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Abstract 
Source-separated black water (toilet water) containing 38% of the organic material and 68% of the 

phosphorus in the total household waste(water) stream including kitchen waste, is a potential 

source for energy and phosphorus recovery. The energy recovered, in the form of electricity and 

heat, is more than sufficient for anaerobic treatment, nitrogen removal and phosphorus recovery. 
The phosphorus balance of a UASB reactor treating concentrated black water showed a 

phosphorus conservation of 61% in the anaerobic effluent. Precipitation of phosphate as struvite 

from this stream resulted in a recovery of 0.22 kgP/p/y, representing 10% of the artificial 

phosphorus fertilizer production in the world. The remaining part of the phosphorus ended up in 

the anaerobic sludge, mainly due to precipitation (39%). Low dilution and a high pH favour the 
accumulation of phosphorus in the anaerobic sludge and this sludge could be used as a 

phosphorus-enriched organic fertilizer, provided that it is safe regarding heavy metals, pathogens 

and micro-pollutants.  

 

Keywords 
anaerobic treatment, black water, biogas production, phosphorus recovery, separation at source, 

struvite 

 

INTRODUCTION 

New sanitation concepts are based on separation at source of household wastewater streams into 

grey water and black water (faeces and urine) or into grey water, urine and brown water (faeces), 

and have a large potential to recover the important resources energy, nutrients and water. Anaerobic 

treatment is regarded as the core technology for energy and nutrient recovery from source separated 

domestic wastewater (Otterpohl et al., 1999; Kujawa-Roeleveld and Zeeman, 2006). Previous 

research showed that concentrated black water (faeces and urine collected in a vacuum toilet) can be 

efficiently treated in a UASB (Upflow anaerobic sludge blanket) reactor at a relatively short 

hydraulic retention time (HRT) of 9.1 days (de Graaff et al., 2010), in a UASB septic tank at a 

longer HRT of 29 days (Kujawa-Roeleveld et al., 2005) or in a CSTR at an HRT of 20 days 

(Wendland et al., 2007). A methane production of 1.8 m
3
 CH4 per m

3
 of black water can be 

achieved, which can be converted to 56 MJ/p/y as electricity and 84 MJ/p/y as heat by combined 

heat and power (CHP) (de Graaff et al., 2010). 

The nutrients are largely conserved in the effluent of the anaerobic treatment step. Van Voorthuizen 

et al. (2008) reported a phosphorus removal of only 5% during anaerobic treatment of black water 

collected with conventional flush toilets (6L per flush), i.e. 95% was conserved in the effluent. 

However, for more concentrated black water, collected with vacuum toilets (1L per flush), 40% of 

the phosphorus was removed when applying UASB-septic tank (Kujawa-Roeleveld et al., 2005). 

 

Worldwide, 3 million tons P/year are excreted by humans, which represents 21% of the total 

amount of artificial phosphorus fertilizer production (14.9 million tons P/year) (Cordell et al., 

2009). Because domestic wastewater contains low amounts of heavy metals compared to industrial 

wastewater, relatively clean phosphorus rich products can be produced from black water, that could 

be reused in agriculture as a fertilizer (Winker et al., 2009) or as a raw material for the phosphorus 
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industry (Schipper et al., 2007). 

 

Phosphorus is produced from mined phosphate rock, mainly for the production of fertilizers (85%, 

14.9 million ton P/year) (Cordell et al., 2009). However, phosphorus rock is a limiting, non-

renewable resource, and it is estimated that the global phosphate rock reserves will be depleted in 

50–100 years (Cordell et al., 2009). Although there are disagreements on the total global phosphate 

rock reserves, for many countries these are already becoming a strategic resource (Gilbert, 2009). 

Mining of phosphate rock also has a large negative environmental impact because it results in the 

production of gypsum that is contaminated with heavy metals and radioactive elements (Wilsenach 

and Van Loosdrecht, 2003). A large fraction of mined phosphate rock finally ends up in the oceans, 

causing anoxic events and a negative effect on marine life. Clearly, to prevent a global phosphorus 

crisis, the focus should be much more on recycling of phosphorus (Gilbert, 2009). 

 

This paper will show the possibilities to recover phosphorus from concentrated black water. 

Furthermore the recovery of resources from black water is discussed with respect to energy 

production and energy requirements for the treatment of black water. 

 

MATERIALS AND METHODS 

 

Anaerobic black water treatment in a UASB reactor 

Black water (BW), collected in vacuum toilets, was obtained from the DeSaR (Decentralized 

Sanitation and Reuse) demonstration site in Sneek (Friesland, NL). Every two weeks jerry cans 

were filled with black water from the buffer tank at the demonstration site (HRT of 4 h, not cooled), 

transported to the lab and stored at 4 ˚C. The black water was used as the influent for anaerobic 

treatment in a UASB reactor (50L) (de Graaff et al., 2010). 

 

Phosphorus mass balance of the UASB reactor 

The phosphorus mass balance of the UASB reactor was established over the first 951 days of 

operation (equation 1).  

reactorsludge,wastedsludge,effluentinfluent PPPP ++=         (1) 

Influent (black water) and effluent samples (125 samples, taken once a week) were analyzed for 

total phosphorus (TP). Pinfluent and Peffluent were defined as the accumulative phosphorus load in the 

black water and effluent respectively (all in gP).  

The amount of phosphorus in sludge was calculated based on the TP concentration of the sludge (16 

samples of UASB BW excess sludge). Psludge,wasted was defined as the total amount of phosphorus 

wasted with excess sludge (in gP). Psludge,reactor was defined as the amount of phosphorus that 

accumulated in the UASB reactor (in gP), based on a sludge bed volume of 75% of the reactor 

liquid volume and the TP concentration of the sludge. 

 

Batch tests for struvite precipitation 

Stirred beaker (0.6L) batch tests (magnetic stirrer, 100 – 250 rpm) were carried out to investigate 

phosphate removal by struvite precipitation in the UASB effluent, by adding a magnesium solution 

(2M MgCl2). Six duplo tests were carried out, all during the period between day 265 – 410 of 

UASB reactor operation. Varying initial molar ratios of Mg:PO4 (1.0:1, 1.3:1 and 1.8:1) and two 

different initial pH’s were applied (original pH and pH of 9.0, adjusted with 4 M NaOH before 

addition of magnesium). Samples were taken before addition of magnesium and 15, 30 and 60 

minutes after addition of magnesium. Samples were filtered immediately over an ashless black 

ribbon paper filter (Schleicher & Schuell) and prepared for analysis of the dissolved phosphate and 

magnesium concentrations. Temperature, pH, redox and conductivity were measured (WTW 

pH/cond 340 i meter) before taking the samples. 
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Analyses 

TP was determined according to standard methods using commercially available DrLange ® test 

kits (Hach-Lange). Samples were diluted 20 times prior to analysis to exclude possible interference 

of other ions on the analysis.  

The free phosphate (PO4-P) concentration in membrane filtered samples (0.45 µm Cronus filter 

PTFE) was determined by ion chromatography (Metrohm 761 Compact IC). Total soluble 

phosphorus (TPsoluble) in membrane filtered samples (0.45 µm Cronus filter PTFE) was determined 

with ICP-OES (Inductively coupled plasma optical emission spectrometry, Perkin Elmer Optima 

5300 DV).  

Sludge samples were destructed using the Ethos 1 Advanced Microwave digestion system of 

Milestone. Two grams of sample were put into a special microwave vessel, 10 mL of HNO3 (68%) 

was added and milliQ water was added up to a total volume of 30 mL. The vessels were placed into 

the microwave. Samples were heated to 180 ˚C in 15 minutes and this temperature was maintained 

for another 15 minutes. After cooling down, the contents of the vessels were transferred to a 100 

mL flask and diluted to 1% acid for analysis of P by ICP-OES. 

Total Suspended Solids (TSS) and Volatile Suspended Solids (VSS) were determined according to 

standard methods using the ashless black ribbon paper filter (Schleicher & Schuell). 

 

Simulation of chemical precipitation in black water 

To gain more insight in chemical precipitation that might occur in the black water and in the UASB 

reactor, these processes were simulated in the OLI Stream Analyzer (version 2.0, OLI Systems). A 

theoretical composition of black water was calculated using literature data on the composition of 

faeces and urine (Kujawa-Roeleveld and Zeeman, 2006; Maurer et al., 2006) and using the 

composition of drinking water in Friesland (www.vitens.nl). A pH survey by adding NaOH and 

HCl was carried out from pH 5 to 10 to determine the effect of pH on the composition of the black 

water. Because struvite is not present in the main database of OLI Stream analyzer, a separate 

database was used, provided by OLI Systems Inc. Details about chemical models, databases and 

about OLI Stream analyzer can be found on the website of OLI Systems. 

 

RESULTS AND DISCUSSION 

 

P balance UASB 

Figure 1 shows the phosphorus mass balance over the UASB reactor. Only 61% of the TP left the 

UASB reactor with the effluent, 18% was wasted with the sludge and 8% accumulated in the 

reactor. About 13% of the TP was missing, which could be due to errors introduced by sampling 

and analysis. Furthermore some precipitates were observed on the walls and bottom of the UASB 

reactor, which were not wasted with excess sludge and could therefore partly explain the missing 

TP. The mean phosphorus content in the UASB sludge was 51 mgP/gTSS (sd
1
 = 12), which is much 

higher than the typical content of bacteria cells of  2.0% (20 mgP/g dry weight, (Tchobanoglous et 

al., 2003)). 

 

Concentrations in BW and effluent 

Table 1 gives the measured concentrations of influent black water. The results of table 1 show that 

60% of the phosphorus in black water was present as precipitates or was associated with suspended 

solids. Because the faeces exist for a large part of bacteria (Vinnerås, 2002), it was estimated that 67 

mgP/L in first period and 54 mgP/L in the second period was organically bound in suspended solids 

                         

1 sd = standard deviation 
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(using a typical phosphorus content of bacterial cells of 2.0% (Tchobanoglous et al., 2003)). This 

corresponds with 52 – 59% of the TP associated with solids. The remaining phosphorus in the 

suspended solids could be mineral calcium phosphates originating from faeces (Vinnerås, 2002) and 

other precipitates from urine such as struvite (Udert et al., 2003), but this was not further quantified.   

 
Figure 1. Phosphorus balance of the UASB reactor treating concentrated black water over the first 951 days of 

operation; numbers are the accumulative load of phosphorus (The total amount of TP fed to the reactor during this 

period was 994 gP). 

 

Most of the soluble phosphorus (TPsoluble) was present as free phosphate (PO4-P), which was 36% of 

TPIN (table 1). When assuming that all phosphate from urine was excreted in soluble inorganic form 

(Vinnerås, 2002), a much higher PO4-P concentration of 107 mg/L was estimated. During transport 

and storage of black water free phosphate from urine may have precipitated, resulting in relatively 

low PO4-P concentrations in the black water, respectively 79 mg/L and 54 mg/L in the first and 

second period. Research on black water with a dilution factor of 21, showed a PO4-P concentration 

of 27 mg/L (van Voorthuizen et al., 2008), which corresponds well with the estimated value in of 25 

mgP/L, assuming that all phosphate from urine was excreted in soluble inorganic form (Vinnerås, 

2002).  

 
Table 1 Measured characteristics of influent concentrated black water 

 unit UASB Influent (concentrated black water) 

(125 samples) 

% of 

TPIN 

  1
st
 period 

(day 1 –  518) 

sd 2
nd
 period 

(day 519 – 

951) 

sd  

pH - 8.8 0.22 8.6 0.53  

TP mg/L 220 67 148 64  

TPSS= TP – TPsoluble mg/L 130 - 91 - 60% 

TPsoluble mg/L 90 8.7 57 18 40% 

PO4-P  mg/L 79 8.5 54 27 36% 

VSS g/L 3.3 1.4 2.7 1.4  

sd = standard deviation 

 

During anaerobic treatment the free phosphate concentration increased from 79 mgPO4-P/L to 92 

mgPO4-P/L in the first period and from 54 to 69 mgPO4-P/L in the second period (tables 1 and 2). 

This probably was caused by hydrolysis of suspended solids containing organically bound 

phosphorus and by a decrease in pH during anaerobic treatment (from 8.6 – 8.8 in black water to 
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7.4 – 7.6 in UASB effluent, tables 1 and 2) solubilising inorganic phosphates. The effluent 

contained 61% of the TP in the influent black water, of which the main part was present as free 

phosphate (44% of the influent load of TP). A small fraction of the phosphorus left the UASB 

reactor associated with solids in the effluent, on average 14% (table 2). 

 
Table 2 Measured characteristics of the UASB effluent 

 unit UASB Effluent (125 samples) % of 

TPIN 

  1
st
 period  

(day 1 –  518) 

sd 2
nd
 period    

(day 519 – 

951) 

sd  

pH - 7.6 0.13 7.4 0.17  

TP mg/L 131 15 94 18 61% 

TPSS= TP – TPsoluble mg/L 28 - 24 - 14% 

TPsoluble mg/L 103 10 70 11 47% 

PO4-P  mg/L 92 11 69 13 44% 

VSS g/L 0.15 0.12 0.053 0.066  

sd = standard deviation 

 

Simulation of chemical precipitation in black water 

Low dilution and high pH seem to play an important role regarding the availability of free 

phosphate in the black water and during anaerobic treatment for subsequent phosphorus recovery by 

struvite precipitation. Both aspects were further investigated by simulating this chemical 

precipitation in the black water. 

 

Figure 2 The predicted effect of pH in concentrated black water on the precipitation of calcite (CaCO3), hydroxyapatite 

(Ca5OH(PO4)3) and struvite (MgNH4PO4.6H2O). 
 

The results in figure 2 clearly show that struvite is likely to precipitate when the pH in black water 

is higher than 7.4. Because the pH of the black water used in this research attained values of 8.6 – 

8.8 (table 1), struvite and hydroxyapatite will likely precipitate during storage and transport. It 

should be mentioned that kinetics are not taken into account in the simulation, which will have an 

effect on the type of precipitates formed (Musvoto et al., 2000). Therefore, the results from the 

simulation are indicative, showing the possible effect of the amount of flushing water and pH. This 

was also shown for the separate collection of urine, where the risk of blockages can be diminished 

by urine dilution (Udert et al., 2003). Similar effect of pH can be expected for the phosphorus 
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distribution in the UASB reactor. 

The composition of tap water will also have a large effect on the concentrations in black water, 

because the tap water that was used in this research was relatively soft compared to tap waters in 

other regions or countries (e.g. tap water in Germany contains up to 199 mg/L of calcium). The use 

of hard tap water will result in more precipitation of calcium phosphates in concentrated black 

water, reducing the availability of PO4-P in the anaerobic effluent. 

 

Struvite precipitation 

Batch precipitation tests were carried out at different pH values (8 or 9) and at different initial molar 

ratios of magnesium to phosphate. The results in table 3 show that the removal efficiencies of 

phosphate depended on the applied pH as well as the surplus of magnesium that was added. Either 

by adding a surplus of magnesium (e.g. Mg:PO4 1.5:1 at pH 8.0) or by adjusting the pH to 9.0 at a 

lower Mg:PO4 ratio of 1.3:1, a removal efficiency of 90% could be achieved, which was similar as 

in other research reviewed by Le Corre (2009) (60-98%). A higher Mg:PO4 ratio of 1.8:1 did not 

significantly contribute to an improved removal efficiency (table 3). Using these results, 0.15 kg 

PO4-P/p/y can be recovered in the form of struvite (based on a PO4-P concentration of 92 mg/L and 

a black water production of 5 L/p/d). Because together with the struvite, suspended solids will be 

removed as well, a maximum of 0.22 kgP/p/y can be recovered from UASB effluent (based on 131 

mg TP/L). Obviously, latter will reduce the purity of the produced struvite. The recovered struvite 

would represent 10% of the artificial phosphorus fertilizer production worldwide (14.9 million 

tP/year, (Cordell et al., 2009)). 

 
Table 3 Phosphate removal efficiencies in UASB effluent by the addition of different amounts of magnesium and at 
different pH after 60 minutes 

molar ratio Mg : PO4 pH 8.0 (sd) pH 9.0 (sd) 

1.0:1 72% (3.5%) 82% (8.2%) 

1.3:1 - 91% (0.7%) 

1.5:1 90% (0.0%) 96% (0.7%) 

1.8:1 - 92% (0.7%) 

 

Precipitation of struvite from urine showed that the struvite can be recovered free from organic 

micro-pollutants and free from most of the heavy metals present in urine (Ronteltap et al., 2007). 

More research with respect to micro-pollutants in struvite recovered from UASB effluent is needed, 

because the co-precipitated solids and organic material may contain adsorbed micro-pollutants. 

The main challenges to make struvite precipitation for phosphate recovery a successful technology, 

are the quality of the struvite and the economic value of the struvite (Le Corre et al., 2009). In Japan 

struvite produced from digester liquor was successfully sold to fertiliser companies (Ueno and Fujii, 

2001). Recently the struvite produced from an industrial wastewater treatment plant treating potato 

wastewater in Steenderen (NL) is being used by a company producing cattle fodder
2
, showing an 

increasing interest for struvite as a valuable product. 

 

Energy recovery from black water 

The amount of electricity that can be produced is significant in terms of wastewater treatment. 

Whereas conventional wastewater treatment plants consume 96 MJ/p/y or 26.6 kWh/p/y (Frijns et 

al., 2008), from the produced methane in the black water treatment concept 56 MJ/p/y can be 

recovered as electricity and 84 MJ/p/y as heat. An estimation of the energy production and 

consumption in the black water treatment concept is presented in table 4, and is compared with 

                         

2 http://www.netserver2.net/waterforum/index.asp?url=/template_a1.asp&que=paginanr=4894, news item 

in Dutch, 31st March 2009 
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conventional wastewater treatment. In the estimation nitrogen removal from black water is 

included, which can be achieved with the energy efficient process of partial nitritation-anammox 

(Vlaeminck et al., 2009; de Graaff et al., submitted). 

Table 4 shows that 22.5 MJ/p/y of electricity is gained in the black water treatment concept, 

whereas in sewerage and conventional WWTPs 107 MJ/p/y is lost. These numbers provide an 

indication, because energy needed for the production of hardware such as reactors and pumps etc. 

and heat losses are excluded. Table 4 shows that the electricity that is produced from black water 

can more than compensate for the electricity demand of nitrogen removal and phosphorus recovery. 

Furthermore, by using less drinking water for toilet flushing, 25% of the total drinking water 

consumption in a household can be saved, which results in a further saving of about 19 MJ/p/y 

(table 4). More savings could be achieved by reusing the struvite as a P fertilizer, requiring less 

fossil fuels for synthetic fertilizer production. This was however not further quantified. 

 
Table 4 Energy production and consumption in the black water treatment concept and conventional WWTPs. 

Black water 

(5 L/p/d) 

MJ/p/y 

electricity 

MJ/p/y 

heat 

Conventional WWTP, 

domestic sewage 

(124 L/p/d) 

MJ/p/y 

Vacuum transport 
a 

-14  Sewerage 
f 

-43 

BW heating 
b
  -80 WWTP 

f 
-96 

Biogas production 
c
 +56 +84 Biogas production from 

sludge digestion 
f 

+32 

P removal by struvite 

precipitation 
d
 

-3.5    

N removal by nitritation-

anammox 
d
 

-16    

Total +22.5   -107 

     

Savings:     

Drinking water production 
e
 +19    

a
4 kWh/p/y, most energy efficient vacuum toilet (WRS, 2001); 

b
increase of 9 degrees (worst case), 

transfer efficiency of 85%; 
c
12.5 L CH4/p/d, 35.6 MJ/m

3
 CH4, 85% efficiency (40% electricity and 

60% heat); 
d
(Maurer et al., 2003); 

e
0.47 kWh/m

3
 (Vewin, 2006); 

f
Including N and P removal, 

(Frijns et al., 2008) 

 

 

CONCLUSIONS 

New sanitation concepts, based on separation at source of household wastewater streams have a 

large potential to recover the important resources energy, nutrients and water. Anaerobic treatment 

of black water, as the core technology for energy and nutrient recovery, provides sufficient energy 

for the combined anaerobic treatment, nitrogen removal and phosphorus recovery. In the anaerobic 

effluent of a UASB reactor treating concentrated black water, 61% of the phosphorus was 

conserved. Phosphate can easily be removed from anaerobic effluent by struvite precipitation, 

recovering 0.22 kgP/p/y, which represents 10% of the artificial phosphorus fertilizer production in 

the world. The remaining phosphorus ended up in the anaerobic sludge due to the low dilution 

factor. This sludge might be used as a phosphorus-enriched organic fertilizer, provided that it is safe 

regarding heavy metals, pathogens and micro-pollutants. 
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