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PREFACE 
 
Studies end with research, or do they start with research? Anyway, this topic was chosen after long 
time of deliberation and consultation with supervisors. I wanted to do something which was not part of 
my previous background and research should have your attention from start till the end. Remote 
sensing is  interesting as experienced from the Remote Sensing course, so why not a topic on Remote 
Sensing or something that is related to Remote Sensing. So I made this choice on soil spectroscopy, 
involving a very small part on lab work followed by lots of analysis.  
Furthermore, soil science is interesting and the combination spectroscopy offered me two things: this 
research topic and my interest in one of my favourite courses from long time ago was awakened again: 
Soil Science. So, I also refreshed my soil science knowledge for this research. In the end, this research 
remained interesting throughout the time of conducting it. 
 
To my supervisor: thanks for the opportunity, patience and supervision. This has been a very 
interesting part of my study. Sitting and thinking, at the start not knowing where to start, in the end not 
knowing where to end.  
To the readers: enjoy this masterpiece. 
 
Clif, 
 
Wageningen, June 2011. 
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SUMMARY 
 
In this study PLS regression is used to establish a relationship between soil reflectance spectra 
measured under laboratory conditions and three soil properties (Soil Organic Matter, N-total and pH). 
The objective of this study was to develop, implement and validate stratification methods to improve 
soil properties estimations. Three stratification methods were developed and tested. Two stratification 
methods, i.e. Lithological and Land Use stratification were developed with a Soil and a Land Use map 
of the Netherlands, and one stratification method was based on Wave-length Based Discriminant 
Analysis (WBDA) which only uses the spectral data of soil samples. Lithological stratification 
produced 4 soil clusters: clay, peat, zavel and sand, while Land Use stratification produced 3 clusters: 
agricultural land, forest and nature areas. WBDA stratification produced three clusters of a specific 
SOM range (A: <5%, B: 5-10% and C: >10%). 
Prediction models were developed with the clustered data sets and the predictive performance of 
developed models was evaluated with the predictive statistics: R2, RPD and RMSE. 
I expected that the soil properties predictions would improve when they are based on stratified data 
sets. Stratification indeed resulted in improved predictions. However, the improvement was not 
achieved with all developed models. Improvement of SOM prediction was achieved with a clay, peat 
and zavel model but also when SOM content was predicted in agricultural, forest and nature samples 
with a non-clustered Land Use model. Improvement of Nt prediction was achieved with a peat, 
agricultural and nature model, and when Nt content in clay, zavel,  and forest samples was predicted 
with a non-clustered Soil Type or Land Use model. Better pH prediction was achieved with a peat 
model and when pH was predicted in clay, sand, agricultural, forest and nature samples with a non-
clustered Soil Type or Land Use model. 
Stratification based on WBDA produced partly better predictions. This method has the potential to 
produce very accurate predictions but due to the risk of allocating spectra in wrong classes this 
potential is reduced drastically. This method needs to be improved further. 
A result of the stratification methods is a decision tree which allows to select a model to predict a soil 
property of interest (SOM, Nt or pH) with a beforehand indicated accuracy.  
 
Key words: PLSR, ParLeS, stratification, VNIRS, chemometrics, soils, The Netherlands 
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1. Introduction 
 

1.1 Context and Background 
 
The upper soil horizon (A) contains useful information for farmers and decision makers. Chemical, 
physical, and mineralogical properties are essential for identifying the soil characteristics and are 
usually described in detail by soil scientists and then validated and elaborated by laboratory analyses 
(Ben-Dor et al., 2008a). But when assessing soil quality many soil properties are involved which vary 
in space and time (Doran et al., 1994; Doelman and Eijsackers, 2004; Cécillon et al., 2009). 
Researchers acknowledge that in order to meet the amount of data required for statistical deduction in 
soil monitoring the current soil survey methods have some drawbacks, i.e. complicated, expensive, 
time and money consuming, destructive and often require use of many chemical reagents (Ben-Dor et 
al., 2008a). Therefore, other time- and cost efficient methods for soil analysis could be an alternative 
to replace or complement the current analytical methods (Zornoza et al., 2008). 
Other analytical techniques would make rapid sampling and determination of, for example Soil 
Organic Carbon (SOC) values, at the field and regional level possible (Stevens et al., 2008). One of 
those techniques is Visible and Near Infrared Spectroscopy (VNIRS) (Zornoza et al., 2008). VNIRS 
provides an alternative to chemical analysis (Stevens et al., 2008). The advantages of using NIR 
reflectance spectroscopy include the simple sample pre-treatment (sieving of soils), no use of chemical 
reagents, its non-destructive nature, and the fact that it is rapid, inexpensive and accurate for analysis 
(Zornoza et al., 2008). 
 
Using VNIRS has resulted in models which predict soil properties. The problem is that these models 
do not always predict the soil property correct and consequent. 
Van Groenestijn (2009) suggested that a solution for improving model robustness(*) might be to create 
training sets based on a certain range of the soil property in question. One conclusion of her results 
(for Soil Organic Matter, SOM) was that by creating stratified training sets for a specified range of soil 
properties and using them for calibrating soil property prediction models, model robustness can be 
improved. 
Spectral stratification methods (i.e. clustering) which can be used to improve soil property estimations 
are thus needed, which will be the focus of this research. 
 

1.2 Problem definition 
 
A wide range of soil properties such as the total iron, water content, mechanical compositions, 
carbonate, and organic carbon can be derived through reflectance spectroscopy under laboratory 
conditions if advanced analytical techniques such as Artificial Networks(*) and Partial Least Square 
Regression analysis are used (Udelhoven et al., 2003; Ben-Dor et al., 2009). 
 
One of the main gaps in effective monitoring of soil quality with NIRS is the building of NIRS based 
regression models capable of assessing soil conditions at the regional scale across various soil types. 
Shepherd and Walsh (2002) proposed the use of soil spectral libraries as a tool for building risk-based 
approaches to soil evaluation. In the spectral library approach, soil properties are measured 
conventionally for a selection of soils representative of the diversity of the studied region, and then 
calibrated to soil reflectance spectra (Cécillon et al., 2009). 
But building NIR spectral libraries for soils raises several problems, one of which is that the 
quantitative analysis of soil spectra requires complicated statistical techniques to discern the response 
of soil attributes from spectral characteristics (Gomez et al., 2008b). 

                                                 
(*) marked words are explained in appendix I. 
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Various authors have shown the effectiveness of NIR reflectance spectroscopy in estimating macro- 
and micronutrients in soils, physical characteristics and biochemical properties (Zornoza et al., 2008). 
Most of all studies have been performed with SOM because of many properties and applications of 
SOM. 
Soil organic matter is mainly concentrated in the top AO horizon. It is exposed to the sun’s radiation 
which makes it a perfect property to be assessed by the Imaging Spectroscopy technology. 
Furthermore, soil organic matter is responsible for many soil chemical and physical properties and 
processes such as compaction, fertility, soil structure stability, and it constitutes one of the major 
resources in the global carbon cycle (Stevens et al., 2008; Ben-Dor et al., 2009). 
 
Studies have shown that under laboratory conditions, VNIR spectroscopy coupled with multivariate 
calibration can accurately determine organic matter (Palacios-Orueta and Ustin, 1998; Salgó et al., 
1998; Reeves III et al., 1999; Chang and Laird, 2002; Fidêncio et al., 2002; Reeves et al., 2002; 
Kooistra et al., 2003; Gomez et al., 2008b) and experiments have shown that it is feasible to use 
spectral indices derived from laboratory measurements to predict SOC in various soil types 
(Bartholomeus et al., 2008). However, a large range in SOC is required for the calibration of the 
model, since extrapolation beyond the SOC range in the training datasets results in large errors 
(Bartholomeus et al., 2008). 
SOC can be spectrally measured with a reasonable accuracy level, depending on the type of instrument 
and environmental conditions (Stevens et al., 2008). Stevens et al. (2008) studied the accuracy 
between portable and laboratory spectroscopy and concluded that portable spectroscopy is equivalent 
to laboratory spectroscopy when measuring SOC under specific surface conditions (low variation in 
moisture content of the soil surface, low roughness, absence of vegetation) and appropriate pre-
treatments able to extract information from noisy spectra. 
 
Other soil properties such as texture, metals, pH and EC have been studied to some extent by many 
researchers, e.g. different forms of C or N such as total-, organic- and inorganic- (carbonate) C and as 
well as organic- active- and biomass-C or N, but not mineralizable-N (Reeves III et al., 1999; Reeves 
III and McCarty, 2001; Chang and Laird, 2002). Results with texture (sand, silt and clay) on a variety 
of data sets have similarly produced excellent results (Reeves III, 2010). 
 
Given the fact that chemical and physical analyses of soils are expensive and time consuming and that 
soil spectral information can easily be gathered at a non-destructive way makes it attractive to use the 
soil spectral information for soil property predictions. But soil prediction models based on spectral 
measurements yield unsatisfactory results when they are applied for soil types which are not included 
in the calibration phase. Also highly variable data sets on which these models are based limit the 
implementation of these models and spectroscopy for estimations at local scale. Stratification of the 
spectral measurements before the development of the model can improve the prediction result. 
 
This thesis will therefore focus on creating training sets based on a certain range of a soil property and 
use these for calibrating soil property prediction models to improve model robustness. 
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1.3 Using VNIRS for soil property estimation 
 
Spectral reflectance characteristics of soils are the result of their physical and chemical properties and 
are influenced largely by the compositional nature of soils in which main components are inorganic 
solids, organic matter, air and water (van der Meer and de Jong, 2002). Soils may be identified by their 
reflectance characteristics (Condit, 1970) because specific wavelengths can describe the entire spectral 
curve by specific correlation with ‘‘soil energies’’ that represent the soil chromophore (Ben-Dor et al., 
2008b). A chromophore is a parameter or substance (chemical or physical) that significantly affects 
the shape and nature of a soil spectrum (Ben-Dor et al., 2008b). A given soil sample consists of a 
variety of chromophores, which vary with the environmental conditions and the status of the five soil 
formation factors (climate, topography, parent material, organic matter, and time). Often the spectral 
signals related to a given chromophore overlap with the signals of other chromophores and thereby 
render the assessment of a signal’s chromophore. Whereas the spectral reflectance of a given sample is 
the result of the entire chromophore interaction with the incident electromagnetic energy, the resulting 
spectral curve can serve as a footprint to the chromophore’s overall existence in the examined matter. 
(Ben-Dor et al., 2008b). 
 
Soil chromophores can be divided into two categories: chemical and physical (Ben-Dor et al., 1999). 
Chemical chromophores are those materials that absorb incident radiation in discrete energy levels. 
Usually the absorption process appears on a reflectance spectrum as a feature whose position is 
attributed to specific chemical groups in various structural configurations (overtone, combination 
modes, and electronic processes). All features in the VNIR-SWIR spectral regions have a clearly 
identifiable physical basis. In soils, three major chemical chromophores can be roughly categorized as 
follows (Ben-Dor et al., 2008b): (1) minerals (mostly clay, iron oxide, primary minerals-feldspar, salt, 
and hard to dissolve substances such as carbonates, phosphates), (2) organic matter (fresh and 
decomposing), and (3) water (solid, liquid, and gas phases). 
 
Physical chromophores are properties that affect the overall spectral region and a particular waveband 
position, or in other words, do not relate to the chemical functional group. Examples of these are 
particle size variation and refraction indexes of a material that changes from one illumination 
condition to another (Ben-Dor et al., 2008b). 
 
Spectral signatures in relation to soil information 
 
Spectral signatures of materials are defined by their reflectance, or absorbance, as a function of 
wavelength. Under controlled conditions, the signatures are due to electronic transitions of atoms and 
vibrational stretching and bending of structural groups of atoms that form molecules and crystals. The 
fundamental vibrations of most soil materials can be found in the mid-infrared (MIR) region, with 
weaker and broader overtones and combinations found in the near-infrared (NIR) region. For example, 
the C–H stretch fundamental absorption feature can be found at ∼3.4 µm in the MIR, with overtones  
at ∼1.7, 1.15, and 0.85 µm in NIR (Workman and Springsteen, 1998). Similarly, clay minerals have 
diagnostic overtone and combination absorption features in the NIR region: the O–H stretch 1st 
overtone at ∼1.4 µm; the O–H stretch, H2O bend combination at ∼1.9 µm; the O–H stretch, metal–OH 
bend combinations at ∼2.2–2.3 µm; and many minor absorption features (Hunt, 1977; Rencz, 1999). 
The secondary Fe-oxyhydroxides hematite and goethite are also easily identified in the VNIR region, 
with broad electronic absorptions at higher energy NIR wavelengths (0.7–1.0 µm) as well as in the 
VIS region (0.4–0.7 µm) giving rise to the distinctive red and yellow colours (Scheinost et al., 1998; 
Scheinost and Schwertmann, 1999). Brown (2007) states that clays and to a lesser extent organic 
matter have well-recognized diffuse reflectance absorption features in the VNIR region related to their 
basic chemistry and mineralogy, which gives a reason to believe that combining local samples with a 
global soil-spectral library could improve on local calibration samples alone for the local prediction of 
SOC, clay and clay mineralogy. 
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In the NIR region, the radiation is absorbed by the different chemical bonds, such as C–H, N–H, S–H, 
C–O and O–H of any chemical compounds present in the sample. Moreover, the radiation is absorbed 
in accordance with the concentration of these compounds. As a consequence, NIR reflectance spectra 
basically contain information about the organic composition of a soil sample. Organic matter has 
distinct fingerprints that relate to several functional groups (e.g., carboxyl C-H, hydroxyl O-H, and 
amine N-H) in the organic compounds (Ben-Dor and Banin, 1995). The NIR spectrum results from the 
overtones and combinations of fundamental vibration bands for each of the chemical bonds, which are 
more strongly absorbed in the mid-infrared (MIR) region (Zornoza et al., 2008). 
 
Organic matter has a very important influence on the spectral reflectance properties of soils because 
amounts exceeding 2% are known to have a masking effect on spectral reflectance thus reducing the 
overall reflectivity of the soil and reducing (and sometimes completely obscuring) the diagnostic 
absorption features. Thus soils with a high (>20%) amount of organics appear dark throughout the 0.4 
to 2.5 um range. In contrast, less decomposed soils have higher reflectance in the near-infrared region 
and enhanced absorption features (van der Meer and de Jong, 2002). 

 

1.4 Difficulties using VNIRS for soil property estimations 
 
Comprehensive studies over the past decade showed that the VIS (400–700 nm), NIR (700–1100 nm), 
and SWIR (1100–2500 nm) spectral regions serve as a powerful tools for recognizing soils 
qualitatively and quantitatively (Ben-Dor et al., 2009). But still, as a consequence of overlapping 
bands, NIR information cannot be directly interpreted from the obtained spectra. NIR reflectance 
spectroscopy is based on the use of calibrations, coupled with chemometric techniques, which utilize 
absorbance at many wavelengths to predict particular properties of a sample (Batten (1998) cited in 
Zornoza et al.(2008)). 
 
Partial Least Square (PLS) regression has been commonly used to build prediction models for SOC 
(Bartholomeus et al., 2008). In the PLS regression approach, the full spectrum is used to establish a 
linear regression model where the significant information contained in the VNIR/SWIR spectra is 
concentrated in a few latent variables that are optimized to produce the best correlation with the 
desired property of interest (Gomez et al., 2008a). 
PLS reduces the NIR matrix to a few components, such as in a principal component analysis (PCA), 
but during the components extraction step in PLS, the data of the target parameter to be estimated is 
taken into account. The number of PLS components (so-called PLS-vectors) used is the ‘‘factor n’’ of 
the PLS regression (e.g. n-factor model). The first PLS-vectors are those which provide more 
information about the target parameter. In general terms, models with few factors (or latent variables) 
are preferred, because the higher the rank used, the higher the noise included (Zornoza et al., 2008). 
 
An important drawback of multivariate calibration models is the comparatively large number of 
training set samples required. Some complex materials may require hundreds or even thousands of 
samples to be tested and spectra measured before a suitable set of training samples can be identified 
(Roberts and Workman, 2004). In order to give the model the best chance to learn to recognize the 
information for the constituents of interest, it is important to train it, using samples that match the 
unknown as closely as possible (Roberts and Workman, 2004). Another reason to use a large number 
of samples for calibration is to allow more factors in the model. There must be enough samples/factors 
to account for the variability in the real samples that will be predicted as unknowns (Roberts and 
Workman, 2004). 
 
Another major drawback is the complexity of the transfer of prediction models from one sensor to 
another. Sensor characteristics like wavelength position, bandwidth or number of bands, which 
requires new model calibrations for each sensor (Bartholomeus et al., 2008). 
The variance of the sample set used to produce NIR calibration equations also determines both 
robustness (i.e. applicability to a wide range of samples) and accuracy(*) for a particular application. A 
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training set that includes a wide variety of sample types and a large constituent range will allow a 
calibration model where a wider range of materials may be analysed, but with a resultant loss in 
accuracy. If the training set has a small variance in sample type and a narrow constituent range, the 
accuracy for analysed samples within the range is increased, but fewer unusual samples can be 
analysed with confidence using this approach. There is generally a trade-off between calibration 
performance and calibration robustness. The robust (i.e., applicable to a wide range of samples) 
calibration is used to detect outliers, while the dedicated calibration is used to accurately measure the 
constituent values of the normal samples (Roberts and Workman, 2004). 
 
Enough samples should be used to model the data variability: the more data, the higher the confidence 
in the analysis and in the statistics (Duckworth in: Roberts and Workman, 2004). Another reason to 
use a large number of samples for calibration is to allow more factors in the model. If the training set 
has a small variance in sample type and a narrow constituent range, the accuracy for analysed samples 
within the range is increased , but fewer unusual samples can be analysed  with the confidence using 
this approach. Thus, for quality control procedures, one may wish to have both calibrations available. 
The robust (i.e. applicable to a wide range of samples) calibration is used to detect outliers, while the 
dedicated one is used to accurately measure the constituent values of normal samples (Westerhaus in 
Roberts and Workman, 2004). 
 

1.5 Soils of The Netherlands 
 
The soil profile in The Netherlands is arbitrarily defined as the 0 – 120 cm layer of the sediment 
(excluding the litter layer). The different layers observed in the soil profile can have a geogenetic 
origin (different formations) or a pedogenetic origin, e.g. as a result of organic matter accumulation in 
the topsoil or transport of secondary Fe/Al-(hydr)oxides. In the latter case, these are termed horizons 
which are the basic properties used in further soil classification (van der Veer, 2006) These horizons 
result from various soil forming processes. These soil forming processes are in turn determined by a 
variety of soil forming factors, which are: parent material, climate and vegetation, topography and 
hydrology, time (soil age) and human impact. In the Netherlands, the human impact on soil forming 
factors as hydrology, topography and soil age, as well as on the geogenic layering of the soil profile 
has been extensive (van der Veer, 2006). Because of the tremendous impact mankind has had on the 
soil profile and soil properties, it should be considered one of the most important soil forming factors 
in the Netherlands. 
 
In the Netherlands there are hardly any soils formed on consolidated rock. Roughly half of the mineral 
soils are formed in alluvial sediments, mostly marine clay and to a lesser extent river clay. The other 
half of the mineral soils are derived from aeolean(*) sediments. The latter are mostly loam-poor and 
slightly loamy cover sands; a small part consists of the transitional sediments between cover sands and 
loess, viz. the loamy sands and sandy loams, whereas most of the loess comes under the silty loam 
class (de Bakker et al., 1989). 
 
At the highest level of the classification, five orders are discerned which form 5 major soil types in 
The Netherlands (van der Veer, 2006): vague soils (soils that show very little soil formation), earth 
soils (thick A1-horizon), podzolic soils (podsolization), peat soils (strong accumulation of organic 
matter) and brick soils (illuviation). 
 
Peat soils1: have been formed during the Holocene on both marine clays and older sandy deposits. 
With the current classification, peat soils are defined by having peaty material sensu lato (including 
‘moerig’) over a depth of at least 40 cm within the first 80 cm profile. This means that these soils can 
have a substantial mineral topsoil (either sandy or clayey) and/or have sand or clay deeper in the 
profile. The sandy deeper soils can have a podzol B-horizon derived from earlier soil formation. 

                                                 
1 : information on soil classification has been retrieved mainly from the PhD-thesis from Van der Veer (2006) 
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Peat soils are further subdivided on the basis of the organic matter content of the topsoil, which can be 
mineral (earthy peat soil) or organic (raw peat soils). The so-called raw peat soils are rare and found 
locally throughout the Netherlands, often in nature reserves. Earthy peat soils are common and often 
used as agricultural land. Here the mineral top layer can be of depositional origin (marine/fluviatile) or 
the result of levelling. 
 
Podzol soils1: formed exclusively in the sandy Pleistocene sediments. They are defined by the 
presence of a clear podzol-B-horizon below a depth of 20 cm and lack of a thick anthropogenic A1-
horizon (< 50cm). 
 
Brick soils1: were all formed in loamy or clayey material, mainly loess and to lesser extent some old 
fluviatile(*) deposits. Brick soils are defined by the pre-eminence of a textural-B-horizon (brick layer) 
that starts within the first 80 cm of the profile. The textural-B-horizon (brick layer) that starts within 
the first 80 cm of the profile.  
 
Earth soil1: have been formed mostly in the sandy Pleistocene deposits, but are also found on 
Holocene clay and sand deposits. Earth soils are characterized by a substantial mineral (humus rich to 
moderately humus poor) A1-horizon, which was formed by a biological degradation of organic 
material, and/or raising with organic material, heath sods and dredged mud. 
 
Vague soils1: make up a considerable part of the Netherlands, and give its pedology a rather unique 
character. Vague soils are characterized by the lack of substantial soil formation and occur commonly 
in the younger Holocene deposits (both sand and clay) in the NL. Especially in recently reclaimed 
coastal areas and inland lakes, the time of soil formation is very restricted (700-30 years) and these 
soils have only developed a shallow A-horizon. Also, the inland and coastal dunes are of very 
restricted age and show very little horizon formation. As such, the composition of these soils will be 
largely comparable to that of the unaltered parent material. 
 
Furthermore , the soil classification can be based on the type of parent material or on the texture and 
mineralogy. Based on the different types of parent material in the Netherlands the soils are classically 
grouped into five districts: sand, loess, peat, fluviatile and marine clay (de Bakker (1987) cited in van 
der Veer (2006)). This classification of parent materials is more closely related to the texture 
properties of the sediment. 
 
A. Soil classification based on type of parent material 1 
 
Sand: 
the parent material of the sand district consists mainly of aeolean deposits of the Late Pleistocene age, 
the so-called cover sand deposits. Much younger aeolean deposits include the inland and coastal 
dunes. The inland dunes are medium sized non-calcareous sands. The coastal dunes are restricted to 
the outermost coastal areas of the Netherlands. In contrast to the inland dunes, the coastal dunes can be 
calcareous, especially in the deeper profile (van der Veer, 2006). 
 
Loess: 
the parent material of the loess district (or loamy soils after Stiboka (1965)) consists of silty aeolean 
sediments and can texturally be classified as silty loam or sandy loam. The occurrence of the loess 
close to or at the surface is confined to the southern and south eastern part of The Netherlands and 
cover roughly 2% of the land surface (van der Veer, 2006). 
 
Peat: 
the profiles in the peat district are defined as having a high organic matter contents over at least 40 cm 
of the first 80 cm of the profile. (van der Veer, 2006). Since Roman times, much of the peat has been 
excavated. As a result, there are few profiles left that have peat over the length of the profile. The 
majority of peat lands have a non-organic sandy or clayey top layer, which is often of anthropogenic 
origin (van der Veer, 2006). 
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Fluviatile district: 
the parent material in the fluviatile districts consists mainly of fluviatile clay and sand deposited by the 
Rhine, Meuse and their tributaries. These deposits can be calcareous or non-calcareous and often show 
a wide variety of grain size distributions ranging from coarse sands to heavy clay; also sandy deposits 
as well as sandy to heavy clays (van der Veer, 2006). 
 
Marine district: 
The parent material in the marine clay district consists of tidal, intertidal and perimarine deposits of 
the North Sea. The deposits are often calcareous (shell fragments) and their texture ranges mainly 
from fine sand to (heavy) clay. Especially in the South western parts of the Netherlands the layer 
consists of fine sand and sandy to silty clay. It is also found at the surface of the large polders around 
the central lake of the Netherlands. Large areas in the marine district consist of either lakes or coastal 
areas that were reclaimed (van der Veer, 2006).  
 
B. Soil classification based on texture 
 
Soil texture classes are based on the grain size composition of the mineral soil parts. Non-aeolean and 
aeolean deposits (both sand and other heavier material) are classified according to the clay or loam 
percentage (Kiestra, 2002). 
Based on texture classes soil can be divided into the following categories: 
A. based on clay percentage (Table 1) 
B. aeolean deposits based on clay content (Table 2) 
 
Table 1 Soil classes based on clay percentage 
Clay (%) Name Summarizing names 
0 – 5 Clay-poor sand  Sand Clay-poor material 
5 – 8 Clayey sand 
8 – 12 Very light ‘zavel’ Light zavel ‘Zavel’ Clay-rich material (in 

relation to sand also 
referred to as clay) 

12 – 17.5  Moderately light ‘zavel’ 
17.5 – 25 Heavy ‘zavel’  
25 – 35 Light clay  Clay 
35 – 50 Moderately heavy clay Heavy clay 
50 – 100 Very heavy clay 
From: Kiestra (2002). 
 
Table 2 Categories of aeolean deposits based on clay content 
Loam (%) Name Summarizing names  
0 – 10 Loam-poor sand  Sand 
10 – 17.5 Slightly loamy sand Loamy sand 
17.5 – 32.5  Very loamy sand 
32.5 – 50 Extremely loamy sand 
50 – 80 Sandy loam  Loam 
80 – 100  Silty loam 
From: Kiestra (2002). 
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1.6 Stratification 
 
Stratification is a procedure for subdividing the heterogeneous population into subpopulations which 
are internally homogeneous. Spectral stratification, i.e. stratification based on spectral characteristics 
can be used for classification of multispectral remotely sensed data (Padmanabhan et al., 1980). 
 
Stratification is for example applied in large scale geo-chemical surveys where it is rather natural 
choice to use a stratified sampling approach. Stratification of the target area aims at improving the 
estimations of the overall statistical parameters and leads at the same time to a better coverage of 
sample locations. Its success depends on effectively defining more or less homogeneous groups within 
the target area, and it therefore relies on a priori information about the sources of variation therein. But 
the choice for stratification is not only driven by statistical motivations, but also by the need to divide 
the target area into geologically meaningful groups (van der Veer, 2006). 
 
Reasons for stratification to improve soil properties prediction have been proposed by different 
researchers. Malley and Williams (1997) (cited in Kooistra et al., 2003) suggested that the predictive 
capability of PLS might be improved by deriving calibration models for more homogeneous soil units, 
resulting in samples that are of a similar type rather than showing a wide range of values. Cobo et al. 
(2010) concluded that the soil properties which were well predicted (i.e. sand, clay, pH, C, N, Ca, Mg 
and CEC) depended on the success of regional calibration. 
Bartholomeus et al. (2008) concluded that by including a priori knowledge on expected soil 
associations, mineral composition reclassification may increase the robustness of the prediction model 
and its applicability for extended geographical areas. 
Also Cécillon et al. (2009) imply that some stratification must be applied in the spectral library 
approach. In this approach soil properties are measured conventionally for a selection of soils 
representative of the diversity of the studied region, and then calibrated to soil reflectance spectra 
(Cécillon et al., 2009). When applying this approach Duckworth (in Roberts and Workman, 2004) also 
implies stratification when mentioning some criteria for training set design: training samples should be 
as similar as possible to unknowns and the constitute values in the training samples should be both 
larger and smaller than the expected values in unknown samples. By bracketing the range of 
concentration, the model will give the most accurate answer possible. 
 
Different methods of stratification can be applied, such as lithological, regional or land use 
stratification. Another method of stratification is known as ‘Wavelength-based Discriminant analysis’ 
(WBDA) (Roberts and Workman, 2004). In Discriminant Analysis the assumption is made that 
samples closest together in wavelength space are very similar to one another. Conversely, samples far 
apart in wavelength space are thought to be part of separate spectral groups. 
The best allocation of samples is to have one-half of the samples at low X value and the other half at 
high X value. In NIR, samples with spectra associated with low and high values would be selected. 
Spectra with the most extreme spectra relative to the average spectrum can be selected. This technique 
will pick the lows and the highs in a very simple sample population, but runs the risk of including 
spectral ‘mistakes’ and underrepresenting the middle of the population. However, this problem could 
be solved by augmenting the sample set with some randomly selected samples. The ‘alikeness’ of one 
test spectrum, or series of spectra, to a reference spectrum can be determined by calculating a point-
by-point correlation between absorbance data for each test and reference spectrum (Correlating 
matching (Roberts and Workman, 2004). The same principles apply to searching a database of spectra 
to determine if a spectrum of an unknown is present in the database ( i.e. identify the unknown by 
matching it’s spectrum to a known spectrum). This technique is known as spectral searching and is 
routinely used in other areas of optical spectroscopy (e.g. mid-infra-red) to aid in the identification of 
unknown compounds (Roberts and Workman, 2004). 
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1.7 Research Objective and Research questions 
 
Visible Near Infrared Spectroscopy is very attractive for soil property predictions but soil prediction 
models based on spectral measurements yield unsatisfactory results when they are applied for highly 
variable data sets. Different researchers have proposed to apply stratification to obtain calibration 
models for homogenous soil units. Stratification may increase the robustness of the prediction model 
and make these models applicable for larger geographical areas (Bartholomeus et al., 2008). By 
creating training samples that are similar to the samples that are to be predicted, prediction models 
may give accurate answers. 
 
The main objective of this study is to determine if stratification methods will result in improved 
estimations of soil properties using VNIR spectra. 
 
The specific objectives are to: 
1. develop (a) stratification method(s) 
2. implement the stratification method(s) 
3. validate the developed method(s) 
 
Research questions: 
 
1. Can stratification, based on external data sources, improve the estimations of soil properties from 
VNIR spectra? 
 
2. Can stratification, based on spectral data only, improve estimations of soil properties from VNIR 
spectra? 
 
 
The expectation is that prediction models will perform better if suitable clusters and ranges for the soil 
property of interest are selected. 
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2. Methodology 
 

2.1 Study area and available data 
 
A soil spectral library of 263 samples was already available which was compiled during previous 
research by Van Groenestijn (2009). This library contained the spectral signatures of the soil samples, 
the x- and y-coordinates, 15 chemical and 1 physical soil property. This soil spectral library was 
expanded with an additional 312 spectra of soil samples with the same chemical and physical 
properties, which were measured in this research bringing the total soil samples in the library to 575 
soil samples which were collected from different locations in The Netherlands. Not all x- and y-
coordinates were available: from 426 soil samples the locations where these samples were collected 
were known (figure 1 and table 3). 

 
Figure 1. Locations of collected soil samples 
From 426 samples the coordinates were known so that their locations could be plotted in the map. Soil samples 
and x/y-coordinates taken by P.A. Slim (Alterra) in the period 2009-2010. 
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Table 3 Overview of the available data  
 

  Previous research Additional (this research) Total for this research 
Samples with x/y-coordinates 220 206 426 
Samples without x/y-coordinates 43 106 149 
Total 263 312 575 

 

2.2 Sample preparation and spectral measurements 
 
The soil samples used in this research were acquired as follows: 10 samples were taken using a chisel 
at a depth of max. 10 cm, put in a bag, shaken, and a subsample with the volume and size of a 
volumetric ring was taken. These samples were all analysed for 16 different soil properties in the 
laboratory by conventional (extraction) methods.  
 
For the spectrometric measurements basic sample preparation consisted of grinding and sieving 20 
grams of homogeneous soil using a 2-mm mesh. To remove the effect of moisture, the soil samples 
were dried for (for 12 h at 40–45 °C) (Vasques et al., 2008). 
The soil samples were scanned with an ASD Fieldspec Pro FR in combination with an ASD contact 
probe, measuring reflectance in the wavelength range of 350– 2500 nm at 1-nm intervals.  
The soil samples were scanned four times at an angle of 90° using the contact probe. Each 
measurement was recorded as the average of 4 readings to come to an estimation of a homogeneous 
sample. This average measurement was used for modelling (Vasques et al., 2008). 
 
Spectralon reference measurements, collected prior to the first scan and every 10 samples, were 
needed to make final conversion to spectral reflectance by dividing the radiance spectra of the soil 
samples by that of the white Spectralon plate. 
 

2.3 Data analysis 
 
Descriptive statistics 
 
Table 4 shows the available data for this research. Three soil properties, SOM –N-total (Nt) – pH, 
were used in this research. 
  
Table 4 Descriptive statistics of the soil properties of the soil samples. 

Unit N Mean SD Min Max 
Nt** g/kg 575 3.32 3.91 0.05 26.9 
Pt mg/kg 575 575.82 591.90 19 5930 
K mg/kg 575 61.32 77.15 3.8 1066 
Na mg/kg 575 118.59 686.68 1.2 10454 
Mg mg/kg 575 105.25 138.70 3.81 1309 
N_NH4 mg/kg 575 5.58 6.98 0.5 110 
N(NO3+NO2) mg/kg 575 5.34 8.12 -0.1 68.2 
Ns mg/kg 575 27.26 20.79 2 166 
PPO4 mg/kg 575 1.62 3.34 0 53.1 
Al mg/kg 575 878.76 732.65 2.86 4820 
Ca mg/kg 575 8020.73 11426.92 1.37 85842 
S mg/kg 575 69.99 428.51 1.3 9756 
Cl mg/kg 575 158.47 1046.23 3 16109 
SOM** % 575 11.37 14.13 0.24 95.8 
pH** - 575 6.27 1.61 3.62 9.53 
Moisture % 575 25.62 18.15 0.86 90.2 

The soil properties marked with ** (Nt, SOM and pH) were used in this thesis for analysis. 
Descriptive statistics are based on 575 samples. 
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Multivariate analysis 
 
The whole dataset was split into a calibration set (2/3) and an independent validation set (1/3). The 
dataset was sorted from lowest to highest value (of soil property) and every third sample and its data 
was moved to a separate file for use as a validation set (after Dunn et al. (2002)). An extra rule was 
added i.e. that the range of the soil properties of the validation set should be within the range of the 
calibration set to avoid extrapolation of the model beyond the range for which it was calibrated. 
Calibrations were developed on the remaining samples. 
The Levene's test for equality of variances and the Student's t-test of equality of means were 
performed between the calibration and validation sets to make sure there was a representative 
validation set (Vasques et al., 2008). 
 
Analysis and statistics were performed with SPSSv.15/17 and ParLeS version 3.1. ParLeS is software 
for chemometric analysis of spectroscopic measurements (Viscarra Rossel, 2008). ParLeS was used to 
calculate multivariate calibration models by PLSR with leave-1-out cross validation to establish 
relationships between the NIR spectra and the reference data from physical and chemical analyses 
(Viscarra Rossel, 2008). To reduce non-linearities the reflectance spectra were first transformed 
to log 1/R. No pre-processing of the data was applied. 
 
The coefficient of determination (R2), the root mean square error (RMSE), and the residual prediction 
deviation (RPD) were used to evaluate the models (Vasques et al., 2008; Zornoza et al., 2008). Refer 
to equations I to III for the model evaluation parameters: 
 
 
A. Coefficient of determination (R2): 
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B. Root Means Square Error (RMSE): 
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Where �� = predicted	values; � = mean	of	observed	values; y = observed values; n = number of 
predicted/observed values with i = 1, 2, …, n. 
 
 
C. Residual Prediction Deviation (RPD): 
 

RMSE

data analysed ofdeviation  standard
 RPD=  (eq. III) 

 
Eq. I, II: Vasques et al. (2008) 
Eq. III: Zornoza et al. (2008) 
 
Based on the values of the coefficient of determination (R2) and Residual Prediction Deviation (RPD) 
(RPD) prediction results were ranked in 3 categories (A, B or C) following Chang et al. (2001) (table 
5), with category A as the best of all three: 
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Table 5 Model evaluation parameters. 
Category R2 RPD 
A 0.8 – 1.00 > 2.0 
B 0.50 – 0.80 1.4 – 2.0 
C < 0.50 < 1.4 
After Chang et al. (2001). 
 

2.4 Stratification methods 
 
Research question 1: 
 
Can stratification, based on external data sources, improve the estimations of soil properties from 
VNIR spectra? 
 
Two external data sources, the Land Use map of The Netherlands (LGN-5) and the Soil map 2006 of 
The Netherlands, were used as a basis for the stratification of the soil samples. With these external 
data sources the soil samples were clustered based on Land Use or Soil Type. 
 
Lithological stratification (based on Soil Type) 
The samples were divided according to type of parent material in the following 4 clusters (table7): 
1. Clay (fluviatile and marine clay) 
2. Peat 
3. Zavel 
4. Sand 
 
Land Use stratification 
Based on the Land Use map the samples were divided into the following 3 clusters (table 7): 
1. Agricultural land 
2. Forest 
3. Nature area 
 
Per cluster the soil samples were divided in calibration and validation sets. Soil prediction models 
were based on these clusters and the performance of these models was compared to each other and to 4 
reference models, which were models based on non-clustered data. 
R2, RMSE and RPD (see table 5) were used to evaluate performance of the prediction models based on 
the defined clusters. 
 
Table 6 Stratification with external data themes 
 Theme 

Soil type Land Use 
 
 
Cluster 

1. Clay 1. Agricultural land 
2. Peat 2. Forest 
3. Zavel 3. Nature area 
4. Sand  

 
In figure 3 an overview is given on how the stratification was applied to the available data, using the 
two external data sets. 
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Figure 2. Creating stratified and non-stratified sets. 
Stratified data sets were created based on soil type and land use. Dashed boxes indicate the created 2 non-
stratified and 7 stratified sets. Stratified and non-stratified sets were split in calibration and validation sets. 
 
Research question 2: 
 
Can stratification, based on spectral data only, improve estimations of soil properties from VNIR 
spectra? 
 
The soil samples were divided in groups that have spectral signatures which look similar. This method 
is known as Wavelength-based discriminant analysis (WBDA) (Roberts and Workman, 2004). The 
assumption is that the concentration of a certain soil property results in the a certain spectral signature. 
Soil samples which have the same content should have, based on this assumption, the same spectral 
signature. 
This method was applied for SOM. The available information are the spectral signatures of reference 
samples and the SOM content of these samples. If the spectral signature of an unknown sample looks 
like the spectral signature of a reference signature this unknown sample might have the same SOM 
content. 
 
Four reference spectra were selected representing soils with 4 different SOM content: one with a SOM 
content of 5%, one with a SOM content of 10.1%, one with a SOM content of 20% and one sample 
with a SOM content of 62.4% (figure 4). The ratio of the reflectance between these 4 different soils 
was determined. Soils with the largest difference in SOM content should have the largest ratio e.g. 
ratio spectral signature SOM5%/SOM62.4% > ratio spectral signature SOM10.1%/SOM20%. Figure 5 shows 
the ratio between these reference spectra which will be the basis for classifying all spectra. Although 
the relation between these ratio’s is exponential (figure 5) linear interpolations were applied to 
determine the ranges of the ratio to classify the remaining soil spectra (figure 6). Based on the linear 
interpolations the samples were classified according to the ranges given in table 7. 
 

Available data: 
575 samples 

396 samples with 
known Land Use 

426 samples 
with x/y-

coordinates 

402 samples with 
known Soil type 

Stratification by 
Soil Type 

Stratification by 
Land Use 

Zavel Sand Clay Peat Agricultural 
land 

Forest Nature 
area 

Non-clustered set 
for Soil Type 

(ST) 

Non-clustered set  
for Land Use 

(LU) 
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Figure 3. Four reference spectra representing four different SOM content. 
The numbers #454, #66, #569 and #97 are the samples that were selected as reference spectra.  
 

 
Figure 4. Ratio between reference spectra. 
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Figure 5. Relation between the ratio of the reference spectra. 
All ratios in the picture are compared to the spectrum of the sample with 60% SOM content. 
 
For all the samples the ratio between their spectral signatures and sampleSOM=62.4% was calculated and 
based on the ratio the samples were split in four classes following the criteria set in table 7, assuming 
that they would be within the range of SOM specified by the ratio. 
 
Next, the samples per class were divided into a calibration set and a validation set. Every third sample 
was taken separate into a validation set. The remaining samples formed the calibration set.  
 
Table 7 Classification based on ratios of spectral signatures and reference spectral signature. 
Ratio  Cluster Expected SOM content 
> 2.85 A < 5% 
2.85 - 1.93 B 5 - 10% 
1.21 - 1.93 C 10- 20% 
< 1.21 D > 20% 

Ratio as compared to spectral signature with SOM content of 62.4%. 
 
Figure 6 shows the methodology of this stratification method. Soil prediction models were based on 
these clusters and the performance of these models was compared to each other and to a reference 
model, i.e. the non-clustered model. R2, RMSE(CV) and RPD (see table 5) were used to evaluate the 
performance of the prediction model based on these defined clusters. 
 
Based on the results of R2, RMSE and RPD, the effect of this clustering method was evaluated. 
Comparing the results based on stratification or based on external sources or based on this method 
should give the answer of the best method of clustering. 
 
Figure 7 shows a flow chart of the research methodology showing the procedures which were 
followed to answer the research questions and to arrive to a synthesis. 
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Figure 6. Stratification method based on ‘Wavelength-based Discriminant Analysis’. 
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Research methodology 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Research methodology flow chart 
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3. Results and discussion 
 

3.1 Data preparation for stratification 
 
Data for Soil Type and Land use stratification 
 
The available data set was divided into two clusters for use in prediction models: one for Soil type and 
one for Land Use. For each soil property (SOM, Nt and pH) calibration and validation sets were 
created out of the total data set. These non-clustered data sets were the reference data sets to which the 
results of the prediction based on the stratified data sets were compared. 
 
The tables 8 – 11 give an overview of the different clusters and the size of these clusters. 
In table 8 the two non-clustered sets are shown. Based on a Soil map the soil type from which the soil 
samples originated was deducted and based on the Land Use map the land use type from which the 
soil samples originated was also deducted. The soil samples from which the soil types were derived, 
were grouped in one set forming the non-clustered set for Soil Type (ST – total of 402 samples) and 
the different samples from which the Land Use types were known, were grouped in one non-clustered 
set for Land Use (LU – a total of 396 samples). 
 
Table 8 Non-clustered data sets for Soil type and for Land Use 

Cluster Soil property N calibration N validation Total Composition 
Non-clustered set 
for Soil Type (ST) 
  

SOM 296 133 402 Calibration and validation set contain only  
Nt 269 133 402 samples from which the soil type was known. 
pH 269 133 402   

Non-clustered set 
for Land Use (LU) 
  

SOM 265 131 396 Calibration and validation set contain only 
Nt 265 131 396  samples from which the land use was known. 
pH 265 131 396   

 
Table 9 contains the calibration and validation sets based on Soil Type stratification. In this 
stratification, soil samples belonging to ‘water’ or ‘built up’ (n=3), loam, and ‘moerig op zand’ were 
excluded from clustering because they were too few (loam, n = 3), or difficult to categorize in one of 
the 4 soil type clusters (e.g. ‘moerig op zand’, n = 18), or not relevant to cluster (e.g. water or built up 
areas, n = 3). Map accuracy or the accuracy of the position recordings could also have placed or 
excluded some points in or from a cluster. Based on the soil type the remaining 402 samples were 
divided in 4 soil clusters: a clay, a peat, a ‘zavel’ and a sand cluster. The sand cluster was the largest 
cluster containing more than half of all the soil samples (Nsand = 219). Even though the clay, peat and 
zavel clusters were small, calibration and validation sets were created according to the ratio 2/3 
calibration and 1/3 validation set. Figure 8 shows the Soil map of The Netherlands and the distribution 
of the points over the different soil clusters. 
 
Table 9 Clusters based on lithological stratification (Soil Type) 

Soil property Cluster N calibration N validation Total 

SOM 
Nt 
pH 
  

Clay 34 17 51 
Peat 38 18 56 
Zavel 51 25 76 
Sand 146 73 219 

  Total 269 133 402 

 
Table 10 contains the data sets based on Land Use stratification. Excluded from this set were soil 
samples collected on water, infrastructure and building (n = 30). This could also be due to map 
inaccuracy or GPS inaccuracy. The remaining soil samples were grouped in 3 different clusters: 
Agricultural land (n= 60), Forest (n = 152) and Nature area (n = 184). The Nature cluster was the 
largest with 184 samples followed by the forest cluster with 152 samples. Calibration and validation 
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sets for the different soil properties were formed according to the 2/3 calibration and 1/3 validation 
criterion.  
 
Figure 9 shows the Land Use map which formed the basis of this stratification procedure. 
 
Table 10 Clusters based on Land Use stratification 
Soil property Cluster N calibration N validation  Total 
SOM 
Nt 
pH 

Agricultural land 40 20 60 
Forest 102 50 152 
Nature 123 61 184 

  Total 265 131 396 
 
Stratification based on spectral data 
 
Table 11 contains the calibration and validation data based on stratification by ‘Wavelength-based 
Discriminant Analysis’ (or ‘Spectral Similarity’). This was only applied for SOM.  
 
Table 11 Clusters based on stratification by Wavelength-based Discriminant analysis 
Soil property Cluster SOM range N calibration N validation  Total 

SOM 
  
  
 

A < 5% 133 83 216 
B 5 - 10% 137 96 233 
C > 10 % 114 12 126 
Total 384 191 575 

 
The calibration samples are grouped based on a priori knowledge of the SOM content. Two third of 
the whole data set was assigned to one of the three clusters. The remaining samples were the 
validation samples which were assigned to a cluster based on only the spectral signature and by 
arranging them according to a ratio between the spectral signature of the soil samples to the spectral 
reflectance of the reference spectrum. Prediction models were fitted for each cluster with its 
calibration and corresponding validation set. 
 
The validation and calibration sets in table 12 are based on a priori knowledge of the SOM content. 
Based on a priori knowledge of the SOM content the validation points were divided into 5 clusters 
which have the same range as the calibration strata. The a priori knowledge resulted in an ‘ideal’ 
validation set in which each soil samples was placed at once correctly in a the right stratum. Prediction 
models were fitted for each cluster with its calibration and corresponding validation set.  
 
Table 12 Ideal clusters 
Soil property Cluster SOM range N calibration N validation  Total 
SOM I* < 5% 132 66 198 
  II*  5 - 10% 137 68 205 
  III* 10 -20 % 59 30 89 
  IV* 20 - 40% 38 18 56 
  V* > 40% 18 9 27 
  Total   384 191 575 

In this data set the validation set are formed based on prior knowledge of the SOM content of the validation 
sample. 
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Figure 8. Soil map of The Netherlands with 402 soil points 
© WUR-Alterra CGI (2006) 
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Figure 9. Land Use map of The Netherlands (LGN5) with 396 soil points 
© Geodesk (CGI) 
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Normality tests 
 
All non-clustered and clustered sets and their corresponding calibration and validation sets were tested for normality. Most of the data sets were not normally 
distributed as can be seen in table 13, still no adjustments or transformations were made to manipulate or force the data into a normal distribution. Further 
analysis were still performed using these data sets. Appendix III contains the statistics for this test for normality (Kolmogorov-Smirnov & Shapiro-Wilk). 
 
Table 13 Summary of the tests of normality. 

SOM (%) Set Normal 
distribution Nt (g/kg) Set Normal 

distribution pH Set Normal 
distribution  SOM (%)   Normal 

distribution 

CLAY 
Cal no 

CLAY 
Cal no 

CLAY 
Cal no 

Non-
clustered 

All no 
Val no Val no Val no Cal no 
All no All no All no Val no 

PEAT 
Cal no 

PEAT 
Cal no 

PEAT 
Cal no 

Cat A (<5%) 
All no 

Val no Val yes Val yes Cal no 
All no All no All yes Val no 

ZAVEL 
Cal no 

ZAVEL 
Cal no 

ZAVEL 
Cal no 

Cat B  
(5 - 10%) 

All no 
Val yes Val no Val no Cal no 
All no All no All no Val no 

SAND 
Cal no 

SAND 
Cal no 

SAND 
Cal no 

Cat C  
(> 10%) 

All no 
Val no Val no Val no Cal no 
All no All no All no Val no 

AGRIC 
Cal no 

AGRIC 
Cal no 

AGRIC 
Cal no 

  

  

  

  

  

Val no Val no Val no 
All no All no All no 

FOREST 
Cal no 

FOREST 
Cal no 

FOREST 
Cal no 

Val no Val no Val no 
All no All no All no 

NATURE 
Cal no 

NATURE 
Cal no 

NATURE 
Cal no 

Val no Val no Val no 
All no All no All no 

NON-CLUSTERED 
SOIL TYPE 

Cal no NON-
CLUSTERED 
SOIL TYPE 

Cal no 
NON-CLUSTERED 

SOIL TYPE 

Cal no 
Val no Val no Val no 
All no All no All no 

NON-CLUSTERED 
LAND USE 

Cal no NON-
CLUSTERED 
LAND USE 

Cal no 
NON-CLUSTERED 

LAND USE 

Cal no 
Val no Val no Val no 

All no All no All no       

Clay, peat, zavel, sand, agric., forest, nature, non-clustered Soil Type and non-clustered Land Use are the clusters formed based on land use or soil type. Cal= calibration set; 
val = validation set; All = whole set (i.e. calibration and validation set). 
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Levene’s test and student t-test 
 
The Levene’s test indicated homogeneity of variance for all calibration and validation sets of the Soil 
and the Land Use clusters. For clusters formed with the Wavelength based discriminant analysis 
method the Levene’s test indicated unequal variances for the calibration and the validation set of the A 
and B cluster. Comparison between the mean values of calibration and validation sets also showed 
significant differences between these them indicating that the calibration and validation sets did not 
appropriately represent the population under study. All the calibration and validation sets of the Soil 
and Land Use clusters were representative. The results of the Levene’s test and the student’s t-test are 
summarized in table 14 and 15. The statistics of these tests can be found in appendix IV. 
 
Table 14 Summary of the Levene’s test for calibration and validation clusters (Soil Type and Land use 
stratification). 

Representative calibration and validation sets? 

  SOM Nt pH 

Non-clustered Soil Type (ST) yes yes yes 

Clay yes yes yes 

Peat yes yes yes 

Zavel yes yes yes 

Sand yes yes yes 

Non-clustered Land Use (LU) yes yes yes 

Agricultural Land yes yes yes 

Forest yes yes yes 

Nature yes yes yes 

 
Table 15 Summary of the Levene’s test for calibration and validation sets (Wave-length Based Discriminant 
Analysis). 

Representative calibration and validation sets? 

Non-clustered yes 

Cat A (<5%) no 

Cat B (5-10%) no 

Cat C (>10%) yes 

 
From the results in table 13 – 15 it is clear that the different clusters (whole set, calibration and 
validation) were not all normally distributed, or were not representative for the population, criteria 
which are requirements for PLSR analysis. Ideally the data should be transformed (e.g. log-
transformation or another transformation) to fit the data into a normal distribution. PLSR analysis 
would then be performed on the transformed data. In this research this is deliberately avoided because 
a log-transformation of the data also involves a log-transformation of the units of the soil property and 
the predictions seem to have high accuracies while in fact they could be large errors which become 
clear when a back transformation of the error is applied. In order to avoid back transformation of the 
predictions and prediction errors no data transformation was applied in this research. 
 
SOM 
 
As expected the peat cluster has the highest mean SOM content (table 25, appendix II) but the 
statistics also show that there is a minimum SOM content of 2.60% which is too small for a sample 
originating from a peat soil. The clay, zavel and sand cluster have average mean SOM contents of 
10.91%, 8.21% and 8.89% respectively. The peat cluster has a large range for SOM content as the 
maximum SOM content in this cluster is 95.80%. The sand cluster also has a large range for the SOM 
content from 0.34% - 72.40% SOM. 
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Of the Land Use clusters  the nature cluster has an average higher SOM content than the agriculture 
and forest cluster (table 26). The nature and forest clusters contain the samples with the highest SOM 
content (94.70% and 95.80%), probably due to the litter layer which was collected with the sample. 
The range of the SOM content in the forest and nature cluster is also larger than agricultural land. 
Agricultural land is probably more homogeneous due to human activity causing less variance in the 
data. 
 
Cluster based formed by means of the Wave-length based Discriminant analysis show contradictory 
results (table 27). First of all this stratification method was supposed to result in 4 clusters, but the 
criteria set for this method resulted in three clusters. The fourth cluster (D >20% SOM) returned only 
1 sample. This sample was combined with cluster C resulting in a cluster representing samples with 
SOM content more than 10%. The descriptive statistics show that the validation set of class A cluster 
(<5%) was supposed to contain only samples with SOM content smaller than 5% but in the maximum 
SOM content in this cluster is 52.70%. This sample is definitely misplaced with this method. Still, the 
mean SOM content of this cluster less than 5%. This also occurred in class B cluster (5% - 10 % 
SOM) which has a mean SOM content of 10.15% and a maximum SOM value of 92%. In this cluster 
the minimum SOM content was supposed to be 5%, still the statistics show that there is a minimum 
SOM content of 2.30%. Samples were correctly placed in cluster C (>10% SOM). In cluster C 
minimum SOM content of 10.20% was observed. 
This result shows that samples can be misplaced when this method is applied. Misplacements of 
spectra can be attributed to the reference spectra which were arbitrarily chosen from the whole data 
set. There was no check or other external spectra available to compare the reference spectra with. The 
ratios of the reference spectra and the ratio of the reference spectra with other spectra are thus 
influenced by the quality of the chosen reference spectra. Another reason for misplacements of spectra 
can be influence of other soil particles such as soil mineralogy. 
 
N-total (Nt)  
 
The N-total content of the soil samples varied from 0.16 – 25.40 g/kg (table 28). The different soil 
clusters have different mean Nt content indicating indeed differences between the different soil types. 
Peat has the highest mean Nt content of 8.30 g/kg. This is probably related to the high SOM content of 
this cluster (table 24). Sand has the lowest mean Nt content (2.20 g/kg) which is probably correct for 
this soil type, although a maximum Nt content of 20.20 g/kg was observed in this cluster. The clay and 
zavle cluster have a smaller range (12.49 and 8.33 g/kg respectively) compared to the peat and sand 
cluster which have a range of 24.93 and 20.04 g/kg respectively. 
The Land Use clusters (table 29) show that nature areas have the highest mean Nt content (4.04 g/kg), 
followed by agricultural land (3.79 g/kg) and forest (2.73 g/kg). The difference in mean Nt content 
between these clusters is not large. The range of the Nt content is the smallest in the agricultural land 
cluster (0.26 – 16.00 g/kg), indicating a more homogeneous distribution of Nitrogen in agricultural 
soils. Forest and nature areas have a higher range in the Nt content indicating that these soil samples 
are more diverse in Nt content. These clusters also have maximum Nt contents of 25.40 g/kg and 
21.20 g/kg for forest and nature areas respectively, probably caused by litter. 
 
pH 
 
The peat and sand cluster have the lowest mean pH values (table 30) of 5.31 and 5.43 respectively. 
This is related to the properties of peat, soils having high SOM and N content are more acidic. Clay 
and zavel have about the same mean pH value, but the zavel cluster has a smaller range in pH values, 
indicating that these samples are more homogeneous, contrary to the sand cluster which has a higher 
range and probably is more heterogeneous. The clay, peat and sand samples are also very diverse as 
can be inferred from the range of these clusters: for clay the range is from 4.16 – 8.66, for peat the 
range is form 3.62 – 7.63 and pH values in the sand cluster range from 3.70 – 9.11.  
When the Land Use clusters are examined (table 31) we see that the mean pH values do not differ 
much between the Land Use clusters: from 5.97 (nature) to 6.16 (agricultural land). The ranges are 
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also not much different from each other: pH values of the agricultural land range from 3.89 – 8.32, the 
pH of forest range from 3.70 – 8.51 and the pH values in nature areas range from 3.62 – 9.11. 
Agricultural land has the highest average pH (6.16) which can be attributed to human intervention in 
maintaining the pH at a certain level required for agricultural production. But still, minimum pH 
values of 3.89 are also observed for agricultural land which is very low for this type of land use.   
 

3.2 Stratification based on external data sources 
 
Stratification was based on two external data sources: a Soil Type and a Land Use map. 
 
A. Lithological stratification (Soil Type) 
 
Soil Organic Matter 
 
In table 16 the different PLSR models that were developed for the prediction of Soil Organic Matter 
(SOM) are shown. 
 
Table 16 Validation statistics for SOM for soil clusters. 
SOM        Validation statistics   

 
N cal N val # factors R2 RMSE (%) RPD 

Clay (1) 34 17 4 0.81 3.59 1.84 
Peat (2) 38 18 9 0.82 9.99 2.27 
Zavel (3) 51 25 3 0.31 2.89 1.18 
Sand (4) 146 73 7 0.48 8.24 1.36 
Combined (1+2+3+4) 269 133 - 0.72 7.34 1.88 

 
Non-clustered Soil Type (ST) 296 133 12 0.63 8.41 1.64 
Clay (validation)  

17 12 0.27 6.86 0.96 
Peat (validation)  

18 12 0.80 11.43 1.99 
Zavel (validation)  

25 12 0.39 4.78 0.71 
Sand (validation)  

73 12 0.46 8.83 1.27 
Combined validation sets  

133 - 0.63 8.41 1.64 
Bold RMSE’s indicate that the accuracy has improved compared to the prediction of SOM with the non-
clustered model or with the non-clustered model tested with clustered validation sets. 
 
PLSR models were developed for the 4 soil clusters after leave-one-out cross validation using the 
stratified calibration samples. A 4-factor model was developed for the clay cluster; for the peat, zavel 
and sand cluster a 9-, 3- and 7-factor model were developed respectively. 
A 12-factor PLSR model was developed using 296 non-clustered samples (ST). This non-clustered 
model was tested with an independent set of 133 non-clustered samples. This model was also tested 
using independent clustered samples of the clay, peat, zavel and sand cluster. 
 
Of all the 4 soil models, the prediction of SOM with the 9-factor peat model gave the highest R2 
(=0.82) which is higher than the R2 of the predictions of the non-clustered samples with the non-
clustered model (R2 = 0.63) or with the clustered peat validation samples (R2 = 0.80). The other 
models resulted in lower R2 than the non-clustered model. 
 
The highest R2 was reached with the non-clustered PLSR model when it was tested with the stratified 
peat samples ( R2 = 0.80). This validation also yielded a RPD of 1.99, but the accuracy was also the 
lowest of all predictions as the RMSE = 11.43%. 
 
The highest accuracy (RMSE) of predictions was achieved with the 3-factor zavel PLSR model 
(RMSE = 2.89%) and the 4-factor clay PLSR model (RMSE = 3.59%). The lowest accuracy was 
reached with the peat model (RMSE = 9.99%). 
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The results show that when e.g. SOM content in clay samples is predicted with the clay model the 
accuracy is higher than when it is predicted with the non-clustered model: SOM predictions in clay 
sample with the 4-factor clay model are predicted with an accuracy (RMSE) of 3.86%, but when SOM 
content in clay samples is predicted with the 12-factor non-clustered model the accuracy of the 
predictions is 6.86%. Prediction of SOM content in peat, zavel and sand samples with their 
corresponding models results in better accuracies than when SOM content in these samples is 
predicted with the non-clustered model. 
 
In figure 10 the calibration and validation results of the soil type clusters are shown. The calibration 
and validations of the clustered models (bottom) are compared to the calibrations and validations of 
the non-clustered models (top). Remarkable are the negative predictions of SOM which occur during 
calibration and validation. Calibration of the non-clustered model resulted in 30 negative predictions; 
in the validation of this model there were 19 negative predictions. Negative predictions were observed 
for the sand model, which had most negative predictions (12 negative predictions during calibration 
and 3 negative predictions after validation of the model), the peat (2 negative predictions during 
calibration and 1 negative prediction after validating the validation) and clay which had only 1 
negative prediction in the calibration of the model. These negative predictions reduce the predictive 
ability of the models. 
Negative predictions do not occur for zavel (during both calibration and validation of the model) and 
clay (only for validation of the model). Negative predictions occur for small values of SOM content 
(SOM < 3.04% in the calibration set or SOM < 1.11% in the validation model, but there was one 
sample in the peat model which has a SOM content of 12.4% but was predicted as -7.42%). The sand 
and peat model also have the highest RMSE (table 16) indicating less accurate predictions, especially 
for sand this could have been the cause of the negative predictions. Another cause can also be 
attributed to the range of the different soils clusters. The peat and sand cluster have the largest range in 
SOM content, while the zavel and clay clusters have smaller ranges. The developed models probably 
cannot deal with a too much large range of the data, as was the case with the peat and sand samples. 
 

      

 
Figure 10. Calibration and validation results for combined soil clusters for SOM (Lithological stratification).  
The lines represent the 1:1 line. 
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Of all the models, the zavel model performed the best because it required the fewest factors, 3 PLSR 
factors which is very parsimonious, did not result in negative predictions and the predictions were 
achieved with the highest accuracy (RMSE = 2.89%). 
 
N-total 
 
In table 17 the different PLSR models that were developed for the prediction of N-total (Nt) are 
shown. 
 
Table 17 Validation statistics for Nt for the soil clusters. 
N-total        Validation statistics   

 N cal N val # factors R2 RMSE (g/kg) RPD 
Clay (1) 34 17 4 0.76 1.23 1.99 
Peat (2) 38 18 8 0.63 3.03 1.69 
Zavel (3) 51 25 3 0.29 1.15 1.21 
Sand (4) 146 73 7 0.67 0.87 1.68 
Combined (1+2+3+4) 269 133 - 0.74 1.90 1.95 

 
Non-clustered Soil Type (ST) 269 133 15 0.70 2.05 1.81 
Clay (validation) 17 15 0.92 0.84 2.93 
Peat (validation) 18 15 0.52 3.40 1.48 
Zavel (validation) 25 15 0.66 1.02 1.36 
Sand (validation)  

73 15 0.60 2.05 1.53 
Combined validation sets  

133 - 0.70 2.05 1.81 
Bold RMSE’s indicate that the accuracy has improved compared to the prediction of Nt with the non-clustered 
model or with the non-clustered model tested with clustered validation sets. 
 
Four models with 4 – 8 factors were developed for the soil clusters. All these soil cluster models 
produced R2 values ranging from 0.29 - 0.76. Predictions of Nt in zavel samples with the zavel model 
had the lowest R2 (0.29) of all models. 
A 9-factor PLSR model was developed with the 269 non-clustered samples, and tested with 133 
independent non-clustered samples. The R2 (0.70) and RPD (1.81) of the Nt predictions of these 
samples are higher than the predictions of Nt with the clustered models, except for the predictions of 
the clay model. 
 
The accuracy of the prediction with the clay and zavel model was not better than prediction with the 
non-clustered. The accuracy of predictions with the non-clustered model was 0.84 g/kg for clay and 
1.02 g/kg for peat (cf. RMSEclay = 1.23 and RMSEzavel  = 1.15). Better prediction accuracies were 
reached when predicting Nt in peat samples with the peat model (RMSE of 3.03 g/kg) or in sand 
samples with the sand model (RMSE = 0.87 g/kg). 
 
The clustered models that were developed were quite parsimonious: they were developed with 3 – 8 
factors, compared to the non-clustered model which was developed with 15 factors. The sand model 
could be a good model because it produces more accurate predictions (lowest RMSE of 0.85 g/kg). 
 
Figure 11 shows the results of the lithological stratification. The calibration and validations of the 
clustered models (bottom) are compared to the calibrations and validations of the non-clustered 
models (top). Also here negative predictions can also be observed. In the calibration of the non-
clustered model there were 33 negative predictions and in the validation of the non-clustered model 
there were 12 negative predictions. These negative prediction occurred for Nt contents smaller than 
2.35 g/kg (calibration) or smaller than 2.30 g/kg (validation). 
Negative predictions were observed for the sand model, which had most negative predictions (18 
negative predictions during calibration and 9 negative predictions after validation of the model). 
Negative predictions were also observed for the clay and peat model but only for the calibrations of 
these models: 1 negative prediction for each model. The negative predictions of the model occur for 
Nt contents smaller than 0.75 g/kg (calibration) or smaller than 1.03 g/kg (validation).  
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The sand model probably cannot deal with the large range in this cluster. 
 

    

 
Figure 11. Calibration and validation results for combined soil clusters for Nt (Lithological stratification). 
The lines represent the 1:1 line. 
 
pH 
 
In table 18 the different PLSR models that were developed for the prediction of pH are shown. 
 
Table 18 Validation statistics for pH for the soil clusters. 
pH        Validation statistics   

 N cal N val # factors R2 RMSE RPD 
Clay (1) 34 17 5 0.67 0.59 1.62 
Peat (2) 38 18 6 0.44 0.54 1.23 
Zavel (3) 51 25 17 0.23 0.46 1.00 
Sand (4) 146 73 12 0.78 0.78 2.01 
Combined (1+2+3+4) 269 133 - 0.85 0.68 2.50 

 
Non-clustered Soil Type 269 133 16 0.86 0.68 2.48 
Clay (validation) 

 
17 16 0.76 0.53 1.81 

Peat (validation)  
18 16 0.54 0.68 0.98 

Zavel (validation)  
25 16 0.19 0.67 0.69 

Sand (validation)  
73 16 0.81 0.72 2.18 

Combined validation sets  
133 - 0.86 0.68 2.48 

Bold RMSE’s indicate that the accuracy has improved compared to the prediction of SOM with the non-
clustered model or with the non-clustered model tested with clustered validation sets. 
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PLSR models with 5 – 17 factors were developed for the soil clusters. The highest accuracy of 
predictions was achieved with the zavel model (RMSE = 0.46 pH units) but this model was developed 
with 17 factors. The clay model was developed with the fewest factors (5) but the accuracy of the pH 
predictions not have not improved compared to the non-clustered model (cf. RMSEclay model = 0.59, 
RMSEnon-clustered = 0.53). Good prediction accuracy was also achieved with the peat model (RMSE = 
0.54) which was developed with 6 factors. 
 
Even though the accuracy of the predictions did not improve for all models, or the improvement of 
prediction accuracy was small, it should be noted that the clustered models were developed with less 
factors (except for the zavel model) compared to the non-clustered model, which was developed with 
16 factors. 
 
Regarding the R2, clustered soil models performed have lower R2’s than the non-clustered model. 
Even the 17-factor zavel model predictions returned a very low R2 of 0.23 and also the lowest RPD of 
1.00. The sand model predictions returned the highest R2 (0.78) of all models and also the highest 
RPD of 2.01. 
 
In figure 12 the calibration and validation results for pH based on clustering on soil type are given.  
 

    

 
Figure 12. Calibration and validation results for combined soil clusters for pH (Lithological stratification). 
The lines represent the 1:1 line. The calibration and validations of the clustered models (bottom) are compared to 
the calibrations and validations of the non-clustered models (top). 
 
Contrary to the other soil properties (SOM and Nt) there are no negative predictions during the 
calibration and validation of the models. This can be related to the smaller range of the pH (between 3 
and 9) and the small RMSE’s of the predictions. The variance of the pH of the different soil clusters is 
small and the models are calibrated and tested with samples which have the same small range and 
variances. Furthermore, it should be noted that pH values are log-values and that the RMSE’s of the 
predictions may appear to be small, but when transformed back to original concentration values may 
be large. So care should be taken when interpreting and using the RMSE’s of the predictions. 
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B. Land Use Stratification 
 
Calibration and validation models were also applied for the land use clusters for three soil properties. 
Prediction statistics for predicting SOM, Nt and pH with stratified data sets can be found in tables 19 – 
21. 
 
SOM 
 
In table 19 the different PLSR models that were developed for the prediction of SOM are shown. 
 
Table 19 Validation results for SOM for the Land use clusters. 
SOM        Validation statistics   

 N cal N val # factors R2 RMSE (%) RPD 
Agricultural 40 20 7 0.59 8.50 1.07 
Forest 102 50 7 0.82 4.34 2.07 
Nature 123 61 16 0.82 7.55 2.35 
Combined 265 131 - 0.78 6.69 2.08 

 
Non-clustered Land Use 265 131 17 0.81 6.21 2.24 
Agricultural (validation)  

20 17 0.61 7.39 1.23 
Forest (validation)  

50 17 0.89 3.76 2.39 
Nature (validation)  

61 17 0.84 7.31 2.42 
Combined validation sets 

 
131 - 0.81 6.21 2.24 

 
Models based on stratified Land Use data were developed with 7 – 16 factors. The forest and nature 
models gave SOM predictions with the high R2 (0.82), but the accuracy of these predictions has not 
improved compared to the non-clustered predictions, e.g. RMSE of SOM prediction in forest samples 
with the forest model = 4.34 %, while the accuracy of SOM prediction in these samples is with the 
non-clustered model is 3.76%. In table 19 can be seen that the RMSE of SOM prediction with 
clustered models does not result in better prediction accuracy. The RMSE of validation of the non-
clustered model with clustered validation samples gives better accuracies and also better RPD’s than 
models built on clustered data. But it should be noted that the non-clustered model was developed with 
17 factors, while the clustered models were developed with less factors. The non-clustered model may 
have better predictions but the number of factors of this model may limit the transferability of this 
model to other situations. 
 
Figure 13 shows the calibration and validation results of the 3 Land Use clusters combined for 
predicting SOM and the calibration and validation results of the non-clustered model. 
As with the clustering based on Soil Type, there are also negative predictions in the calibration and 
validation model. There are 33 negative predictions observed for the calibration of the non-clustered 
model. These negative predictions occur for SOM content less than 8.35%. In the validation of the 
non-clustered model there are 15 negative predictions which occur for SOM contents smaller than 
7.05%. 
Negative predictions are also observed for the clustered models during calibration and validation. In 
the calibration there are 2 negative predictions observed for the agricultural model, 10 for the forest 
and 13 for the nature model. In the validation of the models negative predictions are only observed for 
the forest (5) and the nature model (8). 
For these models negative predictions occur when the SOM content in the calibration model is smaller 
than 6.6% (agriculture and forest) or smaller than 6.08% (nature). In the validation model negative 
predictions occur when SOM content is lower than 8.36% (forest) or lower than 7.05% (nature). The 
cause of these negative predictions for such high SOM content is unknown. Forest and nature have a 
very large range in SOM content (0.97 – 94.70% and 0.34 – 95.80%, respectively). Negative 
predictions occurred only for the forest and nature models in the validation. The very large range of 
these clusters can be part of the explanation for the negative predictions. 
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Figure 13. Calibration and validation results for combined Land Use clusters for SOM (Land Use stratification). 
The lines represent the 1:1 line. The calibration and validations of the clustered models (bottom) are compared to 
the calibrations and validations of the non-clustered models (top). 
 
N-total 
 
In table 20 the different PLSR models that were developed for the prediction of N-total are shown. 
 
Table 20 Prediction results for Nt for the Land Use clusters. 
N-total        Validation statistics   

 
N cal N val # factors R2 RMSE (g/kg) RPD 

Agricultural 40 20 10 0.69 1.67 1.70 
Forest 102 50 7 0.90 1.26 2.05 
Nature 123 61 15 0.65 2.83 1.56 
Combined 265 131 - 0.71 2.18 1.66 

 
Non-clustered Land Use 265 131 9 0.70 2.02 1.80 
Agricultural (validation)  

20 9 0.63 1.75 1.62 
Forest (validation)  

50 9 0.84 1.14 2.27 
Nature (validation)  

61 9 0.67 2.59 1.71 
Combined validation sets  

131 - 0.70 2.02 1.80 
Bold RMSE’s indicate that the accuracy has improved compared to the prediction of SOM with the non-
clustered model or with the non-clustered model tested with clustered validation sets. 
 
The highest R2 was achieved  for predictions of Nt content with the forest model (R2 = 0.90). 
predictions of Nt content in forest samples with the forest models were also the more accurate than the 
predictions of the other models (RMSEforest = 1.26 g/kg). 
Compared to the non-clustered model, only the agricultural model resulted in an improved accuracy of 
the predictions (RMSEagriculture = 1.67 g/kg, RMSEnon-clustered  = 1.75), but the agricultural model was 
developed with 10 factors, while the non-clustered model was developed with 9 factors.  
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In fact, the differences between the accuracies of the prediction between clustered and non-clustered 
models is not large: for the nature model the difference with the non-clustered model is 0.09 g/kg, for 
the forest model the difference is 0.12 g/kg. The largest difference in accuracy is between the nature 
model: 0.24 g/kg. 
 
In figure 14 calibration and validation results of land use clusters for predicting Nt are shown. Also 
note here the negative predictions which occur for predictions with the agricultural, the nature, the  
forest and the non-clustered model. 
Calibration of the non-clustered model gives 28 negative predictions for Nt contents smaller than 4.40 
g/kg. the validation of the non-clustered models gives 10 negative predictions for samples which have 
a Nt content smaller than 0.92 g/kg. 
Calibration of the clustered models produced 28 negative predictions (agriculture: 2, forest: 6 and 
nature: 20) for samples which have a NT content smaller than 2.11 g/kg. Validation of the clustered 
models produced 9 negative predictions (forest : 2 and nature: 7) for samples with Nt content smaller 
than 1.03 g/kg. 
 

   

 
Figure 14. Calibration and validation results for combined land use clusters for Nt (Land Use stratification). 
The lines represent the 1:1 line. The calibration and validations of the clustered models (bottom) are compared to 
the calibrations and validations of the non-clustered models (top). 
 
pH 
 
In table 21 the different PLSR models that were developed for the prediction of pH are shown. 
A 14-factor non-clustered model was developed and non-clustered models were developed with 9 – 12 
factors. Table 21 shows that prediction accuracy improved only for the nature model (RMSE = 0.78), 
but this is just a very slight improvement compared to the non-clustered model prediction (RMSE = 
0.79). Inspection of the prediction accuracy of the other clustered model shows that accuracy did not 
improve, but the changes are also very small: 0.1 pH units (e.g. between RMSEagriculture (0.53) and 
RMSEnon-clustered (0.43)). 
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R2 and RPD values of both the clustered and non-clustered models are good and the differences 
between the clustered and non-clustered models are very small. 
 
Table 21 Prediction results for pH for Land Use clusters. 
pH        Validation statistics   
  N cal N val # factors R2 RMSE RPD 
Agricultural 40 20 9 0.84 0.53 2.37 
Forest 102 50 12 0.91 0.61 3.15 
Nature 123 61 14 0.78 0.78 1.92 
Combined 265 131 - 0.85 0.68 2.38 

 
Non-clustered Land Use 265 131 14 0.85 0.65 2.52 
Agricultural (validation)  

20 14 0.91 0.43 2.97 
Forest (validation)  

50 14 0.93 0.50 3.79 
Nature (validation)  

61 14 0.79 0.79 1.90 
Combined validation sets  

131 - 0.85 0.65 2.52 
Bold RMSE’s indicate that the accuracy has improved compared to the prediction of SOM with the non-
clustered model or with the non-clustered model tested with clustered validation sets. 
 

 

 
Figure 15. Calibration and validation results for combined Land Use clusters for pH (Land Use stratification). 
The lines represent the 1:1 line. The calibration and validations of the clustered models (bottom) are compared to 
the calibrations and validations of the non-clustered models (top). 
 
There are no negative predictions in the calibration and validation models, as can be seen in figure 15. 
Also here absence negative predictions can be related to the specific range within pH values can vary. 
In this situation pH values varied from 3.5 – 9.0. 
Good predictions can be attributed to the smaller range of the pH values in the calibration and 
validation samples and the fact that pH values are log-values. 
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3.3 Stratification based on spectral data 
 
Calibration and validation models were also applied for clusters which were formed based on spectral 
alikeness. This was only tested for SOM. Prediction statistics for predicting SOM based on this 
method, Wavelength-based Discriminant Analysis, are shown in tables 22. 
 
Table 22 Prediction statistics based on ‘Wavelength-based Discriminant Analysis’. 
SOM       Validation statistics  
  N cal N val # factors R2 RMSE (%) RPD 
A: <5% 133 83 9 0.57 6.09 1.15 
B: 5-10% 137 96 8 0.13 16.70 0.94 
C: >10% 114 12 8 0.79 6.89 1.99 
Combined: A + B + C 384 191 - 0.25 12.62 1.10 

 
Non-clustered Set 384 191 13 0.79 6.58 2.10 
A: <5% (validation) 83 13 0.72 6.00 1.16 
B: 5% - 10% (validation) 96 13 0.82 6.73 2.34 
C: > 10% (validation) 12 13 0.53 8.86 1.54 
Combined validation sets 191 - 0.79 6.58 2.10 

Bold RMSE’s indicate that the accuracy has improved compared to the prediction of SOM with the non-
clustered model or with the non-clustered model tested with clustered validation sets. 
 
Table 22 shows that there was no improvement of the R2’s for all clusters after WBDA clustering was 
applied. R2 was only improved for the C cluster (>10%), which was 0.53 for the predictions with the 
non-clustered model and was improved to 0.79 after clustering was applied. 
After clustering the accuracy of only the C cluster (>10%) was improved from 8.86% to 6.89%. 
The accuracy of the prediction with the A cluster model dropped slightly from 6.00% to 6.09% but the 
accuracy of the prediction with the B-cluster model dropped drastically from 6.73% to 16.70%. 
 
Predictions with the A-cluster model (A: <5%, RMSECAT A = 6.09%) were more accurate than 
predictions with the other clustered models (B and C) but given the range of SOM in this cluster (0-
5%), this accuracy of 6.09% is larger than the range in this cluster. Also for cluster B the RMSE is 
large compared to the ranges of the clusters: for the B-cluster (5-10%) the RMSE = 16.70%. The 
accuracy of predictions with the C cluster (>10%) is 6.89%, which is reasonable given the large range 
of this cluster. 
 
Over all , the R2, RMSE and RPD of the non-clustered model are better than the clustered models 
prediction statistics, except for cluster C which has better prediction statistics than the non-clustered 
model. With these results, clustering based on WBDA did not lead to improvement of the predictions 
of SOM. 
 
The poor improvements of the accuracy of the predictions can be attributed to the misplacements of 
several spectra in the clusters (see descriptive statistics in appendix II, table 27). Using the criteria to 
arrange the spectral signatures in 3 categories resulted in some spectra being paced in the wrong 
cluster. Spectra corresponding to samples with very high SOM content were placed in the category 
which contained the lowest SOM content. These outliers have an influence on the accuracy of the 
predictions. Still the R2’s and RPD’s of the predictions are remarkably high, despite these 
misplacements. Probably the majority of the spectra was placed in a correct class masking the effect of 
the outliers. 
 
Figure 16 shows the calibration and validation results of the spectral stratification method. A total of 
43 negative predictions are observed after calibration of the non-clustered model. These negative 
predictions occur for SOM contents smaller than 7.66%. After validation of the non-clustered model 
22 negative predictions are observed for samples with SOM contents smaller than 5.44%. 
After clustering with the WBDA method, 4 negative predictions are observed after calibration of the 
models: 3 negative in the A-cluster (<5%) for three samples having a SOM content of 0.24, 0.27 and 
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0.99%, and 1 negative prediction in the C-cluster (>10%) for a sample with a remarkably high SOM 
content of 12.4%. After validation of these clustered models, only 3 negative predictions were 
observed for the A-cluster for samples with SOM contents of 0.29, 0.35 and 0.57% SOM. The 
combination of very low SOM content and a low accuracy of the predictions could have caused the 
negative predictions. May be the range 0-5% is still too large for this cluster. As there are samples 
with a SOM content of smaller than 0.5% a further stratification of this cluster could may be improve 
the predictions of this cluster. For the clusters with a higher SOM content negative predictions do not 
occur, with the exception of the negative prediction after calibration of cluster C-model. 
It should be noticed that the number of negative predictions has deceased after clustering was applied: 
42 negative prediction of the non-clustered model were reduced to 3 negative predictions after 
clustering. 
 

  

  
Figure 16. Calibration and validation results for combined spectral clusters for SOM (based on WBDA). 
The lines represent the 1:1 line. WBDA = Wave-length based Discriminant Analysis. The calibration and 
validations of the clustered models (bottom) are compared to the calibrations and validations of the non-clustered 
models (top). 
 
A test was performed with creating ideal calibration and validation clusters with more intervals. The 
results of this test can be found in table 23. With ideal calibration and validation sets created both on a 
priori knowledge we see that for the ‘ideal I set’ (< 5%) set the accuracy is the best largest (RMSE = 
0.70) (table 23). The accuracy of the predictions decreases for the next sets depending on their ranges:  
predictions with the ‘ ideal II set’ (5-10%) have an accuracy of 1.18%, predictions with the ‘ideal III 
set’ (10-20%) have an accuracy of 2.65%, predictions with ‘ideal IV set’ (20-40%) have an accuracy 
of 5.84% and predictions with ‘ideal V set’ ((>40%) have an accuracy of 13.74%. These models were 
also developed with less factors and still resulted in improvement of the prediction accuracies. 
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Unfortunately, for 2 clusters (group II and IV) the R2 is very low (<0.10), but the RPD’s of the 
clustered models are better than the non-clustered RPD’s. Predictions for high SOM (>10%) cannot be 
predicted well with PLS regression. the developed models cannot deal with the large SOM content of 
the samples, even if they were calibrated with samples containing the same range of high SOM 
content.  
 
Table 23 Prediction statistics based on ideal clusters. 
SOM       Validation statistics 
  N cal N val # factors R2 RMSE (%) RPD 
I: < 5% 132 66 9 0.78 0.70 1.99 
II: 5-10% 137 68 8 0.25 1.18 1.13 
III: 10-20% 59 30 3 0.06 2.65 1.01 
IV: 20-40% 38 18 2 0.04 5.84 1.03 
V: > 40% 18 9 2 0.43 13.74 1.21 
Combined 384 191 - 0.93 3.72 3.71 
       
Non-clustered 384 191 13 0.79 6.58 2.10 
I: < 5% (validation)  66 13 0.82 3.96 0.35 
II: 5-10% (validation)  68 13 0.17 4.25 0.31 
III: 10-20% (validation)  30 13 0.20 7.54 0.35 
IV: 20-40% (validation)  18 13 0.01 11.36 0.53 
V: > 40% (validation)  9 13 0.66 14.84 1.12 
Combined validation sets   191 - 0.79 6.58 2.10 

Both calibration and validation sets were formed based on a priori knowledge of the SOM content. 
Bold RMSE’s indicate that the accuracy has improved compared to the prediction of SOM with the non-
clustered model or with the non-clustered model tested with clustered validation sets. 
 
Figure 17 shows the combined calibration and validation results for the ideally formed clusters. 
 

 
Figure 17. Calibration and validation results for combined ideal spectral clusters for SOM. 
I: <5% SOM; II: 5 – 10% SOM; III: 10-20% SOM; IV: 20-40% SOM; V: >40% SOM. The lines represent the 
1:1 line. 
 
These ideal sets are free from outliers, so the effect of outliers on the prediction results is cancelled 
out, thus producing good prediction statistics. Prediction for clusters with high SOM content becomes 
difficult as these clusters contain very few calibration samples compared to the clusters which have 
very low SOM content as there are more samples available with low SOM content. Observing the 
predictions in figure 17 predictions for the first three clusters (I – III) are closer to the 1-1 line than 
predictions for the clusters with the high SOM content (IV and V).  
In previous results low SOM content resulted in negative predictions, but when they are more clusters 
with smaller intervals, negative predictions occur less, as can be seen in figure 17. Only three negative 
predictions occurred in the calibration (for samples with SOM content of 0.24, 0.27 and 0.99%) and in 
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the validation (for samples with SOM content of 0.29, 0.35 and 0.57). This is an indication that proper 
ranges for each cluster should be set or chosen to avoid negative predictions. Negative predictions for 
the cluster with the smallest range (<5%) can probably be cancelled out if this cluster is stratified 
further. 
 

3.4 Effect of clustering on prediction results 
 
In this research 3 soil properties were predicted using clustered and non-clustered calibration and 
validation sets. In some cases clustering improved the predictions, but in most cases this was not the 
case. In figure 18 and 19 the prediction results per soil property for the different clusters and non-
clustered sets are presented for comparing the effects of the clustering methods on the prediction 
parameters: R2, RMSE and RPD. 
 
The legend in figure 18 and 19 is as follows: 
- the dark solid bars are the non-clustered models: the first dark bar is the non-clustered Soil Type 
result, the second bar is the non-clustered Land Use result. 
- the speckled bars are models of the Soil clusters: clay, peat, zavel and sand 

- Clay (val), peat (val), zavel (val) and sand (val) are the validation sets used to test the non-
clustered Soil type model 

- the dashed bars are the Land Use clusters: Agricultural land, Forest and Nature areas. 
- Agricultural (val), Forest (val) and Nature (val) are the validation sets used to test the non-
clustered Land Use model. 

- striped bar (horizontal) are the cluster formed with the WBDA-method: A (<5%), B (5 – 10%) and C  
(> 10%) 
- A: <5% (val), B: 5 – 10% (val) and C: >10% (val) are the validation sets used to test the non-
clustered WBDA model. 

 
SOM: 
 
R2: 
The highest R2 is observed when SOM content is predicted for the forest samples (forest val) with the 
the non-clustered Land Use model: R2 = 0.89. The lowest R2 is observed for the zavel model (R2 = 
0.31) and when the SOM in clay samples is predicted with the non-clustered Soil Type model (R2 = 
0.27). R2 values for models developed with the WBDA method (figure 19) not much better than the 
R2’s of the models developed with Land Use or Soil type stratification. The non-clustered WBDA-
model and model C (>10%) have a R2 of 0.79. Predictions with the B-model (>5-10%) produce a very 
low R2 of 0.13. 
 
RMSE: 
The best prediction accuracy is achieved with the clay and zavel model which have RMSE of 3.59% 
and 2.89% respectively. The lowest accuracy is achieved when SOM in peat samples is predicted with 
the non-clustered Soil type model (RMSE of 11.43%). 
The WBDA-models have about the same prediction accuracy as the RMSE of the non-clustered 
WBDA-model does not differ much from the RMSE of the A (<5%) and C (>10%) model. (RMSE 
non-clustered = 6.58%,  RMSE (A:<5%) = 6.09%, RMSE (C:>10%) = 6.73%). The C-model (5-10%) 
has the lowest accuracy of all developed models: RMSE = 10.70%. 
 
RPD: 
The highest RPD values are achieved with the peat and nature model (RPDpeat = 2.27, RPDnature = 
2.35). Prediction of SOM in forest and nature samples with the non-clustered Land use model also 
results in high RPD’s of 2.39 and 2.42. 
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Lowest RPD values were achieved with the Agricultural model (RPD = 1.07), and when the non-
clustered Soil type model is used to predict SOM in clay samples (RPD = 0.96) and in zavel samples 
(= 0.71). 
RPD’s of the WBDA models are low compared to the RPD’s of the models developed with the other 
stratification methods, except for the C-model (>10%) whose predictions produce a RPD of 1.99. 
 
N-total 
 
R2 
The highest R2 was achieved with the forest model (R2 = 0.90). The lowest R2 was achieved with the 
zavel model (R2 = 0.29). 
  
RMSE 
The best accuracies were achieved with the clay, zavel and sand model (RMSE = 1.23 g/kg, 1.15 g/kg 
and 0.87 g/kg, respectively).  The lowest accuracy was achieved with the peat model, with an RMSE 
of 3.03 g/kg and when Nt content in peat samples was predicted with the non-clustered Soil Type 
model (RMSE = 3.44 g/kg). 
 
RPD 
The highest RPD was achieved with the clay and the forest model (RPDclay = 1.99 and RPDforest = 
2.05). Prediction of Nt in these samples with the non-clustered Soil type and Land use model also 
produced high RPD’s of 2.93 (for clay) and 2.27 (forest). 
 
pH 
 
R2 
The highest R2 were achieved with the forest model (R2 = 0.91). The agricultural model (R2 = 0.84) 
and the non-clustered Soil Type (R2 = 0.86) and Land Use models (R2 = 0.85) also have very high R2 
values. Very low R2 values were achieved with the zavel model (R2 = 0.23) and when pH in zavel 
samples was predicted with the non-clustered soil type model (R2 = 0.19). 
 
RMSE 
The best prediction accuracy was achieved with the zavel model (RMSE = 0.46 pH units).The lowest 
accuracy was achieved with the sand and nature model (RMSE = 0.78 for both models) and when pH 
was predicted in nature samples with the non-clustered Land use model (RMSE = 0.79 pH units). 
 
RPD 
The highest RPD values were achieved with forest model (RPD = 3.15). other models which produced 
RPD’s higher than 2.00 are: the sand model (RPD = 2.01), the agricultural model (RPD = 2.37), the 
non-clustered Soil type model (RPD = 2.48) and the non-clustered Land use model (RPD = 2.52). 
The lowest RPD values was produced with the zavel model (RPD = 1.00). 
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                                  SOM                                                                               Nt                                                                            pH   

 

 
Figure 18. Overview of prediction (validation) statistics (R2, RMSE and RPD) for the tested soil properties.     
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Figure 19. Overview of prediction (validation) statistics for three stratification methods (R2, RMSE and RPD) for 
SOM prediction. 
 
Model evaluation 
 
Based on the R2 and RPD  the developed models were categorized in 3 classes following the criteria of 
Chang et al. (2001). The result of this evaluation of the developed models are presented in table 24. 
Four models to predict SOM are evaluated as category A models: the peat model, non-clustered Land 
Use model, the Forest model and the Nature model. Two models developed with the WBDA method 
were evaluated as class C models (A: <5% and B: 5-10%). Model C (>10%) was evaluated as a class  
model. As previously mentioned the WBDA method did not improve prediction predictions results. 
Only one model to predict Nt content was evaluated as category A model: the Forest model. All other 
models were evaluated as category B models. The zavel model is the only model that is evaluated as 
category C model. 
For the prediction of pH four models were evaluated as category A models: the non-clustered soil type 
model, the non-clustered land use model, the forest model and the agriculture model. The clay, sand 
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and nature model were evaluated as category B models. The peat and zavel models were evaluated as 
category C models. 
Category A models have accurate prediction capabilities, category B model predictions can be 
possibly improved by using different calibration techniques (Chang et al., 2001), and category C 
models have no reliable prediction capabilities (Chang et al., 2001 & Bartholomeus et al., 2008). 
 
Table 24 Model evaluation. 

Validation (SOM) 

Stratification method Model N cal N val # factors R2 RMSE RPD Model 
evaluation 

Lithological 

Non-clustered 296 133 12 0.63 8.41 1.64 B 
Clay 34 17 4 0.81 3.59 1.84 B 
Peat 38 18 9 0.82 9.99 2.27 A 
Zavel 51 25 3 0.31 2.89 1.18 C 
Sand 146 73 7 0.48 8.24 1.36 C 
Combined soil models 296 133 - 0.72 7.34 1.88 B 

Land Use 

Non-clustered 265 131 17 0.81 6.21 2.24 A 
Agricultural 40 20 7 0.59 8.50 1.07 C 
Forest 102 50 7 0.82 4.34 2.07 A 
Nature 123 61 16 0.82 7.55 2.35 A 
Combined 265 131 - 0.78 6.69 2.08 B 

WBDA 

Non-clustered 384 191 13 0.79 6.58 2.10 B 
A: <5% 133 83 9 0.57 6.09 1.15 C 
B: 5-10% 137 96 8 0.13 16.70 0.94 C 
C: >20% 114 12 8 0.79 6.89 1.99 B 
Combined 384 191 - 0.25 12.62 1.10 C 

                  
Validation (Nt) 

Stratification method Model N cal N val # factors R2 RMSE RPD Model 
evaluation 

Lithological 

Non-clustered 296 133 15 0.70 2.05 1.81 B 
Clay 34 17 4 0.76 1.23 1.99 B 
Peat 38 18 8 0.63 3.03 1.69 B 
Zavel 51 25 3 0.29 1.15 1.21 C 
Sand 146 73 7 0.67 0.87 1.68 B 
Combined soil models 296 133 - 0.74 1.90 1.95 B 

Land Use 

Non-clustered 265 131 9 0.70 2.02 1.80 B 
Agricultural 40 20 10 0.69 1.67 1.70 B 
Forest 102 50 7 0.90 1.26 2.05 A 
Nature 123 61 15 0.65 2.83 1.56 B 
Combined 265 131 - 0.71 2.18 1.66 B 

                  
Validation pH 

Stratification method Model N cal N val # factors R2 RMSE RPD Model 
evaluation 

Lithological 

Non-clustered 296 133 16 0.86 0.68 2.48 A 
Clay 34 17 5 0.67 0.59 1.62 B 
Peat 38 18 6 0.44 0.54 1.23 C 
Zavel 51 25 17 0.23 0.46 1.00 C 
Sand 146 73 12 0.78 0.78 2.01 B 
Combined soil models 296 133 - 0.85 0.68 2.50 A 

Land Use 

Non-clustered 265 131 14 0.85 0.65 2.52 A 
Agricultural 40 20 9 0.84 0.53 2.37 A 
Forest 102 50 12 0.91 0.61 3.15 A 
Nature 123 61 14 0.78 0.78 1.92 B 
Combined 265 131 - 0.85 0.68 2.38 A 

 
Lithological stratification resulted good prediction (category A) models for the prediction of: 
1. SOM with the peat model 
2. Nt: no soil type model is suitable 
3. pH with the non-clustered soil type model. 
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Land use stratification resulted in good prediction (category A) models for the prediction of: 
1. SOM with the non-clustered soil type model, the forest and agricultural model. 
2. Nt with the forest model 
3. pH with the non-clustered, agricultural and forest model 
 
Spectral stratification (WBDA) did not produce A models suitable for the prediction of the SOM 
content in stratified samples. 
 
Chang et al. (2001) evaluated models only on the R2 and RPD. But the accuracy (RMSE) of the 
prediction is also important. Based on the prediction accuracy of the models the effect of the three 
stratification methods is evaluated but with only the RMSE as main criterion. 
 
Lithological stratification resulted in good accuracy of predictions of: 
1. SOM: with the clay and zavel model, and in zavel samples using the non-clustered soil type model. 
2. Nt: with the clay, zavel and sand model, and in clay and zavel samples using the non-clustered soil 
type model. 
3. pH: with the zavel and clay model. 
 
Land Use stratification resulted in good accuracy of predictions of: 
1. SOM: with the forest model, and in forest samples using the non-clustered land use model. 
2. Nt: with the forest and agricultural model, and in forest samples using the non-clustered land use 
model. 
3. pH: with the agricultural model, and in agricultural and forest samples using the non-clustered land 
use model. 
 
Spectral stratification (WBDA) did not produce models that reached reasonable prediction accuracy: 
RMSE for the cluster with the smallest range (0 – 5%) is 6.09%. 
 
Based on the accuracy of the predictions a flow chart (figure 20) is designed to show which model one 
can use to predict SOM, Nt or pH. Which model one can use depends on the soil property and on the 
location (or source) the soil sample. The source can either be the soil type or the land use on which the 
soil sample was taken. If one does not know what the soil type or land use is, x-y coordinates also 
suffice. With the x-y coordinates one can also determine the soil type or the land use. If one does not 
have any information about the source of the sample, the non-clustered models can be used. The 
accuracy of the predictions that are achieved are mentioned in the flow chart. 
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  SOM Nt pH 
non-clustered soil type model 

NO non-clustered Land Use model 6.21 2.02 0.65 
 

non-clustered WBDA model     

  Clay Peat Zavel Sand 
Source   SOM Nt pH SOM Nt Ph SOM Nt pH SOM Nt pH 
known? non-clustered soil type model 0.84 0.53 1.02 0.72 

 

Soil Type Clay model 3.59             
 

Peat model       9.99 3.03 0.54             
Soil Type Zavel model             2.89 0.46       

YES Land Use 
 

Sand model                   8.24 0.87 
Coordinates 

 

  Agricultural land Forest Nature 
Determine   SOM Nt pH SOM Nt pH SOM Nt pH 
Soil Type non-clustered Land Use model 7.39 0.43 3.76 1.14 0.5 7.31 0.79 

or Land Use Agricultural land model 1.67             
Land Use Forest model             

Nature model       2.83 0.78 

Figure 20: Decision tree for predicting soil properties. 
The coloured cells indicate that the model cannot be used for the prediction of the chosen soil property. The open cells indicate that the model can be used. The number in the 
cells indicate the accuracy that is reached when the model is used. Units of accuracy: SOM (%), Nt (g/kg), pH (-). WBDA= Wave-length Based Discriminant Analysis.
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3.3 General discussion 
 
On developing and implementing stratification methods 
 
In this research two external data sources (Soil Type map and Land Use map) were the basis for two 
stratification methods. A third stratification method was based on Wave-length based Discriminant 
Analysis (WBDA) or spectral alikeness (similarity). 
 
Lithological stratification divided the data in 4 soil clusters. These 4 soil clusters were aggregated soil 
classes from a soil classification that distinguishes more soil type classes. By aggregating soil classes 
that are related to each other or which are sub-classes of each other, the number of soil classes was 
reduced to four. The advantage of reducing the number of soil classes to four is that more points are 
allocated to the aggregated soil classes, instead of very few soil points allocated to many soil classes. 
Especially when creating calibration samples there should be enough samples of each soil type to train 
the calibration model. 
 
This same approach was applied for Land Use stratification. The many land use types were aggregated 
and reduced to 3 land use types, ensuring that enough samples would be allocated to each land use 
class. 
The drawback of these aggregating approaches is that the range of the soil property values becomes 
large as each cluster contains soil samples from different sub classes, which probably have their own 
specific soil property range. The descriptive statistics indeed showed that the ranges of the soil 
property per cluster were indeed quite broad, while the purpose of stratification was to create 
homogeneous sets. 
 
It is worth noting that the Land Use map used for this stratification was LGN5. This is currently an 
out-dated version as the latest version is LGN6. At the time of this research LGN6 was just introduced 
and not available for this research. Nothing can be said about the effect of using LGN5 instead of 
LGN6 because the difference between these two maps was not analysed. If soil samples are placed in a 
wrong class, this can be attributed to the use of the out-dated land use map. 
 
The accuracy of the GPS coordinates could be another source of possible wrong allocations of the soil 
points. But this is beyond the control of this research and the fact that the point locations are much 
smaller than the land use or soil type area, enlarges the chance that the soil points are placed in a 
correct class. The chance of misplacement is large when the soil samples and the GPS measurements 
are taken at or near the border of two or more land use or soil types. 
 
The third stratification method did not involve external data sources as basis for stratification. Instead, 
samples were clustered according to their spectral alikeness. Based on calculated ratios between 
reference spectra, the different spectra were arranged in clusters representing different content of the 
soil property ( SOM). The pitfall of this method is that between spectra there may be wide differences 
in chemical composition due to small, yet important absorption bands hidden by a larger band or 
bands (Roberts and Workman, 2004) and still these two spectra may be nearly identical. The 
descriptive statistics of the clusters indeed show that misplacements of samples have occurred in all 3 
clusters resulting in outliers present in each cluster which influenced the prediction results of the 
developed models for this stratification method. 
 
On validating the developed stratification methods 
 
The clusters defined by the different stratification methods contained enough samples to develop 
different calibration models. Some calibration models were developed with more samples than others 
(e.g. the non-clustered models were developed with twice the number of samples than the sand model, 
or the sand samples was developed with almost three times twice the number of samples than the peat 
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model), which could have an effect on the prediction ability of the model as  prediction model 
parameters are estimated more accurately when more samples are used (Roberts and Workman, 2004). 
Gomez et al. (2008) also stated  that SOM prediction models seem to be sensitive to the number of soil 
samples. In my research differences between the predictions of the created models can also be 
attributed to the number of calibration samples that were used to develop the developed prediction 
models. 
 
For good predictions, the clusters should have a wide range in composition (Murray and Cowe in 
(Roberts and Workman, 2004). Bartholomeus et al. (2008) also agree with this as they state that a 
large variance is required for the calibration of the prediction model otherwise extrapolation beyond 
the range in the training data set results in large errors. But they also state that  a greater variability in 
the training phase of a statistical model may lead to an improved robustness of the model. Gomez et 
al. (2008) also mentioned excellent cross validations when the soil sample set is more comprehensive. 
Besides a wide range in composition the samples should be typical to those to be analysed (Roberts 
and Workman, 2004) which means that validation samples should be similar to calibration samples 
(Brown et al., 2005). The large data set that was used in my research indeed covered a large range of 
the soil properties. The created clusters also had a wide range in composition, but in fact this is 
contradictory to the purpose of stratification, as stratification is meant to create homogeneous 
populations. In fact, the non-clustered sets covered the widest range in composition and given the fact 
that the non-clustered were developed with the largest training sets it is not surprising that the 
clustered models not always performed better than the non-clustered models. The purpose of 
stratification was to overcome non-linearities, but this was partly achieved because they were still very 
variable but not as variable as the non-clustered data sets. Due to the non-linear behaviour under- or 
over estimations of soil properties, especially with higher contents were observed.  
 
About the variability of data sets there are different conceptions. Bartholomeus et al. (2008) worked 
with data with a large variability (0.06 -  45.1% SOM); the SOM content of the data in my research 
ranges from 0.24 to 95.80%, which I consider definitely as highly variable, while Gomez et al. (2008) 
already speak of a wide range or high variability when the samples have an SOM content between 
0.002 and 5.1%. These conceptions can be related to differences in site locations and different 
geographic regions where this type of research is conducted. 
Gomez et al. (2008) assumed that a high variability of the soil data set and a high number of soil data 
could be a factor of improvement of the prediction accuracy, while in my research I assumed that by 
bracketing the data set into cluster prediction accuracy could be improved. The assumption of Gomez 
et al. (2008) also contradicts the assumption of Cécillion et al. (2009) who attribute poor prediction 
results to the heterogeneity of the samples. 
 
The clusters created based on wave-length based discriminant analysis were the only clusters which 
did not cover a wide range in composition. The range of these cluster was set by predefined ranges. 
The clusters that were created were more homogenous than all clusters formed by the other 
stratification methods. Especially the two clusters with the lower SOM content (A, <5% and B, 5-
10%) were the most homogenous given the small range that was defined for this cluster. Still, the 
prediction results based on these homogenous clusters was not satisfying as the RMSE’s of the 
predictions was larger than the range of the clusters. 
 
Negative predictions have been observed in this research. Negative predictions have also been 
encountered in other research but the occurrence of these predictions was not discussed and also not 
how was dealt with this. A possible explanation for this is given by Gomez et al. (2008) who observed 
that when the SOM dropped below 1% reflectance spectra are not able to predict the SOM content. 
The results in my research did not only show negative predictions for SOM, but also for N-total. These 
negative predictions occurred for N-total contents smaller than 2.11 g/kg or SOM contents smaller 
than 7.05%. Apparently small contents of the soil properties were indeed difficult to predict in this 
research.  



 49 

Outliers could also have had an effect on the predictions. Outliers have been left in the data as was the 
purpose to also test the model how to deal with outliers. Outliers influence the linear regression 
because the regression line is forced through the outliers. 
 
Causes of poor prediction results could be the heterogeneity of sample sets (optimal calibration 
requires limited but sufficient set heterogeneity) (Cécillon et al., 2009), even though each cluster was 
assumed to be more or less homogeneous given the fact that each cluster was created by aggregating 
different soil types or land use classes, the clusters could indeed still be quite heterogeneous. Another 
cause could be the number of calibration samples that were used for some clusters, e.g. sand models 
were developed with many calibration samples while the zavel, peat and agricultural models were 
developed with much smaller training sets. But as there was no consistent relation observed between 
the number of samples that were used to calibrate models and the predictions results of the models, it 
cannot be confirmed that the number of calibration samples was a true cause for the poor prediction 
results. 
 
 
SOM 
 
Zornoza et al. (2008) obtained very good results for prediction SOM in 393 samples: R2 = 0.98, 
RMSE = 6.25% and RPD = 5.75. This was achieved with 1st derivative and multiplicative scattering 
applied as pre-processing methods. The soil samples had a wide range of soil characteristics, land use 
and vegetation and specific climatic conditions in Spain. Gomez et al. (2008) also used PLSR on soils 
which had a maximum SOM content of 5.10%. For the prediction of 146 samples they found R2 = 
0.71 – 0.73, RMSE = 0.52 – 0.53, and RPD 1.87 – 1.92, obtained for models with 6 and 7 factors. 
Although they state that their samples were highly variable as the range of SOM content was from 
0.002 – 5.1%, their data is still not as variable as the data used in my research:, e.g. the range of SOM 
content in my research was from 0.24 – 95.80%. 
 
Bartholomeus et al. (2008) also found for SOM prediction R2 of 0.80 – 0.81 but these predictions were 
based on linear relations with SOC1/4 content for 40 samples. The range of these samples was from 
0.06 – 45.1%. Viscarra Rossel et al. (2006) found for testing 118 samples with a 6-factor model an R2 
of 0.72 and a RMSE of 0.15 but the range of these soils was very small (0.81 – 1.98%) with a mean of 
1.34%. which is compared to my samples very homogenous. Summers et al. (2009) predictions for 
228 samples with a 10-factor model produced a R2 of 0.57, RMSE = 0.35% and RPD = 1.80. The 
mean SOM content was 1.5%, and the range was from 0.31 – 2.90% SOM. The most accurate 
predictions in my research for SOM were achieved with the zavel and clay model (RMSEzavel = 2.89%, 
RMSEclay = 3.59%), but R2 = 0.81 of SOM predictions with the clay model was higher than the R2 = 
0.31 of SOM predictions with the zavel model. Given the smaller number of samples in these clusters, 
these predictions are acceptable, but calibrating the models with more samples is needed to improve 
the predictions. 
 
N-total 
Zornoza et al. (2008) found high predictions for N-total with 383 samples giving a R2 of 0.95, RMSE 
= 0.41 and RPD = 4.69 without applying any pre-processing method. Cobo et al. (2010) found for 
soils in Zimbabwe and for 165 soils, using PLSR with 1st derivative and Vector Normalization as pre-
processing methods, R2 = 0.96, RMSE = 0.02 and RPD = 5.2, which are excellent prediction results. 
Best predictions accuracy in my research was achieved with the sand model, having a RMSE of 0.87 
g/kg and R2= 0.67. 
  
pH 
Zornoza et al. (2008) found for pH predictions for 393 soils, only applying Multiplicative Scattering 
correction, R2 = 0.72, RMSE = 0.14 and RPD = 1.90. Cobo et al. (2010) predicted for 165 soils using 
PLSR with 1st derivative and straight line subtraction (SLS) acceptable results as R2 = 0.86, RMSE = 
0.24 and RPD = 3.1. Viscarra Rossel et al. (2006) predicted pH for 118 soils with a 14-model factor 
and found RMSE of 0.14 and R2 of 0.73. In my research the best prediction accuracy was achieved 
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with a 17-factor zavel model, giving a RMSE of 0.46 pH units but with a R2 = 0.23 this model was not 
a good model. A good model was the 9-factor agricultural model which produced a RMSE of 0.53 and 
a R2 of 0.84. 
 
 
Relevance of findings 
 
The number of samples per cluster was different for the clusters that were created. If more samples 
were available for the clusters larger calibration sets could be created. Still the results look promising 
because better prediction accuracies were achieved after stratification was applied. Unfortunately, not 
all models that were built with stratified data sets resulted in better prediction accuracies. This shows 
that clustering indeed can improve the predictions. The cause for inconsistencies still have to be find 
out. The current library should be extended with more samples, especially with samples from soil 
types and land use types that were underrepresented in this study (e.g. peat, zavel and clay soils, and 
agricultural land should be expanded with more samples) and possibly with other geographical regions 
or soil types of The Netherlands which were not represented in this study (e.g. loam soils were 
excluded in this study because there were too few loam samples). Furthermore, a decision tree has 
been created which allows to select a model to predict a soil property of interest (SOM, Nt or pH) with 
a beforehand indicated accuracy. Models with high accuracies need to be improved by using more 
training samples to improve the model predictions. Calibration of the models in this research were 
done without any pre-processing. This leaves different possibilities open to improve the developed 
prediction models. 
The WBDA-method needs to be revised again because this method seems also promising especially in 
cases when only spectra are available. Due to the misplacement of spectra in wrong classes the 
potential of this method is reduced. Methods on how to reduce or eliminate the misplacements of 
spectra need to be find out and tested.  
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4. Conclusions 
 
In this research 3 stratification methods were developed and tested. Two external data sources were 
used to develop a Lithological and a Land Use stratification method, and one method was based on the 
similarity of the soil spectra: the Wave-length Based Discriminant Analysis. The expectation was that 
the prediction models would perform better than non-clustered models  if suitable clusters  and ranges 
were selected. Contrary to what I expected the clustering methods did not improve the prediction 
results for all 3 tested soil properties, at least not for all clusters. 
 
Stratification, based on external data sources can improve the estimations of soil properties from 
VNIR spectra: 
For the prediction of SOM this was achieved with the clay, peat and zavel model but also when SOM 
content was predicted in agricultural, forest and nature samples with the non-clustered land use model. 
For the prediction of Nt this was achieved with the peat, agricultural and nature model, and when Nt 
content in clay, zavel,  and forest samples was predicted with the non-clustered Soil Type or Land Use 
model. 
For the prediction of pH this was achieved with the peat model and when pH was predicted in clay, 
sand, agricultural, forest and nature samples with the non-clustered Soil Type or Land Use model. 
 
Stratification, based on spectral data only can improve the estimations of soil properties from VNIR 
spectra. This was partly proven for one of the three models which were developed with this method: 
model C (>10%) produced more accurate predictions than the non-clustered model. But care should be 
taken when this model is used because this stratification method must be improved further to reduce or 
avoid wrong placements of spectra in the validation sets. 
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I. Glossary 
 
Accuracy = the closeness to the actual results of values predicted on future unknown samples by a 
calibration. 
 
Aeolean = related to the activity of the wind, causing local geogenesis, viz. locally formed deposits 
 
Artificial Neural  Networks = include many nonlinear technique inspired by the neural connections of 
the human brain. The feed forward network technique is especially useful in developing quantitative 
models. Many inputs, initially spectral measurements, are multiplied by weights and summed in a 
neural network “node’. 
 
Eolian = see aeolean 
 
Fluviatile  = deposited by river systems 
 
Kurtosis = Kurtosis is a measure of whether the data are peaked or flat relative to a normal 
distribution. That is, data sets with high kurtosis tend to have a distinct peak near the mean, decline 
rather rapidly, and have heavy tails. Data sets with low kurtosis tend to have a flat top near the mean 
rather than a sharp peak. A uniform distribution would be the extreme case (from: Engineering 
Statistics handbook: NIST/SEMATECH e-Handbook of Statistical Methods, 
http://www.itl.nist.gov/div898/handbook/, 24 May 2011). 
 
Leave-one-out method = one sample is systematically left out from each cycle of the regression until 
all the samples have been excluded once. 
 
Levene’s and student t-test: 
If comparison between the mean values of the calibration and validation set do not show a significant 
difference between them (according to the student’s t-test at a 0.05 significance level), this similarity 
between the calibration and validation set is indicative that the randomly separated validation samples 
appropriately represents the population under study. 
 
Lithogenesis = soil formation. 
 
Precision = the degree of reproducibility of the result. 
 
RPD = residual prediction deviation = ratio of performance to deviation = standard error of 
performance / standard deviation of the reference data = standard deviation/RMSEP or standard 
deviation/RMSECV 
 
Robustness: here refers to the characteristic of a calibration where it can be transferred to other 
instrument without loss of performance (Roberts and Workman, 2004). 
 
Skewness = The skewness for a normal distribution is zero, and any symmetric data should have a 
skewness near zero. Negative values for the skewness indicate data that are skewed left and positive 
values for the skewness indicate data that are skewed right. By skewed left, we mean that the left tail is 
long relative to the right tail. Similarly, skewed right means that the right tail is long relative to the left 
tail (from: Engineering Statistics handbook: NIST/SEMATECH e-Handbook of Statistical 
Methods, http://www.itl.nist.gov/div898/handbook/, 24 May 2011). 
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II. Descriptive statistics 
 
Results of relevant descriptive statistics of the different non-clustered and clustered sets and their corresponding calibration and validation sets can be found in 
table 25 - 31. Tables are displayed per soil type (SOM, Nt, pH) and per type of stratification method applied. 
 
SOM 
 
Table 25 Descriptive statistics for SOM clusters based on Soil Type (ST). 
  ST ST_Cal ST_Val clay clay_cal clay_val peat peat_cal peat_val zavel zavel_cal zavel_val sand sand_cal sand_val 
Observations 402 269 133 51 34 17 56 38 18 76 51 25 219 146 73 
Mean 11.96 11.96 11.96 10.91 10.71 11.32 29.98 30.34 29.23 8.21 8.20 8.25 8.89 8.78 9.12 
Median 7.63 7.59 7.66 8.76 8.70 8.99 24.85 24.85 25.20 7.73 7.73 7.73 6.21 6.18 6.24 
Variance 204.20 211.82 190.28 45.43 47.50 43.75 567.28 605.78 515.98 12.17 12.68 11.63 119.84 117.66 125.81 
Std. Dev. 14.29 14.55 13.79 6.74 6.89 6.61 23.82 24.61 22.72 3.49 3.56 3.41 10.95 10.85 11.22 
Minimum 0.34 0.34 0.59 1.61 1.61 2.81 2.60 2.60 4.88 3.28 3.28 3.72 0.34 0.34 0.59 
Maximum 95.80 95.80 92.00 36.50 36.50 30.20 95.80 95.80 92.00 20.10 20.10 17.80 72.40 72.40 61.00 
Range 95.46 95.46 91.41 34.89 34.89 27.39 93.20 93.20 87.12 16.82 16.82 14.08 72.06 72.06 60.41 
Skewness 3.14 3.20 3.02 1.99 2.18 1.77 1.34 1.33 1.47 1.11 1.16 1.06 3.22 3.38 3.01 
Kurtosis 11.82 12.20 11.26 4.57 5.84 3.40 1.36 1.28 2.43 1.36 1.64 1.17 12.02 13.66 9.91 

 
Table 26 Descriptive statistics for SOM clusters based on Land Use (LU). 
  LU LU_cal LU_val agric agric_cal agric_val forest forest_cal forest_val nature nature_cal nature_val 
Observations 396 265 131 60 40 20 152 102 50 184 123 61 
Mean 12.39 12.46 12.23 12.19 12.13 12.31 9.72 10.01 9.14 14.65 14.61 14.74 
Median 7.75 7.73 7.79 8.67 8.59 8.92 7.24 7.24 7.23 7.92 7.84 8.00 
Variance 215.85 227.44 193.94 100.02 110.84 83.06 138.20 167.34 80.45 308.54 308.47 313.81 
Std. Dev. 14.69 15.08 13.93 10.00 10.53 9.11 11.76 12.94 8.97 17.57 17.56 17.71 
Minimum 0.34 0.34 0.59 0.84 0.84 3.04 0.97 0.97 1.11 0.34 0.34 0.59 
Maximum 95.80 95.80 92.00 61.00 61.00 40.50 94.70 94.70 52.70 95.80 95.80 92.00 
Range 95.46 95.46 91.41 60.16 60.16 37.46 93.73 93.73 51.59 95.46 95.46 91.41 
Skewness 2.98 3.00 2.91 2.75 3.02 2.06 4.45 4.47 3.31 2.30 2.30 2.36 
Kurtosis 10.53 10.56 10.64 9.67 11.61 4.38 24.32 23.41 12.61 5.93 5.96 6.49 

Cal = calibration set; val = validation set. 
 
 
 



 61

Table 27 Descriptive statistics for SOM clusters based on Wave-length Based Discriminant Analysis. 
whole 
set val cal 

Cat A 
whole set Cat A cal Cat A Val 

Cat B 
whole set Cat B Cal 

Cat B 
Val 

Cat C 
whole set Cat C Cal Cat C Val 

Observations 575 384 191 216 133 83 233 137 96 126 114 12 
Mean 11.37 11.43 11.26 3.92 2.90 5.57 10.15 7.36 14.12 26.40 26.26 27.78 
Median 6.99 6.97 6.99 3.48 3.21 4.18 7.73 7.23 8.68 20.00 19.40 22.60 
Variance 199.74 204.59 191.01 21.49 1.97 48.72 113.42 1.80 247.25 343.32 361.35 187.06 
Std. Dev. 14.13 14.30 13.82 4.64 1.40 6.98 10.65 1.34 15.72 18.53 19.01 13.68 
Minimum 0.24 0.24 0.29 0.24 0.24 0.29 2.30 5.04 2.30 10.20 10.20 14.30 
Maximum 95.80 95.80 92.00 52.70 5.00 52.70 92.00 10.00 92.00 95.80 95.80 61.80 
Range 95.56 95.56 91.71 52.46 4.76 52.41 89.70 4.96 89.70 85.60 85.60 47.50 
Skewness 3.08 3.10 3.06 6.77 -0.33 4.58 4.92 0.20 3.00 1.78 1.79 1.52 
Kurtosis 11.19 11.32 11.19 62.01 -1.17 26.69 27.94 -0.91 9.85 3.04 2.99 2.50 

Cat A:SOM content < 5%; Cat B: 5%< SOM content < 10%; Cat C: SOM content > 10%. 
Cal = calibration set; val = validation set. 
 
N-total 
 
Table 28 Descriptive statistics for N-total clusters based on Soil Type. 
  ST ST_Cal ST_Val clay clay_cal clay_val peat peat_cal peat_val zavel zavel_cal zavel_val sand sand_cal sand_val 
Observations 402 269 133 51 34 17 56 38 18 76 51 25 219 146 73 
Mean 3.42 3.39 3.47 3.84 3.77 4.00 8.30 8.34 8.22 3.04 3.03 3.06 2.20 2.15 2.32 
Median 2.27 2.25 2.30 2.99 2.98 3.17 8.38 8.38 8.26 2.79 2.75 2.82 1.43 1.43 1.43 
Variance 13.75 13.83 13.70 6.15 6.39 6.00 29.17 31.38 26.08 2.13 2.27 1.92 8.10 7.26 9.89 
Std. Dev. 3.71 3.72 3.70 2.48 2.53 2.45 5.40 5.60 5.11 1.46 1.51 1.39 2.85 2.69 3.14 
Minimum 0.16 0.16 0.20 0.51 0.51 1.23 0.47 0.47 1.22 1.03 1.03 1.31 0.16 0.16 0.20 
Maximum 25.40 25.40 21.20 13.00 13.00 11.00 25.40 25.40 21.20 9.36 9.36 7.40 20.20 20.20 19.80 
Range 25.24 25.24 21.00 12.49 12.49 9.77 24.93 24.93 19.98 8.33 8.33 6.09 20.04 20.04 19.60 
Skewness 2.53 2.61 2.40 1.93 2.09 1.79 0.88 0.95 0.74 1.74 1.90 1.40 3.81 3.87 3.72 
Kurtosis 7.93 8.68 6.71 4.17 5.30 3.34 1.20 1.45 0.93 4.72 5.72 2.81 17.73 19.14 16.17 

Cal = calibration set; val = validation set. 
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Table 29 Descriptive statistics for Nt clusters based on Land Use. 
  LU LU_cal LU_val agric agric_cal agric_val forest forest_cal forest_val nature nature_cal nature_val 
Observations 396 265 131 60 40 20 152 102 50 184 123 61 
Mean 3.50 3.51 3.47 3.79 3.72 3.93 2.73 2.80 2.58 4.04 4.04 4.06 
Median 2.26 2.25 2.29 2.84 2.82 2.85 1.96 1.96 1.96 2.16 2.15 2.17 
Variance 14.59 15.34 13.18 8.30 8.61 8.06 10.55 12.51 6.69 19.29 19.37 19.46 
Std. Dev. 3.82 3.92 3.63 2.88 2.93 2.84 3.25 3.54 2.59 4.39 4.40 4.41 
Minimum 0.16 0.16 0.20 0.26 0.26 0.71 0.24 0.24 0.28 0.16 0.16 0.20 
Maximum 25.40 25.40 20.40 16.00 16.00 11.30 25.40 25.40 14.70 21.20 21.20 20.40 
Range 25.24 25.24 20.20 15.74 15.74 10.59 25.16 25.16 14.42 21.04 21.04 20.20 
Skewness 2.38 2.49 2.11 2.15 2.44 1.67 4.19 4.26 3.17 1.65 1.66 1.68 
Kurtosis 6.72 7.44 4.81 5.50 7.56 2.25 21.83 21.71 11.53 2.54 2.61 2.71 

Cal = calibration set; val = validation set. 
 
pH 
 
Table 30 Descriptive statistics for pH clusters based on Soil Type. 
  ST ST_Cal ST_Val clay clay_cal clay_val peat peat_cal peat_val zavel zavel_cal zavel_val sand sand_cal sand_val 
Observations 402 269 133 51 34 17 56 38 18 76 51 25 219 146 73 
Mean 6.17 6.16 6.20 7.68 7.64 7.75 5.31 5.31 5.32 7.93 7.92 7.96 5.43 5.42 5.45 
Median 5.70 5.70 5.72 8.14 8.14 8.14 5.42 5.42 5.42 8.06 8.06 8.06 4.88 4.87 4.89 
Variance 2.85 2.86 2.87 1.11 1.23 0.93 0.56 0.63 0.44 0.26 0.28 0.21 2.41 2.39 2.48 
Std. Dev. 1.69 1.69 1.69 1.06 1.11 0.96 0.75 0.80 0.66 0.51 0.53 0.46 1.55 1.55 1.57 
Minimum 3.62 3.62 3.74 4.16 4.16 4.72 3.62 3.62 4.02 6.20 6.20 6.52 3.70 3.70 3.74 
Maximum 9.11 9.11 9.10 8.66 8.66 8.46 7.63 7.63 6.74 8.51 8.51 8.50 9.11 9.11 9.10 
Range 5.49 5.49 5.36 4.50 4.50 3.74 4.01 4.01 2.72 2.31 2.31 1.98 5.41 5.41 5.36 
Skewness 0.09 0.10 0.08 -2.13 -2.08 -2.42 0.12 0.21 -0.20 -1.94 -1.93 -2.03 0.93 0.94 0.93 
Kurtosis -1.58 -1.57 -1.59 3.77 3.54 6.05 1.38 1.57 0.66 3.43 3.34 4.33 -0.45 -0.43 -0.45 

Cal = calibration set; val = validation set. 
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Table 31 Descriptive statistics for pH clusters based on Land Use. 
  LU LU_cal LU_val agric agric_cal agric_val forest forest_cal forest_val nature nature_cal nature_val 
Observations 396 265 131 60 40 20 152 102 50 184 123 61 
Mean 6.01 6.00 6.03 6.16 6.13 6.24 6.01 6.01 6.01 5.97 5.96 5.99 
Median 5.55 5.54 5.58 5.59 5.57 5.64 5.53 5.53 5.55 5.53 5.52 5.53 
Variance 2.66 2.68 2.65 1.60 1.65 1.59 3.60 3.63 3.62 2.25 2.26 2.26 
Std. Dev. 1.63 1.64 1.63 1.27 1.28 1.26 1.90 1.90 1.90 1.50 1.50 1.50 
Minimum 3.62 3.62 3.74 3.89 3.89 4.63 3.70 3.70 3.74 3.62 3.62 3.83 
Maximum 9.11 9.11 9.10 8.32 8.32 8.27 8.51 8.51 8.36 9.11 9.11 9.10 
Range 5.49 5.49 5.36 4.43 4.43 3.64 4.81 4.81 4.62 5.49 5.49 5.27 
Skewness 0.27 0.27 0.27 0.40 0.37 0.50 0.11 0.11 0.11 0.52 0.52 0.54 
Kurtosis -1.43 -1.43 -1.44 -1.28 -1.23 -1.49 -1.83 -1.84 -1.88 -1.00 -1.00 -0.99 

Cal = calibration set; val = validation set. 
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III. Normality tests results 
 
For the normality test the null- hypothesis to be tested was: 
H0: the data follow a normal distribution 
H1: the data do not follow a normal distribution. 
 
The results of the normality test should be interpreted as follows: 
Reject the null-hypothesis (i.e. accept H1) if p < 0.05. 
 
Table 32 Normality test for all soil clusters for SOM. 

 Kolmogorov-Smirnov(a) Shapiro-Wilk 
SOM Set Statistic df Sig. Statistic df Sig. Normal distribution 
NON-
CLUSTERED 
SOIL TYPE 

all 0.250 402 0.000 0.640 402 0.000 no 

cal 0.254 269 0.000 0.631 269 0.000 no 

val 0.247 133 0.000 0.660 133 0.000 no 
CLAY all 0.241 51 0.000 0.790 51 0.000 no 

cal 0.248 34 0.000 0.777 34 0.000 no 

val 0.249 17 0.006 0.812 17 0.003 no 
PEAT all 0.151 56 0.003 0.861 56 0.000 no 

cal 0.155 38 0.022 0.861 38 0.000 no 

val 0.146 18 0.200 0.871 18 0.018 no 
ZAVEL all 0.118 76 0.011 0.924 76 0.000 no 

cal 0.119 51 0.068 0.922 51 0.002 no 

val 0.127 25 0.200 0.929 25 0.081 yes 
SAND all 0.239 219 0.000 0.628 219 0.000 no 

cal 0.239 146 0.000 0.624 146 0.000 no 

val 0.242 73 0.000 0.635 73 0.000 no 
NON-
CLUSTERED 
LAND USE 

all 0.246 396 0.000 0.655 396 0.000 no 

cal 0.250 265 0.000 0.647 265 0.000 no 

val 0.244 131 0.000 0.676 131 0.000 no 
AGRIC all 0.238 60 0.000 0.709 60 0.000 no 

cal 0.246 40 0.000 0.680 40 0.000 no 

val 0.224 20 0.010 0.767 20 0.000 no 
FOREST all 0.300 152 0.000 0.516 152 0.000 no 

cal 0.308 102 0.000 0.494 102 0.000 no 

val 0.273 50 0.000 0.618 50 0.000 no 
NATURE all 0.208 184 0.000 0.729 184 0.000 no 

cal 0.208 123 0.000 0.730 123 0.000 no 

val 0.212 61 0.000 0.729 61 0.000 no 

  



 65 

Table 33 Normality test for all soil clusters for Nt. 
 Kolmogorov-Smirnov(a) Shapiro-Wilk 

Nt Set Statistic df Sig. Statistic df Sig. Normal distribution 
NON-
CLUSTERED 
SOIL TYPE 

all 0.219 402 0.000 0.719 402 0.000 no 

cal 0.219 269 0.000 0.714 269 0.000 no 

val 0.227 133 0.000 0.729 133 0.000 no 
CLAY all 0.208 51 0.000 0.801 51 0.000 no 

cal 0.215 34 0.000 0.792 34 0.000 no 

val 0.221 17 0.027 0.813 17 0.003 no 
PEAT all 0.074 56 0.200 0.934 56 0.004 no 

cal 0.088 38 0.200 0.930 38 0.020 no 

val 0.087 18 0.200 0.946 18 0.363 yes 
ZAVEL all 0.112 76 0.020 0.872 76 0.000 no 

cal 0.121 51 0.059 0.857 51 0.000 yes 

val 0.119 25 0.200 0.901 25 0.019 no 
SAND all 0.236 219 0.000 0.584 219 0.000 no 

cal 0.230 146 0.000 0.599 146 0.000 no 

val 0.252 73 0.000 0.570 73 0.000 no 
NON-
CLUSTERED 
LAND USE 

all 0.218 396 0.000 0.728 396 0.000 no 

cal 0.222 265 0.000 0.718 265 0.000 no 

val 0.216 131 0.000 0.752 131 0.000 no 
AGRIC all 0.203 60 0.000 0.777 60 0.000 no 

cal 0.209 40 0.000 0.757 40 0.000 no 

val 0.209 20 0.022 0.798 20 0.001 no 
FOREST all 0.289 152 0.000 0.551 152 0.000 no 

cal 0.299 102 0.000 0.528 102 0.000 no 

val 0.258 50 0.000 0.639 50 0.000 no 
NATURE all 0.188 184 0.000 0.798 184 0.000 no 

cal 0.189 123 0.000 0.798 123 0.000 no 

val 0.191 61 0.000 0.800 61 0.000 no 
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Table 34 Normality test for all soil clusters for pH. 
 Kolmogorov-Smirnov(a) Shapiro-Wilk 

pH Set Statistic df Sig. Statistic df Sig. Normal distribution 
NON-
CLUSTERED 
SOIL TYPE 

all 0.158 402 0.000 0.884 402 0.000 no 

cal 0.159 269 0.000 0.884 269 0.000 no 

val 0.163 133 0.000 0.883 133 0.000 no 
CLAY all 0.252 51 0.000 0.676 51 0.000 no 

cal 0.255 34 0.000 0.682 34 0.000 no 

val 0.266 17 0.002 0.674 17 0.000 no 
PEAT all 0.113 56 0.074 0.950 56 0.021 no 

cal 0.128 38 0.121 0.943 38 0.052 yes 

val 0.126 18 0.200 0.964 18 0.684 yes 
ZAVEL all 0.230 76 0.000 0.765 76 0.000 no 

cal 0.240 51 0.000 0.763 51 0.000 no 

val 0.228 25 0.002 0.781 25 0.000 no 
SAND all 0.148 219 0.000 0.852 219 0.000 no 

cal 0.149 146 0.000 0.851 146 0.000 no 

val 0.151 73 0.000 0.853 73 0.000 no 
NON-
CLUSTERED 
LAND USE 

all 0.140 396 0.000 0.895 396 0.000 no 

cal 0.137 265 0.000 0.895 265 0.000 no 

val 0.146 131 0.000 0.894 131 0.000 no 
AGRIC all 0.213 60 0.000 0.880 60 0.000 no 

cal 0.205 40 0.000 0.889 40 0.001 no 

val 0.237 20 0.005 0.855 20 0.006 no 
FOREST all 0.208 152 0.000 0.788 152 0.000 no 

cal 0.211 102 0.000 0.789 102 0.000 no 

val 0.210 50 0.000 0.786 50 0.000 no 
NATURE all 0.137 184 0.000 0.916 184 0.000 no 

cal 0.138 123 0.000 0.917 123 0.000 no 

val 0.145 61 0.003 0.914 61 0.000 no 
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Table 35 Normality test for all soil clusters for SOM for Wavelength based clustering. 
  Tests of Normality 

    

Kolmogorov-Smirnov(a) Shapiro-Wilk 

Normal distribution Statistic df Sig. Statistic df Sig. 

Non-clustered 

All 0.247 575 0.000 0.637 575 0.000 no 

Cal 0.248 384 0.000 0.634 384 0.000 no 

Val 0.245 191 0.000 0.643 191 0.000 no 

Cat A (<5%) 

All 0.269 216 0.000 0.476 216 0.000 no 

Cal 0.106 133 0.001 0.935 133 0.000 no 

Val 0.260 83 0.000 0.552 83 0.000 no 

Cat B (5-10%) 

All 0.353 233 0.000 0.430 233 0.000 no 

Cal 0.057 137 0.200 0.969 137 0.003 no 

Val 0.276 96 0.000 0.611 96 0.000 no 

Cat C (>10%) 

All 0.191 126 0.000 0.788 126 0.000 no 

Cal 0.199 114 0.000 0.778 114 0.000 no 

Val 0.203 12 0.184 0.853 12 0.040 no 
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IV. Levene’s test and student’s t test results 
 
For the Levene’s test of equal variance the null- hypothesis to be tested was: 
H0: both data sets have equal variances 
H1: both data sets do not have equal variances 
 
The results of the Levene’s test of equal variances should be interpreted as follows: 
Reject the null-hypothesis (i.e. accept H1) if p < 0.05. 
 
For the student t-test the null- hypothesis to be tested was: 
H0: the validation and calibration set represent the population under study (i.e. they are both 
representative). 
H1: the validation and calibration set do not represent the population under study (i.e. they are not 
representative). 
 
The results of the student t-test should be interpreted as follows:  
Reject the null-hypothesis (i.e. accept H1) if p < 0.05. 
 
Table 36 Levene’s and student t-test results for soil clusters for N-total. 

NT   

Levene's t-test Repres- 

F Sig. t df Sig. (2-tailed) entative? 

Non-clustered Equal variances assumed 0.014 0.906 -0.191 400 0.849 yes 

Soil type Equal variances not assumed     -0.191 264.215 0.849   

Clay Equal variances assumed 0.009 0.925 -0.310 49 0.758 yes 

  Equal variances not assumed     -0.314 33.022 0.756   

Peat Equal variances assumed 0.125 0.725 0.081 54 0.935 yes 

  Equal variances not assumed     0.084 36.457 0.933   

Zavel Equal variances assumed 0.029 0.865 -0.075 74 0.940 yes 

  Equal variances not assumed     -0.077 51.540 0.939   

Sand Equal variances assumed 0.404 0.526 -0.417 217 0.677 yes 

  Equal variances not assumed     -0.396 126.107 0.692   

Non-clustered Equal variances assumed 0.111 0.739 0.099 394 0.921 yes 

Land Use Equal variances not assumed     0.101 277.412 0.919   

Agricultural Equal variances assumed 0.038 0.847 -0.263 58 0.793 yes 

land Equal variances not assumed     -0.266 39.271 0.791   

Forest Equal variances assumed 0.457 0.500 0.398 150 0.691 yes 

  Equal variances not assumed     0.442 127.907 0.659   

Nature Equal variances assumed 0.001 0.980 -0.030 182 0.976 yes 

  Equal variances not assumed     -0.030 119.542 0.976   
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Table 37 Levene’s and student t-test results for soil clusters for SOM. 
SOM   Levene's t-test Repres- 

    F Sig. t df Sig. (2-tailed) entative? 

Non-clustered Equal variances assumed 0.031 0.861 0.001 400 0.999 yes 

Soil Type Equal variances not assumed     0.001 276.093 0.999   

Clay  Equal variances assumed 0.013 0.909 -0.300 49 0.765 yes 

  Equal variances not assumed     -0.305 33.324 0.763   

Peat Equal variances assumed 0.151 0.699 0.162 54 0.872 yes 

  Equal variances not assumed     0.167 36.044 0.868   

Zavel Equal variances assumed 0.032 0.858 -0.059 74 0.953 yes 

  Equal variances not assumed     -0.060 49.699 0.952   

Sand Equal variances assumed 0.084 0.772 -0.215 217 0.830 yes 

  Equal variances not assumed     -0.213 139.890 0.832   

Non-clustered Equal variances assumed 0.179 0.673 0.146 394 0.884 yes 

Land Use Equal variances not assumed     0.150 278.359 0.881   

Agricultural Equal variances assumed 0.017 0.897 -0.065 58 0.948 yes 

land Equal variances not assumed     -0.069 43.400 0.946   

Forest Equal variances assumed 0.623 0.431 0.424 150 0.672 yes 

  Equal variances not assumed     0.479 132.855 0.633   

Nature Equal variances assumed 0.000 0.996 -0.049 182 0.961 yes 

  Equal variances not assumed     -0.048 118.866 0.961   

Non-clustered Equal variances assumed 0.070 0.792 0.130 573 0.897 yes 
(WBDA) Equal variances not assumed     0.131 391.277 0.896   
Cat A (<5%) Equal variances assumed 21.578 0.000 -4.281 214 0.000   
  Equal variances not assumed     -3.442 86.164 0.001 no 
Cat B (5-10%) Equal variances assumed 67.518 0.000 -5.011 231 0.000   
  Equal variances not assumed     -4.202 95.972 0.000 no 
Cat C (>10%) Equal variances assumed 1.023 0.314 -0.269 124 0.789 yes 
  Equal variances not assumed     -0.350 15.865 0.731   

** WBDA: wavelength based discriminant analysis. This non-clustered set contains all samples which were 
divided into the three clusters Cat A, Cat B and Cat C.  
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Table 38 Levene’s and student t-test results for soil clusters for pH. 

PH 
    

Levene's t-test Repres- 

F Sig. t df Sig. (2-tailed) entative? 

Non-clustered Equal variances assumed 0.005 0.946 -0.233 400 0.816 yes 

Soil Type Equal variances not assumed     -0.233 262.571 0.816   

Clay Equal variances assumed 0.322 0.573 -0.348 49 0.729 yes 

  Equal variances not assumed     -0.365 36.528 0.717   

Peat Equal variances assumed 0.306 0.582 -0.025 54 0.980 yes 

  Equal variances not assumed     -0.027 39.804 0.979   

Zavel Equal variances assumed 0.354 0.554 -0.334 74 0.739 yes 

  Equal variances not assumed     -0.350 54.074 0.727   

Sand Equal variances assumed 0.031 0.861 -0.159 217 0.874 yes 

  Equal variances not assumed     -0.158 141.977 0.875   

Non-clustered Equal variances assumed 0.007 0.933 -0.179 394 0.858 yes 

Land Use Equal variances not assumed     -0.179 260.312 0.858   

Agricultural Equal variances assumed 0.001 0.979 -0.331 58 0.742 yes 

land Equal variances not assumed     -0.333 38.723 0.741   

Forest Equal variances assumed 0.007 0.931 -0.010 150 0.992 yes 

  Equal variances not assumed     -0.010 97.471 0.992   

Nature Equal variances assumed 0.000 0.994 -0.110 182 0.912 yes 

  Equal variances not assumed     -0.110 119.721 0.912   
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V. Statistics of calibration and validation data (Lithological stratification) 
 
Table 39 Calibration and validation statistics for SOM for soil clusters. 
        Calibration statistics Validation statistics 
SOM N cal N val # factors R2 RMSE RPD R2 RMSE RPD 

Non-clustered Soil Type 296 133 12 0.559 9.675 1.50 0.63 8.412 1.64 

Clay (1) 34 17 4 0.584 4.418 1.56 0.81 3.587 1.84 

Peat (2) 38 18 9 0.842 9.706 2.54 0.82 9.989 2.27 

Zavel (3) 51 25 3 0.350 2.859 1.25 0.31 2.889 1.18 

Sand (4) 146 73 7 0.302 9.042 1.20 0.48 8.235 1.36 

 
Table 40 Calibration and validation statistics for Nt for soil clusters. 
        Calibration statistics Validation statistics 
N-total N cal N val # factors R2 RMSE RPD R2 RMSE RPD 

Non-clustered Soil Type 269 133 15 0.67 2.143 1.74 0.70 2.047 1.81 

Clay (1) 34 17 4 0.593 1.599 1.58 0.76 1.234 1.99 

Peat (2) 38 18 8 0.409 4.329 1.29 0.63 3.028 1.69 

Zavel (3) 51 25 3 0.040 1.497 1.01 0.29 1.148 1.21 

Sand (4) 146 73 7 0.601 1.706 1.58 0.67 0.868 1.68 

 
Table 41 Calibration and validation statistics for pH for soil clusters. 
        Calibration statistics Validation statistics 
pH N cal N val # factors R2 RMSE RPD R2 RMSE RPD 

Non-clustered Soil Type 269 133 16 0.869 0.618 2.74 0.86 0.684 2.48 

Clay (1) 34 17 5 0.390 0.911 1.22 0.67 0.594 1.62 

Peat (2) 38 18 6 0.119 0.951 0.84 0.44 0.535 1.23 

Zavel (3) 51 25 17 0.557 0.357 1.48 0.23 0.464 1.00 

Sand (4) 146 73 12 0.818 0.669 2.31 0.78 0.782 2.01 
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VI. Statistics of calibration and validation data (Land Use stratification) 
 
Table 42 Calibration and validation statistics for SOM for land use clusters. 
        Calibration statistics Validation statistics 
SOM N cal N val # factors R2 RMSE RPD R2 RMSE RPD 

Non-clustered Land Use 265 131 17 0.778 7.090 2.13 0.81 6.214 2.24 

Agricultural 40 20 7 0.664 6.048 1.74 0.59 8.500 1.07 

Forest 102 50 7 0.566 8.530 1.52 0.82 4.337 2.07 

Nature 123 61 16 0.823 7.363 2.39 0.82 7.554 2.35 

 
Table 43 Calibration and validation statistics for Nt for land use clusters. 
        Calibration statistics Validation statistics 
Ntotal N cal N val # factors R2 RMSE RPD R2 RMSE RPD 

Non-clustered Land Use 265 131 9 0.647 2.325 1.68 0.70 2.020 1.80 

Agricultural 40 20 10 0.552 1.965 1.49 0.69 1.670 1.70 

Forest 102 50 7 0.333 2.912 1.21 0.90 1.261 2.05 

Nature 123 61 15 0.783 2.047 2.15 0.65 2.834 1.56 

 
Table 44 Calibration and validation statistics for pH for land use clusters. 
        Calibration statistics Validation statistics 
pH  N cal N val # factors R2 RMSE RPD R2 RMSE RPD 

Non-clustered Land Use 265 131 14 0.846 0.650 2.52 0.85 0.645 2.52 
Agricultural 40 20 9 0.752 0.668 1.92 0.84 0.531 2.37 
Forest 102 50 12 0.838 0.792 2.40 0.91 0.605 3.15 
Nature 123 61 14 0.812 0.665 2.26 0.78 0.784 1.92 
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VII. Statistics of calibration and validation data (based on spectral data stratification) 
 
Table 45 Calibration and validation statistics for SOM for WBDA-clusters. 
SOM       Calibration statistics Validation statistics 

  n.cal n.val # factors R2 RMSE RPD R2 RMSE RPD 
Non-clustered data 384 191 13 0.762 6.979 2.05 0.788 6.581 2.10 

A: <5% 133 83 9 0.796 0.635 2.21 0.567 6.090 1.15 

B: 5-10% 137 96 8 0.259 1.186 1.13 0.13 16.701 0.94 

C: >10% 114 12 8 0.692 10.516 1.81 0.791 6.885 1.99 

 Combined 384 191   - 0.836 5.7855 2.47  0.249 12.620 1.095 

                    

Group I*: < 5% 132 66 9 00.791 0.640 2.19 0.776 0.700 1.99 

Group II*: 5-10% 137 68 8 0.239 1.197 1.12 0.247 1.176 1.13 

Group III*: 10-20% 59 30 3 0.023 2.687 0.95 0.061 2.645 1.01 

Group IV*: 20-40% 38 18 2 0.046 5.959 1.03 0.042 5.836 1.03 

Group V*: > 40% 18 9 2 0.229 14.768 1.13 0.427 13.736 1.21 

Combined 384 191 - 0.924 3.94 3.63 0.931 3.72 3.71 
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