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PREFACE

Studies end with research, or do they start wieaech? Anyway, this topic was chosen after long
time of deliberation and consultation with supewvss | wanted to do something which was not part of
my previous background and research should have gttention from start till the end. Remote
sensing is interesting as experienced from thed®i@ensing course, so why not a topic on Remote
Sensing or something that is related to Remotei®gnSo | made this choice on soil spectroscopy,
involving a very small part on lab work followed lots of analysis.

Furthermore, soil science is interesting and thalipation spectroscopy offered me two things: this
research topic and my interest in one of my faweuwrourses from long time ago was awakened again:
Soil Science. So, | also refreshed my soil scidkmmavledge for this research. In the end, this netea
remained interesting throughout the time of conidgat.

To my supervisor: thanks for the opportunity, patie and supervision. This has been a very
interesting part of my study. Sitting and thinkiagy the start not knowing where to start, in the rot
knowing where to end.

To the readers: enjoy this masterpiece.

Clif,

Wageningen, June 2011.






SUMMARY

In this study PLS regression is used to establistelationship between soil reflectance spectra
measured under laboratory conditions and threepsoflerties (Soil Organic Matter, N-total and pH).
The objective of this study was to develop, implatrend validate stratification methods to improve
soil properties estimations. Three stratificatioetinods were developed and tested. Two stratificatio
methods, i.e. Lithological and Land Use stratificatwere developed with a Soil and a Land Use map
of the Netherlands, and one stratification methab wased on Wave-length Based Discriminant
Analysis (WBDA) which only uses the spectral dafasoil samples. Lithological stratification
produced 4 soil clusters: clay, peat, zavel and ,sahile Land Use stratification produced 3 cluster
agricultural land, forest and nature areas. WBDwtHication produced three clusters of a specific
SOM range (A: <5%, B: 5-10% and C: >10%).

Prediction models were developed with the clustetath sets and the predictive performance of
developed models was evaluated with the predistiagstics: R RPD and RMSE.

| expected that the soil properties predictions ibfamprove when they are based on stratified data
sets. Stratification indeed resulted in improve@dgtions. However, the improvement was not
achieved with all developed models. ImprovemensOM prediction was achieved with a clay, peat
and zavel model but also when SOM content was giesdlin agricultural, forest and nature samples
with a non-clustered Land Use model. ImprovementNofprediction was achieved with a peat,
agricultural and nature model, and when Nt coniermay, zavel, and forest samples was predicted
with a non-clustered Soil Type or Land Use moddadtt®& pH prediction was achieved with a peat
model and when pH was predicted in clay, sandcalgural, forest and nature samples with a non-
clustered Soil Type or Land Use model.

Stratification based on WBDA produced partly betpeedictions. This method has the potential to
produce very accurate predictions but due to thk af allocating spectra in wrong classes this
potential is reduced drastically. This method ndedse improved further.

A result of the stratification methods is a deaisicee which allows to select a model to predisoi
property of interest (SOM, Nt or pH) with a befoael indicated accuracy.

Key words: PLSR, ParlLeS, stratification, VNIRS, iimanetrics, soils, The Netherlands
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1. Introduction

1.1 Context and Background

The upper soil horizon (A) contains useful inforioatfor farmers and decision makers. Chemical,
physical, and mineralogical properties are esdefdiaidentifying the soil characteristics and are
usually described in detail by soil scientists #meh validated and elaborated by laboratory analyse
(Ben-Doret al., 2008a). But when assessing soil quality many@aperties are involved which vary
in space and time (Doraet al., 1994; Doelman and Eijsackers, 2004; Cécilkinal., 2009).
Researchers acknowledge that in order to meetrioiiat of data required for statistical deduction in
soil monitoring the current soil survey methods én@ome drawbacks, i.e. complicated, expensive,
time and money consuming, destructive and oftenireaquse of many chemical reagents (Ben-Eor
al., 2008a). Therefore, other time- and cost efficimethods for soil analysis could be an alternative
to replace or complement the current analyticahoes (Zornozat al., 2008).

Other analytical techniques would make rapid samgplnd determination of, for example Soil
Organic Carbon (SOC) values, at the field and majidevel possible (Steverms al., 2008). One of
those techniques is Visible and Near Infrared Specopy (VNIRS) (Zornozat al., 2008). VNIRS
provides an alternative to chemical analysis (Stewt al., 2008). The advantages of using NIR
reflectance spectroscopy include the simple sapngld¢reatment (sieving of soils), no use of cheinica
reagents, its non-destructive nature, and thetfattit is rapid, inexpensive and accurate for yal
(Zornozaet al., 2008).

Using VNIRS has resulted in models which predidt pmperties. The problem is that these models
do not always predict the soil property correct aodsequent.

Van Groenestijn (2009) suggested that a solutioinfproving model robustné8smight be to create
training sets based on a certain range of thepsoperty in question. One conclusion of her results
(for Soil Organic Matter, SOM) was that by creatstmatified training sets for a specified rangsaf
properties and using them for calibrating soil @y prediction models, model robustness can be
improved.

Spectral stratification methods (i.e. clusterindiietr can be used to improve soil property estinmatio
are thus needed, which will be the focus of thseasch.

1.2 Problem definition

A wide range of soil properties such as the totah,i water content, mechanical compositions,
carbonate, and organic carbon can be derived thraafiectance spectroscopy under laboratory
conditions if advanced analytical techniques sushsificial Networks? and Partial Least Square
Regression analysis are used (Udelhosteah., 2003; Ben-Dokt al., 2009).

One of the main gaps in effective monitoring ofl spiality with NIRS is the building of NIRS based
regression models capable of assessing soil condifat the regional scale across various soil types
Shepherd and Walsh (2002) proposed the use ofpediral libraries as a tool for building risk-bése
approaches to soil evaluation. In the spectralatijprapproach, soil properties are measured
conventionally for a selection of soils represeméadf the diversity of the studied region, andnthe
calibrated to soil reflectance spectra (Céciibal., 2009).

But building NIR spectral libraries for soils ragseseveral problems, one of which is that the
gquantitative analysis of soil spectra requires daraged statistical techniques to discern the raspo

of soil attributes from spectral characteristiceii@&zet al., 2008b).

© marked words are explained in appendix I.



Various authors have shown the effectiveness of ifiectance spectroscopy in estimating macro-
and micronutrients in soils, physical charactersstind biochemical properties (Zorn@tal., 2008).
Most of all studies have been performed with SOMase of many properties and applications of
SOM.

Soil organic matter is mainly concentrated in the AO horizon. It is exposed to the sun’s radiation
which makes it a perfect property to be assessedthby Imaging Spectroscopy technology.
Furthermore, soil organic matter is responsiblerf@ny soil chemical and physical properties and
processes such as compaction, fertility, soil stmecstability, and it constitutes one of the major
resources in the global carbon cycle (Stewatias., 2008; Ben-Dokt al., 2009).

Studies have shown that under laboratory conditisiR spectroscopy coupled with multivariate
calibration can accurately determine organic mafaacios-Orueta and Ustin, 1998; Sa@ydl.,
1998; Reeves llkt al., 1999; Chang and Laird, 2002; Fidéneioal., 2002; Reevest al., 2002;
Kooistra et al., 2003; Gome=zt al., 2008b) and experiments have shown that it isideaso use
spectral indices derived from laboratory measurésndn predict SOC in various soil types
(Bartholomeuset al., 2008). However, a large range in SOC is requfoedthe calibration of the
model, since extrapolation beyond the SOC rangéhéntraining datasets results in large errors
(Bartholomeust al., 2008).

SOC can be spectrally measured with a reasonableaay level, depending on the type of instrument
and environmental conditions (Steveasal., 2008). Stevenst al. (2008) studied the accuracy
between portable and laboratory spectroscopy andiwded that portable spectroscopy is equivalent
to laboratory spectroscopy when measuring SOC usplecific surface conditions (low variation in
moisture content of the soil surface, low roughnedssence of vegetation) and appropriate pre-
treatments able to extract information from noiggdira.

Other soil properties such as texture, metals, ptH BC have been studied to some extent by many
researchers, e.g. different forms of C or N suctots-, organic- and inorganic- (carbonate) C asd
well as organic- active- and biomass-C or N, butmimeralizable-N (Reeves Iét al., 1999; Reeves

Il and McCarty, 2001; Chang and Laird, 2002). Risswith texture (sand, silt and clay) on a variety
of data sets have similarly produced excellentlte¢Reeves lll, 2010).

Given the fact that chemical and physical analydespils are expensive and time consuming and that
soil spectral information can easily be gathered abn-destructive way makes it attractive to hee t
soil spectral information for soil property predicts. But soil prediction models based on spectral
measurements yield unsatisfactory results when déheyapplied for soil types which are not included
in the calibration phase. Also highly variable dats on which these models are based limit the
implementation of these models and spectroscopggtimations at local scale. Stratification of the
spectral measurements before the development ofdldel can improve the prediction result.

This thesis will therefore focus on creating tragsets based on a certain range of a soil propady
use these for calibrating soil property predictioodels to improve model robustness.



1.3 Using VNIRS for soil property estimation

Spectral reflectance characteristics of soils leerésult of their physical and chemical propersied

are influenced largely by the compositional natofesoils in which main components are inorganic
solids, organic matter, air and water (van der Maet de Jong, 2002). Soils may be identified by the
reflectance characteristics (Condit, 1970) becapseific wavelengths can describe the entire splectr
curve by specific correlation with “soil energietat represent the soil chromoph@Ben-Doret al .,
2008b) A chromophore is a parameter or substance (clamicphysical) that significantly affects
the shape and nature of a soil spect(iBan-Doret al., 2008b) A given soil sample consists of a
variety of chromophores, which vary with the enmimental conditions and the status of the five soil
formation factors (climate, topography, parent mateorganic matter, and time). Often the spectral
signals related to a given chromophore overlap with signals of other chromophores and thereby
render the assessment of a signal’s chromophoreré&fh the spectral reflectance of a given sample is
the result of the entire chromophore interactiothulie incident electromagnetic energy, the rasgilti
spectral curve can serve as a footprint to thernbphore’s overall existence in the examined matter.
(Ben-Doret al., 2008b).

Soil chromophores can be divided into two categordemical and physical (Ben-Dor et al., 1999).
Chemical chromophores are those materials thatrlabsoident radiation in discrete energy levels.
Usually the absorption process appears on a refleet spectrum as a feature whose position is
attributed to specific chemical groups in variotucural configurations (overtone, combination
modes, and electronic processes). All featurehénMNIR-SWIR spectral regions have a clearly
identifiable physical basis. In soils, three magbemical chromophores can be roughly categorized as
follows (Ben-Doret al., 2008b): (1) minerals (mostly clay, iron oxideinpary minerals-feldspar, salt,
and hard to dissolve substances such as carbommtesphates), (2) organic matter (fresh and
decomposing), and (3) water (solid, liquid, and jgiagses).

Physical chromophores are properties that affecbtterall spectral region and a particular waveband
position, or in other words, do not relate to theroical functional group. Examples of these are
particle size variation and refraction indexes ofmaterial that changes from one illumination
condition to another (Ben-Deat al., 2008b).

Spectral signatures in relation to soil information

Spectral signatures of materials are defined byr tleflectance, or absorbance, as a function of
wavelength. Under controlled conditions, the sigreg are due to electronic transitions of atoms and
vibrational stretching and bending of structuralugrs of atoms that form molecules and crystals. The
fundamental vibrations of most soil materials canftwund in the mid-infrared (MIR) region, with
weaker and broader overtones and combinations foutig: near-infrared (NIR) region. For example,
the C—H stretch fundamental absorption featurebesfound at-3.4 um in the MIR, with overtones
at~1.7, 1.15, and 0.8am in NIR (Workman and Springsteen, 1998). Similadiay minerals have
diagnostic overtone and combination absorptionufest in the NIR region: the O—H stretcff 1
overtone at~1.4um; the O—H stretch, ¥ bend combination at1.9 um; the O—H stretch, metal-OH
bend combinations at2.2—-2.3um; and many minor absorption features (Hunt, 1%R@éhcz, 1999).
The secondary Fe-oxyhydroxides hematite and gee#né also easily identified in the VNIR region,
with broad electronic absorptions at higher ené¥gig wavelengths (0.7-1.0m) as well as in the
VIS region (0.4—0.7um) giving rise to the distinctive red and yellowaas (Scheinosét al., 1998;
Scheinost and Schwertmann, 1999). Brown (2007¢stHtat clays and to a lesser extent organic
matter have well-recognized diffuse reflectanceogiitfon features in the VNIR region related to thei
basic chemistry and mineralogy, which gives a nededelieve that combining local samples with a
global soil-spectral library could improve on localibration samples alone for the local predictién
SOC, clay and clay mineralogy.



In the NIR region, the radiation is absorbed bydtf=rent chemical bonds, such as C-H, N-H, S—H,
C-0 and O-H of any chemical compounds presenteirsédmple. Moreover, the radiation is absorbed
in accordance with the concentration of these camgs. As a consequence, NIR reflectance spectra
basically contain information about the organic position of a soil sample. Organic matter has
distinct fingerprints that relate to several fuaotl groups (e.g., carboxyl C-H, hydroxyl O-H, and
amine N-H) in the organic compounds (Ben-Dor andiBal995). The NIR spectrum results from the
overtones and combinations of fundamental vibrabands for each of the chemical bonds, which are
more strongly absorbed in the mid-infrared (MIRjio® (Zornozeet al., 2008).

Organic matter has a very important influence angpectral reflectance properties of soils because
amounts exceeding 2% are known to have a maskfegtefn spectral reflectance thus reducing the
overall reflectivity of the soil and reducing (asdmetimes completely obscuring) the diagnostic
absorption features. Thus soils with a high (>2@¥punt of organics appear dark throughout the 0.4
to 2.5 um range. In contrast, less decomposed Isa¥s higher reflectance in the near-infrared mregio
and enhanced absorption features (van der Meededdng, 2002).

1.4 Difficulties using VNIRS for soil property estmations

Comprehensive studies over the past decade shdwaethe VIS (400-700 nm), NIR (700—-1100 nm),
and SWIR (1100-2500 nm) spectral regions serve gsowerful tools for recognizing soils
qualitatively and quantitatively (Ben-Dat al., 2009). But still, as a consequence of overlapping
bands, NIR information cannot be directly interptetffrom the obtained spectra. NIR reflectance
spectroscopy is based on the use of calibratiangyled with chemometric techniques, which utilize
absorbance at many wavelengths to predict partiquiaperties of a sample (Batten (1998) cited in
Zornozaet al.(2008)).

Partial Least Square (PLS) regression has been oatyrased to build prediction models for SOC
(Bartholomeust al., 2008). In the PLS regression approach, the fagcsum is used to establish a
linear regression model where the significant imfation contained in the VNIR/SWIR spectra is
concentrated in a few latent variables that arémiped to produce the best correlation with the
desired property of interest (Gometzl., 2008a).

PLS reduces the NIR matrix to a few componentsh siscin a principal component analysis (PCA),
but during the components extraction step in Ph8,data of the target parameter to be estimated is
taken into account. The number of PLS componeptedtied PLS-vectors) used is the “factor n” of
the PLS regression (e.g. n-factor model). The fR&iS-vectors are those which provide more
information about the target parameter. In generahs, models with few factors (or latent variaples
are preferred, because the higher the rank usedijgher the noise included (Zornaatal., 2008).

An important drawback of multivariate calibrationodels is the comparatively large number of
training set samples required. Some complex méenay require hundreds or even thousands of
samples to be tested and spectra measured befoitable set of training samples can be identified
(Roberts and Workman, 2004). In order to give tleeleh the best chance to learn to recognize the
information for the constituents of interest, itimsportant to train it, using samples that match th
unknown as closely as possible (Roberts and Work@@®4). Another reason to use a large number
of samples for calibration is to allow more factiorshe model. There must be enough samples/factors
to account for the variability in the real sampthat will be predicted as unknowns (Roberts and
Workman, 2004).

Another major drawback is the complexity of thensf@r of prediction models from one sensor to
another. Sensor characteristics like wavelengthtipos bandwidth or number of bands, which
requires new model calibrations for each sensortiiBbmeuset al., 2008).

The variance of the sample set used to produce ¢dilibration equations also determines both
robustness (i.e. applicability to a wide rangearhples) and accura@yfor a particular application. A



training set that includes a wide variety of sanigiges and a large constituent range will allow a
calibration model where a wider range of materiasy be analysed, but with a resultant loss in
accuracy. If the training set has a small variainceample type and a narrow constituent range, the
accuracy for analysed samples within the rangengseased, but fewer unusual samples can be
analysed with confidence using this approach. Thergenerally a trade-off between calibration
performance and calibration robustness. The rofilest applicable to a wide range of samples)
calibration is used to detect outliers, while tleelidated calibration is used to accurately meathae
constituent values of the normal samples (Robads/dorkman, 2004).

Enough samples should be used to model the datbiliy: the more data, the higher the confidence
in the analysis and in the statistics (DuckworthRoberts and Workman, 2004). Another reason to
use a large number of samples for calibration ialliv more factors in the model. If the trainiref s
has a small variance in sample type and a narrastitoent range, the accuracy for analysed samples
within the range is increased , but fewer unusaaies can be analysed with the confidence using
this approach. Thus, for quality control procedumrsge may wish to have both calibrations available.
The robust (i.e. applicable to a wide range of dag)pcalibration is used to detect outliers, wifile
dedicated one is used to accurately measure trstittemt values of normal samples (Westerhaus in
Roberts and Workman, 2004).

1.5 Soils of The Netherlands

The solil profile in The Netherlands is arbitrardgfined as the 0 — 120 cm layer of the sediment
(excluding the litter layer). The different layesbserved in the soil profile can have a geogenetic
origin (different formations) or a pedogenetic drige.g. as a result of organic matter accumulation
the topsoil or transport of secondary Fe/Al-(hydijles. In the latter case, these are termed haizon
which are the basic properties used in further cdassification (van der Veer, 2006) These horizons
result from various soil forming processes. Thaskferming processes are in turn determined by a
variety of soil forming factors, which are: paranaterial, climate and vegetation, topography and
hydrology, time (soil age) and human impact. In Netherlands, the human impact on soil forming
factors as hydrology, topography and soil age, el a on the geogenic layering of the soil profile
has been extensive (van der Veer, 2006). Becaue dfemendous impact mankind has had on the
soil profile and soil properties, it should be adesed one of the most important soil forming fasto

in the Netherlands.

In the Netherlands there are hardly any soils fanme consolidated rock. Roughly half of the mineral
soils are formed in alluvial sediments, mostly marclay and to a lesser extent river clay. Therothe
half of the mineral soils are derived from aeoféasediments. The latter are mostly loam-poor and
slightly loamy cover sands; a small part consi§the transitional sediments between cover sands an
loess, viz. the loamy sands and sandy loams, whenest of the loess comes under the silty loam
class (de Bakkest al., 1989).

At the highest level of the classification, fiveders are discerned which form 5 major soil types in
The Netherlands (van der Veer, 2006): vague sedds(that show very little soil formation), earth
soils (thick Al-horizon), podzolic soils (podsolizm), peat soils (strong accumulation of organic
matter) and brick soils (illuviation).

Peat soils have been formed during the Holocene on bothmaglays and older sandy deposits.
With the current classification, peat soils areirted by having peaty material sensu lato (including
‘moerig’) over a depth of at least 40 cm within firet 80 cm profile. This means that these sads c
have a substantial mineral topsoil (either sandglayey) and/or have sand or clay deeper in the
profile. The sandy deeper soils can have a poddaizon derived from earlier soil formation.

! - information on soil classification has beeniested mainly from the PhD-thesis from Van der V606)



Peat soils are further subdivided on the basib®brganic matter content of the topsoil, which lsan
mineral (earthy peat soil) or organic (raw peats§oirhe so-called raw peat soils are rare anddoun
locally throughout the Netherlands, often in nattegerves. Earthy peat soils are common and often
used as agricultural land. Here the mineral topra@an be of depositional origin (marine/fluviakite

the result of levelling.

Podzol soils formed exclusively in the sandy Pleistocene sedisi They are defined by the
presence of a clear podzol-B-horizon below a depth0 cm and lack of a thick anthropogenic Al-
horizon (< 50cm).

Brick soils: were all formed in loamy or clayey material, mgiloess and to lesser extent some old
fluviatile” deposits. Brick soils are defined by the pre-emieeof a textural-B-horizon (brick layer)
that starts within the first 80 cm of the profilehe textural-B-horizon (brick layer) that startghim
the first 80 cm of the profile.

Earth soit: have been formed mostly in the sandy Pleistocgegosits, but are also found on
Holocene clay and sand deposits. Earth soils asacterized by a substantial mineral (humus rich to
moderately humus poor) Al-horizon, which was formmda biological degradation of organic
material, and/or raising with organic material, thesods and dredged mud.

Vague soils& make up a considerable part of the Netherlanuis,give its pedology a rather unique
character. Vague soils are characterized by tHedasubstantial soil formation and occur commonly
in the younger Holocene deposits (both sand ang) aflathe NL. Especially in recently reclaimed
coastal areas and inland lakes, the time of som#bion is very restricted (700-30 years) and these
soils have only developed a shallow A-horizon. Aldee inland and coastal dunes are of very
restricted age and show very little horizon formatiAs such, the composition of these soils will be
largely comparable to that of the unaltered pamneaterial.

Furthermore , the soil classification can be basethe type of parent material or on the texturg an
mineralogy. Based on the different types of pameaterial in the Netherlands the soils are cladgical
grouped into five districts: sand, loess, peawifitie and marine clay (de Bakker (1987) cited/am
der Veer (2006)). This classification of parent enals is more closely related to the texture
properties of the sediment.

A. Soil classification based on type of parent matial

Sand:

the parent material of the sand district consisitnip of aeolean deposits of the Late Pleistoceyes a
the so-called cover sand deposits. Much youngelearadeposits include the inland and coastal
dunes. The inland dunes are medium sized non-ealoarsands. The coastal dunes are restricted to
the outermost coastal areas of the Netherland=oritrast to the inland dunes, the coastal duneb&an
calcareous, especially in the deeper profile (ven\tker, 2006).

Loess:

the parent material of the loess district (or loasoys after Stiboka (1965)) consists of silty @eol
sediments and can texturally be classified as kilfyn or sandy loam. The occurrence of the loess
close to or at the surface is confined to the sattand south eastern part of The Netherlands and
cover roughly 2% of the land surface (van der V2egg).

Peat:

the profiles in the peat district are defined agrga high organic matter contents over at le@stm

of the first 80 cm of the profile. (van der Veef0B). Since Roman times, much of the peat has been
excavated. As a result, there are few profiles tledt have peat over the length of the profile. The
majority of peat lands have a non-organic sandglayey top layer, which is often of anthropogenic
origin (van der Veer, 2006).



Fluviatile district:

the parent material in the fluviatile districts s@ts mainly of fluviatile clay and sand depositgdhe
Rhine, Meuse and their tributaries. These depoaitshe calcareous or non-calcareous and often show
a wide variety of grain size distributions rangfngm coarse sands to heavy clay; also sandy deposit
as well as sandy to heavy clays (van der Veer, 2006

Marine district:

The parent material in the marine clay districtsists of tidal, intertidal and perimarine deposits
the North Sea. The deposits are often calcaredwddl [sagments) and their texture ranges mainly
from fine sand to (heavy) clay. Especially in theuth western parts of the Netherlands the layer
consists of fine sand and sandy to silty clays lalso found at the surface of the large poldesarat
the central lake of the Netherlands. Large aredsdmarine district consist of either lakes orstah
areas that were reclaimed (van der Veer, 2006).

B. Soil classification based on texture

Soil texture classes are based on the grain siopasition of the mineral soil parts. Non-aeolead an
aeolean deposits (both sand and other heavier inlatare classified according to the clay or loam
percentage (Kiestra, 2002).

Based on texture classes soil can be divided ir@ddllowing categories:

A. based on clay percentage (Table 1)

B. aeolean deposits based on clay content (Table 2)

Table 1 Soil classes based on clay percentage

Clay (%) Name Summarizing names

0-5 Clay-poor sand Sand Clay-poor material

5-8 Clayey sand

8—-12 Very light ‘zavel’ Light zavel ‘Zavel’ Clayieh  material  (in
12-175 Moderately light ‘zavel’ relation to sand alsp
17.5-25 Heavy ‘zavel referred to as clay)

25-35 Light clay Clay

35-50 Moderately heavy clay Heavy clay|

50 — 100 Very heavy clay

From: Kiestra (2002).

Table 2 Categories of aeolean deposits based grtaident

Loam (%) Name Summarizing names

0-10 Loam-poor sand Sand
10-175 Slightly loamy sand Loamy sand

17.5-325 Very loamy sand

32.5-50 Extremely loamy sand

50 - 80 Sandy loam Loam
80 — 100 Silty loam

From: Kiestra (2002).



1.6 Stratification

Stratification is a procedure for subdividing tretdrogeneous population into subpopulations which
are internally homogeneous. Spectral stratificati@n stratification based on spectral charadiesis
can be used for classification of multispectral oty sensed data (Padmanabbiaal ., 1980).

Stratification is for example applied in large scgleo-chemical surveys where it is rather natural
choice to use a stratified sampling approach. iSt@tion of the target area aims at improving the
estimations of the overall statistical parameterd kads at the same time to a better coverage of
sample locations. Its success depends on effegtiledining more or less homogeneous groups within
the target area, and it therefore relies on aignéyrmation about the sources of variation ther&ut

the choice for stratification is not only driven &tatistical motivations, but also by the needitade

the target area into geologically meaningful gro(yas der Veer, 2006).

Reasons for stratification to improve soil propestiprediction have been proposed by different
researchers. Malley and Williams (1997) (cited iookétraet al., 2003) suggested that the predictive
capability of PLS might be improved by derivingibehtion models for more homogeneous soil units,
resulting in samples that are of a similar typ&eathan showing a wide range of values. Cetbal.
(2010) concluded that the soil properties whichengell predicted (i.e. sand, clay, pH, C, N, Ca, Mg
and CEC) depended on the success of regional atidibr

Bartholomeuset al. (2008) concluded that by including a priori kneddle on expected soil
associations, mineral composition reclassificatitay increase the robustness of the prediction model
and its applicability for extended geographicabare

Also Cécillonet al. (2009) imply that some stratification must be lagap in the spectral library
approach. In this approach soil properties are uoredsconventionally for a selection of soils
representative of the diversity of the studied eagiand then calibrated to soil reflectance spectra
(Cécillonet al., 2009). When applying this approach DuckworthRoberts and Workman, 2004) also
implies stratification when mentioning some criéefior training set design: training samples shdaeld

as similar as possible to unknowns and the cotestitalues in the training samples should be both
larger and smaller than the expected values in amwknsamples. By bracketing the range of
concentration, the model will give the most acauaiswer possible.

Different methods of stratification can be appliesiich as lithological, regional or land use
stratification. Another method of stratificationkaown as ‘Wavelength-based Discriminant analysis’
(WBDA) (Roberts and Workman, 2004). In Discriminafbhalysis the assumption is made that
samples closest together in wavelength space ayesirailar to one another. Conversely, samples far
apart in wavelength space are thought to be padrate spectral groups.

The best allocation of samples is to have onedfdlfie samples at low X value and the other half at
high X value. In NIR, samples with spectra assedatith low and high values would be selected.
Spectra with the most extreme spectra relativeaaierage spectrum can be selected. This technique
will pick the lows and the highs in a very simpkmgle population, but runs the risk of including
spectral ‘mistakes’ and underrepresenting the raiddithe population. However, this problem could
be solved by augmenting the sample set with somaoraly selected samples. The ‘alikeness’ of one
test spectrum, or series of spectra, to a referspeetrum can be determined by calculating a point-
by-point correlation between absorbance data fah east and reference spectrum (Correlating
matching (Roberts and Workman, 2004). The sameipies apply to searching a database of spectra
to determine if a spectrum of an unknown is preserihe database ( i.e. identify the unknown by
matching it's spectrum to a known spectrum). Thishhique is known as spectral searching and is
routinely used in other areas of optical spectrpgde.g. mid-infra-red) to aid in the identificati@f
unknown compounds (Roberts and Workman, 2004).



1.7 Research Objective and Research questions

Visible Near Infrared Spectroscopy is very attraetior soil property predictions but soil predictio
models based on spectral measurements yield uastiy results when they are applied for highly
variable data sets. Different researchers haveogesp to apply stratification to obtain calibration
models for homogenous soil units. Stratificationynacrease the robustness of the prediction model
and make these models applicable for larger gebigralpareas (Bartholomeugt al., 2008). By
creating training samples that are similar to thm@es that are to be predicted, prediction models
may give accurate answers.

The main objective of this study is to determinstiatification methods will result in improved
estimations of soil properties using VNIR spectra.

The specific objectives are to:

1. develop (a) stratification method(s)

2. implement the stratification method(s)
3. validate the developed method(s)

Research questions:

1. Can stratification, based on external data ssjlimprove the estimations of soil properties from
VNIR spectra?

2. Can stratification, based on spectral data omlgrove estimations of soil properties from VNIR
spectra?

The expectation is that prediction models will peni better if suitable clusters and ranges forsthie
property of interest are selected.
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2. Methodology

2.1 Study area and available data

A soil spectral library of 263 samples was alreaghgilable which was compiled during previous
research by Van Groenestijn (2009). This librargtamed the spectral signatures of the soil samples
the x- and y-coordinates, 15 chemical and 1 physical soil priyperhis soil spectral library was
expanded with an additional 312 spectra of soil @am with the same chemical and physical
properties, which were measured in this researiigibg the total soil samples in the library to 575
soil samples which were collected from differentdtions in The Netherlands. Not all andy-
coordinates were available: from 426 soil samphesiocations where these samples were collected
were known (figure 1 and table 3).

Locations of soil samples in The Netherlands

) i .
2" - *
S5 :"' S
“ =
N\~ My
Y %
N
® 426 soil samples
0 25 50 100 150 200

T T S e Kilometers

Figure 1. Locations of collected soil samples
From 426 samples the coordinates were known sdhbatlocations could be plotted in the map. Sainples
andx/y-coordinates taken by P.A. Slim (Alterra) in theipé 2009-2010.
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Table 3 Overview of the available data

Previous research | Additional (this research) Totalor this research
Samples withx/y-coordinates 220 206 426
Samples withoutx/y-coordinates 43 106 149
Total 263 312 575

2.2 Sample preparation and spectral measurements

The soil samples used in this research were aatjasdollows: 10 samples were taken using a chisel
at a depth of max. 10 cm, put in a bag, shaken,asdbsample with the volume and size of a
volumetric ring was taken. These samples were ralyaed for 16 different soil properties in the
laboratory by conventional (extraction) methods.

For the spectrometric measurements basic samppanateion consisted of grinding and sieving 20
grams of homogeneous soil using a 2-mm mesh. Toverthe effect of moisture, the soil samples
were dried for (for 12 h at 40-45 °C) (Vasqetal., 2008).

The soil samples were scanned with an ASD Field8iged-R in combination with an ASD contact
probe, measuring reflectance in the wavelengtheafi@50— 2500 nm at 1-nm intervals.

The soil samples were scanned four times at aneanfl90° using the contact probe. Each
measurement was recorded as the average of 4 gesadirtome to an estimation of a homogeneous
sample. This average measurement was used for ingd®&asquest al., 2008).

Spectralon reference measurements, collected fwidghe first scan and every 10 samples, were
needed to make final conversion to spectral redflezg by dividing the radiance spectra of the soil
samples by that of the white Spectralon plate.

2.3 Data analysis

Descriptive statistics

Table 4 shows the available data for this researbhee soil properties, SOM —N-total (Nt) — pH,
were used in this research.

Table 4 Descriptive statistics of the soil propestof the soil samples.
Unit N Mean SD Min Max
Nt g/kg 575 3.32 3.9] 0.05 26/9
Pt mg/kg 575 575.82 591.90 19 5930
K mg/kg 575 61.32 77.1% 3.8 1066
Na mg/kg 575 118.59 686.6B 12 10454
Mg ma/kg 575 105.24 138.7p 3.1 13p9
N_NH4 mg/kg 575 5.58 6.94 0.5 11j0
N(NO3+NO2) | mgl/kg 575 5.34 8.12 0.1 682
Ns mg/kg 575 27.26 20.79 p 146
PPO4 mg/kg 575 1.62 3.34 53j
Al mg/kg 575 878.76 732.6p 2.86 48P0
Ca mg/kg 575 8020.73 11426.92 1.37 85842
S mg/kg 575 69.99 428.51 13 97%6
Cl mg/kg 575 158.47 1046.23 3 16109
SOM** % 575 11.37 14.13 0.24 958
pH** - 575 6.27 1.61 3.62 9.5
Moisture % 575 25.62 18.15 0.8p 90(2

The soil properties marked with ** (Nt, SOM and pMere used in this thesis for analysis.
Descriptive statistics are based on 575 samples.
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Multivariate analysis

The whole dataset was split into a calibration(2) and an independent validation set (1/3). The
dataset was sorted from lowest to highest valusdgdfproperty) and every third sample and its data
was moved to a separate file for use as a validati (after Dunmt al. (2002)). An extra rule was
added i.e. that the range of the soil propertieghefvalidation set should be within the rangehef t
calibration set to avoid extrapolation of the mobdelond the range for which it was calibrated.
Calibrations were developed on the remaining sasnple

The Levene's test for equality of variances and $tedent'st-test of equality of means were
performed between the calibration and validatiots 4@ make sure there was a representative
validation set (Vasques al., 2008).

Analysis and statistics were performed with SPSB¢4 and ParLeS version 3.1. ParLeS is software
for chemometric analysis of spectroscopic measun&s(¥iscarra Rossel, 2008). ParLeS was used to
calculate multivariate calibration models by PLSEweave-1-out cross validation to establish
relationships between the NIR spectra and theaner data from physical and chemical analyses
(Viscarra Rossel, 2008J.0 reduce non-linearities the reflectance specaeeirst transformed

to log 1/R. No pre-processing of the data was agdpli

The coefficient of determination g the root mean square error (RMSE), and the wesigrediction

deviation (RPD) were used to evaluate the modets@uest al., 2008; Zornozat al., 2008). Refer
to equations | to Il for the model evaluation pageders:

A. Coefficient of determination (R):

> - 97
R? =12 — (eq. )
Z(yi - Y)Z

B. Root Means Square Error (RMSE):

> (3 - 9)?

i=1

RMSE= (eq. 1)

Where y = predicted values; y = mean of observed values; y = observed values) = number of
predicted/observed values witl 1, 2, ... n.

C. Residual Prediction Deviation (RPD):

standarddeviationof analysediata
RMSE

RPD= (eq. 1)

Eq. |, Il: Vasquest al. (2008)
Eq. lll: Zornozaet al. (2008)

Based on the values of the coefficient of detertiona(R’) and Residual Prediction Deviation (RPD)

(RPD) prediction results were ranked in 3 categoffg B or C) following Changt al. (2001) (table
5), with category A as the best of all three:
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Table 5 Model evaluation parameters.

Category | R RPD

A 08-100| >20

B 0.50-0.80 14-20
C < 0.50 <14

After Changet al. (2001).

2.4 Stratification methods

Research question 1:

Can stratification, based on external data souroestove the estimations of soil properties from
VNIR spectra?

Two external data sources, the Land Use map ofNigtberlands (LGN-5) and the Soil map 2006 of
The Netherlands, were used as a basis for thdfisatibn of the soil samples. With these external
data sources the soil samples were clustered loaskand Use or Soil Type.

Lithological stratification (based on Soil Type)

The samples were divided according to type of gareerial in the following 4 clusters (table7):
1. Clay (fluviatile and marine clay)

2. Peat

3. Zavel

4. Sand

Land Use stratification

Based on the Land Use map the samples were diutiethe following 3 clusters (table 7):
1. Agricultural land

2. Forest

3. Nature area

Per cluster the soil samples were divided in catibn and validation sets. Soil prediction models
were based on these clusters and the performarnthesd# models was compared to each other and to 4
reference models, which were models based on nmtecked data.

R?, RMSE and RPD (see table 5) were used to evahfermance of the prediction models based on
the defined clusters.

Table 6 Stratification with external data themes

Theme
Soil type Land Use
1. Clay 1. Agricultural land
2. Peat 2. Forest
Cluster 3. Zavel 3. Nature area
4, Sand

In figure 3 an overview is given on how the stratifion was applied to the available data, usirg th
two external data sets.
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Available data:
575 samples

y

426 samples
with x/y-
coordinates

. {

Non-clustered seté | 402 samples with 396 samples with | Non-clustered set
for Soil Type | known Soil type known Land Use :  forLand Use
(ST) (LY)
y Y
Stratification by Stratification by
Soil Type Land Use
v v
S 2 3y y 3 !
Clay i Peat i Zavel Sand Agricultural | | Forest Nature
: land area

Figure 2. Creating stratified and non-stratifietsse
Stratified data sets were created based on sa@ldypl land use. Dashed boxes indicate the created-2
stratified and 7 stratified sets. Stratified and-stratified sets were split in calibration andidation sets.

Research question 2:

Can stratification, based on spectral data onlprave estimations of soil properties from VNIR
spectra?

The soil samples were divided in groups that hgeetsal signatures which look similar. This method
is known as Wavelength-based discriminant anal@aIiBDA) (Roberts and Workman, 2004). The
assumption is that the concentration of a certaiinpsoperty results in the a certain spectral atgre.

Soil samples which have the same content should, H@msed on this assumption, the same spectral
signature.

This method was applied for SOM. The available rimfation are the spectral signatures of reference
samples and the SOM content of these samplese Bpbctral signature of an unknown sample looks
like the spectral signature of a reference sigeathis unknown sample might have the same SOM
content.

Four reference spectra were selected represeriisgngth 4 different SOM content: one with a SOM
content of 5%, one with a SOM content of 10.1%, with a SOM content of 20% and one sample
with a SOM content of 62.4% (figure 4). The ratiotloe reflectance between these 4 different soils
was determined. Soils with the largest differenté&SOM content should have the largest ratio e.g.
ratio spectral signature SQMSOMs; 49, > ratio spectral signature SQM«/SOM,q, Figure 5 shows
the ratio between these reference spectra whidhbwithe basis for classifying all spectra. Althbug
the relation between these ratio’s is exponentfigluile 5) linear interpolations were applied to
determine the ranges of the ratio to classify #maaining soil spectra (figure 6). Based on theadline
interpolations the samples were classified accgrtiirthe ranges given in table 7.
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4 Reference spectra
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Figure 3. Four reference spectra representingdiffarent SOM content.
The numbers #454, #66, #569 and #97 are the sathglesere selected as reference spectra.
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Figure 4. Ratio between reference spectra.
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Figure 5. Relation between the ratio of the refeeespectra.
All ratios in the picture are compared to the spautof the sample with 60% SOM content.

For all the samples the ratio between their spesigaatures and samplg=s2.49%0Was calculated and
based on the ratio the samples were split in ftagses following the criteria set in table 7, assgm
that they would be within the range of SOM spedifiy the ratio.

Next, the samples per class were divided into éredion set and a validation set. Every third skemp
was taken separate into a validation set. The mngasamples formed the calibration set.

Table 7 Classification based on ratios of spesigniatures and reference spectral signature.

Ratio Cluster Expected SOM content
> 2.85 A <5%

2.85-1.93 B 5-10%

1.21-1.93 C 10- 20%

<121 D > 20%

Ratio as compared to spectral signature with SOMert of 62.4%.

Figure 6 shows the methodology of this stratifimatmethod. Soil prediction models were based on
these clusters and the performance of these megeiscompared to each other and to a reference
model, i.e. the non-clustered modef, RMSE(CV) and RPD (see table 5) were used to atalthe
performance of the prediction model based on the&eed clusters.

Based on the results of RMSE and RPD, the effect of this clustering mdthas evaluated.
Comparing the results based on stratification @ebaon external sources or based on this method
should give the answer of the best method of dlingte

Figure 7 shows a flow chart of the research metlogyoshowing the procedures which were
followed to answer the research questions andrieeato a synthesis.
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Figure 6. Stratification method based on ‘Wavelbrgased Discriminant Analysis’.
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Research methodology

RQ1. Can stratification, RQ2. Can stratification
based on external data be done on spectral dat
sources, improve the only?

estimations of soil
properties from VNIF

INPUT INPUT
1. Chemical reference datg 1. Chemical reference datg
on sail properties on soil properties
2. Soil spectra (VNIR 2. Soil spectra (VNIR
region) of all samples region) of all samples
3. External data/maps: land
use, soil type

Clustering based on
v ‘Wavelength-based
Clustering based on Land Discriminant Analysis’
Use and Soil Type

A 4

l Perform PLSR analysis
using calibration and
Perform PLSR analysis validation set

using calibration and
validation set

\ 4

OUTPUT
v RMSE, R, RPD values of
OUTPUT soil property prediction
RMSE, R, RPD values of

soil property prediction

v
ANSWER RESEARCH

v QUESTION 2
ANSWER RESEARCH
QUESTION 1
Conclusion:
Do clustering methods result in

improved estimations of soil
properties using VNIR spectra?

Figure 7. Research methodology flow chart
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3. Results and discussion

3.1 Data preparation for stratification

Data for Soil Type and Land use stratification

The available data set was divided into two clsster use in prediction models: one for Soil type a
one for Land Use. For each soil property (SOM, Nd @H) calibration and validation sets were
created out of the total data set. These non-ckbt@ata sets were the reference data sets to wigch
results of the prediction based on the stratifieth dets were compared.

The tables 8 — 11 give an overview of the differdasters and the size of these clusters.

In table 8 the two non-clustered sets are showse®@an a Soil map the soil type from which the soil
samples originated was deducted and based on tie Use map the land use type from which the
soil samples originated was also deducted. Thessailples from which the soil types were derived,
were grouped in one set forming the non-clusteetdas Soil Type (ST — total of 402 samples) and
the different samples from which the Land Use typese known, were grouped in one non-clustered
set for Land Use (LU — a total of 396 samples).

Table 8 Non-clustered data sets for Soil type and-&nd Use
Cluster Soil property N calibration N validation

Total Composition

Non-clustered set SOM 296 133 402| Calibration and validation set conteily

for Soil Type (ST) Nt 269 133 402| samples from which the soil type wasakn
pH 269 133 402
Non-clustered set SOM 265 131 396| Calibration and validation set contaily

265
265

131
131

396
396

for Land Use (LU) Nt
pH

samples from which the land use was/kn

Table 9 contains the calibration and validationsskased on Soil Type stratification. In this
stratification, soil samples belonging to ‘water’‘built up’ (n=3), loam, and ‘moerig op zand’ were
excluded from clustering because they were too(feam, n = 3), or difficult to categorize in one of
the 4 soil type clusters (e.g. ‘moerig op zands 1h8), or not relevant to cluster (e.g. water afthup
areas, n = 3). Map accuracy or the accuracy ofptistion recordings could also have placed or
excluded some points in or from a cluster. Basedhensoil type the remaining 402 samples were
divided in 4 soil clusters: a clay, a peat, a ‘Zasad a sand cluster. The sand cluster was tlyeghr
cluster containing more than half of all the saitmples (Nang= 219). Even though the clay, peat and
zavel clusters were small, calibration and valmtatsets were created according to the ratio 2/3
calibration and 1/3 validation set. Figure 8 shtlnesSoil map of The Netherlands and the distrilvutio
of the points over the different soil clusters.

Table 9 Clusters based on lithological stratifieat{Soil Type)

Soil property | Cluster N calibration | N validation | Total
SOM Clay 34 17 51
Nt Peat 38 18 56
pH Zavel 51 25 76
Sand 146 73 214
Total 269 133 402

Table 10 contains the data sets based on Land tdsgdication. Excluded from this set were soil

samples collected on water, infrastructure anddimgl (n = 30). This could also be due to map
inaccuracy or GPS inaccuracy. The remaining saihpas were grouped in 3 different clusters:
Agricultural land (n= 60), Forest (n = 152) and Natarea (n = 184). The Nature cluster was the
largest with 184 samples followed by the foressuwith 152 samples. Calibration and validation
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sets for the different soil properties were fornatording to the 2/3 calibration and 1/3 validation
criterion.

Figure 9 shows the Land Use map which formed tiseslud this stratification procedure.

Table 10 Clusters based on Land Use stratification

Soil property | Cluster N calibration | N validation Total
SOM Agricultural land 40 20 6(
Nt Forest 102 50 152
pH Nature 123 61 184
Total 265 131 396

Stratification based on spectral data

Table 11 contains the calibration and validatiotadaased on stratification by ‘Wavelength-based
Discriminant Analysis’ (or ‘Spectral Similarity’ Y his was only applied for SOM.

Table 11 Clusters based on stratification by Wangtle-based Discriminant analysis

Soil property | Cluster | SOM range | N calibration | N vaidation Total

SOM A < 5% 133 83] 214
B 5-10% 137 96 233
C >10 % 114 12 124
Total 384 191 575

The calibration samples are grouped based on & griowledge of the SOM content. Two third of
the whole data set was assigned to one of the ttitegers. The remaining samples were the
validation samples which were assigned to a clusésed on only the spectral signature and by
arranging them according to a ratio between thetsgesignature of the soil samples to the spectral
reflectance of the reference spectrum. Predicticodets were fitted for each cluster with its
calibration and corresponding validation set.

The validation and calibration sets in table 12 lzaeed on a priori knowledge of the SOM content.
Based on a priori knowledge of the SOM contentwhldation points were divided into 5 clusters
which have the same range as the calibration stfdte a priori knowledge resulted in an ‘ideal’
validation set in which each soil samples was plateonce correctly in a the right stratum. Preolict
models were fitted for each cluster with its cadiimn and corresponding validation set.

Table 12ldeal clusters

Soil property | Cluster | SOM range N calibration | N valdation Total

SOM I* <5% 132 66 198
I1* 5-10% 137 68 205
1n* 10 -20 % 59 30 89
IV* 20 - 40% 38 18 56
V* > 40% 18 9 27
Total 384 191 575

In this data set the validation set are formed daseprior knowledge of the SOM content of the dation
sample.
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Soil Map of The Netherlands
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Figure 8. Soil map of The Netherlands with 402 poihts
© WUR-Alterra CGI (2006)
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Land use map of The Netherlands (LGN5)
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Figure 9. Land Use map of The Netherlands (LGN%Sh®B6 soil points
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Normality tests

All non-clustered and clustered sets and theiresmonding calibration and validation sets wereetefir normality. Most of the data sets were natmadly
distributed as can be seen in table 13, still nasihents or transformations were made to manipwatforce the data into a normal distribution. tRer
analysis were still performed using these data sgfigendix Ill contains the statistics for thisttés normality (Kolmogorov-Smirnov & Shapiro-Wilk)

Table 13 Summary of the tests of normality.

Normal Normal Normal Normal
SOM (%) Set distribution Nt (g/kg) Set distribution pH Set distribution SOM (%) distribution
Cal no Cal no Cal no All no
CLAY Val no CLAY Val no CLAY Val no cIuNsct)gr-e 4 lca no
All no All no All no Val no
Cal no Cal no Cal no All no
PEAT Val no PEAT Val yes PEAT Val yes| Cat A (<5%) | Cal no
All no All no All yes Val no
Cal no Cal no Cal no All no
ZAVEL Val yes ZAVEL Val no ZAVEL Val no (5C_a1t OEg %) Cal no
All no All no All no Val no
Cal no Cal no Cal no All no
SAND Val no SAND Val no SAND Val no (E%OCA)) Cal no
All no All no All no Val no
Cal no Cal no Cal no
AGRIC Val no AGRIC Val no AGRIC Val no
All no All no All no
Cal no Cal no Cal no
FOREST Val no FOREST Val no FOREST Val no
All no All no All no
Cal no Cal no Cal no
NATURE Val no NATURE Val no NATURE Val no
All no All no All no
Cal no NON- Cal no Cal no
NONS'((D:III‘_UTSYTPEERED Val no CLUSTERED Val no NO'\SI'((D:ILLUTSYTPEERED Val no
All no SOIL TYPE All no All no
Cal no NON- Cal no Cal no
NON-CLUSTERED val no CLUSTERED val no | NON-CLUSTERED [y no
LAND USE All no LAND USE All no LAND USE All no

Clay, peat, zavel, sand, agric., forest, natura:ciostered Soil Type and non-clustered Land Usels clusters formed based on land use or sal ©@al= calibration set;
val = validation set; All = whole set (i.e. caliticm and validation set).
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Levene'’s test and student-test

The Levene’s test indicated homogeneity of varidgocell calibration and validation sets of the ISoi
and the Land Use clusters. For clusters formed with Wavelength based discriminant analysis
method the Levene’s test indicated unequal varigfarethe calibration and the validation set of #he
and B cluster. Comparison between the mean vallieslibration and validation sets also showed
significant differences between these them indicathat the calibration and validation sets did not
appropriately represent the population under stédlythe calibration and validation sets of the ISoi
and Land Use clusters were representative. Thétsaxfthe Levene’s test and the studeitsst are
summarized in table 14 and 15. The statistics @$dthests can be found in appendix IV.

Table 14 Summary of the Levene’s test for calilratind validation clusters (Soil Type and Land use
stratification).

Representative calibration and validation sets?
SOM Nt | pH
Non-clustered Soil Type (ST) yes| vyes| yes
Clay yes| vyes| vyes
Peat yes| yes| yes
Zavel yes| vyes| vyes
Sand yes| vyes| vyes
Non-clustered Land Use (LU) yes| vyes| vyes
Agricultural Land yes| vyes| vyes
Forest yes| yes| yes
Nature yes| yes| yes

Table 15 Summary of the Levene’s test for calibraand validation sets (Wave-length Based Discramin
Analysis).

Representative calibration and validation sets?
Non-clustered yes
Cat A (<5%) no
Cat B (5-10%) no
Cat C (>10%) yes

From the results in table 13 — 15 it is clear ttheg different clusters (whole set, calibration and

validation) were not all normally distributed, oexe not representative for the population, criteria

which are requirements for PLSR analysis. Ideallg ©ata should be transformed (e.g. log-

transformation or another transformation) to fie thata into a normal distribution. PLSR analysis

would then be performed on the transformed dat¢hitnresearch this is deliberately avoided because
a log-transformation of the data also involvesgtlansformation of the units of the soil propeatyd

the predictions seem to have high accuracies vimifact they could be large errors which become

clear when a back transformation of the error igliad. In order to avoid back transformation of the

predictions and prediction errors no data transétion was applied in this research.

SOM

As expected the peat cluster has the highest mé€dvi €ontent (table 25, appendix Il) but the
statistics also show that there is a minimum SOMteat of 2.60% which is too small for a sample
originating from a peat soil. The clay, zavel amad cluster have average mean SOM contents of
10.91%, 8.21% and 8.89% respectively. The peatarldsas a large range for SOM content as the
maximum SOM content in this cluster is 95.80%. $hnd cluster also has a large range for the SOM
content from 0.34% - 72.40% SOM.
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Of the Land Use clusters the nature cluster haavamage higher SOM content than the agriculture
and forest cluster (table 26). The nature and farlesters contain the samples with the highest SOM
content (94.70% and 95.80%), probably due to tier llayer which was collected with the sample.
The range of the SOM content in the forest andreatiuster is also larger than agricultural land.
Agricultural land is probably more homogeneous ttlubuman activity causing less variance in the
data.

Cluster based formed by means of the Wave-lengsed®iscriminant analysis show contradictory
results (table 27). First of all this stratificationethod was supposed to result in 4 clustersthaut
criteria set for this method resulted in three s The fourth cluster (D >20% SOM) returned only
1 sample. This sample was combined with clusteegstilting in a cluster representing samples with
SOM content more than 10%. The descriptive statisthow that the validation set of class A cluster
(<5%) was supposed to contain only samples with SoMent smaller than 5% but in the maximum
SOM content in this cluster is 52.70%. This sanmglgefinitely misplaced with this method. Stillgth
mean SOM content of this cluster less than 5%. &lgs occurred in class B cluster (5% - 10 %
SOM) which has a mean SOM content of 10.15% andvdmum SOM value of 92%. In this cluster
the minimum SOM content was supposed to be 5% tiséilstatistics show that there is a minimum
SOM content of 2.30%. Samples were correctly placedluster C (>10% SOM). In cluster C
minimum SOM content of 10.20% was observed.

This result shows that samples can be misplaced wiie method is applied. Misplacements of
spectra can be attributed to the reference spedireh were arbitrarily chosen from the whole data
set. There was no check or other external spectitahle to compare the reference spectra with. The
ratios of the reference spectra and the ratio ef riéfference spectra with other spectra are thus
influenced by the quality of the chosen referermecga. Another reason for misplacements of spectra
can be influence of other soil particles such dswsioeralogy.

N-total (Nt)

The N-total content of the soil samples varied frorh6 — 25.40 g/kg (table 28). The different soil
clusters have different mean Nt content indicatimdped differences between the different soil types
Peat has the highest mean Nt content of 8.30 Gikig.is probably related to the high SOM content of
this cluster (table 24). Sand has the lowest maacoNtent (2.20 g/kg) which is probably correct for
this soil type, although a maximum Nt content of220g/kg was observed in this cluster. The clay and
zavle cluster have a smaller range (12.49 and @83 respectively) compared to the peat and sand
cluster which have a range of 24.93 and 20.04 ggkpectively.

The Land Use clusters (table 29) show that natrgasahave the highest mean Nt content (4.04 g/kg),
followed by agricultural land (3.79 g/kg) and far€8.73 g/kg). The difference in mean Nt content
between these clusters is not large. The rangeeoNt content is the smallest in the agricultuazid
cluster (0.26 — 16.00 g/kg), indicating a more hgemeous distribution of Nitrogen in agricultural
soils. Forest and nature areas have a higher ianfe Nt content indicating that these soil sammple
are more diverse in Nt content. These clusters latas@ maximum Nt contents of 25.40 g/kg and
21.20 g/kg for forest and nature areas respectipebbably caused by litter.

pH

The peat and sand cluster have the lowest meanaptés/ (table 30) of 5.31 and 5.43 respectively.
This is related to the properties of peat, soilgifgahigh SOM and N content are more acidic. Clay
and zavel have about the same mean pH value, dutatkel cluster has a smaller range in pH values,
indicating that these samples are more homogeneoungary to the sand cluster which has a higher
range and probably is more heterogeneous. The st and sand samples are also very diverse as
can be inferred from the range of these clustenschay the range is from 4.16 — 8.66, for peat the
range is form 3.62 — 7.63 and pH values in the s&uster range from 3.70 — 9.11.

When the Land Use clusters are examined (tablen@l}ee that the mean pH values do not differ
much between the Land Use clusters: from 5.97 (eptw 6.16 (agricultural land). The ranges are
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also not much different from each other: pH valothe agricultural land range from 3.89 — 8.32 th
pH of forest range from 3.70 — 8.51 and the pH eslim nature areas range from 3.62 — 9.11.
Agricultural land has the highest average pH (6uiBich can be attributed to human intervention in
maintaining the pH at a certain level required &gricultural production. But still, minimum pH
values of 3.89 are also observed for agricultunatlilwhich is very low for this type of land use.

3.2 Stratification based on external data sources

Stratification was based on two external data ssira Soil Type and a Land Use map.
A. Lithological stratification (Soil Type)
Soil Organic Matter

In table 16 the different PLSR models that wereettgyed for the prediction of Soil Organic Matter
(SOM) are shown.

Table 16 Validation statistics for SOM for soil stars.

SOM Validation statistics
N cal Nval | #factors [ B RMSE (%) | RPD

Clay (1) 34 17 4 0.81 3.59 1.84
Peat (2) 38 18 9 0.82 9.99 2.27
Zavel (3) 51 25 3 0.31 2.89 1.18
Sand (4) 146 73 7 0.48 8.24 1.3p
Combined (1+2+3+4) 269 133 - 0.72 7.34 1.88
Non-clustered Soil Type (ST) 296 133 12 0.69 8.41 1.64
Clay (validation) 17 12 0.27 6.86 0.96
Peat (validation) 18 12 0.80 11.43 1.99
Zavel (validation) 25 12 0.39 4.78 0.71
Sand (validation) 73 12 0.46 8.83 1.2y
Combined validation sets 133 - 0.63 8.4]] 1.64

Bold RMSE's indicate that the accuracy has improved comparéiet prediction of SOM with the non-
clustered model or with the non-clustered moddetesvith clustered validation sets.

PLSR models were developed for the 4 soil clustdter leave-one-out cross validation using the
stratified calibration samples. A 4-factor modelsvaeveloped for the clay cluster; for the peatgkav
and sand cluster a 9-, 3- and 7-factor model weveldped respectively.

A 12-factor PLSR model was developed using 296 clostered samples (ST). This non-clustered
model was tested with an independent set of 133chamtered samples. This model was also tested
using independent clustered samples of the clat, pavel and sand cluster.

Of all the 4 soil models, the prediction of SOM lwihe 9-factor peat model gave the highest R
(=0.82) which is higher than the’Rf the predictions of the non-clustered sampleth whe non-
clustered model (R= 0.63) or with the clustered peat validation stEasgR = 0.80). The other
models resulted in lower’Rhan the non-clustered model.

The highest Rwas reached with the non-clustered PLSR model itheas tested with the stratified
peat samples (R= 0.80). This validation also yielded a RPD of9].But the accuracy was also the
lowest of all predictions as the RMSE = 11.43%.

The highest accuracy (RMSE) of predictions was ead with the 3-factor zavel PLSR model

(RMSE = 2.89%) and the 4-factor clay PLSR model §BVi= 3.59%). The lowest accuracy was
reached with the peat model (RMSE = 9.99%).
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The results show that when e.g. SOM content in skayples is predicted with the clay model the
accuracy is higher than when it is predicted with hon-clustered model: SOM predictions in clay
sample with the 4-factor clay model are predictéth an accuracy (RMSE) of 3.86%, but when SOM
content in clay samples is predicted with the 1@e® non-clustered model the accuracy of the
predictions is 6.86%. Prediction of SOM content gaat, zavel and sand samples with their
corresponding models results in better accuradies twhen SOM content in these samples is
predicted with the non-clustered model.

In figure 10 the calibration and validation resufsthe soil type clusters are shown. The calibrati
and validations of the clustered models (bottong) @mpared to the calibrations and validations of
the non-clustered models (top). Remarkable aredégative predictions of SOM which occur during
calibration and validation. Calibration of the ncnstered model resulted in 30 negative predictions
in the validation of this model there were 19 nagapredictions. Negative predictions were observed
for the sand model, which had most negative priesist(12 negative predictions during calibration
and 3 negative predictions after validation of thedel), the peat (2 negative predictions during
calibration and 1 negative prediction after validgtthe validation) and clay which had only 1
negative prediction in the calibration of the modetese negative predictions reduce the predictive
ability of the models.

Negative predictions do not occur for zavel (durggh calibration and validation of the model) and
clay (only for validation of the model). Negativeedictions occur for small values of SOM content
(SOM < 3.04% in the calibration set or SOM < 1.1i%he validation model, but there was one
sample in the peat model which has a SOM contet2af% but was predicted as -7.42%). The sand
and peat model also have the highest RMSE (tablénti€ating less accurate predictions, especially
for sand this could have been the cause of thetimegpredictions. Another cause can also be
attributed to the range of the different soils tdus. The peat and sand cluster have the largege ia
SOM content, while the zavel and clay clusters remaller ranges. The developed models probably
cannot deal with a too much large range of the, detavas the case with the peat and sand samples.
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Figure 10. Calibration and validation results fombined soil clusters for SOM (Lithological stradition).

The lines represent the 1:1 line.
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Of all the models, the zavel model performed th&t because it required the fewest factors, 3 PLSR
factors which is very parsimonious, did not resalhegative predictions and the predictions were
achieved with the highest accuracy (RMSE = 2.89%).

N-total

In table 17 the different PLSR models that wereettgyed for the prediction of N-total (Nt) are
shown.

Table 17 Validation statistics for Nt for the sdilisters.

N-total Validation statistics
Ncal [ Nval | #factors | R RMSE (g/kg) | RPD

Clay (1) 34 17 4 0.76 1.23 1.9p
Peat (2) 38 18 8 0.63 3.03 1.69
Zavel (3) 51 25 3 0.29 1.15 1.21
Sand (4) 146 73 7 0.67 0.87 1.68
Combined (1+2+3+4) 269 133 - 0.74 1.90 1.95
Non-clustered Soil Type (ST) 269 133 15| 0.7( 2.05 1.81
Clay (validation) 17 15 0.92 0.84 2.98
Peat (validation) 18 15 0.52 3.40 1.48
Zavel (validation) 25 15 0.66 1.07 1.36
Sand (validation) 73 15 0.60 2.05 1.58
Combined validation sets 133 - 0.70 2.09 1.81

Bold RMSE's indicate that the accuracy has improved compardiet prediction of Nt with the non-clustered
model or with the non-clustered model tested witistered validation sets.

Four models with 4 — 8 factors were developed e $oil clusters. All these soil cluster models
produced Rvalues ranging from 0.29 - 0.76. Predictions ofNzavel samples with the zavel model
had the lowest (0.29) of all models.

A 9-factor PLSR model was developed with the 269-coistered samples, and tested with 133
independent non-clustered samples. TRe(@R70) and RPD (1.81) of the Nt predictions ofstne
samples are higher than the predictions of Nt withclustered models, except for the predictions of
the clay model.

The accuracy of the prediction with the clay andetanodel was not better than prediction with the
non-clustered. The accuracy of predictions with riba-clustered model was 0.84 g/kg for clay and
1.02 g/kg for peat (cf. RMSE, = 1.23 and RMSE,, = 1.15). Better prediction accuracies were
reached when predicting Nt in peat samples withphat model (RMSE of 3.03 g/kg) or in sand
samples with the sand model (RMSE = 0.87 g/kg).

The clustered models that were developed were gateimonious: they were developed with 3 — 8
factors, compared to the non-clustered model whiak developed with 15 factors. The sand model
could be a good model because it produces moreaeqgoredictions (lowest RMSE of 0.85 g/kg).

Figure 11 shows the results of the lithologicahtdfication. The calibration and validations of the
clustered models (bottom) are compared to the redidms and validations of the non-clustered
models (top). Also here negative predictions cao dle observed. In the calibration of the non-
clustered model there were 33 negative predictionsin the validation of the non-clustered model
there were 12 negative predictions. These negatiediction occurred for Nt contents smaller than
2.35 g/kg (calibration) or smaller than 2.30 g/kglidation).

Negative predictions were observed for the sandemaghich had most negative predictions (18
negative predictions during calibration and 9 niegapredictions after validation of the model).
Negative predictions were also observed for thg aled peat model but only for the calibrations of
these models: 1 negative prediction for each motiet. negative predictions of the model occur for
Nt contents smaller than 0.75 g/kg (calibrationyimialler than 1.03 g/kg (validation).
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The sand model probably cannot deal with the laagge in this cluster.
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Figure 11. Calibration and validation results fombined soil clusters for Nt (Lithological stratidition).
The lines represent the 1:1 line.

pH

In table 18 the different PLSR models that wereettgyed for the prediction of pH are shown.

Table 18 Validation statistics for pH for the sdilsters.

pH Validation statistics
N cal N val #factors | R RMSE RPD

Clay (1) 34 17 5 0.67 0.5¢ 1.6p
Peat (2) 38 18 6 0.44 0.54 1.23
Zavel (3) 51 25 17 0.23 0.46 1.00
Sand (4) 146 73 12 0.78 0.78 2.0
Combined (1+2+3+4) 269 133 - 0.85 0.6% 2.5D
Non-clustered Soil Type 269 133 16| 0.84 0.68 2.48
Clay (validation) 17 16 0.76 0.53 1.81
Peat (validation) 18 16 0.54 0.64 0.98
Zavel (validation) 25 16 0.19 0.67 0.69
Sand (validation) 73 16 0.81 0.7 2.18
Combined validation sets 133 - 0.86 0.68 2.48

Bold RMSE's indicate that the accuracy has improved compardiet prediction of SOM with the non-
clustered model or with the non-clustered modeetesvith clustered validation sets.
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PLSR models with 5 — 17 factors were developedtifier soil clusters. The highest accuracy of
predictions was achieved with the zavel model (RMSE46 pH units) but this model was developed
with 17 factors. The clay model was developed wht fewest factors (5) but the accuracy of the pH
predictions not have not improved compared to tve-clustered model (cf. RMSE modei= 0.59,
RMSE on-ciusterea= 0.53). Good prediction accuracy was also ackievith the peat model (RMSE =
0.54) which was developed with 6 factors.

Even though the accuracy of the predictions didimprove for all models, or the improvement of
prediction accuracy was small, it should be noted the clustered models were developed with less

factors (except for the zavel model) compared ¢orthn-clustered model, which was developed with
16 factors.

Regarding the R clustered soil models performed have lowéis Rhan the non-clustered model.
Even the 17-factor zavel model predictions returaegry low R of 0.23 and also the lowest RPD of

1.00. The sand model predictions returned the BigRe (0.78) of all models and also the highest
RPD of 2.01.

In figure 12 the calibration and validation restittis pH based on clustering on soil type are given.
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Figure 12. Calibration and validation results fombined soil clusters for pH (Lithological stratgition).
The lines represent the 1:1 line. The calibratiod @alidations of the clustered models (bottom)cam@pared to
the calibrations and validations of the non-clustemodels (top).

Contrary to the other soil properties (SOM and il@re are no negative predictions during the
calibration and validation of the models. This t&nrelated to the smaller range of the pH (betvBzen
and 9) and the small RMSE's of the predictions. Vaance of the pH of the different soil clustirs
small and the models are calibrated and tested seithples which have the same small range and
variances. Furthermore, it should be noted thavaldes are log-values and that the RMSE'’s of the
predictions may appear to be small, but when toansd back to original concentration values may
be large. So care should be taken when interpratimdgusing the RMSE'’s of the predictions.
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B. Land Use Stratification

Calibration and validation models were also appl@dhe land use clusters for three soil propsrtie
Prediction statistics for predicting SOM, Nt and wih stratified data sets can be found in tabkes-1
21.

SOM
In table 19 the different PLSR models that wereettgped for the prediction of SOM are shown.

Table 19 Validation results for SOM for the Lan@ wdusters.

SOM Validation statistics
N cal N val #factors | R RMSE (%) | RPD

Agricultural 40 20 7 0.59 8.5( 1.0y
Forest 102 50 7 0.82 4.34 2.0
Nature 123 61 16 0.82 7.5% 2.3b
Combined 265 131 - 0.78 6.64 2.0B
Non-clustered Land Use 265 131 17 0.8] 6.21 2.4
Agricultural (validation) 20 17 0.61 7.39 1.28
Forest (validation) 50 17 0.89 3.76 2.39
Nature (validation) 61 17 0.84 7.31 2.4P
Combined validation sets 131 - 0.81 6.21 2.24

Models based on stratified Land Use data were dpeel with 7 — 16 factors. The forest and nature
models gave SOM predictions with the high (B.82), but the accuracy of these predictionsrais
improved compared to the non-clustered predictiertgs, RMSE of SOM prediction in forest samples
with the forest model = 4.34 %, while the accura€y5OM prediction in these samples is with the
non-clustered model is 3.76%. In table 19 can len dbat the RMSE of SOM prediction with
clustered models does not result in better pramticticcuracy. The RMSE of validation of the non-
clustered model with clustered validation samplesgbetter accuracies and also better RPD’s than
models built on clustered data. But it should beedadhat the non-clustered model was developed with
17 factors, while the clustered models were dewetlopith less factors. The non-clustered model may
have better predictions but the number of factdrthis model may limit the transferability of this
model to other situations.

Figure 13 shows the calibration and validation Itesof the 3 Land Use clusters combined for
predicting SOM and the calibration and validatieaults of the non-clustered model.

As with the clustering based on Soil Type, them @so negative predictions in the calibration and
validation model. There are 33 negative predictiobserved for the calibration of the non-clustered
model. These negative predictions occur for SOMtemnless than 8.35%. In the validation of the
non-clustered model there are 15 negative predstishich occur for SOM contents smaller than
7.05%.

Negative predictions are also observed for thetetad models during calibration and validation. In
the calibration there are 2 negative predictionseoked for the agricultural model, 10 for the fores
and 13 for the nature model. In the validationh&f models negative predictions are only observed fo
the forest (5) and the nature model (8).

For these models negative predictions occur wherst®M content in the calibration model is smaller
than 6.6% (agriculture and forest) or smaller t6a808% (nature). In the validation model negative
predictions occur when SOM content is lower the86% (forest) or lower than 7.05% (nature). The
cause of these negative predictions for such highl £ontent is unknown. Forest and nature have a
very large range in SOM content (0.97 — 94.70% &ar?h — 95.80%, respectively). Negative
predictions occurred only for the forest and natmalels in the validation. The very large range of
these clusters can be part of the explanatiorhfonegative predictions.
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Figure 13. Calibration and validation results fombined Land Use clusters for SOM (Land Use stication).
The lines represent the 1:1 line. The calibratiod @alidations of the clustered models (bottom)cm@pared to
the calibrations and validations of the non-clustemodels (top).

N-total
In table 20 the different PLSR models that wereettgyed for the prediction of N-total are shown.

Table 20 Prediction results for Nt for the Land dhssters.

N-total Validation statistics
N cal N val #factors | R RMSE (g/kg) | RPD
| Agricultural 40 20 10 0.69 1.67 1.70
Forest 102 50 7 0.90 1.26 2.0p
Nature 123 61 15 0.65 2.83 1.56
Combined 265 131 - 0.71 2.18 1.6p
Non-clustered Land Use 265 131 9 0.7¢ 2.02 1.8p
| Agricultural (validation) 20 9 0.63 1.79 1.62
Forest (validation) 50 9 0.84 1.14 2.27
Nature (validation) 61 9 0.67 2.59 1.71
Combined validation sets 131 - 0.70 2.02 1.80

Bold RMSE's indicate that the accuracy has improved compardiet prediction of SOM with the non-
clustered model or with the non-clustered modeetesvith clustered validation sets.

The highest Rwas achieved for predictions of Nt content witte tforest model (R= 0.90).
predictions of Nt content in forest samples wité tbrest models were also the more accurate tlean th
predictions of the other models (RMSE&:= 1.26 g/kg).

Compared to the non-clustered model, only the aljuial model resulted in an improved accuracy of
the predictions (RMSkKiicuture = 1.67 9/kg, RMSEn-cusiered = 1.75), but the agricultural model was
developed with 10 factors, while the non-clusterestiel was developed with 9 factors.
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In fact, the differences between the accuracieth@fprediction between clustered and non-clustered
models is not large: for the nature model the diffiee with the non-clustered model is 0.09 g/kg, fo

the forest model the difference is 0.12 g/kg. Tdrgest difference in accuracy is between the nature
model: 0.24 g/kg.

In figure 14 calibration and validation resultslafd use clusters for predicting Nt are shown. Also
note here the negative predictions which occurpi@dictions with the agricultural, the nature, the
forest and the non-clustered model.

Calibration of the non-clustered model gives 28atieg predictions for Nt contents smaller than 4.40
g/kg. the validation of the non-clustered modelaegil0 negative predictions for samples which have
a Nt content smaller than 0.92 g/kg.

Calibration of the clustered models produced 28atieg predictions (agriculture: 2, forest: 6 and
nature: 20) for samples which have a NT contentllesménan 2.11 g/kg. Validation of the clustered
models produced 9 negative predictions (foresan@ nature: 7) for samples with Nt content smaller
than 1.03 g/kg.
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Figure 14. Calibration and validation results fombined land use clusters for Nt (Land Use stiatifon).
The lines represent the 1:1 line. The calibratiod @alidations of the clustered models (bottom)cm@pared to
the calibrations and validations of the non-clustemodels (top).

pH

In table 21 the different PLSR models that wereettgyed for the prediction of pH are shown.

A l14-factor non-clustered model was developed amdalustered models were developed with 9 — 12
factors. Table 21 shows that prediction accuragyaved only for the nature model (RMSE = 0.78),
but this is just a very slight improvement compatedhe non-clustered model prediction (RMSE =
0.79). Inspection of the prediction accuracy of dileer clustered model shows that accuracy did not
improve, but the changes are also very small: ®lupits (e.g. between RMSfcuiure (0.53) and
RMSEﬁon—clustered(0-43))-
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R2 and RPD values of both the clustered and nosteried models are good and the differences
between the clustered and non-clustered modelseayesmall.

Table 21 Prediction results for pH for Land Usestdus.

pH Validation statistics
N cal N val # factors| R RMSE RPD

Agricultural 40 20 9 0.84 0.53 2.37
Forest 102 50 12 0.91 0.61 3.15
Nature 123 61 14 0.78 0.78 1.92
Combined 265 131 - 0.85 0.68 2.38
Non-clustered Land Use 265 131 14 0.85 0.65 2.52
Agricultural (validation) 20 14 0.91 0.43 2.97
Forest (validation) 50 14 0.93 0.50 3.79
Nature (validation) 61 14 0.79 0.79 1.90
Combined validation sets 131 - 0.85 0.65 2.52

Bold RMSE's indicate that the accuracy has improved comparéiet prediction of SOM with the non-
clustered model or with the non-clustered modeétksiith clustered validation sets.
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Figure 15. Calibration and validation results fombined Land Use clusters for pH (Land Use stcatifon).
The lines represent the 1:1 line. The calibratiod @alidations of the clustered models (bottom)cam@pared to
the calibrations and validations of the non-clustemodels (top).

There are no negative predictions in the calibraéind validation models, as can be seen in figbre 1
Also here absence negative predictions can beetketatthe specific range within pH values can vary.
In this situation pH values varied from 3.5 — 9.0.

Good predictions can be attributed to the smakerge of the pH values in the calibration and
validation samples and the fact that pH valuedareralues.
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3.3 Stratification based on spectral data

Calibration and validation models were also appl@dclusters which were formed based on spectral
alikeness. This was only tested for SOM. Predictitatistics for predicting SOM based on this
method, Wavelength-based Discriminant Analysis sa@wvn in tables 22.

Table 22 Prediction statistics based on ‘Waveleiigited Discriminant Analysis’.

SOM Validation statistics
Ncal | Nval | #factors | R RMSE (%) | RPD

A: <5% 133 83 9| 0.57 6.09 1.14
B: 5-10% 137 96 8| 0.13 16.70 0.94
C:. >10% 114 12 8| 0.79 6.89 1.99
Combined: A+B + C 384 191 - 0.25 12.62 1.1d
Non-clustered Set 384 19] 13 0.79 6.58] 2.1(
A: <5% (validation) 83 13| 0.72 6.00 1.16
B: 5% - 10% (validation) 96 13| 0.82 6.73] 2.34
C: > 10% (validation) 12 13| 0.53 8.86 1.54
Combined validation sets 191 0.79 6.58 2.10

Bold RMSE's indicate that the accuracy has |mpr0ved compardket prediction of SOM with the non-
clustered model or with the non-clustered modeetesvith clustered validation sets.

Table 22 shows that there was no improvement oRfteefor all clusters after WBDA clustering was
applied. B was only improved for the C cluster (>10%), whighs 0.53 for the predictions with the
non-clustered model and was improved to 0.79 aftestering was applied.

After clustering the accuracy of only the C clugtet0%) was improved from 8.86% to 6.89%.

The accuracy of the prediction with the A clusterdel dropped slightly from 6.00% to 6.09% but the
accuracy of the prediction with the B-cluster modi®lpped drastically from 6.73% to 16.70%.

Predictions with the A-cluster model (A: <5%, RMRE » = 6.09%) were more accurate than
predictions with the other clustered models (B @dut given the range of SOM in this cluster (O-
5%), this accuracy of 6.09% is larger than the eaimgthis cluster. Also for cluster B the RMSE is
large compared to the ranges of the clusters: HerB-cluster (5-10%) the RMSE = 16.70%. The

accuracy of predictions with the C cluster (>10%0%i89%, which is reasonable given the large range
of this cluster.

Over all , the R RMSE and RPD of the non-clustered model are bétan the clustered models
prediction statistics, except for cluster C whicas Ibetter prediction statistics than the non-ciaste
model. With these results, clustering based on WRiAnot lead to improvement of the predictions
of SOM.

The poor improvements of the accuracy of the ptegtis can be attributed to the misplacements of
several spectra in the clusters (see descriptatessts in appendix Il, table 27). Using the aideto
arrange the spectral signatures in 3 categoriadtedsin some spectra being paced in the wrong
cluster. Spectra corresponding to samples with &gis SOM content were placed in the category
which contained the lowest SOM content. These enstlhave an influence on the accuracy of the
predictions. Still the Bs and RPD's of the predictions are remarkably higlespite these

misplacements. Probably the majority of the spesta placed in a correct class masking the effiect o
the outliers.

Figure 16 shows the calibration and validation ltesof the spectral stratification method. A tobél

43 negative predictions are observed after caldwapf the non-clustered model. These negative
predictions occur for SOM contents smaller thar6%6After validation of the non-clustered model
22 negative predictions are observed for samplés M contents smaller than 5.44%.

After clustering with the WBDA method, 4 negativeegictions are observed after calibration of the
models: 3 negative in the A-cluster (<5%) for thseenples having a SOM content of 0.24, 0.27 and
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0.99%, and 1 negative prediction in the C-clustdiOfo) for a sample with a remarkably high SOM
content of 12.4%. After validation of these clustermodels, only 3 negative predictions were
observed for the A-cluster for samples with SOM teats of 0.29, 0.35 and 0.57% SOM. The
combination of very low SOM content and a low aecyrof the predictions could have caused the
negative predictions. May be the range 0-5% is$ tstil large for this cluster. As there are samples
with a SOM content of smaller than 0.5% a furtheatication of this cluster could may be improve
the predictions of this cluster. For the clusterthw higher SOM content negative predictions db no
occur, with the exception of the negative preditidter calibration of cluster C-model.

It should be noticed that the number of negativedljgtions has deceased after clustering was applied
42 negative prediction of the non-clustered modelenreduced to 3 negative predictions after
clustering.
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Figure 16. Calibration and validation results fombined spectral clusters for SOM (based on WBDA).

The lines represent the 1:1 line. WBDA = Wave-léngsed Discriminant Analysis. The calibration and
validations of the clustered models (bottom) anmgared to the calibrations and validations of the-olustered
models (top).

A test was performed with creating ideal calibmatand validation clusters with more intervals. The
results of this test can be found in table 23. Withal calibration and validation sets created lootfa
priori knowledge we see that for the ‘ideal | 9&t'5%) set the accuracy is the best largest (RMSE =
0.70) (table 23). The accuracy of the predictioasréases for the next sets depending on their sange
predictions with the * ideal Il set’ (5-10%) have accuracy of 1.18%, predictions with the ‘ideal Il
set’ (10-20%) have an accuracy of 2.65%, predistiwith ‘ideal IV set’ (20-40%) have an accuracy
of 5.84% and predictions with ‘ideal V set’ ((>40%gve an accuracy of 13.74%. These models were
also developed with less factors and still resulbeichprovement of the prediction accuracies.
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Unfortunately, for 2 clusters (group Il and IV) th& is very low (<0.10), but the RPD’s of the
clustered models are better than the non-clusiRRdd's. Predictions for high SOM (>10%) cannot be
predicted well with PLS regression. the developediefs cannot deal with the large SOM content of

the samples, even if they were calibrated with damgontaining the same range of high SOM
content.

Table 23 Prediction statistics based on ideal efgst

SOM Validation statistics
Ncal | Nval | #factors [ B RMSE (%) | RPD

I: < 5% 132 66 9| 0.78 0.70 1.99
1I: 5-10% 137 68 8| 0.25 1.18 1.13
11l: 10-20% 59 30 3| 0.06 2.65 1.01
1V: 20-40% 38 18 2| 0.04 5.84 1.03
V. > 40% 18 9 2| 0.43 13.74 1.21
Combined 384 191 - 0.93 3.72 3.71
Non-clustered 384 191 13 0.79 6.58] 2.1(
I: < 5% (validation) 66 13| 0.82 3.96 0.35
I1: 5-10% (validation) 68 13| 0.17 425  0.3]
11I: 10-20% (validation) 30 13| 0.20 7.54] 0.35
1V: 20-40% (validation) 18 13 0.01 11.36 0.53
V: > 40% (validation) 9 13| 0.66 14.84 1.12
Combined validation sets 191 - 0.79 6.58 2.1Q

Both calibration and validation sets were formeddabon a priori knowledge of the SOM content.
Bold RMSE's indicate that the accuracy has improved compardiet prediction of SOM with the non-
clustered model or with the non-clustered modeétesiith clustered validation sets.

Figure 17 shows the combined calibration and vatidaresults for the ideally formed clusters.
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Figure 17. Calibration and validation results fombined ideal spectral clusters for SOM.

I: <5% SOM; II: 5 — 10% SOM; lll: 10-20% SOM; IV 240% SOM; V: >40% SOM. The lines represent the
1:1 line.

These ideal sets are free from outliers, so thecefif outliers on the prediction results is caleckl
out, thus producing good prediction statisticsdiitéon for clusters with high SOM content becomes
difficult as these clusters contain very few caliion samples compared to the clusters which have
very low SOM content as there are more sampledadlaiwith low SOM content. Observing the
predictions in figure 17 predictions for the fiteree clusters (I — Ill) are closer to the 1-1 lthan
predictions for the clusters with the high SOM emit(lV and V).

In previous results low SOM content resulted inateg predictions, but when they are more clusters
with smaller intervals, negative predictions oclass, as can be seen in figure 17. Only three ivegat
predictions occurred in the calibration (for sarspth SOM content of 0.24, 0.27 and 0.99%) and in

39



the validation (for samples with SOM content 0f9).2.35 and 0.57). This is an indication that prope
ranges for each cluster should be set or chosawudiol hegative predictions. Negative predictions fo
the cluster with the smallest range (<5%) can gdoybhe cancelled out if this cluster is stratified
further.

3.4 Effect of clustering on prediction results

In this research 3 soil properties were predictsithgi clustered and non-clustered calibration and
validation sets. In some cases clustering imprdiiedpredictions, but in most cases this was not the
case. In figure 18 and 19 the prediction resultsgod property for the different clusters and non-

clustered sets are presented for comparing theteffaf the clustering methods on the prediction

parameters: R RMSE and RPD.

The legend in figure 18 and 19 is as follows:

- the dark solid bars are the non-clustered mottets:first dark bar is the non-clustered Soil Type

result, the second bar is the non-clustered Larsdrelsult.

- the speckled bars are models of the Soil clusttay, peat, zavel and sand
- Clay (val), peat (val), zavel (val) and sand J\aak the validation sets used to test the non-
clustered Soil type model

- the dashed bars are the Land Use clusters: Agnialland, Forest and Nature areas.
- Agricultural (val), Forest (val) and Nature (valle the validation sets used to test the non-
clustered Land Use model.

- striped bar (horizontal) are the cluster formethwthe WBDA-method: A (<5%), B (5 — 10%) and C
(> 10%)
- A: <5% (val), B: 5 — 10% (val) and C: >10% (vale the validation sets used to test the non-
clustered WBDA model.

SOM:

R%:

The highest Ris observed when SOM content is predicted forfohest samples (forest val) with the
the non-clustered Land Use modef: R0.89. The lowest Ris observed for the zavel model*(R
0.31) and when the SOM in clay samples is prediati¢a the non-clustered Soil Type modef (R
0.27). R values for models developed with the WBDA methfigu¢e 19) not much better than the
R?s of the models developed with Land Use or Sqiletystratification. The non-clustered WBDA-
model and model C (>10%) have &d® 0.79. Predictions with the B-model (>5-10%) guoe a very
low R? of 0.13.

RMSE:

The best prediction accuracy is achieved with thg and zavel model which have RMSE of 3.59%
and 2.89% respectively. The lowest accuracy iseaetti when SOM in peat samples is predicted with
the non-clustered Soil type model (RMSE of 11.43%).

The WBDA-models have about the same prediction racguas the RMSE of the non-clustered
WBDA-model does not differ much from the RMSE oétA (<5%) and C (>10%) model. (RMSE
non-clustered = 6.58%, RMSE (A:<5%) = 6.09%, RM8E>10%) = 6.73%). The C-model (5-10%)
has the lowest accuracy of all developed modelsSEM 10.70%.

RPD:

The highest RPD values are achieved with the pedtrature model (RRR; = 2.27, RPRyure =
2.35). Prediction of SOM in forest and nature s&®plith the non-clustered Land use model also
results in high RPD’s of 2.39 and 2.42.
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Lowest RPD values were achieved with the Agricaltunodel (RPD = 1.07), and when the non-
clustered Soil type model is used to predict SOMIay samples (RPD = 0.96) and in zavel samples
(=0.712).

RPD’s of the WBDA models are low compared to thdORPof the models developed with the other
stratification methods, except for the C-model @)@vhose predictions produce a RPD of 1.99.

N-total

R2
The highest Rwas achieved with the forest modef R0.90). The lowest Rwas achieved with the
zavel model (R= 0.29).

RMSE

The best accuracies were achieved with the clasgl znd sand model (RMSE = 1.23 g/kg, 1.15 g/kg
and 0.87 g/kg, respectively). The lowest accuraay achieved with the peat model, with an RMSE
of 3.03 g/kg and when Nt content in peat samples pradicted with the non-clustered Soil Type
model (RMSE = 3.44 g/kg).

RPD

The highest RPD was achieved with the clay andfdhest model (RPR, = 1.99 and RPRes =
2.05). Prediction of Nt in these samples with tloe-nlustered Soil type and Land use model also
produced high RPD’s of 2.93 (for clay) and 2.2 #€&1).

pH

RZ

The highest Rwere achieved with the forest modef @®®0.91). The agricultural model {R 0.84)
and the non-clustered Soil Type*(R0.86) and Land Use models*(R0.85) also have very higif R
values. Very low Rvalues were achieved with the zavel modeél £R0.23) and when pH in zavel
samples was predicted with the non-clustered gpé model (R= 0.19).

RMSE

The best prediction accuracy was achieved witlzgvel model (RMSE = 0.46 pH units).The lowest
accuracy was achieved with the sand and nature IfRMSE = 0.78 for both models) and when pH
was predicted in nature samples with the non-aledteand use model (RMSE = 0.79 pH units).

RPD

The highest RPD values were achieved with foresteh(RPD = 3.15). other models which produced
RPD’s higher than 2.00 are: the sand model (RPD0%)2the agricultural model (RPD = 2.37), the
non-clustered Soil type model (RPD = 2.48) andnitre-clustered Land use model (RPD = 2.52).
The lowest RPD values was produced with the zawelaih(RPD = 1.00).
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Figure 19. Overview of prediction (validation) $éts for three stratification methods(RRMSE and RPD) for

SOM prediction.

Model evaluation

Based on the Rand RPD the developed models were categoriz8atiasses following the criteria of

Changet al. (2001). The result of this evaluation of the depeld models are presented in table 24.

Four models to predict SOM are evaluated as cageyonodels: the peat model, non-clustered Land
Use model, the Forest model and the Nature modeb. Models developed with the WBDA method

were evaluated as class C models (A: <5% and B%}1Model C (>10%) was evaluated as a class

model. As previously mentioned the WBDA method miid improve prediction predictions results.

Only one model to predict Nt content was evaluaiedategory A model: the Forest model. All other
models were evaluated as category B models. Thel rmaadel is the only model that is evaluated as

category C model.

For the prediction of pH four models were evaluatedategory A models: the non-clustered soil type

model, the non-clustered land use model, the forestel and the agriculture model. The clay, sand
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and nature model were evaluated as category B motleé peat and zavel models were evaluated as
category C models.

Category A models have accurate prediction capisili category B model predictions can be
possibly improved by using different calibratiorchaiques (Changt al., 2001), and category C
models have no reliable prediction capabilitiesg@iet al., 2001 & Bartholomeust al., 2008).

Table 24 Mbdel evaluation.

Validation (SOM)

Stratification method Model Ncal | Nval | #factors R RMSE | RPD Model .
evaluation

Non-clustered 296 133 12 0.63 8.41 1.64 B

Clay 34 17 4] 0.81 3.59 1.84 B

Lithological Peat 38 18 9 0.82 9.99 2.27 A

Zavel 51 25 3| 0.31 2.89 1.18 C

Sand 146 73 7 0.48 8.24 1.36 C

Combined soil models 296 134 - 0.72 7.34 1.88 B

Non-clustered 265 131 17 0.81 6.21 2.24 A

Agricultural 40 20 7| 0.59 8.50 1.07 C

Land Use Forest 102 50 7| 0.82 4.34 2.07 A

Nature 123 61 16| 0.82 7.55 2.35 A

Combined 265 131 - 0.78 6.69 2.08 B

Non-clustered 384 191 13 0.79 6.58 2.10 B

A: <5% 133 83 9| 0.57 6.09 1.15 C

WBDA B: 5-10% 137 96 8| 0.13 16.70 0.94 C

C:. >20% 114 12 8| 0.79 6.89 1.99 B

Combined 384 191 - 0.25 12.62 1.10 C

Validation (Nt)

Stratification method Model Ncal | Nval | #factors| R RMSE | RPD Model .
evaluation

Non-clustered 296 133 13 0.70 2.05| 1.8] B

Clay 34 17 4| 0.76 1.23| 1.99 B

Lithological Peat 38 18 8| 0.63 3.03| 1.69 B

Zavel 51 25 3| 0.29 1.15/ 1.21 C

Sand 146 73 71 0.67 0.87| 1.68 B

Combined soil models 296 134 - 0.74 1.90 1.95 B

Non-clustered 265 131 9 0.70 2.02| 1.80 B

Agricultural 40 20 10 0.69 1.67] 1.70 B

Land Use Forest 102 50 7] 0.90 1.26| 2.05 A

Nature 123 61 15| 0.65 2.83| 1.56 B

Combined 265 131 - 0.71 2.18| 1.66 B

Validation pH

Stratification method Model Ncal | Nval | #factors| R RMSE | RPD Model .
evaluation

Non-clustered 296 133 16 0.86 0.68| 2.48 A

Clay 34 17 5 0.67 0.59| 1.62 B

Lithological Peat 38 18 6| 0.44 0.54| 1.23 C

Zavel 51 25 17| 0.23 0.46| 1.0Q C

Sand 146 73 12 0.78 0.78| 2.01 B

Combined soil models 296 133 - 0.85 0.68| 2.50 A

Non-clustered 265 131 14 0.85 0.65| 2.52 A

Agricultural 40 20 9 0.84 0.53] 2.37 A

Land Use Forest 102 50 120 0.91 0.61| 3.15 A

Nature 123 61 14| 0.78 0.78| 1.92 B

Combined 265 131 - 0.85 0.68| 2.38 A

Lithological stratification resulted good predicti¢category A) models for the prediction of:
1. SOM with the peat model

2. Nt: no soil type model is suitable

3. pH with the non-clustered soil type model.
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Land use stratification resulted in good prediciicategory A) models for the prediction of:
1. SOM with the non-clustered soil type model, fivest and agricultural model.

2. Nt with the forest model

3. pH with the non-clustered, agricultural and sbr@odel

Spectral stratification (WBDA) did not produce A dess suitable for the prediction of the SOM
content in stratified samples.

Changet al. (2001) evaluated models only on thé &d RPD. But the accuracy (RMSE) of the
prediction is also important. Based on the preaiicticcuracy of the models the effect of the three
stratification methods is evaluated but with oflg RMSE as main criterion.

Lithological stratification resulted in good acceyaof predictions of:

1. SOM: with the clay and zavel model, and in zaahples using the non-clustered soil type model.
2. Nt: with the clay, zavel and sand model, andlay and zavel samples using the non-clustered soll
type model.

3. pH: with the zavel and clay model.

Land Use stratification resulted in good accurdcpredictions of:

1. SOM: with the forest model, and in forest sarapising the non-clustered land use model.

2. Nt: with the forest and agricultural model, andorest samples using the non-clustered land use
model.

3. pH: with the agricultural model, and in agricuétl and forest samples using the non-clusteredl lan
use model.

Spectral stratification (WBDA) did not produce mtglthat reached reasonable prediction accuracy:
RMSE for the cluster with the smallest range (@%) & 6.09%.

Based on the accuracy of the predictions a flowtdffigure 20) is designed to show which model one
can use to predict SOM, Nt or pH. Which model oae ase depends on the soil property and on the
location (or source) the soil sample. The sourceaither be the soil type or the land use on wttieh
soil sample was taken. If one does not know whatsihil type or land use is, x-y coordinates also
suffice. With the x-y coordinates one can also hetge the soil type or the land use. If one dods no
have any information about the source of the santpke non-clustered models can be used. The
accuracy of the predictions that are achieved amtioned in the flow chart.
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........................

non-clustered WBDA model

Sand

Clay Peat
Source
known? non-clustered soil type mode
: [ Soil Type Clay model
A Peat model [ 9.99 | 3.03] 0.54
v Soil Type ! Zavel model
[ YES| LandUse | A Sand model
Coordinates] |
v oy Agricultural land Forest
Determine Nt| pH
Soil Type \4 non-clustered Land Use mod 1.14 0.5
or | Land Use Agricultural land model
Land Use Forest model

Nature model

| 2.83] 0.78

Figure 20: Decision tree for predicting soil prapes.

The coloured cells indicate that the model caneatised for the prediction of the chosen soil priypdihe open cells indicate that the model candseluThe number in the

cells indicate the accuracy that is reached whemtbdel is used. Units of accuracy: SOM (%), Nkddy/ pH (-). WBDA= Wave-length Based Discriminamaysis.
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3.3 General discussion

On developing and implementing stratification methals

In this research two external data sources (SqikeTipap and Land Use map) were the basis for two
stratification methods. A third stratification methwas based on Wave-length based Discriminant
Analysis (WBDA) or spectral alikeness (similarity).

Lithological stratification divided the data in dilsclusters. These 4 soil clusters were aggregsodd
classes from a soil classification that distingasimore soil type classes. By aggregating soikekas
that are related to each other or which are sufsekof each other, the number of soil classes was
reduced to four. The advantage of reducing the murobsoil classes to four is that more points are
allocated to the aggregated soil classes, insteadrp few soil points allocated to many soil cless
Especially when creating calibration samples tiséwauld be enough samples of each soil type to train
the calibration model.

This same approach was applied for Land Use statiiin. The many land use types were aggregated
and reduced to 3 land use types, ensuring thatgensamples would be allocated to each land use
class.

The drawback of these aggregating approaches tightbaange of the soil property values becomes
large as each cluster contains soil samples fréfereint sub classes, which probably have their own
specific soil property range. The descriptive stats indeed showed that the ranges of the soil
property per cluster were indeed quite broad, wihile purpose of stratification was to create
homogeneous sets.

It is worth noting that the Land Use map used Fos stratification was LGN5. This is currently an
out-dated version as the latest version is LGN@&hAttime of this research LGN6 was just introduced
and not available for this research. Nothing cars&ié about the effect of using LGN5 instead of
LGNG6 because the difference between these two mapsiot analysed. If soil samples are placed in a
wrong class, this can be attributed to the usb@but-dated land use map.

The accuracy of the GPS coordinates could be ansthece of possible wrong allocations of the soil
points. But this is beyond the control of this sk and the fact that the point locations are much
smaller than the land use or soil type area, eetatge chance that the soil points are placed in a
correct class. The chance of misplacement is latggn the soil samples and the GPS measurements
are taken at or near the border of two or more les®lor soil types.

The third stratification method did not involve estial data sources as basis for stratificatiorieath
samples were clustered according to their speetiabness. Based on calculated ratios between
reference spectra, the different spectra were gedhin clusters representing different contenthef t
soil property ( SOM). The pitfall of this methodtisat between spectra there may be wide differences
in chemical composition due to small, yet importabsorption bands hidden by a larger band or
bands (Roberts and Workman, 2004) and still thege dspectra may be nearly identical. The
descriptive statistics of the clusters indeed stwat misplacements of samples have occurred i all
clusters resulting in outliers present in each telusvhich influenced the prediction results of the
developed models for this stratification method.

On validating the developed stratification methods
The clusters defined by the different stratificatimethods contained enough samples to develop
different calibration models. Some calibration medeere developed with more samples than others

(e.g. the non-clustered models were developedtwitte the number of samples than the sand model,
or the sand samples was developed with almost thmes twice the number of samples than the peat
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model), which could have an effect on the predictability of the model as prediction model
parameters are estimated more accurately when saonples are used (Roberts and Workman, 2004).
Gomezet al. (2008) also stated that SOM prediction modedsrs® be sensitive to the number of soil
samples. In my research differences between thdigii@ns of the created models can also be
attributed to the number of calibration sampleg thare used to develop the developed prediction
models.

For good predictions, the clusters should have dewange in composition (Murray and Cowe in
(Roberts and Workman, 2004). Bartholometisl. (2008) also agree with this as they state that a
large variance is required for the calibration leé prediction model otherwise extrapolation beyond
the range in the training data set results in l@mgers. But they also state that a greater vditiain

the training phase of a statistical model may l@adn improved robustness of the model. Gostez
al. (2008) also mentioned excellent cross validatishen the soil sample set is more comprehensive.
Besides a wide range in composition the samplesldhze typical to those to be analysed (Roberts
and Workman, 2004) which means that validation $esphould be similar to calibration samples
(Brown et al., 2005). The large data set that was used in my rels@@deed covered a large range of
the soil properties. The created clusters also dadde range in composition, but in fact this is
contradictory to the purpose of stratification, stsatification is meant to create homogeneous
populations. In fact, the non-clustered sets cal/éne widest range in composition and given thé fac
that the non-clustered were developed with theelgrdraining sets it is not surprising that the
clustered models not always performed better than ron-clustered models. The purpose of
stratification was to overcome non-linearities, this was partly achieved because they were stil} v
variable but not as variable as the non-clustesdd dets. Due to the non-linear behaviour under- or
over estimations of soil properties, especiallyhwiigher contents were observed.

About the variability of data sets there are ddfdrconceptions. Bartholomeasal. (2008) worked
with data with a large variability (0.06 - 45.1%M); the SOM content of the data in my research
ranges from 0.24 to 95.80%, which | consider d&flgias highly variable, while Gometal. (2008)
already speak of a wide range or high variabilityew the samples have an SOM content between
0.002 and 5.1%. These conceptions can be relatatifferences in site locations and different
geographic regions where this type of researcbnslacted.

Gomezet al. (2008) assumed that a high variability of the gaita set and a high number of soil data
could be a factor of improvement of the predictamturacy, while in my research | assumed that by
bracketing the data set into cluster predictiorueacy could be improved. The assumption of Gomez
et al. (2008) also contradicts the assumption of Cédilibal. (2009) who attribute poor prediction
results to the heterogeneity of the samples.

The clusters created based on wave-length basedndisant analysis were the only clusters which
did not cover a wide range in composition. The eanfjthese cluster was set by predefined ranges.
The clusters that were created were more homogettvars all clusters formed by the other
stratification methods. Especially the two clustesth the lower SOM content (A, <5% and B, 5-
10%) were the most homogenous given the small rédmaewas defined for this cluster. Still, the
prediction results based on these homogenous dustas not satisfying as the RMSE’s of the
predictions was larger than the range of the alsste

Negative predictions have been observed in thigaret. Negative predictions have also been
encountered in other research but the occurrentieest predictions was not discussed and also not
how was dealt with this. A possible explanationtfos is given by Gomeet al. (2008) who observed
that when the SOM dropped below 1% reflectancetspece not able to predict the SOM content.
The results in my research did not only show negadredictions for SOM, but also for N-total. These
negative predictions occurred for N-total contesrsaller than 2.11 g/kg or SOM contents smaller
than 7.05%. Apparently small contents of the sailpprties were indeed difficult to predict in this
research.
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Outliers could also have had an effect on the ptiedis. Outliers have been left in the data astivas
purpose to also test the model how to deal witHiayat Outliers influence the linear regression
because the regression line is forced through thieecs.

Causes of poor prediction results could be therbgémeity of sample sets (optimal calibration
requires limited but sufficient set heterogene{tygcillonet al., 2009), even though each cluster was
assumed to be more or less homogeneous givendhéhéa each cluster was created by aggregating
different soil types or land use classes, the etestould indeed still be quite heterogeneous. Harot
cause could be the number of calibration samplasvtlere used for some clusters, e.g. sand models
were developed with many calibration samples wthke zavel, peat and agricultural models were
developed with much smaller training sets. Buthesea was no consistent relation observed between
the number of samples that were used to calibrateta and the predictions results of the models, it
cannot be confirmed that the number of calibrasamples was a true cause for the poor prediction
results.

SOM

Zornozaet al. (2008) obtained very good results for predicticBMsin 393 samples: R= 0.98,
RMSE = 6.25% and RPD = 5.75. This was achieved Witderivative and multiplicative scattering
applied as pre-processing methods. The soil sarhpleés wide range of soil characteristics, land use
and vegetation and specific climatic conditionSpain. Gomeet al. (2008) also used PLSR on soils
which had a maximum SOM content of 5.10%. For thedistion of 146 samples they found R
0.71 — 0.73, RMSE = 0.52 — 0.53, and RPD 1.87 2,108tained for models with 6 and 7 factors.
Although they state that their samples were higldgiable as the range of SOM content was from
0.002 - 5.1%, their data is still not as varialsddle data used in my research:, e.g. the ran§©bf
content in my research was from 0.24 — 95.80%.

Bartholomeust al. (2008) also found for SOM predictiorf Bf 0.80 — 0.81 but these predictions were
based on linear relations with S&zontent for 40 samples. The range of these samydssfrom
0.06 — 45.1%. Viscarra Rosslal. (2006) found for testing 118 samples with a @damodel an R

of 0.72 and a RMSE of 0.15 but the range of thefle was very small (0.81 — 1.98%) with a mean of
1.34%. which is compared to my samples very homogenSummerst al. (2009) predictions for
228 samples with a 10-factor model produced’afR0.57, RMSE = 0.35% and RPD = 1.80. The
mean SOM content was 1.5%, and the range was fr@&h 0 2.90% SOM. The most accurate
predictions in my research for SOM were achieveth Wie zavel and clay model (RM3k = 2.89%,
RMSE,.y = 3.59%), but R= 0.81 of SOM predictions with the clay model wegher than the R=
0.31 of SOM predictions with the zavel model. Gitka smaller number of samples in these clusters,
these predictions are acceptable, but calibratiegniodels with more samples is needed to improve
the predictions.

N-total

Zornozaet al. (2008) found high predictions for N-total with 388mples giving a #of 0.95, RMSE

= 0.41 and RPD = 4.69 without applying any pre-pssing method. Cobet al. (2010) found for
soils in Zimbabwe and for 165 soils, using PLSRhwiit derivative and Vector Normalization as pre-
processing methods,?R 0.96, RMSE = 0.02 and RPD = 5.2, which are deneprediction results.
Best predictions accuracy in my research was aetiewth the sand model, having a RMSE of 0.87
g/kg and R= 0.67.

pH

Zornozaet al. (2008) found for pH predictions for 393 soils, yalpplying Multiplicative Scattering
correction, R=0.72, RMSE = 0.14 and RPD = 1.90. Cabal. (2010) predicted for 165 soils using
PLSR with ' derivative and straight line subtraction (SLS)eqtable results as’R 0.86, RMSE =
0.24 and RPD = 3.1. Viscarra Rossebll. (2006) predicted pH for 118 soils with a 14-mofisitor
and found RMSE of 0.14 and®Rf 0.73. In my research the best prediction aayumas achieved
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with a 17-factor zavel model, giving a RMSE of 0p# units but with a R= 0.23 this model was not
a good model. A good model was the 9-factor agrical model which produced a RMSE of 0.53 and
a R of 0.84.

Relevance of findings

The number of samples per cluster was differentHerclusters that were created. If more samples
were available for the clusters larger calibratets could be created. Still the results look psomgi
because better prediction accuracies were achigedstratification was applied. Unfortunatelyt no
all models that were built with stratified datassetsulted in better prediction accuracies. Thissh
that clustering indeed can improve the predictidriige cause for inconsistencies still have to bd fin
out. The current library should be extended withrensamples, especially with samples from soil
types and land use types that were underrepresantas study (e.g. peat, zavel and clay soilgl an
agricultural land should be expanded with more das)@nd possibly with other geographical regions
or soil types of The Netherlands which were notrgspnted in this study (e.g. loam soils were
excluded in this study because there were too &amlsamples). Furthermore, a decision tree has
been created which allows to select a model toigradsoil property of interest (SOM, Nt or pH) it

a beforehand indicated accuracy. Models with higtueacies need to be improved by using more
training samples to improve the model predicticBalibration of the models in this research were
done without any pre-processing. This leaves diffepossibilities open to improve the developed
prediction models.

The WBDA-method needs to be revised again bechisenethod seems also promising especially in
cases when only spectra are available. Due to tisplamement of spectra in wrong classes the
potential of this method is reduced. Methods on howeduce or eliminate the misplacements of
spectra need to be find out and tested.
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4. Conclusions

In this research 3 stratification methods were bger and tested. Two external data sources were
used to develop a Lithological and a Land Useifitration method, and one method was based on the
similarity of the soil spectra: the Wave-length 8a®Piscriminant Analysis. The expectation was that
the prediction models would perform better than-olustered models if suitable clusters and ranges
were selected. Contrary to what | expected thetaling methods did not improve the prediction
results for all 3 tested soil properties, at lewstfor all clusters.

Stratification, based on external data sourcesicgmove the estimations of soil properties from

VNIR spectra:

For the prediction of SOM this was achieved wité dghay, peat and zavel model but also when SOM
content was predicted in agricultural, forest aatlre samples with the non-clustered land use model
For the prediction of Nt this was achieved with geat, agricultural and nature model, and when Nt
content in clay, zavel, and forest samples wadigied with the non-clustered Soil Type or Land Use
model.

For the prediction of pH this was achieved with geat model and when pH was predicted in clay,
sand, agricultural, forest and nature samples thiglmon-clustered Soil Type or Land Use model.

Stratification, based on spectral data only canrawg the estimations of soil properties from VNIR
spectra. This was partly proven for one of theghm®dels which were developed with this method:
model C (>10%) produced more accurate predictibas the non-clustered model. But care should be
taken when this model is used because this staiifin method must be improved further to reduce or
avoid wrong placements of spectra in the validasiets.
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|. Glossary

Accuracy = the closeness to the actual results of valuedigted on future unknown samples by a
calibration.

Aeolean= related to the activity of the wind, causingdbgeogenesis, viz. locally formed deposits

Artificial Neural Networks = include many nonlinear technique inspired byrtearal connections of
the human brain. The feed forward network techniguespecially useful in developing quantitative
models. Many inputs, initially spectral measureragmtre multiplied by weights and summed in a
neural network “node’.

Eolian = see aeolean
Fluviatile = deposited by river systems

Kurtosis = Kurtosis is a measure of whether the data aakqubor flat relative to a normal
distribution. That is, data sets with high kurtasisd to have a distinct peak near the mean, declin
rather rapidly, and have heavy tails. Data set loitv kurtosis tend to have a flat top near themmea
rather than a sharp peak. A uniform distributiorulidoe the extreme case (from: Engineering
Statistics handboolt| ST/SEMATECH e-Handbook of Satistical Methods,
http://www.itl.nist.gov/div898/handbook/, 24 May P10).

Leave-one-out method= one sample is systematically left out from eagtle of the regression until
all the samples have been excluded once.

Levene’s and student-test

If comparison between the mean values of the @ldor and validation set do not show a significant
difference between them (according to the studdrigst at a 0.05 significance level), this similarit
between the calibration and validation set is iatlie that the randomly separated validation sasnple
appropriately represents the population under study

Lithogenesis= soil formation.
Precision= the degree of reproducibility of the result.

RPD = residual prediction deviation = ratio of perfamece to deviation = standard error of
performance / standard deviation of the refereng & standard deviation/RMSEP or standard
deviation/RMSECV

Robustness here refers to the characteristic of a calibratwhere it can be transferred to other
instrument without loss of performance (Roberts Afwtkman, 2004).

Skewness= The skewness for a normal distribution is zenmag any symmetric data should have a
skewness near zero. Negative values for the skeswindgate data that are skewed left and positive
values for the skewness indicate data that areesdkeight. By skewed left, we mean that the lettifai
long relative to the right tail. Similarly, skewedht means that the right tail is long relativettie left

tail (from: Engineering Statistics handboolIST/SEMATECH e-Handbook of Satistical
Methods, http://www.itl.nist.gov/div898/handbook/, 24 M2911).
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ll. Descriptive statistics

Results of relevant descriptive statistics of thferent non-clustered and clustered sets and tweiesponding calibration and validation setstmafiound in
table 25 - 31. Tables are displayed per soil tfg@N!, Nt, pH) and per type of stratification metrayplied.

SOM
Table 25 Descriptive statistics for SOM clustersdzhon Soil Type (ST).
ST ST _Cal ST Val| clay | clay call clay va peat peatal | peat val| zavel| zavel cal zavel val sand  sandl ¢ sand val

Observations 402 269 133 51 34 17 56 B8 18 76 51 25 219 146 73
Mean 11.96 11.96] 11.9¢ 1091 10.71 11.82 2998 30.34 2329. 8.21 8.20 8.25 8.89 8.78 9.12
Median 7.63 7.59 7.66 8.7¢ 8.70 8.99 24.85 24185 2320 3y.7 71.73 7.73 6.21 6.18 6.24
Variance 204.20 211.82 190.28 4543 47.50 43]75 567.28 6805.7515.98| 12.17 12.68 11.63 119.84 117/66 125.81
Std. Dev. 14.29 14.55] 13.74 6.74 6.89 6.61 23)82 24.61 22.728.49 3.56 3.41 10.9% 10.85 11.22
Minimum 0.34 0.34 0.59 1.61 1.6[L 2.81 2.60 2/60 488 328 288 3.72 0.34 0.34 0.5¢
Maximum 95.80 95.80 92.00 36.5D 36.50 30.p0 95(80 95.80 009Q. 20.10 20.1d 17.80 7240 72.40 61)00
Range 95.46 95.46 91.41 34.89 34.89 27.89 93120 93.20 128. 16.82 16.82 14.08 72.06 72.06 60/41
Skewness 3.14 3.20 3.02 1.99 2.18 1.97 1.84 133 1.47 111 16 1.06 3.22 3.38 3.0L
Kurtosis 11.82 12.20 11.26 4.5¢ 5.4 3.40 1,36 1,28 243 613 164 1.17] 12.03 13.6p 9.91

Table 26 Descriptive statistics for SOM clustersdzhon Land Use (LU).

LU LU cal LU val agric agric_cal | agric_val forest | forest cal | forest val nature nature_cal| nature_val
Observations 396 265 131 60 4p 20 152 1p2 50 184 312 61
Mean 12.39 12.46 12.23 12.1p 12.13 1281 9{72 10.01 D.14 14.65 14.61] 14.74
Median 7.75 7.73 7.79 8.67 8.59 8.92 7.24 7[24 7.23 1.92 .84 |7 8.00
Variance 215.85 227.44 193.94 100.02 110.84 83,06 138.20 .3497 80.45 308.54 308.4f7 313.81
Std. Dev. 14.69 15.08 13.93 10.0p 10.53 9.11 11176 12.94 8.97 17.57 17.56] 17.71
Minimum 0.34 0.34 0.59 0.84 0.8¢4 3.04 0.97 0/97 111 0.34 340 0.59
Maximum 95.80 95.80 92.0( 61.00 61.00 40.60 94,70 94.70 705R.  95.80 95.80 92.00
Range 95.46 95.46 91.41 60.16 60.16 37.46 93,73 93.73 5%[. 95.46 95.46 9141
Skewness 2.98 3.00 2.91 2.7% 3.0p 2.06 4.45 4147 331 2.30 30p 2.36
Kurtosis 10.53 10.56 10.64 9.6f 11.61 4.88 24(32 23.41 12.61 5.93 5.96 6.49

Cal = calibration set; val = validation set.
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Table 27 Descriptive statistics for SOM clustersdzhon Wave-length Based Discriminant Analysis.

whole CatA CatB CatB CatC
set val cal wholeset | CatAcal | CatAVal| wholeset | CatB Cal| Val whole set | CatC Cal| CatC Val

Observations 575 384 191 216 133 83 283 137 96 126 114 12
Mean 11.37 11.43 11.26 3.9p 2.90 5.57 10/15 7.36 1412 6.4 26.26 27.78
Median 6.99 6.97 6.99 3.4 3.2 4.18 7.¥3 723 8.68 2(0.00 19.40 22.60
Variance 199.74 204.59 191.01 21.49 1.97 4872 113.42 1.8047.2% 343.32 361.35 187.06
Std. Dev. 14.13 14.30 13.87 4.6 1.40 6.98 10/65 1.34 1%.72 8.531 19.01 13.6§
Minimum 0.24 0.24 0.29 0.2 0.24 0.29 2.80 5/04 2/.30 10.20 10.20 14.30
Maximum 95.80 95.80 92.0( 52.7 5.00 52.170 92|00 10.00 p.0 95.80 95.80 61.8
Range 95.56 95.56 91.71 52.4 4.16 52.41 89|70 4.96 89.70 85.60 85.60 47.5(
Skewness 3.08 3.10 3.06 6.7 -0.338 4.8 4.92 0/20 3100 1.78 1.79 1.52
Kurtosis 11.19 11.32 11.19 62.0 -1.17 26.59 27194 -0.91 59.8 3.04 2.99 2.50

Cat A:SOM content < 5%; Cat B: 5%< SOM content &]@at C: SOM content > 10%.

Cal = calibration set; val = validation set.

N-total

Table 28 Descriptive statistics for N-total clustbased on Soil Type.

ST ST Cal| ST Val clay clay cal clay va peat| peatal | peat val| zavel| zavel cal zavel val sandl sandl ¢ sand_val

Observations 402 269 133 51 3¢ 17 56 B8 L8 76 51 25 219 146 73
Mean 3.42 3.39 3.47 3.84 3.7/ 4.00 8.80 834 8.22 3.04 .03 B 3.06 2.20 2.15 2.3R
Median 2.27 2.25 2.30 2.99 2.98 3.17 8.38 8/38 8.26 2.79 75 P 2.82 1.43 1.43 1.48
Variance 13.75 13.83 13.7( 6.15 6.39 6.00 2917 31.38 26.082.13 2.27 1.92 8.1( 7.26 9.89
Std. Dev. 3.71 3.72 3.7Q 2.4 2.58 2.45 5.40 5|60 511 1.46 Sl 1.39 2.85 2.69 3.14
Minimum 0.16 0.16 0.20Q 0.5 0.5 1.23 0.47 0447 1.22 1.03 .03 1L 1.31 0.16 0.16 0.2D
Maximum 25.40 25.40 21.2( 13.0 13.00 11.00 25[40 2540 2020. 9.36 9.36 7.4( 20.20 20.20 19.80
Range 25.24 25.24 21.0( 124 12.49 9.7 24(93 24.93 81D.9 8.33 8.33 6.09 20.04 20.04 19.60
Skewness 2.53 2.61 2.40Q 1.9 2.00 1.19 0.88 0495 0.74 1.74 90 L 1.40 3.81 3.87 3.7p
Kurtosis 7.93 8.68 6.71 4.1 5.3D 3.34 1.20 145 0.93 4.72 72 b 2.81 17.73 19.14 16.17

Cal = calibration set; val = validation set.
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Table 29 Descriptive statistics for Nt clustersdzhen Land Use.

LU LU cal LU val agric agric_cal | agric_val forest | forest cal | forest val nature nature_cal| nature val

Observations 396 265 131 60 40 20 152 1p2 50 184 312 61
Mean 3.50 3.51 3.47 3.79 3.7p 3.93 2.73 2480 2,58 4.04 .04 4 4.06
Median 2.26 2.25 2.29 2.84 2.8p 2.85 1.96 196 1.96 2.16 A5p 2.17
Variance 14.59 15.34] 13.1¢4 8.3p 8.61 8.06 10/55 1251 6.69 9.291 19.37 19.46
Std. Dev. 3.82 3.92 3.63 2.83 2.98 2.84 3.5 354 2,59 4.39 40 4 4.41
Minimum 0.16 0.16 0.20 0.26 0.26 0.11 0.p4 024 0.28 0.16 A6 P 0.20
Maximum 25.40 25.40 20.4( 16.00 16.00 11.30 25140 25.40 7014.  21.20 21.20 20.40
Range 25.24 25.24 20.2(¢ 15.74 15.74 10.p9 2516 25.16 4214, 21.04 21.04 20.20
Skewness 2.38 2.49 2.11 2.1% 2.44 1.67 4.19 4126 3.17 1.65 .66 1 1.68
Kurtosis 6.72 7.44 4.81 5.5 7.56 2.25 21.83 2171 11.53 425 2.61 2.71

Cal = calibration set; val = validation set.

pH

Table 30 Descriptive statistics for pH clustersdabasn Soil Type.

ST ST Cal | ST Vval clay | clay cal clay vall peat peatal | peat val| zavel| zavel cal zavel val sand sandlg sand val

Observations 402 269 133 51 3¢ 17 56 38 8 76 51 25219 146 73
Mean 6.17 6.16 6.2Q 7.68 7.64 7.45 5.81 531 532 1.93 92y 7.96| 5.43 5.42 5.4b
Median 5.70 5.70 5.72 8.14 8.14 8.14 542 5/42 542  8.06 .06 B 8.06| 4.88 4.87 4.8p
Variance 2.85 2.86 2.87 111 1.28 0.93 0.56 063 044 0.26 28D 0.21| 2.41 2.34 2.48
Std. Dev. 1.69 1.69 1.69 1.06 1.1 0.96 0.y5 0480 066 0.51 53D 0.46| 1.55 1.54 1.5¢
Minimum 3.62 3.62 3.74 4.16 4.16 4742 3.62 362 402  6.20 206 6.52| 3.70 3.7( 3.74
Maximum 9.11 9.11 9.10 8.66 8.66 8.46 7.63 7163 6.74 851 518 8.50| 9.11 9.11 9.1p
Range 5.49 5.49 5.36 4.5 4.50 314 401 4/01 2.72 231 31p 1.98 5.41 5.41 5.3
Skewness 0.09 0.10 0.08 -2.13 -2.08 -2.42  0.12 021 -0.20.941 -1.93 -2.03  0.93 0.94 0.93
Kurtosis -1.58 -1.57 -1.59 3.77 3.54 6.05 1.B8 157 0.66 33.4 3.34 4.33] -0.45 -0.43 -0.45

Cal = calibration set; val = validation set.
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Table 31 Descriptive statistics for pH clustersdabsn Land Use.

LU LU cal LU val agric agric_cal | agric_val forest | forest cal | forest val nature nature_cal| nature val
Observations 396 265 131 60 40 20 152 1p2 50 184 312 61
Mean 6.01 6.00 6.03 6.1¢ 6.13 6.24 6.p1 6{01 6.01 5.97 .96 b 5.99
Median 5.55 5.54 5.58 5.59 5.5)7 5.64 5.63 5,53 5.55 553 52b 5.53
Variance 2.66 2.68 2.65 1.6 1.6b 1.59 3.60 3163 362 2.25 26 P 2.26
Std. Dev. 1.63 1.64 1.63 1.27 1.28 1.26 1.0 1/90 1.90 1.50 .50 L 1.50
Minimum 3.62 3.62 3.74 3.89 3.89 4.63 3.Y0 3{70 3.74 3.62 .62 B 3.83
Maximum 9.11 9.11 9.10 8.32 8.3p 8.27 8.51 8/51 8.36 9.11 A1P 9.10
Range 5.49 5.49 5.36 4.43 4.43 3.64 4.81 481 4.62 5.49 49 b 5.27
Skewness 0.27 0.27 0.27 0.4 0.3f7 0.50 0.11 0j11 0.11 0.52 52P 0.54
Kurtosis -1.43 -1.43 -1.44 -1.2$ -1.23 -1.49 -1.83 -1)84 881, -1.00 -1.00 -0.99

Cal = calibration set; val = validation set.
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lIl. Normality tests results

For the normality test the null- hypothesis to ésted was:
Ho: the data follow a normal distribution
H.: the data do not follow a normal distribution.

The results of the normality test should be intetgul as follows:

Reject the null-hypothesis (i.e. accep) Hip < 0.05.

Table 32Normality test for all soil clusters for SOM.

Kolmogorov-Smirnov(a) Shapiro-Wilk
SOM Set | Statistic | df Sig. Statistic | df Sig. Normal distbution
NON- all 0.250| 402 0.000 0.640 402 0.000 no
g('SLI’LSIEF'?gD cal 0.254| 269| 0.000 0.631 269 0.000 no
val 0.247| 133 0.000 0.660 133 0.000 no
CLAY all 0.241 51| 0.000 0.790 51 0.000 no
cal 0.248| 34| 0.000 0.777 34 0.000 no
val 0.249 17| 0.006 0.812 17 0.003 no
PEAT all 0.151 56| 0.003 0.861 56 0.000 no
cal 0.155| 38| 0.022 0861 38 0.000 no
val 0.146| 18| 0.200Q 0.871 18 0.018 no
ZAVEL all 0.118 76| 0.011 0.924 76 0.000 no
cal 0.119| 51| 0.068 0.922 51 0.002 no
val 0.127| 25| 0.200Q 0929 25 0.081 yes
SAND all 0.239| 219/ 0.00( 0.628 219 0.000 no
cal 0.239| 146/ 0.000 0.624 146 0.000 no
val 0.242| 73| 0.000 0.635 78 0.000 no
NON- all 0.246| 396 0.000 0.655 396 0.000 no
EkliSTUESREED cal 0.250| 265 0.000 0.64f 265 0.000 no
val 0.244| 131 0.000 0.676 131 0.000 no
AGRIC all 0.238| 60| 0.000 0709 60 0.000 no
cal 0.246| 40| 0.000 0.680 4p 0.000 no
val 0.224| 20| 0.01d 0.76f 20 0.000 no
FOREST all 0.300| 152 0.004 0516 152 0.000 no
cal 0.308| 102 0.004 0.494 102 0.000 no
val 0.273| 50| 0.000 0.618 50 0.000 no
NATURE all 0.208| 184 0.000 0.729 184 0.000 no
cal 0.208| 123 0.000 0.730 123 0.000 no
val 0.212| 61| 0.000 0729 61 0.000 no
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Table 33Normality test for all soil clusters for Nt.

Kolmogorov-Smirnov(a) Shapiro-Wilk
Nt Set | Statistic | df Sig. Statistic | df Sig. Normal distbution
NON- all 0.219| 402 0.00( 0.71p 402 0.000 no
(S:(L)LIJLS:I'I-\I{EPRIEED cal 0219 269 0.00 0714 249 00D0 no
val 0.227| 133 0.00( 0.729 33 0.0p0 no
CLAY all 0.208 51| 0.00( 0.801 51 0.000 no
cal 0.215 34 0.00( 0.792 34 0.0p0 no
val 0.221 17|  0.027 0.81B 17 0.003 no
PEAT all 0.074 56| 0.20( 0.934 56 0.004 no
cal 0.088 38 0.20( 0.93D 38  0.020 no
val 0.087 18|  0.200 0.94p 18 0.363 vyes
ZAVEL all 0.112 76| 0.02( 0.872 76 0.000 no
cal 0.121 51  0.05¢ 0.857 51 0.000 yes
val 0.119 25/  0.204 0.90[L 25 0.019 no
SAND all 0.236| 219 0.00( 0584 219 0.000 no
cal 0.230| 146  0.00( 0599 146 0.0p0 no
val 0.252 73| 0.004 0.570 73 0.000 no
NON- all 0.218| 396/ 0.00( 0.728 396 0.000 no
EALESTUESREED cal 0.222| 268 0.00 0718 245 0.0D0 no
val 0.216| 131 0.00( 0.752 131 0.0p0 no
AGRIC all 0.203 60| 0.00( 0.777 60 0.000 no
cal 0.209 40 0.00( 0.757 40 0.000 no
val 0.209 20| 0.027 0.798 20 0.001 no
FOREST all 0.289| 152 0.00( 05501 152 0.000 no
cal 0.299| 102  0.00( 0.528 102 0.0p0 no
val 0.258 50/ 0.00d 0.63p 50 0.000 no
NATURE all 0.188| 184 0.00( 0.798 184 0.000 no
cal 0.189| 123 0.00 0.798 123 0.0p0 no
val 0.191 61| 0.00d 0.80D 61 0.000 no
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Table 34Normality test for all soil clusters for pH.

Kolmogorov-Smirnov(a) Shapiro-Wilk
pH Set | Statistic | df Sig. Statistic | df Sig. Normal distbution
NON- all 0.158| 402 0.00( 0.884 402 0.000 no
(S:(L)LIJLS:I'I-\I{EPRIEED cal 0159 269 0.00 0884 249 00D0 no
val 0.163| 133 0.00( 0.883 33 0.0p0 no
CLAY all 0.252 51| 0.00( 0.676 51 0.000 no
cal 0.255 34 0.00( 0.682 34 0.0p0 no
val 0.266 17|  0.002 0.674 17 0.000 no
PEAT all 0.113 56| 0.074 0.950 5 0.021 no
cal 0.128 38 0.12] 0.943 38 0.052 yes
val 0.126 18|  0.200 0.9641 18 0.684 vyes
ZAVEL all 0.230 76| 0.00( 0.765 76 0.000 no
cal 0.240 51  0.00( 0.763 51  0.000 no
val 0.228 25/  0.007 0.78L 25 0.000 no
SAND all 0.148| 219 0.00( 0.85p 219 0.000 no
cal 0.149| 146  0.00( 0.851 146 0.0p0 no
val 0.151 73| 0.004 0.853 73 0.000 no
NON- all 0.140| 396/ 0.00( 0.895 396 0.000 no
EALESTUESREED cal 0.137] 265 0.00 0895 265 0.0D0 no
val 0.146| 131 0.00( 0.80% 131 0.0p0 no
AGRIC all 0.213 60| 0.00( 0.880 60 0.000 no
cal 0.205 40 0.00( 0.889 40 0.001 no
val 0.237 20| 0.00% 0.855 20 0.006 no
FOREST all 0.208| 152 0.00( 0.788 152 0.000 no
cal 0.211] 102  0.00( 0.7890 102 0.0p0 no
val 0.210 50/ 0.00d 0.78p 50 0.000 no
NATURE all 0.137| 184 0.00( 0.916 184 0.000 no
cal 0.138| 123 0.00 0.917 123 0.0p0 no
val 0.145 61| 0.003 0.914 61 0.000 no
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Table 35Normality test for all soil clusters for SOM for Wklength based clustering.

Tests of Normality
Kolmogorov-Smirnov(a) Shapiro-Wilk
Statistic | df Sig. Statistic | df Sig. Normal distribution

All 0.247 | 575 0.000 0.637 57p 0.000 no

Cal 0.248| 384 0.00 0.634 384 0.0pGo
Non-clustered | Val 0.245| 191 0.00d 0.643 191  0.000ho

All 0.269 | 216 0.000 047¢ 215 0.000 no

Cal 0.106| 133 0.001 0935 133 0.0p0 no
Cat A (<5%) | val 0.260 83 0.004 0.552 83 0.000 no

All 0.353 | 233 0.000 0.43 233 0.000 no

Cal 0.057| 137 0.20 0.969 137 0.0p3 no
Cat B (5-10%) | Val 0.276 96 0.004 0.611 96 0.000 no

All 0.191 | 126 0.000 0.78¢ 126 0.000 no

Cal 0.199| 114 0.00 0.778 114 0.0p0 no
Cat C (>10%) | Val 0.203 12 0.184 0.858 12 0.040 no
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V. Levene’s test and student’d test results

For the Levene’s test of equal variance the nyjpdthesis to be tested was:
Ho: both data sets have equal variances
H,: both data sets do not have equal variances

The results of the Levene’s test of equal variasbesild be interpreted as follows:
Reject the null-hypothesis (i.e. accep) Hip < 0.05.

For the studertttest the null- hypothesis to be tested was:

Ho: the validation and calibration set represent plogpulation under study (i.e. they are both
representative).

H,: the validation and calibration set do not repnéghe population under study (i.e. they are not
representative).

The results of the studentest should be interpreted as follows:
Reject the null-hypothesis (i.e. accep) Hip < 0.05.

Table 36Levene’s and studentest results for soil clusters for N-total.

Levene's t-test Repres-
NT Sig. t df Sig. (2-tailed) | entative?
Non-clustered Equal variances assumed 0.014 0.906 -0.191 0.849| yes
Soil type Equal variances not assume -0.191 264/215 90.84
Clay Equal variances assumed 0.009 0.925 -0.310 0.758| yes
Equal variances not assume -0.314 33022 0.756
Peat Equal variances assumed 0.1p5 0.725 0,081 0.935| yes
Equal variances not assume 0.084 36457 0.933
Zavel Equal variances assumed 0.029 0.865 -0.075 0.940| yes
Equal variances not assume -0.077 51,540 0.939
Sand Equal variances assumed 0.404 0.526 -0.417 0.677| yes
Equal variances not assume -0.396 126)107 20.69
Non-clustered Equal variances assumed 0.111  0.739 0,099 0.921| yes
Land Use Equal variances not assume 0.101 277(412 0.919
Agricultural Equal variances assumed 0.0838 0.847 -0.263 0.793| yes
land Equal variances not assume -0.266 39271 0.791
Forest Equal variances assumed 0.457 0.500 0.398 0.691| yes
Equal variances not assume 0.442 127907 0.659
Nature Equal variances assumed 0.001 0.980 -0.030 0.976| yes
Equal variances not assume -0.030 119)542 60.97
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Table 37Levene’s and studentest results for soil clusters for SOM.

SOM Levene's t-test Repres-
F Sig. t df Sig. (2-tailed) | entative?
Non-clustered | Equal variances assumed 0.081 0.861 0,001 0.999| vyes
Soil Type Equal variances not assumed 0.001 276)093 0.999
Clay Equal variances assumed 0.013 0.909 -0.300 0.765| yes
Equal variances not assumed -0.305 33324 0.763
Peat Equal variances assumed 0.151 0.699 0162 0.872| yes
Equal variances not assumed 0.167 36,044 0.868
Zavel Equal variances assumed 0.082 0.858 -0J059 0.953| yes
Equal variances not assumed -0.060 49699 0.952
Sand Equal variances assumed 0.084 0.772 -0.215 0.830| yes
Equal variances not assumed -0.213 139890 20.83
Non-clustered | Equal variances assumed 0.179 0.673 0.146 0.884| yes
Land Use Equal variances not assumed 0.150 278)359 0.881
Agricultural Equal variances assumed 0.017 0.897 -0.J065 0.948| yes
land Equal variances not assumed -0.069 434400 0.946
Forest Equal variances assumed 0.6R3 0.431 0.424 0.672| yes
Equal variances not assumed 0.479 132855 0.633
Nature Equal variances assumed 0.000 0.996 -0.J049 0.961| yes
Equal variances not assumed -0.048 118866 10.96
Non-clustered | Equal variances assumed 0.070 0.792 0.130 0.897| yes
(WBDA) Equal variances not assumed 0.131 391277 0.896
Cat A (<5%) Equal variances assumed 215978 0.000 -4/281 214 000.0
Equal variances not assumed -3.442 86. 0.001| no
Cat B (5-10%) | Equal variances assumed 67.518 0.000 -5/011 231 000.0
Equal variances not assumed -4.202 95, 0.000| no
Cat C (>10%) Equal variances assumed 1.023 0.314 -0269 0.789| yes
Equal variances not assumed -0.350 15,865 0.731

* \WBDA: wavelength based discriminant analysisisThon-clustered set contains all samples whiclewer
divided into the three clusters Cat A, Cat B antl Ca
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Table 38Levene’s and studeitest results for soil clusters for pH.

PH Levene's t-test Repres-
Sig. t df Sig. (2-tailed) entative?
Non-clustered Equal variances assumed 0.005 0.946 -0233 0.816| yes
Soil Type Equal variances not assume -0.233 262)571 60.81
Clay Equal variances assumed 0.322 0.%73 -0348 0.729| yes
Equal variances not assume -0.365 36,528 0.717
Peat Equal variances assumed 0.306 0.582 -0.025 0.980| yes
Equal variances not assume -0.027 39,804 0.979
Zavel Equal variances assumed 0.354 0.%54 -0334 0.739| yes
Equal variances not assume -0.350 54,074 0.727
Sand Equal variances assumed 0.081 0.861 -0.159 0.874| yes
Equal variances not assume -0.158 141977 50.87
Non-clustered Equal variances assumed 0.007 0.933 -0179 0.858| yes
Land Use Equal variances not assume -0.179 2604312 80.85
Agricultural Equal variances assumed 0.001 0.979 -0331 0.742| yes
land Equal variances not assume -0.333 38/723 0.741
Forest Equal variances assumed 0.007 0.931 -0,010 0.992| yes
Equal variances not assume -0.010 97471 0,992
Nature Equal variances assumed 0.000 0.994 -0p110 0.912| yes
Equal variances not assume -0.110 119721 20.91
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V. Statistics of calibration and validation data (Lithological stratification)

Table 39 Calibration and validation statistics M for soil clusters.

Calibration statistics Validation statistics
SOM N cal N val #factors | R RMSE RPD R RMSE RPD
Non-clustered Soil Type 296 133 12 0.559 9.67p 1.50 0.63 8.412 1.64
Clay (1) 34 17 4 0.584 4.418 1.56 0.81 3.587 1{84
Peat (2) 38 18 9 0.842 9.706 2.54 0.82 9.989 2|27
Zavel (3) 51 25 3 0.350 2.859 1.26 0.31 2.889 1{18
Sand (4) 146 73 7 0.302 9.042 1.20 0.48 8.235 1136

Table 40 Calibration and validation statistics Kirfor soil clusters.

Calibration statistics Validation statistics
N-total N cal N val #factors | R RMSE RPD R RMSE RPD
Non-clustered Soil Type 269 133 15 0.67 2.148 1.74 0.70 2.047 1,81
Clay (1) 34 17 4 0.593 1.599 1.58 0.76 1.2B4 1/99
Peat (2) 38 18 8 0.409 4.329 1.29 0.63 3.0p8 1{69
Zavel (3) 51 25 3 0.040 1.497 1.0n 0.29 1.148 1{21
Sand (4) 146 73 7 0.601 1.706 1.58 0.67 0.868 1,68

Table 41 Calibration and validation statisticspét for soil clusters.

Calibration statistics Validation statistics
pH N cal N val #factors | R RMSE RPD R RMSE RPD
Non-clustered Soil Type 269 133 16 0.869 0.61B 2.14 0.86 0.684 2.48
Clay (1) 34 17 5 0.390 0.911 1.2p 0.67 0.5p4 162
Peat (2) 38 18 6 0.119 0.951 0.84 0.44 0.5B85 1{23
Zavel (3) 51 25 17 0.557 0.357 1.48 0.23 0.464 1,00
Sand (4) 146 73 12 0.818 0.669 2.31 0.78 0.782 2,01
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VI. Statistics of calibration and validation data (Land Use stratification)

Table 42 Calibration and validation statistics @M for land use clusters.

Calibration statistics Validation statistics
SOM N cal N val #factors | R RMSE RPD R RMSE RPD
Non-clustered Land Use 265 131 17 0.77¢ 7.09D 2.13 0.81 6.214 2.24
Agricultural 40 20 7 0.664 6.048 1.74 0.59 8.50p0 1{07
Forest 102 50 7 0.566 8.530 1.52 0.82 4.337 2|07
Nature 123 61 16 0.823 7.368 2.39 0.82 7.554 2.35

Table 43 Calibration and validation statisticsftirfor land use clusters.

Calibration statistics Validation statistics
Ntotal N cal N val #factors | R RMSE RPD R RMSE RPD
Non-clustered Land Use 265 131 9 0.647 2.32b 1.68 0.70 2.020 1,80
Agricultural 40 20 10 0.552 1.965 1.49 0.69 1.6[70 1170
Forest 102 50 7 0.333 2.912 1.21 0.90 1.261 2|05
Nature 123 61 15 0.783 2.04y7 2.15 0.65 2.834 1,56

Table 44 Calibration and validation statistics et for land use clusters.

Calibration statistics Validation statistics
pH N cal N val #factors | R RMSE RPD R RMSE RPD
Non-clustered Land Use 265 131 14 0.846 0.650 2.52 0.85 0.645 2.62
Agricultural 40 20 9 0.752 0.668 1.92 0.84 0.531 2.87
Forest 102 50 12 0.838 0.792 2.40 0.91 0.605 3.15
Nature 123 61 14 0.812 0.665 2.26 0.78 0.784 1.92
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VII. Statistics of calibration and validation data (based on spectral data stratification)

Table 45 Calibration and validation statistics @M for WBDA-clusters.

SOM Calibration statistics Validation statistics
n.cal n.val #factors | R® RMSE RPD R2 RMSE RPD

Non-clustered data 384 191 13 0.762 6.979 2.0% 0.788 6.581 210
A: <5% 133 83 9 0.796 0.635 2.21 0.567 6.090 1,15
B: 5-10% 137 96 8 0.259 1.186 1.13 0.13 16.701 0.94
C: >10% 114 12 8 0.692 10.516 1.81 0.791 6.885 1.99
Combined 384 191 - 0.836 5.7855 2.47 0.249 12.620 1.095
Group I*: <5% 132 66 9 00.791 0.64( 2.19 0.776 0.700 1.09
Group I1*: 5-10% 137 68 8 0.239 1.197 1.17 0.247 1.176 1.13
Group Il1*: 10-20% 59 30 3 0.023 2.687| 0.91 0.06[1 2.645 1.p1
Group IV*: 20-40% 38 18 2 0.046 5.959 1.03 0.04p 5.836 1.p3
Group V*: > 40% 18 9 2 0.229 14.768 1.13 0.42(7 13.786 121
Combined 384 191 - 0.924 3.94 3.63 0.931 3.7 3.71
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