
Centre for Geo-Information

 Thesis Report GIRS-2010-13

PEDESTRIAN ROUTE PLANNING IN A HYBRID
DATA ENVIRONMENT

Calculating optimal routes based on vector and raster data

Ing. J.H. Bakermans

M
ay

 2
01

0

II

III

PEDESTRIAN ROUTE PLANNING IN A HYBRID

DATA ENVIRONMENT

Calculating optimal routes based on vector and raster data

Ing. J.H. Bakermans

Registration number 84 10 28 026 020

Supervisors:

Dr. ir. S. De Bruin

Dr. ir. G.B.M. Heuvelink

A thesis submitted in partial fulfillment of the degree of Master of Science

at Wageningen University and Research Centre,

The Netherlands.

May 2010

Wageningen, The Netherlands

Thesis code number: GRS-80439

Thesis Report: GIRS-2010-13

Wageningen University and Research Centre

Laboratory of Geo-Information Science and Remote Sensing

IV

V

Preamble
This thesis is the result of a long but inspiring journey through the fields of navigation,

ArcGIS and Python. Even though moments of (t)error took turns with ‘Eureka!’, using the

Python programming language was a pleasant experience. Also the various obstacles I

encountered were interesting challenges that taught me a lot.

Of course while doing your thesis you are surrounded by inspiring people. First of all I would

like to thank my supervisors Sytze and Gerard for their outstanding support during this thesis.

They really complete each other both with respect to the content as for their criticism.

Also many thanks to my fellow thesis students that provided a great working ambiance. They

pulled me through hard times and reminded me that I was not the only stressed student. I

could not have done this without you!

Jan Bakermans

VI

VII

Table of content

Preamble ...V

Summary ...8

1 Introduction ..9

1.1 Background ..9
1.2 Problem definition ...10
1.3 Research objective and research questions...11
1.4 Report structure...11
1.5 Research delineation..12

2 Methodology... 13

2.1 Process overview..13
2.2 Deriving free walkable space ...14
2.3 Assigning network costs and benefits ..15
2.4 Creating internal paths...16

2.4.1 Calculating paths ..16
2.4.2 Solving raster issues..17

2.5 Deriving the network dataset...17
2.6 Dijkstra’s shortest path algorithm..18

3 Implementation... 19

3.1 Deriving free walkable space ...19
3.2 Assigning network costs and benefits ..21
3.3 Creating internal paths...21

3.3.1 Source and destination points ..21
3.3.2 Raster paths..23
3.3.3 Internal paths..26

3.4 Deriving the network dataset...27
3.4.1 Pedestrian infrastructure ..27
3.4.2 Network dataset ...27

3.5 Dijkstra’s shortest path algorithm..28

4 Case study ‘s-Hertogenbosch... 29

4.1 Introduction ...29
4.2 Data preparation ..29

4.2.1 Datasets..29
4.2.2 Preprocessing..30
4.2.3 Workflow ..30

4.3 User interaction..30
4.3.1 Expert knowledge ...30
4.3.2 Scenarios...31

4.4 Results ..32
4.4.1 Process ..32
4.4.2 Routes ...33

5 Discussion.. 34

5.1 Method...34
5.2 Implementation..35
5.3 Case study ..36

6 Conclusion ... 37

7 References... 38

Annex A: Detailed process overview .. 39

Annex B: Python script ... 40

8

Summary

Navigation is a common daily activity for human beings and people use a wide range of tools

to make it easier. Following car drivers pedestrians have found their way to route planning,

however a suitable dataset is not yet provided. Due to their origin in car navigation current

pedestrian navigation datasets do not include free walkable space. This is open space that

can be freely accessed by fit pedestrians e.g. squares, parks or parking lots. This drawback

leads to the idea for this research.

It presents an approach that uses a hybrid data environment with both vector and raster

data to calculate an optimal path as part of pedestrian route planning. Hence, the research

objective is to calculate the optimal route for pedestrians in an urban environment based on

a hybrid dataset that contains vector network data to represent corridor-like paths and

raster data to represent free walkable space.

To reach the objective a method is provided on a conceptual level. First the free walkable

space is to be derived from the topographical map. Next, the free walkable space has to be

divided by a user into subspaces with equal accessibility values. The resulting weighted free

walkable space together with a road dataset can then be used to calculate paths passing

through the free walkable space. In this process a set of fixed paths is also created.

Subsequently, the fixed paths and the internal paths are joined into one pedestrian

infrastructure dataset. The latter is used to create a network dataset on which Dijkstra’s

algorithm can be applied to find the shortest path (Dijkstra, 1959).

Implementation of the method takes place by using ESRI’s ArcGIS Desktop software and the

Python programming language. Furthermore some user actions are required for editing and

adding expert knowledge. Finally this implementation was applied on a case study in the city

center of ‘s-Hertogenbosch (NL) and to test resulting network dataset, three

source/destination scenarios were assessed.

Overall the method implemented on a case study provides satisfying results as it returns

plausible pedestrian routes that are slightly better than conventional methods. Main

shortcomings involve parameters to fine tune the implementation: even a minor change can

have major effect on the final output. Furthermore, the method lacks an inconsistency check

for fixed paths and walkable areas which causes the network to be imperfect. Additionally

the raster path calculation used still fails to yield the desired paths.

Future research should focus on the derivation of fixed walkable paths to match with the

walkable area and on optimizing path calculation in a raster environment.

9

1 Introduction

1.1 Background

Navigation is a common daily activity for human beings. It is the process of planning and

following a certain trajectory in order to get from one place to another. Within the task of

navigation two components can be distinguished: locomotion and wayfinding (Montello,

2005; Wiener, et al., 2009). For this research, wayfinding is the most important of the two. It

concerns a set of tasks that involve cognitive processes like decision making and planning.

Key issue is that these tasks aim at reaching destinations beyond what is perceived in the

direct environment. Locomotion, on the other hand, implies movement of an individual as a

reaction on its direct environment but is not further discussed here.

To lighten their wayfinding activities, people use assistance from devices that range from

paper maps to location based services. Until recently, the latter were primarily designed to

serve car drivers. However, in the past few years they have become more and more

developed and have widely gained user acceptance. With the present state of mobile

devices real time navigation systems have the potential to target a broader public. Not

surprisingly, there is a trend is to get the navigation system out of the vehicle and into the

hands of cyclists, hikers and pedestrians.

A different target group brings about considerably different information needs. Pedestrians

for example do not content themselves with traditional navigation systems. This target

group is able to exploit its cognitive resources in a much more intense way when navigating,

thus any information received needs to be cut out for that (Stark, et al., 2007). In line with

this requirement, current research around pedestrian wayfinding drives at integrating

knowledge of cognitive science, psychology and artificial intelligence into the domain of

pedestrian navigation, already striving to provide insight into tailored route directions (Rehrl,

et al., 2007).

Where the information needs has been subject of various studies, one of the most common

wayfinding tasks still leaves some questions: route planning; an area that has been

profoundly investigated for the use in car navigation systems. But application of the same

methodology on pedestrian navigation systems is not possible without some major

adaptations (Corona & Winter, 2001b). Main reason for this is that pedestrians are not

strictly bounded to an infrastructure; they experience a higher degree of freedom in their

movements. This phenomenon should somehow be captured in the datasets that form the

basis for pedestrian navigation systems (Corona & Winter, 2001a). Attempts to do so exist

but do not provide a concrete solution.

(Gaisbauer & Frank, 2008) for example, introduce a wayfinding model which aims to cover

all walkable space. Walkable space can be defined as all space that is accessible by

pedestrians. Their model is based on the concept of Lynch (1960) who depicts decision

points as points where people have to decide where to go based on their perception. Closely

related to locomotion, these points involve only the visible route options. The model divides

walkable space into decision scenes (i.e. direct surroundings of a decision point) by using the

decision points and it subsequently converts these areas to a graph. These represent the

internal structure of these decision scenes as a network of portals (nodes) through which

pedestrians can enter other decision scenes and connecting routes (edges) that can be used

to traverse a scene. Still, this concerns a conceptual model which leaves open ends on the

creation of decision scenes and the calculation of paths for the internal structure.

10

Furthermore, Elias aims at extending the street network graph by adding (indoor) walkable

space derived from a city map and accompanying postal codes (Elias, 2007). The approach

manages to create the internal structure of buildings but it does not use a least cost path

algorithm to do so. Therefore no accessibility values can be assigned that influence the

internal structure. Walter et al. aim at reducing walkable space in raster maps to a skeleton

graph (Walter, et al., 2006). They found a way to retrieve a shortest path from a raster map

but did not focus on constructing a network dataset.

Although these approaches are very promising for creating a suitable network dataset, none

of them integrates the possibility to traverse open space.

1.2 Problem definition

Currently available approaches do not provide a suitable dataset for pedestrian route

planning. Main drawback is the point of not including free walkable space (Figure 1). This

leads to the idea for this research.

It presents an approach that uses a hybrid data environment with on the one hand a

relatively simple vector network dataset based on the street network and on the other hand

a raster representation of areas with complex internal structures to calculate an optimal

path as part of pedestrian route planning.

a) Schematic map representation in which the Arboretum

seems inaccessible.

b) Aerial photograph that shows the presence of additional

paths and free walkable space.

Figure 1) Example map showing that free walkable space that is accessible to pedestrians (b) can be missed in a schematic

street network (a) (Google, 2010)

This approach with a vector and raster environment is clearly different from the one

provided by Elias, Walter and Gaisbauer & Frank (see section 1.1). Main advantage is the

possibility to incorporate highly detailed route information in the pedestrian infrastructure

for areas with a complex structure that is underrepresented in a plain road dataset.

Furthermore, only these few areas require detailed data acquisition which makes the total

process of data acquisition less laborious. Nonetheless, some questions arise when

contemplating this hybrid approach. For example, what areas are to be presented as raster

data? Or: how to connect raster with vector data?

Another interesting point concerns the square structure of raster data which brings along

some difficulties to calculate the optimal path. Assuming that the Moore neighborhood is

used for searching the least cost path, the calculated path length is bound to overestimate

the actual path length. Consider the following path (Figure 2). Which is the ‘true’ path length?

11

a) L = (4 * √2) + (3 * 1) = 8,66 b) L = 8,66 c) L = 8,66

 d) L = √(7
2
 + 4

2
) = 8,06

Figure 2) Three paths (a, b, c) calculated from A to B which overestimate the length of the desired path (d)

Based on these issues, seven research questions are formulated. These are stated in the next

section.

1.3 Research objective and research questions

The research objective reads as follows:

‘To calculate the optimal route for pedestrians in an urban environment based on a hybrid

dataset that contains vector network data to represent corridor-like paths and raster data to

represent free walkable space.’

This objective forms the basis for seven research questions (RQs) which are formulated

below.

• RQ1: How to decide which parts of a study area can be labeled as free walkable

space and which areas are to be represented as nodes and edges in a graph?

• RQ2: How can a raster representation of free walkable space be connected with a

network of nodes and edges?

• RQ3: How to determine the costs or benefits attached to nodes, edges and raster

cells?

• RQ4: How to overcome miscalculations in route costs caused by the square structure

of raster data?

• RQ5: How to calculate the optimal path in a hybrid environment?

• RQ6: How can a network dataset suitable for pedestrian route planning be derived

from the topographical map available in The Netherlands (TOP10_vector)?

• RQ7: Which implementation issues, suggestions for future research and insights

arise from practical application of the methodology?

1.4 Report structure

Chapter 2 presents the methods applied in this thesis at a conceptual level. Subsequently,

the more technical implementation of the method is discussed in chapter 3 whereas chapter

4 contains the results of this implementation applied on a case study. The results of chapters

12

2 through 4 are be discussed in chapter 5. Finally, chapter 6 concludes this research by

answering the research questions and suggesting directions for further research.

1.5 Research delineation

This research deals with planning an optimal route for pedestrians in an urban environment.

In order to account for the high degree of movement freedom, it integrates the concept of

free walkable space which together with a vector network representing narrow corridors

forms the basis for calculating such route.

Free walkable space was defined as all space that is accessible by pedestrians. However,

because this research is about pedestrian route planning some refinement of this concept

has to be made. First of all this research focuses only on the outdoors, in particular on the

urban environment. Second, only public areas have been considered for navigation purposes.

A third aspect of the concept is the pedestrian in general. This is a mixed group of human

beings with all kinds of (dis)abilities, thus the accessibility of areas differs due to this

variability. Consequently, a more appropriate and refined definition of ‘walkable space’ is

adopted: “All outdoor space that is open and accessible by fit pedestrians”.

Another worth mentioning aspect of this research is the definition of ‘optimal’. As

mentioned before, end users are not alike thus optimal is a personal concept. To grasp this

concept this research was set out to integrate criteria that affect the optimal route at most.

Though distance is obviously (one of) the most important criteria in efficient pedestrian

route planning, others were likely to be relevant as well.

13

2 Methodology

2.1 Process overview

To allow pedestrian route planning, there is need for a method that is capable of

constructing a pedestrian network. Hence, the goal of the process described here is to yield

a network dataset on which a route optimizer (e.g. Dijkstra’s shortest paths algorithm

(Dijkstra, 1959)) can be applied to calculate the least cost path between start and end points.

First, this section presents an overview of the overall process whereas following sections will

zoom in to this model to illuminate each subprocess. A flowchart of the entire process

discussed in this chapter can be found in Annex A.

Globally, the process comprises two main input datasets and one output dataset; inputs are

a polygon based topographical map and a polyline based road dataset and the output is a

pedestrian network (Figure 3a).

The first subprocess takes care of deriving the free walkable space from the topographical

map and thereby tackles RQ1. This will be discussed in section 2.2.

Next, its product will undergo editing by a user whose job is to divide the free walkable

space into subspaces with equal accessibility values, based on his expert knowledge of the

site or any available data. This process relates to RQ3 and will be discussed in section 2.3.

Section 2.4 zooms in on the next subprocess which relates to both RQ2 and RQ4. It uses the

so-called weighted free walkable space as an input together with the road dataset to

calculate paths passing through the free walkable space, leading from one road to another.

A side product of this subprocess is the set of fixed paths that conjoin the free walkable

spaces.

Fixed paths
Internal paths

(polyline)

Pedestrian

network

Free walkable

space WGT

Free walkable

space

Costs / Benefits

Topographical

map (polygon)

2.2 Deriving free

walkable space

Roads

(polyline)

2.3 Assigning network

costs and benefits

2.4 Creating

internal paths

2.5 Deriving the

network dataset

Key dataset

Process direction

Process

Flowchart legend:

Minor dataset

Other input

a) The two inputs:

A topographical map and the

road dataset.

b) The result:

A pedestrian network.

Legend:

Figure 3) This figure presents a scheme (left) and illustrative examples (right) from the process and its datasets. The addition

‘WGT’ in the scheme indicates that the dataset is enriched with accessibility weight values. Furthermore, the first example

(a) depicts the input datasets whereas example two shows the final result (b).

14

The subprocess of deriving the network dataset combines both the fixed paths and the

internal paths into one joined pedestrian network dataset (Figure 3b). It applies to RQ6 and

will be explained in section 2.5. Finally, a network dataset is derived that is suitable for

pedestrian route planning (RQ5) as is elaborated in section 2.6.

2.2 Deriving free walkable space

This is the subprocess where the free walkable space is extracted from the main input

topographical dataset. A suitable dataset can be any topographical dataset that is polygon

based but a large scale is preferred to provide enough detail to discern roads and open areas

(i.e. scale 1:10.000).

All topography classes in the dataset were reclassified into areas that are ‘walkable’ or areas

that are ‘NOGO’ in which areas marked ‘walkable’ are potentially eligible for a free walkable

space representation (Figure 4a, b). The reclassification is done best based a logical

interpretation of the classes. However, reclassification of some classes is doubtful and

additional information is required. For example a class like ‘other land use’ can correspond

to a building but might as well be an open parking space, or the class ‘grassland’ could be a

(fenced) meadow but it could also be represent an urban park. In such case the classification

‘walkable’ was assigned. After all, a detailed assessment of these areas was done later when

site knowledge was used to assign costs to zones within the free walkable space.

The freedom of movement of pedestrians is assumed not to be limited by a transition in

topographic class given that both classes are marked ‘walkable’. For example when a

pedestrian walks from a square into a field he does not experience a barrier. Therefore all

boundaries between walkable areas are dissolved to yield continuous areas of walkable

space (Figure 4c).

Shrunk

walkable area

Topographical

map (polygon)

Free walkable

space

Walkable area

Selected areas

a) Topographical map. b) The reclassification

shows WALKABLE and

NOGO areas.

Legend:

c) Walkable areas without

inner boundaries yields all

walkable space.

d) Shrunk walkable space e) Expanding yields free

walkable space

Figure 4) In this figure the process of deriving free walkable space is shown. First the scheme (left) subsequently a

visualization. The process starts of with a topographical map (a), next a reclassification (b), then the boundaries are removed

(c), subsequently the areas are shrunk (d) and finally its proportions are restored (e). Note that roads are included at a later

stage.

15

Furthermore, a pedestrian experiences narrow parts (e.g. roads) as corridors in which only

one route option is available: follow the corridor until the next decision point (Lynch, 1960).

Therefore only the wide open spaces are suitable to be represented as free walkable space

in the network. Wide open spaces were found by shrinking the complete walkable space

from the edge inwards until the narrow parts vanish. What remains are cores of objects that

indicate the presence of areas which are large enough to be represented as free walkable

space (Figure 4d).

The final representation of free walkable space was realized by expanding the residue of the

shrink action in such a way that it is reinstated to the original proportions of the walkable

space. The product then represents all free walkable areas but not the narrow streets.

(Figure 4e)

2.3 Assigning network costs and benefits

The next subprocess is a laborious one. The user has to assign costs to the given free

walkable spaces (Figure 5). This can be done by means of software which is capable of

editing geodata. It involves modifying the shapes and altering their attribute values. By

manually dividing the free walkable space into smaller zones the user enables him to assign

weights to specific locations inside the free walkable space (Figure 5a, b). If necessary, he

can extend his expert knowledge of the site by consulting aerial photographs, detailed city

plans or other resources.

The detailed information that the user provides is about accessibility and obstacles. In this

respect, accessibility implies zones that are less accessible to pedestrians like roads with

heavy traffic or areas with dense vegetation. Obstacles are for example fences, hedges and

ponds but also buildings. Because a least cost path calculation will be used to calculate paths

this detailed information can be represented as costs. Note that the assignment of costs is

merely subjective and that relative figures can be used, some examples:

• A park can be divided into easy accessible pathways with weight 1, a less accessible

field with weight 3 and an inaccessible pond with weight 99;

• A traffic junction contains specific footpaths for pedestrians so here a division can be

inaccessible roads with weight 99 and perfectly accessible sidewalks with weight 1.

With this result, a weighted free walkable space dataset has been generated that can be

used for calculation of the internal paths.

Free walkable

space WGT

Costs / Benefits

Free walkable

space

a) Free walkable space with a

single accessibility value

b) Free walkable space in

which different accessibility

values are assigned to parts of

the space.

Legend:

Figure 5) Here the process of adding costs to the free walkable space is depicted by means of a schem (left) and visual

examples (right) . The input is the free walkable space dataset (a), output is this space augmented with accessibility values

(b).

16

2.4 Creating internal paths

2.4.1 Calculating paths
The next step is to gather all paths passing through the free walkable space, and with that,

connecting all roads leading to the free walkable space in question. To achieve this, first all

points are retrieved in which a road enters a free walkable space. With this process, a side

product is produced. It contains the difference of the roads in the original road dataset and

the free walkable space: the fixed paths (Figure 6a). These will be used later on in the

process to complete the pedestrian network because they represent the connections

between the various free walkable spaces.

The above mentioned points are actually the intersections of the polyline road dataset with

the boundary of free walkable space objects and constitute the begin and end points for the

path calculation (Figure 6b). Next, a raster environment is established containing for each

cell the cost of traveling through that cell which is based on the weight value of the

corresponding user input (Figure 6c, d). The so-called cost grid is essential for path

calculation in a raster environment because it determines along which cells the actual raster

path will travel. Unfortunately the costs defined by the user will not suffice in case the cost

grid is traversed diagonally; in that case the least cost path calculation brings about some

issues regarding the square structure of the raster environment. Section 2.4.2 describes how

these issues are dealt with.

The path calculation is done for all possible connections inside a free walkable space object

(Figure 6e). For an object with a collection of n connection points the number of possible

internal connections is: n(n-1)/2. Each path is based on the least cost path calculated in the

Free walkable

space WGT

Roads

(polyline)

Internal paths

(polyline)

Connection

points

Cost grid

(raster)

Fixed paths

a) Free walkable space

and Roads

b) Connection points c) Fixed paths

d) Free walkable space

WGT

e) Path calculation in the

raster environment

f) Actual paths in the

network

Legend:

Figure 6) This figure illustrates the process of creating the internal paths. Besides the scheme (left) some illustrative

examples are included (right). Point of departure is the free walkable space and the road dataset (a). From these, connection

points (b) and fixed paths are retrieved (c). The weighted free walkable space (WGT) is used (d) to calculate paths in the

raster environment (e). The process yields the actual paths in the network (f). Note that nodes in the road network can

disappear when overlaid by free walkable space.

17

raster environment. It is converted to a polyline and added to the dataset of internal paths

(Figure 6f). In this way each possible path is represented as an edge in the actual network.

2.4.2 Solving raster issues
The use of a Moore neighborhood causes the raw weights provided by the user to be

impractical for direct raster path calculation. This is because the weights per cell are not yet

related to the direction of the path crossing it. The actual weight raster has a cost/distance

relationship covered by means of the integration of Eucledian distance. There are several

steps required to get there.

First, the raster dataset which is created from the user’s weight input is used to calculate for

each cell the accumulated path cost to that cell from a source. This is done for all connection

points. The next step is to combine the grids of a source and destination point into a least

cost corridor. Again, this is done for each point combination inside a free walkable area.

Path distance

(source)

Path distance

(destination)

Least cost

corridor

Cost grid

(raster)

Free walkable

space WGT

Connection

points

Weights

(raster)

a) Free walkable space WGT b) WEIGHT raster

c) Least cost corridor d) Cost grid (with Euclidean

distance)

Legend:

Figure 7) Process scheme (left) of creating the cost grid illustrated with examples (right). The polygon dataset of weighted

free walkable space (a) is converted to a weight raster (b). With this raster for each combination of connection points two

path distance grids are calculated that result in a least cost corridor (c). This corridor is enriched with Euclidean distance

values to form the cost grid (d)

The resulting corridor represents a narrow lane through which the actual path has to go. It

could however, contain wider parts where there is more than one route option available due

to the use of the Moore neighborhood. For these wider parts of the corridor, the Eucledian

distance is calculated from each cell to the nearest narrow part. These distance values make

the actual cost grid. So the further away a cell is from a narrow part, the higher the cost

value is.

2.5 Deriving the network dataset

The final step in constructing the network dataset consists of combining the calculated

internal paths (Figure 8a) with the fixed paths (Figure 8b). The features from both of these

18

datasets are transferred into a single feature class (Figure 8c). As the previous process

restored the connections between all begin and end points, the final dataset offers the same

routing possibilities as those that the original road dataset offered augmented with new

possibilities that have emerged from the path calculation in the free walkable space. It is a

complete pedestrian network dataset in which the movement freedom in free walkable

space is captured.

Pedestrian

network

Internal paths

(polyline)
Fixed paths

a) Internal paths b) Fixed paths c) Pedestrian Infrastructure

Legend:

Figure 8) The creation of the pedestrian infrastructure visualized as a scheme (left) and examples (right). The internal paths

(a) and the fixed paths (b) are combined into one pedestrian infrastructure (c)

2.6 Dijkstra’s shortest path algorithm

The final pedestrian route planning will take place within an environment that solely consists

of vector data. After all, all optimal routes within the raster environment are now

represented as edges in a pedestrian network. The algorithm used is the Dijkstra’s shortest

path algorithm which is able to solve the shortest path problem for a graph with

nonnegative edge path costs by constructing trees of minimum total length (Dijkstra, 1959).

The concept of ‘shortest path’ should in fact be understood as ‘the least cost path’ because

the costs used in this study do not represent Euclidean distance, but rather a cost distance.

For example, walking through grass or crossing a busy road is more expensive than walking

over a footpath.

19

3 Implementation

The methods discussed in the preceding chapter involve various data actions. In order to

implement all these processes, the Python programming language was used to formulate a

script for each of them. Python is open source and is able to exploit the geoprocessor of

ESRI’s ArcGIS Desktop software. So a range of tools in ArcGIS and the strength of

programming were combined to yield the result. This chapter discusses for each process

which tools were used, with which in- and outputs and how they were interconnected with

Python. The Python script is enclosed in Annex B.

3.1 Deriving free walkable space

This process needs the topographical dataset as input. From that, the walkable area was

retrieved by selecting only those topographical types that were marked ‘walkable’ and

storing them in a new feature class. The tools used are given in Table 1.

Table 1) Tools needed to create a feature class of the walkable areas

Tool 1 MakeFeatureLayer_management

In Topographical dataset (main input)

Out Selectable layer

Tool 2 SelectLayerByAttribute_management

In Selectable layer from tool 1

SQL query to select the proper features based on the reclassification

of topographical type.

Out Selection of walkable areas

Tool 3 CopyFeatures_management

In Selection of walkable areas from tool 2

Out New feature class with only the selected walkable areas.

The input used for tool 2 was based on an expert-driven reclassification. Table 2 shows an

example in which a self explaining reclassification of the Topographical map of The

Netherlands is done (TOP10vector). It was based on its topography field and the

reclassification can be seen as a Boolean map: NOGO (0) and WALK (1).

Table 2) Example of reclassification. Used dataset: TOP10 vector, scale 1:10.000, dated 2006

Description (EN) Description (NL) Topography field

(TOPO_CODE)

Reclassification

Build-up area Beb. Gebied/Huizenblok 1013 NOGO

Large building Groot Gebouw 1023 NOGO

Main connection road Hoofdverbindingsroute 7 2303 NOGO

Connection road 8 Verbindingsroute 8 3003 NOGO

Connection road > 7 Verbindingsroute >7 3103 NOGO

Local road > 7 Lokale weg >7 3143 WALK

Local road > 4 Lokale weg >4 3243 WALK

Local road > 2 Lokale weg >2 3343 WALK

Other road type > 2m Overige weg >2m 3403 WALK

Partly metalled road 3 Ged. verharde weg 3 3413 WALK

Unmetalled road 3 Onverharde weg 3 3433 WALK

Pedestrian zone Voetgangersgebied 3473 WALK

Street Straat 3533 WALK

Cycle path RWP Rijwielpad 3603 WALK

Parking area Parkeerterrein 3903 WALK

Deciduous forest Loofbos 5023 WALK

20

Grassland Weiland 5213 WALK

Other land use Overig bodemgebruik 5263 WALK

Water Landblauw 6113 NOGO

Dock Aanlegsteiger 6513 WALK

The next step was to shrink the walkable areas, which is relatively easy as only two tools

were required. First the Dissolve tool was used to create a seamless object containing all

walkable areas. Next, the Buffer tool was used with a negative value as buffer distance.

Consequently, the free walkable space was created by applying the same Buffer tool with

the inverse buffer distance. Table 3 depicts the in- and output used for these tools.

Table 3) From walkable areas to free walkable space

Tool 4 Dissolve_management

In The feature class with selected walkable areas from tool 3

Out Dissolved area

Tool 5 Buffer_analysis

In In_feature: Dissolved area from tool 4

Buffer_distance: -15 meters

Out Area minus a buffer

Tool 6 Buffer_analysis

In In_feature: Area minus a buffer from tool 5

Buffer_distance: + 15 meters

Out Free walkable space

Due to the dissolve performed in tool 4, the feature class contained a single feature

consisting of many parts (a MultiPolygon object). Applying the Multipart To Singlepart tool

(tool 7) yielded a dataset consisting of single part polygons (i.e. one polygon per record).

After this process the output has to undergo considerable manual adaptations. Therefore

the dataset was prepared for editing (Table 4). First of all an Area_ID and a WEIGHT field

were added. The first one was assigned the Object_ID of the corresponding feature and the

latter was for initially assigned a one, later on in the process this value is to be edited

manually. A backup was created of this feature class to have a clean slate in case something

would go wrong during editing.

Table 4) Tools needed to create a feature class of the walkable areas

Tool 7 MultipartToSinglepart_management

In Free walkable space with just one all-embracing feature from tool 6

Out Free walkable space with separate features for all single parts

Tool 8 AddField_management

(Tool is run twice to add two fields)

In In_feature: Free walkable space from tool 7

Field_name: “Area_ID” and “WEIGHT”

Field_type: Double

Precision: Number of digits used is 5

Scale: Number of digits after separator is 0

Out Fields added to the input feature

Tool 9 CalculateField_management

(Tool is run twice to calculate two fields)

In In_feature: Free walkable space from tool 8

Field names: Those created in tool 8

Values: “Object_ID” and “1”

Out Free walkable space with fields calculated

Tool 10 CopyFeatures_management

In Free walkable space from tool 9

Out Free walkable space back up

21

3.2 Assigning network costs and benefits

Assigning weights to the free walkable space was done manually inside ArcMap. Each free

walkable space feature was cut up into smaller pieces (Table 5 and Figure 9 (left)). While

doing this, the Area_ID and WEIGHT field adopted the value from their parent object. Each

cutting is then retraceable to an embracing free walkable space object. The weights were

added by editing the WEIGHT field (Figure 9(right)). The edited dataset was used as an input

for the process of creating internal paths (section 3.3)

Table 5) Manual actions performed to edit the free walkable space dataset

Action 1 Edit free walkable space from tool 9

Modify Divide polygons into zones

Edit values Alter WEIGHT values

Figure 9) Editing Free walkable space with ArcMap

3.3 Creating internal paths

3.3.1 Source and destination points
The road dataset was overlaid with the unedited free walkable space by means of the Erase

tool. This resulted in the fixed walkable paths. Table 6 shows the tool and its inputs.

Table 6) Originating of the fixed paths dataset

Tool 11 Erase_analysis

In In_feature: Road dataset (main input)

Erase_feature: Free walkable space from tool 9

Out Fixed paths

The end vertices of the fixed paths that touch the boundaries of a free walkable space are

seen as ‘connection points’. To get these, first all end vertices were converted to point

features using the Feature Vertices To Points tool. Next, a feature layer was made from

these points to be able to select features by their location. Due to digital inaccuracies a

search distance was applied to make sure that all points within a distance of 0.1 meter from

the parent free walkable space were selected. The whole selection was stored in a feature

class by using the Copy Feature tool (Table 7).

22

Table 7) Tool sequence that yields all connection points

Tool 12 FeatureVerticesToPoints_management

In In_feature: Fixed paths dataset from tool 11

Point_location: Determines which vertices will be converted. In this

case only both ends.

Out Point dataset

Tool 13 MakeFeatureLayer_management

In Point dataset from tool 12

Out Selectable layer

Tool 14 SelectLayerByLocation_management

In In_layer: Selectable layer from tool 13

Select_feature: Features to base selection on, this is the free

walkable space dataset.

Overlap_type: Defines on what condition the points will be selected.

The points that are WITHIN the select features.

Search_distance: 0.1 meters

Out Selection

Tool 15 CopyFeatures_management

In Selection from tool 14

Out Connection points

The resulting dataset contained all connection points. For future reference an Area_ID and a

Point_ID field were added to the connection point dataset of which the values were

calculated later (Table 9). The connection points were placed in a selectable layer (Table 8).

Table 8) Tools to add area and point ID fields plus creating a selectable layer.

Tool 16 AddField_management

(Tool is run twice to add two fields)

In In_feature: Connection point dataset from tool 15

Field name: “Area_ID” and “Point_ID”

Field type: both “SHORT”

Out Connection points with fields added

Tool 17 MakeFeatureLayer_management

In Connection points from tool 16

Out Selectable layer

While the script from block 1 looped through all free walkalbe space features, each feature

was placed into a layer with the Make Feature Layer tool. Next, points that were within the

current feature were selected. This was done by using the current feature layer as a

selection mask and the connection point layer to select points from. The result is a set of

connection points belonging to the current feature. This set was altered by the Calculate

Field tool which set the Area_ID to the Object_ID of the current feature. (Table 9)

Table 9) Script block to iterate ID assignment

Block 1 Looping through the free walkable space

In Selectable layer from tool 17

For each feature in Free walkable space back up, calculate AreaID:

Process

Tool 19 SelectLayerByLocation_management

In In_feature: Selectable layer from tool 17

Select feature: Area layer from tool 18

Overlap type: WITHIN

Search_distance: 0.1 meters

Out Selection of points that belong to area

Tool 18 MakeFeatureLayer_management

In In_feature: Free walkable space back up from tool 10

Where_clause: ObjectID = current ObjectID

Out Layer with area selected by where_clause

Tool 20 CalculateField_management

23

In in_layer: Selectable layer from tool 19

Field_name: “Area_ID”

Value: Current ObjectID

Out Connection point dataset with AreaID field calculated

For each point in pointset selected by tool 19:

 Set value of Point_ID field to i,

 Increase i with 1 (Starting with i = 1)

Out Connection point dataset with ID fields calculated

As a result, all points have a corresponding AreaID and for each area the points were

numbered 1 to n in which n is the total number of points within the area.

3.3.2 Raster paths

Data preparation and settings

Some actions were carried out to prepare the iterative process of calculating paths. That is,

the weight dataset was converted to raster, a feature class was created to contain the

output polyline paths and connection points were expanded. The latter one means

converting the connection points to a polygon object by buffering them. This was necessary

since the used tools convert objects to raster cells when they are used as source or

destination inputs. Since all connection points are located on the edge of the rasterized

weight dataset there was a chance their raster equivalent laid outside the raster mask. The

expanded connection points yield more cells than its parent point objects what ensured that

at least one cell fell within the rasterized area. (Table 10)

Table 10) Tool sequence that buffer connection points

Tool 21 PolygonToRaster_conversion

In In_feature: Free walkable space WGT from action 1

Value_field: “WEIGHT”

Cell_size: 1 meter

Out Rasterized areas

Tool 22 CreateFeatureClass_management

In Path: Path of the new feature class

Name: Name of the new feature class

Geometry_type: Polyline

Out New polyline feature class for internal paths

Tool 23 Buffer_analysis

In Connection points from block 1

Buffer distance: 1 meter

Out Buffered connection points

The iteration contained a nested loop to calculate all possible connections based on the

Point_ID that was assigned in block 1. This loop was regulated by a parameter n that held

the total number of connection points for a feature. This parameter was stored as the

attribute ‘Range’. Adding the attribute field happens with the usual tool while it takes a

script block to calculate the value for n. (Table 11)

Table 11) Tool sequence that calculates fields for connection points.

Tool 24 AddField_management

In In_feature: Buffered connection points from tool 23

Field_name: “Range”

Field_type: Short

Out Buffered connection points with Range field added

24

Block 2 Calculating n values

In Buffered connection points with Range field from tool 24

For all buffered connection points:

 Add AreaID to list (no duplicates)

For each AreaID in list:

Tool 25 MakeTableView_management

In In_feature: Buffered connection points from tool 24

Where_clause: AreaID = current AreaID

Out Table with all points of the current area

Tool 26 Statistics_analysis

In In_table: Table from tool 25

Statistics_field: Point_ID MAX

Out Statistics table

The value of n is retrieved from the statistics table and is stored in a variable:

Range_max

Process

Tool 27 CalculateField_management

In In_table: Table from tool 25

Field_name: “Range”

Value: Range_max

Out Range calculated

Out Buffered connection points with Range field calculated

Additionally, the overall maximum is required to set the limit for the iteration. The following

script block takes care of that (Table 12):

Table 12) Block to calculate iteration limit

Block 3 Calculating overall maximum n

In Buffered connection points with Range field calculated from block 2

Tool 28 Statistics_analysis

In In_table: Table from tool 27

Statistics_field: Point_ID MAX

Out Statistics table

Process

The value of n is retrieved from the statistics table and is stored in a variable:

Range_max

Out Variable with overall maximum n

Path calculation

Internal paths were calculated in a raster environment. The script block performed this and

instantly added the path as a polyline to the feature class of internal paths. The process is

extensively discussed at a conceptual level in section 2.4. Table 13 shows how this operation

was structured and what tools were used. The insertion of paths into the polyline feature is

discussed in section 3.3.3

Table 13) Structure of path calculating block

Block 4 Calculate paths

In Buffered connection points from block 2

Rasterized areas from tool 21

Variable ‘Range_max’ from block 3

Free walkable space backup from tool 10

For each fromID ranging from 1 to Range_max:

 Set variable Range_to = fromID + 1

 For each toID ranging from Range_to to Range_max + 1:

 Perform loop in which fromID and toID are variables.

Process

Tool 29 Select_analysis

In In feature: Buffered connection points from block 2

25

Where_clause: PointID = fromID AND

 Range <> Point ID

Out Path sources

Tool 30 Select_analysis

In In feature: Buffered connection points from block 2

Where_clause: PointID = toID

Out Path destinations

Tool 31 PathDistance_sa

In In_feature: Path sources from tool 29

Cost_raster: Rasterized areas

Out Source distance raster

Tool 32 PathDistance_sa

In In_feature: Path destinations from tool 30

Cost_raster: Rasterized areas

Out Destination distance raster

Tool 33 Corridor_sa

In Destination distance raster from tool 32

Source distance raster from tool 31

Out Least cost corridor

Tool 34 ZonalStatistics_sa

In Free walkable space Backup from tool 10

Zone_field: ObjectID

In_value_raster: Corridor from tool 33

Statistics_type: Minimum

Ignore_nodata: Data

Out Areas of which all cells are assigned the minimum corridor

value of that area.

Tool 35 SingleOutputMapAlgebra_sa

In Conditional statement

Out Boolean map whether corridor cells are equal to the

minimum value or not

Tool 36 SetNull_sa

In In_raster: Boolean map from tool 35

In_false_constant: 1

Where_clause: Value = 0

Out Only corridor cells equal to the minimum value

Tool 37 SingleOutputMapAlgebra_sa

In Focal expression to retrieve the sum of cells within a radius

of 3 meters

Out Corridor with sum values

Tool 38 SingleOutputMapAlgebra_sa

In Focal expression to retrieve the maximum value of all cells

within a rectangle of 5x5

Out Corridor with maximum values

Tool 39 Reclassify_sa

In In_raster: Corridor with max values from tool 38

Reclass_field: Value

Remap: Values below 25 become 1, 25 and further become

NoData

Out Narrow parts of the corridor

Tool 40 EucDistance_sa

In Narrow parts of the corridor from tool 39

Out Euclidean distance inside the corridor

Tool 41 Plus_sa

In In_raster: Euclidean distance raster from tool 40

In_constant: 1

Out Euclidean distance raster with a minimum value of 1 instead

26

of 0

Tool 42 CostBackLink_sa

In In_source: Path source dataset from tool 29

In_cost: Euclidean distance raster from tool 41

Out Back link raster

Distance raster

Tool 43 CostPath_sa

In Back link raster from tool 42

Distance raster from tool 42

Path_type: Each Zone

Destination_field: AreaID

Out Least cost paths for each handled area

Tool 45 Con_sa

In In_raster: Least cost paths from tool 43

Constant: 1

Out Paths with a single value

Tool 46 RasterToPolyline_conversion

In In_raster: Paths with single value from tool 45

Simplify: Simplify

Out Paths with a single value
Final action in this loop added the polylines to the feature class with internal paths

created by tool 22. Section 3.3.3 zooms in to this operation which contains:

 Tool 47

 Tool 48

 Tool 49

 Block 5

Out Internal paths

3.3.3 Internal paths
As part of script block 4, the converted paths were inserted to the feature class with internal

paths. Therefore begin and endpoints had to match with the corresponding connection

points. This was done by the following tools that disentangled the paths and fitted them into

the feature class (Table 14).

Table 14) Adding paths to the internal paths dataset

Tool 47 FeatureVerticesToPoints_management

In Polyline paths from tool 46

Out Path point dataset

Tool 48 GenerateNearTable_analysis

In In_feature: Path point dataset from tool 47

Near_feature: Connection point dataset from block 1

Search_radius: 1

Location: Location

Out Near table

Tool 49 TableSelect_analysis

In In_table: Near table from tool 48

Where_clause: Near distance < search_radius from tool 48

Out Table selection of connection points closest to end points

Block 5 Add path to polyline dataset

In In_feature_1: Polyline paths with a single value from tool 46

In_feature_2: Path point dataset from tool 47

In_table: Table selection from tool 49

In_feature_3: Internal paths from tool 22

Process

For each path in In_feature_1:

 Loop through points in In_feature_2 that belongs to this path (where:

ORIG_FID = current ObjectID)

 Get record from In_table where IN_FID = ObjectID of

 the first point and set [begin point] to its NEAR

 coordinates

27

 Add [mid section] points from In_feature_2

 Get record from In_table where IN_FID = ObjectID of

 the last point and set [end point] to its NEAR

 coordinates

 Finally, insert [begin_point + mid_section + end_point] as a polyline

 to In_feature_3

Out Internal paths

3.4 Deriving the network dataset

3.4.1 Pedestrian infrastructure
The pedestrian infrastructure was constructed from the internal paths and the fixed paths.

First a copy was made to preserve the original fixed path dataset and then the internal paths

were appended to the fixed paths (Table 15).

Table 15) Combining the datasets

Tool 50 Copy_management

In Fixed paths dataset from tool 11

Out Copy of fixed paths

Tool 51 Append_management

In In_feature: Internalpaths from block 4

Target: Copy of fixed paths from tool 50

Out Pedestrian infrastructure

3.4.2 Network dataset
The final network dataset was constructed out of the pedestrian infrastructure feature class

from tool 51. This operation could not be implemented by means of a script as the ArcGIS

geoprocessor lacks the commands to automate this. However, ESRI does offer a way to

activate this action manually using its ArcCatalog component. Globally four actions were

required. First a new feature dataset was created; second the pedestrian infrastructure

dataset was copied into this feature dataset; next the network dataset was constructed out

of the feature dataset and finally the network was build. The settings used for this action are

depicted in the table below (Table 16).

Table 16) Manual actions performed to construct the Pedestrian Network

Action 2 Creating a new feature dataset

Coordinate system for XY coordinates: Import spatial reference from the pedestrian

infrastructure dataset.

Coordinate system for Z coordinates: None

Tolerance for XY, Z and M: Default values were retrieved from importing the

spatial reference

Resolution and domain extent: Default values

Action 3 Tool: CopyFeatures_management

In: Pedestrian infrastructure from tool 51

Out: Pedestrian infrastructure feature class in the feature dataset from

manual action 1

Action 4 Constructing the network dataset

Name of the new Network Dataset: Pedestrian_Network

Participating Feature classes: Pedestrian infrastructure from manual action 2

Connectivity settings: Default (nodes at coincident endpoints)

Modify with elevation data: NO

Model turns: NO

Cost attributes: Default attribute based on shape length

Driving direction settings: None

28

Action 5 Tool: BuildNetwork_na

In: Network dataset from manual action 3

To: Builded Network Dataset

3.5 Dijkstra’s shortest path algorithm

Calculating a least cost path by means of the Network Analyst toolbox within ArcMap

requires a feature class which holds a source and destination location. The action to create

this feature class was initiated manually in ArcCatalog (Table 17).

Table 17) Manual action to create source / destination feature class

Action 6 Tool: CreateFeatureClass_management

In Path: Path of the new feature class

Name: Name of the new feature class

Geometry_type: Point features

Out New point feature class for locations

Source and destination locations were added to the feature class by editing the point

dataset in ArcMap and creating new point features (Table 18).

Table 18) Manual actions performed to add points to the point feature class

Action 7 Add points

Create new: Create new location points and add location

information.

The actual route calculation needed three more actions to be done. First a route layer was

created of the network dataset which embraced all input for the desired route. Next, the

source and destination points were added as locations to this route layer. Finally, the route

layer was solved which yields the optimal route in de underlying network dataset. The tools

that were activated are shown in Table 19.

Table 19) Manual actions to solve the route

Action 8 Tool: MakeRouteLayer_na

In: In_analysis_network: Network Dataset from action 4

Out_network_analysis_layer:

Impedance_attribute: Shape length

Out: Route layer

Action 9 Tool: AddLocations_na

In: in_analysis_layer:

sub_layer: Network Dataset from action 4

in_feature: Point feature class from action 7

field_mappings: Constant property value

 search_tolerance: 10 meters

snap_to_position_along_network: NO_SNAP

Out: Route layer with source and destination locations

Action 10 Tool: Solve_na

In: In_analysis_layer: Route layer from action 9

Ignore_invalids: HALT

Out: Route layer with optimal route from source to destination location

29

4 Case study ‘s-Hertogenbosch

4.1 Introduction

The method and associated tools discussed in chapters 2 and 3 was applied on a case study

for the city center of ‘s-Hertogenbosch in The Netherlands (Figure 10a). The study area is

confined to the neighborhoods ‘Het Zand’, ‘Binnenstad-Centrum’ and ‘Binnenstad-Oost’.

Important locations within this area are the ‘s-Hertogenbosch Central Station of the Dutch

Railways (NS), the city market place and its renowned cathedral Sint-Jan (Figure 10b).

a) Position of ‘s-Hertogenbosch in relation to The

Netherlands

b) City center of ‘s-Hertogenbosch with a delineation of the study

area (in black) and the position some interesting locations.

Figure 10 Geographical context of the case study with its position in relation to The Netherlands (a) and a detailed map of

the study area (b).

This chapter presents the results of the implementation. First a short description is given of

the two input datasets that were used and how they were prepared to fit the

implementation. Furthermore this section provides insight in the method to structure its

workflow (see section 4.2). Section 4.3 deals with the aspects of user interaction in which

the user has to complete the free walkable space. It illustrates what user input was used for

the process but also what scenarios were used to test the use of the pedestrian network.

4.2 Data preparation

4.2.1 Datasets
The topographical map used for this case study was retrieved from the most detailed

topographical map available in The Netherlands: TOP10vector. (kadaster.nl) This file has

been developed by the Dutch Topographical Service Cadastre and contains a large scale

topographical map of the whole country (i.e. scale 1 : 10.000). The version is dated 2006

As a road dataset, the block dataset from the Dutch National Road Data Bank was used

(Nationaal Wegen Bestand), also dated 2006. This dataset was the most suitable one

because it contains continuous blocks of roads and streets which is essential for constructing

a network dataset. Both datasets were retrieved from the GeoDataBase available at the

GeoDesk, a service unit within the Geo-Information Centre of Wageningen UR (University &

Research Centre).

30

4.2.2 Preprocessing
The input datasets were clipped according to the defined study area. In order to do so, the

neighborhood dataset of The Netherlands was used to create a clipping mask. The

neighborhoods ‘Het Zand’, ‘Binnenstad-Centrum’ and ‘Binnenstad-Oost’ were selected from

this dataset since these administrative boundaries include the entire city center and the

railway zone.

Additionally, as both datasets contained huge amounts of redundant attributes (the

TOP10vector and the road dataset have respectively 16 and 36 attributes), these were

deleted before initiating the process. Only the required attributes were kept, i.e. the

topographical code.

4.2.3 Workflow
Data handling implies queries, transformations and operations on geodata. To structure

these actions in this research and store the geodata in an orderly fashion each feature class

produced inherited a hierarchical index indication accordingly to it’s place in the processing

chain (project, component or step).

4.3 User interaction

4.3.1 Expert knowledge
In this case study an expert-based selection was made of areas that were completed.

Furthermore, a TOP10 building dataset was used to raise costs for buildings that were not

present in the topographical map. Figure 11 shows some of the completed areas. Note that

all costs were assigned in a subjective fashion and correspond to the costs mentioned in the

table below (Table 20)

Table 20) Overview of the assigned accessibility values

Accessibility WEIGHT Legend color

Normal / preferred 1
Not preferred 2
Dense traffic 5
No accessibility 99

31

a) Marketplace

b) A recently build up area

c) Railway station zone

Figure 11) Areas completed with accessibility values (left) and their accompanying aerial photographs (right) (LUFO 2006)

4.3.2 Scenarios
To be able to calculate routes, some source and destination scenarios are chosen. For all

scenarios, the ‘s-Hertogenbosch Railway Station is set as a source point. Destination points

are some points of interest in the city center.

Scenario 1: From railway station to cathedral, this is one of the main attractions of ‘s-

Hertogenbosch.

Scenario 2: From railway station to Southern park, the biggest park of ‘s-Hertogenbosch

just outside the city center.

Scenario 3: From railway station to bastion, a remainder of old fortifications with an

outlook over the vast swamp fields adjacent to the city center (Het Bossche

Broek).

32

4.4 Results

4.4.1 Process
In this section the results are discussed from the subprocesses that were initiated to yield a

pedestrian network dataset. They are presented by displaying the products that were

created during the process. For practical reasons an excision was made out of the whole

study area which contains the market place (for location see Figure 10b). The results of the

actual route calculation with the pedestrian network dataset will be discussed in the next

section (4.4.2).

The free walkable space was derived from all walkable areas. The result shows a free

walkable space that has the same proportions as the original market place together with the

adjacent road (Figure 12b). Each free walkable space consists of a single part. Note that

these spaces have rounded edges.

Assigning the network costs resulted in free walkable space objects that consist of multiple

parts, augmented with WEIGHT values that indicate accessibility (Figure 12c). The result

shows the internal structure of the corresponding walkable area in a more detailed fashion

than the topographical dataset.

Internal path calculation resulted in paths traversing the free walkable space. The result

shows that the connection points are end points of the fixed paths that lead to the free

walkable space and that all points were mutually connected. It also shows how the paths

avoid zones with higher costs (Figure 12d).

The result of deriving the network dataset shows that all calculated paths are represented as

an edge in the network dataset (Figure 12e). Examining the nodes learns that the connection

points were seen as nodes whereas internal path crossings were not.

a) Preprocessing:

Topographical dataset (background)

Road dataset (dark blue line)

b) Deriving free walkalbe space:

Walkable area (dark green)

Free walkable space (light green)

c) Assigning network costs:

Topographical dataset (background)

Free walkable space WGT (green)

 d) Creating internal paths:

Fixed paths (red)

Internal paths (black)

Free walkable area (background)

e) Deriving the network dataset:

Pedestrian Network (blue)

with nodes and edges

Figure 12) Datasets involved with implementation. Mentioned are the accompanying processes and its result datasets.

33

4.4.2 Routes
With the pedestrian network dataset routes were calculated for the mentioned scenarios,

their results are shown in (Figure 13). Note that all routes start at the railway station. In the

first part of the route all scenarios follow the same trajectory. They make use of the available

sidewalks and avoid the roads. Furthermore all routes cross the water body (Dieze) at the

same spot after which they each go in separate directions.

The first scenario directs towards the cathedral. It crosses the market place where it

traverses through free walkable space (Figure 13a). The second scenario aims for the

Southern park and also intersects a small corner of the market place (Figure 13b). The third

route mainly uses the fixed paths to reach its goal (Figure 13c). The same scenarios are also

calculated by means of the pedestrian route planning functionality of Google Maps.

a) Scenario 1: to cathedral

Length: 1092 m

Same scenario in Google Maps

Length: 1.1 km

b) Scenario 2: to Southern park

Length: 1341 m

Same scenario in Google Maps

Length: 1.4 km

c) Scenario 3: to Bastion

Length: 1179m

Same scenario in Google Maps

Length: 1.2 km

Figure 13) Route results for three scenarios retrieved by implementing the method to a case study in ‘s-Hertogebosch (left)

and by querying the pedestrian route planning functionality in Google Maps (right, source: Google 2010; map data by Tele

Atlas 2010).

34

5 Discussion

In this research a pedestrian network dataset was created. Raster data was used to calculate

detailed routes through a free walkable space and an existing road network dataset was

used to represent the fixed paths between these spaces. Finally, the pedestrian network

dataset was used to calculate optimal routes for three route scenarios. This chapter

discusses the results of method, implementation and case study that were involved.

5.1 Method

The method presented a way to combine vector and raster data into a network dataset that

is suitable for calculating optimal routes for pedestrians; it integrates the high degree of

movement freedom into a network dataset by introducing the concept of free walkable

space; offers the possibility to limit that freedom by enriching the free walkable space with

expert-knowledge about accessibility and it covers the connection of possible paths in a

raster environment with a network of nodes and edges. It brings back the hybrid

environment to a manageable vector environment. Besides these points the method also

knows some drawbacks, these will be discussed in the following paragraphs.

The derivation of the free walkable space depends on critical factors like the reclassification

and the buffer distance. These parameters influence the amount and size of the resulting

free walkable space. When for example a smaller value is chosen for the parameter buffer

distance, some roads may be included whereas with a higher value some areas might be

omitted (Figure 14).

Legend

Figure 14) This map indicates that different buffer distances yield different free walkable space outputs.

Assigning costs to the free walkable space is done by a user which is bound to certain rules

concerning the cost grid that is created from his input. For example if a zone is physically

impenetrable, the user will assign an extreme high cost to it. However, this cannot

guarantee that the route will not cross this zone. Particularly when there is no other route

option available the least cost path will go straight through this impenetrable zone.

In the process of calculating internal paths not so much the path calculation but the creation

of fixed paths brings along some worth noticing issues. Overlaying the fixed paths with the

walkable area dataset created while deriving the free walkalbe space shows some

inconsistencies (Figure 15).

35

Legend:

Figure 15) The blue circles indicate the locations where inconsistencies were found between the fixed paths (red) and the

walkable areas (dark green).

Furthermore, the presented method to solve raster issues still yields some less than optimal

paths (Figure 16).

Legend:

Figure 16) Map that shows that calculated paths still deviate from the direct paths one would intuitively follow.

5.2 Implementation

The implementation translated the method to an applicable script that yields a pedestrian

infrastructure dataset. As an input the script requires the topographical dataset and the road

dataset. With additional implementation steps a pedestrian network dataset can be created

from the output with which optimal routes can be calculated. Implementation focuses on

the programming language Python which is used to access tools within ESRI’s ArcGIS

Desktop and to interconnect them in order to automate the whole process.

36

One implementation issue lies within the fact that the final stage of the process cannot be

automated by Python. Therefore user actions are required which seem unnecessarily

laborious.

Furthermore, the presented process is tailored for the input datasets used in the case study.

This means that it is not yet suited for use with any other topographical or road input

dataset.

5.3 Case study

Applying the implementation to the city centre of ‘s-Hertogenbosch resulted into a suitable

pedestrian network dataset and each route scenario returned a plausible optimal path.

The length of the routes calculated in ArcGIS correspond to those retrieved from the

pedestrian routing functionality of Google Maps (Google, 2010). And even show a slight

positive difference. The difference is expected to increase when a larger study area is used

where there are more free walkable spaces.

37

6 Conclusion

Main goal of this thesis was to calculate the optimal route for pedestrians in an urban

environment based on a hybrid dataset that contains vector network data to represent

corridor-like paths and raster to represent free walkable space. The provided method and its

implementation succeeded in calculating such routes for several scenarios in a case study.

The first research question required a method to decide which parts of a study area could be

labeled as free walkable space and which areas were to be represented as nodes and edges

in a graph. To label the parts of a study area as ‘free walkable space’ or ‘fixed paths’ the

parts that are inaccessible to pedestrians need to be excluded from labeling. From the

walkable areas, an area can be labeled as free walkable space when its core still exists after

applying a negative buffer on its original proportions. The walkable areas of which even the

core vanishes are too narrow to be represented as free walkable space and will therefore be

represented as fixed paths.

Research question two set out to connect a raster representation of free walkable space

with a network of nodes and edges. The answer was found not in connecting the space itself

but in calculating all path possibilities which the space had to offer. Since the connection

points were known in which the fixed paths entered the free walkable space, paths could be

calculated for each combination of points. This internal structure was then combined with

the fixed paths to result into one pedestrian infrastructure.

The determination of costs or benefits for nodes, edges and raster cells is merely subjective.

In this research no costs were assigned to nodes and the impedance for route calculation

over edges is based on their physical length. Raster cells are assigned costs based on the

assumed accessibility of the space they represent. Key is their interrelationship that should

be logically related, i.e. high costs for inaccessibility and low costs for accessible space.

The unfavorable paths that result from conventional path calculation based on a Moore

neighborhood in the raster environment can be optimized by assessing each source/target

scenario separately. As the most optimal path is contained by its corresponding least cost

corridor it can be used to redefine the cost grid and recalculate the path. This way a more

accurate path is distilled.

Optimal path calculation in a hybrid environment is done by calculating route possibilities

through the raster environment in advance and updating the vector network with the newly

calculated paths. With that a network dataset can be constructed on which Dijkstra’s

shortest path algorithm can be applied to find the optimal route between a start and end

point.

Conclusively, the presented method is able to derive a network dataset suitable for

pedestrian route planning from the TOP10vector topographical dataset of The Netherlands.

Future research should focus on the derivation of fixed walkable paths which in this research

shows some inconsistencies with the walkable area. Furthermore a closer look to raster path

calculation is required.

38

7 References

Corona, B., & Winter, S. (2001a). Datasets for pedestrian navigation. Institute for Geoinformation,

Technical University Vienna.

Corona, B., & Winter, S. (2001b). Guidance of car drivers and pedestrians. Department of

Geoinformation, Technical University Vienna.

Dijkstra, E. W. (1959). A Note on Two Problems in Connexion with Graphs. Numerische Mathematik, 1,

3.

Elias, B. (2007). Pedestrian Navigation - Creating a tailored geodatabase for routing. Leibniz University

of Hannover.

Gaisbauer, C., & Frank, A. U. (2008). Wayfinding Model For Pedestrian Navigation. Paper presented at

the 11th AGILE International Conference on Geographic Information Science, University of

Girona (Spain).

Google (2010). Google Maps, 2010, from maps.google.com

Lynch, K. (1960). The image of the city. Cambridge: Massachusetts Institute of Technology.

Montello, D. R. (2005). The Cambridge handbook of visuospatial thinking. Cambridge: Cambridge

University Press.

Rehrl, K., Leitinger, S., & Gartner, G. (2007). The SemWay Project - Towards Semantic Navigation

Systems. Paper presented at the 4th International Symposium on LBS & TeleCartography,

Hong Kong (China).

Stark, A., Riebeck, M., & Kawalek, J. (2007, 6-8 September 2007). How to Design an Advanced

Pedestrian Navigation System: Field Trial Results. Paper presented at the IEEE International

Workshop on Intelligent Data Acquisition and Advanced Computing Systems: Technology and

Applications, Dortmund (Germany).

Walter, V., Kada, M., & Chen, H. (2006). Shortest path analyses in raster maps for pedestrian

navigation in location based systems. Paper presented at the International symposium on

'Geospatial Databases for Sustainable Development', Goa (India).

Wiener, J., Büchner, S. J., & Hölscher, C. (2009). Taxonomy of Human Wayfinding Tasks: A Knowledge-

Based Approach. Spatial Cognition & Computation, 9(2), 13.

39

Annex A: Detailed process overview

Shrunk

walkable area

Pedestrian

network

Topographical

map (polygon)

Free walkable

space WGT

Path distance

(source)

Path distance

(destination)

Least cost

corridor

Costs / Benefits

2.2 Deriving free

walkable space

Roads

(polyline)

2.3 Assigning network

costs and benefits

2.4 Creating

internal paths

2.5 Deriving the

network dataset

Free walkable

space

Internal paths

(polyline)

Connection

points

Cost grid

(raster)

Fixed paths

Walkable area

Selected areas

Cost grid

(raster)

Free walkable

space WGT

Connection

points

Weights

(raster)

2.4.2 Solving

raster issues

Key dataset

Process direction

Process

Flowchart legend:

Minor dataset

Other input

40

Annex B: Python script

Documentation
"JB_thesis_script.py"

Settings
print "\nExecuting..."
Import system modules
import sys, string, os, arcgisscripting, time, math , decimal

time0 = time.time()

Create the Geoprocessor object
gp = arcgisscripting.create(9.3)
gp.SetProduct("ArcInfo")
gp.CheckOutExtension("spatial")

gp.OverwriteOutput = 1

Set the Geoprocessing environment...
gp.XYResolution = "0.001 Unknown"
gp.scratchWorkspace = "D:\\JB_Thesis\\Data\\Applica tion\\IA_MSc_Thesis_Jan_Bakermans_Temporary_GDB.gdb "
gp.MTolerance = ""
gp.randomGenerator = "0 ACM599"
gp.outputCoordinateSystem =

"PROJCS['RD_New',GEOGCS['GCS_Amersfoort',DATUM['D_A mersfoort',SPHEROID['Bessel_1841',6377397.155,299.1 528
128]],PRIMEM['Greenwich',0.0],UNIT['Degree',0.01745 32925199433]],PROJECTION['Double_Stereographic'],PA RAM
ETER['False_Easting',155000.0],PARAMETER['False_Nor thing',463000.0],PARAMETER['Central_Meridian',5.387 638
88888889],PARAMETER['Scale_Factor',0.9999079],PARAM ETER['Latitude_Of_Origin',52.15616055555555],UNIT[' Met
er',1.0]]"

gp.snapRaster = ""

gp.outputZFlag = "Disabled"
gp.qualifiedFieldNames = "false"

gp.extent = "DEFAULT"

gp.XYTolerance = "0.01 Meters"
gp.outputZValue = ""
gp.outputMFlag = "Disabled"
gp.geographicTransformations = ""
gp.ZResolution = ""
gp.workspace = "D:\\JB_Thesis\\Data\\Application"
gp.MResolution = ""
gp.ZTolerance = ""

GDB settings
Component = gp.workspace + "\\IA_MSc_Thesis_Jan_Bak ermans_Component_GDB.gdb\\"
Project = gp.workspace + "\\IA_MSc_Thesis_Jan_Baker mans_Project_GDB.gdb\\"
Temporary = gp.workspace + "\\IA_MSc_Thesis_Jan_Bak ermans_Temporary_GDB.gdb\\"
Raster = gp.workspace + "\\raster\\"

print "Workspace is: " + gp.workspace

Preprocessing

def DeriveFreeWalkableSpace ():
 # Free walkable space ------------------------- ---------------------------
 '''----------------------------------
 Input: Topographical map

 ? > walkable areas
 s > Shrunk walkable areas
 o > Free walkable space

 Output: Free walkable space
 Free walkable space (editable)
 ----------------------------------'''

 prefix = "a03_"

 # Select walkable areas ----------------------- -----------------------------
 # TOOL 1: Make selection layer
 in_features = Project + "ps_TOP10_polygons"
 out_layer = Temporary + prefix + "walk_layer"
 gp.MakeFeatureLayer_management (in_features, ou t_layer)

 # TOOL 2: Select walkable areas
 in_layer = out_layer
 selection_type = "ADD_TO_SELECTION"
 where_clause = "\"TDN_CODE\" = '03103' OR \"TDN _CODE\" = '03143' OR \"TDN_CODE\" = '03243' OR \"TD N_CODE\" =

'03343' OR \"TDN_CODE\" = '03403' OR \"TDN_CODE\" = '03413' OR \"TDN_CODE\" = '03433' OR \"TDN_CODE\" =
'03473' OR \"TDN_CODE\" = '03533' OR \"TDN_CODE\" = '03603' OR \"TDN_CODE\" = '03903' OR \"TDN_CODE\" =
'05023' OR \"TDN_CODE\" = '05213' OR \"TDN_CODE\" = '05263' OR \"TDN_CODE\" = '06513'"

 gp.SelectLayerByAttribute_management (in_layer, selection_type, where_clause)

 # TOOL 3: Copy selection to walkable area featu re class
 out_feature_class = Temporary + prefix + "walk_ select"
 gp.CopyFeatures_management (in_layer, out_featu re_class)

 # TOOL 4: Dissolve all walkable area
 in_features = out_feature_class
 out_feature_class = Temporary + prefix + "disso lution"
 print ">>> Dissolving walkable area..."
 gp.Dissolve_management (in_features, out_featur e_class)

 # TOOL 5: Shrink walkable area

41

 in_features = out_feature_class
 out_feature_class = Temporary + prefix + "minbu ffered"
 buffer_distance = -15
 print ">>> Applying minbuffer..."
 gp.Buffer_analysis (in_features, out_feature_cl ass, str(buffer_distance), "", "", "ALL")

 # TOOL 6: Expand walkable area
 in_features = out_feature_class
 out_feature_class = Temporary + prefix + "plusb uffered"
 buffer_distance *= -1
 print ">>> Applying plusbuffer..."
 gp.Buffer_analysis (in_features, out_feature_cl ass, str(buffer_distance), "", "", "ALL")

 # Clip free walkable area to fit study area
 # in_features = Temporary + prefix + "walkable_ area"
 in_features = out_feature_class
 clip_features = Project + "ps_clipping_mask_stu dy_area"
 out_feature_class = Temporary + prefix + "plusb uffered_sa"
 print ">>> Clipping study area..."
 gp.Clip_analysis (in_features, clip_features, o ut_feature_class)

 # TOOL 7: Multi to single part
 in_features = out_feature_class
 out_feature_class = Temporary + prefix + "free_ walkable_area"
 print ">>> Multi to single part..."
 gp.MultipartToSinglepart_management (in_feature s, out_feature_class)

 # TOOL 8 and TOOL 9: Add fields and calculate t hem to enable weight editing
 in_table = out_feature_class
 field_name_1 = "Area_ID"
 field_name_2 = "WEIGHT"
 field_type = "DOUBLE"
 field_precision = 5
 field_scale = 0
 gp.AddField_management (in_table, field_name_1, field_type, field_precision, field_scale)
 gp.AddField_management (in_table, field_name_2, field_type, field_precision, field_scale)
 gp.CalculateField_management (in_table, field_n ame_1, "[OBJECTID]")
 gp.CalculateField_management (in_table, field_n ame_2, 1)

 # TOOL 10: Create back up to enable weight edit ing and preserve original
 in_table = in_table
 out_feature_class = Temporary + prefix + "free_ walkable_area_BAK"
 gp.CopyFeatures_management (in_table, out_featu re_class)

def Internalpaths ():
 # Internal paths ------------------------------ -------------------
 '''----------------------------------
 Input: Free walkable space (editable)
 Free walkable space
 Roads (polyline)

 Free walkable space + Roads (polyline)
 s > Connection points
 s > Fixed paths

 Free walkable space (editable)
 s > Free walkable space (raster)

 Connection points + Free walkable space (raster)
 s > Calculated paths

 Calculated paths
 s > Path cost table (table)

 Connection points
 s > Connections

 Connections + Path cost table (table)
 o > Internal paths (polyline)

 Output: Internal paths (polyline)
 Fixed paths
 ----------------------------------'''

 prefix = "a04_"

 # Fixed paths --------------------------------- -------------------
 # TOOL 11: Erase walkable space from roads
 in_features = Project + "ps_TOP10_roads_block"
 erase_features = Temporary + "a03_free_walkable _area"
 out_feature_class = Temporary + prefix + "fixed _paths"
 gp.Erase_analysis (in_features, erase_features, out_feature_class)

 # Connection points --------------------------- -------------------
 # TOOL 12: Find end points of fixed paths
 in_features = out_feature_class
 out_feature_class = Temporary + prefix + "path_ ends"
 point_location = "BOTH_ENDS"
 gp.FeatureVerticesToPoints_management (in_featu res, out_feature_class, point_location)

 # TOOL 13: Create layer to collect end points i n
 in_feature = out_feature_class
 out_layer = Temporary + prefix + "path_ends_lay er"
 gp.MakeFeatureLayer_management (in_feature, out _layer)

 # TOOL 14: Select end points that are <adjacent to> free walkable space
 in_layer = out_layer
 overlap_type = "WITHIN_A_DISTANCE"
 select_features = Temporary + "a03_free_walkabl e_area"
 search_distance = 0.015

42

 gp.SelectLayerByLocation_management (in_layer, overlap_type, select_features, search_distance)

 # TOOL 14: Add end points that are <within> fre e walkable space to the selection
 in_layer = out_layer
 overlap_type = "WITHIN"
 select_features = Temporary + "a03_free_walkabl e_area"
 selection_type = "ADD_TO_SELECTION"
 gp.SelectLayerByLocation_management (in_layer, overlap_type, select_features, "", selection_type)

 # TOOL 15: Copy selection to connection point f eature class
 out_feature = Temporary + prefix + "connection_ points"
 gp.CopyFeatures_management (in_layer, out_featu re)

 # Remove duplicate connection points
 #rows = gp.UpdateCursor(out_feature)
 #cur = rows.Next()
 #a = []

 #while cur:
 # if a.count([cur.shape.FirstPoint.x, cur.sh ape.FirstPoint.y, cur.shape.LastPoint.x, cur.shape. LastPoint.y,

cur.shape.length]) > 0:
 # rows.DeleteRow(cur)
 # cur = rows.Next()
 # else:
 # a.append([cur.shape.FirstPoint.x, cur. shape.FirstPoint.y, cur.shape.LastPoint.x, cur.shap e.LastPoint.y,

cur.shape.length])
 # cur = rows.Next()

 # Add area ID field
 field_name = "Area_ID"
 field_type = "SHORT"
 gp.AddField_management (out_feature, field_name , field_type)

 # Add point ID field
 field_name = "Point_ID"
 field_type = "SHORT"
 gp.AddField_management (out_feature, field_name , field_type)

 in_feature = Temporary + "a03_free_walkable_are a_BAK"
 rows = gp.updateCursor(in_feature)
 cur = rows.Next()
 areapointlist = {}
 del_list = []

 # Make point layer
 in_feature = Temporary + prefix + "connection_p oints"
 out_layer2 = Temporary + prefix + "point_layer"
 gp.MakeFeatureLayer_management (in_feature, out _layer2)

 while cur:
 # Make selection layer from area
 print "Area_ID:", cur.OBJECTID
 in_feature = Temporary + "a03_free_walkable _area_BAK"
 out_layer1 = Temporary + prefix + "frame_la yer"
 where_clause = "\"OBJECTID\" = " + str(cur. OBJECTID)
 gp.MakeFeatureLayer_management (in_feature, out_layer1, where_clause)

 # Select points in point layer that belong to one area
 in_layer = out_layer2
 overlap_type = "WITHIN"
 select_features = out_layer1
 search_distance = 0.1
 gp.SelectLayerByLocation_management (in_lay er, overlap_type, select_features, search_distance)

 # Calculate area ID for feature class
 gp.CalculateField_management (in_layer, "Ar ea_ID", cur.OBJECTID)

 # For each area, store point ID and coordin ates in a dictionary for future use.
 rows2 = gp.UpdateCursor(in_layer)
 cur2 = rows2.Next()
 areapointlist[cur.OBJECTID] = {}
 i = 1

 while cur2:
 # Calculate point ID
 cur2.SetValue("Point_ID", i)
 rows2.Updaterow(cur2)
 print "> Point_ID:", i
 cur2 = rows2.Next()
 i += 1

 cur = rows.Next()

 # Create Free walkable space (raster)---------- -------------------
 # Create raster from area
 in_feature = Temporary + "a03_free_walkable_are a"
 value_field = "WEIGHT"
 cell_size = 1
 out_raster_dataset = Raster + prefix + "_areas"
 gp.PolygonToRaster_conversion (in_feature, valu e_field, out_raster_dataset, "", "", cell_size)

 # Create path feature class
 out_path = Temporary
 out_name = prefix + "internal_paths"
 geometry_type = "POLYLINE"
 gp.CreateFeatureClass_management (out_path, out _name, geometry_type)

 # Set environment settings
 gp.snapRaster = out_raster_dataset
 gp.cellSize = 1
 gp.mask = out_raster_dataset

43

 # Set point dataset
 point_dataset = Temporary + prefix + "connectio n_points"

 # Calculate paths ----------------------------- -------------------
 # Buffer all points to cover more cells when ra sterizing
 in_features = point_dataset
 out_feature_class = in_features + "_buff"
 buffer_distance = 1
 gp.Buffer_analysis (in_features, out_feature_cl ass, buffer_distance)

 # Add Range field
 field_name = "Range"
 field_type = "SHORT"
 gp.AddField_management (out_feature_class, fiel d_name, field_type)

 rows = gp.searchCursor(point_dataset + "_buff")
 cur = rows.Next()
 area_list = []
 while cur:
 aid = cur.Area_ID
 try:
 area_list.index(aid)
 except:
 area_list.append(cur.Area_ID)
 cur = rows.Next()

 for aid in area_list:
 in_table = point_dataset + "_buff"
 out_view = Temporary + prefix + "temp_point _view"
 where_clause = "\"Area_ID\" = " + str(aid)
 gp.MakeTableView_management (in_table, out_ view, where_clause)

 in_table = Temporary + prefix + "temp_point _view"
 out_table = Temporary + prefix + "temp_poin t_stat"
 statistics_fields = "Point_ID MAX"
 gp.Statistics_analysis (in_table, out_table , statistics_fields)
 rows = gp.SearchCursor(out_table)
 cur = rows.Next()
 range_max = int(cur.MAX_Point_ID)

 gp.CalculateField_management (out_view, "Ra nge", range_max)

 index = 1
 gp.snapRaster = Raster + prefix + "_areas"
 gp.extent = "148182.934 410391.759 150146.178 4 12199.376"
 gp.cellSize = "1"
 gp.mask = Raster + prefix + "_areas"

 # Calculate range
 in_table = point_dataset
 out_table = Temporary + prefix + "MAX_Point_ID"
 statistics_fields = "Point_ID MAX"
 gp.Statistics_analysis (in_table, out_table, st atistics_fields)

 rows = gp.SearchCursor(out_table)
 cur = rows.Next()

 range_max = int(cur.MAX_Point_ID)

 for From_ID in range(1, range_max):
 range_to = From_ID + 1
 for To_ID in range(range_to, range_max + 1) :
 print "From: " + str(From_ID) + " To: " + str(To_ID)
 # <<< L O O P S T A R T S H E R E >>>
 in_features = Temporary + prefix + "con nection_points_buff"
 out_feature_class = Temporary + prefix + "sources"
 where_clause = "\"Point_ID\" = " + str(From_ID) + "AND \"Range\" <> \"Point_ID\""
 gp.Select_analysis (in_features, out_fe ature_class, where_clause)

 in_features = Temporary + prefix + "con nection_points_buff"
 out_feature_class = Temporary + prefix + "destinations"
 where_clause = "\"Point_ID\" = " + str(To_ID)
 gp.Select_analysis (in_features, out_fe ature_class, where_clause)

 '''
 in_features = Temporary + prefix + "des t"
 erase_features = Temporary + prefix + " sources"
 out_feature_class = Temporary + prefix + "destinations"
 gp.Erase_analysis (in_features, erase_f eatures, out_feature_class)
 '''

 in_source_data = Temporary + prefix + " sources"
 out_distance_raster = Raster + prefix + "dist_s"
 in_cost_raster = Raster + prefix + "_ar eas"
 gp.PathDistance_sa (in_source_data, out _distance_raster, in_cost_raster)

 in_source_data = Temporary + prefix + " destinations"
 out_distance_raster = Raster + prefix + "dist_d"
 in_cost_raster = Raster + prefix + "_ar eas"
 gp.PathDistance_sa (in_source_data, out _distance_raster, in_cost_raster)

 in_distance_raster1 = Raster + prefix + "dist_s"
 in_distance_raster2 = Raster + prefix + "dist_d"
 out_raster = Raster + prefix + "corr"
 gp.Corridor_sa (in_distance_raster1, in _distance_raster2, out_raster)

 in_zone_data = Temporary + "a03_free_wa lkable_area_BAK"
 zone_field = "OBJECTID"
 in_value_raster = Raster + prefix + "co rr"
 out_raster = Raster + prefix + "corr_mi n"
 statistics_type = "MINIMUM"
 ignore_nodata = "DATA"

44

 gp.ZonalStatistics_sa (in_zone_data, zo ne_field, in_value_raster, out_raster, statistics_t ype,
ignore_nodata)

 expression_string = "CON(" + Raster + p refix + "corr <= (" + Raster + prefix + "corr_min + 0.5), 1, 0)"
 out_raster = Raster + prefix + "corr_1"
 gp.SingleOutputMapAlgebra_sa (expressio n_string, out_raster)

 in_conditional_raster = Raster + prefix + "corr_1"
 in_false_raster_or_constant = "1"
 out_raster = Raster + prefix + "corrs"
 where_clause = "\"VALUE\" = 0"
 gp.SetNull_sa (in_conditional_raster, i n_false_raster_or_constant, out_raster, where_claus e)

 tempmask = gp.mask
 gp.mask = Raster + prefix + "corrs"

 expression_string = "FOCALSUM (" + Rast er + prefix + "corrs, CIRCLE, 3)"
 out_raster = Raster + prefix + "ma1"
 gp.SingleOutputMapAlgebra_sa (expressio n_string, out_raster)

 expression_string = "FOCALMAX (" + Rast er + prefix + "ma1, rectangle, 5, 5)"
 out_raster = Raster + prefix + "ma2"
 gp.SingleOutputMapAlgebra_sa (expressio n_string, out_raster)

 in_raster = Raster + prefix + "ma2"
 reclass_field = "VALUE"
 remap = "0 24 1;24 100 NoData"
 out_raster = Raster + prefix + "reclass "
 gp.Reclassify_sa (in_raster, reclass_fi eld, remap, out_raster)

 in_source_data = Raster + prefix + "rec lass"
 out_distance_raster = Raster + prefix + "eucdis"
 gp.EucDistance_sa (in_source_data, out_ distance_raster)

 in_raster_or_constant1 = Raster + prefi x + "eucdis"
 in_raster_or_constant2 = 1
 out_raster = in_raster_or_constant1 + " _1"
 gp.Plus_sa (in_raster_or_constant1, in_ raster_or_constant2, out_raster)

 in_source_data = Temporary + prefix + " sources"
 in_cost_raster = Raster + prefix + "euc dis_1"
 out_backlink_raster = Raster + prefix + "bcklnk"
 out_distance_raster= Raster + prefix + "dist"
 gp.CostBackLink_sa (in_source_data, in_ cost_raster, out_backlink_raster, "", out_distance_ raster)

 in_destination_data = Temporary + prefi x + "destinations"
 in_cost_distance_raster = Raster + pref ix + "dist"
 in_cost_backlink_raster = Raster + pref ix + "bcklnk"
 out_raster = Raster + prefix + "paths"
 path_type = "EACH_ZONE"
 destination_field = "Area_ID"
 gp.CostPath_sa (in_destination_data, in _cost_distance_raster, in_cost_backlink_raster, out _raster,

path_type, destination_field)

 # Create path based on minimum path cos t from statistics table
 in_raster = out_raster
 out_raster = Raster + prefix + "paths_1 "
 #where_clause = "\"PATHCOST\" < " + str (minpathcost + 0.1)
 constant = 1
 gp.Con_sa (in_raster, constant, out_ras ter)

 # Create polyline from path
 in_raster = out_raster
 out_polyline_features = Temporary + pre fix + "temp_path"
 simplify = "SIMPLIFY"
 #raster_field = "VALUE"
 gp.RasterToPolyline_conversion (in_rast er, out_polyline_features, "", "", simplify) #raste r_field)

 # Explode path into points
 in_features = out_polyline_features
 out_feature_class = Temporary + prefix + "temp_path_points"
 gp.FeatureVerticesToPoints_management (in_features, out_feature_class)

 # Generate near table
 in_features = out_feature_class
 near_features = Temporary + prefix + "c onnection_points"
 out_table = Temporary + prefix + "near_ table"
 search_radius = "1"
 location = "LOCATION"
 gp.GenerateNearTable_analysis (in_featu res, near_features, out_table, search_radius, locat ion)

 in_table = out_table
 out_table = Temporary + prefix + "nearb y_connection_points"
 where_clause = "\"NEAR_DIST\" < " + sea rch_radius
 gp.TableSelect_analysis (in_table, out_ table, where_clause)

 in_feature = Temporary + prefix + "temp _path"

 rows3 = gp.searchCursor(in_feature)
 cur3 = rows3.Next()

 while cur3:
 print cur3.OBJECTID
 # Alter begin and end point
 in_feature = Temporary + prefix + " temp_path_points"
 outDesc = gp.describe(in_feature)
 shapefield = outDesc.ShapeFieldName

 point = gp.createobject("point")
 pntarray = gp.createobject("Array")
 partarray = gp.createobject("Array")
 where_clause = "\"ORIG_FID\" = " + str(cur3.OBJECTID)

45

 rows4 = gp.searchCursor(in_feature, where_clause)
 cur4 = rows4.Next()
 rows4_next = gp.searchCursor(in_fea ture, where_clause)
 cur4_next = rows4_next.Next()
 cur4_next = rows4_next.Next()
 geometry = cur4.shape

 # Alter begin point
 in_table = Temporary + prefix + "ne arby_connection_points"
 where_clause = "\"IN_FID\" = " + st r(cur4.OBJECTID)
 rows5 = gp.searchCursor(in_table, w here_clause)
 cur5 = rows5.next()

 point.id = 1
 point.x = cur5.NEAR_X
 point.y = cur5.NEAR_Y
 pntarray.add(point)

 # Add mid section points
 i = 2
 cur4 = rows4.Next()
 cur4_next = rows4_next.Next()
 while cur4 and cur4_next:
 geometry = cur4.shape
 point.id = i
 point.x = geometry.centroid.x
 point.y = geometry.centroid.y
 pntarray.add(point)
 i += 1
 cur4 = rows4.Next()
 cur4_next = rows4_next.Next()

 # Alter end point
 # geometry = cur4.shape
 in_table = Temporary + prefix + "ne arby_connection_points"
 where_clause = "\"IN_FID\" = " + st r(cur4.OBJECTID)
 rows5 = gp.searchCursor(in_table, w here_clause)
 cur5 = rows5.next()

 point.id = i
 point.x = cur5.NEAR_X
 point.y = cur5.NEAR_Y
 pntarray.add(point)
 partarray.add(pntarray)

 # Insert final path in 'internal_pa ths'
 in_feature = Temporary + prefix + " internal_paths"
 rows5 = gp.insertCursor(in_feature)
 cur5 = rows5.NewRow()

 cur5.SetValue(shapefield, partarray)
 print "adding: ", i
 rows5.insertrow(cur5)

 partarray.removeall()
 pntarray.removeall()

 cur3 = rows3.Next()

 gp.mask = tempmask
 del rows3, rows4, rows5, cur3, cur4, cu r5

def PedestrianInfrastructure():
 # Pedestrian Network
 '''----------------------------------
 Input: Internal paths (polyline)
 Fixed paths

 Internal paths (poyline) + Fixed paths
 o > Pedestrian network

 Output: Pedestrian network
 ----------------------------------'''

 prefix = "a05_"

 in_data = Temporary + "a04_fixed_paths"
 out_data = Temporary + prefix + "pedestrian_inf rastructure"
 gp.Copy_management (in_data, out_data)

 inputs = Temporary + "a04_internal_paths"
 target = Temporary + prefix + "pedestrian_infra structure"
 schema_type = "NO_TEST"
 gp.Append_management (inputs, target, schema_ty pe)

'''Function section'''
DeriveFreeWalkableSpace()
Internalpaths()
PedestrianInfrastructure()

 # Close down script
time1 = time.time()
elapsed = str(int((time1 - time0)/60)) + "min " + s tr(int((((time1 - time0)/60) - int((time1 - time0)/ 60))*60)) +

"sec "
print "Script successfully executed in " + elapsed
del gp, sys, string, os, arcgisscripting, time, mat h, decimal

