Preliminary Investigations on Salmonella spp. Incidence in Meat Chicken Farms in Italy, Germany, Lithuania and the Netherlands

Juozas Piekus1, Maria Pia Franciosini2, Patrizia Casagrande Proietti1, Felix Reich1, Edwardas Kazieniauskas1, Ceslava Butrimaitė-Ambrozewičiene1, Mykolas Mauricas1 and Nico Bolder1

1Institute of Immunology Vilnius University, Moletu pl. 29, L-08249, Vilnius, Lithuania
2Dipartimento di Scienze Biopatologiche ed Igiene delle Produzioni Animali e Alimentari, Facoltà di Medicina Veterinaria, Via San Costanzo 406100 Perugia, Italy
3Institut für Lebensmittelqualität und sicherheit, Tierärztliche Hochschule Hannover, Bischofsholer Damm 15, D-30173 Hannover, Germany
4Animal Sciences Group, Wageningen UR, Division of Infectious Diseases, Edelbertweg 15, 8200 AB Lelystad, The Netherlands

Abstract: The broiler chickens, especially if intensively reared, can be considered as an important reservoir of Salmonella infections in humans. Many consumers assume that broiler chickens, grown under conventional commercial conditions, have higher infection levels of Salmonella than free-range organic chickens. The subject of this study was firstly to assess the incidence of Salmonella spp. in conventional chicken farms, located in different areas of Italy, Germany, Lithuania and in the Netherlands. In addition organic farms were investigated both in Italy and the Netherlands. The typification of Salmonella was also effected in attempt to value the distribution of the organism on the basis of the different geographical areas. The incidence of Salmonella in conventional broiler farms was 20% in Lithuania, 20% in Italy and 11% in The Netherlands, while in Germany Salmonella was not detected. Salmonella was isolated from organic broiler flocks in Italy (18, 1%) and in The Netherlands (3, 7%). Our results indicated that Salmonella Enteritidis and Salmonella Typhimurium dominated in Lithuanian broiler flocks while Salmonella Infantis and Salmonella Java were predominant in the Netherlands. Salmonella hadar and Salmonella heidelberg seemed to be prevalent in Italy.

Key words: Broilers, conventional, organic, salmonella

Introduction
Broiler chickens, especially if intensively reared, can be considered as an important reservoir of Salmonella infections in humans (EFSA, 2006). Various risk factors can be responsible for Salmonella infection and its spread in poultry farms: housing system, flock size, different age of chicken and season of the year. (Rose et al., 1999; Heyndrickx et al., 2002). Many consumers assume that the organic chickens shed less Salmonella than conventional broilers because of the particular system management (low density stocking, access to outside and special diets) (Bailey and Cosby, 2005). A high number of chickens in the farm can increase the chance of infection with Salmonella, (Mollenhorst et al., 2005). On the other hand in organic farm the access to outside may increase the risk of the infection with Salmonella through the contact with faeces of wild birds and other animals. Cui et al. (2005) found that organically raised broilers had higher prevalence of Salmonella than broilers raised conventionally. In several studies the incidence of Salmonella was lower in organic than in conventional broiler farms (Heuer et al., 2001; Wolf-Reuter et al., 2002). However, Van Overbeke et al. (2006) reported no significant differences in the prevalence of Salmonella between organic and conventional broilers at slaughter. The subject of this study was to assess the incidence of Salmonella spp. in broiler farms of 4 EU countries: Italy, Germany, The Netherlands and Lithuania. In Italy and in the Netherlands besides the conventional farms, organic flocks were investigated in order to preliminary determine the diffusion of Salmonella spp. in this rearing condition. The typification of Salmonella was also effected in attempt to evaluate the distribution of the organism on the basis of the different geographical areas.

Materials and Methods
Sampling: This study was performed in 4 EU countries (Italy, Germany, Lithuania and the Netherlands). In Italy and in the Netherlands both organic and conventional farms were investigated. In Italy the investigations were performed in 11 organic flocks and in 10 conventional flocks over a period of two years. During the production cycle environmental samples consisting of 5 pools of litter, 2 pools of dust and 1 water sample were collected.
At slaughterhouse 60 caecal samples per farm, subdivided in 2 pools, were collected. In the Netherlands 18 conventional flocks and 108 organic flocks were examined over a period of two years. Different numbers of dust, litter samples, water and caecal pool samples were collected from each flock (Table 1). Deliveries of organic feed were also sampled and analysed individually. In Lithuania and in Germany the investigations were performed in 27 and 22 conventional flocks respectively. In Lithuania flock samples consisting of 5 pools of litter, 2 pools of dust and 1 water sample were collected during the production cycle. Litter since it is not heat treated samples consisted of boot swabs. Five (pooled) samples of caecum per flock were taken from a broiler slaughterhouse. In Germany only caecum samples were collected and analysed as one pooled sample per flock. Dust samples were collected from the walls, fans and other surfaces and pooled into samples of approximately 25 g. Per pool Farms were supplied from local underground reservoir in Italia and in Lithuania, while Dutch farms were all connected to public water supply. In all cases the water sampled consisted of pool of 1 litre collected from nipples.

Microbiological analysis: Salmonella were isolated by standard methods (International Organization for Standardization 6579, 1998). From each pool of litter, dust and caecal content, 10 g were homogenised with approximately 1:10 Buffered peptone water (BPW) for 60 seconds; 25 ml of each water sample were poured into a container followed by adding 225 ml of BPW. The samples were incubated at 35±2°C for 20-24 h. And then 1±0.1 ml was transferred into 10 ml Muller Kauffmann Tetrathionate Novobiocin broth (MKTTn)broth (1.0 ml in 9.0 ml TBG at 37°C for 24 h) (Modified Semisolid Rappaport Vassiliadis Agar in The Netherlands) and 0.1±0.02 ml was transferred into 10 ml Rappaport Vassiliadis Broth (RV) broth. The tubes were incubated in a water bath at 42±0.5°C for 18-24 h. The subcultures from the enrichment media were made onto Xyloste Lyssne Desoxycholate (XLD) agar plates and on Hecotoen enteric (Rambach agar in Germany and Brilliant Green Agar in the Netherlands) agar plates and then incubated aerobically at 37°C for 20-24 hours. One loopful of inoculum was used for each plate. Presumptive colonies were inoculated onto Mc Conkey agar (Standard I agar in Germany and Brilliant Green Agar in the Netherlands), incubated at 37°C for 24 h and biochemically checked with Ureum Agar (UA), Triple Sugar Iron Agar (TSI) using commercial tests (API 20 E). Identification was performed by agglutination testing with agglutination sera. The 95% confidence intervals (CI) for the observed prevalence of Salmonella-positive samples were estimated by linear interpolation formula (Montgomery Ranger, 1999):

\[CI = p - z \sqrt{\frac{p(1-p)}{n}} \]

\[CI = p + z \sqrt{\frac{p(1-p)}{n}} \]

\[p = \frac{\text{number of positive samples}}{\text{number of tested samples}} \]

\[z = (95\%) \ 1.96 \]

\[n = \text{number of tested samples} \]

Results

All results are summarized in Table 1. In Italy 2 out of 10 conventional farms were positive for S. hadar and S. heidelberg (20%) while 2 out of 11 organic flocks were positive for S. Hadar (18, 1%). In particular, in conventional farms Salmonella was isolated from 5 out of 50 litter samples (10%, CI 1, 16-18, 3) and from 4 out of 20 caecal samples (20%, CI 2, 4-37, 5). In one farm both litter and caecal samples were Salmonella positive, while in the other farms it was detected only in the intestinal samples. In the organic farms Salmonella was isolated from 4 of 22 caecal samples (18, 8%, CI 2, 3-33, 6). The dust and water samples were always Salmonella negative. The results obtained in Lithuania showed that the most infected samples were litter and caecum (25, 9%, CI 17-34.1 and 25%, CI 24-6-25.3 respectively) while Salmonella presence resulted lower in dust and water (9, 6%, CI 2-9.9 and 3, 8%; CI 3.5-4.0, respectively). 22 conventional flocks, collected over a period of one year gave negative results for Salmonella in all cases. In the Netherlands the analysis for Salmonella was performed in 11 conventional farms with a total of 18 flocks and in 108 flocks from 16 organic broiler farms during 2 years. With respect to organic farming a total of 181 litter samples were taken; from which 4 (2, 2%) were Salmonella positive. All samples from dust and environmental samples proved to be Salmonella negative. S. infantis was isolated in 1 organic feed sample from one flock, while S. sentenbenberg was found, both in a feed sample and in litter samples from another flock. No pools of caecal samples from organic chickens were Salmonella positive at slaughter. Salmonella serotypes isolated from organic flocks were: S. infantis, S. sentenbenberg, one isolate from the B group and one from the C group could not be typed completely. In Dutch conventional flocks the most infected samples resulted to be caecum (4 positive out of 36 = 11.1%). The serotype isolates were S. infantis in the samples from one farm (dust, litter and caeca) and S. Java from litter samples in one other farm.

Discussion

Various risk factors exist for infection with Salmonella spp and its diffusion in poultry farms: housing system, flock size, different age of chicken and season of the year (Angen et al., 1996; Skov et al., 1999). This study was intended to investigate the incidence of Salmonella in broiler chicken farms located in limited geographical areas of 4 different countries: Italy, Germany, Lithuania and the Netherlands. In Italy and in the Netherlands the
presence of Salmonella was also investigated in the organic meat type chicken in order to evaluate a possible influence of the rearing conditions. Our results indicated that the incidence of Salmonella spp. varies in the countries investigated. The percentage of Salmonella isolates in conventional housing system was 29% in Lithuania, 11.1% in the Netherlands and 9% in Italy. In one Dutch farm Salmonella could be isolated from samples taken in broiler houses after cleaning and disinfection (data not shown). From these data a specific intervention could be started, which proved to be effective on the farms. The infection proved to persist in faecal remains, in cracks and joints or in the feeder auger system inside the broiler houses. In this farm black beetles and larvae appeared to be a vector for transmission of Salmonella Java. In another study this type of transmission was also found (Bolder, 2004). In the EU Baseline study on broilers (EFSA, 2007) the results for the four countries involved in this study deviated from the results of the present paper. In the baseline study, performed on the flock basis, Germany, Italy, Lithuania and the Netherlands had respectively 15%; 28.3%; 2.9% and 7.5% of Salmonella positive flocks. However the data from our investigations covered only a fraction of the totals presented in the Baseline study. In Germany Salmonella in conventional broiler flocks was not detected but it should be underlined that the data is referred to limited sampling, though it consisted of caecal samples, always considered the best substratum for the Salmonella recovery. Salmonella isolation was also slightly inferior to expectations in Italy. In Lithuania and in the Netherlands a higher prevalence for Salmonella was detected in comparison with the EU Baseline study. Salmonella in organic broiler flocks was observed both in Italy (2 out of 11 flocks) and in The Netherlands (4 out of 108 flocks). The data is not enough extensive to make a comparison between the two rearing systems but they may give an idea in relation to the distribution of Salmonella in organic broiler farms. In the literature there is controversial data about the influence of housing systems for Salmonella infection. In several studies the incidence of Salmonella was lower in organic than in conventional broiler farms (Heuer et al., 2001; Wolf-Reuter et al., 2002; Van der Huist et al., 2004). Italian data indicated that the presence of Salmonella in organic broiler flocks is comparable with conventional broiler flocks and are in agreement with those reported by Van Overbeke et al. (2006), who did not find significant differences in the prevalence of Salmonella between organic and conventional broilers at slaughter. Bailey and Cosby (2005) also did not agree in assuming that the free range or organic conditions can influence the Salmonella presence in the chickens. The explanation of the lower Salmonella prevalence in Dutch organic broilers could be that organic broilers grow...
longer (8 week +) than conventional broilers (5-6 weeks) and are mostly slow growing brands. This could explain the absence of Salmonella in caecal contents of previously Salmonella positive flocks. The prevalence at the age of 8 weeks may have dropped below the detection level of the survey. Salmonella infection experiments in conventional broilers showed that even after relatively heavy Salmonella challenge at the early age, broilers may have cleared the infection at approximately 6 weeks of age (Bolder et al., 1999; Linton et al., 1985). Feed samplings in Dutch organic broiler farms were included since feed for organic broilers is usually not pelletized. If it is not heat treated it could be considered a risk factor in transmission of Salmonella. In this study organic feed samples proved to be Salmonella positive and in one occasion the same serotype was not isolated from feed and litter samples in the same flock. However monitoring results indicate that there is a negligible risk from pelletized feed. (Bolder, unpublished data). Our results showed that the most infected samples were from litter and caecum in comparison with those of dust and water. Some investigators have determined that the contents of the caeca constitute the best single sample site for the search of Salmonella (Barrow et al., 1988). Others have compared sampling of litter and the use of drag swabs for detection of Salmonella in poultry flocks (Kingston, 1981). Concerning the dust samples, Salmonella was positive in conventional farms in Lithuania and in the Netherlands and always negative in organic farms. Although dust can be considered an excellent vector for Salmonella, survival in dust is limited (Davies and Breslin, 2003). Gast et al. (1998) suggested that infection could occur by oral ingestion of external surfaces contaminated by Salmonella. Different Salmonella serovars were identified in chicken. At EU level the most common serovar was S. Enteritidis which represented approximately half of the isolates (EFSA, 2007). Our results indicated that S. Enteritidis and S. Typhimurium dominated in Lithuanian broiler flocks, while in the Netherlands S. infantis and S. java were isolated. In Italy S. hadar and S. heidelberg were found to be prevalent. These results confirm those of the EU Baseline study in broilers (EFSA, 2007) where wide variety of prevalent Salmonella serovars was isolated in different countries. Besides, other investigators (Byrd et al., 1997; Roy et al., 2002) found that S. Kentucky and S. Heidelberg were predominant serotypes isolated from poultry meat products. The investigators from Japan (Limawongpranne et al., 1999) detected that S. blockley, S. hadar and S. bredeney were predominant in broilers, meanwhile S. enteritidis was found only in 0.9% of samples. It seems to prove that distribution of Salmonella serovars in the world depends on the geographical region. In addition the distribution of Salmonella could change year by year in relation to different factors, like the use of certain antibiotics; for instance the recent distribution of S. Hadar in several areas could be due to its resistance to fluoroquinolones (Tran et al., 2004; Breuil et al., 2000).

Conclusion: The subject of this study was primary to assess the incidence of Salmonella spp. in meat chicken farms of 4 EU countries: Italy, Germany, the Netherlands and Lithuania. In Italy and in the Netherlands organic flocks were also investigated in order to compare the Salmonella distribution in different rearing conditions. Our results cannot be conclusive, since they are referred to limited areas in the countries and only Italy and the Netherlands produced data on both rearing systems (organic and conventional), though the results were not very comprehensive either. In the Netherlands and in Lithuania conventional housing system seems to constitute a favourable condition for Salmonella spread in broilers. Italian data showed that no significant differences in the incidence of Salmonella were found between organic and conventional broiler rearing system. The absence of Salmonella in caecal samplings from organic chickens in the Netherlands can be explained by the natural clearance, which consequently leads to the prevalence below detection level of the survey with the age.

Acknowledgements
The study was part of the research project Poultry Florgut funded by the European Commission Contract no.: Food-CT-200 X 007076.

References

