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Abstract 
 

Monitoring gamma background radiation in the Netherlands is an important task of the 
National Institute for Public Health and the Environment. Currently, there is an automatic 
network of sensors that is monitoring the gamma background radiation in order to provide 
early warnings in case of nuclear accidents. The output of this infrastructure is point data 
every ten minutes that can be interpolated to produce a map. Only spatial correlation of data 
from the same temporal instance is accounted for in the interpolation procedure. In order to 
improve the predictions, temporal correlation could be integrated in the analysis of the 
variation of gamma background radiation so that observations at previous time instants can 
also be used for prediction.  

This document presents an analysis of the sources of spatial and temporal variation and a 
geostatistical model of spatio-temporal variation in the special case of the linear mixed 
model, where the data are modelled as an additive combination of a trend (environmental 
variables, also known as predictors) and spatio-temporally correlated random deviations from 
the trend.  

The trend was modelled using conventional statistics (previous an exhaustive exploratory 
analysis) by employing linear regression two way interaction. The selection of the model was 
done using backward elimination. The variables selected were able to describe almost one 
third of the variation of the data. 

The random effect was modelled using an additive linear model in order to build a spatio-
temporal covariance function using a geometric anisotropy ratio between space and time to 
compensate for the differences in both scales. The approach is also known as the ‘metric’ 
model, where temporal variation, spatial variation and interaction of spatiotemporal variation 
are added. The methodology is illustrated using data of the gamma background dose from a 
period of four years (2005-2008) from the Dutch National Radioactivity monitoring network. 

It was found that the principal source of variation is the measurement device (calibration). It 
has a strong effect in the variation of time, space (high nugget) and also in the regression 
model (low correlation with variables). The temporal variation due to the instrument error was 
removed by not considering data from year 2005 in the analysis. In this year reallocation 
after calibration of the sensors took place. 

 

Keywords: gamma radiation, geostatistics, semivariance, semivariogram, spatio-temporal, 
variability, variation. 
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1. Introduction and background 
 

After the accident in the nuclear power plant in Chernobyl in 1986, the necessity of an early 
warning and monitoring system for radioactive contamination in the environment was felt. 
Automating the process of mapping environmental data (i.e. prediction) for early warning and 
risk management presents a number of challenging issues. Algorithms, sampling, 
interpolation and quality control have still partially unsolved problems (Dubois, 2005). In 
order to explore this issue, the Radioactivity Environmental Monitoring (REM) Group of the 
Institute for Environment and Sustainability at the Joint Research Centre (JRC) of the 
European Commission organized Spatial Interpolation Comparison (SIC) exercises. The first 
one was held in 1997 and mainly addressed the state of the art of spatial interpolation at that 
time to highlight developments in spatial statistics as well as the large impact of human 
factors on the results obtained. The second one was organised in 2004 and was mainly an 
exercise to deal with automated spatial interpolation algorithms for environmental monitoring 
systems, designed for routine and emergency situations (Dubois, 2005). The conclusions of 
the analyses highlight the difficulties in finding an universal algorithm for the prediction of 
environmental variables in situations where extreme values are found, implying the necessity 
of more in depth analysis in some specific aspects of the data, such as anisotropy or non 
normal distributions.  

 

In the Netherlands, the National Institute for Public Health and the Environment (RIVM) plays 
a key role in the technical information structure of the nuclear Planning and Advice Unit 
(EPAn). During nuclear emergencies, the RIVM runs the Back Office for Radiological 
Information (BORI), whose primary task is to provide timely evaluations of the radiological 
situation based on measurements and model calculations. In order to take these 
measurements, the RIVM operates and maintains a number of advanced technical facilities, 
including the Dutch National Radioactivity monitoring network (NRM) for the continuous 
surveillance of radioactivity in the environment. In addition to the emergency management 
task of the network, routine measurements are performed to monitor the exposure of the 
population to various sources of ionizing radiation (Twenhöfel et al, 2005). 

 

The primary task of the NRM is to provide early warnings in case of nuclear accidents. An 
increase of radiation levels above certain thresholds will issue a warning to the national and 
local authorities, which after careful validation may activate the national emergency plan for 
nuclear accidents (Twenhöfel et al, 2005). The second task is to assess the magnitude and 
geographical extent of a radioactive contamination in the air and on the ground during and 
after a nuclear accident. The third task is to assess the amount of actual radiation doses 
(background radiation) to the population and its development in time. Under regular (non 
emergency) conditions the network provides information on the natural background radiation 
levels in the Netherlands (Blaauboer & Smetsers, 1996), which provides a reference value 
for other radiation measurement networks, e.g. the fence monitoring systems of the nuclear 
power plant (NPP) in Borssele (450 MWe) and the radioactive waste storage facility 
(COVRA) in Vlissingen. During nuclear emergencies, the NRM data form the basis for the 
calculation and validation of actual radiation doses via the direct pathways external radiation 
and inhalation (Twenhöfel et al., 2005). 

 

The NRM is composed of a dense network of 153 ambient dose rate monitors (Figure 1) and 
takes measurements of the gamma dose rates every ten minutes. It is important to mention 
that those measurements are from the gamma background radiation in the ambience. This 
information is sent to a central system which is made up of two servers in a cluster 
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configuration. Since 2005, the NRM is not connected anymore to the telephone network, but 
instead it is connected to a direct network that allows the monitoring stations to be 
continuously on-line (Twenhöfel et al., 2005). The data is presented as point data at the 
measured location. With these data maps of ambient gamma background radiation can be 
calculated by making predictions on a regular 1 km ´  1 km grid, using standard GIS available 
(Arcgis) for visualization purposes. (Personal communication, Chris Twenhöfel). Beside this 
tool the RIVM can also perform universal kriging to produce maps by the means of the 
“automap” library for the R-software. It has the advantage of considering a trend that can be 
a function of continuous variables such as elevation as well as categorical data such as soil 
type. For the calculation of these maps automatic fitting of the variogram is employed, and 
for this fitting some assumptions for the nugget, the sill and the range are necessary. The 
trend using soil type as an explanatory variable is used to reduce the variance of the 
prediction error. The generated output consists of a map of the kriging prediction, a map of 
the kriging standard error and a map showing the approximate 95% prediction intervals. 
These maps can be available via a Web Map Service (Hiemstra et al., 2009).  

 

Figure 1. Location of the stations of the NRM automated network in the Netherlands. 

 

Worldwide the analysis of the spatial variation of the gamma dose and the automatic 
interpolation (prediction) has been done using different techniques, some of them based on 
kriging (Savelieva, 2005; Hiemstra et al., 2009; Pebesma, 2005; Fournier and Furrer, 2005). 
Others have used regularized Spline with Tension (Hofierka, 2005) or back propagation 
artificial neural networks (Timonin and Savelieva, 2005). All these techniques were used in 
the second spatial interpolation comparison exercise of the JRC and were tuned for the 
same spatial extent. The techniques using Kriging or splines with tension appeared to be 
more accurate for data that are normally distributed. However, further research is needed for 
non-stationary data, such as occurring in case of an emergency situation because of a 
radioactive release (Conford, 2005; Myers, 2004). So far there is nothing such as a universal 
spatio-temporal mapping algorithm; the tools currently used for spatial data analysis either 
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provide users with very simple mapping functions that allow quick processing of the data, or, 
what appears to become a new trend, allow them to interact with decision trees that direct 
them towards more advanced functions. These wizards usually require that the users have 
some prior knowledge and experience in geostatistics (Dubois, 2005).The best example is 
the INTAMAP project where  an interoperable framework for real time automatic mapping of 
critical environmental variables by extending spatial statistical methods and employing open, 
web-based, data exchange and visualisation tools were developed (INTAMAP, 2009). 

 

In the Netherlands an automated interpolator is used which only considers spatial correlation 
at individual time instants. Nevertheless, the gamma dose rate data may also be temporally 
correlated and this could help to improve the interpolation of gamma dose rate maps. 
Measurements from other moments in time might improve interpolations at the time instant 
under consideration. Also, sequences of interpolated maps at consecutive points in time (i.e. 
a time series of animated maps) would benefit from taking both temporal and spatial 
correlation into account. Time could become a third dimension and the variation in time and 
space could be modelled as a combination of a trend and a zero-mean residual, similar to 
the description of variation in space alone (Hiemstra et al., 2009).  

 

Szegvary et al. (2007a) studied the spatio-temporal variation of gamma dose rates for the 
extent of Europe at a coarse resolution. For this study, an analysis of the spatial variation in 
summer and another in winter were done. Data from the European radiological data 
exchange platform (EURDEP) was collected and standardized. Daily means were collected 
from the EURDEP monitoring stations to calculate seasonal means and they were 
interpolated using ordinary Kriging as an interpolator to produce maps of gamma dose rate. 
The maps show differences of the gamma dose rate between summer and winter in the 
Netherlands of at least 5%. At finer spatial and temporal resolution, seasonal effects in 
gamma dose rates for the Netherlands may be more pronounced. 

 

Problem definition 

 

Spatial variation has been analyzed and studied more extensively than variation in time and 
space. Lately, this approach is changing and many authors (Ma, 2003a; Kolovos et al., 2004) 
are including the time in the analysis of the variation of spatially correlated environmental 
applications. The inclusion of this variable in the study of the environmental process can 
improve the ability to predict space-time variation in various natural systems (Porcu and 
Mateu 2007). 

 

Modelling spatio-temporal variation of monthly-averaged gamma dose rates at the scale of 
the Netherlands could be useful not only for space-time mapping (prediction) of background 
radioactivity. Because of the correlation between spatial and temporal gamma dose rate with 
222Rn and soil moisture (Szegvary et al., 2007a; Put and Meijer, 1988) these data could be 
used: 

·  As an input for the preparation of 222Rn source term which in combination of 
the local measurements of 222Rn are used for the validation of large-scale 
atmospheric transport models simulating the transformation, transport and 
removal of gases and aerosols from the atmosphere (Szegvary et al., 2007b; 
Gupta et al., 2004). Used in inverse mode these models could also give 
information about sinks, sources and the strength of the greenhouses gases 
(Szegvary et al., 2007a).  
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·  As a tool for exploring variations in soil moisture content which is a central 
parameter in flood prediction (Szegvary et al., 2007a; Grasty, 1997). 

 

So a better understanding of the spatio-temporal variation of monthly averaged gamma 
background radiation may give better inputs for processes such as climate models which 
usually have a coarse temporal resolution (months or years). The monthly averages may 
also provide valuable data for detecting emergency situations that are notably different form 
the background values.  

 

The inclusion of a trend including more environmental variables as predictors like 
precipitation (Hiemstra et al., 2009; Szegvary et al., 2007a), land cover (Blaauboer & 
Smetsers, 1996), elevation and geology (Ramli et al., 2000) can help to improve the variation 
of the monthly gamma background radiation. The inclusion of more explanatory variables 
could improve background gamma dose rate mapping. To summarise, we can say that 
improved modelling accounting for spatial and temporal predictors and considering spatio-
temporal correlation in residuals may be promising. 

 

Main objective and research questions  

 

Considering all the previous statements and the previous work, the aim of this thesis is: 

To analyze, explain and model the space-time variation of monthly averages of gamma-dose 
background radiation in the Netherlands, by including the effect of spatio-temporal sources of 
variation as a trend and quantification of residual variability using space-time variograms. 

 

To attain this objective three research questions are defined: 

1. Which are the physical processes and causal factors affecting space-time variability of 
gamma-dose background radiation in the Netherlands? Are datasets for those factors 
available? 

2. To which extent do the selected variables explain spatio-temporal variability in gamma 
background radiation in the Netherlands? 

3. How can the part of the gamma dose background radiation that is not explained by the 
causal factors be modelled using space-time geostatistics?  

 

Reading Guide 

 

The content of this report is organized according to the above research questions. In chapter 
two a description of the methods is provided. First, a short explanation of the physical 
processes that influence gamma dose rates is given as well as a discussion of how to 
represent them. Second, a description of the construction of the linear mixed model is given 
where the data are modelled as the additive combination of a fixed effect represented by 
linear regression, and a random effect that can be spatially and temporally dependent. 
Chapter three presents the results of the analyses following the same order as described in 
chapter two. First the variable selection and model simplification for the regression analysis 
and next the analysis of the residuals using a space-time variogram are described. In chapter 
five the results are discussed and chapter six answers the research questions. 
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2. Methodology 

2.1 Identification of causal factors of variation i n space-time 

2.1.1 Environmental and seasonal variables 
 

According to literature the most important sources of natural radiation are cosmic, terrestrial 
and 222Ra, 220Ra and their progeny in outdoor air (Blaauboer & Smetsers, 1996). 

 

Cosmic radiation  

 

The radiation dose due to cosmic radiation consists of primary radiation (high energy protons 
and alpha particles) and secondary radiation (neutrons, protons) is partially screened by the 
earth’s magnetic field and the atmosphere. It depends on the geomagnetic latitude and 
altitude or, more accurately, on atmospheric pressure if the cosmogenic radionuclide 
produced in the upper atmosphere are excluded. Since the Netherlands spans only a few 
degrees latitude and most of the country is situated at sea level with a rather constant 
atmospheric pressure on a yearly average, the magnitude of the difference of cosmogenic 
radiation across the country is approx. 0.3 [mSv/a] (Blaauboer & Smetsers, 1996). 

 

Approximately half of the ambient dose rate in the Netherlands originates from cosmic 
radiation and temporal variations are largely explained by atmospheric pressure. Blaauboer 
& Smetsers (1996) showed the validity of this statement for the Netherlands using 
information from five years of the NMR.  

 

Terrestrial radiation 

 

Table 1. Typical ranges values of radionuclide concentration in the soil in the 
Netherlands (Köster et al. 1988). 

Radionucletide  
Range of soil activity concentration 
reported by the UNSCEAR [Bq/kg] 

Typical soil activity 
concentration 

in Dutch soils [Bq/kg] 
238U 10-50 5-53 

232Th 7-50 8-77 
40K 100-700 120-730 

 

Terrestrial radiation is principally dependent on the presence of the radionuclides 232Th and 
238U and their decay products (40K). These components are present in the earth crust since 
the formation of the earth itself. Their soil activity concentrations depend on the specific 
characteristics of that soil, resulting in different levels of gamma dose in the air (Blaauboer & 
Smetsers, 1996). This activity concentration is measured in Becquerel per kilogram [Bq/Kg] 
and it shows the number of nucleus decays per second of one kilogram of soil. Those activity 
concentrations for the Netherlands are described in Table 1 and compared to the ones 
reported by the United Nations Scientific Committee on the effects of Atomic Radiation 
(UNSCEAR) (Köster et al. 1988). 
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The ranges for the Netherlands are due to the contribution of sedimentary materials. Higher 
concentrations occur in some spots at the sea–land interface where enrichment of heavy 
minerals occurs (Blaauboer & Smetsers, 1996). 

 

According to Blaauboer & Smetsers (1996) the terrestrial radiation depends of soil and radon 
profile. Soil is the second principal contributor to spatial variation in gamma background 
radiation and depending of the radon profile it is also a contributor to temporal variation in a 
daily and possibly weekly scale. In Table 2 the results of the estimations of the contribution to 
the variation of the gamma background radiation are presented in absolute and relative 
values.  

 
222Ra, 220Ra and their progeny 

 

Radionuclides in the air that influence in some way the gamma background radiation are 
principally products of 220Ra, 222Ra and their progeny (Blaauboer & Smetsers, 1996). Those 
gases are present within the soil profile and near the surface (Morawska and Jeffries, 1994). 
The radionuclides are not steady; there is a dynamic transfer of them between the soil and 
the atmosphere and this transfer is regulated by different processes. The first one is 
emanation, which is the diffusion of radon between soil particles and the interstitial pores of 
the soil. This process depends on the characteristics of the particle (size, porosity) and the 
water content of the soil (Blaauboer & Smetsers, 1996). Because of the low solubility of 
radon in water it tends to reach air filled pores by diffusion. Emanation is the combination of 
processes that make radon available for transport. The second process is exhalation, which 
is the transport of the emanated gas in the soil (2 meters upwards) into the atmosphere. This 
process is not only dependent on the emanation and the soil particle size, but also depends 
partially on the temperature, moisture content, porosity of the soil, atmospheric pressure, and 
permeability (Blaauboer & Smetsers, 1996). Stranden et al. (1984) demonstrated that soils 
with relatively low soil moisture tend to have a higher exhalation rate. The third process 
concerns horizontal and vertical transport in the atmosphere, which is highly dependent on 
the wind and the vertical transport within the mixing layer due to turbulent processes. 222Ra 
can be dispersed at a continental scale and up to 10 Km up into the atmosphere. On the 
other hand, 220Ra is transported only a few meters because of its short half life (Blaauboer & 
Smetsers, 1996). 

 

After considering the natural sources of gamma dose rate, it is possible to search for factors 
that can have an effect on its temporal and spatial variability. The most important source of 
variation in small intervals of time (less than four hours) for the natural dose rate is probably 
washout of radon progenies during the beginning of rainfall. Increases in the dose rate of 50 
[nSv/h] (nanosievert1  per hour) and more due to this phenomenon have been observed 
(Szegvary et al., 2007b; Greenfiel et al., 2003). Blaauboer & Smetsers, (1996) found that in 
the Netherlands washout of 222Ra progeny causes short-term but significant increases in 
ambient dose rate that could double average background radiation. The deposition of Radon 
is possible in three different ways: 

·  The first is when radon gas dissolves in cloud droplets. 
·   In the second case, decay products may be attached to aerosols that serve as 

condensation nuclei for cloud droplets.  
                                                 
1 It is a measure of the equivalent dose which express the energy deposited in a medium by ionizing radiation 
which include some kind of biological weighting. For gamma particles this weighting factor is one. 
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·  The third case is when decay products are scavenged and swept from the air by rain 
droplets. 

The first two processes are known as washout and they can take minutes, hours, or days 
before the rain itself takes place, and because of the short half life of radioactive 222Ra 
progeny they may have decayed before they reach the ground. The third process is known 
as rainout and considerable amounts of decay products may be deposited in the ground 
(Blaauboer & Smetsers, 1996). 

 

Atmospheric conditions play a key role in the transport of radon because of the physical 
characteristics of a gas (dependent on temperature, pressure) and the interactions between 
them. There are daily and seasonal variations in the gamma dose rate that are dependent on 
the radiation of the sun and the conditions of the wind. Also the humidity in the air will 
influence the condensation of the water and as consequence the amount of washout 
(Blaauboer & Smetsers, 1996). 

 

Airborne radioactivity depends principally of the radon profile and activity in the air and it has 
an effecting the temporal variation.  

 

The highest temporal increase of ambient gamma dose rate in the Netherlands caused by 
natural processes comes from rainfall due to rainout and washout of short lived decay 
products of 222Ra (deposited radioactivity). The effect of the rain has a temporal scale of 
hours (Blaauboer & Smetsers, 1996). 

 

Other sources 

 

Building materials and land use also have an effect on the gamma dose rate. For example, 
there is a shielding effect in indoor environments due to the absorption of part of the external 
radiation by building materials which varies between 20-60%. The opposite is also possible: 
building materials can emanate radioactivity. Julius and Van Dongen (1985) proved that 
building materials are the principal source of indoor gamma variation in the Netherlands. The 
use of concrete, bricks and paved roads will enhance external radiation due to natural 
radioactivity. This could have a great impact in the Netherlands because most of the sensors 
are located close to or within urban areas.  

 

Minerals and coal extracted from the earth crust also may have an influence. During 
phosphate-ore processing, part of its radioactivity is released to the environment. The 
fertilizer industry produces large amounts of sludge that are enriched with natural radio 
nucleotides. The intensive use of the agricultural land may affect the porosity of the soils and 
as a consequence the exhalation and emanation of 220Ra, 222Ra and their progeny 
(Blaauboer & Smetsers, 1996).  

 

In summary cosmic radiation, terrestrial radiation, airborne radiation and deposited radiation 
have an effect in the variation in space and/or time and are dependent on environmental and 
physical processes. The total contribution of variation was studied and calculated by 
Blaauboer & Smetsers (1996). Table 2 describes the relative and absolute contribution of 
each source. Cosmic and terrestrial sources are the principal contributors to the spatial 
variation (98 % of the total variation) and airborne and deposited radioactivity are the 
principal contributors to temporal variation.  
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Table 2: Derived quantities characterizing source dependent contributions to the 
ambient dose rate in the Dutch outdoor environment (modified from Blaauboer & 

Smetsers 1996). 

Source Average dose 
rate 

Annual dose Rel. dose Variations mainly 
in 

Units [nSv*h �1 ] [µSv*a �1 ] %  

Cosmic 40 350 49 Space 

Terrestrial 40 350 49 Space 

Airborne 0.8 7 1 Temporal 

Deposited 5.3 4 0.6 Temporal 

 

2.1.2 Datasets for representing environmental and s easonal variables 
 

For the cosmic radiation it is possible to use datasets available of the atmospheric pressure 
in the Netherlands. Being almost constant in the Netherlands the effect is going to be mainly 
in the temporal variation. Its effect in space is dependent on the altitude and the latitude 
(Blaauboer & Smetsers 1996) Datasets with information of monthly atmospheric pressure are 
available from the website of the “Royal Meteorological Institute” (KNMI, http://www.knmi.nl/) 
in text format. There are data from 35 locations (point information) all over the Netherlands 
that can be used to calculate monthly atmospheric pressure. An interpolation of this data was 
required because the needed data is located in non measured locations. This operation was 
done using the “R-software” (R Development Core Team, 2009) with the library “automap” 
(Hiemstra et al., 2009). This package performs an automatic interpolation by automatically 
estimating the variogram and then calling another library “Gstat” (Pebesma, 2004) which is a 
program for the modelling, prediction and simulation of geostatistical data. The result is a grid 
with predictions at non measured sites from which it is possible to extract values at the 
position of the NRM stations where the gamma dose rate is measured. This extraction was 
done using also the R-software with the library “sp” which allows manipulation of spatial data. 
with the command “overlay” using the datasets of locations of the NRM stations (points) 
overlaying the interpolated grids of atmospheric pressure. The whole process is summarized 
by means of a flow chart (Figure 2).  
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Figure 2. Flow chart for the process of estimation of climatic variables for non 
measured sites. 

For the soil, a simplified map of the soil type map (Alterra, 2006) was used with eleven 
categories (Figure 3). Aggregation is still possible considering the physical characteristics of 
the soil described before (Table 3).  

Table 3. Aggregation of soils with similar characteristics 

Aggregated classes Categories (Alterra, 2006) 

Build up Build up 

River clay River clay + Marine clay 

Peat Peat 

Sand Sand + Peat/sand + Sand/Clay + Sand/River clay 

Loam Loam 

Marine clay Marine clay 

Water Water 

 

Process 

 

Query 

 

Transformation 

 

 

Selection of the data 2005 - 2008 
from the KNMI webpage 

Use of “Automap” tool to 
interpolate climatic data 

Use the information of the geographical 
position of the RIVM stations to extract 
the climatic data for each station 
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The decision to make this aggregation is supported by the results of Blaauboer & Smetsers 
(1996) and Hiemstra et al. (2009). Box plots of the gamma dose rate were made to observe if 
the aggregation will be useful.  

 

Figure 3. Simplified soil map of the Netherlands (Alterra, 2006). 

 

Datasets that can explain part of the variation of the gamma dose rate due to exhalation of 
radon could be prepared using atmospheric pressure, air moisture and temperature. Data 
can be obtained from the KNMI webpage in text format from irregular point locations. The 
same process of interpolation depicted in Figure 2 was used to calculate the value of these 
variables at the positions of the gamma dose measurement stations.  

 

To represent the washout and rainout, monthly cumulated rain was considered as an 
explanatory variable. In the next graph (Figure 4) the accumulated precipitation (Figure 4, 
bottom) and the gamma dose rate (Figure 4, top) were plotted to visualize the effect of the 
rain at a single location (Amsterdam, # 1234) during a period of one month (October, 2005). 
One can observe some peaks in both plots at similar moments in time. For this station in this 
month, the normal measurements of the gamma background radiation are in a range 
between 65 and 80 [nSv/h] with a mean of 72.53 [nSv/h], but is visible that days with rain 
there are increases until 120 [nSv/h]. The increase of the mean of the background radiation 
is approximately 2.6% in the month with an accumulated precipitation of 68.4 mm. Even 
when the effect is small, it exists during a short period of time. Data from the KNMI (more 
than 100 stations) were used to interpolate the cumulated monthly rain using the same 
process as depicted in Figure 2. 
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Figure 4. Graphs of the measurements of the gamma background dose rate and the 
cumulated rain for October 2005 in Amsterdam. 

 

CORINE 2006 land use data (Figure 5) were also used as an explanatory variable because 
in these datasets it is possible to consider some effects of the construction materials, 
industries, management of the land. The data set has 30 categories and some of these are 
similar with respect to the use of the land, so aggregation of the land use classes was done 
(Table 4). Agricultural fields and grasslands were put into the same category because of their 
similarity in management like fertilization and ploughing. Industrial and discontinuous urban 
fabric were aggregated because of their similar characteristics. Urban areas and 
infrastructure were also aggregated because all of them use constructions materials that can 
have different effects in the gamma dose (Blaauboer & Smetsers, 1996). For simplification 
purposes all water classes were merged into one.  
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Table 4. Aggregation of land use with respect to land use 

Aggregated classes Land use (CORINE, 2006) 

Agriculture Complex cultivation patterns 

 Fruit trees and berry plantations 

 Non-irrigated arable land,  

 Land occupied by agriculture with areas of natural vegetation 

 Pastures 

 Natural grasslands 

Forest Broad leaved forest 

 Coniferous forest 

 Mixed forest 

 Transitional woodland-shrub 

Industry Discontinuous urban fabric 

 Industrial and commercial units 

 Mineral extraction sites Mineral extraction 

Urban  Dump sites 

 Airports 

 Construction sites 

 Road and rail network 

 Sport and leisure facilities 

 Green urban areas 

 Port areas 

Water Water bodies 

 Water courses 

 Intertidal flats 

 Estuaries 

 Salt marshes 

 Inland marshes 

 Peat bogs 
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Figure 5. Map of land use in the Netherlands (CORINE 2006). 

 

Some other variables like solar radiation, temperature and relative humidity were considered, 
because of their influence in radon profile in the soil and in the air. Data from this variables 
are available from the KNMI website in text format and they were treated in the same way as 
was explained in Figure 2.  

 

Seasonal effects were analysed using the month as an explanatory variable. 

2.2 Statistical analysis  
  

A temporal resolution of a month was selected because of the dynamic nature of ambient 
gamma. The measurements of the sensors vary between day and night in a range of 20 
[nSv/h]. According to the theorem of central limit if there is a sufficiently large number of 
independent random variables those will be approximately normally distributed and the mean 
will be close to the population mean (Ott and Longnecker, 2001). It means that if the means 
of a considerable big amount of samples (4000) is averaged in a time interval of one month 
this number becomes very consistent (Blaauboer & Smetsers, 1996). A temporal resolution 
of one month could be useful for climatic models with the same temporal resolution and for 
the analysis of anomalies. If an event happens and the background radiation is known 
(annually means or monthly means), the effect of the anomaly can be estimated and proper 
measures can be taken.  
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The data for the gamma background radiation considered for the model are of the period 
2005-2008 and were obtained from the RIVM in text format. It is composed of the gamma 
dose rates expressed in units of nano Sievert per hour [nSv/h], the date and the hour, the 
number of the station where it was measured and the coordinates of the position of the 
station. The reference coordinate system is the Dutch RD grid (Rijksdriehoekstelsel). The 
data set has measurements since 2005 until 2008 for 153 stations for every ten minutes. In 
total there are more than 32 million observations. Because of this amount of information, 
spreadsheets like Excel are not able to process these data. So other software was chosen, 
the R software, which is an object oriented program and in which it is possible to write scripts 
to make automatic process in order to transform the data and obtain information from it. For 
the statistical analysis R works with the library “stats” which is a program with functions for 
statistical calculations (R Development Core Team and contributors worldwide, 2009). The 
original data obtained from the RIVM was not filtered nor corrected for anomalies in the 
measurement. To obtain a useful data set of background radiation, all values above 200 
[nSv/h] and negatives values were removed. Negatives values do not make sense and 
values higher than 200 are produced by events like tests and calibrations, or transport of 
radiological instruments (Personal communication, Chris Twenhöfel). There are some 
measurements at a certain position in time and space that are missing and they should be 
treated in a special way. The value NA (Not Available) represents a missing value in a data 
frame in the environment of R-software (Zuur, et al., 2009). To avoid problems with the 
missing values during the calculations they were replaced by “NA” which is a term that the R 
software can recognize as a missing value. 

 

So far the physical process of the gamma background radiation has been explained, some 
possible explanatory variables were selected and their respective values calculated for each 
RIVM station. All data were gathered into one table using a join operation based on a 
common field (position coordinates in this case). This operation was done using the R 
software with the command “merge”. To give an overview of the next steps in the statistical 
calculus the process is summarized in the flowchart of Figure 6. 
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Figure 6. Flowchart of the statistical data processing for variogram estimation 

 

 

 

Process 

 

Query 

 

 

Selection of the data for period 2005 - 
2008 from the RIVM database. 

Filtering of data (more than 70% 
samples/month) and calculus of the monthly 
means of gamma. 

Use of linear regression to estimate the 
best model to describe variation of 
gamma background radiation. 

Calculus of residuals for geostatistical 
analysis 

Calculus of experimental and 
semivariogram to fit a variogram in space 
and time 

Exploratory 

data 
analysis 
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2.2.1 Exploratory analysis 
 

It was mentioned before that gamma background dose was modelled as the additive 
combination of fixed effects represented by a trend and (spatio-temporally correlated) the 
random effects.  

 

First of all it is important to define some terms. The response variable is the object of interest: 
it is the variable whose variation is attempted to understand; in this case the background 
dose measured by the NRM. Those explain the extent to which variation in the response 
variable is associated with variation in the explanatory variable (Crawley, 2007). A 
continuous measurement is a variable such as temperature or rain that can take any real 
numbered value. A categorical variable is a factor with two or more levels: for example in this 
work soil type is a factor with 12 levels. 

 

An exploratory data analysis was done before the start of the estimation of the regression 
model. This was done by calculating means, standard deviations, maximum and minimum, 
correlations and also graphical summaries like histograms, box plots, and scatter plots 
(Faraway, 2004). The aim was to find outliers and data behaviour that could affect the validity 
of further analyses. 

 

Normality 

 

To model the variation of gamma background radiation, the normality of the data was 
checked. Histograms are suitable because these show the mode, the spread and the 
symmetry (skew) of a set of data (Crawley, 2007). Histograms of the gamma dose rates were 
made for each month and for the whole dataset consisting of the measurements of all the 
RIVM stations. They were also made for each of the explanatory variables. The histograms 
were computed for the data of the whole period (2005-2008). The function “hist” was used in 
the R software to produce these plots. 

 

Scatterplots 

 

With two variables (typically the response variable on the y axis and the explanatory variable 
on the x axis), the kind of plot that is to be used depends on the nature of the explanatory 
variable. When the explanatory variable is a continuous variable, such as the temperature, 
then the appropriate plot is a scatter plot. When axes are drawn and a scatter plot of points is 
added, it is possible to observe some tendencies in the data, like a straight lines or curve, if 
they exist (Ott and Longnecker, 2001). To summarize the output, a scatter plot matrix was 
prepared to compare all variables against each other using the R software with the function 
“plot”. The advantage of using this matrix is that is also possible to identify multi collinearity.  

 

Correlation and covariance 

 

According to Crawley, (2007) with two continuous variables, x and y, the question naturally 
arises as to whether their values are correlated with each other. The correlation is a 
parameter that measures the strength of the linear association between two quantitative 
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variables. The stronger the correlation, the better x can be used to predict y (Ott and 
Longnecker, 2001). Mathematically, correlation is defined in terms of the variance of x, the 
variance of y, and the covariance of x and y (the way the two vary together, which is to say 
the way they covary) on the assumption that both variables are normally distributed. 
Covariance is defined as the expectation of the vector product x*y. The covariance (Pearson) 
of x and y is the expectation of the product minus the product of the two expectations. Note 
that when x and y are independent (i.e. they are not correlated) then the covariance between 
x and y is zero (Crawley, 2007). The correlation is expressed by the Equation 1: 
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),cov(

yx SS

yx
r =    [Equation 1]   

Where: 

r  is the correlation between x and y  

cov(x,y)  is the covariance of x and y 

2
xS    is the variance of the explanatory variable 

2
yS   is the variance of the predicted variable 

The correlation between the background radiation and each of the continuous variables 
mentioned before was calculated in a matrix correlation using the R software with the library 
“stats” and the command “cor”.  

 

Box-and-whisker plots 

 

When the explanatory variables are categorical rather than continuous, it is not possible to 
produce a scatterplot. Instead, it is possible to choose between a barplot and a boxplot. Box-
and-whisker plots are more convenient because they convey more information like the 
median, the 25th

 and the 75th percentiles and the spread of the distribution (Crawley, 2007: 
Ott and Longnecker, 2001). In this work soil type, land use and month are categorical 
variables. Box plots comparing the gamma dose rate with each of these variables at a time 
were computed to see their effect on gamma background radiation. 

2.2.2 Regression analysis 
 

The method that was used to model the gamma background radiation trend is known as 
multiple linear regression. Finding the variables that explain the deviations of the gamma 
background radiation can help to improve the prediction of future values. The regression 
analysis was composed of three steps. 

 

·  Variable selection 
·  Formulating the model 
·  Checking model assumptions 

 

Linear regression is the simplest method and to use it some basic assumptions are required 
(Ott and Longnecker, 2001).  
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In a regression model of the form  iikkisii vvvy ebbbb +++++= ...2110         [Equation 2] 

 Where: 

yi is the i response variable, gamma background radiation 

v is the predictive variable 

0b  is the estimation of the intersect 

kb  is the estimation of the slope for each predictive variable 

k is the number of predictive variables 

e  random error 

 

In classical linear regression analysis, it is assumed that: 

·  The relation is in fact linear, so that the errors all have expected value 
equal to zero for all i. 

·  The errors all have the same variance for all i. 
·  The errors are independent of each other 
·  The errors are all normally distributed for all i.  
 

Variable selection 

 

In a previous part of this document the physical processes related to gamma background 
radiation were explained and some candidates for explanatory variables were suggested. 
Once the exploratory data analysis has been done and each variable has been compared 
individually with the background radiation multiple regression analysis was done using 
backward elimination to remove variables that are not significant. The decision of remove 
some of them was supported by the acquired previous knowledge that some of them are not 
going to be really good predictors because of a poor influence in the response variable 
(gamma background radiation). The selection of variables was done considering the principle 
of Occam’s razor or principle of parsimony which says that among several plausible 
explanations for a phenomenon, the simplest is best. Collinearity was avoided by not 
including correlated explanatory variables (Faraway, 2004; Crawley, 2007). For this purpose 
a matrix scatterplots of the predictive variables were computed. 

 

The simplification of the model starts with the full model which includes all the variables that 
were discussed before and also interactions two ways 
(AgSoilType+height+atmpre+rain+atmhum+AggreCorin+month+interactions two way). The 
aim is to remove the variables that have the least impact in the model. First the least 
significant terms were removed from the model. To take better decisions about the 
elimination of the variables the changes in the deviance (sum of square of the residuals) of 
the new model were also compared.  If the increase is not big them the term is left out of the 
model. This selection of variables was repeated until the model only has significant terms. 
Also the adjusted R2 was compared between models because it sais how much of the 
variation the model explain. (Crawley, 2007; Ott and Longnecker, 2001).  

 

An indicator coding was introduced in the R-software for the regression analysis where 
“Gamma” is the gamma dose rate, “AgSoilType” is the variable soil type map of the 
Netherlands, “height” is the altitude in cm above sea level, “atmpre” is the atmospheric 
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pressure, “AgSoilType” is the aggregation of the CORINE land use map, “month” is the unit 
of time.  

 

Checking the model 

 

After calculating the regression model its goodness of fit was evaluated. The residuals are 
good indicators of the model fit. For this they were plotted against the predictive variables to 
search for tendencies. If the latter are present (point clouds with a curve shape) another 
model should be applied (Ott and Longnecker, 2001). To check normality of the residuals a 
histogram was plotted (Ott and Longnecker, 2001).  

 

2.3 Space-time geostatistics, analysis of residuals   
 

The methods so far described concern the trend in gamma background radiation. Next the 
(spatially dependent) random effects can be analyzed with geostatistics. Geostatistics offers 
a way of describing the spatial continuity that is in essential feature of many natural 
phenomena like the gamma background radiation (Savelieva, 2005; Hiemstra et al., 2009; 
Pebesma, 2005; Fournier & Furrer, 2005; Dubois, 2005) and provide adaptations of classical 
regression techniques to take advantage of this continuity (Isaaks and Srivastava, 1989). 
The basic principle of spatial continuity states that data that are close to each other are more 
likely to have similar values than data that are far apart. Visual checking of the monthly 
means of gamma background dose plotted in maps was done to get a first impression 
whether this also applied for the data used in the present study. 

 

Geostatistics suggest three methods to describe spatial continuity: the covariance function, 
the correlogram or correlation function and the semivariogram. The three of them equally 
serve as descriptive tools (Isaaks and Srivastava, 1989). Classical geostatistics places most 
relevance on the variogram based methods of estimation (Diggle and Riveiro, 2007). 
Formulating a model for a particular application involves both spatial (random effects) and 
non spatial exploratory analysis (trend or mean function).  

 

The approach of this work involves the use of the semivariogram and some definitions are 
necessary:  

·  Semivariance is the measurement of the spatio-temporal variation between two 
locations and it is expressed by Equation 3: 

( ) ( )( )[ ]2, , 
2
1

)( gthxtxEh ++-= eeg   [Equation 3] 

Where 

g   is the semivariance 

h  is the linear distance between two locations 

g  is the linear distance in time between two locations 

( )xe  is the measured value at position x 

·  Semivariogram is the plot of the semivariances as a function of the distance. If it is 
plotted as a cloud of points considering all possible combinations (0.5*n*(n-1)) it is called the 
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semivariogram cloud. If these points are averaged over suitable lags or intervals and plotted, 
then it is called the experimental semivariogram. This is possible because in conventional 
geostatistics the expected semivariance is a smoothly varying function of the distance 
(Diggle and Riveiro, 2007). In Figure 7 the variogram cloud (top) is transformed into the 
experimental semivariogram (botton) by averaging the semivariances that are located within 
the selected lags (between blue lines). The lag size is the distance between the blue lines. 

 

Figure 7. Examples of the semivariogram cloud (top) and the experimental (bottom) 
semivariogram (modified from Diggle and Riveiro, 2007) 

When the trend or mean function m is not constant, the variogram based on the 
observations are not the same as the variogram of the residuals (Diggle and Riveiro, 2007). 
This is the case of the gamma dose background radiation and therefore this approach was 
used for the variogram estimation. First the model of the spatial variation is introduced in 
Equation 4 to understand how it works in only one dimension. 

( ) ( ) ( ) ( )xxfxxz
p

k
kk ebem +=+= �

=1

  [Equation 4] 

Where  

z(x)   is the regionalized or field variable at location index x 

m Spatially varying mean or drift that can be replaced by a linear 
regression model  

kb  , k = 1… , p are the drift coefficients 

( )xfk , k = 1 …p are base functions of the location index   

( )xe   is a zero-mean stochastic process 
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For the analysis of the space-time variation of gamma background radiation another 
dimension is included, the time, and is represented by Equation 5.  

( ) ( ) ( ) ( )txtxftxtx
p

k
kk ,,,,

1

ebeme +=+= �
=

  [Equation 5 ] 

Where:  

z(x,t)  is the regionalized or field variable at location x and t 

( )txf k , , k = 1 …p are base functions of the location in time and space 

( )tx,e   is a zero-mean stochastic process depending on the distance in time 
and space. 

2.3.1 State of the art of space-time geostatistics  
 

The description of the fundaments for the construction of the semivariogram in space has 
been described in the previous section, but the aim of this report is to study the spatio-
temporal variation which means that the temporal dimension needs to be added. To date, 
there are many possible methods for space-time geostatistics that differ in complexity and 
the approach used to calculate the space-time covariance structure. Since 1990 those 
models have been used in different fields for example in forecasting (Rodriguez-Iturbe and 
Mejia 1974; Stein, 2005), soil science (Snepvangers et al. 2003; Heuvelink and Webster, 
2001),  hydrology (Rouhani and Myers, 1990), disease risk (Knorr-Held, 2000) and many 
more. 

 

The addition of the time as a new dimension involves some considerations in the 
constructions of the spatio-temporal variogram because there are some fundamental 
differences between them (Rouhani and Myers, 1990).  According to Snepvangers et al. 
(2003) the space represents a state of coexistence, in which there can be multiple 
dimensions and interpolation is usually of main interest. Time on the contrary represents a 
state of successive existence, a clear ordering (no reversible) in only one dimension is 
present and extrapolation is usually of main interest.  

 

It is possible to construct variograms from valid models (spherical, exponential, Gaussian, 
etc.). Positive linear combinations and products are valid procedures to combine those 
models in space and time (Ma, 2003a).  But there are some observations to these 
combinations. These constructions are in general not valid if combining a valid temporal 
model with a valid spatial model to produce a spatiotemporal model (Rouhani and Myers, 
1990).  In a linear combination the spatial and the temporal semivariance structure are 
treated completely separated and the spatio-temporal semivariogram is the sum of these 
structures (Rodriguez-Iturbe and Mejia 1974). Snepvangers et al. (2003) drawback some 
problems of the strict separation of the semivariances in space and time. This linear 
combination implies that the spatial behaviour is the same for all time points and that the 
temporal behaviour must be the same for all the space points which is not seen in practice. 
The combination by means of a product of spatial and temporal semivariance structure used 
by Rouhani and Hall (1989), can lead to singularity problems which means that the 
coefficient matrix for ordinary kriging will not be invertible and the kriging system will have 
more than one solution. 
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As a solution for those problems, Bilonick, (1988) presented a simple non separable 
semivariance model form (Equation 6). He proposed an extension of the separate-sum 
models using a geometric coefficient of anisotropy between space and time (Equation 7) to 
solve the problems arising from the differences in space and time variability  

)()()(),( ststttssts hhhhh gggg ++=   [Equation 6] 

Where 

),( ts hhg  is the spatio-temporal variation 

sg  is the spatial variation with lag sh  

tg  is the temporal variation with lag th  

stg  is the spatio-temporal variation with lag sth  which is obtained from: 

2
tsst hhh a+=

  [Equation 7] 

Where a  is geometric anisotropy ratio between space and time 

 

The advantage of this model is that the components can be easily interpreted in a physical 
sense, but the estimation of the model parameters is not easy and the assumption that the 
distances in space and time can be reduced to a single space–time distance using a 
geometric anisotropy ratio may not be realistic in all situations (Snepvangers et al.2003). 

 

To date some other models with non separable semivariance structures have been proposed 
and mathematically they have been proved. Ma, (2008) presents a summary of the recent 
advances in non separable semivariances structures using different approaches 
(deterministic, stochastic, and mixed). Mathematically those structures are correct, but they 
often lack physical support and are somewhat artificial (Snepvangers et al.2003).  

2.3.2 Spatio-temporal Variogram construction 
 
To have an insight of the variability in the residuals the total variance, the variance in time 
and the variance in space were calculated and compared for the monthly mean of the 
gamma background dose, the residuals of the model for the period 2006-2008 and the 
residuals of the model for the period 2005-2008. The total variance is the variance calculated 
for the data from the whole period and all the stations. The variance in time is the variance 
calculated for the data of each station (48 months) and then averaged with all the other 
variances from the other stations in the Netherlands. The variance in space is the variance 
calculated for each month and then averaged with the variances of the other months.  
 
The experimental spatio-temporal semivariogram was constructed using the R-software with 
the library “stats”. The first thing that was done is the estimation of the temporal and the 
spatial experimental semivariogram (to estimate the two first components of Equation 6). To 
do this calculus the extent of the analysis in time or space was defined in order to obtain the 
temporal and the spatial experimental semivariograms. To calculate the temporal 
experimental semivariogram the semivariances of the residuals are calculated for one 
monitoring station for the whole period of time (distance in time). This process is repeated for 
all the monitoring stations (153) and those semivariances are the ones that are averaged 
over suitable ranges or lags to obtain the temporal semivariogram. For the spatial 
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experimental semivariogram the semivariances of one month are calculated for all the 
monitoring stations (distance in time), this process is repeated for all months and those 
semivariances are averaged over suitable ranges or lags to obtain the spatial semivariogram. 
The third component of Equation 6 was estimated using Equation 8 where the ranges in 
space and time are considered simultaneously. 
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Where  

)( stst hg  is the semivariance at lag s and time t  

ts hh ,   are the space and temporal lags 

),( ts hhN  is the numbers of pairs in the spatio-temporal lag 

 

The residuals of the regression analysis (e ) were used to calculate the experimental spatio-
temporal variogram using Equation 6. Lags from the same size in space (10000 m) and time 
(one month) were defined to average the semivariogram cloud and obtain the experimental 
variogram using Equation 8.  The calculus of the spatio-temporal semivariance was done in 
R using scripts to have an automatic process. To explain the approach used in the script 
array data structure is used for a better understanding of the calculus of the variance within 
certain ranges (lags) in time and space. 

For the array: 
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Where: 

g  is the mean semivariance calculated for a range (lag) in space and time ( )( stst hg ) 

i  is the number of lags in space  

j  is the number of lags in time (month)  

The output is an array of “j” columns and “i" rows where )( stst hg  is calculated for the defined 

lags in space and in time. Some precautions should be taken in the definitions of the ranges 
of the lags in the origin.  The first lag for the temporal scale should not include zero, because 
that is the temporal variogram and the first lag of the space scale should be bigger or equal 
than zero and smaller than one, because that is the marginal spatial variogram. 

 

Use of different lag sizes 

 

The use of variable sizes for the lags was also tested to compare qualitative differences 
between the resulting fitted variograms. This was done to allow smaller lags near the origin 
(0, 2, 3, 4, 5, 6, 7, 9,11,15,75, 500 km), which is the most interesting part for prediction 
purposes, while having enough point pairs in the more distant lags. For the time the minimum 
lag size was already use so the increase in the lags away from the origin was calculated (0, 
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1, 2, 3, 4, 5, 6, 8, 11, 21, 50 months). Conventional statistics assume that the expected 
semivariance is a smoothly varying function of the distance, hence by averaging values over 
suitable narrows ranges of inter-point distances (a chosen lag) it is possible to reduce the 
variance without introducing material amount of bias (Diggle and Riveiro, 2007; Isaaks and 
Srivastava, 1989) 

 

Fitting the spatio-temporal semivariogram 

 

So far we have a sample spatio-temporal variogram but it is necessary to fit a function to the 
data. The selected function (Equation 6) is the one defined by Bilonick (1988). For this 
research this function is a linear combination of exponential models. According to the results 
of other studies in the Netherlands (Hiemstra et al., 2009) this function describe better the 
variation of the random error of gamma background radiation. The resulting spatio-temporal 
model is a linear combination of the temporal, spatial and the interaction between time and 
space corrected with a geometric anisotropy ratio (Equation 7). It is important to recall that 
these tree components were calculated from the residuals of the regression model. The 
optimization was performed in Equation 6 to estimate the parameters that best describe the 
semivariances calculated for the experimental temporal, spatial and spatio-temporal 
semivariograms. 

 

The calculus of the estimates of each of the three functions mentioned before should be 
done in a way to find an optimum. This operation is possible to do using R software using the 
command “optim” in the library “stats”. This process is done with a quasi-Newton method 
including boundaries for maxima and minima. This optimization method is called the "L-
BFGS-B"(Broyden–Fletcher–Goldfarb–Shanno) and the advantage is that uses boundaries 
constraining for the calculations. The BFGS method is derived from the Newton's method in 
optimization, a class of hill-descending (in this case) optimization techniques that seek the 
stationary point of a function, where the gradient is 0 or in another words where the function 
stops increasing or decreasing. Newton's method assumes that the function can be locally 
approximated as a quadratic Taylor expansion in the region around the optimum, and use 
the first and second derivatives to find the stationary point. Detailed explanation about the 
method can be found in Fetcher, 1970, Goldfarb, 1970 and Shanno, 1970.  
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3. Results  

3.1 Statistical analysis 
 

As a result of the filtering of the data 7433 observations were available and (7%) were 
removed because they didn’t have at least 75% of the measurements in one month. During 
the exploratory analysis unexpected and sudden jumps and drops in the measurements were 
found at the end of 2005 for more than 60 measurement stations of the network. It was 
observed that the sensors from stations #970 to #998 (14 in total) had a drop in 
measurements of background gamma dose during the period of 2005. To find the source of 
these discontinuities, the RIVM was contacted and it was explained that in 2005 all the 
sensors RS02 (137Cs calibrated) were replaced for other ones RS03 (60Co calibrated) in the 
“alfa-beta” monitoring stations (Communication by mail, Chris Twenhöfel). In these stations 
(#970-#998) the sensors for gamma background radiation are allocated 3.5 meters above 
the soil. Szegvary et al., (2007b) prove that the altitude of the sensor above the ground has 
an effect of the measurement, so those stations were left out from the analysis. The sudden 
jumps and drops of the remaining stations were attributed to the replacement of all sensors 
during regular maintenance for calibration and reallocation in other stations during 2005 
(Communication by mail, Chris Twenhöfel). At this moment calibration of the sensors is up till 
now carried out at much higher level (250 [µSv/h]) than the background level of about 0.1 
[µSv/h]. From this is inferred that there are important systematic differences (calibration) 
between sensors.  This is an important result because since now the analysis is performed 
for the residuals of two periods of time, one including the data of 2005 and the other one 
excluding it. It is expected to see differences between the two outputs because a part of the 
variation produced by the reallocation of the sensors is removed when the data of the year 
2005 is omitted.  

 

Some examples of these jumps and drops are presented in figure 8 during the year 2005 
(until the 12th month). The top plots are from the stations “alfa-beta” where the sensors were 
replaced by a new model and the other two in the bottom part are due to the reallocation of 
the sensor after calibration in place of another sensor. The x axis represent the month for a 
period of 4 years (48 months, 2005-2008) and the y axis the monthly mean gamma dose.  
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Figure 8. Examples of plots of monthly gamma background radiation and month of 
four stations during the period of 2005-2008. 

3.1.1 Univariate analysis for the environmental and  seasonal variables 
  

From section 1.1 can be concluded that reallocation of the sensors after calibration affects 
the measurement of gamma background radiation. For these reason the analysis was 
performed for the whole period (four years) and also for the period 2006-2008 (three years). 
The results are presented considering those two scenarios. After extracting all the 
information from the climatic datasets (raster) for each RIVM station and checking the 
histograms for each quantitative variable, it was observed that the normality of the data was 
acceptable for all the variables except for temperature and global radiation, which show 
bimodal behaviour for both periods of time (Figure 9). 
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Figure 9.  Histograms of the predictive variables with non normal data for the period 
2005-2008 (top) and for the period 2006-2008 (bottom). 

 

No apparent relationships were observed between the gamma background radiation and the 
explanatory variables in the matrix scatterplot of the data for the period 2006-2008 (Figure 
10). This is a first clue to suggest that those variables have very low explanatory power for 
the variation in gamma background radiation. Additionally some explanatory variables are 
showing strong relationship between the y and x axes. For example the relationship between 
atmospheric humidity and global radiation, is symmetric negative almost linear. Global 
radiation and temperature show a symmetric positive almost linear relationship. The 
correlation between these explanatory variables could introduce some multi collinearity 
problems in the model and affect the results. The correlation matrix (Table 5) confirms those 
tendencies where high correlations are observed between atmospheric humidity, global 
radiation and temperature. The correlation between the response variable and the predictive 
variables were quite low (< 0.1). The results for the period of 2005-2008 are similar, as the 
scatterplot matrix show the same patterns with denser cloud of points (Figure 11) and the 
correlations have slightly differences (Table 6). 
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Figure 10. Matrix scatterplot for explanatory and predictive variables for the period of 
2006-2008. 

 

Table 5. Correlation matrix of the explanatory and predictive variables for the period 
of 2006-2008. 
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Gamma Dose  1.00 -0.07 -0.04 0.02 -0.01 0.02 0.02 

Height  -0.07 1.00 0.05 -0.06 -0.06 -0.02 -0.01 

Atmospheric pressure -0.04 0.05 1.00 -0.52 -0.01 -0.13 -0.14 

Rain  0.02 -0.06 -0.52 1.00 0.24 -0.05 0.14 

Atmospheric humidity  -0.01 -0.06 -0.01 0.24 1.00 -0.86 -0.59 

Global radiation 0.02 -0.02 -0.13 -0.05 -0.86 1.00 0.81 

Temperature  0.02 -0.01 -0.14 0.14 -0.59 0.81 1.00 
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Figure 11. Matrix scatterplot for explanatory and predictive variables for the period of 2005-
2008. 

 

Table 6. Correlation matrix of the explanatory and predictive variables for the period of 2005-
2008. 
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Gamma Dose 1.00 -0.04 -0.05 0.02 -0.02 0.03 0.03 

Height masl -0.04 1.00 0.05 -0.05 -0.06 -0.02 -0.01 

Atmospheric pressure -0.05 0.05 1.00 -0.53 -0.02 -0.13 -0.14 

Rain 0.02 -0.05 -0.53 1.00 0.27 -0.08 0.12 

Atmospheric humidity -0.02 -0.06 -0.02 0.27 1.00 -0.85 -0.59 

Global radiation 0.03 -0.02 -0.13 -0.08 -0.85 1.00 0.81 

Temperature 0.03 -0.01 -0.14 0.12 -0.59 0.81 1.00 
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The simplified soil map appears to explain a substantial part of the variation of gamma 
background radiation (Figure 12). There are clear differences between most of the classes 
with little overlap. A limitation of these data is that the number of samples is not the same for 
each class, there are 2326 samples for built up and only 47 samples for water. 

 

 

Figure 12. Box plot of gamma background radiation by soil type classes for the period 
2006-2008. 

 

The box plot of the categorical variable land cover (Figure 13) does not show a clear 
distinction between classes. All of them overlap. 
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Figure 13. Box plot of gamma background radiation by land cover classes for the 
period 2006-2008. 

 

The box plot of the categorical variable month (Figure 14) do not show a seasonal trend 
visible, because all classes overlap. 
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Figure 14. Box plot of gamma background radiation by months for the period 2006-
2008. 

3.1.2 Regression analysis 
 

Because of the non normality of the variables temperature and global radiation and their 
correlation with atmospheric humidity those two variables were not considered in the 
regression analysis for the estimation of the deterministic model of the variation of the 
gamma background radiation.  

 

Table 7. Results of the variable selection for regression analysis for data of the period 
2006-2008. 

Explanatory variables included in the model F value  R2
adjust. p-value 

Sum of 
Squares 

Residuals 

Full model  11.47 33.52 0.00 176448 

AgSoilType+height+atmpre+rain+atmhum+AggreCorin+month 75.28 24.42 0.00 189689 

AgSoilType+height+atmpre+atmhum+AggreCorin+month 80.32 24.44 0.00 189689 

AgSoilType+height+atmpre+atmhum+AggreCorin  86.08 24.46 0.00 189690 

AgSoilType+height+atmpre+AggreCorin  95.54 24.65 0.00 195082 

AgSoilType+height+AggreCorin  173.80 30.83 0.00 2545 31 

AgSoilType+AggreCorin  165.60 27.68 0.00 269548 

AgSoilType+height 285.70 28.14 0.00 263972 

AgSoilType 289.10 25.08 0.00 279559 
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The full model (Table 7) for the  data of the period 2006-2008 considered for the analysis 
explain the most of the variation and has the lowest sum of squares of the residuals (SSR) 
but only 10 coefficients out of 220 combinations, product of the interactions of the classes of 
each variable, were statistically significant (p<0.05). This model was discarded because of 
the low significance of the terms.  Comparing the different models that can be built and 
considering the principle of parsimony, it is observed that the model that has higher adjusted 
R2  and the least increase in SSR is the one that consider the soil type, land cover 
(AggreCorin) and elevation (height) (Table 7).  This model has only one term not significant 
(Table 8). If this model is compared to the simplest one which only uses the soil type as a 
predictive variable, the SSR of the simplest model is larger and the adjusted R2 is 5 % 
smaller. The inclusion of land cover and elevation (height) results in a better model because 
is able to explain more variation.  

 

Table 8. Significance of the terms of the model selected for data of the period 2006-
2008. 

Coefficients: Estimate Std. Error t value Pr(>|t|)  

(Intercept) 7.35E+01 3.54E-01 207.61 < 2e-16 *** 

SoilTypeLeem 8.70E+00 6.73E-01 12.942 < 2e-16 *** 

SoilTypePeat -6.51E+00 4.65E-01 -14.019 < 2e-16 *** 

SoilTypeRiverClay 1.32E+00 4.46E-01 2.949 0.003206 ** 

SoilTypeSand -4.70E+00 2.75E-01 -17.118 < 2e-16 *** 

SoilTypeSeaClay 6.63E+00 3.07E-01 21.627 < 2e-16 *** 

SoilTypeWater 7.13E+00 1.20E+00 5.954 2.79E-09 *** 

Height 9.99E-04 7.70E-05 12.971 < 2e-16 *** 

AggreCorinForest -7.27E+00 5.95E-01 -12.214 < 2e-16 *** 

AggreCorinIndustry -1.06E+00 2.90E-01 -3.64 0.000275 *** 

AggreCorinMineralExtractionSites -3.81E+00 1.22E+00 -3.115 0.001852 ** 

AggreCorinAgriculture -1.38E+00 8.90E-01 -1.548 0.121741  

AggreCorinUrban -9.52E-01 5.08E-01 -1.872 0.061235 . 

AggreCorinWater 5.86E+00 1.25E+00 4.706 2.59E-06 *** 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1‘ ’ 1 

 

The model selected for the study of the space-time variation of gamma background radiation 
in the period 2006-2008 is: 

ExpectedGammaBackgroundRadiation = 73.5 + 8.7 *SoilTypeLeem - 6.51*SoilTypePeat + 
1.32*SoilTypeRiverclay - 4.7*SoilTypeSand + 6.63*SoilTypeSeaClay + 7.13*SoilTypeWater 
+ 0.001*Height – 7.27*AggreCorinForest - 1.06*AggreCorinIndustry – 
3.81*AggreCorinMineralExtractionSites – 1.38* AggreCorinAgriculture + 
1.01*AggreCorinUrban + 7.81 AggreCorinWater 

 

The same analysis was performed for data of the period 2005-2008 to observe how the 
effect of the instruments affects the variation between the two models. The full model also 
shows only 10 significant terms out of 220.With this data the output model explain less than 
the model for the period 2006-2008 using the same explanatory variables (Table 9).  For this 
data also soil type, elevation (height) and land use were chosen as explanatory variables 
using the adjusted R2

 and the SSR as indicators beside the significance of the variable. 
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Table 9. Results of the variable selection for regression analysis for  data of the 
period 2005-2008. 

Explanatory variables included in the model F value  R2
adjust p-value 

Sum of 
Squares 
Residual 

Full model  35 30.55 0.00 236330 

AgSoilType+height+atmpre+rain+atmhum+AggreCorin+month 100.4 24.61 0.00 259038 

AgSoilType+height+atmpre+atmhum+AggreCorin+month 107.1 24.63 0.00 259041 

AgSoilType+height+atmpre+atmhum+AggreCorin  114.7 24.64 0.00 259058 

AgSoilType+height+atmpre+AggreCorin  126.5 24.91 0.00 265049 

AgSoilType+height+AggreCorin  229 30.08 0.00 348101 

AgSoilType+AggreCorin  219.9 27.80 0.00 368645 

AgSoilType+height 373.3 27.92 0.00 361761 

AgSoilType 379.2 24.95 0.00 383491 

 

Table 10. Significance of the terms of the model selected for data of the period 2005-
2008. 

Coefficients: Estimate Std. Error t value Pr(>|t|)  

(Intercept) 7.35E+01 3.12E-01 235.398 < 2e-16 *** 

SoilTypeLeem 9.25E+00 5.92E-01 15.628 < 2e-16 *** 

SoilTypePeat -6.83E+00 4.14E-01 -16.487 < 2e-16 *** 

SoilTypeRiverClay 8.36E-01 4.00E-01 2.09E+00 0.036934 * 

SoilTypeSand -4.62E+00 2.42E-01 -19.072 < 2e-16 *** 

SoilTypeSeaClay 6.68E+00 2.71E-01 24.645 < 2e-17 *** 

SoilTypeWater 6.61E+00 1.07E+00 6.21 5.63E-10 *** 

Height 9.69E-04 6.76E-05 14.329 < 2e-16 *** 

AggreCorinForest -7.78E+00 5.38E-01 -14.45 < 2e-16 *** 

AggreCorinIndustry -1.15E+00 2.57E-01 -4.486 7.38E-06 *** 

AggreCorinMineralExtractionSites -3.99E+00 1.08E+00 -3.705 0.000213 *** 

AggreCorinAgriculture -2.28E+00 7.87E-01 -2.891 0.003854 ** 

AggreCorinUrban -1.21E+00 4.53E-01 -2.662 0.007784 ** 

AggreCorinWater 6.00E+00 1.10E+00 5.432 5.78E-08 *** 

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1‘ ’ 1 

 

The best model for the study of the space-time variation of gamma background radiation for  
the period  2005-2008 is: 

 

ExpectedGammaBackgroundRadiation = 73.5 + 9.25 *SoilTypeLeem - 6.83*SoilTypePeat + 
8.36*SoilTypeRiverclay - 4.62*SoilTypeSand + 6.68*SoilTypeSeaClay + 6.61*SoilTypeWater 
+ 0.0009*Height – 7.78*AggreCorinForest + 1.15*AggreCorinIndustry – 
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3.99*AggreCorinMineralExtractionSites – 2.28* AggreCorinAgriculture + 
1.21*AggreCorinUrban + 6.0* AggreCorinWater 

 

The reallocation of the sensors in the year 2005 has an effect on the parameters of the trend. 
The models which consider three years data and four years data have different coefficients 
for the trend. The best model for the trend is the one constructed using data from 2006-2008 
because of their explanatory power (adjusted R2=30.83) compared with the model with the 
same variables for the period 2005-2008. The maps produced with the calculated trends are 
presented in Figure 15.  The differences in the parameters of the trend have an effect in the 
trend maps. The results are strongly influenced by the soil type and the land use.  The map 
derived from the model with three years data generally present higher values than the other 
model. The summary of the predictions of both trends is presented in  Table 11. 

 

Table 11. Summary statistics of the values of gamma dose rate in [nSv/h] produced 
with the trend model for both periods of time 

 Minimum Median Mean Maximum 

Period 2006-2008 57.51 67.46 71.07 88.1 

Period 2005-2008 58.89 67.73 70.6 89.36 

 

 

Figure 15. Maps derived from the trend model calculated for the period 2006-2008 
(left) and 2005-2008 (right). 

 

Checking model assumptions 

 

Evaluation of model assumptions indicates that they are correct for both periods. In Figure 
16, the top left graph of the residuals of the model for the period 2006-2008 do not show 
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linear or quadratic tendencies compared with the fitted values. The histogram (top right) of 
these residuals is symmetric and has no exceptional outliers (although there are a few 
positive extremes). For the other model (period 2005-2008) the residuals do not show 
tendencies when they are compared with the fitted values and the histogram of them are also 
symmetric with a few positive extremes.   

 

Figure 16. Graphs for checking the model assumption for 2006-2008 (top) and for 
2005-2008  (bottom). 

3.2 The variogram in space and time 

3.2.1 Space-time geostatistics  
 

After a visual inspection of point maps of the measured gamma background radiation for 12 
months selected for the period 2005-2008 (Figure 17) it was concluded that there is an 
acceptable spatial correlation. Figure 17 presents maps from different dates for the gamma 
background radiation measured by the NRM network. All images have the same scale and it 
is possible to see that values close to each other are similar and the changes are gradual. 
The highest measurements are in the southwest and in the southeast of the Netherlands and 
the surroundings also change gradually. 
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Figure 17. Maps of monthly means of the gamma background dose in the 
Netherlands for 12 months between the years 2005-2008. 

 

To have an insight of the variability in the residuals the total variance, variance in time and 
variance in space were calculated (Table 12) for the monthly mean background rate of the 
period 2006-2008 and the residuals of the regression model for both periods of time. The 
variances for the data of the monthly mean background dose (2006-2008) have the largest 
values followed by the variances of the residuals of the regression model of the period 2005-
2008 and the residuals of the period 2006-2008. The variance in space is slightly bigger than 
the total variance for all situations and the variance in time is almost ten times smaller than 
the total one.  
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Table 12. Variance in space, in time and total variance for the residuals and the 
observed variable (Gamma background radiation). 

Source 
Variance of 

residuals period 
2006-2008 

Variance of 
Gamma 

background dose 
period 2006-2008 

Variance of 
Residuals period 

2005-2008 

Total  50.02 72.28 51.74 

In time  5.74 5.74 7.22 

In space  50.09 72.482 51.81 

  

 

The 3d variogram in space and time 

 

Figure 18. Temporal experimental semivariogram of residual for the period 2006-2008 
(left) and temporal experimental semivariogram of residuals for the period 2005-2008 

(right). 

 

The temporal experimental semivariogram of the residuals (Figure 18) with constant lags of 
one month were compared for both periods of time. The values of the experimental 
semivariogram of the gamma background dose are practically the same as the experimental 
semivariogram of the residuals for the period 2006-2008 implying that the trend model 
removes almost nothing of the temporal variation. The experimental semivariogram of the 
period of 2006-2008 presents smaller semivariances than the one from 2005-2008; a sill is 
visible when the semivariance is close to one [nSv/h]2  and a range close to the fifth month 
(Figure 18, left). In the semivariogram of the period 2005-2008 (Figure 18, right) there are no 
visible sill or range at the same distance yet. This implies that the temporal variations due to 
the variation of calibration of the instrument have been removed. A zoom out of those two 
semivariograms (Figure 19) shows more features. The semivariances for both periods follow 
an exponential curve with an increasing in the slop after the 10th month.  A sill is visible for 
the experimental semivariogram for the period 2005-2008 at 2.5 [nSv/h]2 Part of the variation 
in the short distance has been removed with the omission of the data from 2005. In the long 
distance (after the month 20) the semivariances of the data for the period 2006-2008 
increase more than the other period. 
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Figure 19. Temporal experimental semivariogram of the residuals for both periods of 
time, triangles for the period 2005-2008 and dots for the period 2006-2008.  

 

Figure 20 shows the spatial experimental semivariograms with constant lags of 10 km for the 
gamma background dose (left) and the semivariogram for the residuals calculated from the 
regression model (right) for the period 2006-2008. The first value for the semivariogram of 
the residuals for the period 2006-2008 shows a smaller value than the first one from the 
semivariogram of gamma background dose.  In general the values in the semivariogram of 
the period 2006-2008 are smaller. A small part of the temporal variation has been explained 
by the trend. The spatial semivariogram also shows a high semivariance at the beginning of 
the plots for both periods of time. This nugget effect confirms the fact that there is a problem 
with the measurements of the sensors. 

 

Figure 20. Spatial experimental semivariogram of background gamma radiation for 
the period 2006-2008 (left), spatial semivariogram of the residuals of the regression 

for the same period (right). 
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Figure 21 presents the experimental variogram in space of the residuals for the period 2006-
2008 (black dots), the experimental variogram in space of the residuals for the period 2005-
2008 (triangles) and the experimental variogram of the gamma background dose for the 
period 2006-2008 (black circles). The spatial semivariograms of the residuals of both periods 
are almost the same. By removing the data from 2005 there is almost no effect in the spatial 
variation. The semivariogram of the gamma background dose present larger values than the 
other two. This means that the trend is able to explain part of the spatial variation.  

 

Figure 21. Spatial semivariogram of the residuals for both periods of time and the 
semivariogram of the gamma background dose for the period 2006-2008  

 

Figure 22. Experimental spatio-temporal semivariogram of the residuals of gamma 
background dose for the period 2006-2008 (left) and for the period 2005-2008 (right). 

 

The three-dimensional (3D) experimental semivariogram for the residuals of the gamma 
background dose for both periods of time were constructed (Figure 22) using the same 
temporal scale (29 month) and spatial scale (100 km). After visual inspection of the 
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differences in the graphs some slightly differences appear. Both graphs have a nugget and 
the nugget of the period 2006-2008 is bigger than the other period, but in general all the 
semivariances for the period 2005-2008 have higher values than the one for the period 2006-
2008 (Appendix A). The shaded area is not the result of a fitted function; it is just a graphical 
effect to visualize the semivariances calculated for their respective ranges in space and time. 
The same 3D plots are represented in a two dimension plot (2D) in Figure 23 where the 
same characteristics are found when the semivariogram of the residuals for both periods are 
compared. A clear advantage of this presentation is the possibility of compare the 
semivariances which are represented in a scale of colours in a specific range of time and 
space.  

 

 

Figure 23. Two dimensional representation of the experimental spatio-temporal 
semivariogram of the residuals of gamma background dose for 2006-2008 (left) and 

2005-2008 (right). 

The use of different lags in space and time for zooming in the behaviour of the origin can 
help to have a better insight of the variability in the short distance. For this purpose the 
semivariograms of the period 2006-2008 are compared using constants lags in space (10 
km) and constant lags in time (month) against the semivariogram of the same period but with 
smaller lags in space in the origin (0, 2, 3, 4, 5, 6, 7, 9,11,15,75, 500 km). 

 

The use of different lags size has an effect in the result of the semivariogram (Figure 24). 
Using the smaller temporal scale (one month) the produced plot has more details (Figure 24, 
left) than the other one, for the first three points the values of the semivariances are the 
same (same lag size) but the fourth one has different values and also different numbers of 
pairs (bigger lag sizes have more pair of points). The variogram with different lag sizes has 
les detail than the other one.   
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Figure 24. Temporal semivariograms for the period 2006-2008 with equal lag size 
(left) and different lag size (right). 

 

The zooming effect of the variation in the origin of the space semivariogram (Figure 25) 
shows with more details the short range variation. The nugget effect is higher when shorter 
lag sizes are considered in the origin but with less number of pair of points. Using larger 
ranges produce a semivariogram with fewer details and more pair of points.     

 

The spatio-temporal 3D experimental variogram of the residuals of the gamma background 
dose using constant lag sizes Figure 26 (left) and different lag sizes Figure 26 (right) are 
plotted to compare them. The nugget effect is still present and is higher in the shorter range 
than when constant bigger lags are used. The calculated values for this variograms are in the 
appendix A.   
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Figure 25. Spatial semivariogram of residuals of background gamma dose for the 
period 2006-2008 with constant lags (right) and with different lags sizes (left). 

 

 

Figure 26. Three dimensional experimental variograms with constant lags (left) and 
with different lag sizes (right). 

 

Fitting the variogram 

 

The semivariogram for time, space and spatio-temporal have been calculated and the 
components of Equation 6 are complete to construct the spatio-temporal function of the 
residuals of the gamma background dose. The 3D spatio-temporal variogram is presented in 
Figure 27 and present a strong nugget in the spatial domain. The features mentioned before 
for the temporal and spatial experimental semivariograms are present in the graphic 
representation of the spatio-temporal fitted function. 
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Figure 27. Fitted 3D spatio temporal semivariogram of the residuals of gamma 
background radiation .  

The fitted function using the metric model for the residuals of gamma background radiation 
optimized from the semivariances of the residuals is: 

)()()(),( ststttssts hhhhh gggg ++=  

Where: 

))5.2/exp(1(*6.31)( 318 eheeh sss -+= -g   Spatial fitted semivariogram 

))10/exp(1(*54.01.0)( stt hh -+=g   Temporal fitted semivariogram 

))9.4/*9.1exp(1(*4.11)( 32218 ehheeh tsstst +-+= -g     Spatio-temporal fitted semivariogram 

Whit those parameters the spatial and temporal fitted semivariograms including the spatio-
temporal effect can be plotted. Figure 28 shows that the fitted function (line) differs from the 
temporal semivariogram of the residuals for the period 2006-2008 (points). The fitted function 
for the spatial semivariogram shows a sudden jump from origin to fifty (nugget). 

 

Figure 28. Fitted and experimental  temporal semivariogram of the residuals (left), 
fitted and experimental spatial semivariogram of residuals (right) for the period 2006-

2008. 
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4. Discussion 
 

Sources of variation 

 

The first irregularity found was the extreme variation from one month to the other of the 
measurements in the stations at the end of 2005 (Figure 8). The first cause of those jumps 
and drops is that in 2005 the sensors were removed for calibration and reallocated in 
different positions (Personal communication, Chris Twenhöfel). The second cause is that 
stations ranging from 970-998 were using an old model, detector RS02 (137Cs calibrated) 
and they were replaced by detector RS03 (60Co calibrated). Those stations are known as 
the “alfa-beta” and they collect other sources of radiation beside the gamma background 
dose.  Because of the characteristics of the location of the sensor in the “alfa-beta” stations 
(3.5 m above the soil), they were left out from the analysis. Saez-Vergara et al., (2003) found 
that there are differences in the measurements between different models, different types of 
detectors and even slight differences between instruments from the same model made by 
the same producer. Blaauboer & Smetsers, (1996) also found that the sensors used in the 
Netherlands are angle sensitive in the direction of the major axis of symmetry; this means 
that depending on the direction of the source of the radiation the sensor can have different 
responses. It is inferred from this that the most important source of variation is related to the 
error in measurement affected by calibration. It is still unknown if the effect of the 
measurement device is producing overestimation or underestimation of the gamma 
background radiation. 

 

At this point a new question arises: is the period of time (four years) of the data considered 
for the analysis good enough? It is known by the plots of the monthly mean gamma 
background dose (Figure 8) that the change of the position of the sensors in 2005 has an 
effect in the variation of gamma background dose. To quantify how much influence those 
changes have in the variation of the gamma background radiation the analysis was done for 
two periods of time 2006-2008 and 2005-2008. By removing the year 2005 it is possible to 
remove the variation caused by the measurement device error in the temporal domain.  

 

Model selection 

 

Two models, one for each period, are needed to compare the effect of the measurement 
device on the temporal variation. After performing the linear regression for the complete 
model including two way interactions for both periods of time, only 10 out of 220 were 
significant (p<0.05). The addition of more variables adds noise to the results making it 
difficult to interpret in both models. For this reason all the interactions were not considered in 
the analysis of the trend.   

 

The full model for the period (2006-2008) has a better adjusted R2 equal to 33.52% (Table 7) 
but only ten of their more than 200 terms were significant. It explains more but the 
parameters are not significant (p<0.05). The selected model for the period 2006-2008 has 
the better adjusted R2, the residuals are not extremely large and the terms are significant 
(Table 8). The decision of including those three variables (Land use, soil type and elevation) 
in the regression analysis was not only based on the statistical results but also on the 
physical factors that are related to the gamma background radiation. When predictors are 
significant, it does not mean that they are the optimum because the removal of less 
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significant predictors will increase the significance of the ones that are left (Faraway, 2004).  
So if there is no previous knowledge about the physical factors that influence the response 
variable then there is a risk to simplify the model more than it should be when backward 
elimination is used. The decision to keep elevation and land use in the model was supported 
by the knowledge of the physical influence that they have on the gamma background 
radiation (table 2). One limitation in the construction of this model is the processing of the 
data of the environmental variables. They were collected from only 35 meteorological 
stations all over the Netherlands and interpolated to calculate some values in non-measured 
areas. This could be one reason why none of them were significant for the regression model 
even when according to the literature (Blaauboer & Smetsers, 1996) they have an effect in 
the gamma background radiation in the Netherlands. The problem detected in the 
exploratory analysis (jumps and drops) also influences the result of the model affecting the 
relationship between the explanatory variables and the response variable.  

 

When the results are compared between periods 2005-2008 and period 2006-2008 there is a 
small increase in the adjusted R2 (from 30.08 to 30.86) implying that the model for the period 
2006-2008 explains more variability than the model for the period 2005-2008. It is a small 
increase but also the temporal variation is smaller than the space variation (Table 12).  

 

Random effects 

 

The exploration of the variation of the residuals in time and space give more clues about the 
behaviour of the variation of the gamma background dose. It was expected that the total 
variance of the residuals was going to be larger than variance in space for both periods of 
time but it is not like that (Table 12). By removing the year 2005 from the analysis the 
variance in time decrease from 7.22 to 5.74 [nSv/h]2]. The variance in space of the residuals 
for both periods remains almost the same (Table 12). Those results demonstrate that the 
effect of not using data from year 2005 remove part of the temporal variation because the 
variation in time was calculated as the average of the variation for each station.  By removing 
the year 2005 the variation caused by the systematic differences between measurement 
devices is removed. The analysis of the residuals confirms this reduction of the variation in 
time. When temporal semivariograms from the residuals of the two periods are compared 
there is a reduction in the semivariances of the temporal variation when data from the year 
2005 is excluded (Figure 19). The experimental temporal variogram is based on comparisons 
from the same measurement device and if there is a change in the measurement device this 
will affect the variation because of the problem of calibration of the measurement device. The 
low effect in space of removing the year 2005 is explained by the spatial experimental 
semivariogram (Figure 21). This is based in comparison of measurement devices that are 
different because of limitations with calibrations. So the effect of the measurement device in 
the spatial domain is still present. That is the reason why the spatial semivariograms of the 
residuals for both periods of time are almost the same (Figure 21) even when data from 2005 
are removed. 

 

The spatial semivariogram confirm the reduction of the variation in space when a trend is 
considered for the period 2006-2008 (Figure 21). The exclusion of one year’s data does not 
have a significant impact in the spatial variation except for the nugget. It will be expected that 
the nugget for the period 2006-2008 will be smaller than the nugget for the period 2005-
2008, but this is not so. The reallocation of the sensors was in some way masking part of the 
systematic error of the sensors. 
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Under the assumption of second order stationary of the residuals from the model selected 
being normally distributed, the use of geostatistics for modelling the random error show that 
there is an exponential model in time with a short distance spatial variation (nugget value) 
close to 0.1 [nSv/h]2, an approximate range (distance up to which there is spatial correlation) 
of 5 months and a sill (variance of the time) of 1 [nSv/h]2. The spatial experimental 
semivariogram presents a high semivariance (Figure 20) in the beginning of the variogram of 
space (nugget). For prediction purposes this nugget in the spatial variogram is undesirable 
because this is the variation in the short distance and as a consequence it implies that there 
is a low spatial correlation. In this situation this nugget is because the main source of 
variation is the systematic differences in measurement devices. Calibration is until now 
carried out at much higher level (250 [µSv/h)) than the gamma background dose level of 
about 0.1 [µSv/h] (Communication by mail, Rick Tax).   

 

The data used for this analysis have some unique characteristics. It is dense in time 
compared with space. There are 150 stations and 157680 measurements in three years. 
This disparity in the two scales could result in estimates of the spatial and temporal 
structures with different degrees of reliability and accuracy (Rouhani and Myers, 1990; 
Snepvangers et al., 2003). 

 

The use of different lag size to zoom in the variation in the short distance of the gamma 
background dose (Figure 25) provides some insights about the variation in the short 
distance. The calculated semivariances with smaller lags present bigger semivariances than 
when using bigger constant lags. According to these results the first conclusion will be that 
there is a clear problem of low spatial correlation because of these high values in the short 
distance (semivariance=98 [nSv/h]2). This high nugget is caused by the systematic 
differences in instruments caused by the calibration. This is a clear example that forces us 
ask ourselves what is a suitable lag or range?. It is clear that the decision of different lag 
sizes will affect the results in the semivariogram. The method selected for variogram 
construction is based on conventional geostatistics. The mean of the semivariances are 
calculated for the variogram cloud to have smother variograms. Some authors (Diggle and 
Riveiro, 2007) recommend the use of this tool as an exploratory analysis and not as an input 
for parameter estimation of the fitted function that describe this variogram because of the 
high risk of introduction of bias. Alternative methods using restricted maximum likelihood 
methods to estimate the parameters instead of the variogram are an alternative to avoid the 
risk of introduction of bias (Marchant and Lark, 2007).   

 

Fitting spatio-temporal variograms 

 

The exponential model was chosen to describe the semivariogram of the variation in space, 
in time and space-time (Equation 6). This was not a random choice, it was based on previous 
works with gamma background radiation (Hiemstra et al., 2009; Savelieva, 2005). The 
semivariogram in space presents a high value at the beginning of the graph (nugget). The 
problem with a nugget effect is that the optimized function that describes the spatio-temporal 
variogram is going to model the systematic differences between the sensors and not the 
gamma background dose. For predictive purposes the aim is to predict the gamma 
background radiation and not an effect of the measurement device. For the temporal 
component there is an overestimation of the semivariances in the short range variability 
(Figure 28) which is the most important part for predictive process.   
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5. Conclusions 
 

This report presented a straightforward methodology for the analysis and modelling of space-
time variability of monthly averaged gamma dose rates in the Netherlands between 2005 and 
2008. The methodology takes a geostatistical approach, whereby the target variable is first 
modelled as the sum of fixed effects (a trend model derived from linear regression), random 
effects (the residual, i.e. a zero-mean  space-time correlated random variation,) and an 
independent random error (nugget variation in space and time). The main results are 
summarized below. 

 

·  Which are the physical processes and causal factors behind the space-time variability 
of gamma-dose background radiation for this research? Are datasets for those factors 
available? 

 

The physical processes that regulate the gamma background radiation in the Netherlands 
depend on environmental variables that control the 222Ra, 220Ra and their progeny in outdoor 
air, the terrestrial radiation and the cosmic radiation. Available dataset that represents the 
terrestrial radiation is the soil type map of the Netherlands. The datasets that best represent 
the cosmic radiation are the elevation map and the atmospheric pressure map. Datasets that 
best represent 222Ra, 220Ra and their progeny in outdoor air are the temperature map, relative 
humidity map and precipitation map.  

 

·  To which extent do the selected variables explain spatio-temporal variability in 
gamma background radiation in the Netherlands? 

 

The selected regression model for the data of the period 2006-2008 (F13,5076=229, p<0.005) is 
able to explain no more than 30.86% of the variation of the gamma background radiation. 
The principal source of variation found during the exploratory analysis is in fact the 
measurement device. Calibration is carried out at much higher level (250 [µSv/h)) than the 
gamma background dose level of about 0.1 [µSv/h] because there are no alternative 
methods so far. For the purpose of this study, some of the temporal variation, the one 
caused by interim calibration was removed by not using the data of 2005 which is the year 
where measurement devices were calibrated at the RIVM and reallocated in other stations.  
The regression model is strongly affected because if the main source of variation is the 
measurement device, it is not expected to have a strong relationship with the explanatory 
variables because the effect of the measurement device error is still unknown in the spatial 
variation.  

   

At this moment the NRM network still have some deficiencies in the measure the gamma 
background radiation because the calibration of the device is still a problem and prediction 
using conventional statistics is not advisable because the influence of the error measurement 
in the space is still unknown and the regression models can hardly explain no more than 1/3 
of the total variation.     

 

·  How can the part of the gamma dose background radiation that is not explained by 
the causal factors be modelled using space-time geostatistics?  
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The modelling of the residuals using space-time geostatistics confirms the sources of 
variation. The temporal variation is at least ten times smaller than the spatial variation when 
the year 2005 is omitted from the analysis. The use of a trend is able to explain a small part 
of the variation in the spatial domain and almost nothing in the temporal domain. By 
removing the data from 2005 from the analysis the effect of the measurement device is 
removed because when the measurements were reallocated the comparison in time was 
between different measurement devices (because of calibration) introducing more variation. 
The spatial variation caused by the measurement device error is still unknown because the 
spatial variation is based in measurements from different devices (calibration). Studies to 
reduce this variation should be designed in order to quantify the spatial variation duo to the 
measurement device.  

 

The use of different lag sizes in the variogram to zoom in near the origin shows in a better 
way that the variation in the short distance is high. The spatio-temporal semivariogram and 
the fitted model are not suitable for predictive purposes because the main source of 
variability is the systematic differences between instruments and that is not suitable to map. 
It was concluded that the influence of the measurement device error in the spatial variation 
includes a nugget that is not possible to remove with the available data. This nugget is 
caused by the systematic difference between the sensors and for predictive purposes is not 
a feature of interest because in this situation it will tend to overestimate the temporal 
variation and possibly underestimate the spatial variation as an effect of the optimized fitted 
function.   The visualisation of a three-dimensional spatio-temporal variogram is difficult; 
alternatively they can be represented in a two dimensional graph as a grid with a colour 
scale. 

 

The problem of the systematic error between instruments still remains. However this 
statement is only valid for the measurement of gamma background dose. The network was 
originally designed for other purposes (nuclear emergencies) with other specifications.   Part 
of the variability can be removed in the temporal domain only by excluding observations from 
2005, but for the spatial domain it cannot be removed. Future studies should focus on the 
reduction of the systematic difference between sensors if it is a priority for the RIVM to 
measure he gamma background radiation and the use of this data in other applications, but 
not to create space-time interpolations of monthly averaged gamma background dose. 
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7. Appendix A 
 

Semivariances for the experimental spatiotemporal variogram using equal lag size in space and in time for the 
period 2006-2008. 

  Distance in months 

 Ranges 0- <1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 9-10 10-1 1 

0>- =<1 NA 0.37 0.50 0.70 0.77 0.94 0.95 0.86 0.87 0.87 

1-2 81.84 31.01 30.85 30.60 30.05 29.56 28.71 27.72 26.82 25.87 

2-3 54.10 54.16 53.96 53.88 53.58 53.35 52.93 52.39 51.92 51.41 

3-4 46.85 47.02 46.93 46.96 46.83 46.77 46.53 46.27 46.05 45.84 

4-5 50.74 50.89 50.78 50.80 50.68 50.62 50.49 50.31 50.18 50.05 

5-6 53.15 53.31 53.20 53.21 53.08 53.01 52.93 52.77 52.68 52.59 

6-7 52.82 53.01 52.97 53.06 53.02 53.03 53.02 52.91 52.88 52.85 

7-8 51.83 52.04 51.96 52.02 51.96 52.00 51.91 51.84 51.78 51.74 

8-9 51.94 52.17 52.14 52.26 52.26 52.35 52.37 52.32 52.30 52.34 

9-10 52.39 52.58 52.56 52.67 52.72 52.81 52.79 52.73 52.74 52.79 

10-11 44.91 45.07 44.99 45.06 45.03 45.09 45.03 44.96 44.95 44.96 

11-12 44.19 44.35 44.30 44.38 44.33 44.35 44.27 44.12 44.04 43.99 

12-13 48.56 48.68 48.59 48.66 48.58 48.53 48.45 48.28 48.18 48.07 

13-14 45.32 45.44 45.32 45.35 45.26 45.20 45.01 44.79 44.59 44.40 

14-15 44.27 44.46 44.40 44.48 44.40 44.42 44.36 44.17 44.07 44.01 
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15-16 48.45 48.60 48.46 48.45 48.30 48.24 48.01 47.74 47.50 47.32 

 

Semivariances for the experimental spatiotemporal variogram using different lag size in space and in time for the 
period 2006-2008 . 

  Distance in months 

 Ranges 0- <1 1-2 2-3 3-4 4-5 5-7 7-9 9-11 11-21 21 -50 

0>- =<0.1 NA NA 0.37 0.50 0.70 0.86 0.91 0.87 3.29 10.39 

0.1-6 177.93 19.43 19.40 19.23 18.77 17.96 16.23 14.54 17.87 32.14 

6-8 75.27 74.85 73.98 73.11 71.65 69.50 65.56 62.09 70.17 99.28 

8-10 45.67 45.63 45.40 45.12 44.78 44.18 43.08 42.02 44.52 55.35 

10-12 49.33 49.49 49.41 49.48 49.32 49.11 48.23 47.15 48.09 52.83 

12-15 55.09 55.12 54.97 54.93 54.72 54.29 53.18 52.10 53.90 59.52 

15-17 47.68 47.90 47.79 47.83 47.66 47.53 46.96 46.53 47.74 51.20 

17-19 69.17 69.01 68.53 68.21 67.51 66.44 64.81 63.07 67.18 75.19 

19-25 46.74 46.92 46.83 46.89 46.83 46.81 46.56 46.35 46.92 48.99 

25-50 51.20 51.35 51.24 51.24 51.10 50.93 50.57 50.24 50.84 53.09 

50-75 51.54 51.74 51.69 51.76 51.71 51.69 51.51 51.37 51.53 52.06 

D
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75-500 49.52 49.68 49.59 49.65 49.56 49.47 49.06 48.72 49.46 51.71 
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Semivariances for the experimental spatiotemporal variogram using equal lag size in space and in time for the 
period 2005-2008. 

  Distance in months 

 Ranges 0- <1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 9-10 10-1 1 

0>- =<1 NA 0.53 0.92 1.31 1.60 1.97 2.19 2.29 2.44 2.61 

1-2 73.71 28.19 28.17 28.05 27.74 27.48 26.94 26.30 25.69 25.09 

2-3 56.04 55.94 55.61 55.35 54.95 54.64 54.12 53.58 53.05 52.52 

3-4 47.83 47.92 47.78 47.72 47.55 47.49 47.28 47.07 46.86 46.73 

4-5 51.46 51.54 51.39 51.33 51.23 51.18 51.03 50.86 50.74 50.66 

5-6 54.56 54.68 54.60 54.56 54.46 54.42 54.27 54.09 54.01 54.00 

6-7 54.23 54.33 54.24 54.21 54.15 54.21 54.18 54.06 54.03 54.06 

7-8 53.41 53.49 53.36 53.30 53.18 53.16 53.09 53.02 53.00 53.04 

8-9 54.57 54.62 54.48 54.42 54.34 54.34 54.30 54.23 54.22 54.27 

9-10 54.58 54.67 54.55 54.50 54.41 54.39 54.32 54.26 54.28 54.38 

D
is
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nc
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in
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10-11 46.46 46.54 46.43 46.37 46.29 46.32 46.27 46.24 46.27 46.38 

 

 


