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Abstract 

Abstract	
 In the vulnerable environment of the Sahel with its erratic rainfall 

pattern, irrigated rice production is of major importance. To aid Sahelian rice 

farmers to sustain irrigated rice production, this study explores management 

options. It includes field experiments performed at two typical Sahelian sites 

and simulation studies using crop growth simulation models. This thesis 

provides evidence that it is possible to use less irrigation water while 

maintaining rice production, thus increasing water productivity. The effects of a 

temperature increase on the growing cycle and spikelet sterility of new rice 

varieties in interaction with different sowing dates is quantified. The simulation 

results show that the sowing window will be restricted and that the cultivar 

choice may alter; together they will remain the most important determinants of 

rice production in the coming decades. 

 In Chapter 2, field experiments involving three water saving regimes 

using combinations of alternate wetting and drying (AWD) and flooding and a 

fully flooded control show that between 480 and 1060 mm of irrigation water 

was used in the water saving treatments compared with 800 to 1490 mm in the 

flooded rice treatment. Water productivity of the water-saving treatments was 

higher than of the flooded control, and yields ranged between 141 and 56% of 

the control. When weeds were controlled, crop yields obtained with a 

combination of AWD and flooding were comparable with those obtained in fully 

flooded plots receiving the same weed management. In Ndiaye, agronomic N 

use efficiency was smaller in the AWD treatments compared with fully flooded 

conditions. An irrigation regime for rice that starts as conventional (flooded), 

and then changes to AWD can save water with little or no yield loss, while 

maintaining low weed pressure and efficient use of N. To assess genotype 

adaptability, in Chapter 3 the results of experiments involving five genotypes, 

sown on 15 consecutive dates are presented. Yield (0-12 t ha–1) and crop cycle 

duration (117-190 days) varied with sowing date, genotype and site. Rice yield 

was very sensitive to sowing date and the associated temperature regimes. 

Spikelet sterility due to cold stress (T < 20oC) was observed when the crops 

were sown between August and October, and heat stress (T > 35oC) resulted in 

spikelet sterility for sowing in April and May. For the simulation studies of 

Chapter 4, experimental data were used to calibrate both the DSSAT and 
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ORYZA2000 models. Original genetic coefficients of DSSAT did not simulate 

phenology well, while genetic coefficients that did, resulted in lower than 

observed yields. Simulations by ORYZA_S and ORYZA2000 resulted in an 

increase in simulation error at sowing dates in the last three months of the year. 

The results show that local calibration at the same sowing date is needed. In the 

African Sahel, a temperature increase of between 1.8 and 4.7oC is predicted by 

2080. Simulations by an improved and validated version of ORYZA2000 

presented in Chapter 5 show that rice crop cycle length will decrease by 10‒30 

days. The results suggest that with projected temperature changes, timing of 

sowing and consequently of the risk for crop loss due to sterility will remain the 

major determinant of rice yield. There is an urgent need for heat tolerant rice 

varieties. Without adaptation, cropping calendars will change, in the worst case 

scenario only a single crop will be possible. I conclude by suggesting viable 

options for adaptive management of irrigated rice in the changing 

environments of the Sahel to sustain production in the 21st century. 
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“Want niet in het snyden der padie is de vreugde: de vreugde is in het 
snyden der padie die men geplant heeft.” 

 

 

(“After all, there is no joy in cutting paddy: joy is in cutting paddy that one has planted.”) 

 

 

Multatuli - Toespraak tot de hoofden van Lebak, in: Max Havelaar of de koffieveilingen der 
Nederlandsche Handelmaatschappy. Amsterdam, 1860 
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1 Setting the stage 
 Food shortage continues to be a major problem in sub-Saharan Africa, 

and the semi-arid countries of the Sahel are no exception with 5-34% of the 

population being undernourished today (FAOSTAT, 2011). It is in these highly 

vulnerable environments with an erratic rainfall pattern that irrigated 

agriculture is of major importance for the local population. The continuous 

irrigation water supply provided by large rivers such as the Senegal, Niger and 

Voltas increases food security enormously (Connor et al., 2008). In the Sahel 

(Figure 1.1), rice is one of the staple foods with a consumption of on average 49 

kg capita–1 yr –1  in 2007 (FAOSTAT, 2011). Presently, West-Africa is not self-

sufficient in rice and imports more than 5 million tonnes annually. It is 

therefore vital that irrigated rice production continues and even increases, to 

sustain local food production and to decrease the reliance on foreign imports. 

To harness Sahelian rice farmers against variability of their perpetually 

changing environments, this study experiments with rice management to 

explore different options to sustain production in the 21st century.  

2 Rice in West-Africa 

 Rice cultivation in West-Africa dates back to ancient times (Nayar, 2010; 

Porteres, 1962), and was remarked by the first Europeans who visited the West-

African coast (Dapper, 1668 in Carney, 1996). The area of domestication of the 

African rice (Oryza glaberrima  Steud.) was traced to the sources of the Senegal 

and Niger rivers: the Fouta Djalon plateau in Guinea (Li et al., 2011; Linares, 

2002). Today the majority of both the lowland and upland rice surface area is 

cultivated with modern Asian rice varieties (Oryza sativa L.), valued for its high 

yielding capacity. Although O. glaberrima genotypes with drought-resistance 

(Sarla and Swamy, 2005), resistance to rice yellow mottle virus, a major disease 

in African lowland rice (Ndjiondjop et al., 1999), bacterial leaf blight (Djedatin 

et al., 2011), nematodes (Plowright et al., 1999) and African rice gall midge 

(Balasubramanian et al., 2007) have been found, they also possess undesirable 

agronomic characteristics, such as lodging, grain shattering, long growing cycle 

and low yield potential (Nayar, 2010).
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Figure 1.1: Maps of the research sites Ndiaye and Fanaye in irrigation schemes along the 

Senegal river (left) and of the Sahelian rivers Senegal and Niger (right). 

 

  There is evidence of spontaneous interspecific crosses of O. sativa and O. 

glaberrima and selection of these hybrids by farmers (Barry et al., 2007; 

Nuijten et al., 2009). However, the Africa Rice Center released interspecific 

varieties, named NERICA (NEw RICe for Africa), as a result of a deliberate 

breeding program (Jones et al., 1997). Upland as well as lowland NERICA 

varieties have been released in the majority of countries in sub-Saharan Africa 

(Somado et al., 2008), with high rates of adoption in for example, Côte d’Ivoire 

(Diagne, 2006a) and Uganda (Kijima et al., 2008). 

 The irrigated rice schemes in the Sahel have high potential yields (8-10 t 

ha–1), but are dependent on external inputs (Dingkuhn and Sow, 1997b; Poussin 

et al., 2003; Segda et al., 2004). Inorganic fertilizer and herbicides are widely 

used along the Senegal river (Kebbeh and Miezan, 2003), Office du Niger in 

Mali (Wopereis et al., 1999) and in the Kou valley in Burkina Faso (Segda et al., 

2004). Soil fertility management has been identified as a major constraint 

(Haefele et al., 2001; Haefele and Wopereis, 2005; Wopereis et al., 1999).  The 

sustainability of long-term rice mono-cropping with appreciable yield has been 

shown in the Sahel (Bado et al., 2010; Haefele et al., 2002b; 2004). 

Furthermore, improvement of weed management was found profitable for 

Sahelian farmers (Haefele et al., 2000; Johnson et al., 2004). By adequately 

managing water and addition of sufficient amounts of fertilizer, irrigated 
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cropping can be conducted without jeopardizing soil quality (Boivin et al., 

2002; Ceuppens et al., 1997; Van Asten et al., 2002; 2003; 2004; Wopereis et 

al., 1998). 

 Water management is a key factor in irrigated rice. In irrigation schemes 

in the Sahel, water use is high due to a large evaporative demand and inefficient 

water management (Raes et al., 1995; Vandersypen et al., 2006a). Due to 

foreseen changes in availability of irrigation water, using less water will be 

necessary (Ceuppens, 2000; Venema et al., 1997). In tropical and subtropical 

Asia, water saving in lowland rice has been tested extensively, as reviewed by 

Bouman et al. (2007b). Annual and diurnal temperature fluctuations in the 

Sahel are large. For example, Dingkuhn and Sow (1997b) show that almost 

every day the temperature in the Sahel is both higher and lower than in Los 

Baños, The Philippines. The risks of either heat or cold induced sterility are 

large and therefore are the main determinants of the planting season 

(Dingkuhn, 1995; Dingkuhn et al., 1995b; Poussin et al., 2003). The length of 

the growing season of rice is determined by temperature and photoperiod 

requirements (Vergara and Chang, 1985). Even small changes in temperature 

can have large effects, notably around the thresholds for both heat and cold 

sterility. The difference in environmental conditions between a successful yield 

and crop failure is small. Therefore, farmers need to be aware of the magnitude 

of these risks, and need have varieties that yield well at different planting dates 

at their disposal. 

3 Research objectives and methodology 

 This thesis explored options for future management of irrigated rice in 

the Sahel. The exploration of management options by detailed experiments and 

modelling lead to an improved understanding of the system, proposals for 

improved rice management in the Sahel, and set the agenda for future research. 

The results of this thesis should assist researchers to set priorities, breeders to 

direct their breeding programmes, and policy makers to adapt agricultural 

policies to global change. Agricultural extensionists and development workers 

could draw practical lessons from the experimental work presented in the first 

chapters.  
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The specific objectives of the study were: 

 To determine whether it is possible to use less irrigation water for rice 

cultivation; 

 To quantify the effect of sowing date on yield of new irrigated rice varieties 

and their adaptability to Sahelian conditions; 

 To investigate whether globally used rice growth simulation models can be 

applied under Sahelian conditions; 

 To explore the effects of temperature increase on the rice cropping system 

in connection with projected climate change scenarios; 

 To develop management options to sustain rice production that can cope 

with the most prominent changes in climate and irrigation water 

availability. 

 For this research a combination of two methods was used: field 

experiments and crop growth simulation models. This combination of methods 

has been used satisfactorily in explorative studies on rice management before 

(Belder et al., 2007; Haefele et al., 2003b; Jing et al., 2008). The field 

experiments provided realistic and sound data which were used to calibrate 

existing models. Rice growth simulation models ORYZA1 (Kropff et al., 1994), 

its successor ORYZA2000 (Bouman et al., 2001) and DSSAT4 (Jones et al., 

2003) were evaluated for their capability to simulate phenology and potential 

yield under Sahelian conditions. To better capture the effects of temperature on 

phenology, Van Oort et al. (2011) proposed adaptations to the ORYZA2000 

model that were used in this study. The field experiments were performed at 

research stations of the Africa Rice Centre, Ndiaye and Fanaye (Figure 1.1). Both 

research stations were representative for large irrigated rice ecologies: Ndiaye 

for the Delta of the Senegal river valley, in which 70% of the irrigated rice is 

grown, and Fanaye for the middle valley, with a continental climate, 

representative for irrigation systems in the middle and upper valley of the 

Senegal river. Both sites had a typically Sahelian climate: a short wet season 

(three months), followed by a cooler dry season (four months) and hot dry 

season (five months). The use of two sites and multiple cropping seasons made 

the outcomes robust. The results could therefore be extrapolated to other 

Sahelian irrigation schemes, as shown by Dinkuhn (1995) on the presumption 

that crop cycle duration and spikelet sterility are determined by temperature 

and in some cases photoperiod. 
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 This study was limited to the biophysical aspects of rice production, 

although farmers’ day-to-day decisions are made on the basis of a mix of socio-

economic and biophysical information. Newly developed management options 

should fit within their socio-ecological niche (Ojiem et al., 2006). In this study, 

we explored future options, based on predictions in changes of the biophysical 

environment. Such predictions were not available for the socio-economic 

environment, and were thus not taken into account.     

4 Outline of the thesis 

 This thesis consists of a general introduction, four chapters in which 

original research is presented (Chapters 2-5) and a general discussion (Chapter 

6). In the next chapter alternative water-saving irrigation regimes are tested in 

combination with different weed and nitrogen management regimes to 

investigate whether it is possible to use less irrigation water while keeping the 

same yield. In Chapter 3, Genotype × Environment interactions are analysed of 

an extensive planting date experiment to test yield stability of newly developed 

cultivars. Chapter 4 discusses the performance of currently used rice growth 

simulation models and the sensitivity of their parameters. Chapter 5 explores 

the impacts of temperature changes on the rice cropping system using an 

improved simulation model. Chapter 6 presents the results of a combination of 

water-saving and temperature increase, the implications of the findings of this 

thesis for other disciplines and relevance in other cropping systems. 
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Chapter	2	

Rice	production	with	less	irrigation	

water	is	possible	in	a	Sahelian	

environment

                                                
 This chapter is published as:  

De Vries, M. E., J. Rodenburg, B. V. Bado, A. Sow, P. A. Leffelaar & K. E. Giller. 2010. Rice production with less 

irrigation water is possible in a Sahelian environment. Field Crops Research 116: 154‐164. 
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Abstract 
 We investigated the possibility of saving irrigation water in rice 

production in a Sahelian environment with different nitrogen rates and weed 

control treatments. A series of field experiments was conducted at Ndiaye 

(shallow water table, dry and wet season) and at Fanaye (deep water table, wet 

season) in Senegal with four irrigation treatments, involving three water saving 

regimes using alternate wetting and drying (AWD) and a flooded control, and 

three weed management treatments. This was followed by two experiments 

with the same four irrigation treatments in combination with three nitrogen (N) 

application rates, at the same locations. Hence four irrigation regimes were 

tested over three seasons. Between 480 and 1060 mm of irrigation water was 

used in the water saving treatments compared with 800 to 1490 mm in the 

flooded rice treatment. Rice yields ranged from 2.3 to 11.8 t ha−1 in the water 

saving treatments, whereas in the flooded control the yields ranged from 3.7 to 

11.7 t ha–1. In the wet season (WS), the treatments in which AWD was applied 

during part of the season resulted in the highest yields at both sites. In the dry 

season (DS), the continuously flooded treatment out-yielded other treatments, 

with the exception of AWD in Fanaye. At the Ndiaye site, the control of weeds 

increased yields from on average 2.0 to 7.4 t ha−1 in the DS and from 1.4 to 4.9 t 

ha−1 in the WS. No weed control in combination with AWD during the 

vegetative stage reduced yields to below 1.0 t ha−1. However, when weeds were 

controlled, crop yields obtained with a combination of AWD and flooding were 

comparable with those obtained in fully flooded plots receiving the same weed 

management at both sites in the 2005 WS. Increasing rates of N significantly 

increased grain yield. Internal N efficiency was poorer at Ndiaye than at Fanaye 

suggesting that yields in Ndiaye are constrained by other factors than N. In 

Ndiaye, agronomic N use efficiency was smaller in the AWD treatments 

compared with fully flooded conditions. This study demonstrates that it is 

possible to save irrigation water and improve water productivity in rice grown 

in a Sahelian environment. An irrigation regime for rice that starts as 

conventional (flooded), and then changes to AWD can save water with little or 

no yield loss, while maintaining low weed pressure and efficient use of N. 

 

Key words: Alternate wetting and drying, Fertilizer N supply, Herbicides, N 

use efficiency, Water productivity, Weed control. 
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1 Introduction 
 Food insecurity is a day-to-day reality for many people in sub-Saharan 

Africa. In Sahelian countries, 48 kg rice was consumed per capita in 2003 

(FAOSTAT, 2011). Despite a long tradition of local production, 50% of the rice 

(Oryza sativa L.) is imported in Sahelian countries, at a cost of US$ 1.1 billion 

in 2005 (FAOSTAT, 2011). Although the climate enables high potential rice 

yields (8-10 t ha−1) in irrigated systems in the Sahel (Dingkuhn and Sow, 1997b), 

irrigation water is becoming increasingly scarce (Rijsberman, 2006) and costly. 

In the Senegal River Valley (SRV), irrigation accounts for 25% of the total costs 

of rice production (Raes et al., 1995), and 29% in Mauritania (Poussin et al., 

2006). On the left bank of the Senegal river, irrigation water for 50,000 ha of 

land is pumped from the river and its tributaries by either small diesel pumps 

or large electric pumping systems (SAED, 1997). Competition among user 

groups for water from the Senegal river will become more severe in the future, 

as demands for domestic use from the Dakar metropolitan area will increase, 

whereas water availability is expected to decrease (Ceuppens, 2000; Venema et 

al., 1997). Hence, improvement of irrigation water productivity is highly 

relevant for rice production in the SRV, and other Sahelian schemes such as the 

Office du Niger in Mali (e.g. Vandersypen et al. 2006a).  

 In tropical and sub-tropical rice production systems in Asia, alternative 

irrigation methods have been shown to save up to 50% of the water while 

maintaining yields at 70-80% of non-water saving conditions (Belder et al., 

2005b). In the alternate wetting and drying (AWD) system, rice is grown 

without a permanent layer of standing water on the field, and irrigation water is 

applied to obtain flooded conditions after a certain number of days have passed 

after the disappearance of ponded water (Bouman et al., 2007b). Another 

newly-developed method is aerobic rice, where adapted rice varieties are grown 

as a normal field crop with or without supplementary irrigation. This was 

reported to be successful under sub-tropical conditions in China (Bouman et al., 

2006) and, to some extent, under tropical conditions in the Philippines 

(Bouman et al., 2005). Water productivity of rice with respect to total water 

input (irrigation plus rainfall) is on average 0.4 kg grain m−3 water (Tuong et 

al., 2004). Under water saving regimes, an increase in water productivity to 

0.8-1.0 kg grain m−3 water has been reported (Belder et al., 2005b; Kato et al., 

2009). 
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 Depth of flood water affects the performance of the rice crop. The level of 

water and plant height are positively correlated (Anbumozhi et al., 1998), but 

tillering is negatively affected by excess flooding in the early growth stages (Ito 

et al., 1999). On the other hand, moderate water deficits are directly linked to a 

decrease in carbon fixation by the photosynthetic apparatus, primarily due to 

stomatal closure (Chaves and Oliveira, 2004) and a decrease in leaf elongation 

(Nguyen et al., 2009).  

 Soil fertility and weeds are the most prominent problems that can be 

addressed through improvement of crop management in irrigated systems of 

the Sahel (Haefele et al., 2000). Standing water is used to control weeds in 

irrigated systems. In aerobic rice, weeds may cause yield losses of 30-100%, 

hence weed management needs to be taken into account when irrigation water 

saving is introduced (Rao et al., 2007). Nitrogen is the most determining 

nutrient for rice yield, because of its importance in the photosynthesis process, 

determining biomass accumulation and crop yield and in the formation of 

spikelets (Hasegawa et al., 1994; Yoshida et al., 2006). Water saving has been 

shown to be possible in Asia, but it has not yet been tested in the Sahel. This 

research aimed to improve irrigation water management, while dealing with 

weed and soil fertility problems, which are key constraints in irrigated rice in 

West-Africa. The specific objectives of this study were to test the possibility to 

save water in rice production in a Sahelian environment by quantifying the 

effects of different water regimes on rice yield and irrigation water productivity 

under weed-free conditions with ample nitrogen. In addition, the interactions 

between water-saving irrigation regimes and nitrogen and weed management 

were studied. To test the possibilities for saving irrigation water, we chose two 

sites that differed in climate, ground water and salinity and conducted the 

experiments in wet and dry seasons with different yield potentials and growth 

durations. For this study we tested AWD, rather than a fully aerobic regime, as a 

potential water-saving treatment. Whereas a fully aerobic regime would 

potentially save more water, the threats of salinization and drought stress, due 

to high evaporative demands, probably are too great a risk in a Sahelian 

environment. 
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2 Materials and Methods 

2.1 Experimental site  

 Field experiments were conducted in the dry and wet seasons of 2005 and 

dry season (DS) of 2006 at Ndiaye (16011’N, 16015’W), and in the wet season 

(WS) of 2005 and dry season of 2006 at Fanaye (16032’N, 15011’W) in Senegal. 

Both are experimental research stations of the Africa Rice Center (AfricaRice). 

The sites were located in the delta (Ndiaye), 35 km inland, and middle part 

(Fanaye), 150 km inland, of the Senegal river valley. 

2.1.1 Climate 

 Climate at both sites is typically Sahelian: a nine month dry period 

followed by a short wet season, and large annual amplitudes in temperature, as 

shown in Figure 2.1. Between March and July, solar radiation and maximum 

temperatures are higher at Fanaye than in Ndiaye. Rice production takes place 

twice a year, from February to June in the hot dry season, and from August to 

November in the wet season. Table 2.2 shows the planting and maturity dates of 

the different experimental sites and seasons. 

2.1.2 Soil 

 The experimental station at Ndiaye is located in a depression along one of 

the branches of the Senegal river (Haefele, 2001). Deposits of marine origin in 

the sub-soil result in a saline ground water table of 20 dS m−1 or more 

(Ceuppens, 2000), which is 0.9 to 0.4 m below the soil surface. Following the 

FAO soil classification (FAO, 2006), the soil is characterized as an orthothionic 

Gleysol, with a clayey structure that contains 40 to 54% clay, composed of 

smectite and kaolinite (Haefele, 2001). Average percolation rate of this soil was 

estimated at 2.8 mm d−1 by Haefele (2001). Clay content of the Fanaye soil was 

higher with less porosity and bulk density than in the Ndiaye soil. Total N and 

organic C were larger in the Ndiaye soil, but C:N ratios were similar (10:1). The 

Fanaye station has a deep ground water table, constantly below 3.0 m. No 

inherent salinity was found at this site. The soil type is characterized as an 

eutric Vertisol (FAO soil classification), where clay content varies between 45 

and 65%, composed of kaolinite and smectite minerals (Haefele, 2001; Samba 

Diène, 1998). The percolation rate was estimated at 2.0 mm d−1 at the same site 

(Haefele, 2001).  
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Figure 2.1: Climate in Fanaye and Ndiaye (Senegal), with monthly mean maximum (full lines) 

and minimum temperatures (dashed lines), monthly mean daily radiation (dotted lines) and 

rainfall (bars) between January 2005 and July 2006. Due to storms, data on temperature and 

radiation are missing in September 2005. 

 

 Samba Diène (1998) indicated that infiltration rates at both sites can vary 

by an order of magnitude due to cracks. At both sites, the experiments were 

established on fields that had been under continuous flooded rice cultivation for 
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at least three seasons. Prior to the field experiments, soil samples were taken 

from individual plots and chemical and physical properties were measured 

(Table 2.1). Total N was determined using the micro-Kjeldahl method for N 

analysis (Bremner, 1965). Organic C was determined using the Walkley Black 

method (Nelson and Sommers, 1996). pH was determined in a 1:1.25 H2O 

solution and EC in a 1:5 paste. Volumetric water content at wilting point (pF 

4.2) was determined using a pressure membrane apparatus and at field capacity 

(pF 2.0) using a sand box. 

Table 2.1 Characteristics of the top soil (0-15 cm) of the two experimental sites (Ndiaye and 

Fanaye). Acidity (pH in water), organic carbon, total  N, cation exchange capacity, volumetric 

water content, porosity and bulk density.  

  Site 

 Characteristic   Ndiaye Fanaye 

pH(H2O) - 5.1 5.6 

EC(1:5) dSm‒1 0.3 0.1 

organic Ca  g kg‒1 10.3 7.5 

N totalb g kg‒1 1.0 0.8 

CECc cmolc kg‒1 13.0 26.2 

Volumetric water 

content 

pF 2.0 % 39 40 

pF 4.2 % 25 25 

Porosity % 52 49 

Bulk density g cm‒3 1.42 1.3 
a  Determined using Walkley–Black method. 

b  Determined by micro-Kjeldahl method . 

c  According to Haefele (2001). 

 

2.2 Experimental design and treatments  
 A total of five experiments were conducted to study the performance of 

different water regimes over two sites and three seasons (Table 2.2). A split-plot 

design was used with water management as main treatment (main-plot) and 

weed management (2005) or nitrogen application (2006) as sub-treatments 

(sub-plot) in three replicates (Table 2.3). The main-plots were not randomly 

assigned but laid out at fixed positions. This was necessary to ensure strict and 

distinct water regimes in an economically and logistically feasible way. This 

resulted in three experiments where water × weed interactions and two 

experiments where water × nitrogen interactions were explored. The 
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experiments were designed in such a way that within each irrigation treatment, 

a combination of the recommended nitrogen fertilizer dose and weed control 

was always present. This allowed a comparison of irrigation regimes across sites 

and seasons.  

 Two bunded canals were installed between main-plots, separating these 

by at least 3 m. This way, water seeping out of blocks could be drained away and 

the water levels in plots could be managed independently. The bunds were 0.4 

m above the soil surface to prevent overflow. The main irrigation blocks 

measured 9 × 12 m, resulting in a bund: area ratio of 0.39 m m−2, similar to the 

ratio in experiments reported by Humphreys et al. (2008).  

Table 2.2 : Sowing and maturity dates, length of the growing cycle (days and degree days), for 

different years and sites. 

Year Season Site Sowing date Maturity date 

Duration  

[days   oCdays] 

2005 Dry Ndiaye 18 March ‘05 16 July ‘05 120  2300a

 Wet Ndiaye 17 August ‘05 1  December ‘05 106   ndb 

  Fanaye 1 September ‘05 13 December ‘05 103 nd 

2006 Dry Ndiaye 23 February ‘06 23 June ‘06 120 2120 

  Fanaye 23 February ‘06 20 June ‘06 117 2510 
a  Degree days were calculated  using daily mean temperatures and 9oC as base temperature. 

b  No data; due to a gap in the meteorological data, the temperature sum could not be 

calculated. 

 

 In farmers’ fields in the SRV a bund: area ratio of 0.1 m m−2 is common. 

The outer bunds were lined on the inside of the blocks with plastic from a depth 

of 0.2 m below the soil surface over the top of the bund to the soil surface on the 

other side. The sub-plots (3 × 12 m) had small bunds between the herbicide 

treatments. For all experiments the medium-duration rice variety Sahel108 (IR 

13240-108-2-2-3) was used, which is most popular in the region.  

2.2.1 Crop establishment 

 The crop was directly sown at a rate of 100 kg seed ha−1 after 48 hours of 

soaking in water. The soil was wet at the time of sowing, and a layer of 2 cm of 

water was maintained. In 2005, all plots were fertilized uniformly with N and P 

in the form of urea and diammonium phosphate (DAP). DAP was broadcast at 

sowing (21 kg P ha−1 and 18 kg N ha−1), and urea was broadcast in three splits: 

42 kg N ha−1 at the beginning of tillering, 60 kg N ha−1 at panicle initiation and 
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30 kg N ha−1 at heading stage. Resulting in 150 kg N ha−1 and 21 kg P ha−1. Urea 

was broadcast into a 5 cm layer of water. No major pests or diseases were 

observed. In the 2006 experiments, the same rate of P was applied as in 2005, 

but this time in the form of triple super phosphate, while the complete N-rate 

was applied as urea. 

Table 2.3: Structure of the sub-plot factors of five water saving experiments. Each column 

represents three weed control (days after sowing [DAS]) × nitrogen (kg N ha‒1) combinations 

in an experiment. In bold the recommended weed control and nitrogen management 

combination.  

Season 2005 Dry  2005 Wet  2006 Dry 

site Ndiaye  Ndiaye Fanaye  Ndiaye Fanaye 

Weed 

control 
No  No No  21 DAS 21 DAS 

Nitrogen 150  150 150  0 0 

Weed 

control 
21 DAS  21 DAS 21 DAS  21 DAS 21 DAS 

Nitrogen 150  150 150  90 90 

Weed 

control 
35 DAS  35 DAS 35 DAS  21 DAS 21 DAS 

Nitrogen 150  150 150  150 150 

 

 

2.2.2 Water management 

 To evaluate the effect of water management on rice production four 

different irrigation regimes were compared:  

 I1: continuously AWD; 

 I2: AWD until PI, then Flooded; 

 I3: Flooded until PI, then AWD and 

 I4: continuously flooded. 

 Irrigation was applied when necessary to maintain the desired water level, but 

not more often than three times a week, see Figure 2.2. The same amount of 

irrigation water was applied to all replicates. Due to the hot and dry climate, the 

evaporative demand in the Sahel is high. Hence season-long AWD increases the 

risk of salt and moisture stress for the rice crop. AWD was chosen as the water 

saving irrigation technique in one of the treatments (I1). In two other 
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treatments, water saving regimes with AWD for part of the growing season were 

applied. One treatment followed AWD during the vegetative part of the growing 

cycle only (I2), with permanent flooded fields at a depth of 10-15 cm thereafter, 

while another treatment started with permanently flooding (10-15 cm) during 

the vegetative stage, followed by AWD during the generative stage (I3). The 

fourth treatment was continuous flooding (I4), applying the recommended 

water depth (10-15 cm). All treatments started 15 days after sowing (DAS), 

when the crop had emerged, and all plots were drained 10 days before 

harvesting, to ensure uniform ripening and facilitate harvesting. The amount of 

irrigation water applied to all treatments is presented in Table 2.5. Between 

sowing and the start of the water treatments, the water level was kept the same 

in all plots, starting with a thin layer of 3-5 cm, and gradually increasing to 10 

cm. as the crop established. PI was determined as the moment when the 

panicles were visible with the naked eye.  

2.2.3 Weed management 

 In the 2005 DS and WS experiments, there were three different weed 

control treatments (Table 2.3). The aim of the three treatments was to 

determine whether there would be an interaction of late or no weed control with 

water management. Delayed application of herbicides is a common practice 

among farmers in the SRV. In two treatments herbicides were applied at the 

recommended rates but at different times, whereas in the check treatment no 

herbicides were applied:  

 W1: 21 DAS Herbicides. A 1:5 mix of weed-one (2,4-

dichlorophenoxyacetic acid) and propanil, selective herbicides, applied at 

6 l ha−1 at 21 DAS, followed by one manual weeding two weeks later. This 

represents the weed control strategy that is recommended by the local 

extension services.  

 W2: 35 DAS Herbicides. A 1:5 mix of weed-one and propanil applied at 6 

l ha−1 at 35 DAS, followed by one manual weeding two weeks later. This 

represents delayed herbicide application. The herbicides were applied in 

the recommended mix and concentration. 

 W3: No weed management. Neither herbicide application nor manual 

weeding was applied. 
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For 2006, the experimental plots were sprayed with herbicides at 21 DAS, a 1:5 

mix of weed-one and propanil applied at 6 l ha−1. This was followed by two 

manual weedings, at two and four weeks after application of the herbicides, to 

avoid any residual effect of the 2005 weed management treatments. 

2.2.4 Nitrogen management 

 In 2006 DS only, the same water treatments were applied at both sites, 

but instead of herbicide, nitrogen treatments were tested (Table 2.3). These 

treatments included three nitrogen fertilizer rates: 0, 90 and 150 kg N ha−1. 

Nitrogen was applied in three split doses, first 40% two weeks after sowing, 

second 30% top dressed at panicle initiation, and finally 30% at heading. Urea 

was applied in a shallow layer of ponded water (5 cm). 

2.3 Measurements 

 At maturity a 2 × 2 m surface was harvested and weighed to calculate the 

grain yield at 14% moisture content, and straw and weed biomass. A surface 

area of 0.4 × 0.4 m was harvested to measure the number of filled and unfilled 

grains. The water level was monitored daily in each main-plot through 0.4 m 

diameter perforated PVC tubes that were inserted into the soil to a depth of 0.3 

m. At Ndiaye, flood water salinity was measured twice a week using a portable 

conductivity meter. Irrigation volume was measured by a V-notched weir that 

was calibrated in the field and installed at the inlet of each block. Irrigation 

volume was assessed by measuring the height of the water, flowing through the 

V-notched weir, with a measuring stick at an interval of 5 minutes at the 

beginning of an irrigation event; the interval was increased to 15 minutes, when 

the inflow had stabilized. The relationship between water volume and water 

height in the weir was Q=8.7 tan(θ/2) H2.5, where Q is the discharge (l min−1), θ 

the angle of V-notch, and H the height of water flowing through the weir (cm) 

(USBR, 2001). 

2.4 Computations and statistical analysis 

 The lay-out of the experimental plots was such that repetitions accounted 

for heterogeneity in one direction, but not in the perpendicular direction. 

Homogeneity of the experimental fields in the perpendicular direction was 

tested using analysis of covariance. A covariate was created by assigning a 

number to plots in the perpendicular direction, and it was tested whether there 

was a relation between the grain yield and the assigned number of a plot. This 

analysis was carried out for each experiment separately and effects of plot 
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number were not significant. As a further analysis, residuals of grain yields of 

all individual plots were calculated according to procedures described by Dyke 

(1988) to determine whether the residuals of the blocks in the perpendicular 

direction were above 1.0 or below -1.0, which was not the case. The calculation 

was carried out for each experiment individually, and no significant block 

effects were found. This confirms that the assumptions underlying the analysis 

of variance (ANOVA) were not violated by fixing the main plot locations. 

Therefore, ANOVA was used to analyse main effects of water, nitrogen and 

weed management and their interactions using the statistical software package 

Genstat version 10 (VSN international, 2007). Grain N concentration was 

determined by Kjeldahl digestion. Total N uptake was estimated by using grain 

N concentration measured and by applying the ratio between grain N and straw 

N content of 1.0 : 0.6, as found by Witt et al. (1999) from a large number of 

samples, which was multiplied by the weight of grain and straw harvested.  

Table 2.4: Results of the analysis of variance: the degrees of freedom, variance ratios and 

associated probabilities of main effects and their interactions on grain yield of five 

experiments. 

Experiment Source d.f. Variance ratio P value 

Ndiaye Dry '05 Irrigation (I) 3 10.2  0.009** 

 Weed control (W) 2 84.8  0.001** 

 I × W 6 7.4  0.002** 
     

Ndiaye Wet '05 I 3 6.4  0.027* 

 W 2 21.8  0.007** 

 I × W 6 0.4  0.84     
     

Fanaye Wet '05 I 3 3.8  0.075 

 W 2 0.2  0.79 

 I × W 6 1.9  0.16 
     

Ndiaye Dry '06 I 3 1.9  0.233 

 Nitrogen (N) 2 144.9  <.001** 

 I × N 6 1.5  0.248 
     

Fanaye Dry '06 I 3 0.2  0.911 

 N 2 139.2  <.001** 

 I × N 6 1.4  0.294 

* P <0.05, ** P <0.01 
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The internal efficiency of nitrogen (IEN) was determined by dividing the grain 

yield by the total amount of nitrogen taken up by the plant. The fertilizer 

recovery fraction was determined as the total above ground plant N in the 

fertilized pots minus the total plant N in the unfertilized plots divided by the N 

application rate.  Agronomic nitrogen use efficiency was calculated as the grain 

yields of the fertilized plots minus the grain yields of the unfertilized plots 

divided by the N application rate (Belder et al., 2005b). Input water 

productivity was determined by dividing grain yield over the sum of irrigated 

volume and rainfall received. 

3 Results 

 The results of the analyses of variance on grain yield for all experiments 

are shown in Table 2.4. Main effects of the irrigation regime were significant in 

2005 in the DS and WS, but not in the 2006 DS. In the DS of 2006 in Fanaye, 

the volume irrigated did not differ between treatments. Main effects of 

herbicides and nitrogen treatments were always significant. Significant 

interaction effects were only found between the irrigation regime and the 

herbicide application in the DS of 2005.  

3.1 Water management 

3.1.1 Field water level and irrigation 

 Daily water levels in the fields of the four water treatments are shown in 

Figure 2.2. In Ndiaye, the treatments were successfully applied, with AWD 

regimes that had field water levels between 2 and -3 cm, while water levels of 

the flooded treatments were between 5 and 10 cm. Due to filling up of the soil 

profile the water level varied at the beginning of the season. Irrigation was 

applied twice a week. In Fanaye, the field water levels showed large fluctuations, 

with rapid decreases in water level. The differences between water treatments 

are less pronounced than in Ndiaye, but the AWD water treatments had 

significantly lower field water tables than the flooded treatments. Large cracks 

were observed in the fields of Fanaye, which were probably the reason for the 

high percolation rates (up to 20 cm d−1). The volume of irrigation water used 

ranged between 480 (AWD WS 2005 Ndiaye) and 1490 mm (flooded DS 2005 

Ndiaye) (Table 2.5). At both Fanaye and Ndiaye, the amount of irrigation water 

was larger in the dry seasons than in the wet seasons.  
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Water use of the season-long AWD treatment was equal (DS 2006) or lower (DS 

and WS 2005) than of the other water-saving methods whereas that of the 

flooded treatment was consistently higher than any other treatment. Averaged 

over three seasons, AWD used 61% of the flooded treatment in Ndiaye. 

In Fanaye, water use with AWD was 53 (WS) and 95% DS) of the flooded 

treatment, respectively. Percolation rates were very high in the DS of 2006, 

probably due to cracking and preferential flow of water. As a result, irrigation 

water use was similar in AWD, AWD-flooded and flooded-AWD in the 2006 DS, 

but in the DS of 2005 irrigation water use differed among water regimes.  

3.1.2 Flood water salinity 

 Flood water salinity was always below 1.0 dS m−1, irrespective of 

irrigation regime in all experiments in Ndiaye (data not shown). Irrigation 

water had a constant salinity of 0.19 dS m−1. 

3.2 Yield and yield components 

3.2.1 Water regimes 

 Yields ranged from 2.3 to 11.8 t ha−1 under different water regimes, when 

recommended weed control and nitrogen fertilizer rates were applied (Table 

2.5). The yields in the dry seasons were greater than those in the WS, due to 

higher radiation (Figure 2.1) and a longer growing cycle (Table 2.1). The AWD 

treatment resulted in the lowest yields, but main effect of irrigation treatment 

were not significant in three of the five experiments. Plant density after 

germination was daily checked visually for the first two weeks of the 

experiments and found to be equal among treatments. In the WS at both sites, 

the mixed treatments of AWD and flooded regimes resulted in significantly 

higher yields than the flooded treatment. By contrast the flooded treatment out-

yielded other treatments in the DS, with the exception of AWD in Fanaye. In the 

DS of 2006, field water fell to a lower level in Fanaye than in Ndiaye (Figure 

2.2), but at Fanaye average yield was greater (11.2 t ha−1 vs. 9.4 t ha−1). 

Irrigation volumes were not different among treatments at that site in the DS. 

The large differences between seasons and sites were mainly due to the climatic 

differences. In the DS, both low night temperatures that slowed down initial 

development rate, and a high solar radiation increased biomass accumulation 

(Figure 2.1).  
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Table 2.5: Yield (t ha−1), irrigation water use (mm), water use relative to flooded treatment per 

experiment (%) and water productivity (kg grain m−3 water) (WP) of five experiments with four 

irrigation treatments: continuously alternating wetting and drying (AWD); AWD until panicle initiation 

(PI), rest of the season flooded (Fld.); flooded until PI, then AWD, and continuously flooded. Weeds 

were controlled at 21 days after sowing, and N was applied at the recommended rate of 150 kg ha−1.  

Site Season Irrigation 

treatment 

Yield 

(t ha−1) 

Irrigation 

(mm) 

Relative 

water use 

(%) 

WPa 

(kg grain 

m−3) 

Ndiaye Dry 2005 I1 AWD 4.9  880 59 0.57 

  I2 AWD- Fld 6.1 1310 87 0.47 

  I3 Fld-AWD 6.4 1110 74 0.57 

  I4 Fld 7.4 1490 100 0.49 
       

 SED   0.4   0.05 
       

Ndiaye Wet 2005 I1 AWD 2.3 480 60 0.32  

  I2 AWD- Fld 4.9 630 78 0.57 

  I3 Fld-AWD 5.0 550 68 0.63 

  I4 Fld 4.1 800 100 0.39 
       

 SED   0.3   0.13 
       

Ndiaye Dry 2006b I1 AWD 7.6  760 66 1.00 

  I2 AWD- Fld 9.7  810 70 1.19 

  I3 Fld-AWD 9.7  760 66 1.28 

  I4 Fled 10.7 1160 100 0.93 
       

 SED   0.7   0.15 
       

Fanaye Wet 2005b I1 AWD 3.7  710 53 0.31 

  I2 AWD- Fld 4.7  810 61 0.44 

  I3 Fld-AWD 5.2  810 61 0.49 

  I4 Fld 3.7 1330 100 0.23 
       

 SED   0.4   0.07 
       

Fanaye Dry 2006b I1 AWD 11.8 1060 95 1.12 

  I2 AWD- Fld 10.8 1000 91 1.08 

  I3 Fld-AWD 10.6 1060 96 1.00 

  I4 Fld 11.7 1110 100 1.06 
       

 SED    1.1   0.17 
a Water productivity is calculated as the grain yield divided by the sum of irrigation water applied and 

rainfall received , which was 240 and 260 mm in Ndiaye and Fanaye respectively, wet season only. 
b  No significant main effects of irrigation treatments on yield were observed, see Table 2.4. 
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Both the duration in days as well as in degree days were different in all 

experiments (Table 2.2), ranging from 21200Cd to 23000Cd, although the same 

cultivar was used. Yields of the AWD treatment, averaged over different sites 

and seasons were significantly less (6.1 t ha−1) than that of the flooded control 

(7.4 t ha−1) and other two irrigation regimes (7.3 t ha−1 and 7.4 t ha−1) (SED = 

0.5). In the WS of 2005, spikelet sterility was significantly higher for the AWD 

treatment compared with the other three irrigation treatments in Fanaye (Table 

2.6), but in Ndiaye, only the difference between the flooded and AWD-flooded 

treatment was significant. However, the total sink size in terms of number of 

filled spikelets m−2  did not differ significantly between treatments. In the WS of 

2005 in Ndiaye, tiller number m−2 at PI was significantly negatively affected 

(P<0.05) by AWD (data not shown). In Fanaye, the trend was reversed, though 

barely significant (P=0.056). In other seasons, tiller number was not affected by 

irrigation regime. In Ndiaye, DS 2005 yields were less than in the DS 2006, due 

to earlier sowing dates and consequently higher cumulative solar radiation. 

Table 2.6: Percentage sterile spikelets and number of spikelets m‒2 of two experiments in WS 

of  2005, at Ndiaye and Fanaye, using four different water management regimes (I1-I4). 

Irrigation treatment Ndiaye Fanaye 

Sterility 

(%) 

104 spikelets 

m2 

Sterility 

(%) 

104 spikelets 

m2 

I1 AWD 28 5.7 34 7.2 

I2 AWD-Flooded 18 5.7 21 5.9 

I3 Flooded-AWD 26 6.0 19 5.4 

I4 Flooded  34 6.4 22 5.1 

SED 6.7 0.97 5.0 0.43 

 

3.2.2 Weed management 

 Weed control significantly increased grain yield in both seasons in Ndiaye 

(Table 2.4), although the timing of herbicide application was never significant. 

In Ndiaye, weed control increased yields of flooded rice by 4.4 t ha−1 in the DS 

and by 2.8 t ha−1 in the WS (Table 2.7). In Fanaye, no significant effect of weed 

control was observed in the flooded treatment. In Ndiaye, under irrigation 

regimes AWD and AWD-flooded, lack of weed control resulted in grain yields of 

1.0 t ha−1 or less. At the same site in the no weed control treatments, flooded-

AWD and flooded irrigation regimes resulted in an average yield increase of 

0.3-4.5 t ha−1 compared with the AWD regime. Additionally, chemical control 
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and hand weeding in the flooded-AWD and fully flooded treatments, increased 

yields to 3.7-7.4 t ha−1 compared with no weed control. In the DS of 2005, the 

treatment without weed control resulted in significantly less tillers m−2 at PI in 

irrigation regimes that started with AWD (P<0.05) in Ndiaye (data not shown). 

In the WS, tiller numbers m−2 at PI decreased significantly (P<0.001) in all 

irrigation treatments, when no weed control was applied. In Fanaye, no 

significant effects of flooding, timing of weed control or interactions between 

irrigation and weed control on rice yield or tiller numbers were observed. 

3.2.3 Weeds 

 The most abundant weed species, in terms of number and biomass in the 

first month of each experiment, were Echinochloa colona (L.) Link. and 

Cyperus difformis L. In the WS in Ndiaye, Ludwigia erecta (L.) H. Hara. was 

abundant, especially in the second half of the season in the ‘no weed 

management’ treatment when it outgrew the rice crop by approximately one 

meter in height. At Fanaye, there was less weed pressure than in Ndiaye, and 

weeds were distributed less evenly.  

3.2.4 Nitrogen management 

 Nitrogen application increased yields significantly (P<0.001) at both sites 

in all water management treatments (Table 2.8). At the highest N rates, grain 

yields were as high as 11.7 t ha−1 under flooded conditions. There were no 

significant main effects of irrigation treatments and no significant irrigation × 

nitrogen interactions (Table 2.4), due to the absence of differences in water 

regime in Fanaye in the DS of 2006 (Table 2.5; Figure 2.2). Without N 

fertilization, yields in Ndiaye were significantly (P=0.001) greater than those in 

Fanaye (3.5 vs. 2.7 t ha−1), whereas at the highest N rate, yields in Ndiaye (9.4 t 

ha−1) were significantly smaller than those in Fanaye (11.2 t ha−1). Without N 

application no differences between irrigation treatments were observed at any 

site. 

 3.3 Resource use efficiencies 

3.3.1 Water productivity 

 In four of the five experiments, the WP was largest for the Flooded-AWD 

treatment (Table 2.5). The exception was Fanaye DS 2006, which also showed 

the smallest water-savings. Poor yields in the WS under the AWD treatment at 

both Ndiaye and Fanaye resulted in low WP. WP was consistently high in the 
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DS of 2006 at both locations, ranging between 0.93 to 1.28 kg grain m−3 water, 

but in the DS of 2005 and in the wet seasons it was much smaller, between 0.23 

and 0.63 kg grain m−3 water. 

Table 2.7: Grain yield (14% moisture) (t ha−1) under four different irrigation regimes (I1-4) and 

three weed control (W1-3) at two sites in wet and dry seasons of 2005. The standard error of 

differences among combinations of irrigation and herbicide treatment is given for each 

experiment.  

Experiment Weed control 

timing treatment 

Irrigation treatment 

I4 

Flooded 

I3 Flooded-

AWD 

I2 AWD-

Flooded 

I1 AWD 

SED 

Ndiaye  W1 21 DAS 7.4 6.4 6.1 4.9 0.7 

DS ‘05 W2 35 DAS 6.9 6.2 6.4 6.3  

 W3 none  3.0 4.7 0.2 0.2  

       

Ndiaye W1 21 DAS 4.1 5.0 4.9 2.3 0.7 

WS ‘05 W2 35 DAS 3.7 4.2 3.4 2.1  

 W3 none 1.3 2.8 1.0 0.3  

       

Fanaye W1 21 DAS 3.7 5.2 4.7 3.7 0.7 

WS ‘05 W2 35 DAS 3.9 3.0 5.0 3.6  

 W3 none 4.0 4.0 5.0 2.8  

 

 Between experiments, there was an increase in grain yield with increased 

water input (Figure 2.3). However, within experiments, this effect was not 

observed, and may be due to other factors than irrigation water saving that were 

not taken into account in this study. In the DS of 2006, WP was very high in 

Fanaye.  

3.3.2 Nitrogen use efficiency parameters 

 Agronomic N use efficiency (ANUE) ranged between 30 and 77 kg grain 

kg−1 N applied (Table 8). At Ndiaye, ANUE was significantly greater at 90 kg N 

ha−1 than at 150 kg N ha−1, with on average 51 and 40 kg grain kg−1 N, 

respectively. The same trend was observed in Fanaye, but differences were not 

significant. 
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Figure 2.3: Relationship between water input (mm) and grain yield (t ha‒1) for all five 

experiments. Each symbol represents the grain yield (14% MC) for one of the four water 

treatments, weeds were controlled 21 days after sowing and 150 kg N ha−1 was applied. 

 

Seventy percent of the nitrogen was applied in the first half of the season, before 

the irrigation treatments AWD-Flooded and Flooded-AWD had switched. This 

means that at the time of N application there were in fact two irrigation 

treatments: AWD and permanently flooded. Average values were combined 

accordingly to facilitate comparison of ANUE when N is applied under AWD to 

the ANUE following applications under permanently flooded conditions. In 

Ndiaye, the average ANUE was significantly poorer in the plots that were AWD 

(39 kg grain kg−1 applied N) at the time of application, than the ones that 

received fertilizer under the permanently flooded conditions (52 kg grain kg−1 

applied N) (SED = 4.1). In Fanaye, no such difference was found. 

 The fertilizer N recovery fraction ranged from 0.22 to 0.84. In Ndiaye, N 

recovery was significantly greater at 90 kg N ha−1 than at 150 kg N ha−1 under 

the AWD-flooded and flooded-AWD treatments.  
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Table 2.8: Yield (t ha−1), agronomic nitrogen use efficiency (kg grain kg N−1), nitrogen 

fertilizer recovery fraction (kg kg−1) and internal N efficiency (kg grain kg plant N−1) of rice 

variety Sahel108 under four different irrigation regimes; combinations of alternate wetting 

and drying (AWD) and flooded, and three levels of nitrogen in the dry season of 2006 at 

Ndiaye and Fanaye. 

Site Irrigation 

treatment 

N level 

kg ha−1 

Yield 

t ha−1 

Agr. N use 

eff. 

N 

recovery 

fraction 

kg kg−1 

Int. N eff. 

kg grain 

kg−1  

plant N 

   kg grain  

kg−1 N 

Fanaye I1 AWD 0 2.2 - - 109 

DS ‘06  90 7.8 62 0.67 97 

  150 11.8 64 0.84 82 

 I2 AWD-Fld 0 2.8 - - 123 

  90 9.7 77 0.80 104 

  150 10.8 53 0.65 90 

 I3 Fld-AWD 0 3.0 - - 89 

  90 9.5 72 0.59 110 

  150 10.6 51 0.53 104 

 I4 Fld 0 2.7 - - 115 

  90 7.6 54 0.49 113 

  150 11.7 60 0.79 83 
       

SED Irrigation  0.9 6.8 0.09 5.7 

 Nitrogen  0.4 5.4 0.08 4.5 

 I × N 1.1 11.1 0.16 9.3 
       

Ndiaye  I1 AWD 0 3.1 - - 74 

DS ‘06  90 6.8 41 0.28 86 

  150 7.6 30 0.22 76 

 I2 AWD-Fld 0 3.6 - - 73 

  90 7.4 42 0.51 60 

  150 9.7 41 0.36 76 

 I3 Fld-AWD 0 3.8 - - 78 

  90 8.9 57 0.54 74 

  150 9.7 39 0.40 73 

 I4 Fld 0 3.5 - - 73 

  90 9.1 62 0.55 79 

  150 10.7 48 0.53 59 
       

SED Irrigation  0.8 5.3 0.13 6.2 

 Nitrogen  0.5 3.8 0.07 8.9 

  I × N 1.1 8.0 0.18 15.7 
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 In the other irrigation treatments, no differences in recovery fraction 

were found among N application rates. In Fanaye, the opposite (greater 

recovery fraction at 150 than at 90 kg N ha–1) was true only for the flooded 

treatment. 

 In Fanaye, the recovery fraction was significantly greater under AWD 

than under permanently flooded conditions during the vegetative stage 

(P=0.05), while at Ndiaye, it was significantly poorer under AWD than under 

flooded conditions. In Ndiaye, maximum internal N efficiency (IEN) was 86 kg 

grain kg−1 N, whereas at Fanaye it was 123 kg grain kg−1 N. IEN at Fanaye 

decreased significantly with N application rates, except for the flooded-AWD 

treatment. The AWD treatment had the poorest IEN. No irrigation × nitrogen 

interaction effects on IEN were observed in Ndiaye. The relation between total 

plant N uptake and grain yield was linear for yields up to 8 t ha−1 in Ndiaye and 

up to 10 t ha−1 in Fanaye (Figure 2.4), suggesting that yields were mainly 

constrained by N-supply. IEN in Fanaye was better than in Ndiaye, especially 

for grain yields higher than 8 t ha−1.  

4 Discussion 

4.1 Water saving and yield 

 In the current study, the irrigation water use in water saving treatments 

was 72% on average, ranging between 53 and 96%, of the volume irrigated in 

the permanently flooded treatments. Yields of the irrigation water saving 

treatments were 92% on average, ranging between 56 and 141%, of the flooded 

treatment. Main effects of the irrigation treatments on rice yield were 

significant (P<0.05) in two of the five experiments. In three experiments 

(Ndiaye WS 2005, Fanaye WS 2005 and Ndiaye DS 2006) water regime I3 

(Flooded-AWD) gave equal or larger yields than the flooded control. In dry 

seasons the irrigated volume of water was larger, although in the WS, initial soil 

water contents were higher due to rainfall. The longer growing period, in 

calendar and degree days, the hotter and drier climate and absence of rainfall, 

contributed to a larger volume of irrigation water in the DS. In Fanaye in the DS 

of 2006, no significant reduction in yield was observed despite large percolation 

losses, possibly because the frequent irrigations kept the soil moist.  
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Figure 2.4: Total plant nitrogen uptake (kg ha−1) and grain yield (t ha−1) (14% MC) at two sites 

in the dry season of 2006. Dashed line is maximum dilution (slope = 0.112) found by Haefele 

et al. (2003a). Solid lines form an envelope that can be used to predict fertilizer requirements, 

with slopes of 0.96 and 0.42 of upper and lower boundaries (Witt et al., 1999). Open symbols 

represent the Ndiaye site and closed symbols represent the Fanaye site. 

 

 Although the water levels fell to more than 20 cm below the soil surface, 

much faster than those observed by Haefele (2001) on the same site, irrigation 

replenished the soil water content before water stress took place. Water saving 

technologies can save 10-30% of the water in areas with a shallow water table 

(Belder et al., 2004), as in Ndiaye where up to 40% irrigation water was saved, 

but with substantial yield losses. When a deep water table is present, in a free 

draining soil without a compacted plough layer, as in Fanaye, water savings can 

be 50%, but yield losses are around 20%. Yield was found to be independent of 

water table depth when a plough sole was present (Bouman et al., 2007a; 

Tabbal et al., 2002). This is confirmed by the large water savings observed in 

the WS at Fanaye (47%) without concomitant yield losses. In the DS, however, 

savings were minimal (5%), probably because percolation rates were high, 
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which resulted in the need for frequent irrigation to avoid crop water stress. The 

effects of site on rice yield was large, due to both climatic differences and 

chemical and physical soil properties. The high percolation rates at Fanaye 

influenced the water management treatments, and differences in water 

management treatments were smaller in Fanaye than in Ndiaye. Although a 

saturated infiltration rate of 2.5 mm d‒1 was measured (Haefele, 2001), not 

uncommon in heavy clay soils, water levels dropped by an order of magnitude 

faster. Based on daily field observations on the bunds and canals surrounding 

the treatments, seepage can be excluded as an important contributor to these 

water losses. Sub-surface cracks, on the other hand, could have played an 

important role in the relatively high infiltration (Tuong, 1994). The experiments 

were carried out on plots that were smaller and that had a higher bund: surface 

ratio than farmers’ plots (0.39 versus 0.1). Consequently, seepage through and 

under bunds in the flooded treatments of these experiments is probably 

overestimated. Although the plots were lined with plastic, under-bund losses 

could have taken place (Tuong, 1994). However, seepage losses were probably a 

minor part of the water balance given the physical properties of the soils. In our 

experiments the flooded treatments had water levels of 7-12 cm above the soil 

surface, in farmers’ fields water levels can be up to 30 cm, which will increase 

the irrigation water use, and increases the potential for irrigation water savings. 

Experiments in Asia have shown a yield decline under continuous aerobic rice 

cropping (Peng et al., 2006): recently, increasing root-knot nematode 

populations and micro-nutrient deficiencies have been identified as possible 

causes (Kreye et al., 2009a; 2009b). Further research should focus on 

investigating whether these long-term effects would also occur under the 

proposed water regimes in Sahelian environments. 

 In the WS of 2005, planting was delayed by two weeks in Fanaye, which 

increased the sterility in the AWD treatment significantly. As shown by 

Dingkuhn et al. (1995b), planting date has a strong influence on cold induced 

sterility in the Sahel, which is related to flood water temperature. Williams and 

Angus (1994) observed yield reduction in shallow water (5 cm) compared with 

deep water (20 cm) at an air temperature of 150C. In our experiments the 

minimum air temperatures in the WS of 2005 were 200C for Ndiaye and 150C 

for Fanaye. The AWD treatment could have had more extreme flood water 

temperatures, and hence suffered more from cold induced sterility, especially at 

the Fanaye site.  
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Measured salinity levels were always lower than 1.0 dS m−1, which is well below 

the threshold of 2.0 dS m−1 above which the crop is damaged (Asch and 

Wopereis, 2001). 

 4.2 Weed control and nitrogen rates 

 Weed pressure was much lower in Fanaye than in Ndiaye. The shallow 

water table in Ndiaye makes the top soil moist even before the rice crop is sown, 

stimulating weed germination. In Fanaye, the soil remains dry until land 

preparation, and the deep water table added to a high percolation rate causes 

the soil to dry quickly, giving the pre-germinated rice seeds an important 

competitive advantage over weeds. Differences in timing of weed control were 

more pronounced in the WS due to higher temperatures at the onset of this 

season, compared with the beginning of the DS. Yields obtained with the 

cultivar Sahel108 at an application rate of 150 kg N ha−1 in the DS of 2006 were 

comparable to the potential yield of 10 t ha−1 for this type of cultivar calculated 

by Dingkuhn and Sow (1997b) (Table 2.5).  

4.3 Resource use efficiencies 

 Water productivity in the current study was in the same range as found by 

Bouman and Tuong (2001) in the Philippines, but higher than observed in 

India. Bouman and Tuong (2001) attributed high water productivity to large 

potential yields coupled with small seepage and percolation losses. In pot 

experiments, without seepage and percolation losses, water productivities of up 

to 1.90 kg grain m−3  water were reported (Bouman and Tuong, 2001), while the 

maximum found in this study was 1.28 kg grain m−3 water. Tuong et al. (2000) 

reported water productivities of 0.24 to 0.84 kg grain m−3 water in the field, less 

than what we found in Senegal. Kato et al. (2009) recently reported an increase 

of WP to 0.8-1.0 kg grain m−3 water in aerobic rice grown under sub-tropical 

conditions which is less than we found in the DS of 2006 (1.0-1.3 kg grain m−3 

water), while Bouman et al. (2005) obtained WP values of 0.46-0.68 kg grain 

m−3 water, in a DS experiment on aerobic rice in the Philippines. 

 The fertilizer nitrogen recovery fraction in the current study ranged from 

0.22 to 0.84, while 0.5 is found under good management (Cassman et al., 

1993). In Ndiaye, agronomic nitrogen use efficiency was smaller in the AWD 

treatments, which indicates substantial N losses. In Fanaye, when the AWD 

treatment saved only 5% of the irrigation water, this effect was not observed. 

The AWD treatment was wetter in Fanaye, due to more frequent irrigations; 
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hence the soil status (aerobic or anaerobic) of all water treatments was similar. 

In Ndiaye, increased denitrification could have played a role. Reddy and Patrick 

(1986) demonstrated that nitrogen mineralisation and nitrification occur when 

the water table falls below the soil surface, and the released nitrate could be 

susceptible to loss by denitrification when the soil rewets. 

 The poorer IEN obtained at Ndiaye compared with Fanaye suggests that 

yields in Ndiaye were constrained by other factors than N. Haefele et al. 

(2003a) calculated IEN and found a maximum of 115 kg grain kg−1 plant N for 

fertilized flooded-rice fields in West-Africa. In the current study, IEN ranged 

from 59 to 123 kg grain kg−1 plant N. Witt et al. (1999) proposed an envelope 

composed of threshold values for maximum dilution and minimum 

accumulation to predict fertilizer requirements, based on data from 15 sites in 

six Asian countries. The values obtained in this study fall mostly within the 

proposed envelope, and when the maximum IEN found by Witt et al. (1999) is 

taken into account, all but one fall within the envelope (Figure 2.4). In our 

study, the maximum yields were higher than in the two previous studies by Witt 

et al. (1999) and Haefele et al. (2003a), 14 versus 10 t ha−1, and the results can 

be used to increase the application domain of the framework for fertilizer 

recommendation that was proposed by Haefele et al. (2003b). 

 Straw N content at harvest was not measured, but estimated based on the 

relation previously identified by Witt et al. (1999). This may have resulted in a 

less accurate determination of the IE. N-content was only measured at harvest, 

whereas total N uptake peaks between flowering and harvest, hence total N 

uptake is perhaps underestimated. Mean grain yields in Fanaye were 9% higher 

than in Ndiaye under non-stress conditions, due to higher solar radiation. In all 

experiments the same cultivars were used, but growing duration in degree days 

varied (2120 – 25100Cd), with a longer duration in the DS tan in the WS, similar 

to observations by Dingkuhn (1995). One of the causes of the variation may be 

the linear approach to calculation of growing degree days: a non-linear model 

often gives more accurate results (Yin et al., 1995). 

4.4 Outlook 

 Extrapolation of irrigation water savings found on experimental fields to 

farmers’ fields is difficult (Lampayan et al., 2004). Further irrigation water 

savings may be impossible in the DS in the Sahel, because the full AWD 

treatment resulted in significant yield decreases. There are examples of yield 
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decline due to salinization or alkalinization in Sahelian rice production systems 

in Mauritania (e.g Van Asten et al., 2003) and Senegal (Wopereis et al., 1998). 

In these specific environments it would be unwise to decrease irrigation 

volume, as it may lead to an accumulation of (alkaline) salts in the root zone. 

We used the most popular medium duration rice variety of the region, but 

significant yield increases from better adapted (aerobic) rice varieties can be 

expected (Atlin et al., 2006). Adoption of water saving technologies will require 

efforts in selecting the best fit environment based on socio-economic factors 

(Zhou et al., 2008). Given these difficulties, crop models that include a water 

balance could play an important role to develop scenarios for water saving 

technologies (Belder et al., 2007). 

5 Conclusion 

 Our results clearly demonstrate that it is possible to attain major savings 

of irrigation water with little yield penalties in a Sahelian environment. The 

sites, selected for the current study encompass a range of rice growing 

conditions of Sahelian environments. It can, therefore, be concluded that in the 

Sahel during the wet season irrigation water savings of 22-39% are possible for 

rice with no or little yield loss. In the dry season, the flooded treatments 

produced on average 1.0 t ha−1 more than any combination of flooded and AWD, 

and 1.8 t ha−1 more than the season-long AWD treatment. 

 This study focused on the interactions between water and nitrogen and 

water and weed management, whilst other factors, such as land preparation 

methods or crop establishment were not considered. These factors could also 

have large influences on water consumption. This research shows that an 

irrigation regime for rice that starts as conventional (flooded), and then changes 

to AWD shows promise to save water and improve water productivity without 

yield loss, while maintaining a low weed pressure and an efficient use of 

nitrogen. 
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Abstract 
 To assess genotype adaptability to variable environments, we evaluated 

five irrigated rice genotypes, three new varieties, WAS161, a NERICA, IR32307 

and ITA344, and two checks: IR64 and Sahel108, which is the most commonly 

grown in the region. In a field experiment conducted at two locations, Ndiaye 

and Fanaye, along the Senegal River, rice was sown on 15 consecutive dates with 

one month intervals starting in February 2006. Yield (0-12.2 t ha−1) and crop 

cycle duration (117-190 days) varied with sowing date, genotype and site. Rice 

yield was very sensitive to sowing date and the associated temperature regimes. 

Spikelet sterility due to cold stress (T < 20oC) was observed when the crops 

were sown in August (Ndiaye), September (Ndiaye and Fanaye) and October 

(Ndiaye and Fanaye), and heat stress (T > 35oC) resulted in spikelet sterility 

when sowing took place in April (Ndiaye and Fanaye) and May (Fanaye). For all 

experiments the source and sink balance was quantified, which showed that 

yield was most limited by sink size when sowing between July and October. 

Variety Was161 was least affected by genotype × environment interactions, 

resulting in lower interactive principal component values. An increase in 

minimum temperature of 3oC could decrease spikelet sterility from 100 to 45%. 

These changes in temperature are likely to force rice farmers in the Senegal 

River to adjust the cropping calendar, (e.g. to delay planting), or to use heat 

tolerant genotypes. 
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1 Introduction 
 Irrigation schemes in the Sahel provide farmers with a reliable water-

supply that is highly valued in a region with scarce and unreliable rainfall 

(Connor et al., 2008). Rice (Oryza sativa L.) production in these schemes is 

one of the most important activities, with 50 000 ha being cultivated in Senegal 

(SAED, 2007). Among the decisions farmers have to take, choosing between 

double and single cropping, and, more specifically, selecting the sowing date are 

among the most critical (le Gal and Papy, 1998; Poussin et al., 2003).  

 In Sahelian rice production, temperature affects two processes critically: 

the length of the growing cycle and spikelet sterility, induced by either heat or 

cold stress (Dingkuhn and Miezan, 1995). High temperatures (>35oC) at 

anthesis result in decreased pollen production and poor dehiscence of anthers, 

leading to poor pollen shed and fewer pollen grains intercepted by the stigma. 

Overall, this leads to a decrease in spikelet fertility (Endo et al., 2009; Prasad et 

al., 2006). Jagadish et al. (2010b) showed that there were genotypic differences 

in heat tolerance at anthesis, originating from differences in protein expression. 

Stress due to low temperatures is caused by flood-water temperatures below 

200C around booting stage. It induces spikelet sterility that increases sharply 

with decreasing temperature resulting in complete sterility at 150C (Shimono et 

al., 2005). Genotypes appear to have similar critical low temperatures for 

spikelet sterility (Dingkuhn et al., 1995b).  

 Surveys among farmers in the Senegal river valley have revealed that 

farmers are aware of the relation between low temperatures and yield decline in 

the wet season (Haefele et al., 2002a), and that they tend to respect the optimal 

sowing date, with an average sowing date of 4 August in 2004 (Diagne, 2006b). 

Wassmann et al. (2009) show that rice production will be significantly 

influenced by climate change. Predictions from downscaling global circulation 

models indicate that an increase in surface temperatures of 1.5-3oC can be 

expected by 2030 in the Sahel (Boko et al., 2007; Jury and Whitehall, 2010). 

Given the sensitivity of rice to both high and low temperatures at critical stages, 

which drive a potential yield reduction, both the sowing window and varietal 

preferences may alter in the coming decades. 

 Genotypes developed from inter-specific crosses of O. sativa × O. 

glaberrima (NERICA) for upland conditions have good potential yield 

(Dingkuhn et al., 1998), and their performance was stable across upland sites in 
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West-Africa (Sanni et al., 2009). Similarly, lowland NERICA genotypes have 

been developed (Rodenburg et al., 2006), and subsequently released in 

Sahelian countries (Sie et al., 2007). To date, information is lacking on the yield 

potential of lowland NERICA genotypes under irrigated conditions, and their 

ability to cope with the highly variable Sahelian climate. In Sahelian 

environments, farmers need varieties on which they can rely to perform well 

under a wide range of conditions. Gauch and Zobel (1997) developed an elegant 

method using an additive main effect and multiplicative interactions (AMMI) 

approach where the interaction term of the analysis of variance is analysed 

using principal components to assess genotype × environment interactions (G × 

E). Their tools aid breeders in determining which genotype wins in which 

environment, enabling selection for specific environments, and screen 

genotypes for their likelihood to be affected by G × E. 

 This study focused on evaluating the effect of different sowing dates on 

new rice genotypes, and how these varieties are adapted to possible changes in 

temperature which could influence the rice production system. 

2 Materials and Methods 

2.1 Site description 

 Field experiments were conducted between February 2006 and July 2007 

at Ndiaye (16o11’N, 16o15’W) and Fanaye (16o32’N, 15o11’W) in Senegal. Both are 

experimental research stations of the Africa Rice Center (AfricaRice). The sites 

were located in the delta (Ndiaye), 35 km inland, and middle (Fanaye), 150 km 

inland, of the Senegal river valley. For a detailed description of the physical and 

chemical properties of the soils see Bado et al. (2008) and De Vries et al. 

(2010). 

2.2 Climate 

 Climate at both sites is typically Sahelian: a nine month dry period 

followed by a short wet season and large amplitudes in temperature (Figure 

3.1). Meteorological data were recorded using an Onset Hobo© weather station, 

installed in a rice field next to the experiments.  
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Figure 3.1: Weather in Fanaye (top) and Ndiaye (bottom) between January 2006 and August 

2007: monthly mean maximum (full line) and minimum (dotted line) temperatures (oC), solar 

radiation (dashed line) (MJ m–2d–1), and monthly rainfall (mm month–1). 

 

 All instruments were mounted at 2 m above the soil. Hourly data were 

recorded, from which minimum and maximum temperatures, cumulative total 

global radiation and total rainfall were derived on a daily basis. Between March 

and July, solar radiation and maximum temperatures are higher at Fanaye than 

in Ndiaye. The highest temperature observed in Fanaye was 46oC on May 19, 
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2007, while in Ndiaye it was 44oC on June 16, 2007. Between November 2006 

and March 2007, minimum temperatures were lower in Fanaye than in Ndiaye. 

In Ndiaye, the lowest temperature recorded was 11oC on January 27, 2007, 

while at Fanaye it was 8oC on January 8, 2007. Rice production by farmers 

takes place twice a year, from February to June in the hot dry season and from 

August to November in the wet season. 

2.3 Experiment 

 A set of sowing date experiments was conducted at the two sites: for 15 

consecutive months an experiment of five varieties was sown on the 15th day of 

each month. The experiments were sown in randomized complete blocks and 

replicated three times. Each plot, comprising one variety, measured 5 × 5 m and 

was bunded so that it could be irrigated and drained independently. Each 

sowing date was treated as an individual experiment, although consecutive 

sowing date experiments were adjacent. The first experiment was sown on 15 

February 2006 and the crops of the last sowing dates were harvested at 27 and 

28 August 2007 for Ndiaye and Fanaye, respectively. 

2.4 Genotypes and crop management 

 Five genotypes were compared: 1) Sahel108 (IR 13240-108-2-2-3), the 

most popular short-duration variety in the region; 2) IR64, as an international 

check variety; 3) WAS161-B-9-2, an interspecific cross between IR64 (O. sativa) 

and TOG 5681 (O. glaberrima), back-crossed four times with IR64 and released 

in The Gambia and Burkina Faso (Sie et al., 2007); 4) ITA344, a medium-

duration variety, newly released in Senegal as Sahel 208; 5) IR32307-107-3-2, a 

short-duration variety, newly released in Senegal as Sahel 159, and used by 

farmers in Mali. 

 Apart from differing in sowing date, management was kept as uniform as 

possible between the different sowing date experiments and conformed with 

local recommendations to ensure optimal growing conditions. Seeds were 

soaked in water for 48 h to ensure homogeneous and rapid germination, after 

which the seeds were sown in a seed-bed. Twenty-one days after sowing, the 

seedlings were transplanted at 2-3 plants per hill at 0.2 × 0.2 m distance. When 

the seedlings had recovered from transplanting shock, they were thinned to two 

plants per hill. The plots were kept weed-free by frequent hand-weeding. All 

crops were fertilized uniformly with N and P in the form of urea and 

diammonium phosphate (DAP). 
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DAP was broadcast at transplanting (21 kg P ha ̶ 1 and 18 kg N ha ̶ 1), and urea 

was broadcast in three splits: 42 kg N ha ̶ 1 at the beginning of tillering, 60 kg N 

ha ̶ 1 at panicle initiation and 30 kg N ha−1 at heading stage. The total rate of 

fertilizer application was 150 kg N ha−1 and 21 kg P ha ̶ 1, which is the 

recommended rate for a dry season crop. Urea was broadcast into a 0.05 m 

layer of water. No significant pest or disease damage was observed. After 

transplanting, the water level in the plots was raised from 0.05 m to 0.15 m at 

booting stage. Two weeks before estimated maturity, the plots were drained to 

ensure homogeneous ripening of the crop. 

2.5 Measurements 

 Flowering was recorded as the day when 50% of the plants flowered; 

maturity was noted as the day when 80% of the plants were mature. At 

maturity, an area of 2 × 3 m in the centre of the plot was harvested; straw and 

grain were separated and weighed. Moisture content of the grains was 

determined, and grain yield was corrected to 14% moisture content. Harvest 

index was calculated as (dry) grain yield divided by total above-ground dry 

biomass. Yield components were determined from a separate sample of 0.4 × 

0.4 m. From the sample all spikelets were counted to obtain the number of 

spikelets m‒2; filled and un-filled spikelets were separated and counted to 

obtain the percentage fertile and sterile spikelets. Grains were weighed to 

determine the 1000-grain dry matter weight. 

2.6 Statistical analysis 

 A one-way analysis of variance (ANOVA) was carried out to assess yield, 

growing cycle duration, sterility, harvest index, 1000-grain weight and spikelets 

m–2 for each experiment. To analyse the effects of sowing date, site and 

genotype, an unbalanced ANOVA was performed, using only sowing dates that 

gave some yield. Inclusion of the zero values would violate the assumptions of 

homogeneous variance error across variety × sowing date combinations in the 

ANOVA. To further analyse the performance of the different varieties in 

different environments, an additive main effect and multiplicative interactions 

(AMMI) analysis was performed, as described by Gauch and Zobel (1997). 

AMMI combines the ANOVA (with additive parameters) and principal 

component analysis (PCA) (with multiplicative parameters) into a single 

analysis. A principal components model is fitted to the residuals from the 

ANOVA and the resulting scores, called the I (for interaction) PCA scores, along 

n axes, are calculated for both the genotypes and environments. When 
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constructing the analysis-of-variance table, AMMI assumes that the replicates 

arise from the use of a randomized block design within each environment. In 

the AMMI analysis, the model for phenotypic performance X of genotype j 

tested in environment i can be expressed as: 

  
n

ijjninnjiij geX
1

  

where μ = grand mean; ei= additive effect of environment i; gj= additive effect of 

genotype j; λn= eigenvalue of PCA axis n; αin= ith genotype PCA score for PCA 

axis n; γjn = jth environment PCA score for PCA axis n; θij= residual. The 

performance, Xij, can vary with the objective of the study, usually grain yield or 

growing cycle duration. We treated each experiment as an environment. This 

resulted in 23 environments: 14 in Fanaye and nine in Ndiaye. In 2006 as well 

as in 2007, sowing took place in February, March and April. These sowing dates 

were used to assess the effect of different sowing years. A factorial design with 

year, site, sowing date and genotype as factors was used. For all analyses, the 

software package GenStat 11th edition (VSN international) was used.  

3 Results 

3.1 Yield 

 Variation in yield between sowing dates was large (Figure 3.2A). The 

largest yield at Ndiaye (12.2 t ha‒1) was obtained with IR64 sown in March 

2007, while some sowing dates resulted in complete crop failure. At Fanaye, 

IR64 sown in February 2006 gave the largest yield of 11.2 t ha‒1. The analysis of 

variance, using only non-zero values, showed that the principal effects and 

interactions of sowing date, site and variety were highly significant (P<0.001), 

except for the variety × site interaction (Table 3.1). Yield was significantly 

different between cultivars with 11 of the 14 sowing dates in Fanaye and only 

with two of the 11 sowing dates when yield was obtained in Ndiaye (data not 

shown). Averaged over all experiments, including crop failures, IR64, WAS161 

and Sahel108 yielded 5.1 t ha‒1 of grain, ITA344 followed with 4.9 t ha‒1 and 

IR32307 with 4.7 t ha‒1. Due to the more frequent crop failures at Ndiaye, 

overall average grain yield at Fanaye was larger, 6.0 versus 4.0 t ha‒1. At both 

sites the overall pattern was similar, with peak harvests recorded in 

experiments sown in March and April. However, there were some striking 

differences between the two locations: sowing in September, October and 
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December resulted in crop failure in Ndiaye, while the only crop that failed in 

Fanaye was sown in September, and the December sowing resulted in high 

yields (7-10 t ha‒1). Between the sowing dates of March and April, yield was 

most sensitive to sowing date: averaged over both years and sites each day delay 

in sowing after March 15th resulted in a loss of 140 kg ha‒1. 

Table 3.1: Analysis of variance for all sowing dates with non-zero values for yield using an 

unbalanced design. 

Source d.f. Variance 
ratio 

P value 

Replications within sowing 
dates and sites 

56 2.3  

Variety (V) 4 4.42 0.002 

Site (S) 1 64.7 <.001 

Sowing month (M) 13 142.1 <.001 

V × S 4 1.25 0.196 

V × M 52 5.79 <.001 

S × M 10 69.6 <.001 

V × S × M 39 3.52 <.001 

Residual 192    

Total 371   

 

3.2 Length of growing cycle  

 Both in Fanaye and Ndiaye, the crop duration was longest with sowing in 

October and November, whereas June and July resulted in the shortest 

duration (Figure 3.2B). In Ndiaye, the duration varied from 113 days for four 

varieties sown in July to 193 days for ITA344 sown in November. In Fanaye, 

Sahel108 sown in May and June had the shortest cycle of 116 days, while 

ITA344 sown in October had the longest cycle of 182 days. Sowing in July and 

September resulted in the same duration at both sites for four varieties, whereas 

sowing in June and August resulted in small differences (3-8 days) between the 

varieties at both sites. In Ndiaye, variety IR32307 had its shortest duration of 

139 days averaged over all sowing dates; ITA344 had an average duration of 150 

days. In Fanaye, Sahel108 had the shortest duration (131 days), here IR32307 

took 134 days to mature, whereas ITA344 had the longest duration of 150 days, 

the same as in Ndiaye. Although overall IR32307 had the shortest duration, it 

responded differently in Ndiaye and Fanaye.  
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Figure 3.2A-F: A; Grain yield (t ha–1), B; cycle duration (days), C: Fraction sterile spikelets  

(-), D; Harvest index (-), E; 1000-grain weight (g), F; spikelets (104 m–2) from 15 subsequent 

sowing date experiments with five varieties (IR32307, IR64, ITA344, Sahel108 and Was161 B-

9-2) at Ndiaye (left) and Fanaye (right) in Senegal between February 2006 and April 2007. 

 

 

In the experiments sown from April to June in Fanaye, it had the second longest 

duration. Overall, the duration increase between sowing in August and 

November was 53 days for all varieties and at both sites. 
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3.3 Spikelet sterility 

 Spikelet sterility can be induced by both high (>35oC) and low (<20oC) 

temperatures. Both occurred in this experiment (Figure 3.1 and 3.2C). The 

effect of genotype on sterility was significant (P <0.05) in six out of 12 cases in 

Ndiaye, and in eight out of fourteen cases in Fanaye (data not shown). In 

Ndiaye, there were peaks in sterility when the crop was sown in April, 

September and October. There was a large difference in sterility between 

sowing in April 2006 and 2007. In 2006 all varieties had more than 57% sterile 

spikelets, whereas in 2007 only variety Sahel108 was affected with 76% sterility 

(P < 0.001; SED =6%). All spikelets of all varieties were sterile at the sowing 

dates September and October. Variety ITA344 had a higher percentage sterile 

spikelets than other varieties in two sowing dates, June 2006 (P = 0.095) and 

January 2007 (P <0.05; SED = 6%). The longer duration cycle of ITA344 is a 

likely cause. 

 Sterility had less impact in Fanaye and complete sterility was never 

observed. The peaks in percentage sterile spikelets were observed in the same 

months as in Ndiaye. ITA344 had the largest proportion of sterile spikelets, on 

average 35%, followed by IR64 (31%), while Sahel108 had the least sterile 

spikelets (19%; P <0.001; SED= 2.2%). Only in July '06, November '06, January 

'07 and April '07, no significant differences were found between genotypes. At 

all other sowing dates significant differences between genotypes were observed. 

3.4 Yield components 

 Differences in harvest index (HI) between varieties were significant (P < 

0.05) for four of 11 sowing dates in Ndiaye and six of 14 sowing dates in Fanaye 

(Figure 3.2D). In cases of crop failure, no harvest index could be calculated. In 

Fanaye the average HI was 0.42, and the maximum value was 0.59. In Ndiaye, 

the average HI was 0.45, and the maximum 0.68, obtained by ITA344 sown in 

June. The ranking between the varieties was similar at both sites. Overall, the 

largest HI (0.49) was recorded for Sahel108, and the smallest for IR64 (0.41; 

SED = 0.08). The ranking between genotypes in 1000-grain weight was 

constant over sowing dates (Figure 3.2E), although between sowing dates, the 

weight varied from 18.7 g to 32.1 g in Ndiaye and from 15.8 g to 28.1 g in 

Fanaye. In Fanaye, 1000-grain weight decreased up to sowing in October, after 

which it increased, although the January 2007 sowing of IR64 was an exception 

with a very small 1000-grain weight of 18.5 g. Varieties ITA344 and WAS161 

had on average the largest 1000-grain weight, 25.4 and 24.7 g, respectively, 
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while Sahel108 had the smallest 1000-grain weight of 21.6 g (SED = 1.6). The 

varieties differed significantly in 1000-grain weight in Ndiaye in six out of the 

12 sowing dates and in Fanaye in ten out of 14 sowing dates. 

 In Ndiaye the most spikelets were recorded in February 2007: 8.0 x 104 

m−2, the fewest were 1.3 x 104 m−2 (Figure 3.2F). In Fanaye, the maximum was 

markedly lower (5.6 x 104 m−2), while the minimum was similar (1.2 x 104 m−2). 

The maximum spikelet density coincided with the greatest yields in Ndiaye. On 

average, ITA344 had the most spikelets per unit area (4.1 x 104 m−2), followed 

by Sahel108 (4.0 x 104 m−2), IR32307 (3.8 x 104 m−2), while IR64 and WAS161 

both had 3.3 x 104 m−2 (P <0.001; SED = 1.6 x 103 m−2).  

3.5 Genotype × Environment interactions 

 The results of the AMMI analysis show that all effects were highly 

significant (P<0.01), except for the replicates within environments effect (Table 

3.2). The effect of the factor ‘environment’ was by far the most important, 

accounting for 84.8% of the variation (sum of squares), ‘genotype’ accounted for 

0.8%, and their interaction for 14.4%. Of the variation not explained by regular 

ANOVA, i.e. the G × E interaction, the principal component axis IPCA1 

explained 43%, IPCA2 33%, and IPCA3 14%.  

Table 3.2. Results from the ANOVA of the AMMI model. 

Source d.f. SS MS Variance ratio         
Replications within 
environments 

46 42.9 0.93 1.0 

Genotypes (G) 4 15.2 3.81 4.1** 
Environments (E) 22 1632.9 74.22 79.6*** 
G x E 88 276.5 3.14 3.4*** 

IPCA1 25 118.2 4.73 5.1*** 
IPCA2 23 92.0 4.00 4.3*** 
IPCA3 21 39.5 1.88 2.0** 

Residuals 19 26.8 1.41 1.5 
Error 184 170.8 0.93  
Total 344    
**: P < 0.01; ***: P < 0.001. 

SS: Sum of squares; MS: Mean sum. 

 



Chapter 3 

60 

 
Figure 3.3: Biplot of two principal component axes: IPCA1 vs. IPCA2. IPCA scores for grain 

yield are shown for five genotypes (closed circles), with genotype names adjacent to circles, 

and for 23 environments (open circles) with environment codes adjacent to circles: Nd = 

Ndiaye, Fa = Fanaye. First two digits after site indicate sowing month, second two digits 

indicate sowing year. 

 

Together they explained 90% of the G × E interaction, and it was not deemed 

necessary to increase the number of IPCAs. The greater the IPCA score of a 

genotype in a given environment, the better its performance in that 

environment. The more IPCA scores of a genotype approximate to zero, 

averaged across environments, the more constant a genotype performs across 

environments. High IPCA scores for environments indicate a strong G × E 

interaction. Genotypes can be compared on the basis of mean yield over 

environments using their IPCA1 score as a measure for stability. In the bi-plot 

of IPCA1 versus IPCA2 (Figure 3.3), the genotype closest to the origin is the 

most stable across environments, which is IR32307 followed by WAS161. 

Variety ITA344 was well adapted to environment of Fanaye in October 2006, 

but less to other environments, similarly Sahel108 had low general adaptation, 

but was suited to Fanaye in April 2006. Of the environments, Fanaye in June 
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2006 was situated almost in the origin, with a weak potential for G × E 

interactions, while the two adjacent sowing dates, May 2006 and July 2006 

were relatively far from the origin, indicating that the G × E potential 

interaction was highly dynamic with sowing date. No significant correlations 

between measured traits (crop cycle duration, HI, spikelet sterility and 1000-

grain weight) and IPCA scores were found. Averaged over all experiments, the 

AMMI model predicted for IR64 and WAS161 the largest average yields of 7.8 

and 7.7 t ha‒1, respectively. The cultivar ranking based on absolute IPCA1 scores 

was WAS161 (0.37), Sahel108 (0.47), IR32307 (0.55), IR64 (0.83) and ITA344 

(2.23).  

 

Table 3.3: IPCA1 scores for all site and sowing date combinations used in the AMMI analysis. 

Ranking of first three varieties for each environment is based on yield estimate by the AMMI 

model.  

Site and sowing date IPCA 1 
Score 

Variety ranking 
1st  2nd 3rd 

Fanaye Nov 06 0.67  IR64 WAS161 B-9-2 SAHEL108 
Fanaye March 07 0.64  IR64 WAS161 B-9-2 SAHEL108 
Faanaye April 07 0.64  SAHEL108 IR64 WAS161 B-9-2 
Fanaye August 06 0.52  SAHEL108 IR32307 WAS161 B-9-2 
Ndiaye July 06 0.49  SAHEL108 IR64 WAS161 B-9-2 
Fanaye December 06 0.39  IR64 WAS161 B-9-2 IR32307 
Ndiaye May 06 0.21  IR64 WAS161 B-9-2 SAHEL108 
Ndiaye March 06 0.21  SAHEL108 IR32307 WAS161 B-9-2 
Fanaye February 07 0.19  SAHEL108 WAS161 B-9-2 IR64 
Ndiaye April 07 0.18  IR64 WAS161 B-9-2 SAHEL108 
Fanaye February 06 0.16  IR64 WAS161 B-9-2 IR32307 
Ndiaye March 07 0.13  IR64 WAS161 B-9-2 IR32307 
Ndiaye February 07 0.11  SAHEL108 WAS161 B-9-2 IR64 
Ndiaye June 06 0.03  IR64 WAS161 B-9-2 SAHEL108 
Fanaye June 06 0.03  IR64 WAS161 B-9-2 SAHEL108 
Fanaye April 06 -0.14  SAHEL108 ITA344 IR32307 
Ndiaye November 06 -0.22  SAHEL108 ITA344 WAS161 B-9-2 
Fanaye March 06 -0.26  ITA344 IR64 WAS161 B-9-2 
Fanaye January 07 -0.30  ITA344 SAHEL108 WAS161 B-9-2 
Ndiaye Febraury 06 -0.64  ITA344 WAS161 B-9-2 IR64 
Fanaye July 06 -0.64  ITA344 WAS161 B-9-2 IR64 
Fanaye May 06 -0.81  ITA344 SAHEL108 WAS161 B-9-2 
Fanaye October 06 -1.57  ITA344 WAS161 B-9-2 IR64 
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 Given the comparable yield of IR64 and WAS161, the latter was the best 

variety in these environments based on its yield stability, i.e. it has a high 

general adaptability. When the rankings of the best three yielding varieties are 

compared for each environment (Table 3.3), WAS161 was the second best 

yielding variety in 14 out of 23 cases. However, it never gave the best yield. 

Variety ITA344 was the best yielding variety in environments with relatively 

high negative IPCA1 scores, of which 5 out of 6 were in Fanaye. Variety ITA344 

was the genotype with the longest cycle duration, which can explain its specific 

adaptability to certain environments. The experiment sown in October in 

Fanaye had the largest IPCA1 score (-1.57), while sowing dates in June at both 

Ndiaye and Fanaye had small IPCA 1 scores of 0.03. This indicates that varietal 

testing is more reliable in the latter two environments than in the first, and that 

it is difficult to recommend a specific cultivar for October sowing in Fanaye. 

 The effect of different years was assessed in an ANOVA using the first 

three sowing dates of 2006 and 2007 at both sites. The principal effects were 

significant except for the effect of site, all two-way interactions were significant 

(P<0.01), except for the genotype × site interaction (Table 3.4). In both years, 

yield decreased at later sowing dates, halving between February and April 

sowing. There was a significant year × site interaction (P <0.001). In 2006, 

yields in Ndiaye were higher compared to 2007, while in Fanaye the opposite 

trend was observed. Differences in solar radiation are a likely cause of the 

variation in yield.  

4 Discussion 

4.1 Rice Yield 

 We found that rice yield varied strongly with sowing date in this Sahelian 

environment, in accordance with earlier studies (Dingkuhn and Sow, 1997b; 

Poussin et al., 2003). There was strong variation in yield of the tested varieties 

which was sensitive to sowing date, especially around sowing time for the wet 

season crop (July-August), which is the main cropping season for rice in the 

Sahel. The experimental results show that peak yields are recorded when 

sowing takes place in March; July is another good sowing month. This coincides 

with the dry (March) and wet (July) season sowing as recommended practice in 

the Senegal River valley. However, farmers often sow later in the wet season, 

and risks of yield loss or failure are high, e.g. sowing in September. Advancing 
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the dry season sowing to February is necessary for successful double-cropping. 

In an earlier study at the same sites, Dingkuhn and Sow (1997b) found that the 

potential yield of IR64 at Ndiaye amounted to 10.8 t ha‒1, and was obtained 

when the crop was sown in February. In our study, IR64 yielded 12.2 t ha‒1 

when sown on the 15th of March 2007 in Ndiaye. Although a relatively old 

cultivar was used, it yielded more than those found in recent studies on peak 

yields with New Plant Type or “super” hybrid cultivars in Asia (Katsura et al., 

2008; Zhang et al., 2009). The lowland NERICA variety WAS161 had a peak 

yield of 10.9 t ha‒1 sown in March 2006 in Fanaye. High levels of solar radiation 

are a likely cause of this phenomenon. 

 Crop cycle duration shows a similar variability with sowing date, in 

accordance with previous research (Sie et al., 1998). The weather conditions 

were representative for the climate at both sites, and results could be 

interpreted as valid for the climatic conditions in the Senegalese and 

Mauritanian Sahelian zone (Dingkuhn, 1995). Over the course of the year 

different factors, such as heat and cold stress affect rice yield in different ways. 

Low temperatures decrease development rate, increasing growing cycle 

duration, which can have a positive effect on yield because of increased biomass 

production and a longer grain filling period (demonstrated by November 

sowing in Fanaye). Temperatures below 20oC around booting stage cause 

spikelet sterility, e.g. September sowing in Fanaye. High solar radiation 

interception pushed yields at both sites to above 10 t ha‒1
 when the crop was 

sown in February and March, but sowing in April resulted in an average 

decrease of 4.7 t ha‒1. This can partly be explained by the spikelet sterility (30-

75%) and partly by the growing cycle duration, which was reduced by 7.4 and 

3.7 days in Ndiaye and Fanaye, respectively. In most experiments there were 

significant differences between varieties, which can be due to differences in the 

day of anthesis or panicle initiation or differences in timing of flowering. Prasad 

et al. (2006) showed that O. glaberrima cultivar CG14 had an anthesis peak 

early in the morning and hence escaped heat stress. Detailed measurements of 

the genotypes used in this study could reveal whether this effect determines 

sensitivity to heat stress in a similar way. Cold induced sterility can be explained 

by the minimum air temperature between PI and flowering (Figure 3.5). It 

decreases from 100% at 12°C to maximum 45% at 15°C. Shimono et al. (2005) 

found a similar relationship using water temperature, with a ceiling of 100% 

sterility at 15°C. Hence in our case, floodwater probably buffered 3°C.  
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In a recent paper we have shown that it is possible to reduce the layer of 

standing water in a rice field to save irrigation water (De Vries et al., 2010). In 

combination with this study we can conclude that an increase in temperature of 

3°C will match the buffering capacity of floodwater, making it possible to save 

irrigation water while the risk for cold induced sterility remains at the present 

level. 

4.2 Yield components 

 The differences in yields between varieties can be explained by 

differences in yield components. Low harvest indices coincided with small 

1000-grain weight in April and October, resulting in poor yields. High harvest 

indices (>0.55) were measured at Ndiaye in June in varieties ITA344 and 

WAS161 that recorded the largest 1000-grain weights, the fraction sterile 

spikelets was largest for ITA344, and as a result WAS161 gave the highest yield. 

Poor yields can either be the cause of sink or source limitation. To further 

investigate whether the crop was limited by source or sink size, potential straw 

mass was compared with actual measured straw, as an indicator of source size. 

Potential straw mass was determined as potential grain yield/ HIoptimum – 

potential grain yield. Potential grain yield is an indicator of sink size, and 

determined by grain weight × number of spikelets per unit area × sterility 

percentage. HIoptimum was set at 0.5, as described by Mann (1999). In Figure 3.4, 

the results of the differences between potential straw and measured straw are 

shown; when the difference is positive it indicates source limitation, and 

negative differences suggest sink limitation. Between July and October, yield 

was limited by strength of the sink at both Ndiaye and Fanaye, with the 

exception of August in Ndiaye. In 2007 in Ndiaye, yield was limited by the size 

of the source. The average absolute difference can be used as an indicator of 

genotype stability, a balance between source and sink strength indicating a 

more stable genotype. In this experiments it was smallest for WAS161 (4.1) 

followed by Sahel108 (4.3), IR64 (4.4), ITA344 (4.7) and IR32307 (5.0), 

confirming the results of the AMMI analysis. 
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Figure 3.4: Difference between potential straw (calculated as potential grain yield / optimum 

HI – potential grain yield. Potential grain yield was determined as grain weight × number of 

spikelets per unit area × percentage sterile spikelets) and actual measured straw for five 

varieties sown at 15 consecutive dates at Fanaye (top) and Ndiaye, Senegal. 
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4.3 Genotype × Environment interactions 

 The effect of environment was larger than the effect of the G × E 

interaction or genotype, accounting for 85%, 14% and 1% of the variation, 

respectively (Table 3.2). In a study comprising different tropical and subtropical 

sites in Asia, Jing et al. (2010) found that, although the factors had the same 

order, the variation due to environment was less (72%), the G × E accounted for 

less variation (9%), but the genotype component was more important (8%), 

compared with our study. Four of the five cultivars were of the same maturity 

type, i.e. short duration, decreasing the variability among the cultivars. The 

NERICA cultivar WAS161 resulted from four backcrosses with IR64, in theory 

they are genetically similar for 94%, reducing the overall genetic variability of 

this study. Variety IR32307 was the genotype with the shortest duration, 

whereas ITA344 was the one with the longest duration. Hence, IR32307 is in 

some cases a resource-efficient option: reduced duration hence reduced time of 

cultivation, without yield loss, e.g. sowing at both sites in November, February 

and March. Variety WAS161, genetically close to IR64, was more stable in its 

performance than its parent, expressed in IPCA1 scores of 0.37 and 0.83 for 

WAS161 and IR64, respectively. It shows the advantage of this lowland NERICA 

cultivar over its recurrent parent.  

 The most popular short duration variety Sahel108 had a low IPCA1 score 

(0.47). Yield stability is an important trait, appreciated by farmers, notably in 

environments where annual variation is large and when management is sub-

optimal so that the full genetic potential is not realised. Neither PCA1 nor PCA2 

was significantly correlated to measured crop traits. An explanation could be 

that different traits were most determining for yield at different sowing dates. 

 Variety IR32307 had different growing cycle durations when sown in 

Ndiaye and Fanaye in February and March. Both sites are almost at the same 

latitude; hence day-length could not have been a factor. In this period, 

maximum temperatures were higher in Fanaye, above the maximum for 

development of 36oC (Yin, 1996a), which may have lead to the observed 

increase in crop cycle duration. 
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Figure 3.5: Relation between the minimum temperature between panicle initiation and 

flowering stage (oC) and fraction of sterile spikelets for five varieties, grown during months in 

which no heat stress occurred.  

 

4.4 Projected temperature change effects 

 The projected increase in temperatures by 1.5-3oC will have a serious 

impact on the present rice cropping system in the Senegal River Valley. The 

sensitive period for cold sterility is between panicle initiation and onset of 

flowering. The minimum temperatures below 190C in the sensitive stage, using 

sowing dates during which no heat stress occurred, are plotted in Figure 3.5. It 

is possible that minimum temperatures increase from 12 to 15oC, reducing cold 

sterility from 100% to less than 45%, irrespective of genotype. Hence, the risks 

for complete crop failure will be eliminated. Moreover, the increase in 

temperature will increase potential yield and postpone the ultimate planting 

date in the wet-season of 15th of August to later in the year. The farmers will 

have more time to prepare for the season, which they now often lack (Diagne, 

2006b). On the other hand with the same rise in temperature, heat induced 

sterility will become more frequent, forcing farmers to plant their dry-season 

crop either in January or February, with a yield penalty on delay of sowing. 
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Varietal improvement could improve heat tolerance, but for there is less genetic 

variation for cold tolerance (Dingkuhn, 1995). The risk of cold sterility has a 

critical period of several weeks (Figure 3.5), whereas the risk of heat sterility is a 

matter of hours, when the flowers open at anthesis. In this study, these 

precision data were not recorded. Another consequence of the rise in 

temperature is an increase in development rate at sub-optimal temperatures, 

and similarly a decrease in development in the supra-optimal temperature 

range. As a consequence, planting around December could result in shorter a 

crop cycle duration, but planting in May in a longer duration. In the Senegal 

River Valley, timing of management operations and timely availability of inputs 

are important reasons for large yield-gaps (Haefele et al., 2002a; Poussin et al., 

2006), which stresses the necessity for other stakeholders in the rice production 

chain to adjust to the cropping calendar. Changes in planting date and growing 

cycle duration will affect timing of management operations and peak demand of 

inputs by famers. Similarly, harvests could be delayed and supply of rough rice 

by farmers to traders affected. 

5 Conclusion 

 From this study, we conclude that rice yield is very sensitive to sowing 

date in the Sahelian environment of the Senegal river. The newly-introduced 

cultivars have a better general adaptability than existing ones, thereby 

decreasing the risk for yield loss for farmers. Spikelet sterility reduced sink size, 

constraining yield when the crop was sown between August and October. A rise 

in minimum temperature will decrease the risk of spikelet sterility thus 

widening the planting window, which could lead to an improvement of timing 

of crop management to close yield-gaps. Moreover, the complete rice 

production chain could be affected, and would have to adjust to new periods of 

supply of rice and demand of inputs by farmers. For a sound analysis of the 

consequences of an increase in temperature it is necessary to use dynamic 

models that simulate the feedback between different temperature related 

processes.  
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Abstract 
 Irrigated rice in the Sahel has a high yield potential, due to favourable 

climatic conditions. Crop growth simulation models are tools that can be used 

to calculate potential yield and perform yield gap analyses under known 

climatic conditions. Experimental data were used to calibrate both the DSSAT 

and ORYZA2000 models, whereas the model ORYZA_S was already calibrated 

previously. According to ORYZA2000, the same cultivars needed 4000Cd more 

in Fanaye than in Ndiaye to complete their growing cycle. Calibrated 

ORYZA2000 simulated phenology well, but yield was underestimated. After 

calibrating DSSAT, different sets of genetic coefficients gave similar results. 

Genetic coefficients that reflected the observed phenology well resulted in lower 

than observed yields. Simulations using the calibrated genotypic parameters by 

ORYZA_S and ORYZA2000 resulted in a trend of simulation error with sowing 

date. The sensitivity analysis of the effect genotypic parameters on phenology 

simulation showed that ORYZA2000 was equally sensitive for all parameters, 

whereas, ORYZA_S was particularly sensitive to a decrease in base temperature 

and an increase in optimum temperature. The performance of both 

ORYZA2000 and ORYZA_S was better than DSSAT4, and effects of parameters 

changes could be better quantified. Crop growth simulation is a powerful tool to 

predict yields, but local calibration at the same sowing date is needed to obtain 

useful results. 
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 1 Introduction 
 Irrigated rice production supplies a large portion of the national diets of 

Sahelian countries and demand for rice has been grown at 5.6% per annum 

(AfricaRice, 2006a). Yield potential of irrigated rice has been estimated at 6-12 t 

ha−1, depending on cultivar, sowing date and site (Dingkuhn and Sow, 1997b). 

High incident radiation and temperatures create a favourable environment for 

irrigated rice cultivation. Double cropping of rice is possible in most Sahelian 

irrigation schemes, although in practice less than 10% of the area is under rice 

twice a year (Vandersypen et al., 2006b). To be able to plant twice a year and 

yet to avoid critical periods of heat and cold stress, farmers need to be aware of 

optimum sowing dates (Dingkuhn et al., 1995b; Poussin et al., 2003; Segda et 

al., 2005). Spikelet sterility due to cold (<20oC) or heat (>36oC) stress can cause 

large yield losses in the Sahel and new irrigated rice genotypes are selected to 

yield well a range of temperature regimes (De Vries et al., 2011). Notably 

NERICA genotypes (Oryza sativa × O. glaberrima) are a promising new source 

of germplasm for lowland conditions (Heuer et al., 2003; Saito et al., 2010a).  

Decision support tools are needed to determine optimum planting dates for the 

Sahelian zone and to quantify the influence of climate on newly developed 

varieties. In climate change studies, crop growth simulation models are 

commonly used (Matthews et al., 1997; Xiong et al., 2009). Such tools have 

been developed for rice: e.g. RIDEV (Dingkuhn et al., 1995a) and ORYZA1 

(Kropff et al., 1994). The model RIDEV has been used to simulate spikelet 

sterility and optimum sowing date for rice in West Africa (Dingkuhn, 1995; 

Segda et al., 2005) and Nepal (Shrestha et al., 2011). A combination of these 

two models, ORYZA_S, was developed to simulate potential yields in West-

Africa (Becker et al., 2003; Dingkuhn and Sow, 1997a). Simulation of phenology 

is a key process in all crop growth models, which is based on thermal time 

accumulation until a following phase in the development of the crop has been 

attained (Penning de Vries et al., 1989; Vergara and Chang, 1985). Until 

flowering, rice phenology can be divided in three phases: a basic vegetative 

phase, a photoperiod sensitive phase, and a post-photoperiod sensitive phase 

(Yin et al., 1997). Determination of parameter values that accurately describe 

the length of these phases, independent of environment, is difficult because 

transition from one phase to the next cannot be measured directly, and has to 

be derived from detailed experiments (Dingkuhn and Miezan, 1995; Yin, 1997).   
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 More complex models have been developed that integrate water and 

nutrient limitation, including DSSAT4 (Jones et al., 2003) and ORYZA2000 

(Bouman et al., 2001). These models need to be locally calibrated in order to 

become useful for further research. ORYZA2000 has been evaluated for N-

limitation (Bouman and Laar, 2006) and water limitation (Feng et al., 2007) 

and for photoperiod sensitive varieties (Boling et al., 2011). It has been used 

under a variety of conditions in India (Arora, 2006), Indonesia (Boling et al., 

2010) and various sites across Asia (Jing et al., 2008). In two reviews Timsina 

and Humphreys (2003; 2006a) show that CERES-rice, a component of DSSAT4 

was calibrated and evaluated using experimental data from more than one site 

or from more than one season only by Pathak et al. (2004). It has been used to 

simulate the rice-wheat system in India (Sarkar and Kar, 2006; Saseendran et 

al., 1998) and for regional yield forecasts in China (Xiong et al., 2008). Both 

models have extensively been used in Asia, Australia and the America’s, but up 

to now, not in Africa. In this paper, we evaluate ORYZA2000 and DSSAT4 

under Sahelian environments and compare them with ORYZA_S, which has 

specifically been developed for the Sahel. In all models, phenological 

development, including partitioning and initiation of spikelets, is key to 

simulate plant growth and yield. Correct simulation of phenology is prerequisite 

to reliably simulate potential yield predictions. 

 This study evaluated the performance of three commonly used rice 

growth simulation models, focusing on the phenology of new irrigated rice 

varieties in Sahelian environments. 

2 Materials and methods 

2.1 Field experiment 

 A field experiment with five varieties was conducted to obtain data 

needed to calibrate the simulation models. The treatments were: five rice 

varieties planted at two sites, at fifteen sowing dates with three replicates: a 

spilt-plot design was with site as block, sowing date as plot and variety as sub-

plot. The varieties used were: 1) IR64, 2) WAS161-B-9-2, an irrigated NERICA 

(a cross between IR64 and TOG5681, an Oryza glaberrima variety) 3) ITA344, 

4) IR32307-107-3-2-2 and 5) Sahel108 (IR13240-108-2-2-3). Full details and 

results of the experiments are presented in Chapter 3. 

 Phenology of all plots was observed, flowering was determined as the day 

that 50% of the plants attained anthesis, and maturity as the day that 80% of 
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the plants were mature. Meteorological data were recorded on-site, using Onset 

Hobo© weather stations. Data for temperature, solar radiation, wind speed and 

air humidity were recorded at hourly intervals from which daily values were 

derived, a graphic representation of the weather data can be found in Chapter 3. 

The number of days to reach flowering was subjected to a factorial ANOVA for 

analysis of differences between sowing dates, sites and genotypes. 

2.2 Models 

 The generic and dynamic simulation model CERES-Rice, which is part of 

the DSSAT system, was used (Jones et al., 2003). Although CERES-rice has 

only been partially described in different publications, it is widely used 

(Timsina and Humphreys, 2006b). The model operates on a daily time-step and 

calculates biomass production, which is then partitioned to the leaves, stems, 

roots and grain, depending on the phenological stage of the plant. The model 

uses genetic coefficients for different cultivars as model inputs to describe crop 

phenology in response to temperature and photoperiod (Boote and Hunt, 

1998). An overview of the genetic coefficients used in the DSSAT4 model for 

rice is given in Table 4.1. The genetic coefficients can be divided into two 

categories. Firstly photothermal ones: P1 and P5, governing thermal time 

needed to complete a growth stage; and P20 and P2R, defining photoperiodism, 

and secondly morphological ones, G1, G2 and G3 defining number of spikelets, 

grain weight and tillering, and G4 which is a temperature coefficient. DSSAT4 

has been calibrated for the cultivar IR64. Hence we used data from the 

experiments to calibrate and validate the performance of DSSAT4. 

 ORYZA2000 also dynamically simulates potential, water-limited and 

nitrogen-limited yield. Earlier versions comprise ORYZA1 (Kropff et al., 1994), 

ORYZA_W (Wopereis et al., 1994) and ORYZA_N (Ten Berge et al., 1997). The 

program is written in the FST/FSE language (Van Kraalingen et al., 2003) and 

the source code is publicly available 

http://www.knowledgebank.irri.org/oryza2000/. ORYZA2000 was calibrated 

as described in Bouman et al. (2001). The model uses observed phenological 

and climatic data to generate crop stage specific growth rates. 
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Table 4.1:  Code and description of genetic coefficients for rice used in DSSAT 4. 

Code Description 

P1 Time period (expressed as growing degree days [GDD] in oC above a base 

temperature of 9oC) from seedling emergence onwards during which the rice 

plant is not responsive to changes in photoperiod. This period is also referred 

to as the basic vegetative phase of the plant. 

P20 Critical photoperiod or the longest day length (in hours) at which the 

development occurs at a maximum rate. At values higher than P20 

developmental rate is decreasing, hence there is a delay due to longer day 

lengths. 

P2R Extent to which development from the basic vegetative phase to panicle 

initiation is delayed (expressed as GDD in oC) for each hour increase in 

photoperiod above P20. 

P5 Time period in GDD oC from beginning of grain filling (3 to 4 days after 

flowering) to physiological maturity with a base temperature of 9oC. 

G1 Potential spikelet number as estimated from the number of spikelets per g of 

main culm dry weight (less lead blades and sheaths plus spikes) at anthesis. 

A typical value is 55 per g. 

G2 Single grain weight (g) under potential growing conditions, i.e. non-limiting 

light, water, nutrients, and absence of pests and diseases.  

G3 Tillering coefficient relative to IR64 cultivar under ideal conditions. A higher 

tillering cultivar would have coefficient greater than 1.0. 

G4 Temperature tolerance coefficient. Usually 1.0 for varieties grown in normal 

environments. G4 for japonica type rice growing in a warmer environment 

would be 1.0 or greater. Likewise, the G4 value for indica type rice in very cool 

environments or season would be less than 1.0. 

 

 Model inputs are daily meteorological data (solar radiation, minimum 

and maximum temperature, early morning vapour pressure, wind speed and 

rainfall), genotypic parameters, some of which can be calculated using the 

calibration program DRATES, and crop management data. Development rate is 

determined by genotypic parameters for each growth stage. ORYZA2000 was 

calibrated for all varieties involved in the experiments. Data from the first 
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sowing date were used for calibration and data of the second sowing date for 

validation.  

 ORYZA_S belongs to the same model family as ORYZA2000. The major 

difference is its adaptation to Sahelian conditions by Dingkuhn and Sow 

(1997a).  It is based on the models RIDEV (Dingkuhn et al., 1995a) and ORYZA1 

(Kropff et al., 1994). ORYZA_S differs from ORYZA1 in that it takes leaf canopy 

architecture into account, effects of temperature on partitioning and spikelet 

sterility as function of phenology. ORYZA_S simulates energy and temperature 

limited growth. Phenology calculations are different from ORYZA1, the 

functions, including genotypic parameters, of RIDEV are used. Model inputs 

are daily solar radiation, minimum and maximum temperature, latitude and 

some genotypic constants. The model has been calibrated for two genotypes 

(IR64 and Sahel108) used in this study by Dingkuhn and Miezan (1995). 

3 Results 

3.1 Experimental results 

  The five varieties differed in phenology; on average was Sahel108 the 

earliest genotype (104 days until flowering), while ITA344 was the latest (122 

days until flowering) (Figure 4.1). The time to flowering of ITA344 was longer 

than of the other four varieties (P<0.001). Sowing date had a large effect 

(P<0.001) on the time to reach flowering, it ranged from 89 to 159 days in 

Ndiaye and from 81 to 150 in Fanaye. Shortest cycles were observed when 

sowing took place in July, and longest when sowing took place in November, 

with 90 and 140 days respectively. In Ndiaye, the shortest cycle was observed in 

Sahel108 and IR32307 (both 109 days), while in Fanaye, Sahel108 and IR32307 

reached flowering after 98 and 102 days, respectively. 

3.2 Simulations 

 The DSSAT model was parameterized with genetic coefficients of the rice 

variety IR64. The original coefficients as supplied with the software package 

were 5000Cd for P1, 4500Cd for P5 and 1.0 for G4 (Tables 4.1 and 4.2). The 

original coefficients resulted in a short vegetative growing stage, 69 days 

simulated versus 100 observed, and a good yield estimation of 9.6 t ha−1 versus 

9.4 t ha−1 observed, for Ndiaye (Table 4.2). 
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Figure 4.1: Number of days from emergence to flowering for five varieties: IR32307, IR64, 

ITA344, Sahel108 and WAS161 B-9-2, sown at fifteen consecutive dates in 2006 at Ndiaye 

(top) and Fanaye (bottom), Senegal. 
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The same trend was found in Fanaye, where the vegetative growth stage was 

simulated at 64 days, against 95 days observed, and 7.5 t ha−1 simulated against 

11.1 t ha−1 observed. Hence, the original crop coefficients were not successful in 

simulating the phenology. Due to the dependence of all other processes on 

development stage, the coefficients needed to be calibrated in order to simulate 

better the observed data. The coefficients that were chosen to be modified were 

P1 and P5 that govern the length of the vegetative and generative growth stage, 

respectively, and G4, which regulates temperature responses (Table 4.1). 

Decreasing P1 reduced the duration from sowing to flowering, and similarly, 

decreasing P5 from 700 to 450oCd reduced the duration from flowering until 

maturity (Table 4.2). The two sets of genetic coefficients, which performed well 

(P1=872, P5=600 and G4 =1 at Ndiaye and P1 = 1000, P5 =450 and G4 =1 at 

Fanaye), were used to evaluate the simulation of biomass partitioning with 

DSSAT4 at both sites (Figure 4.2). The simulations were compared with 

measured stem weight. Simulation of stem weight showed a linear increase of 

stem weight up to 12 t ha−1 and 10 t ha−1 at Ndiaye and Fanaye, respectively. 

Measurements at Fanaye are well in line with the simulated values, however at 

Ndiaye, the simulations overestimate stem weight, and consequently grain 

yield. The simulations show that at the onset of grain filling, stem weight 

decreases sharply, while grain weight increases to several tonnes ha‒1 in one 

day. 
 

 ORYZA2000, after being calibrated at each location using the DRATES 

program, simulated phenology well. However, simulated yields for cultivar IR64 

were 5.0 and 2.0 t ha–1, in Ndiaye and Fanaye, respectively, which was low 

compared to 9.4 and 11.1 t ha–1 observed yields (Table 4.3). To further test the 

performance of ORYZA2000, the model was calibrated for each variety at both 

locations, using data obtained at the first sowing date. The calibrated model was 

used to simulate the second sowing date, one month later. The calibrated 

ORYZA2000 model simulated flowering in Ndiaye at 108 DAE, averaged over 

the five varieties, an underestimation of only five days (Table 4.3). Maturity was 

simulated at 130 DAE, underestimating post-flowering stage by five days, to 

arrive at a total underestimation of 10 days. In Fanaye, the pre-flowering period 

was on average overestimated by 10 days, whereas at maturity the difference 

was only two days.  
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Figure 4.2: Simulation of stem and grain weight by DSSAT 4 over time, using two calibrated 

sets of genetic coefficients; Best set Fanaye: P1=1000 and P5=450, and best set Ndiaye: 

P1=872 and P5=600. Both sets were simulated using weather data of the 2006 dry season in 

Ndiaye (top) and Fanaye (bottom), Senegal.  
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Fifteen consecutive sowing dates were simulated, and compared with observed 

flowering and maturity dates (Figure 4.3). The RMSE of flowering and maturity 

date simulated by ORYZA2000 was 16.6 and 18.9 days, respectively. 
 

Table 4.2: Results of phenology (simulation of days after emergence [DAE] to flowering [flow.] 

and days to maturity), and grain yield (t DM ha−1), using different sets of genetic coefficients 

(P1, P5 and G4) for DSSAT4 (upper part of table). Results of ORYZA2000 after calibration, 

compared to observations for variety IR64 in the dry season of 2006 in Ndiaye and Fanaye, 

Senegal (lower two lines of table). Observations are from Chapter 3. 

Parameter set  Ndiaye Fanaye 

P1 

 (oCd) 

P5  

(oCd) 

G4 

(-) 
 

Flow. 

(DAE) 

Maturity 

(DAE) 

Yield  

(tha−1) 
 

Flow. 

(DAE) 

Maturity 

(DAE) 

Yield  

(t ha−1) 

200 450 1.0    46   81  5.7  44  74  2.7 

500 450 0.8    68 103  8.7  57  85  6.3 

500† 450 1.0    69 105  9.6  64  94  7.5 

500 450 1.3    81 118  9.1  79 113  0.0 

800 450 1.0    94 125 11.7  84 112  8.3 

800 450 1.3  107 141  7.6 103 136  0.0 

872 450 1.0  100 130 12.0  88 116  9.0 

872‡ 600 1.0  100 137 12.4  88 123 10.2 

872 700 1.0    94 137 12.2  84 123  8.6 

872 450 1.3  113 147  5.3 108 142  0.0 

950 450 1.0  106 136 12.4  94 121  8.5 

1000§ 450 1.0  109 139 12.5  96 124  7.8 

          

Oryza2000   113 134  5.0  93 124  2.0 

Observed    100 136  9.4  95 126 11.1 

† = Original genetic coefficient set of DSSAT for IR64 

‡ = Best performing set in Ndiaye 

§ = Best performing set in Fanaye 

 

 

 For the model that was developed for Sahelian conditions, ORYZA_S, 

genotypic constants of two varieties, IR64 and Sahel108 (IR13240) were earlier 

determined by Dingkuhn and Miezan (1995). Table 4.4 shows the genotypic 

constants of the varieties: IR64 has a higher optimum temperature, it has a 

higher thermal time requirement to reach flowering; Sahel108 is less sensitive 

to photoperiod and has a longer basic vegetative stage. Fifteen consecutive 

sowing dates were simulated, and compared to observed flowering and maturity 
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dates (Figure 4.3).  The RMSE of flowering and maturity date simulated by 

ORYZA_S was 15.1 and 12.8 days, respectively. Similar to the results from 

ORYZA2000, the largest deviations were observed when sowing took place 

between day 250 and 350.  Largest deviations were found in Fanaye. However, 

magnitude of the deviations was smaller for ORZA_S than for ORYZA2000 

(Figure 4.3). 

3.3 Parameter sensitivity  

 The sensitivity of the DSSAT4 to changes of genetic coefficients was 

tested by changing the coefficients one by one (Table 4.2). By changing P1 from 

500 to 200 0Cd, the vegetative growth stage became even shorter, decreasing 

from 69 to 46 days. When coefficient G4 was changed, from 1.0 to 0.75, the 

phenology simulation of the growing cycle for Ndiaye decreased by two days, 

but in Fanaye it decreased by nine days, and yield decreased in both sites. When 

G4 was increased to 1.25, the cycle increased, from 105 to 118 days, but yield 

decreased by 481 kg ha−1 in Ndiaye, while in Fanaye, the cycle increased by 19 

days, but in all three cases, no yield was produced. The crop failure is probably 

due to high temperatures, for which sensitivity is defined by G4. To improve 

simulation results for Ndiaye, we increased factor P1 to 8720Cd to match the 

observed phenology. To simulate the generative phase, P5 was increased to 

6000Cd. It gave good simulation results of phenology, but yield was 

overestimated by 2.9 tons ha−1. The same set of coefficients at the Fanaye site 

underestimated the vegetative growth stage by seven days, and overestimated 

the generative phase by three days. Contrary to results from Ndiaye, yield in 

Fanaye was underestimated by 3.3 t ha‒1. The set of coefficients that accurately 

simulated phenology in Fanaye was 1000 for P1, 450 for P5 and 1 for G4, the 

same set overestimated both the complete cycle and yield in Ndiaye.  

 The genotypic parameters DVRI, DVRJ, DVRP and DVRR were calibrated 

using the DRATES program for variety Sahel108 in Fanaye, using the first 

sowing date. Then, the parameters were increased and decreased by 10%, and 

the difference in time to flowering and to maturity, between the original and the 

modified parameter set was calculated. The effect of an increase in the 

parameters was always -2 days and a decrease resulted in +3 days for the 

number of days to flowering and maturity, except for DVRR, which had only an 

effect after flowering (Table 4.5). The standard deviations were small, and the 

effects were constant with sowing date.  
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A change of 10% in a genotypic parameter results in a change of 2-3% in time to 

flowering or maturity, the relative sensitivities of the parameters are within a 

small range: 0.21 – 0.38, which indicates that all parameters have similar 

weights. 
 

Table 4.3: Validation of ORYZA2000: observed and simulated phenology (panicle initiation 

[PI], flowering and maturity [DAE]) and yield (t ha–1) of five rice varieties in Ndiaye and 

Fanaye (Senegal), sown at 14 and 16 March 2006, respectively. For the simulation 

ORYZA2000 was calibrated for each location, using a data-set of an experiment that was sown 

30 days before the simulated data-set. Observed yield and maturity from Chapter 3. 

 Observed  Simulated 

Variety Phenology (DAE) Grain 

yield  

(t ha‒1) 

 Phenology (DAE) Grain 

yield  

(t ha–1) 
PI Flowering Maturity PI Flowering Maturity 

Ndiaye site          

WAS161 57 111 141 5.6  57 108 127 7.4 

IR64 57 111 141 5.5  57 105 124 7.3 

ITA 344 59 129 151 4.9  59 123 149 9.7 

IR32307 55 106 137 4.4  55 101 127 9.2 

Sahel108 55 107 136 8.0  55 102 125 8.4 

Fanaye site         

WAS161 64 92 122 11.1  68 93 121 2.6 

IR64 59 88 122 10.9  69 99 123 2.4 

ITA 344 75 105 137 10.9  86 120 137 6.3 

IR32307 57 84 120 9.4  61 94 117 2.6 

Sahel108 61 85 120 10.2  64 96 119 2.5 

 

 
Table 4.4: Topt, optimum temperature for development (oC); Tbase, base temperature for 

development (oC); Tsum, thermal time required for flowering at 11 h daylength (oCd); Cpp, 

photoperiodic constant indicating the increase for Tsum in % per h increase in daylength 

above 11 hours; Bvp, estimated mean basic vegetative stage (d) across photo-thermal 

environments; Toptm, optimal temperature during maturity phase. 

Genotype Topt Tbase Tsum Cpp Bvp Toptm 

 oC oC oCd 

% of Tsum 

(h >11 h)‒1 d oC 

Sahel108 26.0 9.66 1148.8 4.24 40 30 

IR64 27.5 9.55 1218.0 6.71 20 30 
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 The combination of increasing or decreasing all parameters at the same 

time resulted in a change in time to flowering or maturity which was the sum of 

the individual effects. Hence, there were no interactions between parameters. 

The sensitivity of the genotypic parameters Toptd, Tbased, Tsum, Cpp, Bvp and 

Toptm was tested for ORYZA_S (Table 4.6). Similar to the approach with the 

ORYZA2000 parameters; they were all increased and decreased by 10%. Both a 

10% decrease in Toptd and a 10% increase in Tbased resulted in a decrease in 

the number of days to flowering and maturity by 11 and 13, respectively. Both 

positive and negative changes in parameters CPP and Toptm resulted in the 

same decrease in time to flowering. 

  
Table 4.5: Sensitivity analysis for five genotypic parameters of ORYZA2000: DVRI; 

Development rate at initial growing stage, DVRJ; development rate at juvenile growing stage, 

DVRP; Development rate at photoperiod sensitive growing stage, DVRR; development rate at 

reproductive growing stage. All parameters have been changed 10% and the difference with 

the base runs of Sahel108 sown in Fanaye on fifteen sowing dates has been calculated. The 

average difference in time to flowering and to maturity between the base runs and runs with 

modified parameters is shown. Between brackets the standard deviation. Sensitivity of the 

parameters has been determined as the difference in input parameter over the difference in 

response variable. 

Parameter ∆ ∆ത time to flowering 
(d) 

Relative 
sensitivity* 

∆ത time to maturity 
(d) 

Relative 
sensitivity*

DVRI 
+10% -2 (0.5) 0.23 -2 (0.4) 0.18 
-10% 3 (0.6) 0.34 3 (0.7) 0.25 

DVRJ 
+10% -2 (0.7) 0.27 -2 (0.6) 0.21 
-10% 3 (0.5) 0.38 3 (0.7) 0.30 

DVRP 
+10% -2 (0.6) 0.21 -2 (0.5) 0.30 
-10% 3 (0.5) 0.30 3 (0.5) 0.23 

DVRR 
+10% 0 (‒) ‒ -2 (0.5) 0.22 
-10% 0 (‒) ‒ 3 (0.5) 0.28 

All 
combined 

+10% -6 (1.1) 0.78 -8 (1.4) 0.80 
-10% 8 (0.8) 0.98 11 (1.4) 1.00 

* Relative sensitivity is calculated as (∆ parameter / default parameter value) / (∆ response variable 

/default response variable value). 

 

 

 Combinations of changes of all parameters resulted in changes in time to 

flowering and maturity that were different from the sum of the individual 

changes. Hence, interactions between parameters were observed. Standard 

deviations were larger than for the ORYZA2000 parameters, and large 
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differences were found between the October-December sowing dates and the 

February-March sowing dates. The relative sensitivity of the different 

parameters indicated that a decrease of Tbased and an increase in Toptd had 

the largest effects in time to flowering and maturity. The model was not 

sensitive for an increase in Tsum however, very sensitive to a decrease (Table 

4.6). 

 
Table 4.6: Sensitivity analysis for five genotypic parameters of ORYZA_S: Tbased; base 

temperature for development, Toptd; optimum temperature for development, Toptm; 

optimum temperature, Cpp; photoperiodic constant indicating the increase for Tsum in % per 

h increase in daylength above 11 hours, Tsum; temperature sum to complete growing cycle. All 

parameters have been changed 10% and the difference with the base runs of Sahel108 sown in 

Fanaye on fifteen sowing dates has been calculated. The average difference in time to 

flowering and to maturity between the base runs and runs with modified parameters is shown. 

Between brackets the standard deviation. 

Parameter ∆ ∆ത time to flowering 
(d) 

Relative 
sensitivity* 

∆ത time to maturity 
(d) 

Relative 
sensitivity*

Tbased 
(oC) 

+10% 4 (1.8) 0.46 5 (2.8) 0.43 
-10% -11 (5.0) 1.20 -13 (5.7) 1.02 

Toptd (oC) 
+10% -11 (6.0) 1.18 -13 (5.6) 1.00 
-10% 3 (4.8) 0.35 2 (8.1) 0.16 

Toptm (oC) 
+10% -6 (4.8) 0.64 -11 (5.7) 0.82 
-10% -6 (4.8) 0.64 -4 (5.6) 0.28 

Cpp (-) 
+10% -6 (5.0) 0.61 -7 (5.7) 0.57 
-10% -6 (5.0) 0.67 -8 (5.6) 0.63 

Tsum (oCd) 
+10% 2 (5.2) 0.22 1 (6.5) 0.05 
-10% -16 (4.8) 1.70 -18 (5.3) 1.38 

All 
combined 

+10% 1 (5.5) -3 (6.4)  
-10% -14 (6.0) -11 (6.9)  

* Relative sensitivity is calculated as  (∆ parameter / default parameter value) / (∆ response variable 

/default response variable value). 

 

4 Discussion 

4.1 Observations 

 Sowing date had a large effect on the time to flowering, confirming results 

of Dingkuhn et al. (1995b). Four of the varieties belonged short to medium 

duration group, and one (ITA344) to the medium to long duration group. 

Although both sites were on similar latitude, hence similar photoperiod, 

responses of variety IR32307 and Sahel108 were different between the sites. 
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Differences in temperature amplitude could have been the cause (Yin, 1996a), 

in Chapter 3 it was shown that in Fanaye larger temperature amplitudes than in 

Ndiaye occur. 

4.2 DSSAT4 

 The genetic coefficients used as default values in DSSAT4 did not produce 

satisfactory results under Sahelian conditions. It underestimated the time to 

flowering by 30% at both sites. When the program was calibrated at the site, it 

did not simulate rice yield accurately, hence not all crucial growth processes 

were simulated correctly. In Ndiaye it overestimated rice yield by 32%, and in 

Fanaye it underestimated yield by 30%. When calibration sets of parameters for 

Fanaye and Ndiaye were used for the other site, the phenology simulation was 

not satisfactory. An explanation could be that the effects of extreme 

temperatures on yield are not simulated adequately.  From the model 

description it is not clear how heat and cold stress and the resulting spikelet 

sterility are simulated, but in light of their importance in yield determination in 

the Sahel, they should be emphasized in future efforts to improve the model. 

Our results support the conclusions from Timsina and Humphreys (2006a), 

that DSSAT4 requires local calibration for each variety and each sowing date. 

Thus, DSSAT4 is not suitable for large scale explorations, as genotypic 

parameters, assumed to be constant, vary inter environment. 

4.3 ORYZA2000 

 Simulation of rice under Sahelian conditions using ORYZA2000 resulted 

in an underestimation of yield in Fanaye, and an overestimation in Ndiaye 

(Tables 4.2 and 4.3). Phenology was in both cases not always accurate, with 

both over and underestimations of occurrence of panicle initiation, flowering 

and maturity.  As Sheehy et al. (2006b) have pointed out, temperature 

responses of the model are not always accurate. For ORYZA2000, calibration 

was done at each site and simulation results were validated using a sowing date 

one month later. Phenology was underestimated in Ndiaye by ORYZA2000, but 

not in Fanaye (Table 4.3), while the temperature at the second sowing date was 

higher, indicating that under high temperatures development is slower than 

simulated by ORYZA2000. When the model was calibrated, it overestimated 

yield in Ndiaye of variety Sahel108 by 5% at 8.4 t ha‒1, which can be used as an 

indication of potential yield of this combination of variety and sowing date in 

the delta area of the Senegal river. Bouman and Van Laar (2006), Belder et al. 

(2007) and Boling et al. (2007) showed that ORYZA2000 was well suited to 
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simulate nitrogen and water limited rice growth under tropical Asian 

conditions, hence we can assume that the performance of ORYZA2000 under 

Sahelian conditions was largely affected by the difference in climate rather than 

by either nitrogen or water limitations. We can conclude that ORYZA2000 

needs to be calibrated for each site and sowing date. The sensitivity analysis 

showed that all three genotypic parameters had equal impact on the phenology: 

a 10% increase in parameter value resulted in a two days decrease in growing 

period, while a 10% decrease in parameter value resulted in a three day increase 

in growing period.  When relative sensitivities are less than 0.5, the parameter 

is regarded as relatively insensitive, as in this case  (Adam et al., 2011). The 

combination of parameters resulted in a change in growing period equal to the 

sum of changes of all individual parameters.  

4.4 ORYZA_S 

 The ORYZA_S model was developed for Sahelian conditions; however, 

simulation of previously calibrated varieties resulted in both over and under 

estimation of development rate. There are a number of reasons for these 

discrepancies: essential phenological processes are not yet captured in the 

model or changes in climate are outside the validity domain of the model. Our 

study points out the importance of local calibration of the crop growth 

simulation models, however, only one of the evaluated models (ORYZA2000) 

has calibration routines to determine parameter values for varieties. 

Improvements in simulation models should include calibration routines that 

allow users to calibrate new varieties using their own data. 

4.5 Outlook 

 For both ORYZA_S and ORYZA2000, there was a trend in the difference 

between simulation results and observations with sowing date, which makes 

predictions with these models delicate: only specific sowing dates can be used 

with these models. Specific sowing dates are associated with daylength and 

(quality of) radiation, these could be among the processes whose effect on 

phenology have not yet been understood well enough. There is need for further 

research to increase performance of simulation models as there are still 

essential processes in rice phenology, which have not been captured by these 

models, such as a variation in optimum temperature for development with plant 

age temperature (Yin, 2008). There is evidence that daily temperature 

amplitude has an effect on phenology, however quantification of these processes 

will demand very specific experiments (Yin, 1996b). Also morphology, such as a 
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minimum number of appeared leaves has been shown the play a role (Craufurd 

et al., 2003).  

5 Conclusion 

 The rice simulation models ORYZA2000, DSSAT4 and ORYZA_S were 

evaluated for their performance to simulate phenology in the Sahel. When 

calibrated, ORYZA2000 and ORYZA_S performed well in simulating phenology 

of the same sowing date. The performance of DSSAT4 with its original genetic 

constants was weak. Our research shows that there is need for further research 

to increase performance of simulation models as there are still essential 

processes in rice phenology, which have not been captured by these models. 

Increased understanding of the physiological basis of these processes will 

undoubtly result in increase model performance. 
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Abstract 
 In the African Sahel, temperature increases between 1.8 and 4.7oC are 

predicted by 2080. At certain growth stages rice is sensitive to low (<22oC) and 

high (>35oC) temperature stress. An adapted version of the simulation model 

ORYZA2000 was used to simulate effects of temperature increase on sterility 

and crop cycle duration of irrigated rice at two locations (Ndiaye and Fanaye) in 

Senegal. The calibrated model was validated with an independent data-set. 

Minimal and maximal predicted temperature increases were compared with the 

current situation. Simulation results of daily sowing dates show that crop cycle 

length will decrease by 10-30 days.  Presently, spikelet sterility is a serious 

threat: cold induced spikelet sterility when sowing between September and 

December and heat induced sterility when sowing between November and April 

in Fanaye. For the minimum predicted temperature increase in Ndiaye, heat 

induced sterility becomes more important than the cold-sterility with a peak of 

69% for rice sown in August. In Fanaye, heat-sterility is always above 56%, 

except for rice sown between September and November. Under the maximum 

predicted temperature increase, in Ndiaye heat-sterility increases, with all 

sowing dates resulting in more than 57% sterile spikelets, except for rice sown 

in October. In Fanaye a similar pattern is shown:  rice production is only viable 

when sown from September to December (with sterility of 40%); sown in the 

other 8 months of the year sterility is >90%. Our study suggests that with 

projected temperature changes, timing of sowing and consequences of the risks 

for crop loss due to sterility will remain the major determinants of rice yield 

along the Senegal river. We show that there is an urgent need for heat tolerant 

rice varieties. Without adaptation, cropping calendars will change. In the worst 

case scenario we anticipate a change from a double to a single crop. 

 

 

 

 

 

Keywords: Crop growth simulation models, Temperature increase, Global 

change, Sowing date, Spikelet sterility, Phenology. 
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1 Introduction 
 Rice production will be significantly influenced by global changes in 

temperature and green house gases (Ainsworth, 2008; Wassmann et al., 2009). 

In tropical Asia, the combined impacts of elevated CO2 and increased 

temperatures were predicted to decline rice yields by 3.8% (Matthews et al., 

1997). In the same study, it was shown that the impacts varied regionally, with 

most negative effects occurring in those parts where temperatures in the 

current climate are already close to the threshold above which heat induced 

sterility becomes an issue. From a large sample of farmers’ fields observations, 

Welch et al. (2010) concluded that a moderate warming had a negative impact 

in rice yield in Asia, which concurred with a model study by Peng et al. (2004),  

although their methods were contested (Sheehy et al., 2006b). For northern 

Japan, it was shown that the rice cropping system can be adapted to the 

projected temperature change (Shimono et al., 2010). For sub-Saharan Africa 

(SSA), climate change studies often focus on the impact of water availability on 

crop production, e.g. (Haile, 2005; Salack et al., 2011; Sultan et al., 2005), but 

for the case of irrigated rice, temperature extremes such as found in the semi-

arid Sahel and the associated heat and cold induced spikelet sterility are far 

more important determinants of crop production (Dingkuhn et al., 1995b). 

 Surveys among farmers in the Senegal river valley have revealed that 

farmers are aware of the relation between low temperatures and yield decline 

due to spikelet sterility in the wet season (Haefele et al., 2002a). Predictions 

from downscaling global circulation models to the Sahelian region indicate that 

an increase in surface temperatures of 1.5-3oC can be expected by 2030 (Boko et 

al., 2007; Jury and Whitehall, 2010). Given the sensitivity of rice to both high 

and low temperatures at critical stages, which drive a potential yield reduction, 

both the sowing window and varietal preferences may alter in the coming 

decades (De Vries et al., 2011). Rice genotypes differ in their heat tolerance, 

with a difference of 3oC between tolerant and susceptible genotypes (Matsui et 

al., 2001). Tolerance classically comprises elements of escape, i.e. the timing of 

panicle emergence and floret opening relative to the occurrence of the stress, 

and the absolute tolerance to stress of key processes, such as anther dehiscence 

(Jagadish, 2007). Oryza glaberrima cultivars CG14 and CG17 opened their 

spikelets at 7:00 am, more than one hour before O. sativa indica cultivar IR64, 

and under heat stress more spikelets were opened earlier (Jagadish et al., 2008; 

Prasad et al., 2006). A heat treatment at microspore stage induces spikelet 
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sterility; Endo et al. (2009) identified genes that were down-regulated as a 

result of the treatment and proposed it as a molecular breeding tool to compare 

varieties. Ishimaru et al. (2010) showed that escape rather than tolerance per se 

reduced spikelet sterility in Oryza officinalis × O. sativa crosses. For cold 

tolerance, genotypic variation is less. More pollen increases fertility, and as 

anther length is strongly correlated with the number of pollen, anther length is 

likely to play a role in cold tolerance (Saito et al., 2004). 

 To quantify the possible effects of an increase in temperature, dynamic 

crop growth simulation models are needed. ORYZA2000 is such a tool for 

lowland rice (Bouman et al., 2001), which has been validated for N limitation 

(Bouman and Laar, 2006), the effects of water-table depth and varietal 

characteristics such as photoperiodism (Boling et al., 2007; Boling et al., 2011) 

and G × E interactions (Jing et al., 2008). For the model ORYZA2000, a new 

calibration program was developed, that allowed optimization of variety 

parameters independently (Van Oort et al., 2011). Validation of crop parameters 

and associated processes for simulation models is necessary when employing 

the model in a new environment (Aggarwal and Mall, 2002; Confalonieri et al., 

2010).  

 In this study we investigate the implications of an increase in temperature 

on a typically Sahelian rice-based cropping system. In particular the effects of a 

temperature increase on growing cycle and on temperature induced sterility 

were evaluated. The calibrated model ORYZA2000 is validated, and employed 

to quantify effects of forecasted temperature regimes on irrigated rice cropping 

systems in the Sahel, focusing on cropping cycle length and spikelet sterility, 

which determine yield to a large extent in these environments. 

2 Materials and Methods 

2.1 Cropping system  

 The rice-based cropping system along the Senegal river is intensive. All 

farmers use inorganic fertilizers (100%), herbicides (100%), certified seeds 

(81%) and proper field preparation (99%), and grow on average 1.3 ha of rice in 

the wet season (Diagne, 2006b; Van Vugt, 2007). As a consequence of 

favourable climate and management rice yields 3-7 t ha‒1, high in comparison 

with the average yield in sub-Saharan Africa of 2.1 t ha‒1 (FAOSTAT, 2011; 

Haefele et al., 2000). To facilitate the use of external inputs, farmers rely 
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heavily on credit. Sowing the wet season crop in time is of major importance 

due to the risk of cold sterility, a fact farmers are aware of. However, delay in 

availability of credit or inputs often jeopardizes farmers’ intentions (Haefele et 

al., 2002a; Poussin et al., 2003). Presently, dry season rice cropping takes place 

from February to July, and the wet season immediately follows from July to 

October. The wet season is the main cropping season, whereas in the dry season 

only 10% of the surface is cultivated (SAED, 2007). 

2.2 Model description 

 The model ORYZA2000 was used to simulate rice growth. ORYZA2000 

simulates potential, water-limited and nitrogen-limited yield of lowland rice 

(Bouman et al., 2001). The program is written in the Fortran based FST 

language (Van Kraalingen et al., 2003) and the source code is publicly available: 

http://www.knowledgebank.irri.org/oryza2000/. It is recommended to 

calibrate phenology for each experiment separately in the original version of 

ORYZA2000 (Bouman et al., 2001). In this study we used a version of 

ORYZA2000 modified by Van Oort et al. (2011) to predict phenology, hence 

thorough validation of phenology simulation was needed. In the original 

ORYZA2000 development rates are calculated using a bi-linear model (Kropff 

et al., 1994; Matthews and Hunt, 1994). The phenology simulation components 

of the modified version of ORYZA2000 were calibrated using a procedure 

described in detail in Van Oort et al. (2011). In short, a calibration set of 15 

sowing dates at two locations in Senegal (Ndiaye and Fanaye) using varieties 

IR64 and Sahel108 was used to select an optimal phenology simulation model. 

The calibration program by  Van Oort et al. (2011) considers different shapes of 

temperature response functions and simultaneously estimates all model 

parameters, including base temperature, optimum temperature, maximum 

temperature, transplanting shock parameters, threshold daylength for 

photoperiod sensitivity and photoperiod sensitivity effect. For all the models a 

wide range of parameter values was evaluated, and the parameter-model 

combination with the smallest root mean square error (RMSE) was chosen for 

each variety separately. The experimental data presented in Chapter 3 were 

used for the model calibration.  
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Figure 5.1: The Blackman-type relationship between temperature, in the agronomically 

important range of 15oC to 36oC and relative development rate for IR64 under Sahelian 

conditions. 

 

 These data cover a large range of temperatures (10-40oC, Figure 5.2).The 

mean temperature in the phase from emergence to flowering ranged from 24 to 

31oC, thus we expect the phenological parameters to be valid in a wide range of 

temperatures. Figure 5.1 shows the temperature response function calibrated 

for cultivar IR64. Obviously, we do not know from the calibration data how a 

rice crop continuously growing at temperatures of above 40oC develops. 

Practically this is also irrelevant, as yields at such temperatures are zero due to 

heat induced sterility. However, just above the optimum of 31oC the model 

shown in Figure 5.1 gives much better predictions than the default response 

function in ORYZA2000, in which development rate drops to zero at 42oC. The 

revised phenology model calculates development rate as the product of relative 

development rate and the optimum development rate, as proposed by Yin and 

Van Laar (2005), where the relative development rate is scaled from 0-1 and the 

optimum development rate is defined as 1/time to complete a growth stage 

under optimum temperature. In ORYZA2000, spikelet sterility is calculated 

according to Horie et al. (1992). Cold induced sterility is simulated by 
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accumulation of ‘cooling degree days’. On days when the crop stage is between 

panicle initiation and flowering and when the average temperature, corrected 

for drought stress, drops below 22oC, the difference between the average 

temperature and 22 is calculated. In the model the crop stage is scaled from 0-

2.0, with panicle initiation and flowering at 0.65 and 1.0, respectively.  The 

temperature differences are summed from panicle initiation to flowering to 

obtain the cooling degree days. The relation between fraction of sterile spikelets 

(Stercold) and the sum of cooling degree days (Sumcdd [oCd]) is described as 

follows: 
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 Only when the cooling degree days are larger than zero, Equation 1 is 

called in the model. It results in a cold sterility of 0.0465 when Sumcdd is 1, and 

half of the spikelets sterile at 75oCd. Around flowering, rice is sensitive to heat 

stress causing sterility at temperatures above 35oC. As flowering occurs during 

day time, the average daily maximum temperature during the flowering period 

is used to quantify heat induced sterility (Horie, 1993). In the model, the 

sensitive phase is limited to the period between crop stage 0.95 and 1.05. The 

relation between sterility fraction (Sterheat) and temperature ( maxT [oC]) found by 

Horie (1993) can be approximated by the following equation: 
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 The implementation of the Equation 2 in the model is such that only 

when the temperature reaches 35oC, a sterility fraction is calculated. At 35oC, 

the sterility fraction is 20%, and half of the spikelets are sterile at a temperature 

of 36.6oC. 

2.3 Weather data 

 Daily minimum and maximum temperatures were used as input for the 

models. The data were collected at two experimental locations, Ndiaye and 

Fanaye, between 1991 and 2006. In 2006, daily maximum temperatures were 

higher in Fanaye than in Ndiaye, whereas minimum temperatures were similar 

in Fanaye and Ndiaye (Figure 5.2 and 5.3). Between 1991 and 2006 mean 

minimum and maximum temperatures have not changed, although higher 

temperatures were recorded between 1995 and 1997 (Figure 5.3).  
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Figure 5.2: Daily minimum (full lines) and maximum (dotted lines) temperature in Ndiaye 

(top) and Fanaye (bottom) for 2006.  
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Figure 5.3: Annual average minimum (circles) and maximum (triangles) temperatures 

between 1991 and 2006 in Ndiaye (open symbols) and Fanaye (closed symbols). 

 

 Fanaye had consistently higher maxima (Figure 5.3 and Table 5.1). Mean 

minimum temperatures were similar, with 20 and 21oC for Ndiaye and Fanaye, 

respectively. Mean maximum temperatures were higher in Fanaye, with 36 

against 33oC in Ndiaye. Both the absolute minimum and maximum temperature 

were recorded in Fanaye: 6 and 46oC (Table 5.1). 

Table 5.1: Description of the minimum and maximum temperatures observed in Ndiaye and 

Fanaye, with number of observations (n), minimum recorded value (oC), 10th percentile, mean, 

90th percentile, maximum recorded value (oC) and the standard deviation (σ). 

Temperature data-
set 

n Min. 10th perc. Mean 90th 
perc. 

Max. σ 

Ndiaye minimum 4663 8 16 20 25 29 3.7 

Ndiaye maximum 4663 20 30 33 38 45 3.4 

Fanaye minimum  3578 6 14 21 26 31 4.6 

Fanaye maximum 3578 19 31 36 42 46 4.1 
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2.4 Model validation  

 An independent data-set to validate the phenology model was used. It 

consisted of field experiments at the same locations (Ndiaye and Fanaye) with 

the same varieties, IR64 and Sahel108. Details of the experiments are described 

in Dingkuhn and Miezan (1995) and Dingkuhn et al. (1995b). For variety IR64, 

23 sowing dates in Ndiaye, from day 69 in 1991 to day 161 in 1993, with monthly 

intervals and 13 sowing dates in Fanaye, from day 188 in 1991 to day 189 in 

1992 were used. For variety Sahel108, 12 sowing dates in Ndiaye between day 

196 in 1992 and day 189 in 1993 were used. Hence, 48 independent 

observations from two varieties with sowing dates distributed over three years 

at two sites were compared with simulations, using the same sowing date and 

seed-bed durations. Daily weather data was recorded at both sites during the 

experiments; the minimum and maximum temperatures were used as model 

input. RMSE was used to quantify model performance. 

 The spikelet sterility function could not be validated from our data. We 

relied on detailed pot experiments undertaken by Horie et al.(1993). The level 

of detail attained in other studies that investigated sterility was not met in our 

experiments (Matsui, 2009; Prasad et al., 2006; Shimono et al., 2005). 

3 Results 
3.1 Validation results 

 The absolute average difference between simulated and observed 

phenology of the three variety × site combinations (n= 48) was 8.1 and 10.3 for 

days to flowering and to maturity, respectively. The associated root mean 

square errors (RMSE) were 10.0 and 12.2 days for flowering and maturity, 

respectively. In some cases, large variation (maximum of 20 days) was 

observed. Plotting average temperature versus days to flowering reveals that the 

simulated data reproduce the trend shown in Figure 5.4. It is striking that the 

validation data by Dingkuhn et al. show either development as predicted by our 

model, or faster. This could signal a deficiency in our model or in the data of 

Dingkuhn et al., or both. The two encircled triangles are data points of variety 

Sahel108 sown in Ndiaye, the data point on the right is sown on July 15th 1992, 

the one on the left on July 8th 1993.  
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Figure 5.4: Average temperature between emergence and flowering versus days to flowering 

for observed and simulated data of variety IR64 in Ndiaye (circles) and Fanaye (squares), and 

variety Sahel108 in Ndiaye (triangles). Open symbols are observed values from Dingkuhn et 

al. (1995); closed symbols are simulations of observations. Two encircled triangles are sowings 

at similar dates in two different years. 

 

The mean temperature from emergence to flowering was 2oC higher in 1992, yet 

flowering is at almost the same date (85 and 87 days after emergence). This 

seems unlikely; such patterns were not observed in our calibration data. 

3.2 Scenario analysis 

 The IPCC developed a number of possible temperature change scenarios 

for the West-African region in their 4th assessment report (Table 5.2) (Solomon 

et al., 2007). For our analysis we have used minimal and maximal temperature 

increases to determine the bandwidth of possible implications: 

 Base line “as is”, using current daily weather data 

 Minimal increase of average of 1.8oC 

 Maximal increase of average of 4.7oC 
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To analyse the effects of temperature on the growing cycle and spikelet sterility, 

four sets of weather data were selected. Based on availability of daily weather 

records, data from 1991/92, 1994/95, 1998/99 and 2006/07 from Ndiaye and 

Fanaye were used. The minimum and maximum temperature change was 

calculated by adding the temperature increases from Table 5.2 to the daily 

weather records. For each set of years, 365 simulations were run to simulate 

sowing on every day of the year. Spikelet sterility was calculated for each 

fortnight, averaged over the four years. 

Table 5.2:  Averages of temperature increase and occurrence of extreme warm, wet or dry 

seasons for the A1B scenario for the West-African region. The temperature and precipitation 

responses are averaged for each model over all available realisations of the 1980 to 1999 

period from the 20th Century Climate in Coupled Models (20C3M) simulations and the 2080 

to 2099 period of A1B. Computing the difference between these two periods, the table shows 

the minimum, maximum, median values for temperature (°C) change. The frequency (%) of 

extremely warm, wet and dry seasons, averaged over the models, is also presented. Projections 

are from climate simulations conducted for the Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change (Solomon et al., 2007). 

 Temperature increase (oC)   Extreme seasons (%)  
Months  Min  Median  Max     Warm Wet  Dry  
DJF  2.3  3.0  4.6   100 21  4  

MAM  1.7  3.5  4.8   100     

JJA  1.5  3.2  4.7   100 19    

SON  1.9  3.3  4.7   100 15    

Annual  1.8  3.3  4.7   100 22    

 

 

3.3 Crop cycle length 

 Under current conditions, the dry season crop has a cycle length of 150 

days in Ndiaye and ten days less in Fanaye, while the wet season crop takes 130 

days to mature at both sites (Figure 5.6). Under climate change scenarios this 

can decrease to 140-125 days in Ndiaye and 135-120 days in Fanaye for the dry 

season. For the wet season the duration decreases to 130-120 days and 125-115 

days in Ndiaye and Fanaye, respectively. The largest decrease in duration occurs 

at both sites for sowing dates between September and January: up to 30 days.   



Exploring impacts of temperature increase in Sahelian rice-based cropping systems 

101 

Figure 5.5: Simulated crop duration of rice variety IR64 in Ndiaye (top) and Fanaye (bottom), 

Senegal for the averaged weather of the reference years 1991, 1994, 1997 and 2006 and in 

response to minimal and maximal temperature change as a function of sowing day. 
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3.4 Spikelet sterility 

 In the present situation, cold induced spikelet sterility is a threat when 

sowing between September and December. Heat induced sterility occurs mainly 

in Fanaye, when sowing between November and April and in August. Even in 

the current climate, rice cropping is seriously restricted by spikelet sterility. The 

minimal projected temperature increase results in Ndiaye in a marked 

reduction in the cold induced sterility, from 92% to 55% in October. However, 

the heat induced sterility, which is practically absent at present, becomes more 

important than the cold induced sterility with a peak of 69%. In Fanaye, the 

minimal temperature increase scenario results in a small decrease in the cold 

induced sterility: from 100% to 87% in October. Heat induced sterility is always 

above 56%, except between September and November. Under these conditions, 

sterility is at least 41% when sowing in September, but for most other sowing 

dates it is above 60%. Under the maximum predicted temperature increase, 

cold induced sterility at Ndiaye is always less than heat induced sterility, 

peaking at 29% in October. Heat induced sterility increases, with all sowing 

dates resulting in more than 57% sterile spikelets, except October. In Fanaye a 

similar pattern is shown: between December and September, heat induced 

sterility is over 90%. In October and November cold induced sterility occurs, 

but heat induced sterility is always larger, with a minimum of 40%. 

4 Discussion 
4.1 Model validation 

 The validation results of the model show that simulation of flowering day 

for an independent data-set leads to an average difference with the observed 

values of eight days. The RMSE of 10 days for simulated flowering date is three 

days more than found by Van Oort et al. (2011). When the RMSE is expressed 

as percentage of the observed duration, 8.5% in this case, the model 

performance is in range with what was found by Van Bussel et al. (2011a) for a 

case of AFRCWHEAT2 simulating spring wheat in Germany: 4.7%. From these 

results we can conclude that the model is capable to simulate rice phenology 

with an uncertainty of 8-10 days, and that the model reproduces effects of 

temperature on phenology well. 



Exploring impacts of temperature increase in Sahelian rice-based cropping systems 

103 

Figure 5.6: Simulated spikelet sterility due to cold (closed circles) and heat (open circles) 

stress of IR64 at present temperature  (top), a minimum increase (middle) and a maximum 

increase (bottom) in Ndiaye (left) and Fanaye (right) Senegal. Each point is the mean of 15 

sowing dates in four years (‘91, ‘94, ‘98 and ‘06) and standard deviation.   
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 From Figure 5.4 a temperature sum can be derived, using the average 

temperature as basis, and assuming base temperature of 10oC. At an average 

temperature of 25oC, the duration to flowering was 129 days, resulting in 

3225oCd, at 29oC the duration to flowering was 91 days, leading to a 

temperature sum of 2639oCd. This seems counter intuitive, as the calibration 

program presumes a constant thermal time requirement. An explanation for 

this significant difference is that ORYZA calculates phenology based on hourly 

temperatures. Practically every day the maximum temperature is above the 

optimum temperature (Figure 5.1). The temperature sum calculation as above 

implicitly assumes a continuous linear increase of degree day accumulation. In 

our model, degree day accumulation is constant (i.e. not increasing) in all those 

hours where temperatures are above the optimum. Our results show that 

summation of degree days based on average temperatures will result in 

different outcomes for different sowing dates. It confirms our findings from 

Chapter 2 and shows that in the Sahel, where daily maximum temperatures are 

above the optimum temperature for development, the temperature sum needs 

to be calculated at a time step smaller than a day. From the validation we 

conclude that the model is appropriate for use in the scenario study performed 

to quantify the effects of temperature on growing cycle, while taking the 

uncertainty into account. 

4.2 Effects of temperature change 

 Our study is limited to temperature responses. Effects of changes in solar 

radiation and CO2 concentrations have a potentially large effect on biomass 

production (Matthews et al., 1997; Sheehy et al., 2006b; Wassmann et al., 

2009). However, this is all of no effect on yields if there are no fertile spikelets. 

According to previous work it is this sterility that has the largest impact on 

future yields in Senegal (De Vries et al., 2011; Dingkuhn, 1995). Therefore, we 

have disregarded in this paper the possible effects of solar radiation and CO2 

concentrations on future yields. 

 The projected change in temperature affects irrigated rice in the Sahel in 

three ways: shortening of the crop growth cycle, a decrease in cold induced 

spikelet sterility, and an increase in heat-related sterility. The projected crop 

cycle shortening of 10-30 days will affect the rice farmers in various ways: a 

shorter cycle means less irrigation costs, but also a decreased yield due to a 

decrease in the intercepted radiation.  
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Figure 5.7: Present rice cropping calendar and possible cropping calendars under minimal and 

maximal projected temperature increase. 

  

 

 Under current circumstances farmers can avoid cold related sterility by 

respecting recommended planting dates (De Vries et al., 2011; Dingkuhn and 

Sow, 1997a). Under projected temperature increases, cold related sterility will 

only occur when planting in October and November at both sites. On the other 

hand, heat-related sterility will become a serious problem. Spikelet sterility will 

increase to cause total crop loss under maximum temperature increases when 

sowing in the first half of the year in Fanaye. Presently, the cropping system 

includes a main wet-season rice crop and a dry-season rice crop (Figure 5.7). 

 Under minimal temperature increase, rice double cropping is still 

possible, but the sowing window is small; i.e. sowing too early results in heat-

sterility, sowing too late in cold- sterility. It remains to be seen whether in 

practice farmers are able to clear their fields from the dry season crop and 

prepare it at the same time for the wet season.  

 Under maximal temperature increase, rice cropping will be seriously 

jeopardized by heat sterility, while risks for cold sterility remain small. If only 

sowing in October is possible, risks for both cold and heat sterility remain high, 

around 40%. Under this scenario, rice cropping is under serious threat and heat 
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tolerant rice varieties will be needed to minimize risks of crop failure. It is clear 

that the temperature changes predicted by the scenarios developed by the IPCC 

will have large consequences for the rice-based cropping system along the 

Senegal river. The current main season, sowing in July and risking cold sterility 

when sowing late, will shorten and possibly change to sowing in September or 

October, or the main rice season will shift to the period of May to August.  

 Unlike cold tolerance, heat tolerance can be bred for (Prasad et al., 2006). 

Rice cultivars that flower early in the day can escape terminal heat occurring at 

midday. The cultivar used, IR64, is known to be moderately heat tolerant 

(Jagadish, 2007), and the temperature at which 50% sterility occurs was set at 

36.6oC. As Matsui et al. (2001) show, a 3oC temperature difference in heat 

tolerance exists between varieties; a 5oC increase can probably be overcome by 

focused selection on length of the basal dehiscence, for which substantial 

genetic variation has been observed (Kobayashi et al., 2011). Recently, Jagadish 

et al. (2010a) identified QTLs for heat tolerance, which partly overlap with 

regions where QTLs for drought tolerance are found. Based upon this 

information, marker assisted screening protocols for both these important 

abiotic stresses can be developed. 

  Farmers in the Senegal River valley are accustomed to managing risks 

(Connor et al., 2008). The big question is, can they also cope with the growing 

risks of spikelet sterility that arise as a consequence of climate change. The 

adaptation range of 3 to 5oC for the heat spikelet sterility threshold is similar to 

the range of anticipated temperature increases. This suggests that with adoption 

of heat tolerant varieties Senegalese farmers may be able to continue the 

current cropping pattern. Without such adaptation, we anticipate yield 

reductions of more than 40% due to spikelet sterility (Figure 5.6) and in the 

worst case it may no longer be possible to grow two crops per year (Figure 5.7). 

 

5 Conclusion 

 Our study suggests that with projected temperature changes timing of 

sowing and consequences of the risks for crop loss due to sterility will remain 

the major determinants of rice yield along the Senegal river. We show that there 

is an urgent need for heat tolerant rice varieties. The current genetic variation 

for heat tolerance suggests that with adaptation current cropping patterns can 



Exploring impacts of temperature increase in Sahelian rice-based cropping systems 

107 

persist. More breeding and empirical testing of heat-tolerant varieties is 

needed. Without that, we anticipate current sterility (0 to 20%) to increase (to 

20 to 90%, depending on the temperature change and sowing date). In the 

future climate, growing two crops per year may no longer be an option.  
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1 Objectives of the study 
  This thesis explores options for future management of irrigated rice in 

the Sahel. This leads to an improved understanding of the behaviour of the 

system. As a result, the effects of possible changes in irrigation water availability 

and climate could be evaluated.  The methods that were used for this study were 

a combination of field experiments and statistical and simulation models. In 

this chapter, the appropriateness of the methods is discussed, followed by a 

discussion of the consequences of a simultaneous occurrence of temperature 

increase and reduced availability of irrigation water, for which the adapted 

model ORYZA2000 is used. Furthermore, the lessons breeders can draw from 

this thesis are presented. Finally, the possibilities for the extrapolation of the 

results of this study to other rice-based cropping systems in Africa are 

discussed. 

2 In silico and in vivo experiments 

 The methods that were chosen for this study were field experiments, 

performed at experimental stations, statistical analyses and dynamic crop 

growth models. The field experiments were performed at research stations of 

the Africa Rice Centre, Ndiaye and Fanaye. Conducting field experiments 

involves thorough organisation and planning, dealing with environmental 

setbacks (bird attacks, storms) and manual data collection. All of these can, and 

have, lead to errors; in our case due to a combination of the factors mentioned 

only five of the eight performed water-saving experiments generated data that 

could be used in the study presented in Chapter 2. However, in agreement with 

Kaschuk (2009), important lessons were learnt from unsuccessful experiments: 

the unusual design of the water-saving experiments was chosen after failure of 

initial experiments. Results of some of the on-farm water-saving experiments 

are presented by Guillaume (2007). To reduce measurement errors, the same 

people performed the same measurements, although at the two different sites, 

different people performed field measurements. We reviewed our data critically 

and discarded data-sets that were obviously erroneous, or had high coefficients 

of variation (> 20%). To analyse genotype by environment interactions, two 

frequently used statistical analyses have been the Additive Main effects and 

Multiplicative Interaction (AMMI) model (Gauch and Zobel, 1997) and the 

Genotype main effects and Genotype Environment interaction effects (GGE) 

model (Yan et al., 2001). In a review, Gauch (2006) showed that in all cases 
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AMMI was on par or better to produce an easy to interpret graphs of complex G 

× E interactions with least-squares errors. Dingkuhn et al. (1995b) performed 

experiments similar to those presented in Chapter 3, their methods were used 

as basis. To measure spikelet sterility, detailed pot-experiments with hourly 

counting of pollen grains have been performed to unravel the relations between 

high temperature and spikelet fertility (Endo et al., 2009; Jagadish, 2007; 

Kobayashi et al., 2011). Our field experiments were not apt for these detailed 

measurements, hence we could not validate crop models with our own sterility 

data-set. 

 Dynamic crop growth simulation models are used to predict the effects of 

climate change in various studies (Ewert et al., 2005; Shimono et al., 2010; Tao 

et al., 2008; Xiong et al., 2010), although the simulation of processes involved 

(Adam et al., 2011; Long et al., 2006; Sheehy et al., 2006a; 2006b) and the 

interpretation of results at different scales has been debated (Challinor et al., 

2009; Ewert et al., 2006; Van Bussel et al., 2011b; Zhang et al., 2008). The crop 

models that were used in this study were used to explore, not to predict. Hence 

it is difficult to determine the exact error as explorations deal with hypothetical 

situations. In Chapter 4 we have shown that un-calibrated crop models are not 

accurate, thus simulation models should only be used after proper calibration 

and validation. Care should be taken if crop or genotype specific parameters are 

used outside their calibration environments. The results of length of the 

growing season, as presented in Chapter 5, have a coefficient of variation of 10 

days, calculated by Van Oort et al. (2011). The use of extensive data-sets for 

calibration and of a separate validation data-set with the same genotypes from 

the same sites increases confidence in the results of our simulations. The 

combination of field experiments, analysed statistically, with simulation studies 

was apt to explore the behaviour of how the current systems, within which the 

experiments were embedded could react on global change. 

3 Simultaneous temperature increase and irrigation water 

scarcity 

 Irrigation water will become scarcer at a global scale (Rijsberman, 2006). 

As a consequence in the Senegal river valley competition among user groups 

will become more severe (Venema et al., 1997). Hence, the irrigation regimes as 

explored in Chapter 3 could become viable options for some farmers. At the 
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same time, an increase in temperature of 1.8-4.7oC is expected by the IPCC 

(Boko et al., 2007). In Chapter 5, we explored how different temperature 

increase scenarios would affect yield formation of the rice plant and 

subsequently the cropping system. Logically, we can expect these two processes 

to happen simultaneously. To investigate whether there would be additive 

interactions between water-saving irrigation regimes and an increase in 

temperature, we conducted a simulation study. 

3.1 Modelling water-saving and temperature increase 

 To investigate the combined effects of temperature increase and 

reduction of irrigation water use, we used the model ORYZA2000, of which the 

phenology routine was adapted according to Van Oort et al. (2011). In Chapter 5 

it was shown that the model simulates temperature responses to phenology 

well. ORYZA2000 is designed to simulate water-limited yield, which has been 

validated for different hydrological conditions (Belder et al., 2007; Boling et al., 

2007). For our modelling study we studied four scenarios: 

i. present climate and conventional (continuously flooded) irrigation;  

ii. present climate and water-saving irrigation; 

iii. maximum temperature increase and conventional irrigation; 

iv. maximum temperature increase and water-saving irrigation. 

 These are combinations of scenarios developed in Chapters 2 and 5. Water-

saving was simulated as re-irrigation at the moment when the soil layer at a 

depth of between 10 and 15 cm below the soil surface dried out to 80% of field 

capacity. At soil depths below this, ample water was available for the rice plant. 

To simulate conventional flooded irrigation, a continuous layer of standing 

water of between 5 and 10 cm was maintained. The present climate and 

maximum temperature scenarios were simulated as described in Chapter 5. The 

variety Sahel108, which was used in the water-saving experiments of Chapter 2, 

was used for the simulation. The phenology parameters were obtained from Van 

Oort et al. (2011), who used data from the experiments presented in Chapter 3 

for calibration. 
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Figure 6.1: Simulation of aboveground dry matter (t ha‒1), from emergence to maturity, under 

combinations of current climatic conditions or maximum temperature increase and with water 

saving irrigation or flooded conditions. Simulations for the Dry season in Fanaye sown in 

March on the left, on the right the wet season in Ndiaye, sown in August are shown. Data for 

simulation are obtained from Dry season 2006 experiment for Fanaye, and wet season 2005 

for Ndiaye (Chapter 2). 

 

3.2 Can we save water when the temperature rises? 

 Two different situations were modelled: a dry season at Fanaye site, and a 

wet season at Ndiaye site. Biomass from emergence to maturity shows a steady 

increase, although in some cases the increased death rate of leaves reduces the 

total biomass at the end of the growing cycle (Figure 6.1). In both situations, the 

maximum temperature increase returned the largest biomass, while the 

maximum temperature increase in combination with water-saving returned the 

smallest biomass. 
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Table 6.1: Results from simulations of two sites and seasons with combinations of current 

climatic conditions or maximum temperature increase and with water saving irrigation or 

flooded conditions. Irrigation (mm), days from emergence to flowering and maturity, grain 

yield (t ha‒1, 14% MC) and spikelet sterility (fraction sterile spikelets).  

Site and 

season 

Scenario Irrigation 

(mm) 

Days to Grain 

yield 

(t ha−1) 

Sterility 

(-) Flow. Mat. 

Ndiaye 

Wet 

season 

Present Flooded 500 94 129 1.7 0.50 

Present Water-saving 400 107 144 3.3 0.03 

Max temp increase 

Flooded 

500 81 109 0.7 0.90 

Max temp increase 

Water-saving 

450 91 119 0.8 0.82 

Fanaye 

Dry 

season 

Present Flooded 1100 123 152 7.3 0.13 

Present Water-saving 800 141 170 6.9 0.24 

Max temp increase 

Flooded 

800 97 122 2.5 0.91 

Max temp increase 

Water-saving 

650 111 136 1.0 0.95 

 

 

 In the model, the effects of extreme temperatures (>45oC) on 

photosynthesis and assimilation are not well validated, and we should interpret 

these biomass figures with care. However, the results show that when the 

temperature increases, the small effects of early drought stress, such as delay in 

flowering, stomatal closure and early leaf rolling will be aggravated, and 

biomass accumulation will slow down. Even small water deficits already lead to 

sub-optimal growth in lowland rice (Lafitte et al., 2002; Wopereis et al., 1996). 

In various water-saving experiments in Asia, a yield decline has been observed, 

even when the soil was re-wetted regularly, concurring with our results 

presented in Chapter 2  (Belder et al., 2005a; Bouman et al., 2007b; Peng et al., 

2006). A large genotypic variation has been observed in reaction to drought 

stress, notably in the ability to maintain the root: shoot ratio under stress (Asch 

et al., 2005; Suralta et al., 2010). Heat induced spikelet sterility, as observed in 

our results may be aggravated by a combination of heat and water stress (Rang 

et al., 2011). The water-saving treatments used less irrigation water: 10-27%, 

which is similar to values found in our experiments in Chapter 2 (Tables 2.5 and 
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6.1). The effect of water-saving on development was a delay of between 10 and 

17 days to maturity. The temperature increase accelerated development by 20-

34 days. Grain yield under current conditions was comparable to values from 

observed data. Under maximum temperature increase, it was largely affected by 

heat induced sterility (Table 6.1). As a result of water-stress, flowering of rice 

was delayed, and the growth cycle increased. In the model description by 

Bouman et al. (2001), a direct relation between effective temperature for 

phenological development and temperature of ponded water was not found. 

However, the tip of the growing point of the rice plant is submerged from 

emergence to somewhere between panicle initiation and flowering. It can be 

assumed that for that period it is rather floodwater temperature than air 

temperature that governs development rate, a concept used in the rice 

simulation model RIDEV (Dingkuhn et al., 1995a). Already at present a deep 

water layer is used under temperate rice growing conditions (e.g. southern 

Australia) to decrease to risk on cold sterility (Humphreys et al., 2006). 

 However, our data presented in Chapter 2 (Table 2.6) do not show a 

conclusive difference between the flooded and water-saving treatments. Flood 

water can also be a buffer for heat stress. Incorporating floodwater temperature 

in the model will require a precise simulation of depth of ponded water and 

simulate an energy balance to calculate the effective phenological temperature, 

notably in situations of alternate wetting and drying, this will be a challenge. In 

the example of RIDEV, which is based on field observations of water and air 

temperature, daily minimum temperature for air and water are assumed to be 

equal, while maximum and mean water temperature depend on the crop stage 

and the daily temperature amplitude. Van Oort et al. (2011) show that a 

sinusoid phenological model, involving a dampening factor to simulate the 

buffering effect of the water layer, does not improve simulation results. In our 

experiments the water depth over the season showed a high variability (Figure 

2.2). To simulate such variations will be data demanding, and it is questionable 

whether such modelling detail will improve the usability of the model. 

Incorporating such highly site-specific information will certainly reduce its 

general applicability. 
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3.3 Adoption of water-saving 

	 In Asia, where water-saving has been studied extensively, adoption rates 

by farmers were limited in the Philippines (Lampayan et al., 2004), India 

(Senthilkumar et al., 2008) and China (Zhou et al., 2008). In many irrigation 

schemes in the Sahel the water pricing system is per surface rather than per 

volume and per irrigated block instead of per individual farmer (García-Bolaños 

et al., 2011; Le Gal et al., 2003; Van Vugt, 2007). Awareness of the volume 

irrigated at farmer level is needed to create support to save water (Tsur and 

Dinar, 1997). The social aspect of water management is important, but outside 

the scope of this thesis. However, collective action of water management 

increases efficiency and productivity in Sahelian irrigation schemes (Poussin et 

al., 2006; Vandersypen et al., 2007b). Often the decision tree for water 

management operations is hierarchical, and individual farmers do not have full 

control on the time to irrigate and to drain (Van Vugt, 2007; Vandersypen et al., 

2007a). Individual pricing per volume, similar to pricing of household water, 

creates awareness of water use and an incentive for saving (Tsur and Dinar, 

1997). Policy makers should bear the social and organisational factors in mind 

when developing measures aiming at a reduction of water use for irrigated rice. 

Our results were obtained at field level and cannot be extrapolated directly to a 

whole scheme: losses through transport canals have not been taken into 

account and water lost through percolation in one field can become available in 

the root zone of another field.  

4 Implications for breeding 

 The results of this study show that management of irrigated rice in the 

Sahel needs to adapt to global change in the coming decades. Development of a 

new rice variety takes, in spite of modern molecular tools, about 10 years. 

Hence, rice breeders need to take management practices of the next 10-20 years 

into account when selecting their breeding goals.  

4.1 Water-saving irrigation 

 The results from Chapter 2 indicate that water-saving irrigation will be a 

viable management option for some farmers. Aerobic rice and related water-

saving irrigation regimes need different plant types (Lafitte et al., 2002). Over 

the past two decades, progress has been made in selecting rice genotypes for 

environments without a permanent layer of water (Zhao et al., 2010). However, 
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the diversity of hydrological conditions increase the G×E effects (Wade et al., 

1999). The main role of water-logging in irrigated rice is weed control. 

Decreasing the permanent layer of standing water will increase weed pressure, 

if not properly managed. New NERICA cultivars have been screened for their 

weed competitiveness (Rodenburg et al., 2009) and their performance under 

different hydrological conditions (Saito et al., 2010b). Screening protocols for 

selection for high-yielding and weed suppressive genotypes for irrigated rice 

without permanent water layer have been developed (Zhao et al., 2006). 

Marker assisted selection has been proposed as a method to increase selection 

efficiency, although a proper characterization of cultivation environments is 

needed (Manneh et al., 2007). Therefore, high quality field experiments where 

both management factors and the environment are well selected remain of 

utmost importance to characterize the genotypes under study. It is very likely 

that in future, quantitative trait loci (QTL) with a narrow validity will be 

identified to select for site and season specific environmental conditions. This 

thesis provides information on management options (irrigation regime, weed 

and N management), which will be used by farmers. Screening for ‘water-saving 

tolerant’ genotypes will need to take these into account. 

4.2 Temperature stress 

 In Chapter 3, it was shown how newly developed irrigated rice varieties 

were influenced by different environments. The irrigated NERICA variety 

WAS161 was least influenced by G×E interactions, providing farmers with a 

variety that yields well under a range of conditions. Given the sensitivity of rice 

to both high and low temperatures at critical stages, which drive a potential 

yield reduction, both the sowing window and varietal preferences may alter in 

the coming decades. In Chapter 4, the impact of temperature change on the 

cropping calendar is shown. Rice genotypes differ in their heat tolerance, with a 

difference of 3oC between tolerant and susceptible genotypes (Matsui et al., 

2001). Genotypes that either have a longer time of anther dehiscence or open 

their spikelets earlier were less sensitive to spikelet sterility under high 

temperature stress (Jagadish, 2007; Jagadish et al., 2008; Kobayashi et al., 

2011; Prasad et al., 2006). Crossings between Oryza sativa and both O. 

glaberrima and O. officinalis show potential to generate high-yielding heat 

tolerant varieties (Ishimaru et al., 2010; Jagadish et al., 2008). Molecular 

breeding tools have been developed to screen for heat tolerance (Endo et al., 

2009). In a genetic analysis for QTLs for heat tolerance, Jagadish et al. (2010a) 
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found promising QTLs on five different chromosomes. In the region of 

chromosome 1 where a QTL for heat tolerance was found, many QTLs for 

different abiotic stresses have been found, among others: vegetative stage 

drought tolerance such as leaf rolling and leaf drying (Price et al., 2002), 

rooting response to drought (Price et al., 2000) and leaf rolling under drought 

stress (Yue et al., 2008). For cold tolerance, genotypic variation is less. More 

pollen increases fertility, and as anther length is strongly correlated with the 

number of pollen, anther length is likely to play a role in cold tolerance (Saito et 

al., 2004). The risk of cold-induced spikelet sterility will decrease, and as such 

will become of lesser importance as a breeding objective. 

5 Implications for lowland rice management in West-Africa 

5.1 Water control 

 In West-Africa, lowland rice covers 55% of the 5.6 million ha under rice 

cultivation (Seck et al., 2010). It is cultivated under a variety of hydrological 

conditions from purely rainfed to completely irrigated (Andriesse and Fresco, 

1991). With an increasing degree of water control, farmers’ yields increase: 

water stress due to submergence or drought is less frequent, weeds and 

nutrients can be better managed and land preparation and harvest can be better 

planned (Becker and Johnson, 2001; Johnson and Kent, 2002; Touré et al., 

2009). Water-control is continuous and dynamic: a small intervention such as 

bunding of fields in an inland valley improves water-control significantly, but is 

easily destroyed by seasonal floods. Within irrigated perimeters, head and tail-

end fields differ in irrigation and drainage capacities. Maintenance of water 

control structures, such as water retention dams and canals is vital for their 

ability to control water. Within one perimeter or valley fields can differ in the 

degree of water control, and even between wet and dry seasons large differences 

in water-control can exist. Although methodologies to classify inland valleys 

have been proposed, it is generally agreed that there is a continuum from 

uncontrolled rainfed lowlands to fully controlled irrigated perimeters 

(Andriesse and Fresco, 1991; Van Duivenbooden and Windmeijer, 1995). The 

research presented in this thesis has been conducted under completely water 

controlled conditions, but are these results relevant for other lowland rice 

systems? 
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5.2 Along the water-control continuum 

 To give an answer to this question, it is important to sketch the 

differences between the rice cropping systems. Three typical sites along the 

water control continuum were characterized during various studies conducted 

by the Africa Rice Center. In Table 6.2 the main characteristics of the sites are 

shown. These sites can be classified in terms of water control: full at Boundoum, 

partial at Sapu and little at Ndour-ndour. The production intensity follows the 

same trend: high at Boundoum, moderate at Sapu and low atNdour-ndour. 

These sites are representative for the range of lowland rice cropping systems 

found in West-Africa (Seck et al., 2010; Windmeijer and Andriesse, 1993). 

 Rice cultivation differed at the three sites. At Boundoum, yield (four 

times), fertilizer applied, labour dedicated (five times) and production costs (ten 

times) were higher than at the Ndour-ndour site. For all abovementioned 

factors, at Sapu intermediate values were found. Noteworthy is the gender shift: 

at low-intensive site the largest percentage of woman rice farmers was found, 

while at the high-intensive site virtually no woman was found. Although rice 

was important in both Sapu and Ndour-ndour, a number of other crops were 

cultivated simultaneously in the wet season, typically for rainfed lowland rice 

systems (Erenstein et al., 2006). At the Boundoum site besides rice, tomato and 

onion were cultivated, however, not simultaneously. At this site farmers could 

devote all the available labour to rice cultivation, whereas at the other sites 

farmers had to divide the available labour among different crops.  The results 

I present emerged from questions raised for rice production systems such as 

those at Boundoum. In Chapter 2, weed and nitrogen management are 

discussed in relation to the irrigation regime. In some rainfed lowlands similar 

water regimes are experienced. Standing water is principally used to combat 

weeds. It showed that application of a layer of standing water alone will increase 

yields by between 0.3 – 4.5 t ha‒1, irrespective of other weed control strategies. 

Further, I found that a late application of herbicides (35 days after sowing) did 

not reduce yields compared with a timely application, irrespective of irrigation 

regime. The lack of interaction between irrigation regime and nitrogen 

application showed that under similar conditions (soil type, hydrology) nitrogen 

fertilizer can be applied under flooded or wet soil conditions. 
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Table 6.2: Geographical and agronomical characteristics of three sites and their rice 

cultivation system in Senegal and the Gambia (AfricaRice, 2006b; Sadio, 1989; Van Vugt, 

2007). 

 Site 

Characteristic Boundoum 
Senegal River 

Delta 

Sapu 
Gambia River 

Ndour-ndour 
Sine-Saloum 

Delta 
Geography    
Climatic zone Sahel Soudano-

Savannah 
Sahelian-
Savannah 

Latitude (N) 16o 13’ 13o 33’ 14o 08’ 
Longitude (W) 16o 01’ 14o 54’ 16o 06’ 

Rainfall (mm  y−1) 200 950 700 
Land form River delta River flood plain Wide valley 

bottom 
Cropping system    

Rice Cropping Dry season Feb. – Jun.* Mar. – Jul. - 

Wet season Jul. – Nov. Jul. – Dec* Jun. – Nov.* 

Water control  Dry season Full Full - 

Wet season Full Partial Little 

Number of crops cultivated 3 8 10 
Rice cultivation    
Rank of rice in among 
agricultural activities 

1st  1st  3rd  

Amount of fertilizer applied  
                         (kg N ha‒1) 

110 54 0 

Labour dedicated to rice  
               (man-day ha‒1) 

170 89 34 

Production costs for rice  
          (1 000 FCFA ha‒1) 

309 64 30 

Paddy yield (t ha‒1) 5.4 3.1 0.8 
Woman farmers (%) 1 86 76 
Size of rice field in ha (st. dev.) 2.4 (2.4) 0.48 (0.15) 0.57 (0.68) 
* Principal rice cropping season 

  

However, when fields are not bunded, top-dressing of fertilizer under 

conditions sych as those in Ndour-ndour, is not very effective, due to dilution 

(AfricaRice, 2006b).  

 The results from Chapter 3 show that it is important to breed for varieties 

that yield well for a range of sowing dates, as the climatic conditions may 

change significantly with a short delay in sowing date. Under rainfed lowland 

conditions, sowing date is determined by rainfall rather than by temperature, 

hence sowing date varies per year. It is therefore even more important to use 
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varieties that perform well at a range of sowing dates in the rainfed lowlands. 

Our results show that with an increase in temperature, the risk for heat sterility 

increases. Although the temperatures in West-Africa become less extreme when 

travelling south from the Sahel, the risk of heat sterility in the whole region will 

increase. Using climatic data and calibrated genotypic parameters will allow us 

to perform similar analyses as the one presented in Chapter 5 to quantify these 

effects at regional scale. The selected results show that for other rice-based 

cropping systems in West Africa, notably when breeding new varieties or 

developing agronomic options for lowland farmers, this thesis presents relevant 

insights. 

6 Conclusion 

 This thesis presents management options to increase the resilience of 

Sahelian irrigated rice farmers to global change. These farmers have a key role 

as reliable food producers to increase income and food security. Therefore, it is 

vital to maintain current irrigated rice production. Possible adaptation 

strategies for Sahelian rice farmers to decreased availability of irrigation water 

and to increased temperatures are presented. I show that it is possible to use 

less irrigation water and to maintain appreciable rice yields, and thus to 

increase water productivity. The effects of a temperature increase on the 

growing cycle and spikelet sterility are quantified and show that sowing date 

and cultivar choice may alter and remain the most important determinants of 

rice production. This thesis shows that there are options for adaptive 

management of irrigated rice in the changing environments of the Sahel to 

sustain production in the 21st century. 
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Summary	
 Given the erratic rainfall that prevails in the Sahel, irrigated agriculture is 

of major importance. The reliable irrigation water supply provided by large 

rivers such as the Senegal, Niger and Voltas increases food and income security 

enormously. In the majority of these areas, double cropping is possible. To 

harness the potential of Sahelian rice farmers to adapt to the variability of their 

continuously changing environments, this study experiments with rice 

management and explores options to sustain production in the 21st century. 

Detailed experiments and modelling lead to an improved understanding of the 

system, proposals for improved rice management in the Sahel, and set the 

agenda for future research. The objective was to develop management options 

to sustain rice production that can cope with the most prominent changes in 

climate and availability of irrigation water. A combination of two methods was 

used: field experiments and crop growth simulation models. The field 

experiments, performed at research stations of the Africa Rice Centre, Ndiaye 

and Fanaye, provided realistic and sound data which were used to calibrate 

existing models. Both research stations were representative for large areas of 

contrasting irrigated rice ecologies. 

 We investigated the possibility of saving irrigation water in rice 

production in a Sahelian environment across different nitrogen rates and weed 

control treatments (Chapter 2). A series of field experiments was conducted 

with four irrigation treatments, involving three water saving regimes using 

alternate wetting and drying (AWD) and a flooded control, and three weed 

management treatments. This was followed by two experiments with the same 

four irrigation treatments in combination with three nitrogen (N) application 

rates, at the same locations. Hence four irrigation regimes were tested over 

three seasons. Between 480 and 1060 mm of irrigation water was used in the 

water saving treatments compared with 800 to 1490 mm in the flooded rice 

treatment. Rice yields ranged from 2.3 to 11.8 t ha–1 in the water saving 

treatments, whereas in the flooded control the yields ranged from 3.7 to 11.7 t 

ha–1. In the wet season (WS), the treatments in which AWD was applied during 

part of the season resulted in the highest yields at both sites. In the dry season 

(DS), the continuously flooded treatment out-yielded other treatments, with the 
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exception of AWD in Fanaye. At the Ndiaye site, the control of weeds increased 

yields from on average 2.0 to 7.4 t ha–1 in the DS and from 1.4 to 4.9 t ha–1 in the 

WS. No weed control, in combination with AWD during the vegetative stage, 

reduced yields to below 1.0 t ha–1 in both seasons in Ndiaye. However, when 

weeds were controlled, crop yields obtained with a combination of AWD and 

flooding were comparable with those obtained in fully flooded plots receiving 

the same weed management at both sites in the 2005 WS. Internal N efficiency 

(kg grain [kg plant N] −1) was poorer at Ndiaye than at Fanaye suggesting that 

yields in Ndiaye are constrained by other factors than N. Through these 

experiments we demonstrated that it is possible to save irrigation water and 

improve water productivity in rice grown in a Sahelian environment. 

Maintenance of an AWD irrigation regime requires a high degree of water 

control. An irrigation regime for rice that starts as conventional (flooded), and 

then changes to AWD can save water with little or no yield loss, while 

maintaining low weed pressure and efficient use of N.  

 To assess the adaptability of rice genotypes to variable environments, we 

evaluated five irrigated rice genotypes, three new varieties, WAS161, a NERICA, 

IR32307 and ITA344, and two checks: IR64 and Sahel108, which is the most 

commonly grown rice variety in the region (Chapter 3). In a field experiment, 

rice was sown on 15 consecutive dates with one month intervals starting in 

February 2006. Yield (0-12.2 t ha–1) and crop cycle duration (117-190 days) 

varied with sowing date, genotype and site. Rice yield was very sensitive to 

sowing date and the associated temperature regimes. Spikelet sterility due to 

cold stress (T <22oC) was observed when the crops were sown in August 

(Ndiaye), September (Ndiaye and Fanaye) and October (Ndiaye and Fanaye), 

and heat stress (T >35oC) resulted in spikelet sterility when sowing took place in 

April (Ndiaye and Fanaye) and May (Fanaye). For all experiments the source 

and sink balance was quantified, which showed that yield was most limited by 

sink size when sowing between July and October. Variety Was161 was least 

affected by genotype × environment interactions, resulting in lower interactive 

principal component values. An increase in minimum temperature of 3oC could 

decrease spikelet sterility from 100 to 45%. 

 Crop growth simulation models are tools that can be used to calculate 

potential yield and perform yield gap analyses under known climatic conditions 
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(Chapter 4). Experimental data were used to calibrate both the DSSAT4 and 

ORYZA2000 models, whereas the model ORYZA_S, based on the model 

RIDEV, was already calibrated previously. According to ORYZA2000, the same 

cultivars needed 4000Cd more in Fanaye than in Ndiaye to complete their 

growing cycle. The calibrated ORYZA2000 model simulated phenology of the 

validation data-set well, but yield was underestimated. After calibrating DSSAT, 

different sets of genetic coefficients gave similar results. Genetic coefficients 

that reflected the observed phenology, resulted in substantially lower than 

observed yields. Simulations using the calibrated genotypic parameters by 

ORYZA_S and ORYZA2000 resulted in an increase of simulation error at 

sowing dates later in the year. The sensitivity analysis of the effect of genotypic 

parameters on simulation of phenology showed that ORYZA2000 was equally 

sensitive for all parameters, whereas ORYZA_S was particularly sensitive to a 

decrease in base temperature and an increase in optimum temperature. The 

performance of both ORYZA2000 and ORYZA_S was better than DSSAT4, and 

effects of parameter changes could be better quantified. Crop growth simulation 

is a powerful tool to predict yields, but local calibration at the approximate 

sowing date is needed to obtain useful results. 

 In the Sahel, temperature increases between 1.8 and 4.7oC are predicted 

by 2080 (Chapter 5). At certain growth stages, rice is sensitive to low (<22oC) 

and high (>35oC) temperature stress. An adapted version of the simulation 

model ORYZA2000 was used to simulate effects of temperature increase on 

sterility and crop cycle duration. The calibrated model was validated with an 

independent data-set. Minimal and maximal predicted temperature increases 

were compared with the current situation. The crop cycle of variety IR64, sown 

on every day of the year, was simulated. It resulted in a decrease of the cycle by 

10-30 days, depending on sowing date. For the minimum predicted 

temperature increase in Ndiaye, heat induced sterility became more important 

than the cold induced sterility with a peak of 69% sterility for rice sown in 

August. In Fanaye, heat-sterility was always above 56%, except for rice sown 

between September and November. Under the maximum predicted 

temperature increase, heat-sterility increased in Ndiaye: all sowing dates 

resulted in more than 57% sterile spikelets, except for rice sown in October. In 

Fanaye a similar pattern was observed: rice production was only viable when 
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sown from September to December (with a maximum sterility of 40%); sown in 

the other 8 months of the year sterility is >90%. Our study suggests that with 

projected temperature changes, timing of sowing and its consequences of the 

risk for crop loss due to sterility will remain the major determinant of rice yield 

along the Senegal River. We show that there is an urgent need for heat tolerant 

rice varieties. Without adaptation, sowing windows will change. In the worst 

case scenario we anticipate a change from a double to a single crop. 

 The same model was used to investigate the combined effects of 

temperature increase and reduction of irrigation water use (Chapter 6). The 

simulation results showed that when the temperature increases, the small 

effects of early drought stress are aggravated and biomass accumulation will 

slow down. Under temperature increase, grain yield was largely affected by heat 

induced sterility. As a result of water-stress, flowering of rice was delayed, and 

the growth cycle increased. A temperature increase in combination with water-

saving irrigation regimes will increase the risk for crop loss due to water stress.  

 This thesis provides information on management options (irrigation 

regime, weed and N management), which will be used by farmers. Screening for 

‘water-saving tolerant’ genotypes will need to take these options into account. 

The risk of cold-induced spikelet sterility will decrease, and as such will become 

of lesser importance as a breeding objective; however, heat-tolerance will 

become of major importance and as such should be a principal breeding target. 

For other rice-based cropping systems in West Africa, notably when breeding 

new varieties or developing agronomic options for lowland farmers, this thesis 

presents relevant insights. I conclude that good options do exist for adaptive 

management of irrigated rice in the changing environments of the Sahel to 

sustain production in the 21st century, if action is taken immediately. 
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Résumé	
 Compte tenu de l'irrégularité des précipitations dans le Sahel, 

l'agriculture irriguée revêt une grande importance. L’irrigation fournie par les 

grands fleuves tels que le Sénégal, le Niger et Volta augmente significativement 

la sécurité alimentaire et le revenu agricole des populations. Dans la plupart de 

cette zone la double culture est possible. Cette étude s’intéresse aux systèmes 

rizicoles irrigués et explore les options de gestion pour garantir une production 

durable au 21eme siècle. Les approches couplées d’expérimentation et de 

modélisation ont conduit à une meilleure compréhension du système, à des 

propositions de gestion adaptées aux conditions sahéliennes, et à des 

recommandations en termes de perspectives de recherche. L'objectif était de 

développer des options de gestion pour soutenir la production de riz qui doit 

faire face à une forte variabilité du climat et de la disponibilité en eau pour 

l'irrigation. Deux approches couplées ont été mobilisées lors de ces travaux : 

une approche par expérimentations en plein champ et une approche par 

simulations au travers de l’utilisation de modèles de cultures. Les 

expérimentations en plein champ, effectuées dans les stations de recherche de 

Ndiaye et de Fanaye du Centre du riz en Afrique, représentatives des zones de 

production agricoles sahélienne, a fourni des données pertinentes et réalistes 

qui ont été utilisées pour calibrer les modèles de culture existants.  

 Nous avons étudié les possibilités d’économie d'irrigation pour la 

production rizicole en conditions sahéliennes sous différents régimes azotés et 

pour différents niveaux de contrôle des adventices (chapitre 2). Une série 

d’expérimentation a été conduite comprenant quatre traitements d'irrigation, 

incluant trois traitements d’économie d’eau construits par alternance 

d’inondations et de sécheresse (AIS) et un témoin inondé en permanence, 

combinés à trois niveaux de contrôle des adventices. Une série 

d’expérimentation a été conduite avec les mêmes traitements d’irrigation 

combinés à trois traitements azotés. Enfin quatre traitements d’irrigation ont 

été expérimentés pendant 3 années climatiques. Entre 480 et 1060 mm d’eau 

d’irrigation ont été utilisés pour les traitements d’économie d’eau, contre 800 à 

1490 mm pour le témoin inondé. Les rendements on varié entre 2,3 et 11,8 t ha-1 

pour les traitements d’économie d’eau et entre 3,7 et 11,7 t ha–1 pour le témoin 
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inondés. Pendant la saison humide (SH), le traitement d’économie d’eau soumis 

à une alternance d’inondation/sécheresse pendant une partie du cycle de 

culture a conduit au plus haut rendement sur les deux sites. Pendant la saison 

sèche (SS), le témoin inondé a conduit au meilleur rendement sur le site de 

Ndiaye mais pas sur le site de Fanaye. À Ndiaye, le contrôle des mauvaises 

herbes a augmenté les rendements de 2,0 à 7,4 t ha–1 en moyenne pendant la SS 

et de 1,4 à 4,9 t ha–1 pendant la SH. L’absence de contrôle des mauvaises herbes, 

en combinaison avec l’alternance d’inondation et de sec pendant la phase 

végétative, a réduit les rendements à moins de 1,0 t ha-1 pendant les deux 

saisons. En 2005, lorsque les adventices ont été contrôlés, les rendements 

obtenus avec un traitement AIS ont été comparables avec les rendements 

obtenus avec le témoin inondé sur les deux sites. L’efficience de l’azote pour la 

production de grain (kg grain [kg N par plante] −1) a été plus faible à Ndiaye qu’à 

Fanaye suggérant que les rendements à Ndiaye ont été limités par d’autres 

facteurs que l’azote. Au travers de cette expérimentation, nous avons démontré 

qu’il était possible d’économiser de l’eau et d’améliorer l’efficience de l’eau dans 

les systèmes rizicoles sahéliens. Le maintien d’une AIS nécessite un haut degré 

de maîtrise de l'eau. Une conduite inondée suivie d’une AIS peut permettre 

d’économiser de l’eau sans pertes de rendement tout en limitant la pression des 

adventices et en garantissant une efficacité de l’azote élevée. 

 Afin d'évaluer l'adaptabilité des génotypes de riz à des environnements 

variables, nous avons évalué cinq génotypes de riz irrigué : trois nouvelles 

variétés : WAS161, un NERICA ; IR32307 et ITA344, et deux témoins: IR64 et 

Sahel108, qui est la variété de riz la plus cultivée dans le région (chapitre 3). 

Lors d’une expérimentation, le riz a été semé à 15 dates consécutives à 

intervalles d'un mois à compter de février 2006. Le rendement (0 à 12,2 t ha–1) 

et la durée du cycle des cultures (de 117 à 190 jours) varient selon la date de 

semis, le génotype et le site. Le rendement du riz a été très sensible à la date de 

semis et les régimes de température associés. Une stérilité des épillets a été 

observée à cause du stress thermique lié aux faibles températures (T <22oC) 

lorsque les cultures ont été semées au mois d'août (Ndiaye), septembre (Ndiaye 

et Fanaye) et octobre (Ndiaye et Fanaye). Une stérilité des épillets a été 

observée à cause du stress thermique lié aux fortes températures (T> 35 oC) 

lorsque les cultures ont été semées en avril (Ndiaye et Fanaye) et mai (Fanaye). 
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L’équilibre source/puit a été quantifié pour chaque expérimentation. La taille 

des puits a été plus limitant pour le rendement pour les semis de juillet et 

octobre. WAS161 a été la variété la moins affectée par les interactions génotype 

× environnement, entraînant une baisse des valeurs interactive en composantes 

principales. Une augmentation de la température minimale de 3oC pourrait 

réduire la stérilité des épillets de 100 à 45%. 

 Les modèles de cultures sont des outils qui peuvent être utilisés pour 

calculer le potentiel de rendement lié aux conditions climatiques et analyser les 

écarts avec les rendements obtenus en plein champs (chapitre 4). Les données 

expérimentales ont été utilisées pour calibrer les modèles ORYZA2000 et 

DSSAT4. Le modèle ORYZA_S, basé sur le modèle RIDEV, avait déjà été calibré 

précédemment. D’après ORYZA2000, 400 degrés jours supplémentaires sont 

nécessaires à Fanaye pour accomplir le cycle de culture. Le modèle calibré 

ORYZA2000 simule avec précision la phénologie de la culture mais sous estime 

le rendement. Après la calibration du modèle DSSAT4, l’utilisation de jeu de 

paramètres génétiques conduit à des résultats similaires. Les paramètres 

génétiques reflétant la phénologie conduisent à des rendements légèrement 

sous-estimés. Les erreurs de simulation d’ORYZA_S et d’ORYZA2000 

augmente avec les semis tardifs. L'analyse de sensibilité de l'effet des 

paramètres génotypiques sur la simulation de la phénologie a montré 

qu’ORYZA2000 était également sensible à tous les paramètres, et que 

ORYZA_S était plus sensible à une baisse de la température de base et à une 

augmentation de la température optimale. Les performances d’ORYZA2000 et 

ORYZA_S étaient meilleures que DSSAT4. Les effets des changements de 

paramètres pourraient être mieux quantifiées. Les modèles de culture sont des 

outils puissants pour prédire les rendements. Toutefois leur utilisation nécessite 

une phase de calibration afin d’obtenir des résultats pertinents.  

 Une augmentation des températures moyennes sahéliennes de 1.8 à 4.7 oC 

est prévue d’ici 2080 (chapitre 5). A certains stades de croissance, le riz est 

sensible aux faibles températures (<22 oC) ainsi qu’au fortes températures (> 35 

oC). Une version calibrée du modèle de simulation ORYZA2000 a été utilisée 

pour simuler l’effet de l'augmentation de la température sur la stérilité des épis 

et sur la durée du cycle des cultures. Le modèle calibré a été validé par un 

ensemble de données indépendantes. Les températures minimales et 
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maximales prévues ont été comparés à la situation actuelle. Le cycle de culture 

de la variété IR64, semées sur tous les jours de l'année, a été simulé. Les 

simulations indiquent une diminution de la durée du cycle de 10-30 jours en 

fonction de la date de semis. Avec le scénario d’augmentation minimale des 

températures à Ndiaye (+1.8oC), la stérilité liée aux fortes températures devient 

plus importante que la stérilité liée aux faibles températures et atteint jusqu’à 

69% pour les semis du mois d’août. A Fanaye, à l’exception des semis du mois 

de septembre et novembre, la stérilité liée aux fortes températures a toujours 

été supérieure à 56%. Avec le scénario d’augmentation maximale des 

températures (+4.7 oC), la stérilité augmente à Ndiaye : à l’exception des semis 

d’octobre, toutes les dates de semis conduisent à une stérilité supérieure à 57%. 

La même évolution a été simulée à Fanaye. Il en résulte une période de 

production fortement réduite : la stérilité est inférieure à 40% pour les semis 

effectués entre septembre et octobre alors qu’elle est supérieure à 90% pour les 

semis effectués les huit mois restants. Notre étude suggère que compte tenu des 

projections de changements de température, la période de semis et les 

conséquences associées en terme de stérilité des épillets sera le principal facteur 

déterminant les niveaux de rendements du riz le long du fleuve Sénégal. Nous 

montrons qu'il existe un besoin urgent pour des variétés de riz tolérant à la 

chaleur. Sans adaptation génétique, les fenêtres de semis vont fortement 

changer. Dans le pire des scénarios, la double culture annuelle ne sera plus 

possible et conduira à la réalisation d’un seul cycle de culture au lieu de deux 

actuellement. 

 Le même modèle a été utilisé pour étudier les effets combinés de la 

hausse des températures et la réduction de la consommation d'eau d'irrigation 

(chapitre 6). Les résultats des simulations ont montré que lorsque la 

température augmente, l’effet d’un stress hydrique précoce est aggravé et 

l'accumulation de la biomasse est ralentie. Sous l’effet de l’augmentation de la 

température, le rendement en grain a été largement affecté par la stérilité 

induite par les fortes températures. À la suite de stress hydrique, la floraison du 

riz a été retardée et la durée totale du cycle augmentée. Une augmentation de 

température combinée aux régimes d'irrigation économes augmentent les 

risques de pertes de récoltes dues au stress hydrique. 



Résumé 

149 

 

 Cette thèse fournit des informations sur les options de gestion techniques 

de la production rizicole irriguée (régime d'irrigation, gestion de l’azote, 

contrôle des adventices), qui seront utilisées par les agriculteurs. Le risque de 

stérilité des épillets induite par le froid diminuera. Un screening pour obtenir 

des variétés tolérantes aux fortes températures devra être entrepris pour 

permettre de prendre en compte ces options de gestion. La recherche de 

variétés tolérances aux fortes températures devra devenir un enjeu principal 

pour les sélectionneurs. Cette thèse propose des pistes pour l’adaptation aux 

autres systèmes rizicoles ouest africains. Je conclus que des options existent 

pour une gestion adaptée et durable du riz irrigué dans les environnements 

sahéliens au 21eme siècle, à condition que des mesures soient prises 

immédiatement.
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Samenvatting	
 Door de onregelmatige regenval in de Sahel, is geïrrigeerde landbouw 

daar van groot belang. De betrouwbare wateraanvoer voor irrigatie vanuit grote 

rivieren zoals de Senegal, Niger en Volta’s vergroot de voedsel- en 

inkomenszekerheid aanzienlijk. In deze gebieden is het mogelijk om twee keer 

per jaar rijst te verbouwen. Om de aanpassingsmogelijkheden van rijsttelers in 

de Sahel aan de continue veranderende omgeving te vergroten, is er in deze 

studie onderzoek gedaan naar teeltmaatregelen om de rijstproductie in de 21ste 

eeuw te waarborgen. Gedetailleerde experimenten hebben tot een vergroot 

inzicht in het productiesysteem geleid, tot voorstellen om de rijstteelt te 

verbeteren en tot het agenderen van toekomstige onderzoeksthema’s. Het doel 

was om teeltmaatregelen te ontwikkelen die er voor zorgen dat het  

productieniveau van rijst gehandhaaft blijft, ondanks grote veranderingen van 

het klimaat en de beschikbaarheid van water. Er is gebruik gemaakt van een 

combinatie van twee methoden: veldexperimenten en gewasgroeisimulaties. De 

veldexperimenten, die plaats vonden op de onderzoeksstations van het Africa 

Rice Center, Ndiaye en Fanaye in Senegal, zorgden voor realistische en 

betrouwbare data, die werden gebruikt om bestaande simulatiemodellen te 

calibreren. Beide onderzoeksstations zijn representatief voor grote gebieden 

met contrasterende omgevingen voor rijstteelt. 

 Wij hebben onderzoek gedaan naar de mogelijkheden om irrigatiewater 

te besparen in rijstproductie in de Sahel, in combinatie met verschillende 

onkruidbestrijdingsbehandelingen en stikstoftrappen (Hoofdstuk 2). Een serie 

veldexperimenten is uitgevoerd met vier irrigatieregimes, waarvan er drie 

waterbesparend waren met afwisselend bevloeide en niet-bevloeide 

omstandigheden (BNB) en één controlebehandeling met constante bevloeiing. 

Deze werden uitgevoerd in combinatie met behandelingen van 

onkruidbestrijding. Daaropvolgend werden op dezelfde plaatsen twee 

experimenten uitgevoerd met dezelfde vier irrigatieregimes in combinatie met 

drie stikstoftrappen. Op deze manier werden de irrigatieregimes over drie 

verschillende seizoenen getest. In de waterbesparende regimes werd tussen de 

480 en 1060 mm irrigatiewater gebruikt, terwijl in de bevloeide behandeling 

tussen de 800 en 1490 mm irrigatiewater werd gebruikt.  
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De rijstopbrengsten liepen uiteen van 2.3 tot 11.8 t ha–1 in de waterbesparende 

regimes en van 3.7 tot 11.8 t ha–1 in de bevloeide controlebehandeling. In het 

natte seizoen (NS), hadden de behandelingen waarin BNB in een gedeelte van 

het seizoen werd toegepast, de hoogste opbrengsten op beide plaatsen. In het 

droge seizoen (DS) presteerde de bevloeide controlebehandeling het best, met 

uitzondering van de behandeling waarin BNB werd toegepast gedurende het 

hele seizoen in Fanaye. In Ndiaye verhoogde onkruidbeheersing de opbrengst 

van 2.0 tot 7.4 t ha–1 in het DS en van 1.4 tot 4.9 t ha–1 in het NS. Geen 

onkruidbeheersing, in combinatie met BNB in het vegetatieve groeistadium, 

reduceerde de opbrengst tot onder 1.0 t ha–1 in beide seizoenen in Ndiaye. 

Niettemin waren de opbrengsten op beide plaatsen in het NS van 2005 in de 

behandelingen waar onkruid werd beheerst, gelijkwaardig bij de verschillende 

irrigatieregimes. De interne stikstofefficiëntie (kg korrelopbrengst [kg plant N] 

−1) was kleiner in Ndiaye dan in Fanaye, wat suggereert dat de opbrengst door 

andere factoren dan stikstof werd gelimiteerd. Door deze experimenten hebben 

we kunnen aantonen dat het mogelijk is om irrigatiewater te besparen en de 

waterproductiviteit te verhogen in de Sahel. Het volhouden van een 

waterbesparend irrigatieregime vergt wel een hoge graad van controle over het 

water. Een irrigatieregime dat begint als bevloeid, met een laag water op het 

veld, en halverwege verandert naar waterbesparend kan irrigatiewater besparen 

met minimale oogstverliezen, terwijl het onkruid beheerst wordt en stikstof 

efficiënt wordt gebruikt. 

 Om de geschiktheid van rijst voor het veranderlijke weer van de Sahel te 

beoordelen, hebben we vijf rassen getest, drie nieuwe rassen: WAS161 (een 

NERICA), IR32307 en ITA344, en twee standaardrassen: IR64 en Sahel108, het 

meest populaire rijstras in de regio (Hoofstuk 3). In een veldexperiment werden 

deze rassen op 15 opeenvolgende maanden gezaaid, beginnend in februari 

2006. De opbrengst (0-12.2 t ha–1) en groeiduur (117-190 dagen) veranderden 

onder invloed van de zaaidatum, ras en plaats. De opbrengst was erg gevoelig 

voor de zaaidatum en de daarmee samenhangende temperatuur-regimes. 

Steriliteit van de bloemen in de aar, veroorzaakt door lage temperaturen 

(<22oC), werd waargenomen in de proeven die in augustus (Ndiaye), september 

(Ndiaye en Fanaye) en oktober (Ndiaye en Fanaye) werden gezaaid. Steriliteit 

door hittestress (>35oC) werd waargenomen in proeven gezaaid in april (Ndiaye 



Samenvatting 

153 

 

en Fanaye) en mei (Fanaye). Voor alle proeven is de verhouding ‘source sterkte’ 

en ‘sink sterkte’ bepaald, hieruit kon worden geconcludeerd dat de opbrengst 

van rijst die tussen juli en oktober was gezaaid, het meest gelimiteerd werd door 

de ‘sink sterkte’. Het ras WAS161 werd het minst door de ras × 

omgevingsinteracties beïnvloed, wat resulteerde in lagere waarden voor de 

‘interactive principal component’. Een verhoging van de minimum temperatuur 

van 3oC zou de steriliteit van 100 tot 45% kunnen verlagen. 

 Gewasgroeisimulatiemodellen zijn gereedschappen, die kunnen worden 

gebruikt om potentiële opbrengsten te berekenen en om een analyse van de 

kloof tussen potentiële en aktuele opbrengsten te maken (Hoofdstuk 4). 

Experimentele data zijn gebruikt om de modellen DSSAT4 en ORYZA2000 te 

calibreren; het model ORYZA_S, gebaseerd op het model RIDEV, was in een 

eerdere studie al gecalibreerd. Volgens ORYZA2000 hadden dezelfde rassen 

400 graaddagen meer nodig in Fanaye dan in Ndiaye voor hun volledige 

groeicyclus. Het gecalibreerde model ORYZA2000 simuleerde de fenologie van 

de validatie data-set goed, maar de opbrengst werd onderschat. Nadat DSSAT4 

was gecalibreerd, gaven verschillende combinaties van genotypische parameters 

dezelfde resultaten. Genetische coëfficiënten die de geobserveerde fenologie 

goed weergaven resulteerden in gesimuleerde opbrengsten die lager waren dan 

de waargenomen opbrengsten. Bij het gebruik van de gecalibreerde modellen 

ORYZA2000 en ORYZA_S nam de simulatiefout toe met de zaaidata later in het 

jaar. De prestatie van ORYZA2000 en ORYZA_S was beter dan die van 

DSSAT4. Gewasgroeisimulatiemodellen vormen een krachtig gereedschap om 

opbrengsten te voorspellen, maar locale calibratie blijft nodig om bruikbare 

resultaten te genereren in toekomstige situaties. 

 In de Sahel worden temperatuursverhogingen van 1.8 tot 4.7oC voorspeld 

voor het jaar 2080 (Hoofdstuk 5). Tijdens bepaalde groeistadia is rijst gevoelig 

voor stress door lage (<22oC) of hoge (>35oC) temperaturen. Een door ons 

aangepaste versie van het model ORYZA2000 is gebruikt om de effecten van 

temperatuursstijging op de groeiduur en steriliteit van de bloemen in de aar te 

simuleren. Het gecalibreerde model werd gevalideerd met een onafhankelijke 

data-set. De modelresultaten bij de minimale en de maximale 

temperatuurstijging werden vergeleken met de huidige situatie. De groeiduur 

van het ras IR64, gezaaid op elke dag van het jaar, werd gesimuleerd.  
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De resultaten lieten een afname zien van de gesimuleerde groeiduur met 10-30 

dagen, afhankelijk van de zaaidatum. Op dit moment is de kans op steriliteit een 

groot probleem. Voor de minimale temperatuurstijging in Ndiaye, werd de 

steriliteit door hittestress belangrijker dan die veroorzaakt door koudestress, 

met een maximum van 69% voor rijst gezaaid in augustus. In Fanaye, leidde 

hittestress altijd tot een steriliteit van meer dan 56%, behalve voor rijst die 

tussen september en november was gezaaid. Bij de simulatie van de maximale 

temperatuurstijging steeg de aan hittestress gerelateerde steriliteit in Ndiaye: 

voor  alle zaaidata werd meer dan 57% steriliteit gesimuleerd, behalve als de 

rijst in oktober werd gezaaid. Een vergelijkbaar patroon werd in Fanaye 

waargenomen: rijstproductie was alleen mogelijk wanneer er tussen september 

en december werd gezaaid (met een maximale steriliteit van 40%); in de andere 

acht maanden werd meer dan 90% steriliteit gesimuleerd. Onze studie 

suggereert dat door de voorspelde temperatuursstijgingen, de zaaitijd en 

dientengevolge het risco op steriliteit, de meest bepalende factor voor de 

rijstopbrengst langs de Senegal rivier zal blijven. Wij laten zien, dat er urgente 

behoefte is aan hitte-tolerante rassen. Zonder aanpassingen zal het zaaitijdstip 

moeten veranderen om steriliteit tot een minimum te beperken. In het slechtste 

geval is het aan te bevelen om van dubbele teelt naar enkele teelt over te gaan. 

 Het aangepaste ORYZA2000 model is ook gebruikt voor een onderzoek 

naar het gecombineerde effect van waterbesparende irrigatieregimes en 

temperatuurstijging (Hoofdstuk 6). De resultaten van de simulaties lieten zien 

dat als de temperatuur zou stijgen, kleine effecten van vroege droogtestress 

worden verergerd en dat aangroei van biomassa wordt vertraagd. Bij een 

stijging van de temperatuur werd de korrelopbrengst beperkt door hitte 

gerelateerde steriliteit. Door vochttekort werd de bloei vertraagd en de 

groeiduur verlengd. Een stijging van de temperatuur in combinatie met 

waterbesparende irrigatieregimes zal het risco op opbrengstderving door 

vochttekort vergroten. 

 Dit proefschrift verschaft informatie over verschillende teeltopties 

(irrigatieregime, onkruid- en stikstofbeheer), die door telers in praktijk kunnen 

worden gebracht. In de veredeling zal tijdens de selectie van genotypes voor 

tolerantie tegen waterbesparende irrigatieregimes met deze opties rekening 

gehouden moeten worden. Het risco van steriliteit door koudestress zal 



Samenvatting 

155 

 

verminderen en dus van minder belang worden als selectiedoel, maar  

hittestress zal toenemen en dus binnen de veredeling een zeer belangrijk 

selectiedoel vormen. Voor andere rijstteeltsystemen in West Afrika, zeker voor 

de veredeling en ontwikkeling van teeltmaatregelen, zijn in dit proefschrift 

relevante inzichten te vinden. Ik concludeer dat er goede opties zijn voor 

aangepaste teelt van geïrrigeerde rijst in de veranderlijke omgeving van de 

Sahel waarmee de productie in de 21ste eeuw kan worden gehandhaaft, mits er 

nu actie wordt ondernomen. 
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