurements, underlying the high 

importance of respiration in carbon budgets (Valentini et al., 2000). Moreover 

assumptions regarding the quantification of night respiration (Rn) and its 

discrimination from the day respiration (Rd) were assessed in Chapter 5.  For 

instance, Rd is commonly fixed as 1% of Vcmax (Müller et al., 2005; Niinemets & 

Tenhunen, 1997; de Pury & Farquhar, 1997; Medlyn et al., 2002) or as 50% of Rn 

(Braune et al., 2009; Wohlfahrt et al., 1998; Yamori et al., 2005; Kosugi et al., 2003). 

In this study the ratio of Rd/Vcmax ranged from 0.57 to 1.03% (Table 5.3) and the 

ratio of Rd/Rn was approximately 72% for all tested crops (Fig. 5.5).   

 

Insights in agronomic aspects  
 

In this section biomass and seed yields obtained at the experimental site are 

discussed. Data accumulated during the experimental period (note: only a 

fraction of the available data is presented in this thesis) were combined with 

previous findings obtained at the same site, in order to arrive at a solid 

assessment of sunflower, kenaf and cynara productivity in central Greece (see Fig. 
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7.1). Biomass yields are explained in the light of new findings in crop physiology 

(Chapters 4 and 5).  
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Figure 7.1: Maximum total dry biomass weight in relation to (a) total irrigation and 

precipitation water received during crop growth and (b) days with LAI > 3 for sunflower 

(●), kenaf (■), cynara (▲), rapeseed (♦), fibre sorghum (□), sweet sorghum (○), 

miscanthus (∆), and maize (◊) crops grown in two experimental sites located in central 

Greece over the last decade (adapted from Archontoulis et al., 2011b). Y-axis values refer 

to aboveground maximum total biomass including leaves, stalks and reproductive 

organs obtained during the growth cycle and not to biomass yield at the final harvest. 

This is because kenaf and other species, i.e. sorghum and miscanthus, do not reach 

physiological maturity in central Greece. Each set of data (n=112) refers to a specific 

combination of crop, genotype, plant density, sowing date, year of cultivation, location 

(soils with and without groundwater level), fertilization and irrigation input (for further 

details see Archontoulis et al., 2011b). In panel b, rainwater (% of total water) comprised 

85–100% for cynara and 25–35% for sunflower and kenaf. Data on rapeseed and C4 

sorghum, maize and miscanthus are also given for comparison. For the perennials cynara 

and miscanthus yields beyond the second growth cycle were considered. For kenaf 

maximum productivities were observed during flowering.  

 

Biomass and seed yields for cynara 

 

The range of cynara final biomass yields found in this thesis (5–34 t ha-1 y-1; Fig. 

3.6) agrees well with reports from Italy (Foti et al., 1999, Piscioneri et al., 2000; 

Raccuia & Melilli, 2007a; Angelini et al., 2009; Mandineo et al., 2009; Ierna & 

Mauromicale, 2010), Spain (Fernández et al., 2006 and references therein), and 

Portugal (Gominho et al., 2011 and references therein). According to Fernández et 

al. (2006) the threshold precipitation and/or irrigation amount required by cynara 

to attain satisfactory yields (>15 t ha-1 y-1) is 400 mm per season. In central Greece, 
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this amount ranged from 400 to 800 mm per season (Fig. 7.1a). Many of our 

experiments were carried out on aquic soils (Chapter 3), with large quantities of 

available water and this explains well the observed high biomass yields (Figs. 3.6 

and 7.1). For instance, the importance of soil type (aquic vs. dry) on growth and 

biomass productivity of cynara was analyzed in Chapters 6.1 and 6.2.  

Analyzing the factors determining biomass productivity, it was found that 

under appropriate management techniques (including crop establishment at high 

plant density; Chapter 3), cynara was able to maintain LAI values above 3 for 

most of its growth cycle (~250 days; Fig. 7.1b). Given also its high leaf 

photosynthetic capacity (~30 μmol CO2 m-2 s-1; Chapter 5) and its non-uniform 

distribution of leaf nitrogen that approaches the distribution of light within the 

crop canopy (Chapter 4), the crop was able to establish very high crop growth 

rates up to 320 kg ha-1 d-1 (Chapter 6.1 and Archontoulis et al., 2011b). So far, there 

was no study to provide such crop physiological information to explain yield 

formation in cynara; most previous analyses were based on regressions of 

empirical yield vs. water (e.g. Fernández et al., 2009).  

Among factors affecting biomass productivity, three are considered most 

important for cynara: (1) adequate crop establishment at high plant density, (2) 

irrigation, and (3) nutrient supply. Higher plant densities not only help the crop 

to efficiently overcome initial competition with weeds (see Chapter 2 growth 

stages), but also, when soil fertility is sufficient, the crop can maintain more 

plants per unit area, increasing the seed/biomass ratio and the overall heating 

value of the crop biomass (see Chapter 3). Regarding irrigation and nitrogen 

fertilization, this thesis showed that in areas with no groundwater table or with 

low precipitation, applying irrigation during the stage BBCH 50–65 can 

significantly increase biomass and seed yields (Chapter 6.2). In areas with 

shallow groundwater table, the gain in biomass and seed yield was lower 

(Chapter 6.1 and unpublished data from 2008–2009). The range of attainable seed 

yields for cynara as well as an empirical model to predict seed yield under 

varying crop age, soil type, plant density, and levels of input of resources were 

extensively discussed in Chapter 3.  

 

Sunflower seed yields  

 

In central Greece sunflower was not cultivated until 2005, but later on due 

to favourable policies (Directive 2003/30/EC), farmers started to grow sunflower. 

Researchers tried to find the best management techniques and genotypes suitable 

for this environment. In this context, a number of experiments were carried out in 

central Greece that showed very promising results: high LAI values (see Fig. 7.1b); 

seed yields up to 5.5 t ha-1 (Danalatos et al., 2004, 2005); very good seed oil 
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characteristics; and an energy output/input efficiency of 7.75:1 (Geronikolou et al., 

2004, 2005).  

A typical productivity experiment in relation to irrigation and nitrogen 

fertilization for a new sunflower hybrid was analyzed in Chapter 6.3. Results 

obtained in this experiment (2006) also showed high seed yield with little 

response to water and nitrogen input application (Fig. 6.3.3). However, these 

promising results were not confirmed in later years (2007–2009; data not shown), 

most likely due to different hybrids used and also due to less favourable weather 

conditions, i.e. heat waves in 2007 and excessive droughts in 2008. For instance, 

in 2007 sunflower showed a strong response to applying irrigation with 

maximum LAI values of 2.9 for only a short period of time (Fig. 4.2j) and seed 

yields of 0.9 to 2.8 t ha-1 (Giannoulis et al., 2008). In that year the extremely high 

temperature (> 40°C for several days) accelerated crop development rate and 

reduced the number of days available for growth, while leaf photosynthetic rate 

was also declined (Fig. 5.6), thus explaining the lower yields compared to those 

in 2006. In water stressed plants that difference was more evident. Actually, 

temperature measurements in attached leaves in the field verified this statement 

(data not shown). During day-time, irrigated plants had leaf temperatures 

approximately 6°C below air temperature, while water stressed plants had leaf 

temperatures only 1.5°C below air temperature. Importantly, the soil temperature 

of the dry plots was 8°C higher than the air temperature during day-time (note: 

LAI <1.5). Such data would be of great interest in crop models for precise 

determination of thermal time, while the large deviations found between canopy 

and air temperature bring new food for thought.  

Seed yields in 2008 and in 2009 ranged from 0.7 to 3.4 t ha-1 in response to 

applying irrigation (data not shown). In view of increasing farmer income, the 

idea of planting sunflower just after the wheat harvest (end of June; Giannoulis et 

al., 2008) was also tested within this study. However, this late sowing increased 

crop water demands and given also the high summer temperatures resulted in 

low yields, thus this idea rejected.  

In short, among factors affecting sunflower productivity, the following are 

the most important for central Greece: (1) genotype, (2) early sowing to make use 

spring rainfalls (e.g. March–April), and (3) applying irrigation.  

 

Kenaf biomass and stem yields   

 

Unlike sunflower, kenaf is still not cultivated on a commercial basis in many 

Mediterranean sites due to lack of support from the fibre industry. Biomass 

productivities obtained in central Greece (Fig. 7.1; average stem/biomass ratio of 

0.82) are in line with many findings from other sites (Amaducci et al., 2000; 

Webber et al., 2002; Alexopoulou et al., 2005; Patanè & Sortino, 2010). Observed 
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high biomass yields is due to high leaf assimilation rates (Chapter 5) and because 

of long stay-green periods (LAI>3 for ~90 days; Fig. 7.1b). Like sunflower, kenaf 

growth during 2007 and 2008 showed the greatest response to water supply (7.4 

to 20.7 t ha-1; data not shown).  

An innovation of this study was that kenaf planted in 75 cm row-to-row 

distances instead of the common 50 cm row-to-row distance (Danalatos & 

Archontoulis, 2010 and references therein). This was done in order to improve 

crop mechanization (note maize is also planted at 75 cm). Nevertheless, this 

change in plant arrangement, which was accompanied by a slight reduction in 

plant population density, did not affect biomass production. This is not 

surprising given that kenaf can compensate well across a wide range of plant 

densities (Muchow, 1979, Carberry & Muchow, 1992; Alexopoulou et al., 2000).  

In short, the most important factors that determine kenaf productivity in 

central Greece are: (1) sowing time, and (2) irrigation. The proper sowing period 

for kenaf (short day plant) in central Greece is during May.      

 

The effect of nitrogen fertilization  

 

In general, kenaf and sunflower crops showed little response to nitrogen 

fertilization (Chapters 6.3 and 6.4). Apparently, the crops’ nitrogen requirements 

were satisfied from the high quantities of available nutrients present in the soil at 

the experimental site. Cynara showed higher response to nitrogen fertilization, 

most probably due to the larger amount of biomass that had to be sustained 

(Chapters 6.1 and 6.2). Nevertheless, nitrogen restoration schemes are necessary 

when the crops are to be grown at commercial scale for long periods. Based on 

the present findings, it was calculated that annually 88 to 97 kg N ha-1 is removed 

from the field when cropped to sunflower (seed yield ~ 3 t ha-1) or kenaf (stem 

yield ~ 13 t ha-1). In the case of cynara, the total nitrogen uptake rates may reach 

up to 300 kg N ha-1 (see Table 6.1.1; Fig. 6.2.5).    

 

Knowledge of crop phenology  

 

Knowledge of crop phenology is a prerequisite to efficient plant management 

practices and experimental treatments (e.g. weeding, irrigation, harvesting 

operations, etc.). Given that such information was not available for cynara, we 

defined and described in detail the growth stages of cynara using the worldwide 

reference BBCH coding system (Chapter 2). This code can be applied under all 

circumstances, irrespective of climate and genotype and provides precise start 

and end points of each stage.  

So far, more than 30 important plant species including the model plant 

Arabidopsis have been described with the BBCH code, while the list is 
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continuously expanding (Hess et al., 1997; Meier, 1997; Boyers et al., 2001; Meier et 

al., 2009a). For sunflower the BBCH scale was developed in 1990 (Lancashire et al., 

1991). For kenaf, although a BBCH scale does not exist yet, the development of 

the crop is very simple with two distinct phases (see detailed description by 

Carberry et al., 1992; Williams, 1994). General BBCH codes can also be applied 

when necessary (e.g. Finn et al., 2007). The BBCH code is particularly useful for 

farmers and researchers, but its numerical code (from 0 to 100) has no biological 

meaning and therefore cannot be used in modelling. Basically, the scale and the 

code have been designed so that the numerical value of the code increases as the 

plant develops.  

 

Implications for crop modelling    

 

As mentioned in Chapter 1 (section methodological framework), this thesis also 

aimed to provide specific data sets to parameterize the GECROS crop model (Yin 

& van Laar, 2005). GECROS requires a number of parameters related to 

photosynthesis, phenology, morphology, nitrogen content, and biomass 

composition. Many of these parameters have been defined or can be easily 

calculated from the existing data sets (e.g. SLA and maximum plant height). For 

instance, photosynthetic and respiration data (Chapter 5) along with the light and 

nitrogen extinction coefficients (Chapter 4), provide a complete set of parameters 

for computation of canopy photosynthesis. Crop morphology i.e. LAI 

development and leaf senescence, can be quantified based on the present findings 

and approaches developed by Yin et al. (2000, 2003a). Agronomic data 

accumulated all these years (including biomass and LAI curves; e.g. Chapter 6) 

can help to validate model predictions.  

However, due to the nature of this thesis (viz. field study), parameters 

related to crop phenology are difficult to be quantified precisely (data analysis is 

in progress). Instead, supporting literature information regarding the phenology 

of our crops is given below.  

For modelling crop phenology, both cardinal temperatures (base, optimum, 

ceiling temperatures) and parameters defining photoperiod sensitivity (for short 

or long day plants) are needed (Yin & van Laar, 2005). Usually thermal 

parameters are derived from growth chamber experiments where seed 

emergence or leaf elongation rate is evaluated under different temperature 

regimes and then estimates are used to describe plant developmental rate 

(Carberry & Abrecht, 1990; Carberry et al., 1992; Villalobos & Ritchie, 1992; Sadras 

& Villalobos, 1993; Villalobos et al., 1996; Lisson et al., 2000a; Timmermans et al., 

2007). So far experimental evidence for the studied crops suggests a base 

temperature for plant growth of 4–7.2 °C for sunflower (Robinson, 1971; Kiniry et 
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al., 1992; Villalobos & Ritchie, 1992), 10–12 °C for kenaf (Angelini et al., 1998; 

Carberry & Abrecht, 1990) and 5.7–10 °C for cynara (Angelini et al., 2009; Virdis et 

al., 2009).  

Parameters quantifying the response of development to photoperiod are 

commonly derived from analysis of reciprocal transfer (controlled) experiments 

(Lisson et al., 2000b; Yin et al., 2005; Yin, 2008) or, less accurately, from an analysis 

of field data (including different years and locations; Carberry et al., 1992; 

Williams, 1994; Patanè & Sortino, 2010). Recently, Amaducci et al. (2008) showed 

for hemp that all photo-thermal parameters (plant level) can be estimated from 

an appropriate analysis of large field data sets using optimization techniques. 

Kenaf is a typical short-day plant and combined thermal and photoperiodic 

parameters are needed for modelling (Carberry et al., 1992). For sunflower use of 

thermal parameters alone is sufficient to model crop phenology (Kiniry et al., 

1992; Pereyra-Irujo & Aguirrezabal, 2007); nevertheless some modellers also 

included photoperiodic parameters (Steer et al., 1993; Villalobos et al., 1996). For 

cynara there is no relevant information yet. Virdis et al. (2009) found for globe 

artichoke (Cynara cardunculus var. scolymus), a species close to our species (Cynara 

cardunculus var. altilis DC), a negative correlation between leaf appearance rate 

and photoperiod (from 9.9 to 14.2 h; P<0.001), but no relation between flowering 

time and photoperiod (P>0.05). Others assessed cynara’s phenology as a simple 

function of thermal time only (Angelini et al., 2009). Nevertheless whether or not 

cynara responds to photoperiod needs to be quantified in future (controlled) 

experiments.  

 

Future of energy crops  

 

Generally, whether to include energy crops in crop production systems or not 

depends on the factors summarised in Fig. 7.2. Currently, political decisions are 

quite favourable for the development of energy crops, while technology is still 

developing (e.g. harvesting machines, crop/fuel conversion chains). At farm level, 

the combination of biomass yield, production cost and market outlet availability 

are the most important criteria for a farmer to make the final decision about 

growing a crop. This thesis focused on the production aspects of energy crops 

(Chapters 2–6), while a generic view on the future energy targets, markets and 

crop/fuel chains was presented in Chapter 1. Production cost, product quality, 

heating value as well as alternatives to energy markets for the tested crops are 

briefly discussed below in order to have an overall picture of the crops’ 

suitability for Greece.  
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Figure 7.2: A simplified representation of the main factors determining the suitability of 

energy crops to be included in production systems. Arrows indicate direct effects (e.g. 

genotype on biomass yield) while the symbol “×” denotes interactions (e.g. product 

quality and heating value).      

 

 

Production cost    

 

The current uncertainty regarding oil and agro-chemical prices, subsidies and 

CAP reform makes any economic assessment of the suitability of energy crops 

quite risky and preliminary in nature. In this context, in order to have a solid 

view on the production costs of energy crops for a specific environment (Greece), 

we considered outputs from three different studies: (1) multi-farm mathematical 

modelling (Lychnaras & Schneider, 2011); (2) large-scale experimental plots 

(Skoulou et al., 2011); and (3) long-term farm budgets (Panoutsou, 2007). Studies 

considered on-farm biomass yields (which are lower than experimental yields) 

and included harvesting operations, labour and farm rent in their cost 

estimations.  

Results indicated that cynara is by far the most economically feasible crop 

for energy production in Greece (production cost of 28–42 € t-1) and for non-

irrigated lands the only viable option. Irrigation constitutes a large expense and 

this is the main reason for the superiority of cynara over other perennials like 

miscanthus, switchgrass, and giant reed (viz. summer crops; production cost of 

40–100 € t-1). Compared to C4 miscanthus that is propagated by rhizomes, cynara 

is propagated by seeds, which further reduces the costs. Production costs for 

sunflower and kenaf were 2–3 times higher than those of cynara.  
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Quality of crop biomass and heating value  

 

Quality of crop biomass is particularly important when biomass is combusted for 

heat and power generation. Ash content and mineral compositions characterize 

the product quality (high values associated with slagging, fouling and corrosion 

tendencies). In general wood biomass is superior to crop biomass in terms of 

quality. The ash content is also inversely related to heating value; with every 1% 

increase in ash content, the heating value is decreasing by 0.2 MJ kg-1 (Cassida et 

al., 2005). The heating value of the energy crops (entire biomass) ranges from 14 

to 20 MJ kg-1 depending on biomass composition and partitioning over plant 

components (Encinar et al., 2000; Cassida et al., 2005; Fernández et al., 2006; Aho et 

al., 2008; Grammelis et al., 2008; Angelini et al., 2009; Mantineo et al., 2009; 

Vamvuka et al., 2009).  

In literature, biomass quality data for energy crops are very variable 

because of different experimental protocols used (biomass partitioning, time of 

harvest, method of sampling, etc.). Particularly for cynara, there is ongoing 

discussion due to the large difference found among studies (i.e. ash content 

ranges from 4 to 17% dry weight; Encinar et al., 2000, 2002; Grammelis et al., 2008; 

Angelini et al., 2009; Vamvuka et al., 2009). Monti et al. (2008) studied six energy 

crops and found that cynara exhibited the highest ash and mineral contents, and 

miscanthus and switchgrass the lowest. On the other hand, Mantineo et al. (2009) 

found smaller differences in ash contents between cynara (5.5–8.2%) and giant 

reed (2.3–6.0%) and miscanthus (2.0–8.2%). In general, the mineral composition of 

the energy crops is characterized by high Cl and S contents and improvements 

should be made to avoid boiler corrosion (Monti et al., 2008). 

Improved agricultural practices along with a better understanding of the 

crop behaviour are commonly suggested as requirements for improving product 

quality. For cynara, quantification of the growth stages with the BBCH system 

(Chapter 2) and determination of seed/head and head/biomass fractions (Chapter 

3) can assist in that respect. Moreover, harvesting operations (Fernández et al., 

2007b; Pari et al., 2009) should be improved to avoid biomass contamination by 

soil particles. Crops should be harvested as dry as possible in order to allow 

minerals to be re-mobilized from aboveground to belowground organs. Lastly 

during growth fertilization with KCl should be avoided while other conversion 

technologies like pyrolysis and gasification should be further explored 

(Fernández et al., 2006; Grammelis et al., 2008; Franco et al., 2009). Co-combusting 

cynara with coal showed good results (Aho et al., 2008).   
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Alternative cropping strategies for the tested crops 

 

Crop species chosen for this study cover three major bio-applications: sunflower 

seeds for biodiesel; kenaf stems for paper, panels, building materials, adsorbents 

and textiles production; and cynara lignocellulosic biomass for electricity. 

However, there are many alternative cropping strategies to consider, which 

might be more profitable.  

Supplementary to biodiesel production from sunflower seeds, the 

remaining press cake (seed residues after oil extraction) can be used for animal 

feed due to its high nutrition value (~20% protein concentration). Sunflower crop 

residues after seed threshing can also be used for bioenergy production to 

acquire additional farmer income and to increase total bioenergy production. 

Considering sunflower crop residues of ~ 6 t ha-1 (Figs. 6.3.3 and 6.3.4) and a 

heating value of 15 MJ kg-1, additionally 90 GJ ha-1 can be produced. In this 

intensive scenario, in total 140 kg N ha-1 are removed from the field annually and 

the question arises whether exploitation of sunflower residues for energy is 

profitable for farmers and in conflict with sustainable soil management. This 

makes the question emerge: shall we focus on maximization or optimization of 

bioenergy production per cultivation system? Answers to these questions are 

highly variable. For instance, use of agri-residues is a sustainable option because 

it has few direct impacts on land use, but on the other hand, crop residues are 

also required to maintain soil organic matter and prevent erosion while their 

systematic removal can damage soil quality and reduce agronomic productivity 

(Blanco-Canqui & Lal, 2009; Lal, 2010; Neil, 2011).  

Besides the production of valuable fibre products kenaf has two more 

important applications: forage feed and bioenergy. Webber (1993) and Webber et 

al. (2002) reported that kenaf can be used as a livestock feed because it has high 

protein yields, can be ensiled effectively and also it has satisfactory dry matter 

and protein digestibility (53 to 71%). The plant has high protein concentration in 

the dry biomass that can reach up to 23% under appropriate management 

techniques (planting density affecting leaf/stem ratio, time of harvest and 

multiple harvests per season; Webber 1993; Bhardwaj et al., 1995). Due to its high 

cellulose and hemicellulose contents (similar to fibre sorghum, hemp and maize; 

Amaducci et al., 2000) kenaf can be used for bioethanol production. By using 

second generation conversion technology, Zatta et al. (2010) estimated that from 1 

tonne of kenaf dry stem weight some 290 litres of ethanol can be produced. Kenaf 

can also be used for production of solid biofuels (agri-pellets or chips for heat 

and power production). Seed production from kenaf is also possible (16–22% 

oil:seed ratio; yields up to 3.5 t ha-1; Webber et al., 2002; Patanè & Sortino, 2010), 

but seed production strategies in the Mediterranean region are strongly affected 

by the cultivar and latitude, due to the crop’s photoperiod sensitivity.  
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Among the tested species, cynara is the crop with the most applications: (1) 

heat and power, (2) biodiesel, (3) bioethanol, (4) paper and other by-products, (5) 

forage feed, (6) pharmacological compounds and others less important 

applications (see review by Fernández et al., 2006 and also Chapters 2, 3, 6.1 and 

6.2). For forage feed the crop does not require industrial support or specific 

equipment for harvesting operations thus can be applied anywhere. Lastly, it 

should be added that after biodiesel production, cynara’s press cake can also be 

used for animal feed (protein concentration of 18%; Chapter 3) or alternatively as 

organic fertilizer (Curt et al., 2002) because cynara’s press cake has a 

carbon:nitrogen ratio (C:N=13:1) close to soil humus (C:N=10:1).  

   

Critical assessment of crops’ suitability  

 

Usually for assessing the suitability of energy crop cultivations an output:input 

balance study is performed (life cycle assessment; e.g. Venturi & Venturi, 2003). 

However, this index changes a lot with management practices, end product used 

in calculations (seed or whole biomass), size of the farm, assumptions made, etc. 

Such calculations are beyond the scope of this study and readers are referred to 

literature studies for further details (Venturi & Venturi, 2003; Hillier et al., 2009; 

Mantineo et al., 2009; Monti et al., 2009; Rettenmaier et al., 2010). Herein our 

purpose was to show the potential of the tested crops for various applications, 

the range of biomass production in response to management practices, and crop 

physiological data to explain biomass formation at any environment (crop level).  

Based on data presented above, we depict some different views regarding 

the suitability of energy crops. From a farmer viewpoint, cynara is more 

preferable than sunflower and kenaf (and other energy crops) because it 

produces large amounts of biomass at low production costs. From an industrial 

viewpoint, cynara is not a first priority because presently the feedstock is of low 

quality. From an agronomic viewpoint, cynara is very interesting because of the 

perennial character, long stay-green periods, and because it can grow without 

irrigation. But, the annuals kenaf and sunflower have other benefits like positive 

rotation effects (e.g. Zegada-Lizarazu & Monti, 2011). Besides these generic views, 

the choice of a crop to grow for energy production depends also on particular 

circumstances of a specific region/farm, i.e. water availability, distance to the 

nearest processing plant, available equipment, etc. This thesis addressed all 

possible applications of the tested crops and provided adequate agronomic and 

crop physiological information to support any cultivation strategy.  
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Conclusions  
 

This thesis provides essential information on phenology, agronomy and crop 

physiology of three (Mediterranean) bioenergy crops, sunflower, kenaf and 

cynara. Thus, it contributes to the general objective of gaining more insight into 

bioenergy production from crop species. Given that crops are still experimental 

or only cultivated at small scale in the Mediterranean region, data presented in 

this thesis can help farmers to design better cultural techniques (viz. information 

on water and nutrient input application, biomass yields, etc.), agronomists to 

better understand factors that determine biomass production (viz. information on 

light interception, leaf photosynthetic capacity), modellers to parameterize 

simulation models to predict potential, attainable and actual biomass production, 

and provide food for thought to scientists in the areas of genetics and logistics. 

This thesis prioritizes the perennial Cynara cardunculus as the most interesting 

crop for bioenergy production in the Mediterranean region and provides 

fundamental information on this crop (e.g. growth stages) to assist upcoming 

studies to better exploit its potential and to improve its biomass both 

quantitatively and qualitatively.  
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Summary 

 

Energy production from plants is a “hot” research topic worldwide, driven by 

concerns about energy and food security and climate change. In 2005, bioenergy 

provided 10% to total primary energy worldwide, while its potential has been 

estimated to be three to ten times higher, indicating that plants are grossly 

underexplored. Forest trees and wood residues are the major source of bioenergy 

(~68%), but this source has reached a near saturation point. Energy crops, the main 

source for transport bio-fuels, currently contribute a small proportion (~3%) to total 

bioenergy, but the proportion is bound to grow over the next few decades, in the EU 

to 10% by 2020.  

  Options to increase bioenergy production from agricultural crops include 

increasing area and/or yields and employing more efficient conversion technologies. 

Prerequisite to all these options is a good knowledge of the crops. However, it is 

generally recognized that in spite of the fast bioenergy growth worldwide, there is a 

lack of strong experimental data and field experience to support this growth. This 

limitation is particularly noticeable for the agronomy and crop physiology of new 

energy crops. Such information is needed for the farmers, breeders, researchers, and 

modellers to allow them to better evaluate future agricultural land uses, and genetics 

to improve biomass quantity and quality. Obviously data sets from different regions 

with different soil-climatic conditions and on different cropping systems should be 

created.  

 In line with this general objective, this thesis provides essential information on 

phenology, agronomy and crop physiology of three (Mediterranean) bioenergy crops: 

Helianthus annuus (sunflower), Hibiscus cannabinus (kenaf) and Cynara cardunculus 

(cynara). Among several candidate species, we have chosen the above because these 

crops cover a wide range of bio-industrial applications, fit into different cropping 

strategies (short or long growing periods, cultivation with or without irrigation, etc.) 

and previous studies have shown promising results in terms of biomass productivity. 

For these species we identified important knowledge gaps and performed a series of 

field experiments to fill these gaps and to generate quantitative parameters to feed 

crop growth models. These gaps together with an update about bioenergy 

production are provided in the introduction chapter (Chapter 1) of this thesis. Then, 

in the following five chapters (Chapters 2–6) research results gained in the 

experimental phase of the study are presented. In the final chapter (Chapter 7) the 

overall contribution of this study is discussed.  

Chapter 2 presents the phenological growth stages of Cynara cardunculus L. (var. 

altilis DC.) based on the BBCH scale and its associated decimal code. Basically,  
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the scale and the code have been designed so that the numerical value of the code 

increases from 0 to 100 as the plant develops. Nine principal growth stages were 

defined and each principal stage was subdivided into secondary growth stages. 

Descriptive keys with illustrations and a practical use of the scale were proposed. 

This scale can be used by anyone involved in the production of cynara and it can be 

applied under all circumstances, irrespectively of the rate of development that varies 

among regions and varieties. Additionally, this code provides precise start and end 

points of each development stage, which are essential in studies on the effect of 

temperature on development rate. The most important BBCH stages that require 

particular attention by the farmers and researchers are: (a) stages 00–15: proper time 

for sowing according to climate of each production area and mechanical weed 

control during the first year; (b) principal stages 4–6: the crop can be harvested for 

forage feed; and (c) principal stages 5–7: crop nutrients requirements maximised.  

   Chapter 3 provides comprehensive information on Cynara cardunculus seed 

and biomass productivity from 16 field experiments varying in crop age and 

environmental × management conditions in Greece. We present a robust and easily 

applicable methodology to estimate seed yield overcoming problems arising from 

the compound structure of the crop’s inflorescences. Indeed, within a plant or a unit 

area the heads of cynara are variable in terms of size, number, maturity and position 

on the plant, while within a head, seeds (achenes) are positioned at the base of the 

head (receptacle) surrounded by hairs (pappus) and bracts (erect spines). By 

measuring two simple inflorescence traits, total weight (HW) and number (HN) of all 

seed bearing heads per unit area, the seed yield (SY) per unit area could be estimated 

as: SY = 0.43∙HW – 2.9∙HN. This model was tested against current and published data 

from Italy and proved to be valid under variable management practices (e.g. plant 

arrangements) and environmental conditions (r2=0.93). Attainable cynara seed yields 

ranged from 1.9 to 4.8 t ha-1 yr-1, on dry soils and on soils with shallow ground water 

level. The corresponding biomass yields ranged from 13 to 27 t ha-1 yr-1, respectively. 

During the first cropping cycle, seed and biomass yields were 57–80% lower than in 

subsequent cycles. The variation in seed yield was sufficiently explained by the 

analyses of head-weight distribution (small, medium and large heads) and variability 

of seed/head weight ratio at head level. Seed quality characteristics such as oil (23%) 

and protein (19%) concentration was rather invariant through different seed sizes 

(range: 26–56 mg seed-1) as well as growing environments, meaning that under Greek 

conditions, these fixed values can be used to estimate seed oil and protein yields.  

   Chapter 4 provides information at canopy level and shows spatial-temporal 

dynamics of leaf area index (LAI), specific leaf area (SLA), nitrogen concentration 

(Nconc), and the specific leaf nitrogen content (SLN) in relation to water availability for 

all tested species. Two very important parameters for crop modelling, the light (KL) 

and nitrogen (KN) extinction coefficients, were determined. Sunflower, kenaf and 

cynara had morphologically contrasting canopies in terms of leaf area and mass 
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distribution along the stem, with the largest fractions of the leaf mass and area in 

well-developed crops being allocated at the middle, top and bottom of the canopy, 

respectively. We paid particular attention to the effects of water stress and to 

temporal aspects in order to test the common assumption used in crop modelling 

that KL does not change in relation to time or level of water application. 

Measurements on leaf mass implemented at different crop stages and at different 

insertion heights within crop canopies and light and nitrogen distributions were 

quantified by the Beer’s law (exponential model). Results indicated that within a year, 

KL did not change significantly over the studied period in all irrigated crops, but 

differences in KL were significant between years for sunflower and kenaf (sunflower: 

0.74 vs. 0.89; kenaf: 0.62 vs. 0.71), but not for cynara (0.77). KL estimates were always 

lower (–48 to –65%) in water-stressed sunflower and kenaf crops than in crops with 

abundant water because of the reduction in leaf angle. These results should be taken 

into account, when simulating water-limited biomass production for these crops. 

Vertical SLN distributions were found in canopies when LAI was above 1.5 m2 m-2. 

These distributions were significantly correlated with the cumulative LAI from the 

top (r2=0.75–0.81), providing parameters to upscale photosynthesis from leaf to 

canopy levels. Vertical SLN distributions followed species-specific patterns over the 

crop cycle and generally showed a strong association with light distributions (r2 > 

0.66; sunflower and kenaf).  

    Chapter 5 deals with leaf photosynthesis and respiration. Based on large data 

sets (in situ leaf gas exchange measurements during day and night over three years) 

and optimization techniques we parameterized the C3 leaf photosynthesis model of 

Farquhar, von Caemmerer and Berry (FvCB) and an empirical night respiration 

model for sunflower, kenaf and cynara. We studied in detail the effects of 

temperature and leaf nitrogen because these factors had a great impact on estimates 

of maximum carboxylation rate and maximum electron transport rate. In total, we 

assessed 16 parameters per crop including four parameters characterising Rubisco 

limitation, six parameters characterising electron transport limitation, two 

parameters characterising the degree to which light inhibits leaf respiration, three 

parameters for night respiration, and the minimum leaf nitrogen required for 

photosynthesis. Model predictions were tested against independent data sets and 

results indicated that current models are robust, with good prediction ability (r2>0.91) 

under different levels of intercellular CO2 concentration, light, temperature and leaf 

nitrogen. Under ambient atmospheric CO2 concentration, optimum temperature, 

saturated light and leaf nitrogen, all tested species showed maximum leaf net 

assimilation rate of ca 33 µmol CO2 m-2 s-1. Among tested crops, the perennial cynara 

has long annual growth cycles (~ 10 months) and therefore we further investigated 

seasonal acclimation effects on photosynthesis and respiration for this crop. It was 

observed significant seasonal effects on electron transport rate (e.g. on parameters 

associated with the conversion efficiency of light into electron transport) and night 
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respiration (e.g. parameters related to activation energy). These effects were 

incorporated into the model, further improving predictions. In the light of current 

trends for parallel increases in food and energy production from crop species in the 

context of climate change and the need to feed crop models with photosynthetic 

parameters, we summarized existing information for five major cash crops (wheat, 

barley, cotton, tobacco and grape) and we assessed how conservative FvCB 

parameters were among crop species including bioenergy crops. Lastly, in this 

chapter we proposed an alternative method (alternative to the common analysis 

based on relationships between net photosynthesis and intercellular CO2 

concentration) to derive FvCB parameters from analysis of relationships between net 

photosynthesis and incoming radiation, which might generate opportunities to 

reduce empiricism in crop models by using readily available data on net 

photosynthesis and incoming radiation.  

  Chapter 6 deals with the agronomy of the tested energy crops in central Greece. 

In Chapters 6.1 and 6.2 we report growth, seed and biomass productivity for cynara 

from two experimental sites. In both sites, cynara developed very high LAI values 

(up to 10 m2 m-2) and maintained LAI values above 3 for most of the growing period 

(~8 months). Irrigation and N-fertilization application during the period of maximum 

increase in biomass (cf. May–June or BBCH 5–6) had a positive effect on biomass and 

seed production. This effect was particularly evident at the dry site (e.g. 50% increase 

in seed yield). The nitrogen use efficiency for cynara (above-ground biomass) was ~ 

120 kg dry matter kg-1 N taken up, similar among sites. In contrast, nitrogen uptake 

rates differed substantially among sites: from 60 to 180 (dry site) and from 170 to 300 

(wet site) kg N ha-1. Given that the weather conditions and the management practises 

were similar among sites, it can be inferred that the higher productivity of cynara at 

the wet site was mainly due to the higher amount of nitrogen taken up by the crop.  

In Chapter 6.3 we investigate biomass and seed yield of a new sunflower hybrid 

and assess the economic viability of sunflower in central Greece. The results 

indicated high seed yields (up to 4.7 t ha-1) with little response to irrigation and N-

fertilization during 2006, most likely due to soil type and favourable effective 

precipitations occurring at the site. However, these promising findings were not 

confirmed in later years (Chapter 7) due to weather extremes and different hybrids 

used. In central Greece, sunflower completes its cycle within 3 months providing 

many cultivation options to the farmers, e.g. early sowing to make use of spring 

rainfalls. Construction of sunflower farm budgets indicated that profits made by 

cultivating sunflower (2006) were lower compared to profits made by cultivating 

cotton in this area. Taking into account CAP reforms and the unstable environment 

regarding oil prices, material prices and selling prices, we concluded that sunflower 

cultivation in this area can be economically feasible and can therefore be a very good 

option for increasing the country’s biodiesel production, in line with the EU targets.   
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  Chapter 6.4 shows productivity data for two kenaf cultivars (Tainung 2 and 

Everglades 41) in relation to irrigation water. This study was conducted in year 2006 

within the frame of the BioKenaf project, but instead of planting kenaf at row-to-row 

distance of 50 cm, kenaf was planted at 75 cm (similar to maize) in an effort to 

improve mechanization of the crop. We found a significant effect of irrigation on 

total dry biomass and plant height, although the absolute differences among 

treatments were relatively small (10–20%). Tainung 2 had slightly higher values in all 

measured growth parameters compared to Everglades 41. On average, the crop 

reached a final height of 3.9 m, a maximum LAI of 7.5 m2 m-2, while SLA was around 

18.5 m2 kg-1. The crop reached maximum yields of 19.6, 22.8 and 24.5 t ha-1 under no-, 

moderate- and full irrigation, respectively (average values of two cultivars). These 

yields were comparable or superior to yields obtained in previous years in central 

Greece, indicating no effect of changing plant arrangement in biomass production.  

   Chapter 7 broadens the discussion of the proceeding chapters to the overall 

achievements of this thesis. We highlight the advances made in crop physiology and 

agronomy, the progress made towards modelling these species using simulation 

models, and lastly we critically assess the future of the tested crops in Greece taking 

into account many issues that are related to the suitability of the tested crops. We 

concluded that among the tested crops Cynara cardunculus is the best option for 

bioenergy production in the Mediterranean region and we suggested options to 

improve the crop’s biomass quantity and quality.  
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Samenvatting 

 

De productie van energie uit biomassa is wereldwijd een populair onderzoeksthema. 

Zorgen omtrent zekerheid van energie- en voedselvoorziening en 

klimaatsverandering dragen in belangrijke mate bij aan deze populariteit. In 2005 

bestond wereldwijd 10% van de totale primaire energie uit bio-energie. Schattingen 

laten zien dat bio-energie hieraan in potentie 3 tot 10 maal meer zou kunnen 

bijdragen. Dat wil zeggen dat momenteel de bijdrage van planten sterk wordt 

onderbenut. Bos en houtresten zijn belangrijke bronnen van bio-energie (ongeveer 

68%), maar deze bron kan niet veel meer groeien. Energiegewassen, de belangrijkste 

bron van biobrandstoffen voor transport, dragen momenteel slechts in geringe mate 

(ongeveer 3%) bij aan de totale bio-energie, maar dit aandeel zal de komende 

decennia gaan stijgen, in de EU naar verwachting tot 10% in 2020.  

  Om de productie van energie met behulp van landbouwgewassen te laten 

stijgen, kan het areaal of de productiviteit per hectare worden vergroot of kunnen de 

conversietechnologieën efficiënter worden gemaakt. Voor al deze drie mogelijkheden 

is een goede kennis omtrent de gewassen vereist. Het is echter gemeengoed, dat er, 

ondanks de snelle en wereldwijde groei van bio-energie, gebrek is aan goede 

experimentele data en praktische ervaring om deze groei te ondersteunen. Deze 

beperking doet zich vooral gelden op het gebied van de agronomie en de 

gewasfysiologie van nieuwe energiegewassen. Boeren, veredelaars en onderzoekers 

(en dan vooral de onderzoekers die met groeimodellen werken) hebben behoefte aan 

zulke informatie om in staat te worden gesteld de hoeveelheid en kwaliteit van de 

geproduceerde biomassa te verbeteren en toekomstig landbouwkundig landgebruik 

te evalueren. Uiteraard is het daarbij nodig datasets te genereren gebaseerd op 

verschillende regio’s met diverse bodem- en klimaatcondities en met verschillende 

teeltsystemen.  

  Overeenkomstig deze algemene doelstelling verschaft dit proefschrift 

essentiële informatie over de fenologie, agronomie en gewasfysiologie van drie 

(Mediterrane) bio-energiegewassen, te weten zonnebloem (Helianthus annuus), kenaf 

(Hibiscus cannabinus) en kardoen (Cynara cardunculus). Uit een breed assortiment zijn 

juist deze gewassen gekozen, omdat de soorten een grote verscheidenheid aan bio-

industriële toepassingen vertegenwoordigen, maar ook passen in diverse 

teeltstrategieën (korte of lange groeiduur, teelt met en zonder irrigatie, enz.) en 

omdat eerdere studies hadden aangetoond dat deze gewassen veelbelovend zijn 

betreffende hun biomassaproductiviteit. Voor deze gewassen hebben we de 

belangrijkste kennisleemten geïdentificeerd en hebben we een serie veldproeven 

uitgevoerd om deze kennisleemten op te vullen, maar ook om datasets te generen  
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waarmee groeimodellen gevoed konden worden. In het inleidend hoofdstuk 

(Hoofdstuk 1) van het proefschrift worden deze leemten in de kennis gepresenteerd 

en wordt een actueel overzicht gegeven over de bestaande kennis omtrent bio-

energieproductie. Vervolgens worden in de volgende vijf hoofdstukken 

(Hoofdstukken 2–6) de onderzoeksresultaten gepresenteerd van de experimentele 

fase van de studie. Ten slotte wordt in een afsluitend hoofdstuk (Hoofdstuk 7) 

bediscussieerd wat deze studie uiteindelijk heeft opgeleverd.  

   Hoofdstuk 2 presenteert de fenologische groeistadia van Cynara cardunculus L. 

(var. altilis DC.) gebaseerd op de BBCH schaal en de daarmee verbonden decimale 

code. De schaal en de codes werden in principe zo ontworpen dat gedurende de 

ontwikkeling van de plant de numerieke code voor de verschillende stadia toeneemt 

van 0 tot 100. Er zijn negen primaire groeistadia en elk primair stadium wordt 

onderverdeeld in secundaire groeistadia. Beschrijvende sleutels met illustraties en 

een toelichting voor het praktische gebruik van de schaal werden voorgesteld. De 

schaal is nuttig voor iedereen die betrokken is bij de teelt van kardoen en kan 

worden toegepast onder alle omstandigheden, ongeacht de snelheid van 

ontwikkeling, die immers kan variëren naar gelang de teeltomstandigheden of het 

ras. Bovendien beschrijft deze code de precieze aanvang en eindpunt van elk 

ontwikkelingsstadium, momenten die essentieel zijn in studies omtrent het effect van 

temperatuur op ontwikkelingssnelheid. De belangrijkste BBCH stadia, die vooral 

aandacht behoeven van de onderzoeker en de teler, zijn: (a) stadia 00–15: juiste 

tijdstip van zaai gebaseerd op het klimaat van elk productiegebied en mechanische 

onkruidbestrijding gedurende het eerste teeltjaar; (b) primaire stadia 4–6: het gewas 

kan worden geoogst als ruwvoer; en (c) primaire stadia 5–7: maximale behoefte van 

het gewas aan voedingsstoffen.  

   Hoofdstuk 3 verschaft uitgebreide informatie over de productiviteit van 

Cynara cardunculus in termen van zaad en biomassa, verzameld in 16 veldproeven 

met verschillende gewasleeftijd en combinaties van omgeving en teelttechniek in 

Griekenland. We presenteren een robuuste en eenvoudig toepasbare methode om de 

zaadopbrengst te schatten. Met deze methode kunnen problemen overwonnen 

worden die voortkomen uit de samengestelde structuur van de bloeiwijzen van 

kardoen. Inderdaad zijn binnen een plant en binnen een oppervlakte-eenheid de 

hoofden van kardoen variabel in termen van grootte, aantal, rijpheid en positie aan 

de plant. In een bloemhoofd zijn de dopvruchten (de achenen) ingeplant in de 

bloembodem en omgeven door haren (pappus) en schutbladen (in de vorm van 

erecte doornen). Door twee eenvoudige eigenschappen van de bloeiwijze te meten 

voor alle zaaddragende hoofden per oppervlakte-eenheid, te weten het totale 

gewicht (HW) en het aantal hoofden (HN) kon de zaadopbrengst per oppervlakte-

eenheid (SY) adequaat worden voorspeld via de formule SY = 0.43 HW – 2.9∙HN. Dit 

model werd getest met behulp van eigen data en gepubliceerde gegevens uit Italië. 

Het model bleek valide te zijn onder diverse teeltomstandigheden (bijv. 
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verschillende plantverbanden) en omgevingscondities (r2=0.93). Haalbare 

opbrengsten van kardoenzaad varieerden van 1.9 tot 4.8 t ha-1 j-1, op respectievelijk 

droge gronden en op gronden met een ondiep grondwaterniveau. De 

corresponderende biomassa-opbrengsten varieerden van 13 tot 27 t ha-1 j-1. 

Gedurende de eerste gewascyclus lagen de zaad- en biomassa-opbrengsten 57–80% 

lager dan in de daaropvolgende cycli. De variatie in zaadopbrengst werd in 

voldoende mate verklaard op basis van analyses van de gewichtsverdeling van de 

hoofden (kleine, middelgrote en grote hoofden), en de variabiliteit in de 

gewichtsverhouding zaad:hoofd per hoofd. Eigenschappen betreffende de 

zaadkwaliteit, zoals oliegehalte (23%) en eiwitgehalte (19%), waren tamelijk constant, 

zowel voor verschillende zaadgroottes (spreiding: 26–56 mg zaad-1) als voor 

groeicondities. Dit betekent dat onder Griekse omstandigheden deze vaste waarden 

kunnen worden gebruikt om de olie- en eiwitopbrengst van het zaad te schatten.  

   Hoofdstuk 4 verschaft informatie over het bladerdek en laat zien hoe de 

bebladeringsindex (LAI), de specifieke bladoppervlakte (SLA), de 

stikstofconcentratie (Nconc) en de specifieke stikstofhoeveelheid in het blad (SLN) 

veranderen in ruimte en tijd onder invloed van beschikbaarheid van water voor alle 

drie de onderzochte soorten. Twee voor gewasmodellering zeer belangrijke 

parameters werden bepaald, te weten de extinctiecoëfficiënten van licht (KL) en 

stikstof (KN). Zonnebloem, kenaf en kardoen hebben morfologisch contrasterende 

bladerdekken in termen van de verdeling van bladoppervlakte en bladmassa langs 

de stengel. In goed ontwikkelde gewassen bleken de grootste fracties van bladmassa 

en bladoppervlakte zich in het midden (bij zonnebloem), aan de top (bij kenaf) of in 

de onderste helft (bij kardoen) van het gewas te bevinden. Speciale aandacht werd 

besteed aan de effecten van droogte en tijd om de in gewasmodellering algemeen 

gangbare aanname te toetsen dat KL niet verandert onder invloed van het niveau van 

watervoorziening of de tijd. Data omtrent bladmassa werden verzameld in 

verschillende gewasstadia en op verschillende planthoogten binnen het gewas; ook 

de licht- en stikstofverdeling werden gekwantificeerd met de Wet van Beer 

(exponentieel model). Resultaten toonden aan dat voor geïrrigeerde gewassen, 

gedurende de onderzochte periode, de KL binnen één jaar niet significant veranderde. 

De verschillen in KL tussen jaren waren echter significant voor zonnebloem en kenaf 

(zonnebloem 0.74 vs. 0.89; kenaf: 0.62 vs. 0.71), maar niet voor kardoen (kardoen: 

0.77). Geteeld onder droogte-stress waren de schattingen voor KL in zonnebloem en 

kenaf altijd lager (–48 tot –65%) dan in de gewassen geteeld met overvloedig water, 

omdat onder droogte de bladhoek afnam. Deze resultaten dienen in acht te worden 

genomen bij het simuleren van water-gelimiteerde biomassaproductie van deze 

gewassen. Verticale SLN gradiënten werden waargenomen in bladerdekken bij LAI-

waarden hoger dan 1.5 m2 m–2. Deze gradiënten waren significant gecorreleerd aan 

de cumulatieve LAI (gerekend van boven naar beneden) (r2=0.75–0.81). Deze 

verbanden leveren parameters op waarmee de fotosynthese van blad naar 
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gewasniveau kan worden opgeschaald. De verticale SLN gradiënten waren 

gewasspecifiek en vertoonden in het algemeen een sterk verband met de 

lichtgradiënten (r2 > 0.66; zonnebloem en kenaf).  

    Hoofdstuk 5 behandelt de bladfotosynthese en ademhaling. Op basis van 

grote datasets (in situ gasuitwisseling van het blad gedurende de dag en de nacht 

over 3 jaren) en optimalisatietechnieken, werden het model van Farquhar, von 

Caemmerer en Berry (FvCB) voor C3 -bladfotosynthese en een empirisch model voor 

de nachtelijke ademhaling voor de gewassen zonnebloem, kenaf en kardoen 

geparametriseerd. De effecten van temperatuur en bladstikstof werden in detail 

bestudeerd omdat deze factoren een grote invloed hadden op de schattingen van de 

maximale snelheden van carboxylatie en elektronentransport. In totaal werden per 

gewas 16 parameters bepaald, waaronder vier parameters die de Rubiscolimitering 

karakteriseren, zes parameters die de elektronentransportlimitering karakteriseren, 

twee parameters die de mate karakteriseren waarin licht de bladademhaling beperkt, 

drie parameters voor de nachtelijke ademhaling, en de minimale hoeveelheid 

bladstikstof benodigd voor fotosynthese. De modelvoorspellingen werden getest 

tegen onafhankelijke datasets en de resultaten gaven aan dat de huidige modellen 

robuust waren, met een goed voorspellend vermogen (r2>0.91) onder verschillende 

niveaus van intercellulaire CO2-concentratie, licht, temperatuur en bladstikstof. 

Onder normale omgevingsconcentratie van CO2, optimale temperatuur, en bij het 

verzadigingsniveau van licht en bladstikstof vertoonden alle geteste soorten een 

maximale netto fotosynthese van het blad van circa 33 µmol CO2 m-2 s-1. Van de 

geteste soorten had het meerjarige gewas kardoen een lange jaarlijkse groeicyclus (~ 

10 maanden) en daarom werden de effecten van acclimatie gedurende het seizoen op 

de fotosynthese en de ademhaling van dit gewas nader onderzocht. Er bleken 

significante seizoenseffecten te bestaan voor elektronentransportsnelheid (bijv. op 

parameters die betrekking hebben op de conversie-efficiëntie van licht naar 

elektronentransport) en nachtelijke ademhaling (bijv. op parameters met betrekking 

tot de activeringsenergie). Deze effecten werden in het model ingebouwd om 

zodoende de kwaliteit van de voorspellingen te verbeteren. Met het oog op de 

huidige trend om tegelijkertijd, in de context van klimaatsverandering, de voedsel- 

en energieproductie van gewassen te verhogen en gezien de noodzaak om 

gewasmodellen te voeden met fotosynthese-gelieerde parameters werd de bestaande 

informatie voor vijf belangrijke marktgewassen (te weten tarwe, gerst, katoen, tabak 

en druif) samengevat. Met behulp van deze informatie werd vastgesteld hoe stabiel 

de FvCB parameters zijn voor verschillende soorten gewassen, inclusief gewassen 

geteeld voor bio-energie. Ten slotte werd in dit hoofdstuk een aanvullende methode 

voorgesteld om, naast de normale analyse (gebaseerd op het verband tussen netto-

fotosynthese en intercellulaire CO2 concentratie), de FvCB parameters af te leiden van 

een analyse van het verband tussen netto-fotosynthese en inkomende straling. Deze 

alternatieve methode kan aanleiding zijn om de mate van empirie in 
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gewasgroeimodellen te verkleinen via het benutten van eenvoudig beschikbare data 

betreffende de netto-fotosynthese en de inkomende straling.  

   Hoofdstuk 6 gaat over de agronomie van de geteste energiegewassen in 

centraal Griekenland. In de hoofdstukken 6.1 en 6.2 wordt gerapporteerd over de 

groei, zaadproductie en biomassaproductie van kardoen op twee proeflocaties. Op 

beide locaties ontwikkelde kardoen zeer hoge LAI-waarden (tot 10 m2 m-2) en werden 

voor het overgrote deel van het groeiseizoen (~8 maanden) LAI-waarden hoger dan 3 

m2 m–2 gehandhaafd. Irrigatie en N-bemesting gedurende de periode van maximale 

toename van de biomassa (mei–juni of BBCH 5–6) hadden een positief effect op 

biomassa- en zaadproductie. Dit effect was vooral zichtbaar op de droge locatie (bijv. 

50% toename in zaadopbrengst). De stikstofgebruiksefficiëntie voor kardoen (op 

basis van bovengrondse biomassa) was ~ 120 kg droge stof per kg opgenomen N, 

zonder grote verschillen tussen de locaties. Daarentegen verschilden de opgenomen 

hoeveelheden stikstof tussen de locaties aanzienlijk: van 60 tot 180 (droge locatie) en 

van 170 tot 300 (natte locatie) kg N ha-1. Aangezien de weersomstandigheden en de 

teelttechniek vergelijkbaar waren voor de locaties moet de hogere productiviteit van 

kardoen op de natte locatie vooral te danken zijn geweest aan de grotere hoeveelheid 

door het gewas opgenomen stikstof.  

In Hoofdstuk 6.3 werden de biomassa- en zaadproductie van een nieuwe 

zonnebloemhybride onderzocht en werd nagegaan in hoeverre de zonnebloemteelt 

economisch haalbaar is in centraal Griekenland. Er werden hoge zaadopbrengsten 

bereikt (tot 4.7 t ha-1) met in 2006 weinig respons op irrigatie en stikstofbemesting, 

zeer waarschijnlijk vanwege het bodemtype en de gunstige neerslag op de 

betreffende locatie in dat jaar. In latere jaren konden deze veelbelovende resultaten 

echter niet worden bevestigd (Hoofdstuk 7), vanwege weersextremen en het gebruik 

van andere hybriden. In centraal Griekenland voltooit de zonnebloem zijn 

groeicyclus binnen 3 maanden. Deze korte groeiduur biedt de boeren veel ruimte om 

de teelttechniek aan te passen, bijvoorbeeld door te kiezen voor een vroege zaai om 

op die manier te profiteren van de voorjaarsregens.  

Saldoberekeningen gaven aan dat in dit gebied het telen van zonnebloem in 

2006 minder opleverde dan de teelt van katoen. Gezien de CAP-hervormingen en het 

onstabiele klimaat betreffende de prijzen van olie, hulpmiddelen en 

landbouwproducten werd geconcludeerd dat de teelt van zonnebloem economisch 

haalbaar kan zijn en dat deze teelt dus een goede optie is om daarmee de 

biodieselproductie van Griekenland te verhogen, binnen de doelstellingen van het 

EU beleid.  

Hoofdstuk 6.4 geeft productiviteitcijfers voor twee kenafrassen (Tainung 2 en 

Everglades 41) in relatie tot beregening. Deze studie werd in 2006 uitgevoerd in het 

kader van het BioKenaf project. In een poging de mechanisatie van het gewas te 

verbeteren, werd kenaf, in plaats van in een rijafstand van 50 cm, geplant in een 

rijafstand van 75 cm (net als bij maïs). We vonden een significant effect van 
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beregening op de totale droge biomassa en op planthoogte, hoewel de absolute 

verschillen tussen behandelingen relatief klein (10–20%) waren. Tainung 2 had iets 

hogere waarden voor alle gemeten groeiparameters dan Everglades 41. Gemiddeld 

bereikte het gewas een uiteindelijke hoogte van 3.9 m, een maximale LAI van 7.5 m2 

m-2, terwijl de SLA ongeveer 18.5 m2 kg-1 was. Het gewas bereikte maximale 

opbrengsten van 19.6, 22.8 and 24.5 t ha-1 voor, respectievelijk, geen, matige en volle 

beregening (gemiddelde waarden voor de twee rassen). Deze opbrengsten waren 

vergelijkbaar met of zelfs hoger dan de opbrengsten zoals die in voorafgaande jaren 

in Griekenland werden gehaald. Dit resultaat suggereert dat de aanpassing in 

plantverband geen effect had op biomassaproductie. 

  Hoofdstuk 7 tilt de discussie uit de voorafgaande hoofdstukken naar de 

algehele verworvenheden van dit proefschrift. Het hoofdstuk benadrukt de 

voortuitgang die is geboekt aangaande de gewasfysiologie en agronomie van de 

behandelde gewassen en de vooruitgang in het modelleren van de groei van deze 

gewassen. Daarnaast wordt in dit hoofdstuk de toekomst van deze gewassen in 

Griekenland kritisch geëvalueerd, daarbij rekening houdend met de vele aspecten 

die de geschiktheid van deze gewassen bepalen. Er wordt geconcludeerd dat, van de 

geteste gewassen, kardoen de beste optie is voor bio-energieproductie in het 

Mediterrane gebied. Ten slotte worden mogelijkheden gesuggereerd om de 

hoeveelheid en kwaliteit van de door dit gewas geproduceerde biomassa te 

verbeteren.  
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