IMAGO: Cost effective reduction of NH3 emission in broiler houses

Gert-Jan Monteny

Presentation for UNECE meeting Prague, April 2006

Background

- Working principle based on the PhD Thesis of Peter Groot Koerkamp
- Initially developed for drying litter in aviary housing systems
- Working principle based on recirculation of (warmed) indoor air over litter to evaporate water
- Additional floor heating (first 10 days) optional
- Now tested for application in broiler houses

The working principle of IMAGO

Figure 1. Schematic plan view (upper left), cross section (down left), detail of the shaft and air flow pattern (right)

The recirculation fans

Experimental set up

- Measurements in a mechanically ventilated broiler house in Assen (NL)
- Conventional emission measurements (measurement fan + convertor-NO_x analyser)
- 4 periods between 2002 and 2005
- Stocking density: 22.1 23.8 birds/m²
- Number of animals: 44,500 48,000 birds
- Additional odour measurements

Period	1	2	3	4	Norm
MM/YY	6-8 '02	10-11 '02	3-5 '05	6-8 '05	
Production (d)	41	38	41	40	43
Weight (g)	2,514	2,255	2,329	2,443	2,050
FCR (-)	1.50	1.55	1.58	1.69	1.75
Mortality (%)	2.4	5.9	4.8	3.4	4.2

Set up – cont'd

Period	1	2	3	4
	6 8 '02	10 11 '02	2 5 '05	6 9 '05
Ινιινι/ τ τ	0-0 02	10-11 02	3-5 05	0-0-05
Tout (oC)	21.6	11.6	13.2	19.7
RHindoor (%)	69	65	58	65
Ventilation	2.8	1.1	1.3	1.9
Recirculation	-	-	0.45	0.62

Results: ammonia emission

<u>Period</u>	1	2	3	4 Norm
MM/YY	6-8 '02	10-11 '02	3-5 '05	6-8 '05
NH₃ conc. (mg/m3)	0.93	1.47	3.28	1.83
NH₃ emission (g/h)	78	69	266	214
NH ₃ emission (g/y.bird; 81% annu	12.4 al occupation rate)	10.2	41.8	31.7 80

On average 70% lower than traditional

But: variation 50 - 90%

Climatic conditions and management matter

Reduced length of production cycle and FCR

Increased slaughter weight

Results: litter composition

Period	1	2	3	4
MM/YY	6-8 '02	10-11 '02	3-5 '05	6-8 '05
DM (g/kg)	586	617	-	-
TAN (g/kg)	3.7	3.5	-	-
Total N (g/kg)	32.9	31.8	-	-

Emission factor for the IMAG system

FCR 1.75

- Normative N excretion ('forfait') = 492 g/y.animal
- Emission Factor (% of N excreted): 1.7 7%
- Emission Factor traditional: 13.4%

Costs

Table 7. Costs of the ImagO system, excluding and including Dutch VAT of 19% on investments and 6% on feed calculated with different Feed Conversion Ratios (FCR).

		Costs per 100 broilers (€)		
		Excl. VAT	Incl.VAT	
Investment		9.67	11.50	
Operating energy		3.15	3.75	
Heating energy		- 2.97	- 3.54	
Feed	FCR 1.58	- 8.22	- 8.71	
Net	FCR 1.75	9.84	11.71	
	FCR 1.58	1.63	3.00	

Conclusions

Advanced drying of litter substantially reduced ammonia emissions

Effective systems can be cheap, especially when additional revenues are realized (increased production results)

Reduced ammonia emissions \rightarrow more N in manure \rightarrow less organic N applied to land (Nitrates Directive)

Ag Engineering R&D can contribute to innovative economical and ecological sustainable solutions

THANKS

(Sorry, no nice picture of a broiler chick)

