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Abstract 
 
The degradation of frankincense tree dominated woodlands has been attributed to climatic 

conditions and human activities. We lack however information on how such factors influence the 

resource balance and productivity of trees. The aim of this study was to evaluate the impact of 

resin tapping on the whole tree carbon gain, storage and allocation pattern of frankincense trees 

(Boswellia papyrifera (Del.) Hochst) in the dry woodlands of northern Ethiopia. I hypothesized 

that the intensive resin tapping of frankincense trees reduces tree vitality, particularly under 

relatively dry conditions. I established experimental plots in the highland woodlands of 

Abergelle and the lowland woodlands of Metema, and applied tapping treatments to similar sized 

adult trees (DBH 20 +/- 3cm). For these trees I also collected data on leaf gas exchange, crown 

traits, carbon storage, carbon allocation, growth and frankincense production during a period of 

two years (2008-2009). 

  Trees follow similar leaf gas exchange patterns in contrasting environments, but differ in 

annual crown carbon gain between highland and lowland sites. Highland trees of Boswellia had a 

higher photosynthetic capacity, were exposed to higher light conditions, but had a shorter leaf 

lifespan than lowland trees. Integrating these effects, I showed that the annual crown carbon gain 

is higher in the highland trees than in lowland trees. Lowland trees are mainly constrained by 

clouded conditions and resultant low light levels during the wet season, limiting their carbon 

gain.  Moreover, carbon gain was also restricted by atmospheric drought, and much less by soil 

water deficit during the growing season.  The production of frankincense was not affected by the 

annual tree carbon gain implying that trees with smaller total leaf area may suffer sooner from 

carbon starvation by tapping. 

Tapping reduced storage carbohydrate concentrations in wood, bark and root tissues 

indicating that continuous tapping depletes the carbon reserves. A large part of the carbohydrate 

concentration in the plant tissues was starch. Boswellia trees have more total nonstructural 

carbohydrates (TNC) concentrations and pool sizes in wood than in root and bark tissues. 

Because tapped trees face depleting carbon storage pools during the dry tapping season and 

cannot fully replenish these pools during the wet season, tapped trees may face higher risks of 

carbon starvation compared to untapped trees in the long term. 



 −x−

Estimated total annual carbon sinks to the different plant components were 38-68% of the 

annual carbon gain in both study sites. However, Boswellia trees also establish mycorrhizal 

associations which may consume an additional 20% of gross primary production. On a whole-

tree basis, the percentage of autotrophic respiration may exceed all other costs. The foliage 

construction costs and incense production are the second and third largest carbon sinks, 

respectively. Contrary to our expectation, the sum of all dry season carbon costs was higher than 

the total amount of consumed TNC during the dry season. The high carbon costs during the dry 

season imply that trees do not fully depend on TNC to pay for the carbon costs during the dry 

season. With the exception of carbon allocation to foliage production and maintenance, a higher 

gross primary production does not enhance an overall increase in carbohydrate investments in 

the other sinks. Therefore, the carbon allocation pattern is constrained not exclusively by the 

absolute amount of carbon gained but also by other factors.  

The results clearly indicate that continuous tapping depletes the amount of stored carbon, 

the leaf area production and the reproductive effort. These negative effects were however site 

specific and could possibly be apparent sooner for smaller trees than for larger ones. Thus, 

guidelines for resin tapping of Boswellia trees should consider tapping intensity, tapping 

frequency, environmental conditions and tree size and should focus on maintaining vital trees 

and populations for the future. 

 

Keywords: Boswellia papyrifera, carbon balance, drylands, Ethiopia, frankincense, tapping 
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Land Degradation in Tropical Dry Woodlands 

Drylands cover about 41% of the earth’s land surface and are inhabited by more than 2.5 billion 

people (Mortimore 2009). About 72% of the global dryland areas occur within developing 

countries and face increasing pressure for goods, services and values to people (Campbell 2000). 

African drylands are among the most exploited systems (Campbell 2000), and are being 

degraded or transformed to agricultural lands at increasing spatial scale (Bongers and Tennigkeit 

2010). The dry woodlands, co-dominated by trees and grasses, are sometimes considered 

hotspots for biodiversity, and support valuable and renewable resources of economic importance 

(Timmermann and Hoffmann, 1985). Despite their economic potential, the communities that 

inhabit dry woodlands of Africa are poor, often overexploit the remaining resources, or 

transform the woodlands to persistent agricultural croplands. The final consequence of such 

trends is that some of the resources provided by these woodlands are on decline and will 

influence the peoples’ livelihood. Given such increasing pressure on the remaining woodland 

resources, more basic information is required to provide a sustainable alternative for the 

woodland management. 

In addition to the land use change, climate plays another important role (Olson et al. 

2004, Bongers and Tennigkeit 2010) in dryland systems. Rainfall is erratic and temperatures are 

generally high making drought a recurrent phenomenon. The distinctly seasonal rainfall patterns 

provide water during the short wet season alternating with periods of drought (Eamus 1999). 

This implies that plants face a seasonal water deficit (Murphy and Lugo 1986, Walter 1971, 

Bullock et al. 1995). Under these circumstances, plants either tolerate drought or avoid drought 

by, for example, dropping leaves and thus limit transpiration during the dry season, to survive in 

these environments. For certain African dry woodlands however, rainfall intensity and frequency 

vary considerably also within the wet season itself (Renner 1926, Johnson 1962), suggesting that 

even deciduous trees may encounter drought stress, but during the wet season. Such dry spell 

conditions have significant effects on the annual carbon gain and allocation patterns of plants 

challenging their survival in the dryland systems. 
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Plant Survival in Tropical Dry Woodlands  

The fact that tropical dry woodlands face long dry and shorter wet seasons implies that plants 

should employ functional and/or phenological adjustment strategies (Zweifel et al. 2007, Tuzet et 

al. 2003, McDowell et al. 2008, Cowan and Farquhar 1977) either to tolerate or avoid water 

stress. Trees respond to such seasonality by dropping leaves, thus limiting physiological activity 

during the drought stress period, or by very specific physiological adaptations to deal with 

drought. Examples of such adaptation are producing long roots to access deep persistent water 

resources, or physiological control of excessive water loss. However, an extended dry season is 

still expected to reduce the productivity of the trees, and of whole dry woodland vegetations.  

Developing specific traits and physiological adaptations are important to ensure survival 

in such ecosystems. For example, deciduous and evergreen species have adopted different 

physiological strategies in carbon gain. Deciduous species with short leaf lifespan invest large 

amounts of nitrogen in leaves to support better assimilation rate (Poorter et al. 2006, Eamus et al. 

1999), such that each day of the wet season when soil water is freely available – their short-lived 

leaves fix large amounts of carbon.  

Trees also modify their carbon investment in response to climatic conditions. Most 

species can modify their allocation to root and shoot by proportionately allocating their carbon to 

favor growth towards the most limiting resources. Having a more extended root system in 

moisture stressed environments helps plants to scavenge moisture patches and underground 

water sources. This type of root architecture is an adaptive trait, as it enables the plant to capture 

resources efficiently. However, the controls to these morphological adjustments are still poorly 

understood (Yang and Midmore 2005). Dryland plants are also adapted to suit the rigors of high 

temperature. These plants have smaller leaves, non-porous covering on their leaves (wax) and 

leaf hairs to reduce moisture loss. Other plants cope with the extremes in temperature and rainfall 

by becoming dormant during the drought period, and escaping difficult times. For example, 

annual plants finish their lifecycle (from germination to flower and seed) within one growing 

season.  
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Whole-Tree Carbon Balance 

Allocation of carbohydrates to plant organs is indispensible for growth and survival. However, in 

moisture-pulsed dry environments, trees cannot maintain a constant carbon balance owing to the 

dynamics in carbon acquisition and limitation. Under extreme drought conditions, carbon gain is 

constrained by water stress and plants may starve by carbon depletion. If carbohydrates are 

indeed the limiting resources within the plant, this may result in trade-offs among different 

carbon sinks or demands (Bazzaz et al. 1987). For example, water stress may trigger higher 

investments in roots relative to shoots, light stress may result in higher investments in the shoot 

relative to the roots, and damage to plant organs may stimulate investments in defense 

metabolites. Such conflicting sink demands are captured by a general scheme of the carbon 

budget scheme in plants (e.g. Litton et al. 2007). This thesis work started from such a scheme 

(Figure 1), where I distinguish between a single carbon source, the gross primary productivity ( 

(GPP) by leaf photosynthesis and sinks that refer to maintenance respiration of living tissues, 

growth of different tissues (NPP), fluxes to a carbon storage pool, and defense against damage.. 

 

Figure 1. Schematic presentation of how gross primary productivity is partitioned into above 

ground (biomass growth = NPP; respiration, storage and defense) and below ground sinks. 
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As far as I know, there is no study that quantified this carbon balance concept at tree 

level. Prior studies focused on global scale (Edwards et al. 1990, Mantlana 2008, Heimann 

2009), aboveground to belowground comparisons (Cairns et al. 1997, Gower et al. 2001) or stand 

level studies (Litton et al. 2007). Evidently, our knowledge on plant carbon balance of larger 

trees lags behind smaller trees or other life forms (Veneklaas and Poorter 1998). In addition, 

some of the most dominant vegetation types in tropical environments like the dry tropical 

woodland systems still remain without being well studied (Heimann 2009). In this study, I aimed 

at understanding how the carbon is acquired and allocated to different sinks at the whole plant 

level for the economically important frankincense producing tree Boswellia papyrifera (Del.) 

Hochst, inhabiting dry woodlands in northern Ethiopia. I used the carbon balance approach to 

elucidate the impact of climate parameters and human induced factors (e.g. tapping) on the 

carbon gain, allocation pattern and productivity of adult trees of this species. The study focuses 

on the carbon balance of frankincense trees from leaf to whole tree scale, and from diurnal to 

annual patterns. This approach allows us to understand the impact of tapping frankincense on 

tree functional traits, and to speculate about the possible consequences of climate and thus, 

climate change. This study is one of the first that quantifies carbon gain and carbon allocation 

patterns at whole-tree level. Moreover, it is one of the few detailed studies on physiological 

responses in functional traits of a dry woodland species. Such patterns are better known for, for 

example, rain forests (Poorter et al. 2006, Markesteijn et al. 2007, Poorter 2009, Niinemets 1997) 

or tropical savannahs (Eamus et al. 1999, Goldstein et al. 2008, Bucci et al. 2008), but are 

particularly scanty for African dry woodlands (but see Biauo et al. 2010, Yoshifugi et al. 2006, 

Kushwaha et al. 2010).  

 

Boswellia Papyrifera and Its Frankincense Production 

The species Boswellia papyrifera (Del.) Hochst of the Burseraceae family has a centre of 

geographic distribution in the Horn of Africa (Lovett and Friis, 1996). The tree is distinctly 

deciduous during the dry season. It produces resin after bark injury, which provides protection 

against herbivores (Chantuma et al. 2009), prevents desiccation and further decay (Phillips and 

Croteau 1999, Langenheim 2003). Since long, this resin, also known as “Olibanum”, is known 

for its own distinctive fragrance and medicinal properties (Rahman et al. 2005). The practice of 
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tapping is commenced by a cut of the cambium, and is renewed at each tapping day by removing 

additional bark from the upper edge. During tapping, the cut surface gradually moves upward 

and each year a fresh cut is started at a different site. Traditionally, people wound the bark with a 

small hand axe such that the frankincense exudes and can be collected and used as incense in 

religious ceremonies or as export item. 

The incision on the bark triggers sink stimulation similar to rubber production (Chantuma 

et al. 2009) and drains the resin (frankincense) to exude. The resin acts as additional carbon drain 

and the costs of resin production are assumed to limit plant productivity due to assimilate 

competition among coupling demands. Since harvesting occurs during the dry season, tapping 

largely depletes storage carbohydrates and therefore trees may restrict growth, reproduction and 

ultimately result in carbon starvation. Therefore, understanding impact of frankincense tapping 

for Boswellia tree carbon gain and allocation pattern will helps us to design the frequency and 

intensity of tapping. 

Currently, the international market for frankincense is rapidly increasing, probably 

challenging the potential of the remaining Boswellia woodlands to provide sufficient 

frankincense to satisfy this growing market. In woodlands of northern Ethiopia, Boswellia trees 

are tapped at large scale and this will certainly continue given that the remaining tree populations 

are rapidly colonized by people and exploited to satisfy a growing global market demand. 

Moreover, trees are also challenged by the recurrent drought episodes in these regions. 

Altogether, existing procedures are damaging the trees (Rijkers et al. 2006, Kindeya 2003, 

Lemenih et al. 2004, Ogbazghi et al. 2006). Therefore, resin extraction requires research focus 

especially on the effect of continuous tapping on the tree carbon balance. So far, there are few 

studies on the ecology and reproductive effort of Boswellia (Rijkers et al. 2006, Ogbazghi et al. 

2006, Abiyu et al. 2010, Eshete et al. 2011) while a lot is still unknown on the physiology of 

frankincense production in relation to the plant carbon balance. 

I started by relating plant carbohydrate sources and sinks including frankincense tapping 

with the carbon budget scheme (Figure 1). In the model, understanding seasonal and annual 

patterns in carbon balance requires quantifying the carbohydrate source (Figure 2 a, b) and sinks 

(Figure 2 c, d) while tapping is considered as an additional sink. Based on the main hypothesis 

that tapping Boswellia trees drains carbon, I hypothesized that intensive frankincense production 
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impacts carbon gain, limits the carbon available for other sinks, and thus increases the risks for 

carbon starvation of the trees.   

 

Figure 2. Study and organization of the chapters based on the basic carbon flow scheme.  

 

In this dissertation, I report the impact of frankincense tapping on leaf physiology (Figure 2 a), 

annual carbon gain (Figure 2 b), storage carbohydrate dynamics (Figure 2 c) and carbon 

allocation patterns (Figure 2 d). 

My main aim is to understand the impact of tapping on leaf gas exchange property (chapter 

2), tree annual carbon gain (chapter 3) and carbon allocation pattern (chapters 4 and 5) of 

Boswellia papyrifera (Del.) Hochst in northern Ethiopia.  

I relate this to four research questions: 

 (1) How do external climate factors and physiological mechanisms explain the variation in leaf 

gas exchange characteristics of Boswellia papyrifera? (Chapter two) 

(2) How do climatic factors link to crown functional traits to affect annual carbon gain and resin 

yield? (Chapter three) 

(3) How does frankincense tapping influence the concentration and seasonality of non-structural 

carbohydrate storage? (Chapter four) 
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(4) How do the multiple carbon sink demands respond to tapping and to seasonal variation? 

(Chapter five) 

 

Thesis Outline 

This study evaluates the impact of frankincense tapping on the carbon gain and allocation pattern 

of Boswellia trees. It consists of six chapters which includes the general introduction (chapter 

one), four research data papers (chapter two to five), and a synthesis (chapter six). To evaluate 

Boswellia physiology in contrasting sites, I established five experimental plots in the highland 

and lowland of northern Ethiopia in 2007 (Fig. 1). Tapping treatments were applied to similar 

size adult trees (DBH 20 +/- 3cm) and data on leaf gas exchange, crown traits, storage carbon 

and growth traits was collected for two years (2008-2009). This data was used for all the 

chapters.  

In chapter 2, I analyze diurnal patterns in leaf transpiration and leaf carbon gain (GPP, 

but at the leaf level only). Using a mechanistic path-model, I tested how climate and 

physiological responses contributed to both leaf transpiration and leaf carbon gain during the wet 

season. 

In chapter 3, I scale morphological and physiological functional plant traits to annual 

carbon gain estimates at the whole tree level (GPP, Fig 1.). More particularly, I investigate the 

effect of tapping on the annual carbon gain, via its possible effects on the crown area and leaf 

photosynthesis.  

In chapter 4, I quantified the dynamics in the major carbon source during the dry season, 

the carbon storage (TNC) pools (Figure 1), and I evaluated the possible effects of tapping on 

these pools. I therefore collected bark, root and stem samples at different periods during the 

years, and quantified the glucose, sucrose, fructose and starch concentrations and total carbon 

contents. Moreover, I scaled the sample values to the whole tree, taking into account the biomass 

of the different storage tissues. This chapter thus evaluates the impact of frankincense tapping on 

total non-structural carbohydrate (TNC) storage of the tree.  

In chapter 5, I relate the carbon sources during wet season (leaf/crown carbon gain) and 

dry season (TNC) to the different sinks, both during dry and wet season. I thus quantified for the 

whole year (Chapter five, Figure 1) and for the dry and wet season separately (Chapter five, 
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Figure 2). This chapter explains the carbohydrate allocation patterns of Boswellia trees with 

seasonally changing phenological and physiological events. 

In chapter 6, I summarize the main outcomes of the preceding chapters and discuss them 

in the light of carbon allocation theory. This chapter also formulates conclusions with respect to 

sustainable harvesting of frankincense, which may have far reaching significance for the 

management of Boswellia woodlands.  

 

Description of Study Areas 

This study is conducted in two Boswellia populations at low and high altitudes sites in the 

northern Ethiopia (Figure 3). Permanent plots were established and adult trees of B. papyrifera 

(Del.) Hochst were selected for detailed investigation in both sites.  

The Abergelle site is at relatively high altitude (1400-1650 meters). This site is dry and is 

characterized by erratic rainfall and a short wet season (chapter 2, Fig. 1). The site is dominated 

by hills and shallow soils that limit plants to form deep roots. The vegetation is characterized by 

Combretum-Terminalia and Acacia-Commiphora woodland (NBSAP 2005), dry forest 

dominated by Boswellia papyrifera, Acacia etbaica, Terminalia brownii and Lannea fruticosa. 

The Metema site is at relatively low altitude (810-990 meters). The site is less dry and 

has relatively better rainfall distribution and the topography is flatter than Abergelle. The soils 

are deeper and predominantly have vertic properties (Birhane et al. 2010). The vegetation is 

categorized as Combretum-Terminalia woodland (NBSAP, 2005) where Acacia spp., Balanites 

aegyptiaca, Boswellia papyrifera, Combretum spp., Stereospermum kunthianum and Terminalia 

brownii are the dominant species. 
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Figure 3. Location of the study sites. The two dark squares in the upper middle panel show the 

location of the study sites in Ethiopia. Red-marked stars in the lower two panels indicate the 

location of the plots in the lowland, Metema (left) and highland, Abergelle (right). 
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Abstract 

A conceptual model was tested for explaining environmental and physiological effects on leaf 

gas exchange in the deciduous dry tropical woodland tree Boswellia papyrifera (Del.) Hochst. 

For this species we aimed at (i) understanding diurnal patterns in leaf gas exchange (ii) exploring 

cause-effect relationships among external environment, internal physiology and leaf gas 

exchange and (iii) exploring site differences in leaf gas exchange in response to environmental 

variables. Diurnal courses in gas exchange, underlying physiological traits and environmental 

variables were measured for 90 trees in consecutive days at two contrasting areas, one at high 

and the other at low altitude. 

Assimilation was highest in the morning and slightly decreased during the day. In 

contrast, transpiration increased from early morning to midday, mainly in response to an 

increasing VPD. The leaf water potential varied relatively little and did not influence gas 

exchange during the measurement period.  

Our results suggest that the same cause-effect relationships function at contrasting areas. 

However, leaves at the higher altitude had higher photosynthetic capacities reflecting acclimation 

to higher light levels. Trees at both areas nevertheless achieved similar leaf assimilation rates 

since assimilation was down-regulated by stomatal closure due to the higher vapor pressure 

deficits at the higher altitude, while it became more light limited at the lower altitude. Gas 

exchange was thus limited by a high VPD or low light levels during the wet season, despite the 

ability of the species to acclimate to different conditions. 

 

Keywords: Boswellia, diurnal variation, path analysis, photosynthesis, tropical dry woodlands. 

 

 

 

 

 

 

 

 

 



Chapter 2 – Leaf gas exchange 
 

 −13−

Introduction 

Trees of tropical dry woodlands face strong seasonality in rainfall and thus in water stress, and 

typically encounter relatively long dry (8-9 months) and short wet (3-4 months) seasons (Murphy 

and Lugo 1986, Walter 1971, Bullock et al. 1995). In such water stressed environments, trees 

face trade-offs between carbon uptake and water loss (Cowan and Farquhar 1977, Collatz et al. 

1991). When trees close their stomata to avoid water loss with increasing drought in air and soil 

(Zweifel et al. 2007), this comes at the cost of low carbon gain (Tuzet et al. 2003, McDowell et 

al. 2008). It has been suggested that trees optimize the carbon-water acquisition by minimizing 

water loss relative to the amount of CO2 uptake (Cowan and Farquhar 1977, Sandquist and Susan 

2007), which is often expressed by water use efficiency, or carbon gain to water loss ratio. 

Alternatively, deciduous trees avoid the most water stressed conditions by dropping their leaves 

during the dry period and supporting leaves only during the wet season (Mulkey et al. 1996, 

Singh and Kushwaha 2005). For certain African dry woodlands however, it is well known that 

rainfall intensity and frequency vary considerably within and across wet seasons (Renner 1926, 

Johnson 1962, Vincens et al. 2007), suggesting that deciduous trees might also encounter 

drought stressed conditions during the wet season. 

Based on theoretical and empirical studies in other dry woodland systems, such as 

Mediterranean systems (e.g. Tuzet et al. 2003, Zweifel et al. 2007, McDowell et al. 2008) and 

Neotropical systems (e.g. Goldstein et al. 2008, Bucci et al. 2008), we start from a conceptual 

cause-effect model that captures how environmental conditions and physiological traits affect 

leaf photosynthesis, transpiration and water use efficiency (Figure 1).  
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Figure 1. A conceptual model for the causal relationship of external climatic variables, internal 

physiological traits and the leaf gas exchange traits (symbols as in Table 2). Cause-effect paths 

are indicated by arrows and the direction of response is indicated by a minus or plus signs. Note 

that soil and leaf water potential range from zero (“water saturation”) to negative values (more 

water stress). The factors taken into account in this study are indicated by solid boxes, and those 

beyond the scope of this study are indicated by dashed boxes. 

 

Accordingly, light is expected to have a positive direct effect on photosynthesis and also, 

via its positive effect on stomatal conductance, on both photosynthesis and transpiration 

(Farquhar and Sharkey 1982, Tuzet et al. 2003). Water stress is expressed in terms of soil water 

potential and vapor pressure deficit, where the latter is driven by diurnal variation in temperature 

and relative humidity. Both types of water stress are expected to reduce the leaf water potential 

and stomatal conductance (Farquhar and Sharkey 1982, Zweifel et al. 2007) and, in turn, result in 



Chapter 2 – Leaf gas exchange 
 

 −15−

lower transpiration and photosynthesis. Transpiration demand may influence the stomatal 

conductance when it affects the epidermal turgor (Mott et al. 1999). Soil nutrient stress might 

reduce photosynthesis owing to insufficient nutrient availability for replacing photosynthetic 

proteins, but not influence transpiration directly. Apart from such external environments and 

physiological cause-effect relationships, there are various possible interactions amongst 

physiological traits. For example, stomatal closure and high photosynthesis rates will result in 

lower internal CO2 concentrations, and stomatal conductance is expected to reduce in response to 

lower leaf water potentials (Meinzer et al. 2001, Tuzet et al. 2003). We thus have a conceptual 

cause-effect model for the diurnal trends in environmental factors, physiological traits and gas 

exchange responses. 

Most of our current knowledge of tropical systems comes from rain forests, where the 

discussion is dominated by pioneer-shade tolerance concepts (Poorter et al. 2006, Markesteijn et 

al. 2007) or canopy-understory concepts (Poorter 2009, Niinemets 1997). Other studies are more 

on tropical savannas (e.g. Sarmiento et al. 1985, Myers et al. 1997, Eamus and Cole 1997, 

Eamus et al. 1999, Goldstein et al. 2008, Bucci et al. 2008). There is relative scarcity of 

knowledge on leaf gas exchange patterns of dry woodlands, and of African dry woodlands in 

particular. In this study, we present in-situ results on leaf gas exchange rates in response to 

external environmental conditions and in association with possible underlying physiological 

mechanisms for a deciduous tree species of poorly studied but extensive African dry woodlands. 

For deciduous trees in such dry woodlands, diurnal leaf gas exchange patterns might follow 

similar qualitative patterns as trees of temperate forests or wet tropical rain forests (Weber and 

Gates 1990, Ishida et al. 1996, Souza et al. 2008): a typical hump-shaped pattern in transpiration 

and photosynthesis, with a possible midday depression or a gradual decline after morning peaks 

in gas exchange in temperate (Bassow and Bazzaz 1998) and dry tropical savanna (Eamus et al. 

1999).  

In this study, we analyzed in-situ leaf-level gas exchange rates for naturally grown 

frankincense trees, Boswellia papyrifera (Del.) Hochst, in two contrasting areas: one at relatively 

low altitude (Metema) representing extensive Boswellia woodlands in the lowlands, and the 

other at higher altitude (Abergelle) representing more isolated populations. We tested our 

conceptual model for trees in both areas, representing contrasting conditions for this species. 

More specifically: (i) we tested whether diurnal patterns in leaf gas exchange are similar to those 
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observed for more frequently studied tree species in wet tropical and temperate forests: a hump-

shaped pattern for gas exchange with a possible midday depression (Mulkey et al. 1996, Pathre 

et al. 1998, but see Bassow and Bazzaz 1998, Eamus et al. 1999). (ii), we used path analysis to 

test whether the hypothesized relationships in our conceptual model apply to both areas, and thus 

whether the external factors and physiological mechanisms explained the variation in in-situ leaf 

gas exchange, and (iii) we considered how possible differences in gas exchanges between the 

two contrasting areas could be explained by the variation in the external factors. To our 

knowledge, this is one of the first attempts to quantify and understand such physiological 

response patterns for naturally grown, resin producing trees of dry tropical woodlands.  

 

Materials and Methods 

Species and study areas 

The species Boswellia papyrifera (of the family Burseraceae) occurs in dry woodlands of the 

Sudano-Sahelian region of Nigeria, Chad, Sudan, Central African Republic, Uganda, Ethiopia, 

Somalia and Eriterea (Lovett and Friis 1996, Ogbazghi et al. 2006). In Ethiopia, the species is 

indigenous and occurs in the northern, western and central parts of the country (Tengnas and 

Azene 2007, Tadesse et al. 2007). The species is intensively exploited for the frankincense than 

before, putting an extra pressure on the declining populations (Rijkers et al. 2006, Ogbazghi et 

al. 2006, Abiyu et al. 2010).  

B. papyrifera is a deciduous tree up to 13m tall, with a stem diameter up to 35 cm 

(Ogbazghi et al. 2006, Abiyu et al. 2010) and with an approximately circular crown. The tree is 

monoecious and has compound leaves that contain 9-20 pinnate, veined, leaflets supported by 

petioles. It grows mainly in tropical dry woodlands with the centre of geographic distribution in 

the Horn of Africa (Lovett and Friis 1996). The species is mainly found on rocky steep slopes 

and hilly areas with the roots not going deep but extending sideways on shallow surface soils 

(Ogbazghi et al. 2006). Flowering and fruiting occurs during the dry leafless season. Upon 

wounding, the tree produces a water-soluble resin (frankincense) with distinctive fragrance.  

Adult trees of B. papyrifera were selected for this comparative field study at Metema, an 

area at relatively low altitude (810-990 meters) and Abergelle at relatively high altitude (1400-

1650 meters). The Abergelle site is drier and is characterized by more erratic rainfall and a 

shorter wet season than Metema (Figure 2). This site is dominated by hills and shallow soils that 
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limit plants to form deep roots. The vegetation is characterized by Combretum_Terminalia and 

Acacia-Commiphora woodland (NBSAP 2005), dry forest dominated by Boswellia papyrifera, 

Acacia etbaica, Terminalia brownii and Lannea fruticosa. The less dry Metema site has 

relatively higher rainfall distribution (Figure 2) and the topography is flatter than Abergelle. The 

soils are deeper predominantly with vertic property (Birhane et al. 2010). The vegetation is 

categorized as Combretum-Terminalia woodland (NBSAP, 2005) where Acacia spp., Balanites 

aegyptiaca, Boswellia papyrifera, Combretum spp., Stereospermum kunthianum and Terminalia 

brownii are the dominant species. 
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Figure 2. Climate diagrams of the two study sites: Abergelle (a) and Metema (b). Dotted lines 

refer to average monthly temperature and solid lines to rainfall. For both climate variables 

monthly averages for the years 1973 –1979 and 1995- 2009 are presented. Data was not available 

for 1980-1994. 
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Measurements for diurnal patterns 

We measured leaf gas exchange on 90 naturally grown B. papyrifera trees. Trees were selected 

from a similar diameter at breast height (DBH) class of 20±3cm to avoid possible size effects. At 

Abergelle, diurnal gas exchange patterns were measured for 30 trees on a randomly selected leaf 

from the canopy over a series of three consecutive days (20-22 July, 2009). For the 60 selected 

trees at Metema, the same measurements were done during 10 consecutive days (05-14 July, 

2009). We synchronized the gas exchange measurements on each tree with the measurements of 

external environmental conditions and leaf water potential.  

For each tree, leaf gas exchange was recorded in the morning (8-11 h), around midday 

(12-14h), and in the afternoon (15-17h). We measured the net photosynthetic rate, transpiration 

rate, sub-stomatal CO2 concentration, leaf temperature and stomatal conductance using a 

portable photosynthesis system LcPro (ADC, Hoddesdon, UK.). The LcPro is an open-system 

Infra Red Gas Analyzer (IRGA), allowing ambient fresh air to pass through the plant leaf 

chamber. The LcPro was calibrated at the ADC company before the measurements started. The 

LcPro also automatically recorded the photosynthetically active radiation incident on the leaf. 

Using a thermo-hygrometer, we synchronized all these measurements with records of relative 

atmospheric humidity and temperature. The saturated vapor pressure, actual air vapor pressures 

and pressure difference between leaves and atmosphere, hence referred to as VPD, were 

calculated using the Tetens equations (Campbell and Norman 1998). Overall, gas exchange was 

expected to vary based on the macro-climatic conditions, since self shading due to vertical 

layering of leaves was minimal.  Leaf water potentials were measured for two leaflets at each of 

the three measurement times per selected tree, using a pressure chamber (Scholander et al. 1965). 

The harvested leaves were wrapped in a close-fitting polyethylene bag at excision and placed in 

the pressure chamber within few minutes to avoid spuriously low water potentials due to 

dehydration (Turner and Long 1980). Before sunrise, we also measured predawn leaf water 

potentials for each tree (between 4:30-6:00hrs). 

 

Light response curves 

Apart from this diurnal time series schedule, light response parameters were measured for small 

samples of leaves at Abergelle and Metema.  For this purpose, a detachable mixed Red/Blue 

LED light source chamber (2 cm x 3 cm) was fixed on top of the LcPro leaf chamber. Leaves 
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were enclosed inside the leaf chamber without any light for 30 minutes to enable dark respiration 

estimates. Subsequently, light levels were increased stepwise resulting in a light series over a 

realistic light intensity range: 0, 50, 100, 200, 400, up to 2000 μmolm-2s-1 using steps of 200 

µmol light intervals. At each light level, we waited until stable photosynthetic rates were 

achieved. Light response curves were constructed per leaf using the non-rectangular hyperbola 

(Thornley and Johnson 1990).  
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In this model, the parameters are the irradiance (I), the light saturated photosynthetic rate 

(Amax), dark respiration rate (Rd), the quantum yield (ф), light compensation point (Γ) and the 

curvature factor (θ).  

       

Statistical data analysis 

In the GLM analysis, we tested for the effects of site and time on gas exchange, taking site and 

time as fixed factors and tree as a random factor. Prior to the analysis, we tested for normality 

and homogeneity of the variance, using the Kolmogorov-Smirnov and Levene tests, and 

transformed if required. The same data were used in the Pearson’s correlation analysis on 

environmental factors, physiological traits, and gas exchange rates.  

We also tested for differences in leaf gas exchange, environmental conditions, leaf water 

potentials and light response curves between the two areas, i.e. Abergelle and Metema. For this 

purpose, we pooled all data and used a one-way ANOVA with the Welch statistic procedure in 

order to obtain robust F-statistics for the mean comparisons while correcting for the unbalanced 

design (N= 90 at Abergelle and N=178 at Metema). Because we have two areas only, we can 

only reflect on possible causes of observed gas exchange differences between these areas. 

To test our initial conceptual model (Figure 1), we used path analysis. The initial 

conceptual model was tested for Chi-square (2) values and significance levels (P). If the path 

model was not significant, the model was trimmed by deleting non-significant paths and 

expanded by adding the possible direct paths between external environmental, internal 

physiological and gas exchange traits. We stuck to possible mechanistic cause-effect 

relationships during this process. In this way, more significant path models were obtained for 

both areas, characterized by a lower 2 and higher P (i.e., P>0.1; the higher the P, the better the 
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model fits the data). We thus can come up with the most significant path model per site. We also 

tested whether these models applied to both sites using the structural weight model and assuming 

the same paths and equal path strength for both sites, using AMOS-software. As data input for 

the path model, we used the measurements at different time periods during the day as replicates 

i.e N= 90 at Abergelle, N=178 at Metema (two records were excluded from Metema data set due 

to machine reading signal failure). 

 

Table 1. The plant physiological and environmental variables used, with their symbols and units  

Symbols  Variables Name Units 

A Net Photosynthetic rate µmolm-2s-1 

Amax Maximum light saturated photosynthetic rate µmolm-2s-1 

Ci Sub-stomatal CO2 concentration ppmv 

Ca Atmospheric CO2 pressures ppmv 

gs Stomatal conductance for water molm-2s-1 

Ql Photosynthetically active radiation incident on the leaf µmolm-2s-1 

Rd Dark Respiration rate µmolm-2s-1 

Rh Relative humidity % 

Ta Air Temperature 0C 

Tl Leaf Surface Temperature 0C 

E Transpiration rate mmolm-2s-1 

WUE Water use efficiency µmol/mmol 

VPD Vapor pressure deficit kPa 

Θ Curvature factor - 

Ψl Leaf water potential  bars 

Γ Light Compensation Point µmolm-2s-1 

Ф Quantum Yield molCO2mol-1light 

 

 

Results 

Environmental conditions 

The leaves of trees at the high altitude site (Abergelle) were exposed to higher light levels, 

higher vapor pressure deficits and slightly lower atmospheric CO2 pressures than at the low 

altitude (Metema) site (Table 2). In line with the atmospheric CO2 pressures, the internal leaf 

CO2 pressures were also higher at the low altitude site. Temperatures during the measurement 
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period were surprisingly similar between both areas. Despite the variation in average light levels, 

the average assimilation rate was similar across areas. Transpiration rate was higher at the high 

altitude site, corresponding with the higher transpiration demand as indicated by the higher vapor 

pressure deficit. This high transpiration demand might also contribute to the lower water use 

efficiency at higher altitude. 

 

Table 2. Differences in Boswellia leaf physiological traits and environmental variables between 

Abergelle and Metema sites. 

Traits  Abergelle Metema  

 Units Mean±s.e. Mean±s.e. F-value 

Ecophysiological:     

   Photosynthetic rate (A) µmolm-2s-1     6.16±0.37     5.72±0.30 1.16NS 

   Transpiration rate (E) mmolm-2s-1     3.12±0.10     1.80±0.08 99.23*** 

   Stomatal conductance (gs) molm-2s-1     0.22±0.01     0.23±0.01   0.03NS 

   Substomata CO2 concentration (Ci) ppmv    264±0.5   297±0.5 28.8*** 

    Leaf Nitrogen %     2.83±0.26     2.42±0.18   2.1NS 

    Leaf water potential (Ψl) bars    -1.40±0.11    -1.93±0.09 14.16*** 

    Water use efficiency (WUE) µmol/mmol     2.16±0.24     3.42±0.19   8.6** 

    Maximum photosynthesis (Amax) µmolm-2s-1   22.14±1.291   14.89±0.989 0.008*** 

   Quantum yield (Ф) molCO2mol-1light     0.086±0.020     0.06±0.013 0.43 NS 

    Dark respiration rate (Rd) µmolm-2s-1     2.17±0.550     3.23±0.686 0.27 NS 

    Curvature (Θ) Dimensionless     0.47±0.008     0.48±0.008 0.44 NS 

    Compensation point (Γ) µmolm-2s-1   55±18.3   73±5.55 0.39 NS 

 Environmental:     

    PAR incident on the leaf (Ql) µmolm-2s-1 804.42±40 243.05±32 112.39*** 

    Atm. CO2 concentration (Ca) ppmv    375±0.4   396±0.3 25.8*** 

    Temperature (Ta) 0C    27.71±0.3    27.57±0.2   0.03NS 

    Relative humidity (Rh) %    49.31±1.2    62.81±1.0  68.51*** 

    Vapor pressure deficit (VPD)  kPa      3.26±0.1      2.11±0.08  74.42*** 

 

Mean and the standard error (s.e.) of each variables is presented; the sample size n = 90 for 

Abergelle and n = 178 for Metema. Differences are tested with ANOVA and their significance is 

shown for each of the variables. All tests were significant at P < 0.05. (*** P < 0.001; **, 

0.01<P<0.001 and NS not significant). 
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Light response curves 

The light response curves showed that leaves exhibited the typical asymptotic trend in 

photosynthesis with increasing light levels. Mean Amax (Metema ~ 15 and Abergelle ~ 22 

µmolm-2s-1) was however significantly lower (P = 0.008) and achieved at lower light levels for 

Metema (~1200 µmolm-2s-1) than for Abergelle (~1600 µmolm-2s-1). In line with this, leaf 

nitrogen content tended to be lower at Metema, but this trend was not significant (T-test, P = 

0.09, N = 21 for Abergelle and N = 57 for Metema). Dark respiration (Rd), light compensation 

point (Γ), quantum yield (ф) and curvature (θ) did not differ significantly between the two areas 

(Figure 3). 

        

Figure 3. Photosynthetic light response curves for Metema (filled circles) and Abergelle (open 

circles).  

 

Diurnal patterns 

While gas exchange measurements started only two hours after sun rise, assimilation and 

conductance started at relatively high values in the early hours of the day. The diurnal trend in 

transpiration suggested an increase until midday followed by stable pattern (Figure 4). The 

variation in assimilation and transpiration was however large at any time during the day. 
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Similarly, light conditions varied considerably at any time of the day. Temperature showed a 

clear hump-shaped pattern during the day and was mirrored by the trend in the vapor pressure 

deficit (Figure 4). 

      

Figure 4. Diurnal time course of light (a), leaf level photosynthetic rate (b), transpiration rate (c), 

water use efficiency (d) stomatal conductance (e), vapor pressure deficit (f), relative humidity 

(g), temperature of the external environment (h) Leaf water potential (i) and leaf temperature (j) 

in Abergelle (dark bars) and Metema (white bars) areas during mid-growing season. 
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 Gas exchange response patterns 

The path models of both areas partially confirmed our initial conceptual model, but the explained 

variation was rather low for assimilation and much higher for transpiration (Figure 5).  

   

 

Figure 5. Path diagrams for describing dependence of gas exchange variables on external 

climatic and internal physiological traits in Abergelle (left) and Metema (right). Significant path 

values are indicated by numbers along arrows. The value at the right top of each variable box 

indicates the fraction of variation in that variable explained by the model. 

 

We ended up with a separate path-model for each site, because there was no model 

significant for both sites pooled. Moreover, assuming the same path and path strengths for both 

sites never resulted in a significant model (Chi2>100, P<0.001). At the lower altitude, light had a 

positive direct effect on assimilation coupled with its indirect effect via stomatal conductance, 

which in turn, had positive effects on internal leaf CO2 pressure, assimilation and transpiration. 

The effect of light on stomatal conductance and subsequent gas exchange was not important for 

the high altitude Abergelle leaves. Here light levels might be close to saturation during most time 

of the day. Light had a direct negative effect on leaf internal CO2 concentration (Ci) in both 
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areas. Probably this results from high photosynthetic rates utilizing internal CO2 that creates 

steep gradients by depleting the internal CO2 concentration (see also the effect of assimilation on 

Ci at Metema). Vapor pressure deficit (VPD) had a negative effect on the leaf water potential at 

Abergelle, but not at Metema. VPD influenced gas exchange both indirectly via stomatal 

conductance and directly by increasing the transpiration demand. Higher VPD negatively 

affected stomatal conductance, which in turn resulted in lower gas exchange rates. Opposed to 

these indirect negative effects on gas exchange, VPD had a positive direct effect on transpiration 

since it increased the atmospheric transpiration demand. We thus observed that higher VPD at 

Abergelle induced a number of direct and indirect impacts on physiological responses, whereas 

such effects of VPD were only accompanied by light effects at Metema. Leaf water potential did 

not play a significant role in gas exchange at either site. Apparently, the observed range of leaf 

water potential was too small to create water limiting effects on gas exchange during mid-

growing season.  

 

Metema versus Abergelle 

Average net photosynthesis rate (A) during the mid-growing season was 6.2 and 5.7 µmolm-2s-1, 

respectively for Abergelle and Metema and did not differ. Transpiration rate differed strongly 

between the two areas (P < 0.001) (Table 2). Transpiration rate (E) and leaf water potential (Ψl) 

were also higher in Abergelle than Metema (Table 2). However, the water use efficiency (WUE) 

and sub-stomatal CO2 concentration (Ci) were higher in Metema than Abergelle (Table 2). Most 

correlations between traits are similar between sites. Hence, the correlation matrix (Appendix 1) 

resulted in similar patterns between the two areas irrespective of site variations (Figure 6).  
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Figure 6. Correlations between physiological and environmental trait are plotted for one site 

(Metema) against the other (Abergelle). Values are Pearson correlation coefficients.  

 

Both from the correlation matrix and path models, gs (internal physiological trait) and 

VPD (external climatic factor) are considered more important in affecting leaf gas exchange 

patterns at both areas (Figure 7), whereas the effect of light variation was statistically significant 

only at Metema. 
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Figure 7. Scatter diagram of physiological traits plotted against their direct causal variables from 

the path model in Abergelle (open circles) and Metema (filled circles); regression fitted lines are 

indicated by dotted lines (Abergelle) and continuous line (Metema). 

 

Discussion 

In-situ gas exchange traits and environmental parameters were measured for Boswellia trees in 

dry woodlands of Ethiopia at two contrasting areas. Despite the limited number of days used for 

data collection, the daily range of environmental variability was wide enough to explore 

relationships. Extensive measurements of gas exchange in both areas allowed us to describe 

diurnal patterns in external environmental conditions, underlying physiological responses, and 

responses in gas exchange. Our results suggest that diurnal patterns in gas exchange differ from 

those observed for more frequently studied tree species in wet tropical and temperate forests 

(Weber and Gates 1990, Ishida et al. 1996, Souza et al. 2008). While we hardly observed any 

consistent hump-shaped pattern and no midday depression in assimilation as observed for other 
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trees (Weber and Gates 1990, Mulkey et al. 1996, Pathre et al. 1998), we found variable slightly 

decreasing assimilation after a morning peaks. Our results corroborate with some other studies in 

temperate (Bassow and Bazzaz 1998), Mediterranean (Gatti and Rossi 2010) and tropical 

savanna (Eamus et al. 1999) ecosystems. Results suggest that leaves maximized assimilation 

during the period of least atmospheric transpiration demand, mostly early in the morning and 

follow gradual closure of stomata as the transpiration demand increases (see also Zweifel et al. 

2007, Bucci et al. 2008). High transpiration demand reflected by high vapor pressure deficit, 

largely determined an increased leaf transpiration rate during and after the midday.  

We did not find one single path model that captured the cause-effect relationships 

underlying gas exchange for both sites. The sites nevertheless shared quite a number of cause-

effects relationships. We showed how the light intensity and vapor pressure deficit influenced 

gas exchange, either directly or via underlying physiological traits. The two study areas shared 

similar physiological trait versus gas exchange trait correlations, suggesting that similar 

physiological mechanisms drive gas exchange in both systems (see similarities in Figures 5, 6 

and 7). The path analysis nevertheless indicated significant differences between the high altitude 

and the low altitude area, representing the environmental extremes where the study species is 

encountered. A positive direct effect of light on assimilation was only observed at the low 

altitude site (Metema), where light levels varied across the non-saturated range. At the high 

altitude, light levels were much higher and mainly varied within the saturating range for 

assimilation. Both areas showed similar responses in gas exchange to variation in VPD: VPD 

down-regulated assimilation indirectly via limiting stomatal conductance and increased the 

transpiration. This is in agreement with studies in some tropical and temperate forests (Fetene 

and Beck 2004, Cunningham 2004, Passos et al. 2009).  

Leaf water potential is considered a key functional trait because it is associated with the 

water stress status of trees and its influence on stomatal conductance (e.g. Meinzer et al. 2001, 

Tuzet et al. 2003, Zweifel et al. 2007, McDowell et al. 2008). However, we observed a narrow 

range of leaf water potential values (Figure 4) at the high altitude site Abergelle (-2.6 to -

0.01bars) and the lower altitude site Metema (-5.9 to -0.3bars). During this measurement period, 

we did not see any influence of the leaf water potential on gas exchange in either of the study 

areas (Figure 5). This suggests that a deciduous species such as Boswellia is more challenged by 

atmospheric drought than by soil water deficits during the wet growing season. A relatively 
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shallow but extensive root system (Ogbazghi et al. 2006, Mengistu, unpublished data), or stem 

water storage, might buffer against the fluctuating and erratic rainfall conditions during the wet 

season. It may also explain why the species is able to start leaf flushing before the actual onset of 

the first rains after a period of eight dry months. Narrow ranges of leaf water potential of this 

deciduous tree species, with leafing only during a rainy season, are similar to the observations on 

Neotropical Cerrado trees (Bucci et al. 2008) and Mediterranean trees (Martínez-Vilalta et al. 

2002) and contribute maintaining normal gas exchange during the wet season.  

 The light-saturated photosynthesis (Amax), which is an important factor for whole plant 

carbon gain (Chazdon and Field 1987), reached a higher level at the high than at the low altitude 

area. Possibly, this light response reflects an acclimation response to the higher average light 

levels at higher altitude. However, the average assimilation rates under ambient condition did not 

significantly differ between the two areas. The path analysis suggests why: at the higher altitude 

site, assimilation was tuned-down by stomatal closure in response to a higher VPD. This 

confirms that leaves of tropical dry woodlands, subjected to adequate light levels but high 

transpiration demand, might not increase carbon uptake because gas exchange becomes indeed 

limited by VPD. Similar observations have been reported for dry woodland trees in Mexico 

(Lebrija-Trejos et al. 2010).  

Overall, our results confirm that leaf gas exchange at the low altitude is both light and 

VPD limited, while at high altitude it is mainly VPD limited. Therefore, these between site 

differences are not only driven by site factors but also to species physiological differences in 

response to those factors (Figures 3). We found that gas exchange responses resulted from the 

interaction of various environmental factors and the species response to these factors. This is 

essential for describing how varying environmental conditions affect in-situ gas exchange. 

 

Conclusions 

Diurnal patterns of photosynthesis in frankincense trees showed neither a clear bell-shaped 

pattern nor midday depression, but instead a weak decline following morning maxima. We show 

how strongly the atmospheric VPD, and thus transpiration demand, controlled stomatal 

conductance and in turn assimilation. Moreover, a higher VPD resulted in a higher transpiration 

and lower water use efficiency. Our results suggest that assimilation at the low altitude is both 

light and VPD limited, while at high altitude it is mainly VPD limited. At this latter site, the 
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higher VPD down-regulated stomatal conductance such that average assimilation rates at 

ambient conditions did not differ from the other site. We conclude that trees of the study species 

were capable of acclimating to a variety of environmental conditions. Such understanding of 

environmental and physiological mechanisms that influence leaf gas exchange responses to 

environmental conditions will help to design future management systems for these inhabitants of 

the vast but poorly studied dry woodland trees. 
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Abstract 

Whole crown carbon gain depends on environmental variables and functional traits, and in turn 

sets a limit to growth sinks of trees. We estimated annual crown photosynthetic carbon gain of 

the frankincense tree, Boswellia papyrifera, in dry woodlands of Ethiopia and examined the 

effect of light, functional traits, and tapping on carbon gain and, in turn, considered the 

consequences for resin yield. During the rainy season, trees of the drier highland had a higher 

diurnal photosynthetic rate (0.35molCO2 /m
2 /d) than trees of the less dry lowland (0.23molCO2 

/m2 /d), since highland trees received more light and had higher photosynthetic capacities than 

lowland trees. Highland trees therefore achieved a higher annual carbon gain (1081molCO2 /yr) 

than lowland trees (776molCO2 /yr), despite their shorter leaf lifespan (69 days vs. 81 days). 

Intensive tapping reduced crown leaf area and the annual carbon gain in the lowland trees, but 

not in highland trees. 

Although the lowland site is characterized by a longer wet season and with longer leaf 

lifespans, trees have lower annual carbon gain than the highland due to lower light intensity and 

lower photosynthetic capacities. These results highlight how the interplay between local 

conditions and functional traits determine regional variation in tree productivity. However, such 

differences in productivity and carbon gain did not influence frankincense yield across sites. We 

conclude that Boswellia trees of different populations are thus adapted to their local climate 

conditions.  

 

Key words: Boswellia; crown assimilation; Ethiopia; frankincense; plant traits; tapping 
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Introduction 

Some trees in the families of Pinaceae (e.g. pines), Euphorbiaceae (e.g. rubber) or Burseraceae 

(e.g. Boswellia) produce gum and resin upon bark wounding or tapping. The frankincense 

producing Boswellia trees dominate large areas of dry woodlands in eastern and central Africa 

and elsewhere, where resin is often tapped by local communities for local or international 

markets (Ogbazghi et al. 2006, Tadesse et al. 2007, Mertens et al. 2009). Tapping creates a 

carbon sink that is at the cost of growth sinks, including vegetative growth and reproduction 

(Cannell & Dewar 1994, Rijkers et al. 2006, Chantuma et al. 2009). Moreover, dry woodland 

trees may suffer from irregular rainfall patterns, thus creating more limiting growth conditions 

during some years than others (Murphy & Lugo 1986, Bullock et al. 1995, Vanacker et al. 2005). 

Climate change may also affect rainfall patterns, and reduce the ability of trees to acquire and 

supply carbon to the different carbon sinks (Lacointe 2000, Hély et al. 2006, Bolte et al. 2010). It 

is a major challenge to understand how resin tapping will affect the ability of trees to acquire 

carbon and its subsequent impact on annual carbon gain. 

  For resin producing trees, the annual whole-crown carbon gain depends on a number of 

functional plant traits, environmental conditions and tapping intensity. Functional traits that 

affect crown carbon gain include leaf photosynthetic rates, total leaf area and average leaf 

lifespan (Kikuzawa & Leichowicz 2006, Selaya & Anten 2010). However, it is not clear how 

they scale-up to crown carbon gain in the field (Poorter & Bongers 2006) and vise versa. This 

information is especially limited for tropical dry forests and dry woodland trees (Yoshifugi et al. 

2006, Kushwaha et al. 2010).  

In the present study, we link light and crown functional traits to annual carbon gain and 

annual carbon gain to resin yield for frankincense producing trees of two populations. The first 

tree population occurred at lower altitude (810-900 m) with a longer and wetter dry season than 

the population at higher altitude (1400-1650 m). These two populations represent the climatic 

extremes of this species in Ethiopia. For both populations we determine: (1) the effect of tapping 

intensity on functional traits and crown carbon gain; (2) the possible effects of contrasting site 

conditions on crown carbon gain and (3) the impact of photosynthetic carbon gain on incense 

production. Because the resin is rich in carbon (Hamm et al. 2005, Mertens et al. 2009), tapping 

is expected to drain carbon reserves limiting the carbon availability for leaf formation. We 
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expect a higher tapping intensity to reduce crown leaf area and hence canopy carbon gain. We 

also expect that trees in the drier highland area, with a shorter rainy season, will be restricted in 

the crown carbon gain by the limited leaf lifespan, and thus be more affected by tapping 

compared to lowland trees. Higher leaf area and crown assimilation is expected to increase 

frankincense yield. We discuss leaf and canopy traits that enable Boswellia to survive in 

contrasting sites and compare their response to light scenarios. 

 

Methods 

We studied crown assimilation and carbon gain of Boswellia papyrifera of the family 

Burseraceae in two contrasting woodlands in northern Ethiopia. Abergelle is at an altitude of 

1400-1650 m (hence forward referred to as “highland” site), and Metema is at a lower altitude of 

810-900 m (referred to as “lowland” site). The Abergelle site is drier and has erratic rainfall with 

the wet season shorter than Metema (Chapter 2, Figure 2). The less dry Metema site has a 

relatively better rainfall distribution (Chapter 2, Figure 2). 

We selected trees with a DBH of 20 +3 cm for the experiment. For each site, the 

experimental trees were randomly allocated to one of the three treatments, i.e. 0 (control), 6 and 

12 incisions tapping. The tapping treatments were applied over two successive dry seasons 

(2007-2008 and 2008-2009). In the highland, we established one plot and selected 10 trees per 

tapping treatment for gas exchange out of which five were also used for estimating total leaf 

area. In the lowland, we established four plots with a priori assumption of local variation and 

five trees were selected per tapping treatment in each plot for both gas exchange and total leaf 

area. 

To estimate total leaf area of a tree,  we counted the total number of apices per tree, the 

number of leaves per apex (three apices per tree), the number of leaflets per leaf (three leaves per 

tree), and measured leaflet area (five randomly selected leaflets per tree) using ADC model AM 

100 leaf area meter  (ADC, Bioscientific, Hoddesdon, UK). For each tree, total leaf area was 

calculated as the product of the number of apices, the number of leaves per apex, the number of 

leaflets per leaf and the average leaflet area after full expansion.  

To estimate the leaf lifespan and crown leaf area over the wet season (the dry season was 

completely leafless), we monitored weekly leaf size expansion and number on three apices, 

leaves and leaflets for each of the five trees per tapping treatment.  To determine leaf lifespan, a 
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leaf was considered “born” when half of its size unfolded and total crown leaf area was “born” 

halfway between first leaf and full leaf area expansion. Similarly, the timing of crown leaf 

“death” was recorded when leaves changed color from green to yellow because this is assumed 

to be a critical stage beyond which leaves may not benefit from a positive daily carbon balance 

anymore (Reich et al. 2009). Effective crown leaf lifespan (only counting days during which 

leaves function at full expansion) was calculated as the time difference (in days) between crown 

leaf birth and death.  

 

Gas exchange measurements 

Gas exchange was measured on 01-03 July 2008 and 20-22 July 2009 at the highland site. 

Similar measurements for the lowland site were made on 20-28 June 2008 and 05-14 July 2009. 

During these measurement periods, gas exchange was measured for every experimental tree in 

the morning (0800-1100h), around noon (1200-1400h) and in the afternoon (1500-1700h) on a 

single leaflet, using an open portable gas exchange system, LcPro (ADC, Bioscientific, 

Hoddesdon, UK). On each measurement day, one tree was randomly selected from each tapping 

treatment and gas exchange measured on a well-expanded leaflet.  

In addition to these in-situ measurements under ambient conditions, we established light 

responses curves for five leaves in each site. For this purpose, photosynthesis was measured for a 

range of light values, using a detachable mixed Red/Blue LED light source chamber (2x3 cm) on 

top of the LcPro leaf chamber. Leaves were enclosed in a leaf chamber without any light for 30 

minutes and, consequently, light levels were increased progressively over a realistic light 

intensity range, i.e. from 0, 50, 100, 200 to 400 and then up to 2000 using steps of 200 µmol /m2 

/sec. For each measured leaf, a light response curve was established using the non-rectangular 

hyperbola (Thornley and Johnson 1990).  

dR
IAAIAI
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)}4(){( max
2

maxmax                 (1)              

In this model, the parameters are the irradiance (I), the light saturated photosynthetic rate (Amax), 

dark respiration rate (Rd), the quantum yield (ф), and the curvature factor (θ) per selected tree. 

 

 

 



Chapter 3 – Crown carbon gain 
 

 −38− 

 

Scenarios  

We estimated the daily photosynthetic rates by integrating the photosynthetic measurements 

under ambient light conditions over the day. Since we took three periodic measurements during 

the day (each assumed to represent 1/3 of the day), we integrated each measurement for four 

hours. Subsequently, we estimated the wet season annual carbon gain (dry season is leafless) of 

leaves per tree by integrating the daily photosynthetic rates to the leaf lifespan. Annual crown 

carbon gain is the product of the site-specific crown leaf lifespan, leaf specific daily 

photosynthetic rate, and tree specific total leaf area.  

Many studies used vertical integration against radiation gradient to determine total crown 

carbon gain (Baldocchi 1993, Bonan 1995, Nasahara et al. 2008), and distinguished between 

sunlit and shaded leaf parts (De Pury & Farquhar 1997, Wang & Leuning 1998). Because 

frankincense trees exhibit little self-shading under natural conditions, we assumed that all leaves 

in the canopy were exposed to similar light level, which is a reasonable assumption for the 

relatively small and open crowns of the study species. Moreover, leaves were selected randomly 

during gas exchange measurement to account for any possible shedding effect. 

Moreover, we could compare the ambient light-based estimated annual carbon gain 

described above, with estimations assuming either entirely clear or entirely overcast days. For 

the latter two contrasting light scenarios, diurnal leaf light interception was calculated as a 

function of time, using Il= It =12sin(π(t-6)/12), where time t was entered as hour from 0600 h until 

1800 h. Here the noon irradiance It=12 was assumed to be 2000µmol /m2 /sec light for clear sky 

conditions and 500µmol /m2 /sec light for cloudy day conditions. Leaf photosynthetic rates were 

subsequently calculated using a non-rectangular hyperbolic light response curve of leaf 

photosynthesis for each site (equation 1), and integrated over the day.  But, ambient light was 

used for first field based measurement. In all scenarios, the day length (h) was taken as 12 h. 

Subsequently, we estimated the (wet season) annual carbon gain as the product of leaf daily 

photosynthetic rate, leaf lifespan, and total leaf area.  

 

Data analysis  

A general linear model with univariate analysis and Tukey post-hoc multiple comparisons was 

used to test the effect of tapping intensity on plant traits driving annual carbon gain. The analysis 

was done by including the interaction between sites and tapping intensity as a fixed factor. The 
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relationship between photosynthetic rates or crown leaf area with crown carbon gain and 

frankincense yield was tested by linear regression models. Data was analyzed using SPSS 

(PASW 17.0 for Windows statistical software package). 

Results 

Leaf phenology 

 Leafing and senescence started earlier in the lowland than in the highland (Figure 1). 

Nevertheless, the estimated effective crown leaf lifespan was 81 days in the lowland and only 69 

days in the highland. In both sites, leaf bud burst already started before the actual onset of the 

first rains. Flower and fruit production occurred during the leafless dry period, but sites differed 

in their timing (Figure 1). Fruit bud initiation started early during the dry season shortly after leaf 

shedding in the lowland, whereas it occurred at the end of the dry season in the highland. 

Tapping had no significant effect on the timing of leafing (Figure 2). 

 

Figure 1. Phenological patterns of Boswellia papyrifera in relation to rainfall in Metema 

(lowland, dashed line) and Abergelle (highland, solid line) sites in Ethiopia. Codes for successive 

phenological periods include: FL= flowering, FR= fruiting, BB= leaf bud breaking, CC= Pre-leaf 

fall color change and LS= leaf shedding. 
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Figure 2. The expansion in mean crown leaf area during the start of the wet season in the 

lowland site (Metema) and the highland site (Abergelle). Mean values of the three tapping 

treatments are plotted because there was no significant difference between tapping treatments 

(ANOVA: Abergelle, P = 0.33 and Metema, P = 0.13). The horizontal broken lines are the 

maximum and half expansion values while the vertical broken lines marked the beginning of 

effective crown leaf lifespan (a point where half of the crown leaf area expanded, see methods). 

The upper and lower colored regions of each site are assumed to be equal. 

 

Tapping Effects on Leaf Area and Carbon Gain 

Tapping reduced crown leaf area in the lowland, but not in the highland. Because of the 

reduction in crown leaf area, estimated annual crown assimilation was lower for heavily tapped 

trees in the lowland (Figure 3; Table 1).  

Estimated annual crown assimilation (Table 2) of trees was higher in the highland 

(1081molCO2 /yr+ 118) than in the lowland (776molCO2 /yr + 72), resulting from the higher 

daily photosynthetic rate in the highland (0.35molCO2 /m
2 /d) than the lowland (0.23molCO2 /m

2 

/d). With similar average crown leaf area between the two sites, the shorter crown leaf lifespan of 

trees in the highland apparently was more than compensated by their higher photosynthetic rates 
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(Figure. 3 B, D, E). Higher light interception together with high photosynthetic capacity resulted 

in higher photosynthetic rates in the highland compared to the lowland.  

 

 

Figure 3. Light capture (a), daily photosynthetic rates (b), light use efficiency (c), effective 

crown leaf lifespan (d), crown leaf area (e) and estimated annual crown assimilation (f) in 

relation to different levels of tapping intensity. Tapping included 6 or 12 incisions, and these 

treatments were compared with the control (without tapping) across sites. Different letters 

indicate across site differences after post-hoc test.  
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Table 1. Leaf and crown traits of Boswellia trees under the different tapping levels in the study 

sites.  Mean values are given and different letters along the row indicate significant differences.  

  Highland 

Tapping 

Lowland 

Tapping 

Plant Traits Units 0 6 12 0 6 12 

Tree DBH cm 18.16a 18.84a 18.61a 19.66a 19.26a 18.72a 

Number of apex/tree number 63a 75a 80a 118b 86ab 88ab 

Number of leaf/apex number 11a 11a 10a 10a 9a 9a 

Number of leaflet/leaf number 16a 16a 19a 19a 19a 17a 

Effective leaf lifespan days 70a 67a 70a 82b 79b 81b 

Leaflet area cm2 42.9c 29.4b 31.8bc 22.6a 26.5ab 19.5a 

Light use efficiency molCO2 /mol 0.025a 0.019a 0.018a 0.019a 0.021a 0.018a 

Photosynthetic rates mol CO2 /m
2 /d 0.29abc 0.38c 0.36bc 0.22ab 0.23a 0.23ab 

Crown leaf area m2 47.31a 38.51a 47.11a 50.57a 40.81a 26.94b

Crown assimilation mol CO2 /yr 1048ab 944ab 1270b 1005ab 777ab 555a 

Whole plant carbon gain Kg /yr 31.5ab 28.3ab 38.0a 30.2ab 23.3ab 16.6b 
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Both leaf photosynthetic rate and crown leaf area positively correlate with crown assimilation 

(Figure 4). However, neither crown assimilation nor crown leaf area leads to higher frankincense 

yield (Figure 5) in both sites. 

 

Figure 4. Linear regressions of annual crown assimilation with crown leaf area (upper panel) 

and photosynthetic rate (lower panel) for lowland Metema and highland Abergelle. Crown 

assimilation showed significant r2 values for both photosynthetic rates and crown leaf area (**, 

0.01>r2>0.001; ***, r2<0.001). 
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Figure 5. Linear regression to predict frankincense yield from the two tapping levels based on 

crown leaf area (upper panels) and crown assimilation (lower panels) is shown. Frankincense 

yield shows non-significant r2 values (ns) for both crown parameters. 
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Despite differences in light capture, the light use efficiency (LUE-the ratio of 

assimilation to absorbed light), was the same across treatments (Figure 3C; Table 1). Moreover, 

our predictions for light scenarios showed better performance for clear sky conditions especially 

in the lowland (Figure 6). Based on our prediction for annual crown carbon gain under the light 

scenarios, highland trees achieved 86 percent of the potential carbon gain (0.86±0.02), while 

lowland trees achieved only 56 percent (0.56±0.03).  

 

Figure 6. Predicted crown assimilation is compared among ambient light, clear sky and cloudy 

sky conditions. The predicted values are based on the light response curves for clear sky 

conditions (a saturating mid-day light value of 2000 μmol/m2/sec), for cloudy sky conditions (a 

mid-day light value of 500 μmol/m2/sec) and field conditions (under ambient light). 

 

Discussion 

We determined the effect of light, frankincense tapping and functional traits on crown carbon 

gain and subsequent resin yield for two Boswellia tree populations at contrasting sites. Earlier, 

the impact of resin tapping on reproductive effort was clearly shown (Rijkers et al. 2006), but not 

on crown leaf area. We expected a higher tapping intensity to reduce crown leaf area and hence 

crown carbon gain.  Indeed, heavy tapping reduced annual carbon gain, but only in the lowland. 

Moreover, we did not observe any effect of carbon gain or site on the annual resin yield.  
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Timing of leaf and flower bud initiation, and crown leaf longevity were important 

phenological differences between the two areas (Figure 1 & 2). In both study sites, leaf bud burst 

started before the first rain of the wet season. This phenomenon was earlier recorded for tropical 

dry forest trees (Rivera et al. 2002, Elliott et al. 2006, Williams et al. 2008), and it has been 

suggested that such trees either have access to deep soil moisture or have a large stem water 

storage (Borchert 1994, Elliott et al. 2006, Williams et al. 2008, Kushwaha et al. 2010). 

We expected trees in the drier highland area, with a shorter rainy season, to be restricted 

in crown carbon gain as a result of limited crown leaf lifespan (Suárez 2010), and also to be 

more affected by tapping. This was clearly not the case. Despite their shorter leaf lifespan, trees 

of the drier highland attained substantially higher annual crown assimilation. This difference was 

the product of the greater light availability (less cloud cover) and the larger photosynthetic 

capacities of trees at the highland site. These two factors more than compensated for the shorter 

leaf lifespan at this site. Previously (T. Mengistu et al. unpublished data), it was also shown that 

the photosynthetic capacity was higher in the highland than the lowland (highland = 22.14±1.3; 

lowland = 14.89±0.98; P = 0.008). In the lowland, with higher rainfall and a longer wet season, 

trees achieved a lower annual crown carbon gain. Thus, surprisingly, rainfall differences alone 

could not explain the observed difference in annual carbon gain. It seems that light limitation has 

a more significant effect on annual carbon gain differences between these two sites. While the 

light limitation by clouded weather has been demonstrated for trees of rain forests (Clark & 

Clark 1994), this is as far as we know the first study that demonstrates such strong light 

limitation by persistent cloudiness for a dry woodland system. 

Leaf area growth and carbon gain of lowland trees were negatively affected by intensive 

tapping. This suggests a trade-off between tapping and leaf formation: the carbohydrate used for 

resin production was at the cost of the carbohydrate to be invested in leaf area, comparable to the 

resin production to reproduction trade-off (Rijkers et al. 2006) and rubber production to growth 

trade-off (Chantuma et al. 2009). However, tapping effects on leaf area or annual carbon gain 

were not observed for highland trees. Possibly, these highland trees buffered the impact of 

tapping by their higher annual carbon gain.  

Despite the variation in environmental conditions between sites and the individual tree 

variation in annual carbon gain, trees achieved similar resin yields. None of the considered 

functional traits (crown leaf area and assimilation) had immediate impacts on resin yield. This is 
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remarkable, given the large difference in annual carbon gain across trees. Since the measured 

trees had a similar stem diameter, we propose that the size of bark and the amount of resin 

secretary structures and canals could be a stronger driver for frankincense yield than the 

constraints set by annual carbon gain. Moreover, maximum yield of resins from plants depends 

on the kind of duct, the location of ducts in plants and how ducts are influenced by wounding 

(Langenheim 2003). On the other hand, frankincense is primarily to defend damage 

(Langenheim 2003) and that allocation to this function might have preference over other sinks 

even when trees have reduced carbon gain. 

Boswellia trees thus seem acclimated or adapted to local conditions through changes in 

functional crown traits. Moreover, carbon gain of trees responded strongly to the variation in 

light intensity associated with the degree of cloudiness during the rainy season. Because rain is 

of course another important climatic factor, setting limits to leaf lifespan, the possible 

consequences of increased drought and associated weather conditions under climate change 

(Vanacker et al. 2005, Hély et al. 2006, WWF 2006, Butterfield 2009) suggest difficulty of 

predicting future sustainability of Boswellia trees, both for their annual carbon gain and resin 

productivity.  

 

Conclusion 

The impact of tapping B. papyrifera on annual carbon gain was site specific. Heavy tapping 

negatively affected leaf area production and annual crown assimilation in the lowland. In the 

highland, trees are less affected by tapping due to better light conditions and photosynthetic 

capacity that give better annual carbon gain advantage. Thus, the combined effect of higher 

photosynthetic rate and shorter leaf lifespan resulted in more carbon gain advantage than the 

combined effect of long leaf lifespan and lower photosynthetic rate. We conclude that Boswellia 

trees are differentially acclimated to their local environmental conditions within the tropical 

woodland systems they live in. However, the impact of future climate change may alter the 

length of the leaf bearing period with a possible effect on crown carbon gain and resin 

productivity of the species.  
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Abstract 

Carbohydrates fixed by photosynthesis are stored in plant organs for future use mainly in the 

form of starch or sugars. Both starch and sugars form the total non-structural carbohydrates 

(TNC) and serve as intermediate pools between assimilation and utilization. We examined the 

impact of tapping on TNC concentrations and its seasonal variation in the wood, bark and root 

tissues of Boswellia papyrifera in two natural woodlands of Ethiopia. Tapping is expected to 

reduce carbon from the plant organs. We expected “exhaustion” of storage carbon during the 

leafless dry season and “re-fill” during the wet season when crowns are in full leaf. We also 

expected well-protected roots to have higher TNC concentrations than wood and bark. 

As predicted, tapping reduced TNC concentrations and pool sizes in the plant system. 

Given the distinct seasonal changes in phenology of this deciduous tropical woodland tree, a 

significant difference was observed between end of wet season maxima and end of dry season 

minima in TNC concentrations. Moreover, Boswellia trees appear to have more starch stored in 

the stem and more soluble carbon stored in the bark. Evidently, reduced TNC concentrations 

after tapping in all tissues and the seasonal dynamics of carbohydrate reserves appear relevant 

parameters to cautiously evaluate the long-term sustainability of tapping Boswellia trees in the 

dry woodlands systems.  

 

Keywords: non-structural carbon, Boswellia papyrifera, frankincense, starch, sugar  
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Introduction 

Plants acquire carbon when they have a full green canopy and directly use or store it until 

required for future use (Chapin et al. 1990, Newell et al. 2002, Bansal and Germino 2009, 

Chantuma et al. 2009, Regier et al. 2010). Storage carbohydrates will then be allocated to 

growth, maintenance, reproduction and defense. While new foliage on evergreen plants could 

initially be supported by carbohydrates supplied ‘online' from pre-existing shoots (Hoch et al. 

2003, Bansal and Germino 2009), this benefit is hardly possible for deciduous species. 

Therefore, tropical deciduous species should accumulate carbon when canopies are in full leaf 

and completely depend on their stored carbohydrates while leafless. 

Storage is in the form of non-structural carbohydrates, largely starch and sugars (Würth et 

al. 2005, Raessler et al. 2010), which form the Total Non-structural Carbohydrates (TNC). TNC 

and its seasonal variations in trees reflect the source-sink balance (Würth et al. 2005, Bansal and 

Germino 2009) and enhance plant survival as it allows plants to overcome periods of stress 

(Poorter and Kitajima 2007). It is well established that a TNC pool becomes larger when sinks 

are reduced (Chapin and Wardlaw 1988) and vice versa. Therefore, on whole tree basis, the 

stored TNC should reflect not only the supply but also the potential for future demands.  

Trees may accumulate reserves in different tissues, i.e. leaves, stems and roots. The 

storage in such tissues depends on the size of these compartments and resource concentrations in 

each of them.  Most studies of seasonal TNC patterns in tropical trees concentrated on one 

compartment, while TNC has rarely been examined in multiple compartments simultaneously 

(Newell et al. 2002). Moreover, knowledge of storage carbon reserves for resin and gum 

producing tropical dry woodland trees is lacking. 

In this study, we determined how frankincense tapping influences the non-structural 

carbohydrate content of the frankincense tree, Boswellia papyrifera, and to what extent the 

carbohydrate storage changes with season, in two contrasting natural Boswellia populations of 

Ethiopia. For Abergelle and Metema populations, we determined (1) how frankincense tapping 

influences the total non-structural carbohydrate content of trees (2) the extent to which Boswellia 

trees re-charge their storage carbon during the shorter growing season after dry season 

exhaustion by reproductive effort and tapping and (3) how concentrations differ in plant organs.  

Tapping is expected to drain carbon from the plant and reduce storage carbon 

concentration in the plant organs during the dry season. We also expect trees to face 
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“exhaustion” of storage carbon after competing carbon sinks during the long dry season and 

possible “re-fill” when canopies are in full leaf during the short wet season. Finally, we expect 

higher storage carbon concentration in the well protected root (Hoffmann et al. 2003, Regier et 

al. 2010) followed by the wood and bark sections, the latter commonly affected by fire, tapping 

and herbivory.  

In order to test these hypotheses, we quantified the non-structural carbohydrate 

concentrations in the wood, bark and root compartments of a dry woodland frankincense tree for 

a period of two years (2007-2009) in two contrasting areas in Ethiopia. The species differed in 

leaf and reproductive phenology in the two areas (Chapter 3). TNC concentrations were 

determined after the long dry season and after the short wet season to elucidate whether 

Boswellia trees are able to “re-fill” their storage carbon during wet season and “exhaust” during 

the dry season. For this purpose, we harvested sliced samples of wood, bark and root tissues in 

October (wet season end) 2007 and 2008 and June (dry season end) 2008 and 2009 from tapped 

and control trees to determine their TNC concentrations per unit dry mass. Pool sizes were 

extrapolated using data on whole tree biomass. This study is pioneer in evaluating the influence 

of tapping on storage carbohydrates in multiple organs of the frankincense producing tree in a 

tropical dry woodland system. However, there are prior studies for rubber (Chantuma et al. 2009, 

Silpi et al. 2007), Mango (Mialet-Serra 2006) and temperate deciduous taxa (Li et al. 2002, Hoch 

et al. 2002, Hoch et al. 2003). 

 

Methodology 

Study site and species 

Adult trees of Boswellia papyrifera (Burseraceae) were selected at Metema, a low altitude area 

(810-990 meters) still with vast Boswellia populations and at Abergelle, a high altitude area 

(1400-1650 meters), with more fragmented Boswellia populations. The Abergelle site is drier 

and has erratic rainfall with the wet season shorter than Metema. The less dry Metema site has a 

relatively better rainfall distribution. 

B. papyrifera is a deciduous tree up to 13m tall, and grows mainly in tropical dry 

woodlands with the centre of geographic distribution in the Horn of Africa (Lovett and Friis 

1996). Flowering and fruiting occurs during the dry leafless season. Upon wounding, the tree 
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produces frankincense (a water-soluble gum and alcohol soluble resin) with distinctive fragrance 

and this is expected to drain the carbon pool from the plant system. 

 

Field Data Collection 

In October 2007, we marked 33 trees in Abergelle and 114 trees in Metema (Figure 1), of similar 

diameter (20+3cm DBH). The sample sizes differ due to the a priori assumption of different 

productivity levels between plots in Metema. The marked naturally grown Boswellia trees were 

randomly subjected to either no tapping (control) or heavy tapping (12 incisions) treatments 

during the dry season (as practiced locally). Wood, bark and root (including wood and bark) 

samples were collected from trees to determine the initial stock of storage carbon at the end of 

the wet season, in October 2007. After a full season of tapping experiment in the dry season 

(June 2008), a slice of stem wood, bark and root samples of four randomly selected trees were 

collected. This was repeated after the wet season (October 2008) and after the dry season (June 

2009).  

 

Figure 1. The design used for sampling plant tissues. The number of trees used for periodic 

sampling is indicated in the top (numerator for highland and denominator for lowland). In total 

147 trees were used for both sites.  

 

Within two hours after collection, samples were dried in a microwave oven at 900C for 2 hours 

on site (Hoch et al. 2002) and transferred to Addis Ababa University laboratory for further oven 

drying to constant weight at 750C. Samples were then ground to fine powder using a grinding 

mill. Ground samples were transferred into plastic cups and stored in a freezer until analysis. All 

samples were analyzed for total non-structural carbohydrates (TNC). TNC is defined here as the 

sum of free sugars (sucrose, glucose and fructose) and starch. TNC commonly covers more than 
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90% of mobile carbon in plants (Hoch et al. 2002, Hoch et al. 2003) and other carbohydrates 

were not included in this analysis because they contribute little (Hoch et al. 2003). Sugar 

standards were used as controls during the analysis (Hoch et al. 2002, Li et al. 2002).  

TNC analysis 

Total non-structural carbohydrates (TNC) were determined by high-performance liquid 

chromatography (HPLC; Pump: GS50 Dionex; Detector:PED detector), working with pulsed 

amperometric mode using high performance anion exchange chromatography (HPAEC). 

Analytical column was CarboPac PA1 (250x4mm); including guard column with 100 mM NaOH 

and wash step to 200 mM NaOH. The flow rate in the analytical system was 1ml/minute with a 

total of 20 μl injection volume. Temperature was held constant at 25oC through out the analysis. 

At first, 15 mg powdered samples were taken and put in a centrifuge tube. Five milliliter 

ethanol (80%) was added and mixed before putting the sample in a shaking water bath at 800C 

for 20 minutes to extract soluble sugars into aqueous solution. Then the sample was centrifuged 

for 5 minutes at 8000rpm to separate the supernatant. Only 1ml of the supernatant was separated 

in an Eppendorf vial and the alcohol evaporated in a SpeedVac for 2hrs. The remaining sample 

was stored at -200C for later starch determination. The dried supernatant was diluted by 1ml pure 

water using a dispenser and then mixed and put in an Ultrasonic bath for 10 minutes. The 

samples were centrifuged (25000rcf) for another 10 minutes to ensure complete dilution and 

transferred to a mini-glass vial for glucose, sucrose and fructose determination. HPLC detects 

electronic signal based on the retention time elapsed for each carbohydrate molecule and the 

detector converts the signal into numeric soluble sugar concentrations in microgram/ml. 

The accurate determination of the high molecular weight polysaccharide starch relies on 

both its complete extraction from the sample, and its complete hydrolysis into the monomer 

glucose; the latter being used for analytical quantification of starch. From the original starch 

sample, the supernatant was removed after diluting with 3ml ethanol (80%) and centrifuged for 5 

minutes. We repeated this step three times to ensure that the remaining sample contained only 

the insoluble part of sugar. The remaining pellet was dried in the SpeedVac for 20 minutes 

before enzyme digestion. To metabolize the polysaccharides (starch) to glucose units, we used 

2ml α-amylase solution (1mg/ml Rohalase in water) as a reagent. The solutions were put in a 

shaking water bath for 30 minutes at 900C. To further break the glucoside bonds in starch, 1ml 



Chapter 4 - Storage carbohydrates 
 

 −55− 

 

amyloglucosidase (0.5mg/ml in 50 mM citrate buffer and pH = 4.6) was added and shaken in a 

water bath for another 15 minutes at 600C. A 1ml sample was then transferred to an Eppendorf 

vial and centrifuged (25000rcf) for 10 minutes. Then we followed the same procedure described 

previously for glucose determination. Starch concentrations were then expressed in glucose 

equivalents. Sucrose, fructose and glucose standards were used in between analyses to check 

functionality. Results were expressed on a mass per dry mass basis (mg/g). 

 In a separate experiment, we harvested four trees of similar diameter class from each 

site. Biomass of wood, bark and root portions was measured after carefully separating each 

compartments. Fresh weight of a sliced sample from each compartment was measured in the 

field and re-measured after oven drying. The moisture content was then determined for each 

compartment. From both the concentration and biomass data, we calculated the carbohydrate 

pool size for each tissue. This was done by multiplying the concentration by the total dry weight 

of each compartment for a tree from the harvesting experiment (data not shown). 

 

Data Analysis 

We tested our data for homogeneity of variances using Levene’s test. Differences between 

tapping treatments, sites and season in TNC, TSC and starch concentrations of each plant part 

(wood, bark and root) were analyzed by means of ANOVA. Given that the experimental trees 

were harvested only once, we used trees as replicate. Tapping effects and seasonal difference in 

TNC concentration during the study period was analyzed for each site separately. When 

comparing different compartments, we applied Post-hoc tests; Tukey test was applied for means 

of equal variances and Tamhane test in case of unequal variances. Data was analyzed using SPSS 

(PASW 17.0 for Windows statistical software package). 
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Results 

The mean TNC concentration for Boswellia trees was 2.96mg/gdw. The highland and the lowland 

populations did not differ significantly in TNC concentrations (Table 1). About 62% of TNC in 

the lowland and 70% in the highland consisted of starch and the remaining is soluble sugars 

(Figure 2). Both concentrations and pool sizes were lower in tapped than untapped trees, 

although the difference was not always significant (Figure 2, Table 2). Starch was not 

significantly reduced by tapping in the highland.  

 

 

 

Figure 2. Reserve carbohydrate concentrations for tapped and untapped (control) Boswellia 

papyrifera trees. Starch, TSC (total soluble carbohydrates) and their sum TNC (total non-

structural carbohydrates) concentrations are shown. The TNC pool size is the total amount of 

TNC in the whole tree. Different letters indicate significant differences between control and 

heavy tapping treatments for each site. Bars indicate standard error. 
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Table 1. Summarized results of ANOVA showing the effect of site, tapping and season on the 

concentration of Total Non-structural Carbon (TNC), Total Soluble Carbohydrate (TSC) and 

starch; F values and their significant levels are presented (ns, non significant; *, 0.01<P<0.05; 

**, 0.001<P<0.01; ***, P<0.001).  

 No Source of variation Carbohydrate concentration (mg/g) 

TNC TSC Starch 

1 Site 0.81ns 1.97ns 0.47ns 

2 Season 17.73*** 54.26*** 10.50***

3 Tapping 23.15*** 21.87*** 16.85***

4 Tissue 28.43*** 32.71*** 38.03***

5 Site X season 9.20*** 23.13*** 6.30*** 

6 Site X Tapping 7.81*** 8.34*** 5.67** 

7 Site X Tissue 12.25*** 13.55*** 15.97***

 

Table 2. Carbohydrate storage in the form of TNC (total non-structural carbohydrates), TSC 

(total soluble carbohydrates) and starch (mg/g) compared between tapped and non-tapped control 

trees, and for different plant organs (mean +s.e.). 

 

Sites 

Plant 

Tissue 

Pool size (g/tree) Carbohydrate concentrations (mg/g) 

TNC TNC TSC Starch 

Control Tapped control Tapped control Tapped control Tapped 

Highland wood 271.0+33a 194.2+40a 5.6+0.7a 4.00+0.8a 0.52+0.1a 0.30+0.1b 5.07+0.7a 3.71+0.8a 

 bark   94.2+12a  50.5+18b 2.8+0.3a 1.49+0.5b 0.89+0.1a 0.42+0.1b 1.88+0.3a 1.07+0.5a 

 root  39.0+7a  24.2+8a 2.1+0.5a 1.31+0.4a 0.43+0.1a 0.27+0.1a 2.56+0.5a 1.59+0.5a 

Lowland wood 245.6+21a 136.69+15b 5.0+0.4a 2.75+0.3b 0.37+0.0a 0.28+0.0a 4.58+0.4a 2.47+0.3b 

 bark  64.0+6a  46.87+6a 2.5+0.2a 1.81+0.2a 0.79+0.1a 0.52+0.1b 1.67+0.2a 1.29+0.2a 

 root  49.6+7a  34.67+5a 2.8+0.4a 1.96+0.3a 0.42+0.0a 0.28+0.0b 2.41+0.4a 1.68+0.3a 

Different letters indicate significant differences between tapped and control plants: P = 0.05 

 

Mean TNC concentration ranged from 7.37mg/gdw at the end of the wet season to 0.92 

mg/gdw at the end of the dry season (Table 3), and thus indeed varied over the seasons with 

generally lower values at the end of the dry season and refilling during the wet season (Figure 3). 

The TNC pool sizes changed over the seasons in a similar way as the TNC concentrations did 

(Figure 3).  
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Table 3. Seasonal variation of Total Non-structural Carbon (TNC, mg/g) for different 
compartments. Mean and standard errors are indicated. Different letters indicate significant 
differences (at P< 0.05) among seasons.  

Sites Plant  

Tissue 

Oct. 2007 

First fill 

May 2008 

First  

exhaustion 

Oct. 2008 

Second fill

May 2009 

Second  

exhaustion 

 

 

   P 

Highland wood 5.1+0.7a 4.1+1.1a 7.4+1.4a 3.6+0.7a 0.062 

bark 3.3+0.4b 1.9+0.8ab 2.6+0.7ab 0.9+0.3a 0.019 

root 2.4+0.4a 1.7+0.7a 2.0+0.5a 2.7+1.2a 0.81 

Lowland wood 6.9+0.6a 3.3+0.5b 4.3+0.5b 2.7+0.5b 0.000 

bark 3.9+0.4a 2.2+0.3b 1.8+0.2b 1.3+0.3b 0.000 

root 4.6+0.8a 2.4+0.4b 2.3+0.4b 1.6+0.6b 0.008 

 

 

Figure 3. Seasonal variation in total non-structural carbohydrate (TNC) concentrations and pool 

sizes for the control and tapped frankincense trees. The lower panel shows the estimated total 

pool size, based on the tree biomass data for the different compartments (data not shown). 

Climate events are included in the lower panel to show synchrony with reserve “re-fill” and 

“exhaustion”. Bars indicate standard error of the mean. 
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Contrary to our expectations, starch and TNC concentration was higher in the wood than 

in bark or roots (P < 0.05, Figure 4b,c). Soluble carbohydrates (TSC), however, achieved the 

highest concentrations in the bark in both areas (Figure 4a). In terms of whole-tree pools, the 

stem contained the highest reserve pools, while roots and bark had equal amounts (Figure 4d). 

 

Figure 4. Reserve carbohydrates in Boswellia tree organs for a highland and a lowland site. 

Total Soluble Carbohydrates (TSC, a), starch (b) and TNC (c) concentrations (mg/g) are shown 

for root, wood and bark compartments. Total pool sizes of TNC (g/tree) are given in (d). 

Different letters indicate significant difference between plant organs for a given site (P<0.05). 

Bars indicate standard error. 

 

Discussion 

We showed the effect of tapping on reserve carbohydrates and its seasonal dynamics for a 

tropical dry woodland tree growing at different altitudes. Overall, TNC concentrations in the 

frankincense tree were lower than apple (Naschitz et al. 2010), rubber tree (Silpi et al. 2007, 

Chantuma et al. 2009) and some Bolivian tropical forest trees (Poorter and Kitajima 2007) but 

comparable to selected conifers (Bansal and Germino 2009), seasonally dry forest trees (Newell 

et al. 2002) and temperate tree-line deciduous taxa (Li et al. 2002, Hoch et al. 2002, Hoch et al. 

2003) (see also Table 4).  As in most other tree species (Hoch et al. 2003, Silpi et al. 2007, 



Chapter 4 - Storage carbohydrates 
 

 −60− 

 

Raessler et al. 2010), in the frankincense tree, starch was by far the dominant contributor to TNC 

concentration (> 62% of TNC). Soluble sugars had lower concentrations than starch maybe 

because soluble sugars are more readily available and easily mobilized resources than starch 

(Poorter et al. 2010). Trees show distinct seasonal variation in response to increased sink demand 

from tapping and reproductive effort during the dry season.  

 

Table 4.  Comparison of carbohydrate concentrations (mg/g) in the stem wood section of 

different trees species/forests.   

 

Species/forest 

 

Location 

Stem wood  

References Starch Sugars TNC

Populus   1.6 0.9 2.5 Landhäusser and Lieffers 2003 

Pinus  Switzerland 1.4 0.2 1.6 Li et al. 2002 

Tropical trees Bolivia 3.7 2.9 6.6 Poorter and Kitajima 2007 

Evergreen trees Switzerland -- --- 5.8 Hoch et al. 2003 

Pinus   Switzerland 1.07 0.54 1.6 Hoch et al. 2002 

Apple tree Israel 22.6 13.7 36.3 Naschitz et al. 2010 

Tropical trees Panama 6.5 2.6 9.1 Würth et al. 2005 

Rubber tree Thailand 38.5 13.6 52.1 Silpi et al. 2007 

Boswellia tree Ethiopia 2.48 0.54 2.96 This study 

 

 

Despite differences in leaf phenology, carbon gain, microclimate conditions and altitude 

(chapter 2), TNC concentrations were similar between the two areas. The higher annual carbon 

gain at high altitude (chapter 2) thus is not reflected as a higher storage carbohydrate 

concentration.  

 

Effect of tapping on reserve carbohydrates 

We hypothesized that control plants should have higher TNC concentrations and pool sizes than 

tapped trees, because tapping requires mobilization of reserve carbohydrates. This hypothesis 

was confirmed by the data, as tapped trees had indeed lower concentrations and pool sizes than 

control trees (Figure 2). Chantuma and co-workers (2009) suggested that rubber tapping creates 
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an additional carbon sink (the latex), which has to be regenerated from stored carbohydrates. In 

our study, resin production during the dry season reduced the concentration of storage 

carbohydrates in Boswellia trees. Hence, stored carbohydrate is used as a coping mechanism to 

an increased carbon sink thru tapping. The soluble parts were more reduced by tapping than the 

insoluble (starch) part (Table 2), probably because the soluble carbohydrates are more immediate 

sources of carbon for resin production than the insoluble starch. 

 

Seasonal dynamics of TNC in Boswellia tree 

Stored TNC is supposed to be an intermediate pool between assimilation and utilization (Bansal 

and Germino 2009), and should therefore change over seasons to reflect sink strength (e.g. 

frankincense tapping). Hence, we expected the distinctly drought-deciduous Boswellia tree to 

have maximum concentrations at the end of the full canopy season (wet season) and minimum 

values at the end of the leafless period (dry season). TNC levels in the frankincense tree indeed 

decreased during the leafless dry season. This is in agreement with results from other studies 

(Steele et al. 1984, Hoch et al. 2003, Silpi et al. 2007, Chantuma et al.2009, Bansal and Germino 

2009). The seasonal variation in TNC concentration thus reflected the phenomenon of “re-fill” at 

the end of the wet season and “exhaustion” at the end of the dry season in most of the 

compartments. This occurred in both highland and lowland Boswellia populations. It indicates 

that carbon demand (e.g. tapping and reproductive effort) during the long dry season is also 

supplied by reserve carbon that was produced during the wet season. However, dry season costs 

may also get supply from locally produced carbohydrates thru bark photosynthesis (Pfanz et al. 

2002, Pfanz 2008) during the dry season by the green Boswellia stem and branches. Indeed, 

Gebrekidan et al. 2011 (in prep), showed that chlorophyll concentrations in Boswellia bark are 

considerable.     

Seasonal changes in total tree pool sizes follow the same pattern as the TNC 

concentration (Figure 3) and determine the capacity of Boswellia trees to invest in the 

reproductive structures (flowers and fruits), produce frankincense and re-sprout in the following 

season. The amplitude of TNC variation is irregular and probably depends on inter-annual 

variability in climatic parameters that either affect carbon gain or sink strength.  
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Role of the different compartments 

We expected both storage carbon concentration and pool sizes to be higher in the  roots as these 

are better protected from fire, tapping and herbivory than in the wood and bark tissues 

(Hoffmann et al. 2003, Regier et al. 2010) and thus may be more secure as a longer term buffer. 

In contrast to our expectation, starch and total TNC concentration was highest in the wood 

tissues of Boswellia. Bark, however, has the highest soluble TNC. Bark photosynthesis might 

contribute to higher soluble sugars in the bark. This soluble sugar could also be mobilized as it is 

the most ready-to-use part in defense after injury, as has been indicated for rubber tree 

(Chantuma et al. 2009). However, the amount of reserve carbohydrates available for future use 

depends not only on TNC concentration but also to a large extent on the size of the storage 

organs (Canham et al.1999). 

Roots of Boswellia, like other tropical trees (Würth et al. 2005); contain less TNC than 

the other two compartments. However, the wood which is protected by the thick bark contains 

more reserves than the other organs. This is in contrast to woody plants from cold regions; their 

roots contain higher concentrations of reserve carbohydrates than their stems (Hoch et al. 2002).  

Conclusion 

This study confirmed that tapped trees contain less reserve carbon than control trees. Therefore, 

tapping indeed drains the carbon storage of the frankincense tree. Although resin production is 

mainly in the bark, changes related to tapping were also extended in the wood. We also showed 

that tree organs store reserve carbohydrates in this deciduous woodland tree. Boswellia appears 

to have more starch stored in the stem and more soluble carbon stored in the bark. Given the 

distinct seasonal changes in climate and phenology of this deciduous tropical woodland tree, 

periodic depletion and re-fill of TNC concentrations fit our assumption.  

Finally, reduced TNC concentrations after tapping in all tissues and the seasonal 

dynamics of carbohydrate reserves appear relevant parameters to cautiously evaluate the long-

term sustainability of tapping Boswellia trees in the dry woodlands systems.  
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Abstract 

Trees in stressful tropical dry woodlands are characterized by carbohydrates sinks that 

compete strongly for carbon from of the same pool. Three tapping treatments were 

applied to naturally grown Boswellia papyrifera (Del.) Hochst trees in northern Ethiopia 

in order to elucidate the annual and seasonal carbohydrate allocation pattern. We 

estimated annual gross primary productivity (GPP), plant maintenance respiration (R), 

net primary productivity (NPP), storage carbohydrate (TNC) and frankincense production 

costs to evaluate carbon allocation at the whole-plant level. We determined the impact of 

(1) tapping on annual and seasonal carbohydrate allocation pattern to different sinks, and 

(2) annual cross primary productivity on those allocation patterns. We hypothesized that 

tapping reduces carbohydrate allocation to other, competing, sinks. We also expected that 

increased GPP increases the carbon investments to all other sinks.  

Generally, the annual GPP was more than sufficient to account for the annual 

carbon sinks considered in this study. Mean annual carbohydrate costs to sinks per tree 

were 12 kg (highland) and 16 kg (lowland). Maintenance respiration, foliage 

establishment and frankincense were the strongest carbohydrate demands. Frankincense 

tapping decreased foliage production and reproductive effort in the lowland, but not in 

the highland where trees had higher annual carbon gain or were limited by moisture that 

hamper growth, decreasing carbon competition with frankincense production. Increasing 

GPP only leads to an increase in foliage development; other sinks are unaffected. This 

quantitative analysis gives insight into how allocation patterns change with phenological 

events and physiological processes and the impact of tapping on foliage production and 

reproductive effort.  

 

Keywords: carbon allocation, frankincense, Boswellia, maintenance respiration, Ethiopia 
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Introduction 

When plants are limited by carbon they face trade-offs in sinks that require carbohydrates 

like defense, vegetative growth, or fruit production (Bazzaz et al., 1987). For example, 

carbon depletion may negatively affect reproductive output (Stephenson 1981, Ho 1988, 

Rijkers et al. 2006, Bazzaz et al., 1987, Sterck and Schieving 2007). Similarly, allocation 

to defense (Poorter and Kitajima 2007) may protect plants against herbivores (Coley 

1988, Pare and Tumlinson 1999) and pathogens (Augspurger 1984, Veronese et al. 2003) 

but might be at the expense of a reduced growth rate (Chantuma et al. 2009, Kleczewski 

et al. 2010).  

Because carbon acts as a major currency in plants, source–sink relationships of 

trees and forests can be captured in a conceptual carbon balance diagram (Fig 1, see also 

Ryan et al. 2004, Litton et al. 2007). This diagram simply shows that the carbon costs of 

growth (NPP), maintenance respiration (R), defense components, reserve carbohydrates 

and reproductive organs should be balanced by the photosynthetic carbon gain (GPP). 

However, this scheme is not complete, since it does not show the possible carbon costs of 

root exudates, mycorrhizal symbiosis, and volatile compound emissions. Nevertheless it 

implies that carbon consumption by one sink (e.g. growth) trades-off with the activities of 

other sinks (Lorio and Sommers, 1986).  

In resource poor environments, growth may be constrained such that more carbon 

can be used for secondary metabolites (e.g. tannins, resins) that enhance resistance 

against herbivores or other stresses (Chapin 1991, Herms and Mattson 1992). On the 

other hand, in resource rich environments more carbon is allocated to growth setting a 

carbon limit to production of secondary metabolites (Herms and Mattson 1992, 

Kleczewski et al. 2010). Sometimes direct competition between secondary metabolism 

and growth is observed (Herms and Mattson 1992) with growth diverting resources from 

secondary metabolism or vice versa. Nevertheless, if growth and secondary metabolism 

are constrained by carbon limitations (Poorter and Kitajima 2007, Kleczewski et al. 

2010), it implies that increased carbon availability by assimilation may increase the 

allocation to all sinks. On the other hand, it is supposed that natural selection will result 

in sink activities that jointly enhance the growth, survival and reproductive success of 

plants (Cannell and Dewar 1994, Sterck and Schieving 2007).  
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Figure 1.  Metabolic full-year model for carbohydrate sources and sinks in the 

frankincense tree. GPP values refer to estimated average annual carbon gain (kg. C. y-1). 

Sink values are in percentages. All values are indicated for both highland and lowland 

trees (highland / lowland). Net primary productivity (NPP) and respiration (R) costs are 

indicated for each sink components while total non-structural carbohydrate (TNC) pool 

size is shown for the whole plant. 

 

Seasonality in climate patterns also sets another limit to the plant carbon balance. 

In most climates, seasonality largely drives the dynamics in resource acquisition and sink 

activity which are related to phenological phases and physiological processes. While 

source and sink activity are largely synchronized by seasonality in temperature in the 

temperate and boreal zones, it is more driven by seasonality in rainfall in the tropics. 

Generally, trees have a net income of resources under the most favorable conditions and 
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may then fill resource reserves to maintain living tissues and survive during the less 

favorable seasons. The resilience of tropical species in such seasonality is largely 

determined by their plasticity in carbohydrate allocation patterns across such seasonal 

conditions (Poorter and Bongers, 2006; Poorter and Kitajima, 2007). 

Despite significant advances in understanding the terrestrial carbon cycle at global 

scale (Edwards et al. 1990, Mantlana 2008), limited information exists at plant level 

concerning the basic process of canopy carbon gain and seasonal allocation of the fixed 

carbon. Prior carbohydrate allocation studies focused on whole forest stand patterns (e.g. 

Cairns et al. 1997, Gower et al. 2001, Litton et al. 2007). Moreover, our knowledge on 

larger trees lags behind other life forms (Veneklaas and Poorter 1998). Information on 

how annual crown carbon gain is fractioned by all possible sinks at plant level is even 

more scanty for tropical dry woodland species. The annual and seasonal carbon allocation 

pattern of trees has yet to be established for most species. Here we present such patterns 

for an economically important tree in east African woodlands that grows in a climate with 

a strongly seasonal rainfall pattern.  

We selected the frankincense tree Boswellia papyrifera (Del.) Hochst for detailed 

investigation of annual and seasonal carbon allocation patterns. Importantly, frankincense 

is harvested from this species during a 7-8 month dry period, when the tree has dropped 

its leaves. Earlier studies have shown that such frankincense harvesting can result in 

lower fruit production (Rijkers et al. 2006), and smaller leaf area production (chapter 2). 

Here we present annual and seasonal carbon budgets analysis to show how frankincense 

harvesting acts as a potential carbon drain and evaluate its impact on other sink activities.  

In this study we determined: (1) the impact of tapping on annual and seasonal 

carbohydrate allocation pattern to different sinks, and (2) the impact of carbohydrate gain 

on those allocation patterns. We did field studies for two Boswellia populations which 

occur at high and low altitude, which allows us to speculate on the effect of contrasting 

site conditions on carbohydrate allocation patterns. We hypothesized that tapping reduces 

carbohydrate allocation to other, competing, sinks. We also expected that increased 

carbohydrate resource availability increases the carbon investments to all other sinks. We 

used annual and seasonal estimates of gross primary productivity (GPP) from data on 

canopy physiology, net primary productivity (NPP) from vegetative and reproductive 
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phenology, plant respiration (R), storage carbohydrate (TNC) and frankincense costs to 

evaluate the carbohydrate allocation at the whole-plant level.  

 

Methodology 

Study areas and species  

The study was conducted for tree populations at a low altitude site (810-990 meters) in 

the Metema area and higher altitude site (1400-1650 meters) in the Abergelle area of 

Ethiopia. The high altitude site (Abergelle) has a dry and erratic rainfall with a shorter 

wet season than the low altitude site (Metema). The study species Boswellia papyrifera 

(Del.) Hochst (Burseraceae) is a deciduous tree up to 13m tall, with stem diameter up to 

35 cm (Ogbazghi et al. 2006, Abiyu et al. 2010) and with approximately circular 

branching crown. In the highland, we established one plot and in the lowland, we 

established two plots with a priori assumption of site productivity variation. 

 
Estimating annual carbon gain (GPP) 

We selected 15 and 36 adult experimental trees of Boswellia (DBH = 20+3cm) in the 

highland and lowland respectively. Experimental trees were randomly and equally 

assigned to three tapping treatments, i.e. 0 (control), 6 and 12 tapping incisions. The 

tapping treatments were applied over two successive dry seasons (2007-2008 and 2008-

2009). We estimated annual canopy assimilation from these experimental trees using leaf 

gas exchange data during the growing season for two years. During the measurement 

periods, assimilation rates were measured for every tree three times a day on a single 

leaflet, using an open portable gas exchange system, LcPro (ADC, Hoddesdon, UK.). We 

estimated the daily photosynthetic rates by integrating the photosynthetic measurements 

over the day. Since we assumed that each of the three measurements during the day 

represented one period during a day of 12 sunlight hours, we integrated each 

measurement over a period of four hours. Subsequently, we estimated the wet season 

annual carbon gain (dry season is leafless) by integrating the daily photosynthetic rates to 

total leaf area and leaf lifespan. Annual crown carbon gain is referred here as the gross 

primary productivity (GPP). 
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Estimating carbohydrate sinks 

We distinguish between major sinks that are part of the net primary production (NPP), the 

respiration costs (R), or storage. The net primary production consist of foliage production 

(NPPfoliage), wood production (NPPwood), root production (NPProot), frankincense and 

fruits production costs. The respiration costs include the maintenance respiration costs of 

foliage (Rfoliage), wood (Rwood) and roots (Rroot). The third category is allocation to storage 

carbohydrates (TNC), which does not only act as a potential sink of the acquired carbon 

but also as a potential carbon source for other sinks. The overall carbon budget model is 

presented in figure 1.  

Net primary productivity (NPP) 

The net primary productivity (NPP) is estimated as the carbon used for new tissue 

production per year, and is expressed on an annual basis or per wet or dry season. We 

estimated the annual biomass production in foliage, wood, root, reproductive and resin 

biomass separately, and converted these values into carbohydrates values, taking the 

global 50% carbon content assumption of oven-dried weight (Edwards et al. 1980, Litton 

et al. 2007). The annual foliage carbon mass produced (NPPfoliage) was estimated from the 

product of the total number of apices per tree, the number of leaves per apex  the number 

of leaflets per leaf, the average biomass per leaf, and a carbon-biomass ratio of 0.5 

(chapter 3). To estimate the average biomass per leaf, oven-dry biomass of 20 sample 

leaves and rachis was measured from each experimental tree. The NPPwood and NPProot 

were calculated from the product of estimated wood or root volume and a mean specific 

wood density of 0.64 g.cm-3 for Boswellia papyrifera (http://cdm.unfccc.int/filestorage 

local data for wood density). To estimate wood volume increment, we monitored annual 

trunk diameter growth for all experimental trees during two years, using diameter dendro-

bands. Trunk volume increment was calculated as the difference in trunk volume over the 

measuring period, and is calculated as: 

 

   HdbhHdbhTV  2
1

2
2 4/4/                                                     (1) 
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Where, TV is the trunk volume increment; dbh1 is diameter in the first year; dbh2 is 

diameter in the second year and H is trunk height. 

Wood volume increment was calculated as the sum of trunk volume increment 

and branch volume increment, where branch volume increment was considered as trunk 

volume increment times the branch to trunk mass fraction. Root volume increment was 

calculated as the product of the trunk volume increment times the root to trunk mass 

fraction. The biomass values were converted to carbohydrate costs by multiplying with 

the 50% conversion factor. To estimate the resin production (NPPresin), experimental trees 

were tapped during the dry season (starting from October-May) for two years. The 

amount of frankincense collected (in grams) was then measured every week until the end 

of the dry season. The annual frankincense biomass harvested from each tree was used to 

estimate the carbon cost of frankincense production. The dry weight of the pure incense 

was estimated as 85% of the harvested biomass (Chantuma 2009), the rest being moisture 

and other impurities. However, the energy cost of resin production required a conversion 

factor of 3.26 gram glucose per gram of resin (Gershenzon 1994; Zavala and Ravetta 

2001). To estimate reproductive sinks, we counted the annual fruit biomass produced as 

the product of the number of apices with fruits, the number of fruits per fruit bearing 

apex, and the average fruit biomass as calculated from 10 randomly collected and oven-

dried fruits. Eventually, reproductive carbon cost were calculated from the product of this 

total fruit biomass per tree times 0.5 to account for the 50% carbon content per unit 

biomass, and 6.25 to account for the carbon cost of fruit production (Loomis and Connor, 

1996). 

Total non-structural carbohydrates (TNC cost) 

Additional trees of similar diameter class were subjected to either no tapping (control), or 

heavy tapping (12 incisions) treatments in both sites. Wood, bark and root samples were 

collected from these trees at the end of the dry season and end of the wet season to 

determine storage carbon changes. This was done for two years (October 2007 - June 

2009). All samples were analyzed for TNC (total non-structural carbohydrates). TNC is 

defined here as the sum of free sugars (sucrose, glucose and fructose) and starch. Total 

non-structural carbohydrates (TNC) were determined by high-performance liquid 
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chromatography (HPLC; Pump: GS50 Dionex; Detector:PED detector). For each plant 

tissue, we calculated the carbohydrate pool size by multiplying the concentration by the 

mean total dry weight of each compartment for a tree from a separate tree harvesting 

experiment. Mean total dry weight for the wood, bark and root compartments was 48.5, 

33.9 and 15.3 kg/tree in the highland and 49.6, 25.8 and 17.6 kg/tree in the lowland from 

a separate harvesting experiment. Assuming that the TNC losses during the dry season 

are refilled during the wet season, we estimated the TNC loss over the dry season as the 

annual TNC cost of a tree. The energy cost of total non-structural carbohydrates was 

obtained using a conversion factor of 1.21 g glucose/g of TNC (Loomis and Connor 

1996, Zavala and Ravetta 2001). 

Respiration sinks (R) 

Estimates of respiration costs are still uncertain (Teskey et al. 2008). We estimated 

annual respiration costs for each tree based on estimates of measured biomass (crown, 

wood and root), tissue nitrogen content and temperature averages (Ryan 1991). Based on 

personal observation, I considered 90% of the stem active, and thus respiring, sapwood. 

Following earlier studies (Jones et al. 1978, Ryan 1991, Ryan 1996), we calculated the 

maintenance respiration costs (R, in g. C y-1) as: 

 

TLSNR 07.0059.0                                                                                  (2) 

 

Where N is the total nitrogen content (g); T stands for the temperature (0C), and LS 

represent the leaf lifespan (days). For wood and roots a lifespan of 365 days was 

assumed. This equation thus empirically accounted for the temperature effects on 

nitrogen rich proteins.  

Crown maintenance respiration was estimated for only leaf lifespan (days) while 

the stem and root maintenance respiration was estimated on annual (365 days) basis 

(Ryan 1991). The nitrogen content of the crown biomass is based on the measured leaf 

nitrogen content (chapter one) while the nitrogen content of the stem is estimated as 0.2 

% of the biomass (Martius 1992), but varied between our sites based on the nitrogen 

content variation of the leaf (Ryan et al. 1997). Moreover, the growth respiration was 
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estimated using construction costs (Table 1). Finally, we estimated respiration for foliage 

(Rfoliage), wood (Rwood) and root (Rroot) tissues.  

Table 1. Conversion factors used to estimate carbohydrate costs that include intermediate 

costs, and costs of biosynthesis.  

Parameter Unit Value Source 

Frankincense dry mass ratio g pure incense/ gram 

biomass 

0.85 Chantuma 2009 

Frankincense carbon mass ratio g carbon/gram pure 

incense 

3.26 Gershenzon 1994; Zavala and 

Ravetta 2000 

Carbon dry mass ratio g carbon/gram 

biomass  

0.5  Yang and Midmore 2005; Carely 

et al. 1996; Litton et al. 2007 

Fruit carbon mass ratio g carbon/gram fruit 6:25 Loomis and Connor, 1996 

Construction cost ratio g  carbon/gram 

crown mass 

0.25 Ryan 1991, Ryan et al. 1994  

Energy content of TNC g carbon/gram TNC 1.21 Loomis and Connor, 1996 

Wood nitrogen content g nitrogen/ gram 

biomass 

0.2% Martius 1992 

N.B: TNC = Total non-structural carbohydrates. 

 

Data analysis 

A general linear model with univariate analysis and Tukey post-hoc multiple comparison 

was used to test if tapping reduces carbohydrate allocation to other sinks. The analysis 

was done by including the interaction between sites and tapping as a fixed factor and tree 

as a random factor. We used F-test to compare contrasting sites. The relationship between 

GPP and the other carbohydrate sinks was tested by linear regression models. Data was 

analyzed using SPSS (PASW 17.0 for Windows statistical software package). 
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Results 

Annual patterns 

The estimated average annual GPP per tree was higher than the estimated annual sum of carbon 

consumption by the different sinks. On average, the sinks were estimated to consume 38% (12 

kg) and 68% (16 kg) of the GPP in the highland and lowland, respectively (Figure 4 and 5; Table 

2). Carbohydrate sinks overlapped throughout the year (Figure 3). For both sites, most carbon 

was used for maintenance respiration (8.8 kg in the highland site and 12.1 kg in the lowland site). 

Annual crown net primary production is the second biggest sink (1 kg and 2 kg) and the 

frankincense production the third biggest sink, consuming on average 1.3 kg.y-1 and 1 kg.y-1 of 

carbon, respectively (Figure 1, 2, 4, 5). Wood and fruit production were the least carbon 

demanding sinks in Boswellia trees.  

 

Figure 2.  Metabolic season-based (i.e. wet and dry season) model for carbohydrate sources and 

sinks in the frankincense tree. Values indicate carbohydrates (kg.C) for both sites (highland / 

lowland). Highlighted boxes are inactive sinks during either the wet or dry season. 
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Figure 3. Simplified scheme of monthly carbon gain and losses during a year for Boswellia trees 

in Ethiopia (note: carbon gain and sinks is in log scale). The highland is Abergelle and the 

lowland is Metema site. The solid graphs are rainfall patterns with scale on the right side. On 

how these values are estimated, see Method section. 

 

Intensive tapping reduced the amount of carbon allocated to foliage (NPPfoliage, Rfoliage) 

and reproductive sinks (NPPreprod) in the lowland (Figure 5; Table 2), but this was not observed 
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for the highland. In contrast to our expectation, trees with higher GPP only invested more in 

foliage production (NPPfoliage) and foliage maintenance (Rfoliage) but not in the other sinks (Figure 

6). Remarkably, GPP was higher in the highland but the total carbon consumption by sinks was 

lower compared to the lowland site (Figure 5; Table 2). However, TNC, fruit production and 

frankincense yield did not vary significantly between these two sites (Table 2). 

   

Figure 4. Average fractions of the estimated annual carbon costs allocated to different carbon 

sinks for Boswellia trees under different tapping levels.  
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Figure 5. Estimated annual carbon gain and costs for different sinks for the frankincense tree at 

Abergelle, highland and Metema, lowland site in Ethiopia. GPP is the gross primary production 

(carbon gain), NPP the net primary production in terms of carbon costs, R is the maintenance 

respiration costs and TNC is the carbon costs in non-structural carbohydrates. (note: the Y-axis is 

on log scale). Significant differences between tapping treatments is indicated by * (F-test, 

P<0.05). 
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Seasonal patterns 

The carbon allocation switched between the wet and dry season (Figure 2). During the wet 

season, GPP supplied carbon to all carbohydrate sinks except reproduction and resin export, 

which occurred during the dry season only. While it was assumed that the storage carbon (TNC) 

acted as the major carbon source during the dry season, the TNC storage did not fully account for 

the estimated carbon costs by tapping, reproduction, and maintenance respiration costs. 

Remarkably, the carbon consumption by resin production only was even higher than the carbon 

provided by TNC, suggesting that there were additional carbon sources. 
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Figure 6. The relation between carbon gain and carbon investments into different sinks across 

different B. papyrifera trees. Allocation patterns to foliage production (NPPfoliage), wood 

production (NPPwood), root production (NPProot), foliage respiration (Rfoliage), wood respiration 

(Rwood), root respiration (Rroot), frankincense production (Frankincense),  reproduction costs 

(NPPreprod) and non-structural carbohydrate storage costs (TNC) with increasing gross primary 

production (GPP) for the Boswellia papyrifera tree. All values are in g C. tree-1 y-1. Triangle 

symbols and solid lines are for the highland trees, and squares and dotted lines are for the 

lowland trees. The coefficient of determination (R2) values are indicated with ns = P>0.05; * = 

0.01<P<0.05; ** = 0.001<P<0.01. 
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Discussion 

In this study, we quantified the carbon budget of Boswellia trees on an annual and scale, and also 

estimated seasonal budget to compare the wet and dry seasons (Figure 2). In this model, not all 

possible sink categories were included and estimations of some of the cost categories involve 

critical assumptions, particularly the maintenance cost estimates. However, the estimated carbon 

budget shows some interesting trends, and allowed us to explore our hypotheses. Overall, we 

showed that the estimated GPP was more than sufficient to account for the annual carbon sink 

consumption (Figure 1). This was not the case during the dry season separately (see Figure 2 dry 

season) when the carbohydrate supply is considered to come from the storage pools only. 

The total of the estimated annual carbon sinks to the different components were 38-68% 

of the annual carbon gain in both study sites but these sinks did not include sinks for root 

exudates, export for mycorrhiza, resin stock increment, volatile organic compound emission and 

herbivory (e.g. insect on leaf and bark). However, Boswellia trees establish mycorrhizal 

association (Birhane et al. 2010) and the consumption of carbon by the fungal symbiont can be 

stronger (Corrêa et al. 2011). Mycorrhiza may consume up to 20% of the total fixed carbon 

(Smith and Read 2008). Therefore, assuming 20% mycorrhizal cost, the total carbon cost can 

reach 68-88% of the GPP.  And yet the extent of root colonization is found three times higher in 

the highland than the lowland (Birhane et al. 2010), which implies more carbon cost for 

mycorrhizal symbiosis in the highland. Like in most other studies (Edwards et al. 1980, Ryan et 

al. 1997, Lambers et al. 1998, Kim et al. 2007), a large proportion of GPP is expended for 

respiration but the costs for critical stages like reproduction is minimal. The reproductive 

outcome seems low compared to other estimates from theoretical studies (Sterck and Schieving 

2007). The percentage of total autotrophic respiration in this study was 28% and 52% of GPP in 

the highland and lowland. There is evidence that annual cost of respiration is between 30 and 

70% (Edwards et al. 1980, Ryan et al. 1994, Ryan et al. 1997) of GPP. Considering the strong 

dependence of maintenance respiration rates on temperature (Ryan et al. 1990) and given the 

high temperature averages of our sites, the annual cost of respiration for Boswellia may indeed 

be higher than in other studies. However, annual aboveground wood maintenance respiration 

costs fell within the range of other studies (Table 3).  
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Is there seasonality in allocation patterns? 

During the dry season, carbohydrate sinks were expected to be covered by the storage carbon 

(TNC). Higher carbon costs than provided by TNC during the dry season imply that trees do not 

fully depend on TNC for reproductive costs, frankincense production and maintenance 

respiration during this period. It can be speculated that the dry season frankincense is either 

constitutive frankincense (i.e. synthesized in the secretory structures) produced during the wet 

season, induced frankincense produced from TNC in the dry season or induced frankincense 

produced form direct carbohydrate supply by bark photosynthesis during the dry season 

(Boswellia bark contains chlorophyll, Gebrekidan et al. 2011 in prep.). Whereas it can be 

speculated that the white frankincense is the product of both wet season and dry season 

physiological activity, the carbohydrate demand by tapping remains a critical drain to the carbon 

budget of a tree during the dry season. During the wet season, the growth sinks (NPP) were 

largest but were largely covered by the carbon supply coming directly from the leaves. 

Nevertheless, at the onset of leaf expansion, TNC and bark photosynthesis are probably major 

carbon sources to initiate foliage development. Later, the newly established shoots may act as 

their own carbon sources (Whiley and Wolstenholme 1990, Yang and Midmore 2005,).  

 
Does tapping affect carbohydrate allocation pattern? 

Overall, we hypothesized that tapping will reduce carbohydrate allocation to all the other 

competing sinks. For example, we expect carbohydrate depletion by tapping to negatively affect 

fruit/seed setting (cf. Stephenson 1981, Ho 1988, Rijkers et al. 2006). In general, this prediction 

is partially supported in our study, because tapping traded-off with fruit production in the 

lowland only. Despite the fact that tapping is out of phase with foliage development, tapping also 

reduced the amount of carbohydrates allocated to foliage growth (NPPfoliage) and respiration 

(Rfoliage) in the lowland. This may have a negative effect for the next season survival and growth. 

In the highland, however, the impact of tapping on carbohydrate allocation to other sinks was not 

significant. Trees in the highland have higher annual carbon gain (GPP) that may help to buffer 

the impact of tapping. Alternatively, following the arguments based on growth differentiation 

balance hypothesis (Herms and Mattson 1992, Kleczewski et al. 2010), it might be that the 

highland trees are constrained by other resource limitations (e.g. moisture) such that 

carbohydrates become available for frankincense production. 
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Does allocation to sinks increase with GPP? 

We also investigated the impact of total carbohydrate gain by trees on subsequent carbon 

allocation patterns, and hypothesized that carbohydrate resource availability increases the carbon 

investments to all other sinks. Increasing GPP, however, does not lead to an increase in carbon 

supply to most, but not all sinks. Our expectation is thus only partially supported. Only 

partitioning to foliage production indeed increased with carbohydrate resource availability in the 

plant system. In our data set, the link of GPP to foliage production is weaker than in other studies 

(Litton et al. 2007). Here, GPP explained up to 42% of the variability in foliage carbohydrate 

allocation (Figure 6), while in other studies this was up to 71% (Litton et al. 2007). Remarkably, 

other carbon sinks such as frankincense production, were not affected by carbon gain. This 

suggests that for example trees produce similar amount of resin, irrespective of the total carbon 

available. This means that trees with low carbon gain (little leaf area) might suffer sooner from 

carbon starvation by tapping.  

 

Conclusions 

This study gives insight into carbon allocation patterns at tree level and how allocation patterns 

change seasonally driven by phenological events. The carbohydrate consumption by tapping 

Boswellia trees remains a critical drain of up to 4% of the tree carbon budget. Although tapping 

competes with growth and reproductive sinks, the extent of competition for carbohydrates 

between frankincense production and other costs was site specific. Only comparative studies on 

whole-tree level carbohydrate allocation of other species will reveal if the patterns that we found 

here are general and how tapping will impact the carbohydrate allocation patterns across the 

large diversity of gum-resin producing species. 
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Introduction 

African drylands are among the most exploited systems (Campbell 2000), and are being 

degraded or transformed to agricultural lands at an increasing spatial scale (Bongers and 

Tennigkeit 2010). Furthermore, the people that inhabit dry woodlands of Africa are often poor 

and overexploit the remaining resources, resulting in a resource decline and risk for peoples’ 

livelihood. On the other hand, erratic rainfall and high temperatures, characteristic for these 

drylands, also play an important role. Recurrent drought episodes challenge plant survival in 

these regions. Therefore, plants face seasonal water deficit making drought stress a recurrent 

phenomenon. Strong seasonality in rainfall and thus water stress has significant effects on the 

annual carbon gain and allocation patterns of plants. In this study, I selected the frankincense 

producing tree, Boswellia papyrifera (Del.) Hochst, for detailed tree carbon balance studies.  

Of the several species of the genus Boswellia (family Burseraceae) few can be regarded 

as sources of the classical frankincense, and the one from Boswellia papyrifera, has been prized 

for commercial importance. This dissertation is on the physiology and carbon balance of this 

frankincense producing tree species; Boswellia papyrifera, which grows in dry woodlands of the 

Sudano-Sahelian region including Ethiopia, Somalia and Eriterea (White 1983, Lovett and Friis 

1996, Ogbazghi et al. 2006). The species is indigenous and occurs in the northern, western and 

central parts of Ethiopia (Tengnas and Azene 2007, Tadesse et al. 2007). When Boswellia trees 

are tapped, the frankincense (mainly carbon-based secondary compounds) exudes from the tree. 

Frankincense harvesting occurs during the dry season, when trees are without leaves while there 

is also carbohydrate demands for maintenance and reproduction. Therefore, tapping causes the 

tree to divert carbohydrate to resin at the expense of carbon investment in reproductive organs 

(Ogbazghi et al. 2006, Rijkers et al. 2006). Continuous tapping is therefore expected to have 

implications for the carbon budget of Boswellia trees, and for their ability to provide sufficient 

carbon to future growth, survival and reproduction. 

 Nowadays trees are more continuously and indiscriminately tapped for their 

frankincense than before, putting an extra pressure on the remaining populations. There are clear 

indications of export expansion by expanding the harvest of this export item in the future while 

harvesting techniques remain inert and only maximize short-term economic gains. Eventually, 

current intensive frankincense production could affect the whole tree carbon balance. During the 

last decade, only few studies are done on the ecology and reproductive effort of Boswellia 
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(Gebrehiwot 2003, Rijkers et al. 2006, Ogbazghi et al. 2006, Abiyu et al. 2010, Eshete et al. 

2011) but not on the impact of frankincense production on the tree carbon balance. 

Understanding the implications of intensive frankincense tapping and of climate for the carbon 

balance of Boswellia trees will provide a solid basis for understanding the consequences for 

growth, survival and reproduction.  

In this thesis, I showed the impact of tapping and climate factors on the carbon budget of 

Boswellia trees and how competing demands by different sinks are balanced by this tree species. 

Carbon allocation studies are increasingly important as they allow us to investigate tree-level 

source-sink dynamics and physiological plant responses in relation to biotic, abiotic, and 

anthropogenic stresses. Studies such as this allow us to quantify source-sink dynamics and 

construct a more precise tree-level carbon budget from the bottom up. Furthermore, this study 

represents as far as I know the first in-situ mature tree carbohydrate analysis for a tree inhabiting 

dry woodlands. 

The objectives of this research include understanding the impact of tapping on leaf gas 

exchange properties, tree annual carbon gain and carbon allocation pattern of Boswellia 

papyrifera in northern Ethiopia. First, the diurnal gas exchange pattern of Boswellia leaves is 

evaluated in two populations. Second, the annual carbon acquisition of Boswellia trees is 

assessed in relation to tapping and climate parameters. Third, the impact of tapping on the 

storage carbohydrate dynamics is investigated. Finally, the impact of tapping on the tree carbon 

balance and carbohydrate allocation patterns in high and low altitude areas is evaluated. I studied 

these carbon gain and allocation patterns in relation to tapping by collecting field and laboratory 

data for a period of two years (2007-2009) from naturally grown trees in woodlands of north 

Ethiopia (Chapter 2 until 5). 

 The main results showed that Boswellia trees adapt to local conditions. Moreover, results 

on the impact of tapping clearly indicate that continuous tapping depletes storage carbon, 

diminishes leaf growth and reproductive effort and these negative effects will be apparent sooner 

for smaller trees than for larger ones. Thus guidelines for tapping intensity and frequency should 

be formulated considering these effects on Boswellia populations. 
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The research questions include:  

(1) How do external climate factors and physiological mechanisms explain the variation in 

leaf gas exchange characteristics of the Boswellia tree?  

The relationship of environmental conditions on leaf gas exchange traits like photosynthesis, 

transpiration and water use efficiency was clearly outlined from other empirical studies in 

Mediterranean (e.g. Tuzet et al. 2003, Zweifel et al. 2007, McDowell et al. 2008) and 

Neotropical (e.g. Goldstein et al. 2008, Bucci et al. 2008) systems. In this dissertation, I tested 

the relationship between environmental and physiological parameters on leaf gas exchange in the 

deciduous dry tropical woodland tree (Chapter 2, Figure 1) using path analysis. Furthermore, 

diurnal pattern of leaf gas exchange was evaluated in comparison with either the classical hump-

shaped pattern of some temperate and wet tropical forest trees (Weber and Gates 1990, Ishida et 

al. 1996, Souza et al. 2008) or a gradual decline after morning peak like other temperate (Bassow 

and Bazzaz 1998) and dry tropical savanna trees (Eamus et al. 1999). 

 

Gas exchange patterns 

In order to assess the combined contribution of the environmental and physiological parameters 

on leaf gas exchange, the research model in chapter 2 is shown in a more simple way as in figure 

1 here. In this model, environmental variables are expected to affect leaf gas exchange either 

directly (Figure 1, arrow 1), indirectly (Figure 1, arrow 2 & 3) or both. 
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Figure 1. Interacting environmental, internal physiological and gas exchange parameters. 

Numbers indicate possible direct (1) and indirect (2, 3) paths of relationships. VPD is vapor 

pressure deficit. 

 

Leaf carbon gain is more challenged by atmospheric drought (VPD) than by soil water 

deficit during the wet growing season. Moreover, light availability during the wet season had a 

strong impact on leaf assimilation rate. Saturating light and higher photosynthetic capacity gave 

highland trees a higher daily photosynthetic rate and higher annual carbon gain than lowland 

trees (Chapter 3, Figure 3).  

 

Diurnal pattern 

Leaves increase assimilation in the morning during the period of least atmospheric drought, 

followed by a decrease due to gradual closure of stomata as the transpiration demand increases 

(see also Zweifel et al. 2007, Bucci et al. 2008). This diurnal pattern of Boswellia leaf gas 

exchange differs from wet tropical and temperate tree species (Weber and Gates 1990, Mulkey et 

al. 1996, Pathre et al. 1998) but, resembles to other temperate (Bassow and Bazzaz 1998), 

Mediterranean (Gatti and Rossi 2010) and tropical savanna (Eamus et al. 1999) trees. The leaf 

water potential varied relatively little and did not influence gas exchange during the 

measurement period.  
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(2) How do climatic factors link to crown functional traits to affect annual carbon gain and 

resin yield? 

Erratic rainfall patterns may create limiting conditions for plant physiology, carbon gain and 

growth (Murphy & Lugo 1986, Bullock et al. 1995, Vanacker et al. 2005). Such conditions are 

expected to become more severe on tree carbon gain in the face of global warming (Lacointe 

2000, Hély et al. 2006, Bolte et al. 2010). For a tropical deciduous dry woodland tree, it is even a 

major challenge to maintain sufficient annual carbon gain within the limited leaf lifespan. In this 

part of the study, I linked environmental conditions, plant traits and tapping intensity with the 

annual crown carbon gain of Boswellia trees in two populations. Scaling-up these factors to 

determine crown carbon gain in the field is scarce. This information is especially limited for 

tropical dry forests and dry woodland trees (Yoshifugi et al. 2006, Kushwaha et al. 2010). 

Previous studies suggest that tapping creates a carbon sink that is at the cost of growth, including 

vegetative growth and reproduction (Cannell & Dewar 1994, Rijkers et al. 2006, Chantuma et al. 

2009).  

 

Comparing the two study sites 

Higher light interception together with high photosynthetic capacity (Chapter 3, Figure 3) 

resulted in higher photosynthetic rates in the highland compared to the lowland. Apparently, 

shorter crown leaf lifespan of trees in the highland was more than compensated by their higher 

photosynthetic rates. Therefore, the radiation during the wet season had a stronger impact on tree 

carbon balances than wet season length. Despite the variation in environmental conditions and 

annual carbon gain between the two sites, trees achieved similar resin yields. Moreover, neither 

high crown assimilation nor larger crown leaf area lead to higher frankincense yield. This could 

indicate that frankincense production is not directly coupled to carbon gain, but also implies that 

smaller trees may suffer sooner from carbon starvation by tapping. Carbon gain is related to 

crown leaf area and if both smaller and larger crown leaf area are providing similar resin yield 

(within the diameter class studied), smaller crown trees are also making unreserved effort to 

provide incense, which eventually implies that their smaller carbon stock will deplete sooner 

eventually leading to carbon starvation and mortality. 
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Tapping effect on crown carbon gain 

Tapping frankincense reduced the leaf area production and annual assimilation in the low 

altitude area but not in the high altitude area (Chapter 3, Figure 3).This was comparable to the 

resin production to reproduction trade-off (Rijkers et al. 2006) and rubber production to growth 

trade-off (Chantuma et al. 2009). The fact that tapping did not impact on trees of the highlands 

implies that these trees are either buffered by their higher annual carbon gain, or face less 

competition between carbon sinks. The lack of concomitant decrease in foliage mass after 

tapping does however not necessarily mean that tapping has no effect. In line with the growth 

differentiation balance hypothesis (Herms and Mattson 1992, Kleczewski et al. 2010), it can be 

argued that at limited resource availability, growth is more constrained making carbohydrates 

available for secondary metabolism. Alternatively, foliage production in the highland could be 

constrained by moisture, such that competition for carbon between tapping and other sinks is 

low. Generally, I concluded that the impact of tapping was site specific. 

 

(3) How does frankincense tapping influence the concentration and seasonality of non-

structural carbohydrate storage in the frankincense tree? 

Carbohydrates fixed by photosynthesis are stored in plant organs mainly in the form of starch or 

sugars for future use (Newell et al. 2002, Würth et al. 2005, Bansal and Germino 2009, 

Chantuma et al. 2009, Regier et al. 2010). Both starch and sugars form total non-structural 

carbohydrates (TNC). These carbohydrates are intermediate between assimilation and utilization 

(Chapin et al. 1990) and are used to support maintenance respiration or other metabolic 

processes under low photosynthetic periods. Deciduous species mainly depend on their TNC 

while leafless during the dry season. TNC may thus allow plants to survive periods of stress 

(Poorter and Kitajima 2007). Although trees may accumulate their TNC in different 

compartments (e.g. leaves, stems and roots), TNC have rarely been examined for multiple 

compartments simultaneously (Newell et al. 2002). Research on TNC for resin and gum 

producing tropical dry woodland trees is lacking. 

In this part of the research, I determined (1), how frankincense tapping influences TNC 

content of trees; (2), the seasonal dynamics of TNC owing to exhaustion during the dry season 



Chapter 6 - Synthesis 
 

 −92−

and; (3), the variation in TNC concentrations in different plant organs. This marks one of the 

first, if not the first, study on storage TNC in different organs for a dry tropical woodland tree. 

I found that TNC in Boswellia trees consist mainly of starch and far less of soluble sugars 

(Chapter 4, Figure 2). Tapped trees have lower TNC concentrations than untapped trees in all 

compartments. Because tapped trees face declining carbon storage pools during the dry tapping 

season and these pools are not fully replenished during the wet season, they face higher risks of 

carbon starvation compared to untapped trees. Furthermore, the higher annual carbon gain in the 

highland site (Chapter 3, Figure 3), does not correspond with higher storage TNC concentrations. 

The fact that higher annual carbon gain is not reflected in none of the carbohydrate sinks 

including storage, points out that there are additional underground sinks to be investigated 

further. Generally, TNC concentrations in the Boswellia tree was lower than in the apple tree 

(Naschitz et al. 2010), the rubber tree (Silpi et al. 2007, Chantuma et al. 2009) and some Bolivian 

tropical forest trees (Poorter and Kitajima 2007) but comparable to some conifers (Bansal and 

Germino 2009), seasonally dry forest trees (Newell et al. 2002) and temperate tree-line 

deciduous taxa (Li et al. 2002, Hoch et al. 2002, Hoch et al. 2003).  

Given the distinct seasonal changes in climate and phenology of this tree, periodic depletion 

and re-fill of TNC concentrations are in line with our expectations. This was also in agreement 

with results from other studies (Steele et al. 1984, Hoch et al. 2003, Silpi et al. 2007, Chantuma 

et al.2009, Bansal and Germino 2009) where TNC levels were depleted during the dormant 

leafless dry season.  

 

(4) How do the multiple carbon sinks respond to tapping and to seasonal variation? 

Carbohydrates fixed by photosynthesis are the sources of energy for growth and metabolic 

processes in the plant system. If these carbohydrates are limited, competition could occur among 

different demands for the same carbohydrate resource (Bazzaz et al., 1987, Stephenson 1981, Ho 

1988, Rijkers et al. 2006, Poorter and Kitajima 2007). Allocation patterns may shift seasonally 

challenged by climate and anthropogenic factors. In the past decades, the study of carbon cycles 

has received increasing attention due to the crucial role of carbon in global warming. However, a 

necessary pre-requisite yet to be studied in CO2 flux is to understand the basic mechanism of 

carbon allocation pattern at the whole plant level (Litton et al. 2007).  
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In this part of the dissertation, I capture the findings of my thesis in terms of the annual 

carbon gain (Chapter 3) and the allocation to competing sinks (chapter 4 and 5) while tapping is 

considered as an additional drain like in rubber trees (Chantuma et al. 2009). This is as far as I 

know the first attempt to understand annual and seasonal carbohydrate allocation pattern at tree 

level. Frankincense harvesting will reduce the allocation of carbohydrates to the remaining sinks. 

Increased annual carbohydrate gain is expected to increase carbohydrate resource availability to 

individual sinks. To demonstrate this, I used a carbon flow scheme (see also Ryan et al. 2004, 

Litton et al. 2007) to evaluate annual and seasonal source-sink balances. In this scheme, GPP 

(gross primary production) is considered as the carbon source during the wet season and TNC is 

considered to serve as carbon source during the dry season (Chapter 5, Figure 2).  

The total of the estimated annual carbon sinks to the different components were 38-68% of 

the annual carbon gain in both study sites. However, Boswellia trees also establish mycorrhizal 

association (Birhane et al. 2010) and the consumption of carbon by the fungal symbiont can be 

strong (Corrêa et al. 2011). Mycorrhizal symbiosis can consume up to 20% of the total fixed 

carbon (Smith and Read 2008). Therefore, assuming 20% cost of mycorrhiza, the total carbon 

cost can reach 68-88% of the GPP.  And yet the extent of root colonization is found three times 

higher in the highland than the lowland (Birhane et al. 2010), which implies more carbon cost of 

mycorrhiza in the highland. Contrary to our expectation, the sum of all dry season costs was 

found above the total available TNC stock, and the cost of frankincense production alone was 

higher than TNC. Such high carbon costs during the dry season imply that trees do not fully 

depend on TNC for dry season costs. This suggests that trees use additional sources of 

carbohydrates, for example carbohydrates that are produced by bark photosynthesis. Boswellia 

trees indeed have considerable amount of bark chlorophyll (Gebrekidan et al. 2011 in prep). Our 

results indicate that the additional carbon cost by tapping reduced subsequent foliage 

development and reproductive effort especially in the lowland. This was not the case in the 

highland. Trees in the highland have a higher annual carbon gain (GPP) that may help to buffer 

the impact of tapping. An alternative argument is based on the growth differentiation balance 

hypothesis (Herms and Mattson 1992, Kleczewski et al. 2010). The implication of this 

hypothesis for our case is that Boswellia trees may respond to the gradient of resources:  the 

growth of highland trees may be constrained by other resource limitations (e.g. moisture) in such 

a way that carbohydrates become available for alternative use such as frankincense production. A 
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good indication for this is that although GPP was lower in the lowland, annual carbohydrate 

sinks in the lowland exceeded those of the highland (Chapter 5, Figure 5 and Table 2). 

I also demonstrated that, with the exception of carbon allocation to foliage production 

(NPPfoliage) and maintenance (Rfoliage), increasing carbon gain is not accompanied by an overall 

increase in carbohydrate allocation to the other sinks. Therefore, the carbon allocation pattern is 

constrained not exclusively by the absolute amount of carbon gained but also by other factors for 

example environmental factors such as moisture, temperature and vapor pressure deficits.  

 

Conclusions  

Climate impacts: The drier highland Boswellia populations occur at higher light levels and 

achieve higher annual carbon gain during a shorter growing season than the less dry lowland. 

However, more carbohydrates are invested in sinks in lowland trees than highland trees. 

Therefore, beyond carbon gain, environmental factors like moisture stress may be additional 

important elements affecting the carbon allocation patterns. In the highland, the short wet season 

and the long period of moisture stress may constrain tree growth to a greater degree than overall 

assimilation. However, in the less dry lowland, the better tree growth (see Chapter 5 table 2, 

higher NPP values for the lowland than the highland) requires high carbon demands. I therefore 

conclude that radiation during the wet season is the most important factor affecting Boswellia 

tree carbon gain. But rainfall amount and wet season length is more important in the allocation of 

the acquired carbon to the different sinks. Drier and hotter conditions may set limits to existing 

leaf lifespan, annual carbon gain and thus also to carbon allocation patterns.  

 

Impact of tapping: Frankincense production cost (4% of GPP) is the third largest carbon sink in 

Boswellia trees.  Tapped trees face declining carbon storage pools that are not fully replenished 

during the wet season, and may risk carbon starvation sooner than untapped trees. The 

competition for carbohydrates between frankincense production and other sinks is stronger in the 

lowland where tapping reduced foliage production and reproductive effort. However, the total 

amount of frankincense produced is not affected by the total annual carbon gain implying that 

smaller trees may suffer sooner from carbon starvation by tapping. Therefore, indiscriminate 

harvesting of frankincense, including small trees, will increase the risk of carbon starvation and 
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tree mortality. Improved tapping guidelines thus should include a lower tapping intensity and 

frequency for trees with smaller sizes. 

 

Carbon budget: Based on the carbon flow scheme, the total estimated annual carbon sinks to the 

different components are lower than the total annual carbon gain in both study sites, indicating 

that additional critical sinks yet have to be explored. However, estimated autotrophic respiration 

cost (the sum of respiration costs of wood, root and foliage) is uncertain but probably major 

carbohydrates sink at both sites. Such a quantitative analysis of annual carbon gain and 

investments into tree carbon sinks shows how allocation patterns change in relation to plant 

phenological events and physiological processes. The carbohydrate storage reserves (TNC) are 

not sufficient for paying the sink costs during the leafless dry season, suggesting that other 

sources are being used. A possible contribution is from the carbohydrates produced by the bark 

since chlorophyll is amply available. This definitely needs further exploration. But, if the 

contribution of bark photosynthesis is as high as expected, bark wounding by tapping does have 

impact on the tree carbon balance not only by creating additional sink but also by reducing the 

carbon gain from bark photosynthesis.  
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Summary 
  

 

African dry forests and woodlands are rich in tree and grass species. Many of these plants have 

great potential to provide renewable resources of future economic growth. However, several 

species are lost by increased degradation due to climate and anthropogenic factors. Measures to 

counteract this problem should be targeted to improved resource management. This study 

analyses the carbon balance of the economically important frankincense producing tree 

Boswellia papyrifera (Del.) Hochst. This economically important species grows in the dry 

woodlands of northern Ethiopia. The species is the source of classical frankincense also known 

as “Olibanum”. 

The main research goal of this thesis was to evaluate the impact of frankincense tapping 

on the carbon balance of the Boswellia tree. This research is the first study to analyze the impact 

of tapping on carbon gain and allocation pattern of a dry woodland tree species. Trees were 

studied from lowland (Metema) and highland (Abergelle) populations. The research was focused 

on adult trees of equal size (20±3 cm diameter at breast height). 

Leaf gas exchange was measured on naturally grown B. papyrifera trees in the morning 

(8-11 h), around midday (12-14h), and in the afternoon (15-17h) over a series of consecutive 

days during the wet seasons of two years. The effects of tapping, climate conditions and crown 

functional traits to annual carbon gain were examined and, in turn, their subsequent impacts on 

resin yield were evaluated. Furthermore, the influence of frankincense tapping on total 

nonstructural carbohydrates (TNC) content in wood, roots and bark of trees was evaluated, as 

well as the seasonal dynamics in TNC as a result of growth in the wet season and exhaustion 

during the dry season. Finally, the gross primary productivity (GPP), estimated from gas 

exchange measurements, was related to the carbon allocation to competing sinks using a carbon 

flow scheme.  Tapping was considered as an additional carbon drain.  

The results show that Boswellia trees adapt to local conditions. Leaf photosynthesis was 

more limited by atmospheric drought than by soil water deficit during the wet growing season. 

Radiation during the wet season had a stronger impact on annual carbon gain than wet season 

length in contrasting environments. Frankincense production costs up to 4% of the annual GPP 

and is the third largest carbon sink in Boswellia trees. However, the yearly production of 



 

 −112−

frankincense was not affected by the annual tree carbon gain implying that smaller trees may 

suffer sooner from carbon starvation by tapping. Continuous and intense tapping depletes storage 

carbon, diminishes total leaf area production and the reproductive effort and these negative 

effects will be apparent sooner for smaller trees than for larger ones. Guidelines for tapping 

intensity and frequency should be formulated considering these tapping effects on Boswellia 

populations. 

The impact of tapping on the total leaf area production and the reproductive effort was 

site specific. Our findings have also revealed how frankincense harvesting reduced carbon 

allocation for reproductive effort. The negative effects of tapping were more apparent in the 

lowland than in the highland. Trees growing in the drier highland environment achieved better 

annual carbon gain owing to their higher photosynthetic capacity and higher light conditions and 

despite a shorter growing season. This possibly allows trees to buffer the negative impact of 

tapping on leaf area production and the reproductive effort. The higher carbon gain in the 

highland is however not reflected in larger carbon storage pools, frankincense yield, reproductive 

effort or growth sinks (net primary production, NPP).  

The widely known frankincense is a valuable gift of nature. It has been traded in large 

quantities for a long time. Frankincense has been a valuable commodity for cultural and religious 

uses but also gained increasing demand for the production of medicines, cosmetics and 

chemicals in modern society. Studies in this dissertation showed that the source of frankincense, 

the Boswellia trees, were physiologically capable of acclimating to their natural environmental 

conditions but also that they are susceptible to intensive tapping. The current practice of 

harvesting frankincense at high intensity diminishes the tree vitality through decreased carbon 

storage needed for vital functions and results in a higher chance of tree mortality. Persisting with 

the current tapping practices will lead to a significant decrease of Boswellia populations. Forests 

with relatively vital Boswellia populations will need to receive conservation status, and clear 

harvesting guidelines for the frequency and intensity of tapping need to be developed and 

applied. If incense harvesting is based on the understanding of the tree’s carbon balance, the 

future production of frankincense may become sustainable.  
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Samenvatting 
 
 

Afrikaanse droge bossen zijn rijk aan boom en grassoorten. Veel plantensoorten leveren 

duurzame hulpbronnen voor toekomstig economische ontwikkeling. Verschillende van deze 

soorten worden bedreigd door klimaat- en menselijke- factoren. Maatregelen om het verlies aan 

soorten tegen te gaan zouden zich moeten richten op het beheer van de natuurlijke hulpbronnen. 

Deze studie onderzoekt de koolstof balans van de wierook producerende boom Boswellia 

papyrifera (Del.) Hochst. Deze economisch belangrijke soort groeit in de droge bossen van 

Noord Ethiopië, en is de bron van de klassieke wierook, ook wel bekend als “olibanum”.  

 Het belangrijkste doel van het onderzoek in dit proefschrift was het evalueren van de 

invloed van het tappen van wierook op de koolstof balans van de Boswellia boom. Voor de 

eerste keer is onderzoek verricht naar de invloed van het tappen van hars (wierook in dit geval) 

op de jaarlijkse koolstofwinst, koolstofopslag en koolstofallocatie van een boom uit droge 

tropische bossen. Hierbij is gebruik gemaakt van gegevens van populaties uit het laagland bij 

Metema en het hoogland bij Abergelle. Het onderzoek richtte zich op volwassen bomen van 

vergelijkbare omvang (20±3cm stam diameter op borst hoogte). 

 Blad fotosynthese  en transpiratie zijn  gemeten bij B. papyrifera bomen in de ochtend (8-

11 uur), rond de middag (12-14 uur) en in de namiddag (15-17 uur). Dit soort metingen zijn 

uitgevoerd voor een aantal dagen in het regenseizoen gedurende twee opeenvolgende jaren. De 

effecten van tappen, klimaat en boomkroonkenmerken op de jaarlijkse koolstofwinst en wierook 

productie zijn bestudeerd. Bovendien is de invloed van het tappen van wierook op de totale 

koolstof reserves in hout, wortels en bast onderzocht. De veranderingen in deze reserves variëren 

ten gevolge van de groei tijdens het regenseizoen en de wierook productie tijdens het droge 

seizoen. Ten slotte is de bruto koolstofwinst geschat uit de bladfotosynthese en kroonomvang, en 

vergeleken met de koolstof uitgaven door verschillende koolstof gebruikende organen. Hierbij 

werd het tappen van wierook beschouwd als een extra verliespost voor koolstof.   

 De resultaten geven aan dat Boswellia bomen zich aanpassen aan lokale situaties. De blad 

fotosynthese is meer gelimiteerd door atmosferische droogte dan door een gebrek aan 

grondwater tijdens de natte groei periode. Zonnestraling tijdens de natte periode had een grote 

invloed op jaarlijkse koolstofwinst, en die invloed was zelfs groter dan de lengte van de regentijd 
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voor de twee onderzochte, en sterk contrasterende, onderzoeklocaties. Wierook productie kost tot 

4% van de jaarlijkse bruto koolstof winst en staat als koolstof verliespost op de derde plaats in 

Boswellia bomen. De jaarlijkse productie van wierook wordt echter niet beïnvloed door de 

jaarlijkse koolstofwinst van de boom. Dit impliceert dat kleine bomen eerder te lijden hebben 

van koolstof gebrek door tappen dan grote bomen. De resultaten geven duidelijk aan dat frequent 

en intensief tappen de koolstof opslag uitbuit, en dat het totale bladoppervlak en de 

vruchtproductie vermindert. De negatieve effecten hiervan zullen sneller zichtbaar zijn bij bomen 

met kleinere kronen en kleinere koolstofwinst. Er zijn richtlijnen nodig om tap intensiteit en tap 

frequentie te reguleren waarbij deze effecten in acht genomen worden. 

 De invloed van tappen op het bladoppervlak en de reproductie verschilde tussen de twee 

onderzoeksgebieden. Onze bevindingen laten zien dat het oogsten van wierook de koolstof 

consumptie vermindert voor reproductie. Deze negatieven effecten van tappen waren sterker in 

laagland populaties dan in hoogland populaties. Bomen die in de drogere hooglanden groeiden 

verkregen een hogere jaarlijkse koolstofwinst dankzij een hogere capaciteit voor fotosynthese en 

betere licht condities tijdens een korte groei periode. Dit geeft deze bomen waarschijnlijk de 

mogelijkheid om een koolstof buffer op te bouwen waarmee de negatieve invloeden van tappen 

op blad en vrucht productie verminderd kunnen worden. De hogere koolstofwinst in de 

hooglanden vertaalt zich echter niet in een hogere koolstof opslag, en evenmin in een hogere 

reproductie, groei of wierook oogst. 

 Wierook is een waardevol geschenk van de natuur. Het wordt sinds een lange tijd in grote 

hoeveelheden verhandeld. Wierook is een belangrijk product voor cultureel en religieus gebruik, 

en het wordt ook steeds meer gebruikt voor medicijnen, cosmetica en chemicaliën in de moderne 

samenleving. Onderzoeken in dit proefschrift laten zien dat de bron van wierook, de Boswellia 

bomen, fysiologisch in staat zijn om zich aan te passen aan hun natuurlijke omgeving, maar 

vatbaar zijn voor het aanhoudend tappen van wierook. Het tegenwoordig zeer intensieve oogsten 

van wierook leidt tot minder vitale bomen doordat de beschikbaarheid van koolstof voor vitale 

functies vermindert met toenemende sterfte als gevolg. Dit zal uiteindelijk leiden tot een afname 

van de vitale Boswellia populaties. Gebieden met vitale Boswellia populaties dienen een 

beschermde status te krijgen en duidelijke richtlijnen voor de frequentie en intensiteit van het 

tappen zullen ontwikkeld dienen te worden. Wanneer het oogsten van wierook gebaseerd is op 
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het begrijpen van de koolstof balans in de boom, dan zou de toekomstige productie van wierook 

duurzaam kunnen zijn. 
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The FRAME project 
 
 
FRAME: Frankincense, Myrrh and gum arabic: sustainable use of dry woodland resources 
in Ethiopia  
 
More than half of the total land area in Ethiopia is covered by arid to semiarid woodlands with 
marginal  agricultural potential. These woodlands are commonly overexploited for  their  natural 
resources, which reduces the local livelihood options for a rapidly expanding population. Climate 
change (e.g. drought) may intensify this negative trend. Consequently, there is an urgent need for 
improved land-use strategies that will make the vast arid and semiarid woodland resources 
optimally contribute to the livelihoods of local people and national development goals. 

The dry woodlands in Ethiopia are not resource poor as they host several woody species 
that hold economically well recognized aromatic products such as gum arabic, frankincense and 
myrrh, which are widely used locally and in several of today’s commercial industries such as 
cosmetic, pharmacological and food industries. Frankincense and myrrh are among the oldest 
internationally traded commercial tree products. Ethiopia is worldwide the main producer of 
frankincense and myrrh, and exports much gum arabic. Gum/resin production could significantly 
contribute towards sustainable development of these dry woodland areas. However, the 
overexploitation of natural resources by intensive grazing and intensive resin/gum harvesting and 
the lack of land management threatens the sustainability of the woody vegetation, and as a result 
of that also the long-term gum/resin production. Local communities may also enhance the 
productive capacity of the natural vegetation by establishing protected enclosures and by 
cultivation of trees. Such production systems may have a lower status regarding biodiversity and 
natural ecosystem functioning, but maintain ecological buffering capacity and improve 
production for human benefit.  

The FRAME program addresses the following main research question:  in what way dry 
land forests in Ethiopia can be made productive while maintaining ecosystem integrity in terms 
of sustainability of production and vegetation cover, with special attention to resin and gum 
resources? 

FRAME uses a multidisciplinary approach involving  scientific disciplines ranging from 
landscape-level geo-information studies to village-level socio-economic studies, plot level 
ecological and harvesting technology studies to tree-level ecophysiological studies with a strong 
contribution of local knowledge in  answering the central research question. FRAME thus 
establishes a scientific basis for the sustainable management, including cultivation, of gum and 
resin yielding tree species and their habitat, the dry woodlands in the Horn of Africa. FRAME is 
actually involved in development of long-term scenarios for proper use and selection of suitable 
areas of dry woodland resources in Ethiopia. 

 
The current PhD thesis is part of this FRAME program. A large part of this integrated FRAME 
research program was financially supported by NWO-WOTRO (Netherlands Organization for 
Scientific Research- Science for Global Development), grant W01.65.220.00.  
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